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Abstract

We derive an expected confusion metric, as opposed to re-
porting percent correct with a limited database, as a method
to evaluate recognition techniques. This metric allows us to
predict how well a given feature vector will filter identity in
a large population. Our expected confusion is the ratio of
the average individual variation of a feature vector to that
of the population variation of the feature vector. We eval-
uate our gait-recognition technique [2] that recovers static
body and stride parameters of walking subjects with the ex-
pected confusion metric to demonstrate its use.

1. Introduction

Perhaps the most significant limitation in recognition tech-
niques is the manner in which results are reported. Even
though the size of training/testing subject databases are typ-
ically much smaller then a population, results are reported
as percent correct. That is, on how many trials could the
system correctly recognize the individual by choosing its
best match. Such a result gives little insight as to how the
technique might scale when the database contains hundreds
or thousands or more people.

As opposed to reporting percent correct, we will estab-
lish the uncertainty reduction that occurs when a measure-
ment is taken. For a given measured property, we establish
the density of the overall population. To do so requires only
enough subjects such that the density approaches some sta-
ble estimate. Next we determine the average or expected
variation in the measurement when applied to a given indi-
vidual. Essentially the ratio of the volume of the two densi-
ties gives an indication of how “good” a biometric the mea-
surement is.

The reminder of this paper is as follows: we describe
the expected confusion metric, and demonstrate its use on
our gait-recognition technique that recovers static body and
stride parameters of walking subjects.
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Figure 1: Uniform probability illustration of how the density of
the overall population compares to the the individual uncertainty
after the measurement is taken. In this case the remaining confu-
sion — the percentage of the population that could have given rise
to the measurement — isM=N .

2. Expected Confusion

As mentioned our goal is not to report a percent correct of
identification. To do so requires us to have an extensive
database of thousands of individuals being observed under
a variety of conditions. Rather, our goal is to characterize a
particular measurement as to how much it reduces the un-
certainty of identity after the measurement is taken.

Many approaches are possible. Each entails first esti-
mating the probability density of a given property vectorx
for an entire populationPp(x). Next we must estimate the
uncertainty of that property for a given individual once the
measurement is knownPI(xj� = x0) (interpreted as what
is the probability density of the true value of the propertyx
after the measurement� is taken). Finally, we need to ex-
press the average reduction in uncertainty or the remaining
confusion that results after having taken the measurement.

Information theory argues for a mutual information [1]
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measure:

I(X;Y) = H(X)�H(XjY): (1)

whereH(X) is the entropy of a random variableX defined
by

H(X) = �
Z
x

p(x) ln p(x);

andH(XjY) is the conditional entropy of a random vari-
ableX given another random variableY defined by:

H(XjY) = �
Z
x;y

p(x; y) ln p(xjy):

For our case the random variableX is the underlying prop-
erty (of identity) of an individual before a measurement is
taken and is represented by the population density of the
particular metric used for identification. The random vari-
ableY is an actual measurement retrieved from an indi-
vidual and is represented by a distribution of the individual
variation of an identity measurement. Given these defini-
tions, the uncertainty of the property (of identity) of the
individual given a specific measurement,H(XjY), is just
the uncertainty of the measurement,H(Y). Therefore the
mutual information reduces to:

I(X;Y) � H(X)�H(Y): (2)

Since the goal of gait recognition is filtering human iden-
tity this derivation of mutual information is representative
of filtering identity. However, we believe that a better as-
sessment (and comparable to mutual information) of a met-
ric’s ability to filter identity is the expected value of the
percentage of the population eliminated after the measure-
ment is taken. This is illustrated in Figure 1. Using a uni-
form density for illustration we let the density of the feature
in the populationPp be 1=N in the interval[0; N ]. The
individual densityPi is much narrower, being uniform in
[x0 �M=2; x0 +M=2]. The confusion that remains is the
area of the densityPp that lies underPi. In this case, that
confusion ratio isM=N .

When the densities are not uniform, the situation is a lit-
tle more complicated. We still need the area underPp that
falls underPi, but that area needs to be weighted by the
value ofPi. Consider a little strip�x under bothPp and
Pi. The incremental area in that strip (with respect toPp) in
the neighborhood ofx is justPp(x) ��x. Suppose we have
taken a measurement of value� (a slight abuse of notation
from above). If we assume thatPi is zero mean noise about
the measurement, then the absolute scaled incremental area
�A is:

�A�(�; x) = Pp(x)Pi(� � x)�x

and the total absolute scaled areaA
� is:

A
�(�) =

Z 1

�1

Pp(x)Pi(� � x) dx

The reason we say “absolute scaled” is that what is needed
is not the scaled area, but therelative scaled area. This is
understood by looking at the one dimensional uniform den-
sities in Figure 1. Each little strip ofPp that falls underPi
should not be weighted by1=M . If we did, we would would
end up with a value for the scaled area of1=N . That is, the
scale factor would have been used to compute the average
value ofPp overPi. The problem is that the desired relative
areaA has been scaled and we need to normalize by the av-
erage scale factor. The average scale factor�s is the expected
value ofPi taken overPi:

�s =

Z 1

�1

Pi(x) � Pi(x)dx =

Z 1

�1

(Pi(x))
2
dx

. This yields the expression for the relative weighted area
when the measurement is�:

A(�) =
A
�(�)

�s
=

R1
�1

Pp(x)Pi(� � x) dxR1
�1

(Pi(x))2dx
(3)

Applying this formula to our uniform density example gives
1=N
1=M

= M=N as expected. To compute the expected value
of the confusion we need to take the expectation over the
population:

E[A(x)] =

Z 1

�1

A(x)Pp(x)dx (4)

We can analytically apply this measure of expected con-
fusion to the Gaussian case as well. We derive the expres-
sion for the one dimensional case; the multi-dimensional
case follows naturally. Assume thatPp(x) and Pi(x)
are normal densitiesN(�p; �

2

p) andN(�i; �
2

i ) respectively
where�p � �i, and�i is the mean of the individual. Again
considering a measurement of�, the value forA� is:

A
�(�) =

Z 1

�1

1p
2��p

e

(x��p)
2

2�2
p � 1p

2��i
e

(x��)2

2�2
i dx

Given that�p � �i we can assume that over the region that
Pi is significantly non-zero, the value ofPp is constant, in
this case namelyPp(�). If so, then:

A
�(�) = Pp(�)

Z 1

�1

1p
2��i

e

(x��)2

2�2
i dx

= Pp(�)

The average scale factor�s is:

�s =

Z 1

�1

"
1p
2��i

e

(x��)2

2�2
i

#2
dx
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Figure 2: This figure shows the multidimensional Gausssian case of the expected confusion. (a) The population density is estimated
with samples from a population. (b) The individual uncertainty estimate is based on the average variation of the feature obtain from an
individual.

Using a change of variable of2i = �
2

i =2 yields:

�s =
1p

2��i �
p
2

Z 1

�1

1p
2�i

e

(x��)2

22
i dx

=
1

2
p
��i

(5)

This yields a confusion at� for the Gaussian case of:

A(�) =
A
�(�)

�s
=

Pp(�)
1

2
p
��i

= 2
p
��iPp(�)

Finally to compute the expected confusion we integrate over
Pp:

E[A] =

Z 1

�1

2
p
��iPp(�) � Pp(�)d�

= = 2
p
��i

Z 1

�1

(Pp(�))
2
d�

= 2
p
��i �

1

2
p
��p

= �i=�p (6)

This satisfying result simply states that the percentage of
the population remaining is the ratio of standard deviation
of the uncertainty after measurement to that before the mea-
surement is taken. If the� ln of the ratio is taken,

� ln(
�i

�p
) = ln�p � ln�i; (7)

we arrive at an expression that is the mutual information
from Equation 2. This is shown by solving Equation 2 using
the random variablesX (the population density) andY (the

individual uncertainty) defined by their respective Gaussian
distributions:

Pp(x) =
1p
2��p

e

x
2

2�2
p

and

Pi(y) =
1p
2��i

e

y
2

2�2
i :

First, solving for H(X ), we arrive at:

H(X) = �
Z
x

Pp(x) lnPp(x)dx

= �
Z
x

Pp(x)[
�x2
2�2p

� ln
q
2��2p ]dx

=

Z
x

x
2
Pp(x)

2�2p
dx+

Z
x

Pp(x) ln
q
2��2pdx

=
1

2�2p

Z
x

x
2
Pp(x)dx + ln 2��2p

Z
x

Pp(x)dx

=
�
2

p

2�2p
+

1

2
ln 2��2i

=
1

2
+

1

2
ln 2��2p

Second, solving for H(Y ), we arrive at a similar expression:

1

2
+

1

2
ln 2��2i

Last, solving forI(X;Y):
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I(X;Y) � H(X)�H(Y)

� 1

2
+

1

2
ln 2��2p �

1

2
� 1

2
ln 2��2i

� 1

2
ln(

2��2p
2��2i

)

� ln�p � ln�i: (8)

The result (Equation 8) is equal to Equation 7, and shows
the relationship of our expected confusion metric and mu-
tual information. However, our measure is a relative one
and can more easily be interpreted as a percentage of over-
lap and thus is perhaps more directly applicable to the field
of biometrics.

Extending the expected confusion measure to the multi-
dimensional Gaussian case, the result is

Expected Confusion=
j�ij1=2
j�pj1=2

: (9)

This quantity is the ratio of the volumes of equal proba-
bility hyper-ellipsoids as defined by the Gaussian densities.
j�pj1=2 is computed from the population density (see Fig-
ure 2(a)), andj�ij1=2 is computed from the average individ-
ual variation (see Figure 2(b)). This analysis also holds for
densities that are mixtures of Gaussians.

3. Static Measurements from Gait
In this section we present a set of static body parameters
designed for gait from our pervious work [2] to demon-
strated the use of the expected confusion metric. However,
unlike [2], we recover the static body parameters from a
motion-capture database of walking subjects instead of a
vision database.

3.1. Gait parameters
Our motion-capture system uses magnetic sensors to cap-
ture the three-dimensional position and orientation of the
limbs of the subjects as they walk along a platform. Sixteen
sensors in all are used for the head, torso, pelvis, hands,
forearms, upper-arms, thighs, calves, and feet. For this ex-
periment, we recorded 20 subjects (11 males and 9 females
with heights varying from 149.9 cm to 185.4 cm) walking
along a 16ft. long platform.

The static body parameters measured, as a person walks,
are four distances: the distance between the head and foot
(d1), the distance between the head and pelvis (d2),the dis-
tance between the foot and pelvis (d3), and the distance be-
tween the left foot and right foot (d4) (See Figure 3). These
distances are only measured at the maximal separation point
of the feet during the double support phase of the gait cy-
cle, and are concatenated to form a four-dimensional walk
vectorw =< d1; d2; d3; d3 > for each subject.

d1

d3

d4

d2

Figure 3: The static body parameters:w =< d1; d2; d3; d4 >.

3.2. Population vs. individual variation
Following the analysis of Section 2, we want to measure the
ratio between the volume of the individual variation den-
sity and that of the overall population. Because of a limited
number of subjects we will model the density of the popula-
tion as a single Gaussian. To determine whether our density
estimation is valid, we plot the value ofj�pj

1
2 as we add

more subjects (see Figure 4). The data point fork subjects
was computed by taking 200 random sets1 of k subjects and
computing the maximum likelihood estimate Gaussian den-
sity. The fact that the volume begins to asymptote as we ap-
proach 18 subjects implies that we have a reasonable model
of the population density, but of course more data is always
better. The asymptotic value is 309 cm4.

To compute the individual variation we subtract the mean
walk vector of each subject from each of their six trials, and
then compute the covariance�i over all the trials. The value
of j�ij

1
2 for the first set of static body parameter is 1.3 cm4.

This yields an expected confusion ratio

E[A] =
1:3cm4

309cm4
= 0:0042:

This implies that the variation in these static body parame-
ters during an individual’s gait would leave a confusion with
an average of less than 1% of the population. If the expected
confusion ratio was equal to one, then the individual vari-
ations of the static body parameters would be the same as

1In cases where
�

n

k

�
is less than 200, all possible sets ofk were

used.



Technical Report: GIT.GVU-01-10 5

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

number of sujects

vo
lu

m
e 

(c
m

4 )

Population (Motion−Capture)

Figure 4: Volumetric measure of magnitude of probability density
j�pj

1
2 of the population using the motion-capture data for walk

vectorw. The curve reaches a somewhat stable asymptote after
approximately 18 subjects indicating a reasonable coverage of (a
segment of) the population.

the population variation of the parameters, and would imply
that the features are not discrimination between individuals.

We note that when performing recognition on our
database of 20 people, our recognition rate was 97.5%. But
clearly this number is a function of how many people are
in our database. The confusion measure, however, is valid
as soon as the number of subjects allows the estimate of the
population density to converge.

4. Conclusion
This paper has given a derivation of an expected confusion
measure as opposed to reporting a percent correct with a
limited database. Even with only 20 subjects we are able
to make predictions as to how well a particular measure
will perform. As with any new work, there are several next
steps to be undertaken. We must expand our database to
test how well the expected confusion metric predicts perfor-
mance over larger databases. It will also permit considering
whether representing the population as a single Gaussian
density is wise.
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