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Abstract
This paper explores the thresholding rules induced by a variation of the Bayesian MAP

principle. The MAP rules are Bayes actions that maximize the posterior. The proposed rule is
thresholding and always picks the mode of the posterior larger in absolute value, thus the name
LPM. We demonstrate that the introduced shrinkage performs comparably to several popular
shrinkage techniques. The exact risk properties of the thresholding rule are explored, as well.
We provide extensive simulational analysis and apply the proposed methodology to real-life
experimental data coming from the field of Atomic Force Microscopy.
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1 INTRODUCTION

The Bayesian paradigm has become very popular in wavelet-based data processing. In addition
to possible incorporation of prior information about the unknown signal by Bayesian models, the
resulting Bayes rules are usually shrinkers. For example, in location models the Bayesian estimator
shrinks toward the prior mean, usually zero. This shrinkage property holds in general, although
examples of Bayes rules that expand can be constructed, see Vidakovic and Ruggeri (1999). The
Bayes rules can be constructed to mimic the traditional wavelet thresholding rules: to shrink the
large coefficients slightly and shrink the small coefficients heavily. Furthermore, most practicable
Bayes rules should be easily computed by simulation or expressed in a closed form.

One statistical task in which the wavelets are successfully applied is recovery of an unknown
signalf imbedded in Gaussian noiseε. Wavelet transformW is applied to noisy measurements
yi = fi + εi, i = 1, . . . , n, or, in vector notation,y = f + ε. The linearity of transformationW
implies that the transformed vectord = W(y) is the sum of the transformed signalθ = W(f) and
transformed noiseη = W(ε). Furthermore, orthogonality ofW and normality of the noise vector
ε imply that the transformed noise vectorη is normal, as well.

Bayesian estimation is applied in the wavelet domain, i.e., after the data have been transformed.
The wavelet coefficients can be modeled in totality, as a single vector, or individually, due to
the decorrelating property of wavelet transforms. In this paper we model wavelet coefficients
individually, i.e., elicit a model on a typical wavelet coefficient.

Thus, we drop the standard wavelet indexing and concentrate on the model:d = θ+ε. Bayesian
methods are applied to estimate the location parameterθ, which will be, in the sequel, retained as
the shrunk wavelet coefficient and back transformed to the data domain. Various Bayesian models
have been proposed in the literature. Some models have been driven by empirical justifications,
others by pure mathematical considerations; some models lead to simple and explicit rules, others
require extensive Markov Chain Monte Carlo simulations. Reviews of some early Bayesian ap-
proaches can be found in Abramovich and Sapatinas (1999), Vidakovic (1998, 1999) and Ruggeri
and Vidakovic (2005). M̈uller and Vidakovic (1999) provide an edited volume on various aspects
of Bayesian modeling in the wavelet domain.

In this paper we explore thresholding rules induced by a variation of the Bayesian MAP prin-
ciple. MAP rules are Bayes actions that maximize the posterior. In all models considered in this
paper the posterior is infinite at zero, i.e., zero is trivially the mode of the posterior. If no other
modes exist, zero is the Bayes action. If the second, non-zero mode of the posterior exists, this
mode is taken as the Bayes action. Such a rule is thresholding and always picks the mode larger in
absolute value if such local mode exists. This is the motivation for the name LPM - Larger (in ab-
solute value) Posterior Mode. We demonstrate that thresholding induced by replacing the wavelet
coefficient with the larger posterior mode of the corresponding posterior, performs well compared
to several popular shrinkage techniques.

The paper is organized as follows. In Section 2 the basic model is described, the LPM rule
is derived, and the exact risk properties of the LPM rule are discussed. Section 3 discusses two
models that generalize the model from Section 2 by relaxing the assumption of known variance.
Derivations of LPM rules corresponding to these two models are deferred to the Appendix. Com-
prehensive simulations and comparisons are provided in Section 4. This section also contains
discussion on the selection of hyperparameters and a real-life application of the introduced shrink-
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age. We conclude the paper with Section 5 in which some possible directions for future research
are outlined.

2 LARGER POSTERIOR MODE(LPM) WAVELET THRESHOLDING

As is commonly done in Bayesian wavelet shrinkage, a Bayesian model is proposed on observed
wavelet coefficients. Due to the decorrelation property of wavelet transforms, the coefficients
are modeled individually and independently. In the exposition that follows, the double indexjk
representing scale/shift indices is omitted and a “typical” wavelet coefficient,d, is considered.
Therefore, our model starts with

d = θ + ε, (1)

where we are interested in the locationθ corresponding to the signal part contained in the observa-
tion d.

Bayes rules under the squared error loss and regular models often result in shrinkage rules
resembling thresholding rules, but they are never thresholding rules. In many applications rules of
the thresholding type are preferable to smooth shrinkage rules. Examples include model selection,
data compression, dimension reduction, and related statistical tasks in which it is desirable to
replace by zero a majority of the processed coefficients.

This paper considers construction of bona fide thresholding rules via selection of a larger (in
absolute value) posterior mode (LPM) in a properly set Bayesian model. The models considered
in this paper produce posteriors with no more than two modes. The selected mode is either zero (a
single mode – thus trivially the larger) or non-zero mode if the posterior is bimodal.

2.1 DERIVATION OF THE THRESHOLDING RULE

We consider several versions of the model. In the basic version, discussed in this Section, the
variance of the noise is assumed known and a prior is elicited only on the unknown location. This
version of the model can be found in Robert (2001) in the context of Bayesian credible intervals.
In the generalized versions discussed in the following section, the variance of the noise is not
assumed known and will be modeled by (i) inverse-gamma and (ii) exponential priors which are
independent from the location parameter.

Consider the model

d|θ ∼ N (θ, σ2),

θ|τ 2 ∼ N (0, τ 2), (2)

τ 2 ∼ (τ 2)−k, k > 0,

where the varianceσ2 is assumed known and in practice estimated from the data and plugged in
the model. We seek a MAP solution, i.e., an estimator ofθ that (locally) maximizes the posterior,
π(θ|d). To find the extrema of the posterior onθ we note that the posterior is proportional to the
joint distribution ofd,θ andτ 2, so the value ofθ maximizing the joint distribution maximizes the
posterior, as well. The joint distribution is proportional to
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p(d, θ) =

∫
p(d|θ)p(θ|τ 2)p(τ 2)dτ 2

=

∫
1√
2πσ

e−(d−θ)2/(2σ2) 1√
2πτ 2

e−θ2/(2τ2) 1

(τ 2)k
dτ 2

=
1

2πσ
e−(d−θ)2/(2σ2)

∫
(τ 2)−(k+1/2)e−θ2/(2τ2)dτ 2

=
1

2πσ
e−(d−θ)2/(2σ2)

∫
y(k−1/2)−1e−θ2y/2dy

=
1

2πσ
e−(d−θ)2/(2σ2) Γ(k − 1/2)

(θ2/2)k−1/2
, k > 1/2
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Figure 1: Posterior distribution fork = 3/4 andσ2 = 22; (a)d = −4,−3,−2; (b) d = 2, 3, 4. The
unimodal density graphs in panels (a) and (b) correspond tok = −2, 2, respectively.

This leads to posterior

p(θ|d) ∝ p(d, θ) ∝ e−(d−θ)2/(2σ2) |θ|−2k+1. (3)

Figure 1 (a,b) depicts the posterior distribution fork = 3/4, σ2 = 22, and various values ofd.
Note that ifd is small in absolute value compared toσ2, the posterior is unimodal with (infinite)
mode at zero. For|d| large, the posterior is bimodal with non-zero mode sharing the same sign as
the observationd.

The logarithm of the posterior is proportional to

` = log p(θ|d) ∝ −(d− θ)2

2σ2
+ (1− 2k) log θ,

and has extrema at the solutions of a quadratic equation,

4



θ2 − dθ + σ2(2k − 1) = 0,

θ1,2 =
d±

√
d2 − 4σ2(2k − 1)

2
.

The rootsθ1,2 are real if and only ifd2 ≥ 4σ2(2k − 1), i.e., if |d| ≥ 2σ
√

2k − 1 = λ. If this
condition is not satisfied, then the likelihood is decreasing in|θ| and the MAP is given bŷθ = 0.

The value of the posterior at zero is infinite, thus zero is always a mode of the posterior. When
this is the only mode, the resulting rule takes value zero. If the second, non-zero mode exists, then
this mode is taken as the Bayes action.

We assume, WLOG,d > 0. Sincek > 1/2,
√

d2 − 4σ2(2k − 1) < d and both roots are

positive and smaller thand, we have shrinkage. Then the LPM is
d+
√

d2−4σ2(2k−1)

2
, since the

posterior is decreasing from0 to smaller root, increasing between the two roots and decreasing
after the larger root. For arbitraryd, andλ = 2σ

√
2k − 1, the LPM rule is

θ̂ =
d + sign(d)

√
d2 − 4σ2(2k − 1)

2
1(|d| ≥ λ). (4)
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Figure 2: (a) Influence on the thresholdλ by power parameterk; (b) LPM thresholding rule.

Figure 2 (a) compares values of thresholdλ to properly scaled universal threshold (Donoho
and Johnstone, 1994). In both cases the varianceσ2 = 1. The dotted line represents the values
of universal threshold rescaled byn = (k − 1/2) · 210. This sample sizen is selected only for
comparison reasons. As depicted in Figure 2 (b), the thresholding rule looks like a compromise
between hard and soft thresholding, The rule generally remains close tod for intermediate and
large values ofd.
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Note that the posterior (3) is proper (integrable at 0) if and only if2k − 1 < 1, i.e., when
k < 1. The existence of a finite second mode does not require the posterior to be proper and we
will consider allk > 1/2.

Remark. If the square root in (4) is approximated by Taylor expansion of the first order,(1−u)α ≈
1− αu, the LPM rule mimics James-Stein estimator,

θ̂ ≈
(

1− σ2(2k − 1)

d2

)

+

d,

which is considered extensively in the wavelet shrinkage literature.

2.2 EXACT RISK PROPERTIES OFLPM RULES

The exact risk analysis of any proposed shrinkage rule has received considerable attention in the
wavelet literature since it allows for comparison of different wavelet-based smoothing methods.
When the rule is given in a simple form, the exact risk analysis can be carried out explicitly. For
instance, Donoho and Johnstone (1994) and Bruce and Gao (1996) provide exact risk analyses
for hard and soft thresholding under squared error loss. Gao and Bruce (1997) give a rationale
for introducing the “firm” or “semi-soft” thresholding utilizing exact risk arguments. The goal of
exact risk analysis is to explore robustness in risk, bias, and variance when the model parameters
and hyper-parameters change.

For our model the analytic form of LPM rule (4) is more complex and the exact risk analysis
was carried out numerically. Computations performed in the software packageMATHEMATICA

produced Figure 3. We briefly describe the properties inferred from Figure 3.
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Figure 3: Exact risk plots for LPM rule, fork = 0.6 (short dash),k = 0.75 (solid), andk = 0.9
(lomg dash). For all three casesσ2 = 22. (a) Risk; (b) Variance, and (c) Bias squared.

In Figure 3(a) the risks of rule (4) fork = 0.6, 0.75, and 0.9, are presented. These risks
are partitioned to variances and biases-squared given in panels Figure 3(b) and Figure 3(c). The
shapes of risks are typical for hard thresholding rules. The risk is minimal atθ = 0 and it stabilizes
about the variance for|θ| large. For values ofθ that are comparable to the thresholdλ the risk is
maximized. This signifies that largest contribution to the MSE is for the values ofθ close to the
threshold. This is to be expected since forθ’s close to threshold, given that the noise averages to 0,
the largest errors are made by the “keep-or-kill” policy. The variance plots Figure 3(b) generally
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resemble the plots for the risk. As is typical for hard thresholding rules, the squared bias Figure
3(c) is small in magnitude compared to variance and risk. This is a desirable property when the
users are concerned about the bias of the rule and ultimately, the estimatorf̂ .

We note that the role ofk in the shapes of risk, variance, and bias-squared is linked to the role
of sample size and increased variance in standard shrinkage situations. This link will be discussed
further in Section 4.

3 GENERALIZATIONS

In the previous we assumed that the variance of the noise,σ2 was known. In applications, this
variance is estimated from the data (usually using the finest level of detail in the wavelet decom-
position) and plugged in the shrinkage rule. In this section we generalize the methodology by
assuming the prior distribution on unknown variance.

We consider two generalizations of the model in (3). In the first, the variance is assigned an
exponential prior, leading to a double exponential marginal likelihood, while in the second, the
variance is assigned an inverse gamma prior, leading to at marginal likelihood.

3.1 MODEL 1: EXPONENTIAL PRIOR ON UNKNOWN VARIANCE.

Assume that for a typical wavelet coefficientd the following model holds.

d|θ, σ2 ∼ N (θ, σ2),

σ2 ∼ E
(

1

µ

)
with densityp(σ2|µ) = µe−µσ2

, µ > 0,

θ|τ 2 ∼ N (0, τ 2),

τ 2 ∼ (τ 2)−k, k > 0.

It is well known that an exponential scale mixture of normals results in a double exponential
distribution. Thus this model is equivalent to

d|θ, µ ∼ DE
(

θ,
1√
2µ

)
, with densityf(d|θ) =

1

2

√
2µe−

√
2µ|d−θ|,

θ|τ 2 ∼ N (0, τ 2),

τ 2 ∼ (τ 2)−k, k > 0.

The resulting LPM rule turns out to be hard-thresholding,

θ̂ = d 1(|d| ≥ λ) (5)

with λ = 2k−1√
2µ

. Derivation of this fact is deferred to the Appendix.
Figure 4(a) shows the posterior distribution for Model 1 for values ofd leading to unimodal

(infinite at mode 0) and bimodal cases. The values ared = 0.3 andd = 1.5, k = 0.75 andµ = 1.
The LPM rule (5) is shown in Figure 4(b) fork = 0.75 andµ = 1/2.
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Figure 4: (a) Influence on the posterior in Model 1 by two different values ofd; (b) LPM rule for
Model 1.

The double exponential marginal likelihood is a realistic model for wavelet coefficients. In fact,
if a histogram of wavelet coefficients for many standard signals is plotted, it resembles a double
exponential distribution. This observation first explicitly stated by Mallat (1989), is used in many
Bayesian models in the wavelet domain, examples are BAMS wavelet shrinkage (Vidakovic and
Ruggeri, 2001) or the wavelet image processing methodology of Simoncelli and coauthors (e.g.,
Simoncelli and Adelson, 1996).

3.2 MODEL 2: INVERSE GAMMA PRIOR ON UNKNOWN VARIANCE.

The inverse gamma prior on the unknown variance of a normal likelihood is the most common and
well understood prior. The resulting marginal likelihood on the wavelet coefficients ist, which
models heavy tails of empirical distributions of wavelet coefficients well. Model 2 with an inverse
gamma prior will not realistically model the behavior of wavelet coefficients in the neighborhood
of 0, but will account for heavy tails encountered in empirical distributions of wavelet coefficients.
Model 2 is given by

d|θ, σ2 ∼ N (θ, σ2),

σ2 ∼ IG(α, β) with densityp(σ2|α, β) =
βα

Γ(α)
(σ2)

−1−α
e
−β

σ2 , α > 0, β > 0,

θ|τ 2 ∼ N (0, τ 2),

τ 2 ∼ (τ 2)−k, k > 0.

The resulting LPM rule is

θ̂ =
(2α + 4k − 1)d + sign(d)

√
(2α + 1)2d2 + 16(1− 2k)(k + α)β

4(k + α)
1(|d| ≥ λ), (6)

where

λ =
2

2α− 1

√
(2k − 1)(k + α)β .
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Figure 5: (a) Influence on the posterior in Model 2 by two different values ofd; (b) LPM rule for
Model 2.

Figure 5(a) shows the posterior distribution for the Model 2 for values ofd leading to unimodal
and bimodal cases. The values are:d = 0.7 andd = 2.7, k = 0.85, α = 2.5 andβ = 2. The LPM
rule (6) is shown in Figure 5(b) fork = 0.85, α = 2.5 andβ = 2.

4 SIMULATIONS AND APPLICATIONS

In this section we apply the proposed thresholding rules. First, we discuss the selection of the hy-
perparameters for each model. This is important for an automatic application of the methodology.
Next, we compare performance of the proposed rules to eight other commonly used methods (both
global and adaptive). Finally, we apply the shrinkage methodology to a real-life example involving
Atomic Force Microscopy.

4.1 SELECTION OF HYPERPARAMETERS

In any Bayesian modeling task the selection of the hyperparameters is instrumental for good per-
formance of the model. It is also desirable to have an automatic way to select the hyperparameters,
thus making the shrinkage procedure automatic, i.e., free of subjective user intervention. More
about specification of hyperparameters in Bayesian models in the wavelet denoising context can
be found in Chipman, Kolaczyk, and and McCulloch (1997), Vidakovic and Ruggeri (2001), and
Angelini and Sapatinas (2004), among others.

The hyperparameters should be selected so that the resulting methodology is robust with re-
spect to a wide range of input signals (sample sizes, signal regularity, size of noise, etc). In con-
temporary wavelet practice the values of the hyperparameters are usually assessed by empirical
Bayes arguments due to enormous variability of potential input data (Clyde and George, 1999;
2000). Straightforward Empirical Bayes techniques such as predictive moment matching, or MLII
method, are most commonly used efficient methods for hyperparameter specification. In this paper
we determine hyperparameters by moment-matching.
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In this paper we consider three Bayesian models on wavelet coefficients, (i) the basic model
with σ2 assumed known, and two generalizations in which the varianceσ2 is modeled by (ii)
exponential and (iii) inverse-gamma priors. The elicitation of corresponding hyperparameters is
discussed for each case.

The Basic Model. In the basic model the only hyperparameter is thepower parameterk. Even
though the proper posterior is obtained fork < 1, the existence of the second, non-zero mode does
not depend on the “properness” of the posterior. Thus we will consider allk > 1/2. Note that the
conditionk > 1/2 is needed to ensure that Gamma functionΓ(2k − 1) is finite and non-negative.

The sample size of the input signal should influence our selection ofk. Figure 6 shows the
Bumps signal at SNR =5 and sample sizesn = 512, 1024, 2048, and4096, smoothed by LPM
thresholding rule (4) for various values ofk. The minimum AMSE is achieved atk = 1.0, 1.2, 1.4,
and1.6 respectively. Thus the increasing of the sample size increases the optimalk.
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Figure 6: The AMSE for the Bumps function for four different sample sizesn = 512 (top),
n = 1024, n = 2048, n = 4096 (bottom), evaluated at different values of power parameterk. The
level of noise is such that SNR=5. The thresholding rule used was (4).

Another feature of the signal is also important for specifyingk - signal regularity. The power
parameterk is small if the signal (to be estimated) is irregular. Figure 7 illustrates this relation-
ship. Four standard test signals, Bumps, Blocks, HeaviSine and Doppler of sizen = 1024 are
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considered at SNR=5. Bumps is an irregular signal. The optimalk was 1.2. HeaviSine is the most
regular signal with optimal value 1.8. Blocks and Doppler exhibit irregularities of different nature
(Blocks is a piecewise constant, but discontinuous, while Doppler is smooth but with time varying
frequency). For both the optimal value ofk was 1.6.
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Figure 7: Boxplots of the AMSE for the various values of the power parameterk for four test
signals Bumps, Blocks, HeaviSine, and Doppler. Sample size wasn = 1024 and SNR = 5.

Taking into account the above analysis, a single universal value ofk for an automatic use of
the rule (4) should be chosen from the interval(1, 2).

Figure 8 shows the true signals and the noisy signals based onn = 1024 design points at
SNR=5 along with the reconstruction obtained after thresholding the coefficients by LPM method
with optimalk. we can see that LPM method does a very good job at removing the noise. From
Figure 9 we can see the change in smoothness of recovered signals with the change ofk.

Model 1. In the model with an exponential prior onσ2 in addition to the power parameterk we
also have the hyperparameterµ which is the reciprocal of the scale parameter. Given an estimator
ξ̂ of the noise variance, a moment-matching choice forµ would beµ̂ = 1

ξ̂
. Donoho and Johnstone

(1994) suggested to estimate the noise levelσ by the median absolute deviation (MAD) of the
wavelet coefficients at the finest level adjusted by 1/0.6745, our choice is to considerξ̂ = MAD 2.
In this model we will considerk > 1/2 with no upper bounds because, even if the posterior
distribution is not proper, the choice ofk > 1 does not affect the existence of the non-zero mode.
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Figure 8: (a) Test signals with superimposed noisy versions at SNR=5. The sample size isn =
1024. (b) Estimates obtained by using the LPM method with optimalk.

As could be seen from Figure 4(b) the rule resulting from this model coincides with a hard-
thresholding rule and clearly differs from the basic model rule displayed in Figure 2(b). Therefore,
we anticipate different behavior of the optimalk as the sample size increases. Our simulations
reveal that the optimal power parameter is dependent on the sample size and on the regularity of
the signal in this model, as well, but the minimum AMSE is achieved at larger values ofk compared
to the basic model under the same test conditions. For instance, for the Bumps signal at SNR=5
andn = 512, 1024, 2048 and4096 the optimal values ofk are2.1, 2.4, 2.6 and2.8, respectively,
while for the four standard test signals Bumps, Blocks, HeaviSine and Doppler of sizen = 1024
at SNR=5 the optimal values ofk are2.4, 2.7, 3.0 and2.7. Therefore, for an automatic use of the
thresholding rule in the exponential model, a single universal value ofk should be selected from
the interval(2, 3).

Model 2. In the model with an inverse gamma prior onσ2 in addition to the power parameterk
we also have two new hyperparametersα andβ which specify the prior. As in Model 1 we will
match the prior moments with the observed moments in order to specify the hyperparameters. The
n-th moment of an inverse gamma random variableX ∼ IG(α, β) is

EXn =
βn

(α− 1) . . . (α− n)
.

Thus, the first two moments matched with the corresponding empirical moments of wavelet coef-
ficients from the finest level of detail will “estimate”α andβ. This consideration and Gaussianity
of the noise yieldsα = 2.5 andβ = 1.5 ξ̂, whereξ̂ is some estimator of the variance of the noise.
As in the previous models we use the robust(MAD)2 estimator. An argument for the specification
of α andβ are given in the Appendix.
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Figure 9: Estimates obtained using LPM method for roughly selectedk, based on n=1024 points
at SNR=5.

As in the previous two cases, we anticipate different behavior of the optimalk with respect to
the sample size and regularity of test functions. For instance, forα = 2.5 andβ determined usingα
and an estimator of the variance of the noise for Bumps signal with SNR = 5 the AMSE minimizing
values ofk are 1.3, 1.6, 1.8, and 2.0 for sample sizes 512, 1024, 2048, and 4096, respectively. For
the four standard test signals Bumps, Blocks, HeaviSine and Doppler of sizen = 1024 at SNR=5
the optimal values ofk are1.6, 2.0, 2.3 and2.0. Therefore, for an automatic use of the thresholding
rule in the inverse gamma model, a single universal value ofk should be selected from the interval
(1, 3).

4.2 SIMULATIONS AND COMPARISONS

We present a simulation study of the performance of LPM method for the three models. The
simulation is done with the “known truth”, that is with test functions specified, and controlled
signal-to-noise ratio. We also compare the average mean square error (AMSE) performance with
several popular methods.

For our simulation study, four standard test functions (Bumps, Blocks, HeaviSine
and Doppler ) were added rescaled normal noise to produce a preassigned signal-to-noise ra-
tio (SNR). For each method, test functions were simulated atn = 512, 1024, and 2048 points
equally spaced on the unit interval. Three commonly used SNR’s were selected: SNR=3 (weak
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signal), 5 (moderate signal), and 7 (strong signal). The wavelet bases are also standard for the
above test functions: Symmlet 8 forHeaviSine andDoppler , Daubechies 6 forBumps and
Haar forBlocks .

Closeness of the reconstruction to the theoretical signal of each method was measured by an av-
erage mean-square error (AMSE), calculated over 1000 simulation runs. In each case, the optimal
power parameterk (minimizing AMSE) was used. All computations are carried out using MAT-
LAB, with the WaveLab toolbox (see Buckheit, Chen, Donoho, Johnstone, and Scargle, 1995) and
the GaussWaveDen toolbox (see Antoniadis, Bigot, and Sapatinas, 2001).

The results are summarized in two tables. Table 1 gives minimum AMSE for the three intro-
duced models at three SNR levels and for four standard test functions, while Table 2 presents the
corresponding optimal value of the power parameterk.

Final Results× 10−3

Function n SNR=3 SNR=5 SNR=7

Bumps 512 0.2825 0.3116 0.2875 0.1079 0.1180 0.1095 0.0570 0.0621 0.0577
1024 0.1953 0.2150 0.1993 0.0733 0.0802 0.0745 0.0373 0.0401 0.0379
2048 0.1254 0.1371 0.1282 0.0469 0.0509 0.0477 0.0240 0.0257 0.0244

Blocks 512 0.3820 0.4111 0.3876 0.1202 0.1265 0.1213 0.0553 0.0568 0.0554
1024 0.2752 0.3004 0.2790 0.0802 0.0827 0.0800 0.0359 0.0364 0.0357
2048 0.1584 0.1692 0.1601 0.0480 0.0502 0.0483 0.0201 0.0204 0.0200

HeaviSine 512 0.4066 0.4305 0.4155 0.2243 0.2441 0.2300 0.1432 0.1575 0.1472
1024 0.2769 0.2966 0.2835 0.1353 0.1443 0.1379 0.0890 0.0964 0.0914
2048 0.1711 0.1786 0.1734 0.0950 0.1007 0.0969 0.0604 0.0666 0.0622

Doppler 512 0.7046 0.7706 0.7187 0.2725 0.2959 0.2767 0.1449 0.1557 0.1470
1024 0.4491 0.4879 0.4590 0.1896 0.2062 0.1931 0.1032 0.1125 0.1054
2048 0.2514 0.2649 0.2540 0.1064 0.1135 0.1081 0.0596 0.0639 0.0607

Table 1: AMSE for the Basic Model (left), Model 1 (center), and Model 2 (right) at different SNR
levels and for the four standard test functions.

Final Results Optimalk
Function n SNR=3 SNR=5 SNR=7

Bumps 512 1.0 2.1 1.4 1.0 2.1 1.3 1.0 2.0 1.3
1024 1.2 2.4 1.6 1.2 2.4 1.6 1.2 2.4 1.6
2048 1.4 2.6 1.8 1.4 2.6 1.8 1.4 2.6 1.8

Blocks 512 1.4 2.5 1.8 1.4 2.6 1.8 1.5 2.7 1.9
1024 1.5 2.6 1.9 1.6 2.7 2.0 1.6 2.8 2.1
2048 1.6 2.8 2.1 1.7 2.9 2.2 1.8 2.9 2.2

HeaviSine 512 1.9 3.4 2.4 1.7 2.8 2.1 1.5 2.8 2.0
1024 2.0 3.2 2.4 1.8 3.0 2.3 1.7 3.0 2.2
2048 2.1 3.2 2.6 2.0 3.2 2.4 1.8 2.9 2.2

Doppler 512 1.4 2.6 1.8 1.4 2.6 1.8 1.4 2.5 1.8
1024 1.6 2.8 2.1 1.6 2.7 2.0 1.5 2.7 1.9
2048 1.8 3.0 2.3 1.8 3.0 2.2 1.7 2.9 2.2

Table 2: Values of optimalk for the Basic model (left), Model 1 (center), and Model 2 (right) at
different SNR levels and for the four standard test functions.

We also compare LPM method with several established wavelet-based estimators for recon-
structing noisy signals. In particular we consider the term-by-term Bayesian estimatorBAMS
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of Vidakovic and Ruggeri (2001), the classical term-by-term estimatorsVisuShrinkof Donoho
and Johnstone (1994) andHybrid-SureShrinkof Donoho and Johnstone (1995), the scale invari-
ant term-by-term BayesianABE method of Figueiredo and Nowak (2001), the “leave-out-half”
version of theCross-Validationmethod of Nason (1996), the term-by-term False Discovery Rate
(FDR) method of Abramovich and Benjamini (1995), and finallyNeighCoeffof Cai and Silverman
(2001) andBlockJSof Cai (1999) which represent classical estimators that incorporate the block-
ing procedure to achieve a better performance. Note that, for excellent numerical performance, we
consider theVisuShrinkand the “leave-out-half” version of theCrossValidationmethods with the
hard threshold and theBlockJSwith the option ’Augment’ (see Antoniadis, Bigot, and Sapatinas,
2001).

The LPM is a global method, i.e., the model parameters/hyperparameters are common across
the scales in wavelet decompositions. Models for which the parameters/hyperparameters are level-
dependent are called adaptive. To avoid confusion, we note that term adaptive is also used in
large sample theory for parameters/methods that do not affect the convergence rates. Four of the
methods contrasted to LPM are global (VisuShrink, ABE, CrossValidationandFDR ), while the
four remaining methods (BAMS, Hybrid-SureShrink, NeighCoeffandBlockJS) are adaptive .

Figure 10 presents the boxplots of the AMSE computed for the above 9 methods based on
n = 1024 design points at SNR=5. It is clear that LPM method outperforms well-known methods
such as VisuShrink, Cross-Validation, FDR and BlockJS methods, and often performs comparably
to (sometimes even better than) BAMS, Hybrid-SureShrink, ABE and NeighCoeff methods.

4.3 AN EXAMPLE IN ATOMIC FORCE MICROSCOPY

To illustrate the performance of the LPM thresholding method proposed here, we estimate an
underlying smooth function in the noisy measurements from an atomic force microscopy (AFM)
experiment.

AFM is a type of scanned proximity probe microscopy (SPM) that can measure the adhesion
strength between two materials at the nanonewton scale (Binnig, Quate and Gerber, 1986). In
AFM, a cantilever beam is adjusted until it bonds with the surface of a sample, and then the force
required to separate the beam and sample is measured from the beam deflection. Beam vibration
can be caused by factors such as thermal energy of the surrounding air or the footsteps of someone
outside the laboratory. The vibration of a beam acts as noise on the deflection signal; in order for
the data to be useful this noise must be removed.

The AFM data from the adhesion measurements between carbohydrate and the cell adhesion
molecule (CAM) E-Selectin was collected by Bryan Marshal from the BME Department at Georgia
Institute of Technology. The detailed technical description is provided in Marshall, McEver, and
Zhu (2001).

In Figure 11 the top panel shows the original noisy data. The middle panel shows the LPM
estimate with the default parameterk = 1, while the bottom panel shows LPM estimate with the
parameterk = 1.4. The sample size wasn = 211 and Symmlet8-tap filter was used to obtain the
estimate. We observe that the latter estimate exhibits slightly smoother behavior, especially in the
long-middle part without oversmoothing the “ramp-like” structure which is the feature of interest
here.
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Figure 10: Boxplots of the AMSE for the various methods (1) LPM, (2) BAMS, (3) VisuShrink,
(4) Hybrid, (5) ABE, (6) CV, (7) FDR, (8) NC, (9) BJS, based onn = 1024 points at SNR=5.

5 CONCLUSIONS

In this paper we developed a method for wavelet-filtering of noisy signals based on larger (in
absolute value) posterior mode when the posterior is bimodal. Three variants of the model are
considered. The resulting shrinkage rules are thresholding and their performance is comparable to
some most popular shrinkage techniques. The method is fast and easily implementable.

We envision several avenues for future research. The LPM thresholding could possibly be
improved by level-based specification of model hyperparameters. Such level adaptive formulations
are more appropriate for signals and noises that exhibit scale-dependent heterogeneity.

In generalizing the basic model to account for unknown variance we considered only expo-
nential and inverse gamma scale mixtures of normals. Scale mixtures of normals comprise a rich
family of models and it would be possible to find an optimal mixing distribution. Specifically, an
exponential power distribution (EPD) that contains as special cases normal and double exponential
distributions can be obtained as a scale mixture of normals with positive stable distribution as a
mixing distribution.

We adhere to the concept of reproducible research (Buckheit and Donoho, 1995). The m-files
used for calculations and figures in this paper can be downloaded from Jacket’s Wavelets page
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Figure 11: Original AFM measurements (top), LPM estimator with the default parameterk = 1
(middle), LMP estimator with the parameterk = 1.4 (bottom).

http://www.isye.gatech.edu/˜brani/wavelet.html .
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APPENDIX

DERIVATION OF RULE (5)

Assume that for a typical wavelet coefficientd the following model holds.

d|θ, σ2 ∼ N (θ, σ2),

σ2 ∼ E
(

1

µ

)
with densityp(σ2|µ) = µe−µσ2

, µ > 0,

θ|τ 2 ∼ N (0, τ 2),

τ 2 ∼ (τ 2)−k, k > 0.

It well known that the marginal likelihood, as a scale mixture of normals, is

d|θ ∼ DE
(

θ,
1√
2µ

)
, with densityf(d|θ) =

1

2

√
2µe−

√
2µ|d−θ|.

Therefore the model can be rewritten as

d|θ ∼ 1

2

√
2µe−

√
2µ|d−θ|,

θ|τ 2 ∼ N (0, τ 2),

τ 2 ∼ (τ 2)−k, k > 0.

The joint distribution ofd andθ is proportional to

p(d, θ) ∝
∫ ∞

0

p(d|θ)p(θ|τ 2)p(τ 2)dτ 2

=
1

2

√
µ

π
e−

√
2µ|d−θ|

∫ ∞

0

e−θ2/(2τ2) 1

(τ 2)k
dτ 2

=
1

2

√
µ

π
e−

√
2µ|d−θ|

∫ ∞

0

y(k−1/2)−1e−θ2y/2dy

=
1

2

√
µ

π
e−

√
2µ|d−θ|Γ

(
k − 1

2

)(
θ2

2

)1/2−k

, k > 1/2.

Furthermore we have
p(θ|d) ∝ p(d, θ) ∝ e−

√
2µ|d−θ|(θ2)

1/2−k
.
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The likelihood ofθ
l(θ) = e−

√
2µ|d−θ|(θ2)

1/2−k
(7)

is integrable if and only ifk < 1.
The eventual modes of the posteriorp(θ|d) exist if and only if they maximize the function (7),

that is if and only if they maximizeL(θ) = log[l(θ)]. More explicitly

L(θ) = log[l(θ)] = −
√

2µ|d− θ|+ 1− 2k log θ. (8)

Consider its derivative

L′ =
√

2µ sign(d− θ) +
1− 2k

|θ| sign(θ) =
√

2µ sign(d− θ) +
1− 2k

θ
, (9)

and WLOG, supposed > 0. Observe that the critical points of (9) arêθ1 = 0 and θ̂2 = λ =
2k−1√

2µ
.Whend < λ there exists only one mode in zero. Whend > λ there exists two modes, the

smaller is zero and the larger isd; in fact the function (8) is decreasing between zero and lambda,
increasing between lambda andd and decreasing afterd.

DERIVATION OF RULE (6)

The model considered was

d|θ, σ2 ∼ N (θ, σ2),

σ2 ∼ IG(α, β) with densityp(σ2|α, β) =
βα

Γ(α)
(σ2)

−1−α
e
−β

σ2 , α > 0, β > 0,

θ|τ 2 ∼ N (0, τ 2),

τ 2 ∼ (τ 2)−k, k > 0.

It is well known thatt distribution is a scale mixture of normals, with mixing distribution being an
inverse gamma.

d|θ ∼ 1√
2βB(1

2
, α)

[
(d− θ)2

2β
+ 1

]−α− 1
2

, whereB
(

1

2
, α

)
=

Γ(1
2
)Γ(α)

Γ(1
2

+ α)
.

Therefore the model can be rewritten as

d|θ ∼ 1√
2βB(1

2
, α)

[
(d− θ)2

2β
+ 1

]−α− 1
2

, α > 0, β > 0,

θ|τ 2 ∼ N (0, τ 2),

τ 2 ∼ (τ 2)−k, k > 0.
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The joint distribution ofd andθ is proportional to

p(d, θ) ∝
∫ ∞

0

p(d|θ)p(θ|τ 2)p(τ 2)dτ 2

=

∫ ∞

0

1√
2βB(1

2
, α)

[
(d− θ)2

2β
+ 1

]−α− 1
2 1√

2πτ 2
e−θ2/(2τ2) 1

(τ 2)k
dτ 2

=
1

2
√

βπB(1
2
, α)

[
(d− θ)2

2β
+ 1

]−α− 1
2
∫ ∞

0

(τ 2)−(k+1/2)e−θ2/(2τ2)dτ 2

=
1

2
√

βπB(1
2
, α)

[
(d− θ)2

2β
+ 1

]−α− 1
2
∫ ∞

0

y(k−1/2)−1e−θ2y/2dy

=
1

2
√

βπB(1
2
, α)

Γ

(
k − 1

2

)(
θ2

2

)1/2−k [
(d− θ)2

2β
+ 1

]−α− 1
2

, k > 1/2

Furthermore, we have

p(θ|d) ∝ p(d, θ) ∝ |θ|1−2k[(d− θ)2 + 2β]−α−1/2.

The likelihood ofθ
l(θ) = |θ|1−2k[(d− θ)2 + 2β]−α−1/2, (10)

is integrable for anyk > 1
2
.

The eventual modes of the posteriorp(θ|d) exist if and only if they maximize the function (10).
Since

l′ = (1− 2k)|θ|−2k sign(θ)[(d− θ)2 + 2β]−α−1/2 + |θ|1−2k(2α + 1)(d− θ)[(d− θ)2 + 2β]−α−3/2

= |θ|−2k sign(θ)[(d− θ)2 + 2β]−α−3/2{(1− 2k)[(d− θ)2 + 2β] + (2α + 1)(d− θ)θ},
it follows that

|θ|−2k > 0,∀θ ∈ R− {0},
sign(θ) > 0,∀θ > 0,

[(d− θ)2 + 2β]
−α−3/2

> 0,∀θ ∈ R,

and
l′ = 0 ⇔ (1− 2k)[(d− θ)2 + 2β] + (2α + 1)(d− θ)θ = 0,

with solutions

θ1,2 =
(2α + 4k − 1)d±

√
(2α + 1)2d2 + 16(1− 2k)(k + α)β

4(k + α)
.

The roots are real if and and only if(2α + 1)2d2 + 16(1− 2k)(k + α)β > 0 , i.e.,

|d| ≥ λ =
2

2α− 1

√
(2k − 1)(k + α)β . (11)
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If the condition (11) is not satisfied then the MAP is given byθ̂ = 0 . Now assume that (11) holds
andd > 0. In this case both solutionsθ1,2 are real and positive and the posterior is decreasing from
zero to the smaller root, increasing between the two roots and decreasing again after the larger
root. We have two posterior modes, the smaller is zero and the larger is

θ̂ =
(2α + 4k − 1)d +

√
(2α + 1)2d2 + 16(1− 2k)(k + α)β

4(k + α)
.

It is easy to see that̂θ is always smaller thend, resulting in a shrinkage rule.

SELECTION OF HYPERPARAMETERSα AND β IN MODEL 2.

Note that for wavelet coefficients(d1, . . . , dm) from the finest level of detail the mean is close to
0, d̄ ≈ 0. That means thats2

d = 1
m−1

∑
(di− d)2 and 1

m

∑
d2

i = d2 are both comparable estimators
of the variance. Also, even central empirical moments are approximately equal to the noncentral
moments. The following two equations are approximately moment matching:

d2 =
β

α− 1
, d4 =

β2

(α− 1)(α− 2)
,

whered4 = 1
m

∑
d4

i . From these equations we derive

α =
2d4 − (d2)2

d4 − (d2)2
,

which is free of the scale of wavelet coefficients. Since in the finest level of detail the contribution
of signal is minimal and the wavelet coefficients are close to zero-mean normal random variables
the Law of Large Numbers argument givesd2 ≈ σ2 andd4 ≈ 3σ4, which specifies the “shape”
hyperparameter

α = 2.5.

Hyperparameterβ is determined fromd2 = β
α−1

, but instead ofd2 we can use any estimator of
variance ofd. In simulations, we used the robust(MAD)2.
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