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SUMMARY

The multi-server queue is one of the most studied subjects and celebrated tools in Oper-

ations Research, with manifold applications including manufacturing system, telecommu-

nication networks, and homeland security. For a FCFS GI/GI/n model queue, when the

number of servers n is large, the direct analysis of various performance metrics is gener-

ally analytically intractable. Therefore methods like developing bounds and heavy-traffic

approximation are crucial to help us understand the system. A particularly popular heavy-

traffic regime is the so-called Halfin-Whitt regime, under which the number of servers

n grows large and the traffic intensity ρ converges to unity simultaneously under some

square-root staffing rule, allowing the system to strike a balance between quality and effi-

ciency. However, all known bounds for general multi-server queues in this setting suffer

from several fundamental shortcomings, such as holding only asymptotically or involving

non-explicit constants. Furthermore, even less is known in the presence of heavy-tailed

distributions in the model. This thesis primarily addresses these problems.

In the first part of this thesis, we consider the FCFSGI/GI/n queue, and prove the first

simple and explicit bounds that scale gracefully and universally as 1
1−ρ (ρ being the corre-

sponding traffic intensity), across all notions of heavy traffic, including both the classical

and Halfin-Whitt settings. In particular, supposing that the inter-arrival and service times,

distributed as random variablesA and S, have finite rth moment for some r > 2, and letting

µA(µS) denote 1
E[A]

( 1
E[S]

), our main results are bounds for the tail of the steady-state queue

length and the steady-state probability of delay, expressed as simple and explicit functions

of only E
[
(AµA)r

]
,E
[
(SµS)r

]
, r, and 1

1−ρ .

In the second part of this thesis, we consider the FCFS GI/GI/n queue in the Halfin-

Whitt heavy traffic regime, in the presence of heavy-tailed distributions (i.e. infinite vari-

ance). We prove that under minimal assumptions, i.e. only that service times have finite

1 + ε moment for some ε > 0 and inter-arrival times have finite second moment, the

vii



sequence of stationary queue length distributions, normalized by n
1
2 , is tight in the Halfin-

Whitt regime. Furthermore, we develop simple and explicit bounds on the stationary queue

length in that regime. For the setting where instead the inter-arrival times have an asymp-

totically Pareto tail with index α ∈ (1, 2), we extend recent results of [1] (who analyzed the

case of deterministic service times) by proving that for general service time distributions,

the sequence of stationary queue length distributions, normalized by n
1
α , is tight (here we

use the scaling of [1], which we refer to as the Halfin-Whitt-Reed scaling regime).

In the third part of this thesis, we further investigate the large deviation behaviors of

the limits of the sequence of scaled stationary queue length in the presence of heavy-tailed

inter-arrival and/or service times, which were proved to be tight previously. When service

times have an asymptotically Pareto tail with index α ∈ (1, 2) and inter-arrival times have

finite second moment, we bound the large deviation behavior of the (n
1
2 -scaled) limiting

process (defined as any suitable subsequential limit), and derive a matching lower bound

when inter-arrival times are Markovian. Interestingly, we find that the large deviations

behavior of the limit has a sub-exponential decay, differing fundamentally from the ex-

ponentially decaying tails known to hold in the light-tailed setting. For the setting where

instead the inter-arrival times have an asymptotically Pareto tail with index α ∈ (1, 2), we

are again able to bound the large-deviations behavior of the (n
1
α -scaled and under Halfin-

Whitt-Reed regime) limit, and find that our derived bounds do not depend on the particular

service time distribution, and are in fact tight even for the case of deterministic service

times.
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CHAPTER 1

INTRODUCTION

1.1 Multi-server queues

The origins of queueing theory can be traced back to the work of T.O. Engset [2, 3] and

A.K. Erlang [4, 5] on telecommunications in the early 1900s. While its definition can be as

simple as “the study of the phenomena of standing, waiting, and serving” (Kleinrock [6]),

queueing theory over the past hundred years has become one of the most studied areas and

celebrated tools in Operations Research, with manifold applications including call centers

[7, 8, 9]; homeland security [10, 11]; cloud computing [12, 13, 14]; and financial modeling

[15, 16]. As a matter of fact, the applications of queueing theory are so rich, numerous

surveys and bibliographies are published over the years, sometimes just for a specific field

of application, e.g. manufacturing system[17, 18]; healthcare and medicine [19, 20].

As the bread-and-butter in the queueing theory, the multi-server queue has been a pow-

erful modeling tool to capture complex dynamics of real-life problems, as well as the basic

components for more advanced systems. But even as the most fundamental building block,

the GI/GI/n FCFS queue, in which jobs arrival independently following some random

process, and wait in an un-capacitated waiting line until they are served (in their arriving

order) by the next available server, few metrics are know without strong assumptions on

the service time distribution, even for the M/GI/n case. Tijms [21] commented that it is

“not likely that computationally tractable methods can be developed to compute the exact

numerical values of the steady-state probability in the M/G/c queue ”.

In general, as the number of servers n increases, the task to analyze the GI/GI/n

becomes increasingly difficult, maybe with an exception for the extreme case when n =∞.

The GI/GI/∞ model exists not because there are infinite server queues observed in real
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life, but rather due to the fact that it introduces insights (for large n), bounds, and the

computational simplicity, e.g. mean queue length for M/M/∞ queue has a very simple

expression (being the traffic intensity) comparing to that of M/M/n and the stationary

distribution of the M/GI/∞ behaves the same as that of M/M/∞ [22]. Note that when

n = 2, the problem (e.g. waiting time distribution) may also receive analytical remedy as

it may be reduced to a functional equation which can be translated to some well-studied

boundary value problems [23, 24].

However, in reality, the number of servers n may be large but finite, as demanded by

real-life applications (e.g. when designing a call center [7, 8, 9]). Thus the exact analy-

sis of performance metrics (e.g. mean stationary queue length and waiting time) are not

in general analytically available, at least not without strong assumptions on service time

distributions. Therefore, developing proper approximations and bounds are crucial to un-

derstanding the system, if not the only way to do so. There are three types of approximation

following the classification in [25]. The first type of approximation utilizes bounds (e.g.

[26]). By properly analyzing (and combining) upper and lower bounds, one may gener-

ate some useful ideas on the true solution of interest, and the (behavior of) gap between

bounds hints the quality of the approximation. The second type is system approximation,

and the idea is to approximate the original queueing system by a better-studied system. For

example, this can be done by replacing the general service distribution in a M/G/k queue

with a phase-type distribution [27] or a discrete distribution [28] that mimics the original

service time distribution as close as possible (generally through moments matching). The

third type is process approximation, the idea of which is to properly scale (and center)

the original process to generate a sequence of processes whose limit is another stochastic

process that is generally well-studied (cf. [29]).
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1.2 Bounds for multi-server queues

John Kingman in 1962 [30] proposed a simple and explicit upper bound (referred to as

Kingman’s bound) for the steady-state expected waiting time E[W ] for a GI/GI/1 queue

(which can be directly translated into the steady-state expected queue length (excluding

jobs in service) E[Q]), which states that

E[W ] ≤ σ2
A + σ2

S

2E[A]
× 1

1− ρ
, E[Q] ≤ σ2

A + σ2
S

2(E[A])2
× 1

1− ρ
,

with σ2
A(σ2

S) the variance of the inter-arrival (service time) distribution, E[A] the mean

inter-arrival time, and ρ the traffic intensity. In the same paper Kingman also established

that (under appropriate technical conditions) this bound becomes tight as ρ ↑ 1.

As most performance metrics of the general GI/GI/1 queue have no simple closed-

form solution, this combination of simplicity, accuracy, and scalability has made King-

man’s bound very attractive over the years, from the perspective of both real queueing

applications and as a theoretical tool. This motivates us to explore the question, does

Kingman-type bound exist for multi-server queues?

To construct bounds for multi-server queues, one way is to establish error bounds on

heavy-traffic approximations. The idea is to first establish heavy-traffic approximations of

the true system and then bound the distance (error) between the approximation and the

true system. Note that there are two popular ways GI/GI/n queues can approach heavy

traffic. The first is the classical heavy-traffic setting, in which the number of servers n is

held fixed as traffic intensity ρ ↑ 1. The second type is called the Halfin-Whitt heavy-traffic

regime ([31]), in which the number of servers is allowed to grow simultaneously as the

traffic intensity ρ ↑ 1. In particular, in Halfin-Whitt regime, ρ scales like 1 − Bn−
1
2 for

some B > 0.

Results which provide error bounds on the heavy-traffic approximations are as follows.

In classical heavy-traffic, this includes the work of [32, 33, 34, 35]. In the Halfin-Whitt
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setting, this includes the work of [36, 37, 38, 39, 40, 41, 42, 43, 44]. In both the classical

heavy-traffic and Halfin-Whitt settings, outside the case of Markovian service times, all of

these results suffer from the presence of non-explicit constants, which may depend on the

underlying service distribution in a very complicated and unspecified way. Furthermore,

in the Halfin-Whitt setting, the limiting quantities themselves generally have no explicit

representation. In both heavy-traffic settings Lyapunov function arguments have been used

to yield bounds [45, 46, 47, 36], but in all cases these again suffer from the presence of

non-explicit constants. Also, essentially all of the aforementioned heavy-traffic corrections

require that one restrict to a specific type of heavy-traffic scaling, e.g. either classical

heavy-traffic or Halfin-Whitt scaling, and do not hold universally (i.e. regardless of how

one approaches heavy-traffic). Recently, some progress has been made towards developing

such universal bounds for single-server systems [48] and in the presence of Markovian

service times [39], but such bounds have remained elusive for general multi-server systems.

Another popular way to construct bounds for multi-server queues is to use stochas-

tic comparison approach, which provides explicit bounds by first proving that a simpler

stochastic model yields a bound on the FCFS GI/GI/n queue, and then bounding this

simpler system. However, bounds of this type generally do not scale correctly in the Halfin-

Whitt regime (by correctly we mean scaling as 1
1−ρ , as appeared in Kingman’s bound). For

example, by considering a modified system in which jobs are routed to individual servers

cyclically (instead of FCFS), one can reduce the dynamics to those of several single-server

queue, and derive the explicit bound [49, 50]

E[W ] ≤ n−1σ2
S + ρ(2− ρ)σ2

A

2E[A]
× 1

1− ρ
; E[Q] ≤ n−1σ2

S + ρ(2− ρ)σ2
A

2(E[A])2
× 1

1− ρ
.

However, this bound on (1 − ρ)E[Q] diverges in the Halfin-Whitt regime (as n → ∞),

while it is proven in [31] that (1− ρ)E[Q] remains uniformly bounded (independent of n),

making this bound scale “incorrectly” under the Halfin-Whitt regime. Bridging this divide
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has been an open question for some time [50], and relates fundamentally to the question of

how a general GI/GI/n queue (possibly under the Halfin-Whitt scaling) relates to the cor-

responding single-server queue, which has the same inter-arrival distribution, but in which

service times are scaled down by n. Although this connection has been formalized in the

setting of classical heavy traffic [51, 35], for general GI/GI/n queues (and e.g. under the

Halfin-Whitt scaling) effective upper bounds remain elusive [52, 53, 50]. Other stochas-

tic comparison approaches were taken in [54, 55, 56, 57], although the bounds of [54]

are weaker than (2.3), and the results of [55, 56, 57] (although decisive for understanding

which moments of the waiting time distribution are finite) have not yielded effective upper

bounds which scale correctly in the Halfin-Whitt regime.

1.3 Heavy tails and large deviations in Halfin-Whitt regime

A key insight from modern queueing theory is that when inter-arrival or service times have

a heavy tail (i.e. the tail of the probability distribution does not decay exponentially), the

underlying system behaves qualitatively different, e.g. it may exhibit long-range dependen-

cies over time, and have a higher probability of rare events [58]. As several studies have

empirically verified the heavy tail phenomena in applications relevant to the Halfin-Whitt

scaling [7, 59], it is important to understand how the presence of heavy tails changes the

performance of multi-server queues in the Halfin-Whitt scaling regime. Although there is a

vast literature on parallel server queues with heavy-tailed inter-arrival and/or service times

(which we make no attempt to survey here, instead referring the reader to [60]), it seems

that surprisingly, very little is known about how such systems behave qualitatively in the

Halfin-Whitt regime.

We now survey what is known in this setting. The results of [61, 62] imply that when

inter-arrival times have finite second moment (i.e. satisfy a classical central limit theorem)

and service times have finite mean (but may have infinite 1+εmoment for some ε ∈ (0, 1)),

the associated sequence of transient queue-length processes, normalized by n
1
2 , converges
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weakly (over compact time sets) to a non-trivial limiting process (if the system is initial-

ized appropriately), described implicitly as the solution to a certain stochastic convolution

equation.

[1] considers the case in which inter-arrival times have (asymptotically) a so-called

pure Pareto tail with index α ∈ (1, 2), i.e. limx→∞
P(A>x)
xα

= C for some α ∈ (1, 2) and

C ∈ (0,∞), and service times are deterministic. A certain modification of the Halfin-Whitt

scaling regime was considered, under which traffic intensity ρ of the sequence of GI/D/n

queues scales like 1 − Bn− 1
α for some strictly positive excess parameter B. The result of

[1] implies that the sequence of steady-state queue-length distributions, normalized by n
1
α

converges to Ŵ , which is the supremum of a so-called α-stable random walk with drift

−B. Namely, for α < 2, n
1
2 is no longer the correct scaling. This insight is quite inter-

esting, although we note the important fact that Reed’s results are restricted to the case of

deterministic service times.

Essentially all other references in the literature to queues in the Halfin-Whitt regime

with heavy tails are to open questions. The question the of tightness of the associated se-

quence of steady-state queue length distributions, normalized by n
1
2 , is similarly left open

when service times have infinite variance.

The presence of heavy-tailed inter-arrival or service times distributions also affects

analysis on large deviations. For the case of inter-arrival times with finite second moment

and service times with finite support, [46] prove that the weak limit (associated with the

sequence of normalized steady-state queue lengths) has an exponential tail, with a precise

exponent identified as − 2B
c2A+c2S

, where c2
A(c2

S) is the squared coefficient of variation (s.c.v)

of inter-arrival (service) times. Namely, they prove that under those assumptions, the asso-

ciated weak limit Q̂ satisfies limx→∞ x
−1 log

(
P
(
Q̂ > x

))
= − 2B

c2A+c2S
. Put another way,

the probability that the limiting process exceeds a large value x behaves (roughly up to

exponential order) like exp
(
− 2B

c2A+c2S
x
)
. The known results for the case of exponentially

distributed and H∗2 service times yields the same exponent. The stochastic comparison ap-
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proach of [63] was able to prove that the same exponent yields an upper bound on the large

deviations behavior of any subsequential limit of the associated sequence of normalized

queue-length random variables assuming only that there exists ε > 0 s.t. inter-arrival and

service times have finite 2 + ε moments, with equality for the case of exponentially dis-

tributed inter-arrival times. Far less is known when it comes to the large deviation behavior

associated to the queueing systems with heavy-tailed inter-arrival or/and service time dis-

tribution under the Halfin-Whitt regime.

In [63], the authors note that the identified limiting large deviations exponent − 2B
c2A+c2S

equals zero when either inter-arrival or service times have infinite variance, and leave as an

open question identifying the correct behavior in the presence of heavy tails. This is par-

ticularly interesting to investigate as the vanishing large deviation exponent suggests that a

fundamentally different behavior may arise.

1.4 Summary of contributions

For multi-server queues, our literature review reveals that no simple and explicit bounds for

the steady-state queue length that scale universally as 1
1−ρ across different notions of heavy-

traffic, in analogy to the celebrated Kingman’s bound for single-server queues, are known.

It is unclear whether such a bound is even theoretically possible, nor in what manner it

would have to depend on the underlying distributions. We address this problem in Chapter

2, by developing the first simple and explicit bounds for general GI/GI/n queues that

scale universally as 1
1−ρ across all notions of heavy traffic, including both the classical and

Halfin-Whitt scalings.

In Chapter 3, we consider the FCFS GI/GI/n queue, and prove that when service

times have finite 1+ ε moment for some ε > 0 and the inter-arrival times have finite second

moment, the sequence of stationary queue length distributions, normalized by n
1
2 , is tight in

the Halfin-Whitt regime, a problem previously left open. Furthermore, we develop simple

and explicit bounds on the stationary queue length in that regime. For the setting where

7



instead the inter-arrival times have an asymptotically Pareto tail with index α ∈ (1, 2),

we extend recent results of [1] (who analyzed the case of deterministic service times) by

proving that for general service time distributions, the sequence of stationary queue length

distributions, normalized by n
1
α , is tight (here we use the scaling of [1], which we refer to

as the Halfin-Whitt-Reed scaling regime).

In Chapter 4, we further investigate the large deviation behaviors of the (any suitable

subsequential) limit of the sequence of scaled stationary queue length in the presence of

heavy-tailed inter-arrival and/or service times, the tightness of which were proved in Chap-

ter 3. When service times have an asymptotically Pareto tail with index α ∈ (1, 2) and

inter-arrival times have finite second moment, we give upper bounds on the large devia-

tions behavior of the limit and derive a matching lower bound when inter-arrival times are

Markovian. We find that the large deviations behavior of the limit has a sub-exponential

decay, differing fundamentally from the exponentially decaying tails known to hold in the

light-tailed setting. This, in essence, resolves the question of the previously identified large

deviations exponent − 2B
c2A+c2S

which vanishes in the infinite-variance setting. From a prac-

tical standpoint, this insight is important, as it suggests that when service times are heavy-

tailed, it is much more likely to see large queue lengths, where we successfully quantify

the meaning of “much more likely”. For the setting where instead the inter-arrival times

have an asymptotically pure Pareto tail for some α ∈ (1, 2) and service times have at least

1 + ε moment for some ε ∈ (0, 1], we are again able to bound the large-deviations behavior

of the limit, and find that our derived bounds do not depend on the particular service time

distribution, and are in fact tight even for the case of deterministic service times.

1.5 Notations

Following notations are used throughout the thesis. Additional notations and assump-

tions will be introduced at the beginning of future chapters. Let us fix an arbitrary FCFS

GI/GI/n queue with inter-arrival distribution A and service time distribution S, and de-
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note this queueing system by Qn. Let No(Ao) denote an ordinary renewal process with

renewal distribution S(A), and No(t)
(
Ao(t)

)
the corresponding counting processes. Let

{Ni, i ≥ 1}
(
{No,i, i ≥ 1}

)
denote a mutually independent collection of equilibrium

(ordinary) renewal processes with renewal distribution S; A an independent equilibrium

renewal process with renewal distribution A; and {Ni(t), i ≥ 1}
(
{No,i(t), i ≥ 1}

)
, A(t)

the corresponding counting processes. Here we recall that an equilibrium renewal process

is one in which the first renewal interval is distributed as the equilibrium distribution asso-

ciated with X , i.e. letting R(X) denote a r.v. such that P(R(X) > y) = 1
E[X]

∫∞
y

P(X >

z)dz, the first renewal interval is distributed as R(X). Also, let µA(µS) denote 1
E[A]

( 1
E[S]

);

σA(σS) denote
(
E[A2] − E2[A]

) 1
2

((
E[S2] − E2[S]

) 1
2

)
; cA(cS) denote µAσA(µSσS); and

V ar[A](V ar[S]) denote σ2
A(σ2

S). Also, let {Ai, i ≥ 1} ({Si, i ≥ 1}) denote the sequence of

inter-event times in Ao(No). Let us evaluate all empty summations to zero, and all empty

products to unity; and as a convention take 1
∞ = 0 and 1

0
=∞.
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CHAPTER 2

SIMPLE AND EXPLICIT BOUNDS FOR MULTI-SERVER QUEUES WITH

UNIVERSAL 1
1−ρ SCALING

2.1 Introduction.

The multi-server queue with independent and identically distributed (i.i.d.) inter-arrival

and service times, and first-come-first-serve (FCFS) service discipline, is a fundamental

object of study in Operations Research and Applied Probability. Its study was originally

motivated by the design of telecommunication networks in the early 20th century, and pi-

oneered by engineers such as Erlang [64]. Since that time the model has found many

additional applications across a wide range of domains [65]. In the pioneering work of

Erlang, it was realized that when both inter-arrival and service times are exponentially

distributed (i.e. M/M/n) all relevant quantities can be computed in (essentially) closed

form. These insights were extended to the case of multi-server queues with exponentially

distributed service times and general inter-arrival times (i.e. GI/M/n) in [66] by consider-

ing the relevant embedded Markov chain. For the setting of non-Markovian service times,

early progress was made in the analysis of single-server queues. In the early 20th century

Pollaczek and Khintchine derived an explicit formula for the expected number in queue in

such systems when inter-arrival times are Markovian (i.e. M/GI/1). Lindley, Spitzer, and

others developed the theoretical foundation for analyzing general single-server models (i.e.

GI/GI/1) as the suprema of one-dimensional random walks with i.i.d. increments.

Another key result for GI/GI/1 queues came in the seminal 1962 paper of John King-

man [30], in which a simple and explicit upper bound was given for the steady-state ex-

pected waiting time E[W ]. We note that by Little’s law, any such bound for E[W ] yields

a corresponding bound for the steady-state expected number of jobs waiting in queue (ex-

10



cluding those jobs in service) E[Q]. This bound, now referred to as Kingman’s bound,

states that

E[W ] ≤ σ2
A + σ2

S

2E[A]
× 1

1− ρ
, E[Q] ≤ σ2

A + σ2
S

2(E[A])2
× 1

1− ρ
, (2.1)

with σ2
A(σ2

S) the variance of the inter-arrival (service) time distribution, E[A] the mean

inter-arrival time, and ρ the traffic intensity, defined (for the GI/GI/1 queue) as the ratio

of the mean service time E[S] to the mean inter-arrival time E[A]. In the same paper, King-

man established that (under appropriate technical conditions) this bound becomes tight as

ρ ↑ 1, i.e. if one considers a sequence of GI/GI/1 queues in heavy-traffic. As most

performance metrics of the general GI/GI/1 queue have no simple closed-form solution,

this combination of simplicity, accuracy, and scalability has made Kingman’s bound very

attractive over the years, from the perspective of both real queueing applications and as a

theoretical tool.

Unfortunately, our understanding of GI/GI/n queues has lagged behind. The

primary reason for this stagnation has been known since the 1950’s, as can be seen in

the following quotation of Kendall [67], reflecting on his own work and that of others on

single-server queues in 1951:

“I have had very little to say about the much more difficult problems associated with the

compound queue formed in front of n counters, where n > 1. A great many writers (from

Erlang onwards) have discussed questions of this kind, and particular reference should be

made to the series of papers by Pollaczek. . .If the assumption of a negative-exponential

distribution of service times is dropped, then the problem becomes instantly very much

more difficult, and it is possible to give a rather interesting reason for this. With perfectly

general input and service time distributions the only regeneration points for the process are

. . . epochs at which a new customer arrives and finds the counter free . . . and . . . it is no
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longer possible to bridge the gap between one regeneration point and the next in any simple

way.”

2.1.1 Multi-server queues in the Halfin-Whitt heavy-traffic regime.

More recent research on GI/GI/n queues has brought to light another barrier to progress,

especially on the simplicity front. Namely, if one simultaneously lets the number of servers

n grow while letting the traffic intensity ρ (forGI/GI/n queues defined as E[S]
nE[A]

) approach

one, the limiting dynamics of the multi-server queue may have a very complex form. This

phenomena has been well-studied in the so-called Halfin-Whitt heavy-traffic regime, in

which one considers a sequence of GI/GI/n queues along which ρ scales like 1− Bn− 1
2

for some fixed B > 0. In this case, the relevant limiting dynamics are captured by complex

infinite-dimensional (i.e. measure-valued) processes [68], which are quite complex even

when service times are restricted to having finite support [46] or being of phase-type [36],

bringing into doubt the prospects of a “simple formula” such as Kingman’s bound here.

Indeed, all known simple and explicit bounds for general multi-server queues scale

incorrectly in the Halfin-Whitt regime. With that in mind, we now review several rel-

evant settings in which various bounds for multi-server queues are known. These will all

generally suffer from at least one of the following problems:

• Scales correctly only when the number of servers is held fixed as ρ ↑ 1;

• Holds only asymptotically;

• Involves non-explicit constants;

• Holds only for restrictive classes of service time distributions;

• Holds only under a specific type of heavy-traffic scaling.
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2.1.2 Multi-server queues in the classical heavy-traffic regime

If instead of a Halfin-Whitt type scaling, one first fixes the number of servers, and then

considers a sequence of GI/GI/n queues along which ρ ↑ 1, much more is known. In this

setting, known as the classical heavy-traffic regime for multi-server queues, it is known

that a Kingman-type result holds asymptotically (as ρ ↑ 1) for E[W ]. In particular, under

appropriate technical conditions,

lim
ρ↑1

(
(1− ρ)E[W ]

)
=
n−2σ2

S + σ2
A

2E[A]
, lim

ρ↑1

(
(1− ρ)E[Q]

)
=
n−2σ2

S + σ2
A

2(E[A])2
. (2.2)

Such a result was first conjectured in [69], and later proven in [70], where we again note

that in contrast to the single-server case, there is no simple explicit bound for any given

system, and the result only holds in an asymptotic sense as ρ ↑ 1. The underlying reason

why such a simple asymptotic result holds is that under this scaling, the relevant limiting

dynamics correspond to a (simple) 1-dimensional reflected Brownian motion; alternatively,

the multi-server system behaves like a sped-up single-server queue [71, 72, 51, 70].

Although (2.2) holds only asymptotically, there are many non-asymptotic (i.e. quanti-

tative) bounds available in the literature for GI/GI/n queues. These are generally of two

fundamental types.

2.1.3 Error bounds on heavy-traffic approximations

First, there are results which provide error bounds on the aforementioned heavy-traffic ap-

proximations. In classical heavy-traffic, this includes the work of [32, 33, 34, 35]. In

the Halfin-Whitt setting, this includes the work of [36, 37, 38, 39, 40, 41, 42, 43, 44].

In both the classical heavy-traffic and Halfin-Whitt settings, outside the case of Marko-

vian service times, all of these results suffer from the presence of non-explicit constants,

which may depend on the underlying service time distribution in a very complicated and

unspecified way. Furthermore, in the Halfin-Whitt setting, the limiting quantities them-
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selves generally have no explicit representation. In both heavy-traffic settings Lyapunov

function arguments have been used to yield bounds [45, 46, 47, 36], but in all cases, these

again suffer from the presence of non-explicit constants. In addition, the subset of the

aforementioned results applicable in the Halfin-Whitt setting generally requires that the

service time distribution comes from a restrictive class (such as phase-type), and/or makes

other technical assumptions (e.g. the presence of a strictly positive abandonment rate). We

note that even though phase-type distributions can in principle approximate any distribu-

tion arbitrarily well, quantitative results in the Halfin-Whitt scaling proven for phase-type

distributions cannot be easily extended by approximating a general distribution in this way,

since there may be complex interactions between the error in the phase-type approxima-

tion, the heavy-traffic error bounds, and the discrepancy between the limiting dynamics

arising from a phase-type service time distribution and a general service time distribution.

The same is true if one tries to take a result which holds in this setting with strictly positive

abandonments, and attempts to let the abandonment rate go to zero. In addition, essentially

all of the aforementioned heavy-traffic corrections require that one restrict to a specific

type of heavy-traffic scaling, e.g. either classical heavy-traffic or Halfin-Whitt scaling, and

do not hold universally (i.e. regardless of how one approaches heavy-traffic). Recently,

some progress has been made towards developing such universal bounds for single-server

systems [48] and in the presence of Markovian service times [39], but such bounds have

remained elusive for general multi-server systems.

2.1.4 Stochastic comparison results

Second, there are results which provide explicit bounds by first proving that a simpler

stochastic model yields a bound on the FCFS GI/GI/n queues, and then bounding this

simpler system. By considering a modified system in which jobs are routed to individual

servers cyclically (instead of FCFS), one can reduce the dynamics to those of several single-
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server queue, and derive the explicit bound [49, 50]

E[W ] ≤ n−1σ2
S + ρ(2− ρ)σ2

A

2E[A]
× 1

1− ρ
; E[Q] ≤ n−1σ2

S + ρ(2− ρ)σ2
A

2(E[A])2
× 1

1− ρ
. (2.3)

Comparing (2.3) to (2.2), one sees the crucial difference: the price one pays to get an

explicit result holding universally is to replace the term n−2σ2
S by n−1σ2

S . In classical

heavy-traffic, as ρ ↑ 1, this leads to a multiplicative error which grows with n, but remains

bounded as ρ ↑ 1 for any fixed n. However, in the Halfin-Whitt type scaling, this leads to

bounds which scale in a fundamentally incorrect nature. Indeed, it is proven in [31] that

(1− ρ)E[Q] remains uniformly bounded (independent of n) when considering a sequence

of M/M/n queues in the Halfin-Whitt scaling, while the bound for (1 − ρ)E[Q] given by

(2.3) would diverge (growing linearly in n) along such a sequence. Bridging this divide

has been an open question for some time [50], and relates fundamentally to the question of

how a general GI/GI/n queue (possibly under the Halfin-Whitt scaling) relates to the cor-

responding single-server queue, which has the same inter-arrival distribution, but in which

service times are scaled down by n. Although this connection has been formalized in the

setting of classical heavy traffic [51, 35], for general GI/GI/n queues (and e.g. under the

Halfin-Whitt scaling) effective upper bounds remain elusive [52, 53, 50]. Other stochas-

tic comparison approaches were taken in [54, 55, 56, 57], although the bounds of [54]

are weaker than (2.3), and the results of [55, 56, 57] (although decisive for understanding

which moments of the waiting time distribution are finite) have not yielded effective upper

bounds which scale correctly in the Halfin-Whitt regime.

There is also a literature on conjectural results (i.e. unproven) as regards stochastic

comparison results for multi-server queues. Several of these revolve around using con-

vexity notions to bound the waiting time in a M/GI/n queue from above (below) by the

waiting time when the service time distribution is either deterministic or a certain extremal

mixture of exponentials [73, 74, 50], where we note that such comparisons are known to
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hold in the single-server setting [75, 76]. Although there has been some success in proving

considerably weaker forms of these conjectures in the multi-server setting [77], these re-

sults generally involve correction terms which render them ineffective in the Halfin-Whitt

scaling. In addition to conjectural results along these lines, [73] also provides explicit

examples of pairs of M/GI/n queues for which the inter-arrival and service time distribu-

tions have the same first two moments, yet E[W ] differs considerably, suggesting that even

if some sort of simple explicit bounds were to exist for general multi-server queues, there

would be no hope of having them be “asymptotically tight” in any sort of universal sense.

Another series of stochastic-comparison related conjectures revolves around the system in

which the servers are partitioned into clusters, with one cluster for each different value a

job’s service time (or exponential rate of service in the case that service times are a finite

mixture of exponentials) can take, and all jobs with that service time being sent to the ap-

propriate dedicated cluster (at which they are processed according to FCFS) [78, 79]. It

remains an open question when such a system will yield an upper bound on the original

multi-server system, since although the modified system is not fully taking advantage of

resource pooling, it may avoid situations in which a job with a large service time blocks

many jobs with smaller service times [80]. We note that several authors have pointed out

that stochastic comparison results can be quite subtle, and the literature contains several

“proofs” of “obvious comparisons” which were later found to be incorrect [81, 50]. We

also note that most of the stochastic comparison literature focuses on quantities such as

waiting time and queue length, as opposed to the steady-state probability of delay (s.s.p.d.,

i.e. steady-state probability that all servers are busy), for which one of the few explicit

results is that of [82], who proved that in a GI/GI/n queue, the s.s.p.d. is always between

ρ − (n − 1)(1 − ρ) and ρ (a bound which is only effective when ρ is very close to 1, i.e.

outside the Halfin-Whitt regime).

Two stochastic comparison results of [63] and [83] are especially pertinent to our own

investigations, in which stochastic comparison arguments were used to bound the num-
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ber of jobs waiting in queue in a GI/GI/n queue by the supremum of a one-dimensional

random walk involving the original arrival process and a pooled renewal process (with

renewal intervals corresponding to the service time distribution). The weak limit of this

supremum (under the Halfin-Whitt scaling) was analyzed in [63], and used to show that the

steady-state queue length scales like n
1
2 , and to bound the large deviations behavior of the

associated limiting process. These results were extended by considering a closely related

stochastic comparison argument in [83], which was able to yield bounds on the s.s.p.d.

when framed as a double limit within the Halfin-Whitt regime, i.e. if for each fixed B > 0

one considers a sequence of bounding processes along which ρ scales like 1− Bn− 1
2 , and

then analyzes the limit of this sequence (for each fixed B, letting n→∞) along a sequence

of B which approach either 0 or ∞. Although providing several qualitative insights into

how various quantities behave asymptotically in the Halfin-Whitt regime, these results did

not provide any explicit bounds for any fixed GI/GI/n system, as the aforementioned

supremum was only analyzed asymptotically (within the Halfin-Whitt regime), and even

then in many regards the associated weak limit was itself only analyzed as certain parame-

ters approached either 0 or∞.

2.1.5 Why scaling as 1
1−ρ?

In the above discussion, we several times referenced the fact that certain bounds “scaled as

1
1−ρ”, or “did not scale correctly” because they did not scale as 1

1−ρ . It is of course reason-

able to ask why, and in what precise sense, 1
1−ρ should be the bar. There are at least two

fundamental justifications here. First, it follows from well-known results for the M/M/n

queue [31] that for any fixed B > 0, there exist LB, UB ∈ (0,∞) such that any M/M/n

queue for which ρ ∈ (1 − Bn−
1
2 , 1) satisfies LB × 1

1−ρ ≤ E[Q] ≤ UB × 1
1−ρ . Thus, in

a fairly general sense, this is the correct scaling for the M/M/n queue in heavy-traffic.

Second, this is the correct scaling in both classical heavy-traffic and the Halfin-Whitt scal-

ing. In particular, if {Qn, n ≥ 1} is a sequence of random variables corresponding to the
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steady-state queue-lengths of a sequence of multi-server queues being scaled according

to either classical heavy-traffic, Halfin-Whitt heavy-traffic, or even non-degenerate slow-

down heavy-traffic [84], then letting ρn denote the traffic intensity of the nth queue in the

sequence, one has (under appropriate technical conditions) that {(1 − ρn)Qn, n ≥ 1} is

tight and has a non-degenerate limit [70, 63, 68, 84]. Indeed, the 1
1−ρ scaling is a guiding

meta-principle throughout the entire literature on multi-server queues. We note that differ-

ent works often present / realize this phenomena from slightly different angles, e.g. one

may get a slightly different result if analyzing waiting times (as opposed to queue lengths)

as one must apply Little’s law to appropriately “translate” the 1
1−ρ scaling, and many pa-

pers may formally prove a weak-convergence type result without formally proving that the

corresponding sequence of expected values scales in the same way.

Of course, it is possible to come up with sequences of queues where 1
1−ρ is not the

appropriate scaling. For example, it follows from well-known results for the M/M/n queue

[31] that in that special setting, E[Q] = P (Q > 0) × ρ
1−ρ , where P (Q > 0) is the s.s.p.d.

Thus as either ρ or P (Q > 0) approaches 0, 1
1−ρ will no longer be asymptotically correct.

For example, suppose one has an M/M/n queue with n large and ρ = 1 − n− 1
4 . In that

case, it follows from [31] that P (Q > 0) → 0 as n → ∞, and hence 1
1−ρ would signifi-

cantly overestimate the expected queue length. Also, one can always construct pathological

service time distributions which exhibit atypical behavior. For example, one could consider

a sequence of multi-server queues along which E[S] is held fixed, while E[S2] and n both

diverge, and ρ ↑ 1. By linking the higher moments of the service time distribution to the

number of servers, one can also induce certain pathologies which would render the 1
1−ρ

scaling incorrectly. None-the-less, as explained above, the literature certainly supports the

general rule-of-thumb that for a multi-server queue in heavy-traffic, Q should generally

scale as 1
1−ρ .
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2.1.6 Other approaches to analyzing queueing systems

There is a vast literature on numerical approaches to understanding GI/GI/n queues, in-

cluding simulation [85, 86], the computation and subsequent inversion of transforms [87],

matrix-analytic methods [88], numerical analysis of diffusions [89], convex optimization

[90], and robust optimization [91]. These methods have their own pros and cons in different

settings, but generally have a different aim than developing simple and explicit formulas

useful in the creation of easy heuristics, which will be the subject of our own investiga-

tions. As such, we will not discuss those methods and the associated literature in any

depth, nor will we discuss the vast literature on more complicated queueing models (e.g.

queueing networks, systems with heavy tails, etc.), or heuristic approaches which are not

rigorously justified. We do note that to our knowledge, all of the simple and explicit an-

alytical bounds derived from these alternative approaches (which are rigorously justified),

e.g. the explicit analogue of Kingman’s bound for multi-server queues derived in [91],

suffer from many of the same shortcomings mentioned earlier (e.g. incorrect scaling in

the Halfin-Whitt regime). We also note that there have been many surveys written on the

different approaches to queueing theory over the years, and refer the reader to [92, 93, 94].

2.1.7 Main contribution

Summary of state-of-the-art

To summarize the above literature review, the state-of-the-art for GI/GI/n queues when

service times are neither deterministic nor exponentially distributed is as follows. In spite

of thousands of papers devoted to the theoretical analysis of multi-server queues, no simple

and explicit bounds for the steady-state queue length that scale universally as 1
1−ρ across

different notions of heavy-traffic, in analogy to the celebrated Kingman’s bound for single-

server queues, are known. Furthermore, it is unclear whether such a bound is even theoreti-

cally possible, nor in what manner it would have to depend on the underlying distributions.
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Our contribution

In this chapter, we develop the first simple and explicit bounds for general GI/GI/n

queues that scale universally as 1
1−ρ across all notions of heavy traffic, including both the

classical and Halfin-Whitt scalings.

2.1.8 Chapter outline

The remainder of the chapter proceeds as follows. In Section 2.2, we state our main results,

along with several interesting corollaries and applications. In Section 2.3, we review the

stochastic comparison results of [63] and [83], upon which our analysis will build. In

Section 2.4, we provide very general conditional bounds on the supremum which arises in

[63, 83], where these conditional bounds are of the form (for example) “If the moments of

certain processes satisfy . . ., then the supremum of interest satisfies . . .”. In Section 2.5,

we provide an in-depth analysis of the processes arising in the aforementioned conditional

bounds, notably certain pooled renewal processes, under the assumption that inter-arrival

and service times have finite rth moment for some r > 2. Combined with our previous

conditional results, we then complete the proof of our main results. We provide a summary

of our results, concluding remarks, and some directions for future research in Section 2.6.

Finally, we include a technical appendix in Section 2.7, which contains several technical

arguments from throughout the chapter.

2.2 Main Results

2.2.1 Additional Notations

In addition to notations introduced in Section 1.5, for our results involving steady-state

queue lengths, we will generally require that for any given initial condition, the total num-

ber of jobs in Qn (number in service + number waiting in queue) converges in distribution

(as time goes to infinity, independent of the particular initial condition) to a steady-state
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r.v. Qn(∞). As a shorthand, we will denote this assumption by saying “Qn(∞) exists”.

We will adopt a parallel convention when talking about the steady-state waiting time of an

arriving job. Namely, for our results on waiting times, we will generally require that for any

given initial condition, the distribution of the waiting time (in queue, not counting time in

service) of the kth arrival to the system converges in distribution (as k → ∞, independent

of the particular initial condition) to a steady-state r.v. W n(∞). As a shorthand, we will

denote this assumption by saying “W n(∞) exists”. Also, supposing that Qn(∞) exists, let

Ln(∞) denote the steady-state number of jobs waiting in queue, i.e. Ln(∞) is distributed

as max
(
0, Qn(∞)− n

)
. For k ≥ 1, let ρk

∆
= µA

kµS
. Note that for any GI/GI/n queue, one

can always rescale both the service and inter-arrival times so that E[S] = µS = 1, without

changing either ρ or the distribution of Qn(∞). As doing so will simplify (notationally)

several arguments and statements, sometimes we impose the additional assumption that

E[S] = µS = 1, and will point out whenever this is the case.

2.2.2 Main results

Our main results are the following novel, explicit bounds for general multi-server queues

whose inter-arrival and service time distributions have finite 2 + ε moments, which scale

universally as 1
1−ρ . Our bounds depend only on a single moment of the service and inter-

arrival time distributions, and are the first such explicit bounds for general multi-server

queues.

Theorem 2.1. Suppose that for a GI/GI/n queue with inter-arrival distribution A and

service time distribution S, there exists r > 2 s.t. E[Sr] < ∞, E[Ar] < ∞. Suppose also

that 0 < µA < nµS < ∞, and that Qn(∞) exists. Then for all x > 0, P
(
Ln(∞) ≥ x

1−ρn

)
is at most (

E
[
(SµS)r

]
E
[
(AµA)r

])3(
10120r32(r − 2)−12

)r
x−

r
2 ;
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and the steady-state probability of delay (s.s.p.d.), P
(
Qn(∞) ≥ n

)
, is at most

(
E
[
(SµS)r

]
E
[
(AµA)r

])3(
10120r32(r − 2)−12

)r(
n(1− ρn)2

)− r
2
.

2.2.3 Further implications of our main results

We now introduce several direct implications of our main results, further emphasizing their

utility. In all cases these results follow directly from our main results, straightforward

algebra/calculus, and Little’s Law.

We first state several implications for the mean steady-state waiting time and number

in queue.

Corollary 2.1. Under the same assumptions as Theorem 2.1, and supposing in addition

that W n(∞) exists, then

E
[
Ln(∞)

]
≤
(
E
[
(SµS)r

]
E
[
(AµA)r

])3(
10121r33(r − 2)−13

)r
× 1

1− ρn
;

E
[
W n(∞)

]
≤ E[A]×

(
E
[
(SµS)r

]
E
[
(AµA)r

])3(
10121r33(r − 2)−13

)r
× 1

1− ρn
.

We now state additional implications for higher moments. We note in addition to being

the first such bounds for multi-server queues which scale universally as 1
1−ρ , it seems that

our bounds even shed new light on the single-server queue, for which the past literature on

explicit bounds for higher moments seems to be largely restricted to non-explicit recursive

formulas [95].

Corollary 2.2. Under the same assumptions as Corollary 2.1, for all z ∈ [1, r
2
),

E
[(
Ln(∞)

)z] ≤ (E[(SµS)r
]
E
[
(AµA)r

])3(
10121r33(r−2)−12(r−2z)−1

)r
×
( 1

1− ρn
)z
.

We note that other moment relations for various additional quantities could also be
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obtained using e.g. the generalized Little’s Law [96] and distributional Little’s Law [97],

although we do not pursue that here.

We now state several implications for queues under the Halfin-Whitt scaling. We state

two types of results. First, we state results for general queues which are not explicitly in the

“Halfin-Whitt” scaling as traditionally defined (i.e. for an appropriate sequence of queues),

but which satisfy as an inequality the traffic intensity condition of the Halfin-Whitt regime.

Corollary 2.3. Under the same assumptions as Theorem 2.1, and supposing in addition

that ρn ≤ 1−Bn− 1
2 for someB > 0, the following holds. For all x > 0, P

(
Ln(∞) ≥ xn

1
2

)
is at most (

E
[
(SµS)r

]
E
[
(AµA)r

])3(
10120r32(r − 2)−12

)r
B−

r
2x−

r
2 ;

and the steady-state probability of delay (s.s.p.d.), P
(
Qn(∞) ≥ n

)
, is at most

(
E
[
(SµS)r

]
E
[
(AµA)r

])3(
10120r32(r − 2)−12

)r
B−r.

Next, we state the corresponding results for a sequence of queues explicitly in the

“Halfin-Whitt” scaling as traditionally defined. Namely, let us fix non-negative unit mean

r.v.s Â and Ŝ, and a real number B > 0. For n > B2, let Q̂n
B(∞) denote a r.v. distributed

as the steady-state number in system (number in service + number waiting in queue) in the

GI/GI/n queue with inter-arrival distribution Â

n−Bn
1
2

and service time distribution Ŝ (sup-

posing that all relevant steady-state quantities exist). Let L̂nB(∞) denote a r.v. distributed

as the corresponding steady-state number waiting in queue. Then our results imply the

following.

Corollary 2.4. Suppose that for some r > 2, it holds that E[Âr] < ∞,E[Ŝr] < ∞, and

that n > B2. Then for all x > 0, P
(
n−

1
2 L̂nB(∞) ≥ x

)
is at most

(
E
[
Ŝr
]
E
[
Âr
])3(

10120r32(r − 2)−12
)r
B−

r
2x−

r
2 ;
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for all z ∈ [1, r
2
),

E
[(
n−

1
2 L̂nB(∞)

)z]
≤
(
E
[
Ŝr
]
E
[
Âr
])3(

10121r33(r − 2)−12(r − 2z)−1
)r
B−

r
2 ;

and the steady-state probability of delay (s.s.p.d.), P
(
Q̂n
B(∞) ≥ n

)
, is at most

(
E
[
Ŝr
]
E
[
Âr
])3(

10120r32(r − 2)−12
)r
B−r.

These results give explicit and universal bounds on the steady-state queue length, for

queues in the Halfin-Whitt regime, in terms of only a single moment of Â and Ŝ, and the

excess parameter B. These results are the first of their kind for queues in this regime, for

which (as discussed earlier) all previous explicit results were known only for the case of

Markovian service times. These results also have important implications for the s.s.p.d.

Namely, they give simple, explicit, non-asymptotic bounds on how the s.s.p.d. decays with

B. Indeed, although the Halfin-Whitt regime is (in a sense) defined by the s.s.p.d. having a

non-trivial value in (0, 1) even for very large numbers of servers, no simple, explicit, non-

asymptotic bounds on this quantity were previously known. To further illustrate the result,

let us give an even more concrete version of Corollary 2.4.

Corollary 2.5. Suppose that, in addition to the assumptions of Corollary 2.4, it holds

that E[Ŝ3] ≤ 103,E[Â3] ≤ 103. Then the steady-state probability of delay (s.s.p.d.),

P
(
Q̂n
B(∞) ≥ n

)
, is at most

10500B−3.

Thus (for example) under only a third-moment assumption, the s.s.p.d. in the Halfin-

Whitt regime decays as B−3 for large B, independent of the number of servers.

Let us now briefly take a moment to address the proverbial “elephant in the room” -

namely, the massive prefactors in these results. One important point is that in all proofs,

simplicity was opted for over tightening these constants. Thus, presumably a more careful

24



analysis using essentially the same exact ideas would lead to a significantly reduced prefac-

tor. Furthermore, we view our results as a significant “proof-of-concept” as regards simple

and explicit bounds for multi-server queues, and believe that future work, building on our

own, will ultimately lead to the formulation of more practical bounds.

On a related note, the results of [83] imply that, in the Halfin-Whitt regime, if one is

willing to settle for a purely asymptotic result, then for large B the s.s.p.d. actually has a

Gaussian decay (in B), where we note that such a decay has also been observed for alter-

native service disciplines (i.e. not FCFS) in [79] (under additional technical assumptions).

The results of [63] similarly imply that, again if one is willing to settle for a purely asymp-

totic and non-explicit result, then for large x the probability that the rescaled queue-length

exceeds x should have an exponential decay (in x). Also, the results of [55, 56] imply the

existence of more finite moments (for e.g. the queue length) than is implied by our own

results. In all cases, bridging these gaps remain interesting open questions, and we refer the

reader to [47] for some further relevant discussion as regards bridging asymptotic and non-

asymptotic results in the Halfin-Whitt regime. Of cousre, as mentioned earlier, acheiving

a simple and explicit bound which not only scales correctly, but is actually exact in heavy-

traffic (a la Kingman’s bound) may actually be impossible in the Halfin-Whitt regime, as

the underlying limit processes seem to be inherently complicated.

2.3 Review of upper bounds from [63]

In [63], the authors proves that Qn(∞) can be bounded from above (in distribution) by the

supremum of a relatively simple one-dimensional random walk. We note that although to

simplify notations the authors of [63] imposed the restriction that P(A = 0) = P(S = 0) =

0 (to preclude having to deal with simultaneous events), this restriction is unnecessary and

the proofs of [63] can be trivially modified to accomodate this setting. As such, we state the

relevant stochastic-comparison result of [63] here without that unnecessary assumption.

Theorem 2.2 ([63]). Suppose that for a GI/GI/n queue with inter-arrival distribution A
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and service time distribution S, it holds that 0 < µA < nµS <∞, and that Qn(∞) exists.

Then for all x ≥ 0,

P
(
Qn(∞)− n ≥ x

)
≤ P

(
sup
t≥0

(
A(t)−

n∑
i=1

Ni(t)

)
≥ x

)
. (2.4)

In [83], the author extends the framework of [63] considerably and derives analogous

bounds for the s.s.p.d., for which Theorem 2.2 only provides trivial bounds. In particular,

Theorem 4 of [83] implies the following bound. We note that as [83] actually states a more

general result, for completeness we explicitly provide the derivation of this bound from

Theorem 4 of [83] in the appendix.

Theorem 2.3 ([83]). Under the same assumptions as Theorem 2.2, it holds that

P
(
Qn(∞) ≥ n

)
≤ P

(
sup
t≥0

(
A(t)−

n−b 1
2

(n−µA
µS

)c∑
i=1

Ni(t)

)
≥ b1

2
(n− µA

µS
)c

)
. (2.5)

2.4 Bounds for supt≥0

(
A(t)−

∑n
i=1Ni(t)

)
In this section we prove explicit bounds for supt≥0

(
A(t) −

∑n
i=1 Ni(t)

)
under minimal

assumptions. In light of Theorem’s 2.2 and 2.3, such bounds will be key to deriving bounds

for the GI/GI/n queue. First, we introduce some additional notation, and note that many

results will not be stated in terms of the number of servers n, but will instead be stated in

terms of a (potentially different) number n’, to allow for the application of both Theorems

2.2 and 2.3 (which require considering pooled renewal processes with different numbers

of components). For n′ ≥ 1, let Ao,n′ denote the ordinary renewal process with renewal

distribution min(2ρn′ , 1)A, where we take Ao,n′ independent of {Ni, i ≥ 1}. Also, let

Ao,n′(t) denote the corresponding counting process. Note that we may construct {A(t), t ≥

0}, {Ao(t), t ≥ 0}, {A0,n′(t), t ≥ 0} on the same probability space s.t. w.p.1,

A(t) ≤ 1 + Ao(t) ≤ 1 + Ao,n′(t) for all t ≥ 0, (2.6)
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the final inequality following from the fact that since the renewal distribution of Ao,n′ is a

constant (at most one) multiple of the renewal distribution of A, both may be constructed

on the same probability space s.t. w.p.1 Ao,n′(t) = Ao
(

t
min(2ρn′ ,1)

)
≥ Ao(t). For n′ ≥ 1, let

µA,n′
∆
= µA

min(2ρn′ ,1)
, where we note that µA,n′ = max(1

2
n′µS, µA). Also, let {Ai,n′ , i ≥ 1}

denote the sequence of inter-event times in Ao,n′ . We note that E[A1,n′ ] = 1
µA,n′

, and

that µA < n′µS implies µA,n′ < n′µS . By working with Ao,n′ , we will preclude certain

technicalities which arise when considering queues with many servers and very low traffic

intensity.

Our explicit bounds for supt≥0

(
A(t) −

∑n
i=1Ni(t)

)
will be the following conditional

result, which translates bounds on the moments of |
∑n

i=1Ni(t) − nµSt| and |
∑k

i=1Ai −

kµA| into bounds on the tail of supt≥0

(
A(t)−

∑n
i=1Ni(t)

)
.

Theorem 2.4. Suppose that E[S] = 1, and that for some positive integer n′ and some fixed

C1, C2, C3 > 0; r1 > s1 > 1; r3 > s3 > 1; and r2 > 2, the following conditions hold:

(i) 0 < µA < n′ <∞.

(ii) For all t ≥ 1,

E
[
|
n′∑
i=1

Ni(t)− n′t|r1
]
≤ C1n

′ r1
2 ts1 .

(iii) For all t ∈ [0, 1],

E
[
|
n′∑
i=1

Ni(t)− n′t|r2
]
≤ C2 max

(
n′t, (n′t)

r2
2

)
.

(iv) For all k ≥ 1,

E
[
|k − µA

k∑
i=1

Ai|r3
]
≤ C3k

s3 .
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Then for all x ≥ 16, P
(

supt≥0

(
A(t)−

∑n′

i=1 Ni(t)

)
≥ x

)
is at most

(
106(r1 + r2 + r3)5

(s1 − 1)(s3 − 1)(r1 − s1)(r3 − s3)(r2 − 2)

)r1+r2+r3+1

(1 + C1)(1 + C2)(1 + C3)

×

(
n′

r1
2 (n′ − µA,n′)−s1x−(r1−s1)

+ n′
r2
2 (n′ − µA,n′)−

r2
2 x−

r2
2

+ (n′ − µA,n′)−s3(n′)r3µ−(r3−s3)
A,n′ x−(r3−s3)

)
.

We will prove Theorem 2.4 in several parts. First, we implement two straightforward

technical simplifications. In particular, (1) we reduce the general setting to the setting

in which ρn ≥ 1
2

by working with the process Ao,n′ , and (2) we reduce the problem to

bounding two separate suprema, one for the arrival process and one for the departure pro-

cess. We proceed by applying a simple union bound to the right-hand-side of (2.4), in

which case we derive the following result by adding and subtracting 1
2
(n′µS + µA,n′)t =

µA,n′t+ 1
2
(n′µS − µA,n′)t = n′µSt− 1

2
(n′µS − µA,n′)t in (2.4), and applying (2.6).

Lemma 2.1. Suppose that E[S] = 1, and for some strictly positive integer n′, it holds that

0 < µA < n′ <∞. Then for all x > 2, it holds that P
(

supt≥0

(
A(t)−

∑n′

i=1Ni(t)
)
≥ x

)
is at most

P

(
sup
t≥0

(
Ao,n′(t)− µA,n′t−

1

2
(n′ − µA,n′)t

)
≥ 1

2
x− 1)

)
(2.7)

+ P

(
sup
t≥0

(
n′t−

n′∑
i=1

Ni(t)−
1

2
(n′ − µA,n′)t

)
≥ 1

2
x

)
. (2.8)

The remainder of the proof of Theorem 2.4 proceeds roughly as follows.

(i) Bound the supremum of n′t−
∑n′

i=1Ni(t) over sets of consecutive integers.

(ii) Bound the supremum of n′t−
∑n′

i=1Ni(t) over intervals of length at most 1.
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(iii) Combine (i) and (ii) to bound supt≥0

(
n′t−

∑n′

i=1Ni(t)− 1
2
(n′ − µA,n′)t

)
.

(iv) Bound the supremum of k − µA,n′
∑k

i=1 Ai,n′ over sets of consecutive integers.

(v) Use (iv) to bound supt≥0

(
Ao,n′(t)− µA,n′t− 1

2
(n′ − µA,n′)t

)
.

Before embarking on (i) - (v), we begin by reviewing a maximal inequality of Billlings-

ley, which will be critical for converting the moment bounds for partial sums posited in the

assumptions of Theorem 2.4 into the bounds for suprema appearing in (i) - (v).

2.4.1 Review of a maximal inequality of Billingsley.

We begin by reviewing a particular maximal inequality of Billingsley. Such inequalities

give general results for converting bounds on the difference between any two partial sums

of a sequence of r.v.s into bound for the supremum of the partial sums of the given se-

quence, and are a common tool in proving tightness of stochastic processes. In particular,

the following maximal inequality follows immediately from [98] Theorem 2 by setting the

function they call g(i, j) (defined for every pair of non-negative integers i ≤ j) equal to

C×(j−i+1) for any givenC > 0. As the authors there note, the result also follows almost

immediately from certain maximal inequalities present in an earlier edition of Billingsley’s

celebrated book on weak convergence [99]. We note that [98] actually proves a tighter

bound, however for ease of exposition we present the following simpler bound which fol-

lows directly from [98]. For completeness, we include a proof that our bound follows from

those of [98] in the appendix.

Lemma 2.2 ([98] Theorem 2). Let {Xl, 1 ≤ l ≤ L} be a completely general sequence of

r.v.s. Suppose that for some fixed γ > 1, ν ≥ γ, and C > 0 the following condition holds:

(i) For all λ > 0 and non-negative integers 1 ≤ i ≤ j ≤ L,

P
(
|

j∑
k=i

Xk| ≥ λ
)
≤
(
C(j − i+ 1)

)γ
λ−ν .
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Then it must also hold that

P
(

max
i∈[1,L]

|
i∑

k=1

Xk| ≥ λ
)
≤
(
6
ν + 1

γ − 1

)ν+1
(CL)γλ−ν .

2.4.2 Bound the supremum of n′t−
∑n′

i=1Ni(t) over sets of consecutive integers.

In this subsection we prove a bound for the supremum term associated with
∑n′

i=1Ni(t),

when evaluated at finite subsets of consecutive integer times. In particular, we will prove

the following result.

Lemma 2.3. Suppose that E[S] = 1, and that for some fixed n′ ≥ 1, C1 > 0, s1 > 1, and

r1 ≥ s1, the following condition holds:

(i) For all t ≥ 1,

E
[
|
n′∑
i=1

Ni(t)− n′t|r1
]
≤ C1n

′ r1
2 ts1 .

Then it also holds that for all non-negative integers k and λ > 0,

P
(

max
j∈[1,k]

∣∣n′j − n′∑
i=1

Ni(j)
∣∣ ≥ λ

)
is at most (

6
r1 + 1

s1 − 1

)r1+1
C1n

′ r1
2 ks1λ−r1 .

Proof of Lemma 2.3. We proceed by verifying that for each fixed k ≥ 1, the conditions of

Lemma 2.2 hold for
{
n′−

∑n′

i=1

(
Ni(j)−Ni(j−1)

)
, j = 1, . . . , k

}
. Let us fix some k ≥ 1,

and non-negative integers l ≤ m ≤ k. Then for any λ > 0, it follows from the fact that the

given sequence of r.v.s is centered and stationary, the independence of {Ni(t), i ≥ 1}, our

assumptions, and Markov’s inequality (after raising both sides to the r1 power), that for all
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1 ≤ l ≤ m ≤ k,

P
(∣∣∣∣ m∑

j=l

(
n′ −

n′∑
i=1

(
Ni(j)−Ni(j − 1)

))∣∣∣∣ ≥ λ

)

≤ E
[∣∣∣∣ m∑

j=l

(
n′ −

n′∑
i=1

(
Ni(j)−Ni(j − 1)

))∣∣∣∣r1]λ−r1
= E

[∣∣∣∣n′(m− l + 1)−
n′∑
i=1

(
Ni(m)−Ni(l − 1)

)∣∣∣∣r1]λ−r1
= E

[∣∣∣∣ n′∑
i=1

Ni(m− l + 1)− n′(m− l + 1)

∣∣∣∣r1]λ−r1
≤ C1n

′ r1
2 (m− l + 1)s1λ−r1 .

Thus we find that the conditions of Lemma 2.2 are met with L = k, {Xl, 1 ≤ l ≤ L} ={
n′ −

∑n′

i=1

(
Ni(l)−Ni(l− 1)

)
, l = 1, . . . , k

}
, C = (C1n

′ r1
2 )

1
s1 , ν = r1, γ = s1, and the

desired result follows.

2.4.3 Bound the supremum of n′t−
∑n′

i=1Ni(t) over intervals of length at most 1.

In this subsection we prove a bound for the supremum term associated with
∑n′

i=1Ni(t),

when evaluated over intervals of length at most 1. In particular, we will prove the following

result.

Lemma 2.4. Suppose that E[S] = 1, and that for some fixed n′ ≥ 1, C2 > 0 and r2 > 2,

the following condition holds:

(i) For all t ∈ [0, 1],

E
[
|
n′∑
i=1

Ni(t)− n′t|r2
]
≤ C2 max

(
n′t, (n′t)

r2
2

)
.
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Then it also holds that for all t0 ∈ [0, 1] and λ ≥ 2,

P
(

sup
t∈[0,t0]

∣∣n′t− n′∑
i=1

Ni(t)
∣∣ ≥ λ

)
(2.9)

is at most (
24
r2 + 1

r2 − 2

)r2+1
C2(n′t0)

r2
2 λ−r2 .

Proof of Lemma 2.4. We begin by noting that it suffices to bound the supremum of interest

over a suitable mesh, which follows immediately from the fact that w.p.1 n′t−
∑n′

i=1Ni(t)

can increase by at most 1 over any interval of length at most (n′)−1. In particular, (2.9) is

at most

P
(

1 + max
k∈[0,bn′t0c]

(
k −

n′∑
i=1

Ni(
k

n′
)
)
≥ λ

)
. (2.10)

We now verify that the conditions of Lemma 2.2 hold for
{

1−
∑n′

i=1

(
Ni(

k
n′

)−Ni(
k−1
n′

)
)
, k =

1, . . . , bn′t0c
}

. Let us fix some non-negative integers m ≤ j ≤ bn′t0c (note that if

bn′t0c < 1 the result is trivial). Then for any λ > 0, it follows from stationary incre-

ments, centeredness, and Markov’s inequality (after raising both sides to the r2 power) that

P
(∣∣∣∣ j∑

l=m

(
1−

n′∑
i=1

(
Ni(

l

n′
)−Ni(

l − 1

n′
)
))∣∣∣∣ ≥ λ

)
(2.11)

is at most

E
[∣∣∣∣ j∑

l=m

(
1−

n′∑
i=1

(
Ni(

l

n′
)−Ni(

l − 1

n′
)
))∣∣∣∣r2]λ−r2

= E
[∣∣(j −m+ 1)−

n′∑
i=1

Ni(
j −m+ 1

n′
)
∣∣r2]λ−r2 ,

which by our assumptions (and noting that in this case the n′t appearing in our assumptions

equals j −m + 1) is at most C2 max
(
j −m + 1, (j −m + 1)

r2
2

)
. Since j −m + 1 is a

non-negative integer and r2
2
≥ 1, it follows that (2.11) is at most C2(j−m+ 1)

r2
2 λ−r2 . We
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thus find that the conditions of Lemma 2.2 are met with L = bn′t0c, {Xl, 1 ≤ l ≤ L} ={
1 −

∑n′

i=1

(
Ni(

l
n′

) − Ni(
l−1
n′

)
)
, l = 1, . . . , bn′t0c

}
, C = (C2)

2
r2 , ν = r2, γ = r2

2
. Thus

for all z > 0,

P
(

max
k∈[0,bn′t0c]

(
k −

n′∑
i=1

Ni(
k

n′
)
)
≥ z
)
≤
(
6
r2 + 1
r2
2
− 1

)r2+1
C2(n′t0)

r2
2 z−r2 .

It then follows from (2.10), and the fact that λ ≥ 2 implies (λ− 1)−r2 ≤ 2r2λ−r2 , that (2.9)

is at most

2r2 ×
(
6
r2 + 1
r2
2
− 1

)r2+1 × C2 × (n′t0)
r2
2 λ−r2

≤
(
24
r2 + 1

r2 − 2

)r2+1
C2(n′t0)

r2
2 λ−r2 ,

completing the proof.

2.4.4 Bound supt≥0

(
n′t −

∑n′

i=1Ni(t) − 1
2
(n′ − µA,n′)t

)
by combining Lemmas 2.3

and 2.4.

We now combine our two bounds for the supremum associated with n′t −
∑n′

i=1Ni(t),

namely Lemma 2.3 which provides bounds over sets of integer times, and Lemma 2.4

which provides bounds over intervals of length at most 1. We proceed by proving a very

general result for the all-time supremum of continuous-time random walks with stationary

increments and negative drift, which exactly converts appropriate bounds for the supremum

over consecutive integers and over intervals of length at most 1 to bounds for the all-time

supremum. We note that similar arguments have been used to bound all-time suprema of

stochastic processes (cf. [100]), also in the heavy-tailed setting (cf. [101]). To allow for

minimal assumptions, and to allow for the fully range of applicability to our setting of

interest (and for completeness), we include a self-contained exposition and proof. We will

rely on the following result, whose proof we defer to the appendix.
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Lemma 2.5. Let {φ(t), t ≥ 0} be a stochastic process with stationary increments such that

φ(0) = 0. Here, stationary increments means that for all s0 ≥ 0, {φ(s+s0)−φ(s0), s ≥ 0}

has the same distribution (on the process level) as {φ(s), s ≥ 0}. Suppose there exist

strictly positive finite constants H1, H2, s, r1, r2 and Z ≥ 0 such that r1 > s > 1 and

r2 > 2, and the following two conditions hold:

(i) For all integers m ≥ 1 and real numbers λ ≥ Z,

P( max
j∈{0,...,m}

φ(j) ≥ λ) ≤ H1m
sλ−r1 .

(ii) For all t0 ∈ (0, 1] and λ ≥ Z,

P( sup
0≤t≤t0

φ(t) ≥ λ) ≤ H2t
r2
2

0 λ−r2 .

Then for any drift parameter ν > 0, and all λ ≥ 4Z, P
(

supt≥0(φ(t) − νt) ≥ λ

)
is at

most

(1 +
1

r1 − s
)4r1+r2+2

(
H1ν

−sλ−(r1−s) +H2(λν)−
r2
2

)
With Lemma 2.5 in hand, we now combine with Lemmas 2.3 and 2.4 to prove the

following bound for supt≥0

(
n′t−

∑n′

i=1Ni(t)−νt
)

. We note that ultimately we will take

ν = 1
2
(n′ − µA), but here we prove the result for general drift.

Lemma 2.6. Suppose that E[S] = 1, and that for some fixed n′ ≥ 1, C1, C2 > 0; r1 > s1 >

1; and r2 > 2:

(i) For all t ≥ 1,

E
[
|
n′∑
i=1

Ni(t)− n′t|r1
]
≤ C1n

′ r1
2 ts1 .
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(ii) For all t ∈ [0, 1],

E
[
|
n′∑
i=1

Ni(t)− n′t|r2
]
≤ C2 max

(
n′t, (n′t)

r2
2

)
.

Then for all ν > 0 and λ ≥ 8,

P

(
sup
t≥0

(
n′t−

n′∑
i=1

Ni(t)− νt
)
≥ λ

)

is at most

(
100(r1 + r2)3

(s1 − 1)(r1 − s1)(r2 − 2)

)r1+r2+2(
C1n

′ r1
2 ν−s1λ−(r1−s1) + C2n

′ r2
2 (λν)−

r2
2

)
.

Proof of Lemma 2.6. By our assumptions and Lemma 2.3, for all non-negative integers k

and λ > 0,

P
(

max
j∈[1,k]

∣∣n′µSj − n′∑
i=1

Ni(j)
∣∣ ≥ λ

)
≤
(
6
r1 + 1

s1 − 1

)r1+1
C1n

′ r1
2 ks1λ−r1 .

Next, by our assumptions and Lemma 2.4, for all t0 ∈ [0, 1] and λ ≥ 2,

P
(

sup
t∈[0,t0]

∣∣n′µSt− n′∑
i=1

Ni(t)
∣∣ ≥ λ

)
≤
(
24
r2 + 1

r2 − 2

)r2+1
C2n

′ r2
2 t

r2
2

0 λ−r2 .

It then follows from our assumptions that the conditions of Lemma 2.5 are met with φ(t) =

n′t−
∑n′

i=1 Ni(t), s = s1, r1, r2, ν their given values, Z = 2,

H1 =
(
6
r1 + 1

s1 − 1

)r1+1
C1n

′ r1
2 , H2 =

(
24
r2 + 1

r2 − 2

)r2+1
C2n

′ r2
2 .

Combining the above with the implications of Lemma 2.5 and some straightforward algebra

completes the proof.
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2.4.5 Bound the supremum of k − µA,n′
∑k

i=1Ai,n′ over sets of consecutive integers

In this subsection we prove a bound for the supremum of k − µA,n′
∑k

i=1Ai,n′ , as an in-

termediate step towards bounding the supremum of Ao,n′(t) − µA,n′t − 1
2
(n′ − µA,n′)t. In

particular, we will prove the following result.

Lemma 2.7. Suppose that 0 < µA < ∞, and for some fixed C3 > 0, s3 > 1, and r3 ≥ s3,

the following condition holds:

(i) For all k ≥ 1,

E
[
|k −

k∑
i=1

(µAAi)|r3
]
≤ C3k

s3 .

Then for all n′ ≥ 1 and non-negative integers k and λ > 0,

P
(

max
j∈[1,k]

∣∣j − j∑
i=1

(µA,n′Ai,n′)
∣∣ ≥ λ

)
is at most (

6
r3 + 1

s3 − 1

)r3+1
C3k

s3λ−r3 .

Proof of Lemma 2.7. We proceed by verifying that for each fixed k ≥ 1, the conditions of

Lemma 2.2 hold for
{

1− µA,n′Aj,n′ , j = 1, . . . , k

}
. First, note that

E
[
|k −

k∑
i=1

(µA,n′Ai,n′)|r3
]

= E
[
|k −

k∑
i=1

(µAAi)|r3
]
. (2.12)

Let us fix some k ≥ 1, and non-negative integers l ≤ m ≤ k. Then for any λ > 0, it follows

from the fact that the given sequence of r.v.s is centered and stationary, the independence

of {Ai,n′ , i ≥ 1}, (2.12), and Markov’s inequality (after raising both sides to the r3 power),
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that

P
(∣∣∣∣ m∑

j=l

(
1− µA,n′Aj,n′

)∣∣∣∣ ≥ λ

)

≤ E
[∣∣∣∣ m∑

j=l

(
1− µA,n′Aj,n′

)∣∣∣∣r3]λ−r3
= E

[∣∣∣∣m−l+1∑
i=1

(µA,n′Ai,n′)− (m− l + 1)

∣∣∣∣r3]λ−r3
≤ C3(m− l + 1)s3λ−r3 .

Thus we find that the conditions of Lemma 2.2 are met with L = k, {Xl, 1 ≤ l ≤ L} ={
1 − µA,n′Al,n′ , l = 1, . . . , k

}
, C = (C3)

1
s , ν = r3, γ = s3, and the desired result

follows.

2.4.6 Bound supt≥0

(
Ao,n′(t)− µA,n′t− 1

2
(n′ − µA,n′)t

)
using Lemma 2.7.

We now use Lemma 2.7 to bound supt≥0

(
Ao,n′(t) − µA,n′t − 1

2
(n′ − µA,n′)t

)
. Here we

prove the result for general linear drift, but will later connect back to the desired drift

1
2
(n′ − µA,n′). We proceed in three steps. First, we relate the desired supremum to a

discrete-time supremum associated with k − µA
∑k

i=1 Ai. In particular, we begin with the

following lemma.

Lemma 2.8. Suppose that 0 < µA <∞. Then for all n′ ≥ 1, ν > 0 and λ > 0,

P
(

sup
t≥0

(
Ao,n′(t)− µA,n′t− νt

)
≥ λ

)
(2.13)

equals

P

(
sup
k≥0

(
k − µA,n′

k∑
i=1

Ai,n′ −
ν

µA,n′ + ν
k

)
≥ λ(1 +

ν

µA,n′
)−1

)
. (2.14)

Proof of Lemma 2.8. As {Ao,n′(t)−µA,n′t−νt, t ≥ 0} jumps up only at times {
∑k

i=1 Ai,n′ , k ≥
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1} and at all other times drifts downward at linear rate −(µA,n′ + ν), we conclude that we

may examine the relevant supremum only at times {
∑k

i=1 Ai,n′ , k ≥ 0}, from which it

follows that (2.13) equals

P
(

sup
k≥0

(
k − (µA,n′ + ν)

k∑
i=1

Ai,n′
)
≥ λ

)
. (2.15)

Further observing that

k − (µA,n′ + ν)
k∑
i=1

Ai,n′ = (1 +
ν

µA,n′
)k − (µA,n′ + ν)

k∑
i=1

Ai,n′ −
ν

µA,n′
k

= (1 +
ν

µA,n′
)
(
k − µA,n′

k∑
i=1

Ai,n′ −
ν

µA,n′ + ν
k
)

completes the proof.

Second, we prove a general result for the all-time supremum of discrete-time random

walks with stationary increments and negative drift, in analogy with Lemma 2.5, which we

will use to analyze (2.14). In particular, we prove the following result, whose proof we

defer to the appendix.

Lemma 2.9. Let {φ(k), k ≥ 0} be a discrete-time stochastic process with stationary in-

crements such that φ(0) = 0. Here, stationary increments means that for all integers

k0 ≥ 0, {φ(k + k0) − φ(k0), k ≥ 0} has the same distribution (on the process level) as

{φ(k), k ≥ 0}. Suppose there exist strictly positive finite constants H3, s3, r3 such that

r3 > s3 ≥ 1, and the following condition holds:

(i) For all integers m ≥ 1 and λ > 0,

P( max
j∈{0,...,m}

φ(j) ≥ λ) ≤ H3m
s3λ−r3 .
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Then for any drift parameter ν > 0, and all λ > 0, P
(

supk≥0(φ(k)− νk) ≥ λ

)
is at most

16H34r3(1 +
1

r3 − s3

)ν−s3λ−(r3−s3).

Finally, we combine Lemmas 2.8 and 2.9 to bound supt≥0

(
Ao,n′(t)− µA,n′t− 1

2
(n′ −

µA,n′)t

)
, proving the following.

Lemma 2.10. Suppose that 0 < µA <∞, and that for some fixed C3 > 0 and r3 > s3 > 1,

the following condition holds:

(i) For all k ≥ 1,

E
[
|k − µA

k∑
i=1

Ai|r3
]
≤ C3k

s3 .

Then for all ν > 0 and λ > 0,

P

(
sup
t≥0

(
Ao,n′(t)− µA,n′t− νt

)
≥ λ

)

is at most

(
103(r3 + 1)2

(s3 − 1)(r3 − s3)

)r3+1

C3ν
−s3(µA,n′ + ν)r3µ

−(r3−s3)
A,n′ λ−(r3−s3).

Proof of Lemma 2.10. By Lemma 2.8, it suffices to bound

P

(
sup
k≥0

(
k − µA,n′

k∑
i=1

Ai,n′ −
ν

µA,n′ + ν
k

)
≥ λ(1 +

ν

µA,n′
)−1

)
(2.16)

Our assumptions, (2.12), and Lemma 2.7 ensure that for all non-negative integers k and

λ′ > 0,

P
(

max
j∈[1,k]

∣∣j − j∑
i=1

(µA,n′Ai,n′)
∣∣ ≥ λ′

)
(2.17)
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is at most (
6
r3 + 1

s3 − 1

)r3+1
C3k

s3(λ′)−r3 .

It then follows from our assumptions that the conditions of Lemma 2.9 are met with φ(k) =

k − µA,n′
∑k

i=1 Ai,n′ , s3, r3 there given values,

H3 =
(
6
r3 + 1

s3 − 1

)r3+1
C3.

We conclude (after setting the drift parameter equal to ν
µA,n′+ν

and the target level equal to

λ(1 + ν
µA,n′

)−1), that for all λ > 0, (2.16) is at most

16
(
6
r3 + 1

s3 − 1

)r3+1
C34r3(1 +

1

r3 − s3

)(
ν

µA,n′ + ν
)−s3

(
λ(1 +

ν

µA,n′
)−1
)−(r3−s3)

.

Combining with some straightforward algebra completes the proof.

2.4.7 Proof of Theorem 2.4.

With Lemmas 2.6 and 2.10 in hand, we now complete the proof of Theorem 2.4.

Proof of Theorem 2.4. Using Lemma 2.6 to bound (2.8), and Lemma 2.10 to bound (2.7),

combined with Lemma 2.1 and some straightforward algebra, we conclude that for all

x ≥ 16, P
(

supt≥0

(
A(t)−

∑n′

i=1Ni(t)

)
≥ x

)
is at most

(
100(r1 + r2)3

(s1 − 1)(r1 − s1)(r2 − 2)

)r1+r2+2

(2.18)

×
(
C1n

′ r1
2

(1

2
(n′ − µA,n′)

)−s1(x
2

)−(r1−s1) + C2n
′ r2
2

(x
2
× 1

2
(n′ − µA,n′)

)− r2
2

)
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+

(
103(r3 + 1)2

(s3 − 1)(r3 − s3)

)r3+1

(2.19)

× C3

(1

2
(n′ − µA,n′)

)−s3(1

2
(n′ + µA,n′)

)r3µ−(r3−s3)
A,n′ (

x

2
− 1)−(r3−s3).

It follows from some straightforward algebra, and the assumption that n′ > µA,n′ , that

(2.18) is at most

(
16× 103(r1 + r2 + r3)5

(s1 − 1)(s3 − 1)(r1 − s1)(r3 − s3)(r2 − 2)

)r1+r2+r3+1

(1 + C1)(1 + C2)(1 + C3)

×
(
n′

r1
2 (n′ − µA,n′)−s1x−(r1−s1) + n′

r2
2 (n′ − µA,n′)−

r2
2 x−

r2
2

)
,

and (2.19) is at most

(
64× 103(r1 + r2 + r3)5

(s1 − 1)(s3 − 1)(r1 − s1)(r3 − s3)(r2 − 2)

)r1+r2+r3+1

(1 + C1)(1 + C2)(1 + C3)

× (n′ − µA,n′)−s3(n′)r3µ−(r3−s3)
A,n′ x−(r3−s3).

Combining the above with some straightforward algebra completes the proof.

2.5 Making Theorem 2.4 completely explicit (proof of Theorem 2.1).

In this section we show that the relevant (pooled) renewal processes satisfy the conditions

of Theorem 2.4 for certain explicit constants (assuming finite second moment), and use

the corresponding explicit result of Theorem 2.4, combined with the stochastic comparison

results Theorems 2.2 and 2.3, to complete the proof of Theorem 2.1.

2.5.1 Bounding the central moments of
∑k

i=1Ni(t) for t ≥ 1

In this subsection we bound the central moments of
∑k

i=1 Ni(t) for t ≥ 1. In particular, we

will prove the following.
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Lemma 2.11. Suppose that E[S] = 1, and that E[Sr] < ∞ for some r ≥ 2. Then for all

k ≥ 1, t ≥ 1, and θ > 0,

E
[∣∣ k∑

i=1

Ni(t)− kt
∣∣r] ≤ E[Sr] exp(θ)

( 108r3

1− E[exp(−θS)]

)r+2
k
r
2 t

r
2 .

Our proof of Lemma 2.11 proceeds in several steps. First, we bound the rth central

moment of No(t), showing that this moment scales (with t) like t
r
2 and providing a com-

pletely explicit bound along these lines. Our proof can essentially be viewed as “making

completely explicit”, e.g. all constants explicitly worked out, the approach to bounding the

central moments of a renewal process sketched in [102]. As noted in [102] (and used in

[63]), a non-explicit bound proving that the rth central moment indeed scales asymptoti-

cally (with t) like t
r
2 was first proven in [103]. To our knowledge such a completely explicit

bound is new, and may prove useful in other settings. In particular, we begin by proving

the following.

Lemma 2.12. Suppose that E[S] = 1, and that E[Sr] < ∞ for some r ≥ 2. Then for all

t ≥ 1 and θ > 0,

E
[∣∣∣∣No(t)− t

∣∣∣∣r] ≤ exp(θ)E[Sr]
( 105r2

1− E[exp(−θS)]

)r+1
t
r
2 .

We begin with some preliminary technical results. First, we recall the the celebrated

Burkholder-Rosenthal Inequality for bounding the moments of a martingale. We state a

particular variant (chosen largely for simplicity, although tighter bounds are known) given

in [104].

Lemma 2.13 (Burkholder-Rosenthal Inequality, [104]). Let {Xi, i ≥ 1} be a martingale

difference sequence w.r.t. the filtration {Fi, i ≥ 0}. Namely, we have that {Xi, i ≥ 1} is

adapted to {Fi, i ≥ 0}; E[|Xi|] <∞ for all i ≥ 1; and E[Xi|Fi−1] = 0 for all i ≥ 1. Then
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for all r ≥ 2, (
E
[∣∣ ∞∑

i=1

Xi

∣∣r]) 1
r

is at most

10r

(
E
[( ∞∑

i=1

E[X2
i |Fi−1]

) r
2
]) 1

r

+ 10r

(
E
[

sup
i≥1
|Xr

i |
]) 1

r

.

Since for any sequence of r.v.s {Zi, i = 1, . . . , n} and r ≥ 1 it follows from convexity

that w.p.1 ∣∣ n∑
i=1

Zi
∣∣r ≤ nr−1

n∑
i=1

|Zi|r, (2.20)

we deduce the following corollary.

Corollary 2.6. Under the same definitions and assumptions as Lemma 2.13, for all r ≥ 2,

E
[∣∣∑∞

i=1Xi

∣∣r] is at most

(20r)rE
[( ∞∑

i=1

E[X2
i |Fi−1]

) r
2
]

+ (20r)rE
[

sup
i≥1
|Xr

i |
]
.

We next recall a certain inequality for the non-central moments of No(t), proven in

[102] Equation 5.11.

Lemma 2.14 ([102] Equation 5.11). Suppose that 0 < µS < ∞. Then for all p > 0 and

t ≥ 1,

E
[(
No(t) + 1

)p] ≤ (2t)pE
[(
No(1) + 1

)p]
.

We also prove the following bounds for moments of No(1), whose proof we defer to

the appendix.

Lemma 2.15. Suppose that 0 < µS <∞. Then for all p ≥ 1 and θ > 0,

E
[(
No(1)

)p] ≤ exp(θ)
( 24p

1− E[exp(−θS)]

)p+2
.

Combining Lemmas 2.14 and 2.15 with (2.20) and some straightforward algebra, we
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come to the following corollary.

Corollary 2.7. Suppose that 0 < µS <∞. Then for all p ≥ 1, t ≥ 1, and θ > 0,

E
[(
No(t) + 1

)p] ≤ exp(θ)
( 100p

1− E[exp(−θS)]

)p+2
tp.

With Lemmas 2.13 - 2.15 and Corollary 2.7 in hand, we now complete the proof of

Lemma 2.12.

Proof of Lemma 2.12. By definition (as is well-known),No(t)+1 = min{n ≥ 1 :
∑n

i=1 Si >

t} is a stopping time w.r.t. the natural filtration generated by {Si, i ≥ 1}. By the triangle

inequality, w.p.1

∣∣No(t)− t
∣∣ =

∣∣(No(t) + 1
)
− t− 1

∣∣
≤

∣∣(No(t) + 1
)
− t
∣∣+ 1

≤
∣∣∣∣No(t)+1∑

i=1

Si −
(
No(t) + 1

)∣∣∣∣+

∣∣∣∣No(t)+1∑
i=1

Si − t
∣∣∣∣+ 1. (2.21)

It then follows from (2.20) and (2.21) that E
[∣∣∣∣No(t)− t

∣∣∣∣r] is at most

3r−1E

[∣∣∣∣No(t)+1∑
i=1

Si −
(
No(t) + 1

)∣∣∣∣r
]

(2.22)

+ 3r−1E

[∣∣∣∣No(t)+1∑
i=1

Si − t
∣∣∣∣r
]

(2.23)

+ 3r−1. (2.24)

We next bound

E

[∣∣∣∣No(t)+1∑
i=1

Si −
(
No(t) + 1

)∣∣∣∣r
]
, (2.25)

and proceed by applying the celebrated Burkholder-Rosenthal Inequality. In particular, we

will use Corollary 2.6 to bound (2.25). First, we rewrite (2.25) in terms of an appropriate
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martingale difference sequence. Namely, note that (2.25) equals

E

[∣∣∣∣ ∞∑
i=1

SiI
(
No(t) + 1 ≥ i

)
−
∞∑
i=1

I
(
No(t) + 1 ≥ i

)∣∣∣∣r
]

= E

[∣∣∣∣ ∞∑
i=1

(Si − 1)I
(
No(t) + 1 ≥ i

)∣∣∣∣r
]
. (2.26)

We now prove that {(Si − 1)I
(
No(t) + 1 ≥ i

)
, i ≥ 1} is a martingale difference sequence

w.r.t. the filtration {σ(S1, . . . , Si), i ≥ 1}. Finite expecations and measurability are trivial.

Furthermore, since I
(
No(t) + 1 ≥ i

)
is σ(S1, . . . , Si−1)-measurable (due to the greater

than or equal to sign), it follows from independence and the basic properties of conditional

expectation that w.p.1

E
[
(Si − 1)I

(
No(t) + 1 ≥ i

)
|σ(S1, . . . , Si−1)

]
= I

(
No(t) + 1 ≥ i

)
E
[
(Si − 1)|σ(S1, . . . , Si−1)

]
= I

(
No(t) + 1 ≥ i

)
E
[
Si − 1

]
= 0.

Thus we find that the conditions of Corollary 2.6 are satisfied withXi = (Si−1)I
(
No(t)+

1 ≥ i
)
,Fi = σ(S1, . . . , Si). Before stating the given implication, we first show that several
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resulting terms can be simplified. First, note that

E

[(
∞∑
i=1

E
[(

(Si − 1)I
(
No(t) + 1 ≥ i

))2∣∣∣∣σ(S1, . . . , Si−1)

]) r
2
]

= E

[(
∞∑
i=1

E
[
(Si − 1)2I

(
No(t) + 1 ≥ i

)∣∣∣∣σ(S1, . . . , Si−1)

]) r
2
]

= E

[(
∞∑
i=1

I
(
No(t) + 1 ≥ i

)
E
[
(Si − 1)2

∣∣∣∣σ(S1, . . . , Si−1)

]) r
2
]

= E

[(
∞∑
i=1

I
(
No(t) + 1 ≥ i

)
E
[
(S − 1)2

]) r
2
]

=

(
E
[
(S − 1)2

]) r
2

E

[(
∞∑
i=1

I
(
No(t) + 1 ≥ i

)) r
2
]

=

(
E
[
(S − 1)2

]) r
2

E
[(
No(t) + 1

) r
2

]
≤ E

[
|S − 1|r

]
E
[(
No(t) + 1

) r
2

]
, (2.27)

the final inequality following from Jensen’s inequality (applicable since r ≥ 2). Second,

note that

E

[
sup
i≥1

∣∣∣∣((Si − 1)I
(
No(t) + 1 ≥ i

))r∣∣∣∣
]

≤ E

[
∞∑
i=1

I
(
No(t) + 1 ≥ i

)∣∣Si − 1
∣∣r]

= E

[
No(t)+1∑
i=1

∣∣Si − 1
∣∣r]

= E
[
No(t) + 1

]
E
[∣∣S − 1

∣∣r], (2.28)

the final inequality following from Wald’s identity. Combining (2.27) and (2.28) with the

fact that the conditions of Corollary 2.6 are satisfied with Xi = (Si − 1)I
(
No(t) + 1 ≥

i
)
,Fi = σ(S1, . . . , Si), and the fact that E

[
No(t) + 1

]
≤ E

[(
No(t) + 1

) r
2

]
(since r ≥ 2),
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we conclude that (2.25) is at most

2(20r)rE
[
|S − 1|r

]
E
[(
No(t) + 1

) r
2

]
. (2.29)

Combining (2.29) and Corollary 2.7, we conclude that (2.25) is at most

2(20r)rE
[
|S − 1|r

]
exp(θ)

(
50r

1− E[exp(−θS)]

) r
2

+2

t
r
2 (2.30)

≤ exp(θ)

(
2× 103r2

1− E[exp(−θS)]

)r+1

E
[
|S − 1|r

]
t
r
2 . (2.31)

We next bound (2.23), by bounding

E

[∣∣∣∣No(t)+1∑
i=1

Si − t
∣∣∣∣r
]
. (2.32)

By definition,
∑No(t)+1

i=1 Si − t is the residual life of the renewal process No at time t, i.e.

the remaining time until the next renewal (at time t), and it follows that w.p.1

∣∣No(t)+1∑
i=1

Si − t
∣∣r ≤ SrNo(t)+1

≤
No(t)+1∑
i=1

Sri .

Combining with Wald’s identity, we conclude that (2.32) is at most E
[
No(t) + 1

]
E[Sr],

which by Corollary 2.7 is at most

exp(θ)
( 100

1− E
[

exp(−θS)
])3

tE[Sr]. (2.33)

Using (2.31) to bound (2.25) (providing a bound for (2.22)), and (2.33) to bound (2.32)
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(providing a bound for (2.23)), and applying (2.20) and some straightforward algebra, we

find that E
[∣∣∣∣No(t)− t

∣∣∣∣r] is at most

3r−1 exp(θ)
( 2× 103r2

1− E[exp(−θS)]

)r+1E
[
|S − 1|r

]
t
r
2

+ 3r−1 exp(θ)
( 100

1− E
[

exp(−θS)
])3

tE[Sr] + 3r−1

≤ 3r−1 exp(θ)
( 2× 103r2

1− E[exp(−θS)]

)r+1
t
r
2

(
E
[
|S − 1|r

]
+ E[Sr]

)
+ 3r−1

≤ 3r−1 exp(θ)
( 2× 103r2

1− E[exp(−θS)]

)r+1
t
r
2

(
2r−1

(
E[Sr] + 1

)
+ E[Sr]

)
+ 3r−1

≤ 3r−1 exp(θ)
( 2× 103r2

1− E[exp(−θS)]

)r+1
t
r
2 2r+1E[Sr] + 3r−1

≤ exp(θ)E[Sr]
( 105r2

1− E[exp(−θS)]

)r+1
t
r
2 .

Combining the above completes the proof.

We now extend Lemma 2.12 to the corresponding equilibrium renewal process. We

note that given the results of Lemma 2.12, such an extension follows nearly identically to

the proof of Lemma 8 of [63]. However, as we wish to make all quantities compeltely

explicit, we include a self-contained proof in the appendix.

Corollary 2.8. Suppose that E[S] = 1, and that E[Sr] < ∞ for some r ≥ 2. Then for all

t ≥ 1 and θ > 0,

E
[∣∣∣∣N1(t)− t

∣∣∣∣r] ≤ E[Sr] exp(θ)
( 107r2

1− E[exp(−θS)]

)r+2
t
r
2 .

Before completing the proof of Lemma 2.11, we recall the celebrated Marcinkiewicz-

Zygmund inequality, a close relative of the Rosenthal inequality. The precise result which

we will use follows immediately from [105] Theorem 2, and we refer the interested reader

to [106] for a further overview of related results. We note that for several results which we

will state, it is not required that the r.v.s be identically distributed, although we only state
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the results for that setting.

Lemma 2.16 ([105] Theorem 2). Suppose that for some p ≥ 2, {Xi, i ≥ 1} is a collection

of i.i.d. zero-mean r.v.s. s.t. E[|X1|p] <∞. Then for all k ≥ 1,

E
[∣∣ k∑

i=1

Xi

∣∣p] ≤ (5p)pE[|X1|p]k
p
2 .

For later use, here we also state a result similar to Lemma 2.16, but under different

assumptions, e.g. requiring the r.v.s be non-negative but not necessarily centered, and only

requiring finite first moment. The result follows immediately from [107] Theorem 2.5.

Lemma 2.17 ([107] Theorem 2.5). Suppose that for some p ≥ 1, {Xi, i ≥ 1} is a collection

of i.i.d. non-negative r.v.s. s.t. E[Xp
1 ] <∞. Then for all k ≥ 1,

E
[( k∑

i=1

Xi

)p] ≤ (2p)p max
(
(kE[X1])p, kE[Xp

1 ]
)
.

With Corollary 2.8 and Lemma 2.16 in hand, we now complete the proof of Lemma

2.11.

Proof of Lemma 2.11. Applying Lemma 2.16 with Xi = Ni(t)− t, we find that

E
[∣∣ k∑

i=1

Ni(t)− kt
∣∣r] ≤ (5r)rE

[
|N1(t)− t|r

]
k
r
2 .

Combining with Corollary 2.8 and some straightforward algebra completes the proof.

2.5.2 Bounding the central moments of
∑k

i=1Ni(t) for t ∈ [0, 1]

In thus subsection we bound the central moments of
∑k

i=1Ni(t) for t ∈ [0, 1]. We will use

an argument similar to that used in the proof of [63] Lemma 5. However, in contrast to the

arguments of [63], here all quantities are made completely explicit.
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Lemma 2.18. Suppose that E[S] = 1. Then for all k ≥ 1, p ≥ 2, t ∈ [0, 1], and θ > 0,

E
[∣∣ k∑

i=1

Ni(t)− kt
∣∣p] ≤ exp(θ)

( 105p4

1− E[exp(−θS)]

)p+2
max

(
kt, (kt)

p
2

)
. (2.34)

Our proof proceeds by first proving a somewhat weaker bound, and then leveraging this

bound to prove the desired result.

A useful weaker bound

We now establish the aforementioned weaker bound, which we will ultimately use to prove

Lemma 2.18. Intuitively, this weaker bound follows by “interpreting”
∑k

i=1Ni(t) as a type

of “modified binomial” distribution, where each renewal process has “a success probabil-

ity” of having had at least one event. We note that this weaker bound, and its proof, are

similar to that of Lemma 9 in [63] (although in [63] the corresponding results are non-

explicit). In particular, we prove the following.

Lemma 2.19. Suppose that E[S] = 1. Then for all k ≥ 1, p ≥ 2, t ∈ [0, 1], and θ > 0,

E
[∣∣ k∑

i=1

Ni(t)− kt
∣∣p] ≤ exp(θ)

( 103p3

1− E[exp(−θS)]

)p+2
max

(
kt, (kt)p

)
. (2.35)

Proof of Lemma 2.19. We note that here it is important to correctly capture the joint scaling

of k and t, so e.g. a naive application of Lemma 2.16 will not suffice. Instead, we proceed

as follows. It follows from (2.20) that the left-hand-side of (2.35) is at most

E
[( k∑

i=1

Ni(t) + kt
)p] ≤ 2p−1

(
E
[( k∑

i=1

Ni(t)
)p]

+ (kt)p
)
. (2.36)

We now bound the term E
[(∑k

i=1Ni(t)
)p] appearing in (2.36). Let us fix some t ∈ [0, 1],

and let {Bi, i ≥ 1} denote a sequence of i.i.d. Bernoulli r.v. s.t P(Bi = 1) = pt
∆
=

P(R(S) ≤ t), and P(Bi = 0) = 1 − pt. Note that we may construct {Ni(t), i ≥ 1},

{No,i(t), i ≥ 1}, {Bi, i ≥ 1} on the same probability space s.t. w.p.1 Ni(t) ≤ Bi

(
1 +
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No,i(t)
)

for all i ≥ 1, with {No,i(t), i ≥ 1}, {Bi, i ≥ 1} mutually independent. Let

Mt
∆
=
∑k

i=1Bi. Then it follows from Lemma 2.17, Corollary 2.7, the fact that t ≤ 1, and

Jensen’s inequality that

E
[( k∑

i=1

Ni(t)
)p] ≤ E

[( Mt∑
i=1

(
1 +No,i(t)

))p]
= E

[
E
[( Mt∑

i=1

(
1 +No,i(t)

))p
|Mt

]]
≤ E

[
(2p)p max

((
MtE[1 +No(t)]

)p
,MtE[

(
1 +No(t)

)p
]

)]
≤ (2p)pE[

(
1 +No(t)

)p
]E
[

max
(
Mp

t ,Mt

)]
= (2p)pE[

(
1 +No(t)

)p
]E[Mp

t ]

≤ (2p)pE[
(
1 +No(1)

)p
]E[Mp

t ]

≤ exp(θ)
( 200p2

1− E[exp(−θS)]

)p+2E[Mp
t ].

Further applying Lemma 2.17 to conclude that

E[Mp
t ] = E

[( k∑
i=1

Bi

)p] ≤ (2p)p max
(
(kpt)

p, kpt
)
,

we may combine the above and find that

E
[( k∑

i=1

Ni(t)
)p] ≤ exp(θ)

( 400p3

1− E[exp(−θS)]

)p+2
max

(
kpt, (kpt)

p
)
.

Since it follows from the definition of the equilibrium distribution and pt that pt ≤ t, we

conclude that the left-hand-side of (2.35) is at most

2p−1

(
exp(θ)

( 400p3

1− E[exp(−θS)]

)p+2
max

(
kpt, (kpt)

p
)

+ (kt)p
)
.

Further combining with some straightforward algebra completes the proof.
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Proof of Lemma 2.18

We now use Lemma 2.19 to complete the proof of the desired result Lemma 2.18, pro-

ceeding by a case analysis. We note that a similar, albeit non-explicit, analysis appeared in

[63].

Proof of Lemma 2.18. Let us fix some t ∈ [0, 1]. We proceed by a case analysis. First,

suppose t ≤ 1
k
. In this case max

(
kt, (kt)p

)
= kt, and the desired result follows from

Lemma 2.19.

Next, suppose t ∈ ( 1
k
, 2
k
]. In this case,

max
(
kt, (kt)p

)
= (kt)p ≤ 2

p
2 (kt)

p
2 ,

and the result then follows from Lemma 2.19.

Alternatively, suppose t ∈
(

2
k
, 1
]
. Let n1(t)

∆
= bktc. Noting that t ≥ 2

k
implies

n1(t) > 0, in this case we may define n2(t)
∆
= b k

n1(t)
c. Then the left-hand-side of (2.34)

equals

E
[∣∣ n1(t)∑

m=1

n2(t)∑
l=1

(
N(m−1)n2(t)+l(t)− t

)
+

k∑
l=n1(t)n2(t)+1

(
Nl(t)− t

)∣∣p]
≤ 2p−1E

[∣∣ n1(t)∑
m=1

n2(t)∑
l=1

(
N(m−1)n2(t)+l(t)− t

)∣∣p] (2.37)

+2p−1E
[∣∣ k∑
l=n1(t)n2(t)+1

(
Nl(t)− t

)∣∣p] by (2.20). (2.38)
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We now bound (2.37). It follows from Lemma 2.16 that (2.37) is at most

(10p)p
(
n1(t)

) p
2E
[∣∣ n2(t)∑

l=1

(
Nl(t)− t

)∣∣p]
≤ (10p)p

(
n1(t)

) p
2 exp(θ)

( 103p3

1− E[exp(−θS)]

)p+2
max

(
tn2(t),

(
tn2(t)

)p)
,(2.39)

the final inequality following from Lemma 2.19. We now bound the term tn2(t) appearing

in (2.39). In particular,

tn2(t) = tb k

bktc
c ≤ kt

kt− 1
. (2.40)

But since t ≥ 2
k

implies kt ≥ 2, and g(z)
∆
= z

z−1
is a decreasing function of z on (1,∞), it

follows from (2.40) that

tn2(t) ≤ 2.

Thus max

(
tn2(t),

(
tn2(t)

)p) ≤ 2p. As in addition n1(t) ≤ kt, it then follows from (2.39)

that (2.37) is at most

exp(θ)
( 2× 104p4

1− E[exp(−θS)]

)p+2
(kt)

p
2 . (2.41)

We now bound (2.38). Note that the sum
∑k

l=n1(t)n2(t)+1

(
Nl(t)− µSt

)
appearing in (2.38)

is taken over k − n1(t)n2(t) terms. Furthermore,

k − n1(t)n2(t) = k − n1(t)b k

n1(t)
c

≤ k − n1(t)
( k

n1(t)
− 1
)

= n1(t).

As n1(t) ≤ kt, it thus follows from Lemma 2.16 that (2.38) is at most

(10p)p × (kt)
p
2 × E

[
|N1(t)− t|p

]
. (2.42)
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Further using Lemma 2.19 to bound E
[
|N1(t) − t|p

]
by exp(θ)

(
103p3

1−E[exp(−θS)]

)p+2 (since

t ≤ 1), we conclude that (2.38) is at most

exp(θ)
( 104p4

1− E[exp(−θS)]

)p+2
(kt)

p
2 . (2.43)

Using (2.41) to bound (2.37) and (2.43) to bound (2.38) completes the proof.

2.5.3 Proof of main result Theorem 2.1

In this subsection we complete the proof of our main result Theorem 2.1. We proceed

by using Lemmas 2.11 and 2.18 to prove that the conditions of Theorem 2.4 are met, in

conjunction with the stochastic comparison results Theorems 2.2 and 2.3. Before complet-

ing the proof, we provide one additional auxiliary result, bounding the central moments of

µA
∑k

i=1Ai. The proof follows immediately from Lemma 2.16, the easily verified (using

(2.20)) fact that for all r ≥ 2,

E
[
|µAA− 1|r

]
≤ 2r−1(E[Ar]µrA + 1) ≤ 2rE[Ar]µrA,

and some straightforward algebra, and we omit the details.

Lemma 2.20. Suppose that 0 < µA < ∞, and E[Ar3 ] < ∞ for some r3 ≥ 2. Then for all

k ≥ 1,

E
[
|µA

k∑
i=1

Ai − k|r3
]
≤ (10r3)r3E[Ar3 ]µr3A k

r3
2 .

We now complete the proof of our main result Theorem 2.1. We proceed by first using

Lemmas 2.11, 2.18, and 2.20 to verify that the conditions of Theorem 2.4 are met with

particular constants. For ease of exposition, we state this result as its own stand-alone

lemma.

Lemma 2.21. Suppose that 0 < µA, µS < ∞, and that E[Sr] < ∞,E[Ar] < ∞ for some

r > 2.
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Proof. It follows from Lemmas 2.11, 2.18, and 2.20 that for each integer n′ ≥ 1 s.t. n′ >

µA, the conditions of Theorem 2.4 are met with the following parameters:

r1 = r2 = r3 = r , s1 = s3 =
r

2
,

C1 = E[Sr] exp(θ)
( 108r3

1− E[exp(−θS)]

)r+2
,

C2 = exp(θ)
( 105r4

1− E[exp(−θS)]

)r+2
,

C3 = (10r)rE[Ar]µrA.

Thus, applying Theorem 2.4 and some straightforward algebra (e.g. the fact that 1 + Ci ≤

2Ci for i = 1, 2, 3), we find that for all z ≥ 16, P
(

supt≥0

(
A(t)−

∑n′

i=1 Ni(t)

)
≥ z

)
is

at most

8×
(

106(3r)5

( r
2
− 1)2( r

2
)2(r − 2)

)3r+1

×
(
E[Sr] exp(θ)

( 108r3

1− E[exp(−θS)]

)r+2
)

×
(

exp(θ)
( 105r4

1− E[exp(−θS)]

)r+2
)
×
(

(10r)rE[Ar]µrA

)
×

(
n′

r
2 (n′ − µA,n′)−

r
2 z−

r
2

+ n′
r
2 (n′ − µA,n′)−

r
2 z−

r
2

+ (n′ − µA,n′)−
r
2 (n′)rµ

− r
2

A,n′z
− r

2

)
,

which after some further straightforward algebra (and the fact that n′ > µA,n′) is itself

bounded by

E[Sr]E[Ar]µrA exp(2θ)
( 1023r8

(r − 2)3
(
1− E[exp(−θS)]

))4r

×
( n′

µA,n′

) r
2×n′

r
2×
(
n′−µA,n′

)− r
2×z−

r
2 .

(2.44)

55



Next, observe that the definition of µA,n′ ensures that

n′

µA,n′
≤ 2 , and n′ − µA,n′ ≥

1

2
(n′ − µA), (2.45)

the second inequality following from the fact that if µA < 1
2
n′, then n′ − µA,n′ = 1

2
n′ ≥

1
2
(n′ − µA); while if µA ≥ 1

2
n′, then µA = µA,n′ , and hence 1

2
(n′ − µA) = 1

2
(n′ − µA,n′) ≤

n′ − µA,n′ . Combining (2.44) and (2.45) with some straightforward algebra, we conclude

that for all n′ ≥ 1 s.t. ρn′ < 1, all z ≥ 16, and all θ > 0, P
(

supt≥0

(
A(t)−

∑n′

i=1Ni(t)

)
≥

z

)
is at most

E[Sr]E[Ar]µrA exp(2θ)
( 1024r8

(r − 2)3
(
1− E[exp(−θS)]

))4r

×
(
z(1− ρn′)

)− r
2
. (2.46)

Further noting that z ∈ (0, 16) implies (2.49) is at least one (by a straightforward calcu-

lation), we conclude that for all n′ ≥ 1 s.t. ρn′ < 1, and all z > 0, P
(

supt≥0

(
A(t) −∑n′

i=1Ni(t)

)
≥ z

)
is at most (2.49). We next show how to get rid of the term 1 −

E[exp(−θS)] by an appropriate choice of θ. Note that for all θ > 0, w.p.1, exp(θS) ≥

1 + θS, and hence

exp(−θS) ≤ 1

1 + θS

= 1− θS +
θ2S2

1 + θS

≤ 1− θS + θ2S2.

It follows that for all θ > 0,

1− E[exp(−θS)] ≥ θE[S]− θ2E[S2]. (2.47)
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Taking θ = E[S]
2E[S2]

and recalling that E[S] = 1, we find that

1

1− E[exp(− 1
2E[S2]

S)]
≤ 4E[S2] ≤ 4

(
E[Sr]

) 2
r , (2.48)

the final inequality following from Jensen’s inequality and the fact that r ≥ 2. Further

noting that E[S] = 1 implies exp(2 E[S]
2E[S2]

) ≤ 3, we may combine the above with (2.49) to

conclude that for all n′ ≥ 1 s.t. ρn′ < 1, and all z ≥ 16, P
(

supt≥0

(
A(t)−

∑n′

i=1Ni(t)

)
≥

z

)
is at most

(
E[Sr]

)3E[Ar]µrA

(
1026r8(r − 2)−3

)4r

×
(
z(1− ρn′)

)− r
2
. (2.49)

Letting n′ = n and plugging in z = x
1−ρn completes the proof of the first part of the theorem

when E[S] = 1, and the general result follows by rescaling A and S by E[S].

To prove the second part, let us plug in n′ = n − b1
2
(n − µA)c and z = b1

2
(n − µA)c.

First, let us treat the case that ρn ≤ 1− 4
n

, which implies that

1

4
(n− µA) ≤ b1

2
(n− µA)c ≤ 1

2
(n− µA),

from which we conclude (after some straightforward algebra) that z(1− ρn′) is at least

(1

4
(n− µA)

)
×

(
1− µA(

n−
(

1
2
(n− µA)

))
)

=
1

4

(n− µA)2

n+ µA

≥ 1

8

(n− µA)2

n

=
n

8
(1− ρn)2.

Combining with some straightforward algebra proves that, if E[S] = 1, then for all n ≥ 5
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s.t. ρn ≤ 1− 4
n

, the s.s.p.d. is at most

(
E[Sr]

)3E[Ar]µrA

(
1027r8(r − 2)−3

)4r

×
(
n(1− ρn)2

)− r
2
. (2.50)

Noting that 1: if n ≥ 5 and ρn > 1 − 4
n

then (2.50) is at least one, and 2: if n ≤ 4 then

(2.50) is at least one, and again rescaling A and S by E[S] (to reduce to the setting in which

E[S] = 1) completes the proof of the second part of the theorem.

2.6 Conclusion

In this chapter, we proved the first simple and explicit bounds for generalGI/GI/n queues

which scale universally as 1
1−ρ , across both the classical and Halfin-Whitt heavy-traffic

regimes. Our bounds are very simple functions of only a single moment of the inter-arrival

and service time distributions, where the strength of our bounds (e.g. in the form of tail

decay rate) depends on the order of this given moment. We also provide the first bounds

of this kind for the steady-state probability of delay, which provides new insights into the

behavior of queues in the Halfin-Whitt regime.

Our results leave many interesting directions for future research. First, there is the task

of tightening our bounds, to make them practically useful. In essentially all cases we opted

for simplicity over tightening constants, so a careful pass through essentially the same anal-

ysis may already go a long ways here. It is also plausible that an alternative analysis of the

relevant supremum could yield considerably tighter bounds. If this “bridge to practicality”

were acheived, the corresponding results would essentially be as powerful as Kingman’s

bound, but in the multi-server setting, and potentially quite impactful both in theory and

practice.

Second, it would be very interesting to connect our bounds to the asymptotic results of

[63, 83]. Namely, the results of [63, 83] suggest that at least asymptotically (in the Halfin-

Whitt regime), stronger bounds should be possible. Whether these stronger asymptotic
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results can be made into simple, explicit, non-asymptotic bounds remains an interesting

open question, where we note that related questions have been discussed in [47].

Third, it would also be interesting to connect our bounds to the results of [55, 56], which

(in many settings) give necessary and sufficient conditions for the steady-state queue length

to have finite rth moment. The results of [55, 56] actually show that having more servers

leads to more moments being finite in a subtle way, and e.g. shows that in the Halfin-Whitt

regime, the number of moments which are finite grows as the numbers of servers diverges.

Such a result is in some ways considerably stronger than our own results in this regard.

However, our results also speak explicitly to certain moments scaling gracefully with 1
1−ρ ,

which the results of [55, 56] do not speak to. Understanding this disconnect, and the con-

nection between finiteness of moments and the scaling of those moments is an interesting

open question. This matter also relates to another open question: understanding whether

related bounds are possible when service times are heavy-tailed (i.e. infinite variance), for

which essentially nothing is known in the Halfin-Whitt regime. Indeed, there may be quite

subtle interactions between which moments of the service time distribution exist, which

moments of the steady-state queue-length exist, and how those moments scale, where we

note that related questions have been previously studied in the single-server setting [108].

Also, one may ask whether a simplified analysis, yielding stronger bounds, is possible if

one assumes that all moments of the service time distribution are finite (e.g. in the case of

phase-type service times).

Fourth, it is natural to extend our results to other queueing settings (in addition to that

of heavy-tails), e.g. queues with abandonments, networks of queues, etc. We note that the

results of [63] also give bounds for the transient setting, and could be naturally extended

to consider time-varying arrival processes, another interesting direction. One could also at-

tempt to derive simple, explicit, and universal bounds for other quantities of interest in the

analysis of queues, e.g. the rate of convergence to stationarity, where we refer the reader

to [109] for some relevant discussion in the Markovian setting. It may also be interesting
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to combine our bounds with the robust optimization approach of [91], perhaps yielding

stronger bounds for multi-server queues within that framework.

Fifth, as mentioned previously, there are heavy-traffic settings in which 1
1−ρ is not the

correct scaling, e.g. when ρ ↑ 1 but the steady-state probability of delay→ 0. Refining the

bounds to scale correctly in this setting as well, so as to be truly universal, also remains an

interesting direction for future research.

On a final note, and taking a broader view of the literature on queueing theory, there

is the meta-question of how to conceptualize the trade-off between simplicity/explicitness,

and accuracy, in approximations for multi-server queues. This question is particularly in-

teresting in the Halfin-Whitt regime, where the inherent complexity of the weak limits

that arise brings this question front and center. The following are but a few interesting

questions along these lines. What is the right notion of “complexity” in queueing approxi-

mations? How should one compare analytical bounds with results derived from simulation

and numerical procedures? What is the formal algorithmic complexity of both numerical

computation, and simulation, for the limiting processes which arise? And last, but by no

means least, which types of approximations may be most useful in practice?

2.7 Appendix

2.7.1 Proof of Theorem 2.3

We begin by citing the relevant result of [83].

Lemma 2.22 ([83] Theorem 4). Under the same assumptions as Theorem 2.2, for all x ≥ 0,

P
(
Qn(∞) ≥ x

)
is at most

inf
δ≥0

η∈[0,n]

P

(
max

(
sup

0≤t≤δ

(
A(t)−

η∑
i=1

Ni(t)
)
, sup

t≥δ

(
A(t)−

n∑
i=1

Ni(t)
)

+
n∑

i=η+1

Ni(δ)

)

+
n∑

i=η+1

I(Ni(δ) = 0) ≥ x− η

)
.
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With Lemma 2.22 in hand, we now complete the proof of Theorem 2.3.

Proof of Theorem 2.3. First, let us prove that nµS > µA implies

(
n− b1

2
(n− µA

µS
)c
)
µS > µA. (2.51)

Indeed,

(
n− b1

2
(n− µA

µS
)c
)
µS ≥

(
n− 1

2
(n− µA

µS
)

)
µS

=
1

2
(nµS + µA) > µA.

Next, taking x = n, η = n−b1
2
(n− µA

µS
)c, we conclude from Lemma 2.22 that P

(
Qn(∞) ≥

n
)

is at most

inf
δ≥0

P

(
max

(
sup

0≤t≤δ

(
A(t)−

n−b 1
2

(n−µA
µS

)c∑
i=1

Ni(t)
)
, sup
t≥δ

(
A(t)−

n∑
i=1

Ni(t)
)

+
n∑

i=n−b 1
2

(n−µA
µS

)c+1

Ni(δ)

)

+
n∑

i=n−b 1
2

(n−µA
µS

)c+1

I(Ni(δ) = 0) ≥ b1
2

(n− µA
µS

)c

)
.

Applying monotonicity and a union bound, we further find that for all ε, T > 0, P
(
Qn(∞) ≥

n
)

is at most

P

(
sup
t≥0

(
A(t)−

n−b 1
2

(n−µA
µS

)c∑
i=1

Ni(t)
)
≥ b1

2
(n− µA

µS
)c − ε

)
(2.52)

+ P

(
sup
t≥T

(
A(t)−

n∑
i=1

Ni(t)
)

+
n∑

i=n−b 1
2

(n−µA
µS

)c+1

Ni(T ) ≥ 0

)
(2.53)

+ P

(
n∑
i=1

I(Ni(T ) = 0) ≥ ε

)
. (2.54)
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We next bound (2.53), which by stationary increments and another union bound is at most

P

(
A(T )−

n−b 1
2

(n−µA
µS

)c∑
i=1

Ni(T ) ≥ −T
1
2

)
+ P

(
sup
t≥0

(
A(t)−

n∑
i=1

Ni(t)
)
≥ T

1
2

)
.

It follows from the well-known Strong law of large numbers for renewal processes, and

(2.51), that

lim
T→∞

P

(
A(T )−

n−b 1
2

(n−µA
µS

)c∑
i=1

Ni(T ) ≥ −T
1
2

)
= 0 , lim

T→∞
P

(
sup
t≥0

(
A(t)−

n∑
i=1

Ni(t)
)
≥ T

1
2

)
= 0,

from which we conclude that

lim
T→∞

P

(
sup
t≥T

(
A(t)−

n∑
i=1

Ni(t)
)

+
n∑

i=n−b 1
2

(n−µA
µS

)c+1

Ni(T ) ≥ 0

)
= 0. (2.55)

Furthermore, for all ε > 0, it trivially holds that

lim
T→∞

P

(
n∑
i=1

I(Ni(T ) = 0) ≥ ε

)
= 0. (2.56)

Combining the above, we conclude that for all ε > 0 (by taking the limit T → ∞ above),

P
(
Qn(∞) ≥ n

)
is at most

P

(
sup
t≥0

(
A(t)−

n−b 1
2

(n−µA
µS

)c∑
i=1

Ni(t)
)
≥ b1

2
(n− µA

µS
)c − ε

)
. (2.57)

Letting ε ↓ 0 and applying continuity completes the proof.

2.7.2 Proof of Lemma 2.2

We begin by citing the relevant result of [98].

Lemma 2.23 ([98] Theorem 2). Let {Xl, 1 ≤ l ≤ L} be a completely general sequence of
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r.v.s. Suppose there exist ν > 0, γ > 1, and C > 0 such that for all λ > 0 and non-negative

integers 1 ≤ i ≤ j ≤ L, it holds that

P
(
|

j∑
k=i

Xk| ≥ λ
)
≤
(
C(j − i+ 1)

)γ
λ−ν .

Then it must also hold that

P
(

max
i∈[1,L]

|
i∑

k=1

Xk| ≥ λ
)
≤ 2γ

(
1 +

(
2−

1
ν+1 − 2−

γ
ν+1

)−(ν+1)
)

(CL)γλ−ν .

With Lemma 2.23 in hand, we now complete the proof of Lemma 2.2.

Proof of Lemma 2.2. As the conditions of Lemma 2.23 and Lemma 2.2 are identical, it

suffices to prove that ν ≥ γ (along with the other assumptions of Lemma 2.23) implies

2γ
(

1 +
(
2−

1
ν+1 − 2−

γ
ν+1

)−(ν+1)
)
≤
(
6
ν + 1

γ − 1

)ν+1
. (2.58)

Note that

2−
1
ν+1 − 2−

γ
ν+1 = 2−

1
ν+1

(
1− 2−

γ−1
ν+1

)
. (2.59)

As our assumptions imply 0 < γ−1
ν+1

< 1, and it is easily verified that 1 − 2−z ≥ z
2

for all

z ∈ [0, 1], we conclude that

(
1− 2−

γ−1
ν+1

)−(ν+1) ≤ (2
ν + 1

γ − 1
)ν+1. (2.60)

Combining (2.59) and (2.60) with the fact that (by our assumptions) ( ν+1
γ−1

)ν+1 ≥ 1 and
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2γ ≤ 2ν , it follows that the left-hand-side of (2.58) is at most

2γ
(

1 + 2(2
ν + 1

γ − 1
)ν+1

)
.

≤ 3× 2γ × (2
ν + 1

γ − 1
)ν+1

≤ 6× 4ν × (
ν + 1

γ − 1
)ν+1

≤ (6
ν + 1

γ − 1
)ν+1,

completing the proof.

2.7.3 Proof of Lemma 2.5

Proof of Lemma 2.5. Note that for λ > 0, P
(

supt≥0

(
φ(t)− νt

)
≥ λ

)
equals

P

(( ∞⋃
k=0

{
φ(t)− νt ≥ λ for some t ∈ [2k, 2k + 1]

})⋃{
φ(t)− νt ≥ λ for some t ∈ [0, 1]

})

≤
∞∑
k=0

P
(

sup
t∈[2k,2k+1]

(
φ(t)− νt

)
≥ λ

)
(2.61)

+ P
(

sup
t∈[0,1]

(
φ(t)− νt

)
≥ λ

)
. (2.62)

We now bound (2.61), and proceed by bounding (for each k ≥ 0)

P
(

sup
t∈[2k,2k+1]

(
φ(t)− νt

)
≥ λ

)
. (2.63)

Since t ∈ [2k, 2k+1] implies νt ≥ ν2k, we conclude that (2.63) is at most

P
(

sup
t∈[2k,2k+1]

φ(t) ≥ λ+ ν2k
)
,
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which by adding and subtracting φ(2k), and applying stationary increments and a union

bound, is at most

P
((

sup
t∈[2k,2k+1]

φ(t)− φ(2k)
)

+ φ(2k) ≥ λ+ ν2k
)

≤ P
(

sup
t∈[2k,2k+1]

φ(t)− φ(2k) ≥ 1

2
(λ+ ν2k)

)
+ P

(
φ(2k) ≥ 1

2
(λ+ ν2k)

)
= P

(
sup

t∈[0,2k]

φ(t) ≥ 1

2
(λ+ ν2k)

)
+ P

(
φ(2k) ≥ 1

2
(λ+ ν2k)

)
≤ 2P

(
sup

t∈[0,2k]

φ(t) ≥ 1

2
(λ+ ν2k)

)
. (2.64)

We proceed to bound (2.64) by breaking the supremum into two parts, one part taken over

integer points, one part taken over intervals of length one corresponding to the regions

between these integer points. In particular, the assumptions of the lemma, combined with

a union bound and stationary increments, ensure that

P
(

sup
t∈[0,2k]

φ(t) ≥ 1

2
(λ+ ν2k)

)
≤ P

(
sup

j∈{0,...,2k}
φ(j) + sup

j∈{0,...,2k−1}
t∈[0,1]

(
φ(j + t)− φ(j)

)
≥ 1

2
(λ+ ν2k)

)

≤ P
(

sup
j∈{0,...,2k}

φ(j) ≥ 1

4
(λ+ ν2k)

)
+ 2kP

(
sup
t∈[0,1]

φ(t) ≥ 1

4
(λ+ ν2k)

)
≤ H14r12ks

(λ+ ν2k)r1
+

H24r22k

(λ+ ν2k)r2
, (2.65)

where the final inequality is applicable since λ ≥ 4Z implies 1
4
(λ+ν2k) ≥ Z, in which case

the inequality follows from our assumptions. Combining (2.64) and (2.65), we conclude

that (2.61) is at most

2
∞∑
k=0

H14r12ks

(λ+ ν2k)r1
+ 2

∞∑
k=0

H24r22k

(λ+ ν2k)r2
. (2.66)
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We now treat two cases. First, suppose λ > ν. Then (2.66) is at most

2H14r1
dlog2(λ

ν
)e−1∑

k=0

2ks

λr1

+ 2H24r2
dlog2(λ

ν
)e−1∑

k=0

2k

λr2

+ 2H14r1
∞∑

k=dlog2(λ
ν

)e

2−(r1−s)k

νr1

+ 2H24r2
∞∑

k=dlog2(λ
ν

)e

2−(r2−1)k

νr2

= 2H14r1λ−r1
2dlog2(λ

ν
)es − 1

2s − 1

+ 2H24r2λ−r2(2dlog2(λ
ν

)e − 1)

+ 2H14r1ν−r1
2−(r1−s)dlog2(λ

ν
)e

1− 2−(r1−s)

+ 2H24r2ν−r2
2−(r2−1)dlog2(λ

ν
)e

1− 2−(r2−1)

≤ 4H14r1λ−r1(
λ

ν
)s

+ 4H24r2λ−r2
λ

ν

+ 2H1

(
1− 2−(r1−s)

)−1
4r1ν−r1(

λ

ν
)−(r1−s)

+ 2H2

(
1− 2−(r2−1)

)−1
4r2ν−r2(

λ

ν
)−(r2−1),

with the first line of the final inequality following from the fact that 2dlog2(λ
ν

)es−1 ≤ 2s(λ
ν
)s

and 2s − 1 ≥ 2s−1. Combining with the fact that r2 > 2 implies
(
1− 2−(r2−1)

)−1 ≤ 2, we

conclude that if λ > ν, then (2.66) is at most

6H1

(
1− 2−(r1−s)

)−1
4r1λ−(r1−s)ν−s (2.67)

+ 8H24r2λ−(r2−1)ν−1.
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Combining with the fact that λ > ν > 0 and r2 > 2 implies λ−(r2−1)ν−1 ≤ (λν)−
r2
2 , we

conclude that if λ > ν, then (2.66) is at most

6H1

(
1− 2−(r1−s)

)−1
4r1λ−(r1−s)ν−s (2.68)

+ 8H24r2(λν)−
r2
2 .

Alternatively, suppose λ ≤ ν. Then (2.66) is at most

(2.69)

2H14r1
∞∑
k=0

2−(r1−s)k

νr1

+ 2H24r2
∞∑
k=0

2−(r2−1)k

νr2

≤ 2H14r1ν−r1
(
1− 2−(r1−s)

)−1

+ 4H24r2ν−r2

≤ 2H1

(
1− 2−(r1−s)

)−1
4r1λ−(r1−s)ν−s (2.70)

+ 4H24r2(λν)−
r2
2 ,

the final inequality following from the fact that ν ≥ λ, r1 > s, r2 > 2 implies ν−r1 ≤

λ−(r1−s)ν−s, and ν−r2 ≤ (λν)−
r2
2 . Next, we claim that

(
1 − 2−(r1−s)

)−1 ≤ 2(1 + 1
r1−s).

Indeed, first, suppose r1 − s < 1. In this case, as it is easily verified that 1 − 2−z ≥ z
2

for

all z ∈ (0, 1), the result follows. Alternatively, if r1 − s ≥ 1, then
(
1 − 2−(r1−s)

)−1 ≤ 2,

completing the proof. Combining with (2.68) and (2.70), and our assumptions, it follows

that in all cases (2.66), and hence (2.61), is at most

(1 +
1

r1 − s
)4r1+r2+1

(
H1ν

−sλ−(r1−s) +H2(λν)−
r2
2

)
. (2.71)
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We next bound (2.62). First, suppose λ ≥ ν. Then our assumptions (applied with t0 = 1)

imply that (2.62) is at most

H2λ
−r2 ≤ H2(λν)−

r2
2 . (2.72)

Alternatively, suppose that λ < ν. Then applying our assumptions with t0 = λ
ν

, along with

a union bound, we conclude that

P
(

sup
t∈[0,1]

(
φ(t)− νt

)
≥ λ

)

is at most

P
(

sup
t∈[0,λ

ν
]

(
φ(t)− νt

)
≥ λ

)
(2.73)

+ P
(

sup
t∈[λ

ν
,1]

(
φ(t)− νt

)
≥ λ

)
. (2.74)

It follows from our assumptions that (2.73) is at most

P
(

sup
t∈[0,λ

ν
]

φ(t) ≥ λ
)
≤ H2(

λ

ν
)
r2
2 λ−r2 = H2(λν)−

r2
2 . (2.75)
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We next bound (2.74), which by stationary increments, a union bound, and our assumptions

is at most

P
(

sup
t∈[λ

ν
,1]

(
φ(
λ

ν
) + φ(t)− φ(

λ

ν
)− ν(t− λ

ν
)
)
≥ 2λ

)
≤ P

(
φ(
λ

ν
) ≥ 1

2
λ
)

+ P
(

sup
t∈[λ

ν
,1]

(
φ(t)− φ(

λ

ν
)− ν(t− λ

ν
)
)
≥ 3

2
λ

)
= P

(
φ(
λ

ν
) ≥ 1

2
λ
)

+ P
(

sup
s∈[0,1−λ

ν
]

(
φ(s+

λ

ν
)− φ(

λ

ν
)− νs

)
≥ 3

2
λ
)

≤ P
(

sup
t∈[0,λ

ν
]

φ(t) ≥ 1

2
λ
)

+ P
(

sup
s∈[0,1−λ

ν
]

(
φ(s+

λ

ν
)− φ(

λ

ν
)− νs

)
≥ 3

2
λ
)

≤ H2(
λ

ν
)
r2
2 (
λ

2
)−r2

+ P
(

sup
s∈[0,1−λ

ν
]

(
φ(s)− νs

)
≥ 3

2
λ
)

≤ 2r2H2(λν)−
r2
2 (2.76)

+ P
(

sup
t∈[0,1]

(
φ(t)− νt

)
≥ 3

2
λ
)
. (2.77)

Let us define f(z)
∆
= P

(
supt∈[0,1]

(
φ(t) − νt

)
≥ z

)
. Then using (2.75) to bound (2.73),

and (2.76) - (2.77) to bound (2.74), we conclude that for all z ∈ [2Z, ν),

f(z) ≤ 2r2+1H2(zν)−
r2
2 + f(

3

2
z). (2.78)

Let j∗ ∆
= sup{j ∈ Z+ : (3

2
)jλ < ν}. Then it follows from (2.78) that for all j ∈ [0, j∗],

f
(
(
3

2
)jλ
)
≤ 2r2+1H2(λν)−

r2
2

(
(
3

2
)
r2
2

)−j
+ f
(
(
3

2
)j+1λ

)
. (2.79)
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Combining (2.79) with a straightforward induction and our assumptions, and noting that f

is a non-increasing function, we conclude that for all λ ∈ [2Z, ν),

f(λ) ≤ 2r2+1H2(λν)−
r2
2

j∗∑
j=0

(
(
3

2
)
r2
2

)−j
+ f(ν)

≤ 2r2+1H2(λν)−
r2
2

∞∑
j=0

(
3

2
)−j +H2ν

−r2

≤ 2r2+3H2(λν)−
r2
2 +H2ν

−r2

≤ 2r2+4H2(λν)−
r2
2 , (2.80)

the final inequality following from the fact that by assumption ν > λ and thus ν−r2 ≤

(λν)−
r2
2 . Thus using (2.72) to bound (2.62) in the case λ ≥ ν, and (2.80) to bound (2.62)

in the case λ < ν, we conclude that in all cases (2.62) is at most

2r2+4H2(λν)−
r2
2 . (2.81)

Using (2.71) to bound (2.61), and (2.81) to bound (2.62), demonstrates that for all λ ≥ 4Z,

P
(

supt≥0

(
φ(t)− νt

)
≥ λ

)
is at most

(1 +
1

r1 − s
)4r1+r2+2

(
H1ν

−sλ−(r1−s) +H2(λν)−
r2
2

)
,

completing the proof.

2.7.4 Proof of Lemma 2.9

We note that the proof of Lemma 2.9 follows quite similarly to the proof of Lemma 2.5,

and as such whenever possible we will refer back to the proof of Lemma 2.5 for specific

technical steps, etc.
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Proof of Lemma 2.9. For λ > 0, P
(

supk≥0

(
φ(k)− νk

)
≥ λ

)
equals

P
( ∞⋃
k=0

{
φ(i)− νi ≥ λ for some i ∈ [2k, 2k+1]

})
≤

∞∑
k=0

P
(

sup
i∈[2k,2k+1]

(
φ(i)− νi

)
≥ λ

)
. (2.82)

We now bound (2.82), and proceed by bounding (for each k ≥ 0)

P
(

sup
i∈[2k,2k+1]

(
φ(i)− νi

)
≥ λ

)
. (2.83)

Since i ∈ [2k, 2k+1] implies νi ≥ ν2k, we conclude that (2.83) is at most

P
(

sup
i∈[2k,2k+1]

φ(t) ≥ λ+ ν2k
)
,

which by adding and subtracting φ(2k), and applying stationary increments and a union

bound exactly as in the proof of Lemma 2.5, as well as the assumptions of the lemma, is at

most

P
((

sup
i∈[2k,2k+1]

φ(i)− φ(2k)
)

+ φ(2k) ≥ λ+ ν2k
)

≤ P
(

sup
i∈[2k,2k+1]

φ(i)− φ(2k) ≥ 1

2
(λ+ ν2k)

)
+ P

(
φ(2k) ≥ 1

2
(λ+ ν2k)

)
= P

(
sup
i∈[1,2k]

φ(i) ≥ 1

2
(λ+ ν2k)

)
+ P

(
φ(2k) ≥ 1

2
(λ+ ν2k)

)
≤ 2P

(
sup
i∈[1,2k]

φ(i) ≥ 1

2
(λ+ ν2k)

)
≤ 2H34r32ks3

(λ+ ν2k)r3
.
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We conclude that (2.82) is at most

2H34r3
∞∑
k=0

2ks3

(λ+ ν2k)r3
. (2.84)

As in the proof of Lemma 2.5, we now treat two cases, with each case largely mirroring the

proof of Lemma 2.5. First, suppose λ > ν. Then (2.84) is at most

2H34r3
dlog2(λ

ν
)e−1∑

k=0

2ks3

λr3
+ 2H34r3

∞∑
k=dlog2(λ

ν
)e

2−(r3−s3)k

νr3

= 2H34r3

(
2dlog2(λ

ν
)es3 − 1

2s3 − 1
λ−31 +

2r3

2r3 − 2s3
2−(r3−s3)dlog2(λ

ν
)eν−r3

)
≤ 8H34r3

(
1− 2−(r3−s3)

)−1
ν−s3λ−(r3−s3)

≤ 16H34r3(1 +
1

r3 − s3

)ν−s3λ−(r3−s3). (2.85)

Alternatively, suppose λ ≤ ν. Then (2.84) is at most

2H34r3
∞∑
k=0

2−(r3−s3)k

νr3

= 2H34r3
(
1− 2−(r3−s3)

)−1
ν−r3

≤ 4H34r3
(
1 +

1

r3 − s3

)
ν−r3

≤ 4H34r3
(
1 +

1

r3 − s3

)
ν−s3λ−(r3−s3). (2.86)

Using (2.85) - (2.86) to bound (2.82) completes the proof.
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2.7.5 Proof of Lemma 2.15

Proof of Lemma 2.15. Note that for all j ≥ 1 and θ > 0,

P
(
No(1) ≥ j

)
= P(

j∑
i=1

Si ≤ 1)

= P
(

exp
(
− θ

j∑
i=1

Si
)
≥ exp(−θ)

)
≤ exp(θ)× Ej[exp(−θS)] by Markov’s inequality.

E[Np
o (1)] =

∞∑
j=0

jpP
(
No(1) = j

)
≤

∞∑
j=0

jpP
(
No(1) ≥ j

)
≤ exp(θ)×

∞∑
j=0

jp
(
E[exp(−θS)]

)j
≤ exp(θ)×

(
1 +

∫ ∞
1

(x+ 1)p
(
E[exp(−θS)]

)x
dx

)
≤ exp(θ)× 2dpe ×

(
1 +

∫ ∞
1

xdpe
(
E[exp(−θS)]

)x
dx

)
since

x+ 1

x
≤ 2 for all x ≥ 1

≤ exp(θ)× 2dpe ×
(

1 +

∫ ∞
0

xdpe
(
E[exp(−θS)]

)x
dx

)
= exp(θ)× 2dpe ×

(
1 + dpe! log−

(
dpe+1

) ( 1

E[exp(−θS)]

))
≤ exp(θ)× 2dpe ×

(
1 + dpe!×

(
1− E[exp(−θS)]

)−(dpe+1)
)

≤ exp(θ)
( 24p

1− E[exp(−θS)]

)p+2
,

with the second-to-last inequality following from the fact that log( 1
x
) ≥ 1 − x for all

x ∈ (0, 1), and the final inequality follows from some straightforward algebra. Combining

the above completes the proof.
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2.7.6 Proof of Corollary 2.8

We note that the proof of Corollary 2.8 follows nearly identically to the proof of Lemma 8

of [63], although with all quantities made explicit (and using the results of Lemma 2.12).

We include the entire proof for completeness.

Proof of Corollary 2.8. Let Se denote the first renewal interval in N1, and fSe its density

function, whose existence is guaranteed by the basic properties of the equilibrium distribu-

tion. Observe that we may construct N1 and No on the same probability space so that for

all t ≥ 0, N1(t) = I(Se ≤ t) +No

(
(t− Se)+

)
, with No independent of Se. Thus

N1(t)− t =

(
No

(
(t− Se)+

)
−
(
t− Se

)+
)

+

(
I
(
Se ≤ t

)
−
(
t− (t− Se)+

))
.

Fixing some t ≥ 1, it follows from (2.20) and the triangle inequality that E
[
|N1(t) − t|r

]
is at most

2r−1E
[
|No

(
(t− Se)+

)
−
(
t− Se

)+|r
]

(2.87)

+2r−1E
[
|I
(
Se ≤ t

)
−
(
t− (t− Se)+

)
|r
]
. (2.88)

We now bound the term E
[
|No

(
(t−Se)+

)
−
(
t−Se

)+|r
]

appearing in (2.87), which equals

∫ t−1

0

E
[
|No

(
t− s

)
−
(
t− s

)
|r
]
fSe(s)ds (2.89)

+

∫ t

t−1

E
[
|No

(
t− s

)
−
(
t− s

)
|r
]
fSe(s)ds. (2.90)

Lemma 2.12 and Markov’s inequality (after raising both sides to the rth power), combined
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with our assumptions on r and t, implies that (2.89) is at most

exp(θ)E[Sr]
( 105r2

1− E[exp(−θS)]

)r+1
∫ t−1

0

(t− s)
r
2fSe(s)ds

≤ exp(θ)E[Sr]
( 105r2

1− E[exp(−θS)]

)r+1
t
r
2

∫ t−1

0

fSe(s)ds

≤ exp(θ)E[Sr]
( 105r2

1− E[exp(−θS)]

)r+1
t
r
2 .

Since t− s ≤ 1 implies w.p.1 |No(t− s)− (t− s)|r ≤ |No(1) + 1|r, it follows from (2.20)

and Lemma 2.15 that the (2.90) is at most

E
[
|No(1) + 1|r

]
× P

(
Se ∈ [t− 1, t]

)
≤ 2r−1

(
E
[(
No(1)

)r]
+ 1

)
≤ 2r−1

(
exp(θ)

( 24r

1− E[exp(−θS)]

)r+2
+ 1

)
≤ exp(θ)

( 48r

1− E[exp(−θS)]

)r+2
.

Combining our bounds for (2.89) and (2.90), with some straightforward algebra, we find

that (2.87) is at most

E[Sr] exp(θ)
( 2× 105r2

1− E[exp(−θS)]

)r+2
t
r
2 . (2.91)

We now bound (2.88), which by (2.20) is at most

22r−2

(
1 + E

[
|
(
t− (t− Se)+

)
|r
])

≤ 22r−2

(
1 +

( ∫ t

0

srfSe(s)ds+

∫ ∞
t

trfSe(s)ds
))
. (2.92)

It follows from the basic properties of the equilibrium distribution and Markov’s inequality

that for all s ≥ 0,

fSe(s) = P(S > s) ≤ E[Sr]s−r.

75



Thus the term
∫ t

0
srfSe(s)ds+

∫∞
t
trfSe(s)ds appearing in (2.92) is at most

∫ t

0

sr
(
E[Sr]s−r

)
ds+ tr

∫ ∞
t

(
E[Sr]s−r

)
ds = E[Sr]

(∫ t

0

ds+ tr
∫ ∞
t

s−rds

)
= E[Sr]

(
t+ tr(r − 1)−1t1−r

)
≤ 2E[Sr]t. (2.93)

Using (2.91) to bound (2.87), and (2.93) and (2.92) to bound (2.88), and combining with

some straightforward algebra completes the proof.
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CHAPTER 3

HEAVY-TAILED QUEUES IN THE HALFIN-WHITT REGIME

3.1 Introduction.

3.1.1 Halfin-Whitt regime and literature review

The staffing of large-scale queueing systems, and the associated trade-offs, are a funda-

mental problem in Operations Research. The insight that in many settings of interest one

should scale the number of servers to exceed the arrival rate by a quantity on the order of

the square-root of the arrival rate, i.e. the so-called square-root staffing rule, is by now

well-known. This setting is formalized by the so-called Halfin-Whitt scaling regime for

parallel server queueing systems, studied originally by Erlang [110] and Jagerman [111],

and formally introduced by Halfin and Whitt [31], who studied the GI/M/n system (for

large n) when the traffic intensity ρ scales like 1 − Bn−
1
2 for some strictly positive ex-

cess parameter B. There the authors prove weak convergence of the resulting queue-length

process over compact time intervals, as well as weak convergence of the corresponding se-

quence of steady-state queue length distributions, when the queue-length of the nth system

is normalized by n
1
2 . Namely, in both the transient and steady-state regimes, the queue-

length scales like n
1
2 in the Halfin-Whitt regime.

The original results of [31] have since been extended in many directions. Here we only

review those results most relevant to our own investigations, and refer the interested reader

to [83] for a comprehensive overview. The most general results in the transient regime are

those of [61, 62], which (customized to the setting of our own investigations, i.e. single-

class parallel multi-server queues with i.i.d. inter-arrivals and service times) prove that as

long as the inter-arrival process satisfies a form of the central limit theorem on the scaling

of n
1
2 (which will in general hold if the inter-arrival times have finite variance), and the
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service time distribution has finite mean, then the associated sequence of queue-length pro-

cesses, normalized by n
1
2 , converges weakly to a non-trivial limiting process (if the system

is initialized appropriately), described implicitly as the solution to a certain stochastic con-

volution equation.

As regards the scaling of the corresponding sequence of steady-state queue lengths, the

most general known results are as follows. Assuming that inter-arrival times and service

times have finite 2 + ε moment for some ε > 0, [63] proves that the associated sequence

of steady-state queue-lengths, normalized by n
1
2 , is tight. Under several additional techni-

cal assumptions, including that the service times have finite third moment, the very recent

results of [112, 68] show that the associated sequence has a unique weak limit. Such a

result was previously shown for the setting of service times with finite support in [46].

In the presence of Markovian abandonments, an analogous result has been proven for the

case of phase-type service times. Indeed, in this setting [36] proved that the sequence of

steady-state queue length distributions, normalized by n
1
2 , is tight with an explicit weak

limit which the authors characterize as an Ornstein-Uhlenbeck process with piece-wise lin-

ear drift. We note that although e.g. phase-type distributions are dense within the family of

all distributions, due to the nature of the limits involved with the Halfin-Whitt regime, it is

typically not clear how to translate results for such a restricted class of distributions to the

general setting.

There has also been considerable interest in understanding the quality of Halfin-Whitt

type approximations for finite n (as opposed to having results which only hold asymptot-

ically). Such results include [38, 41, 37, 40, 39, 113]. We refer the reader to [113] for a

detailed overview and discussion, and note that none of these results apply to the heavy-

tailed setting. The very recent results of [113] provided the first simple and explicit bounds

for multi-server queues that scale universally as 1
1−ρ across different notions of heavy traf-

fic, including the Halfin-Whitt scaling. However, the main results of [113] assumed that

both inter-arrival and service times have finite 2 + ε moment for some ε > 0.
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3.1.2 Heavy tails in the Halfin-Whitt regime

A key insight from modern queueing theory is that when inter-arrival or service times have

a heavy tail (i.e. the tail of the probability distribution does not decay exponentially), the

underlying system behaves qualitatively different, e.g. it may exhibit long-range depen-

dencies over time, and have a higher probability of rare events [58]. As many applications

in modern service systems (e.g. length of stay in a hospital, length of time of a call) are

potentially highly variable (e.g. due to prolongued illnesses, or having to resolve a complex

IT problem), and may experience traffic which is bursty in nature (e.g. long periods of low

activity followed by periods of high activity) [114], and several studies have empirically

verified this phenomena in applications relevant to the Halfin-Whitt scaling [7, 59], it is

important to understand how the presence of heavy tails changes the performance of par-

allel server queues in the Halfin-Whitt scaling regime. Although there is a vast literature

on parallel server queues with heavy-tailed inter-arrival and/or service times (which we

make no attempt to survey here, instead referring the reader to [60]), it seems that surpris-

ingly, very little is known about how such systems behave qualitatively in the Halfin-Whitt

regime.

We now survey what is known in this setting. The results of [61, 62] imply that when

inter-arrival times have finite second moment (i.e. satisfy a classical central limit theorem)

and service times have finite mean (but may have infinite 1+εmoment for some ε ∈ (0, 1)),

the associated sequence of transient queue-length processes, normalized by n
1
2 , converges

weakly (over compact time sets) to a non-trivial limiting process (if the system is initial-

ized appropriately), described implicitly as the solution to a certain stochastic convolution

equation.

[1] considers the case in which inter-arrival times have (asymptotically) a so-called

pure Pareto tail with index α ∈ (1, 2), i.e. limx→∞
P(A>x)
xα

= C for some α ∈ (1, 2)

and C ∈ (0,∞), and service times are deterministic. In this case, [1] identifies a dif-

ferent scaling regime, a certain modification of the Halfin-Whitt scaling regime with the
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scaling modified to account for the heavy-tailed inter-arrivals. In particular, Reed con-

siders the associated sequence of GI/D/n queues when the traffic intensity ρ scales like

1 − Bn−
1
α for some strictly positive excess parameter B. In this case, Reed proves that

the associated sequence of steady-state waiting time random variables, rescaled so as to be

multiplied by n1− 1
α , converges weakly to an explicit limiting distribution Ŵ characterized

as the supremum of a certain infinite-horizon one-dimensional discrete-time random walk,

i.e. a so-called α-stable random walk, with drift−B. Furthermore, although Reed does not

explicitly prove it, it follows from an analysis nearly identical to that given in [115] that

by the distributional Little’s law (which is applicable since service times are deterministic),

the sequence of steady-state queue-length distributions, normalized by n
1
α , also converges

to Ŵ . Intuitively, the steady-state queue length in the nth system is thus approximately

Ŵn
1
α . Namely, for α < 2, n

1
2 is no longer the correct scaling. This insight is quite inter-

esting, although we note the important fact that Reed’s results are restricted to the case of

deterministic service times.

Essentially all other references in the literature to queues in the Halfin-Whitt regime

with heavy tails are to open questions, which we now review. The question of tightness

of the associated sequence of steady-state queue length distributions, normalized by n
1
2 , is

similarly left open when service times have infinite variance.

The explicit bounds of [113] for multi-server queues, which exhibit universal 1
1−ρ scal-

ing across different heavy-traffic regimes (including the Halfin-Whitt scaling), left the ex-

tension to the heavy-tailed case open as well. However, we note that the results of [116,

117] prove that even for the single-server queue, 1
1−ρ is no longer the correct scaling as

ρ ↑ 1 when service times are heavy-tailed, where the correct scaling instead involves a

different function of ρ depending on the tail of the service time distribution. Intriguingly,

the transient results of [61, 62] show that in the Halfin-Whitt regime, even when service

times are heavy-tailed, 1
1−ρ is the correct scaling (at least for the transient queue-length dis-

tribution), as in the Halfin-Whitt regime 1
1−ρ will scale as the square root of the number of
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servers. As such, it seems that in the heavy-tailed setting, whether 1
1−ρ is the correct scaling

depends heavily on precisely how one sends a sequence of queues into heavy traffic.

Indeed, it has been recognized in the literature that the order in which one takes limits

plays a critical role in the heavy-tailed setting, e.g. when simultaneously looking at large-

deviations behavior and heavy traffic, and such questions have been analyzed in [108] for

the single-server setting. For the case of multiple servers, it is known that the interaction

between the number of servers, the traffic intensity, and the large deviations behavior is

very subtle [118]. Recently, several results have been proven as regards the large devia-

tions behavior when the number of servers and traffic intensity are held fixed [119, 118,

120]. However, much less is known as regards how the large deviations behavior scales

while simultaneously altering the number of servers and traffic intensity. Although some

general explicit bounds are given in [57], building on the earlier work of [56], those bounds

do not scale properly in the Halfin-Whitt scaling, and e.g. depend sensitively on certain

parameters being non-integer (with the bounds degrading as those parameters approach in-

tegers). Several interesting bounds are also given in [121], which proves that in certain

settings heavy-tailed service times lead to heavy-tailed waiting times. However, the upper

bounds presented there do not scale correctly in the Halfin-Whitt regime (see e.g. [113]

for a discussion of how bounds based on cyclic scheduling scale), while the implications

of the proven lower bounds in the Halfin-Whitt regime are unclear. We also note that using

a robust-optimization approach, a different family of bounds was developed for a non-

stochastic model of multi-server queues with heavy tails in [91], although those bounds

also do not scale appropriately in the Halfin-Whitt regime.

3.1.3 Questions for this work

The above discussion regarding heavy-tailed inter-arrival and service times in the Halfin-

Whitt regime motivates the following questions.

Question 3.1. If the inter-arrival times have finite second moment but the service times only
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have finite 1 + ε moment for some ε ∈ (0, 1), is the sequence of steady-state queue lengths

in the Halfin-Whitt regime, normalized by n
1
2 , still tight? We note that a positive answer is

known for the corresponding sequence of transient queue lengths (properly initialized) over

a fixed compact time interval, but the corresponding question for the steady-state queues

remains open.

Question 3.2. For the setting in which inter-arrival times have infinite variance, can the

scaling regime described by Reed in [1], henceforth referred to as the Halfin-Whitt-Reed

scaling regime, be extended from the setting of deterministic service times to the setting of

general service time distributions? Do the same insights regarding tightness and asymptotic

scaling hold?

Question 3.3. Is it possible to derive simple and explicit bounds for multi-server queues

in the Halfin-Whitt regime, when service times are heavy-tailed? As all previous work

on explicit, non-asymptotic bounds for queues in the Halfin-Whitt regime assumed service

times have a finite second moment, these would be the first such explicit bounds in the

heavy-tailed setting.

3.1.4 Main contribution

In this chapter, we provide positive answers to Questions 3.1 - 3.3.

Answer 3.1. We prove that, so long as inter-arrival times have finite second moment and

service times have finite 1 + ε moment for some ε > 0, the sequence of steady-state queue

lengths, normalized by n
1
2 , is tight. Namely, the presence of heavy-tailed service times

does not interfere with the fact that the steady-state queue lengths scale like n
1
2 .

Answer 3.2. We prove that the Halfin-Whitt-Reed regime can indeed be extended to the

setting of generally distributed service times. In particular, we prove that when inter-arrival

times have an asymptotically pure Pareto tail with index α ∈ (1, 2), and procesesing times
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have a finite 1 + ε moment for some ε > 0, the sequence of steady-state queue lengths

(under the Halfin-Whitt-Reed scaling), normalized by n
1
α , is tight.

Answer 3.3. We extend the framework introduced in Chapter 2 ([113]) to provide the first

simple and explicit bounds for multi-server queues that scale correctly in the Halfin-Whitt

regime when service times are heavy-tailed.

3.1.5 Chapter outline

The rest of the chapter proceeds as follows. We state our main results in Section 3.2. We

prove our explicit bounds for multi-server queues in the Halfin-Whitt regime when service

times may be heavy-tailed in Section 3.3. We extend the analysis of Reed from the special

case of deterministic service times to the case of general service times, i.e. generalizing

the notion of the Halfin-Whitt-Reed regime, in Section 3.4. We provide a summary of our

results and directions for future research in Section 3.5. Finally, we include a technical

appendix in Section 3.6, which contains several technical arguments from throughout the

chapter.

3.2 Main results

In this section we formally state our main results.

3.2.1 Additional Notations

We first introduce some additional notations for the Halfin-Whitt (-Reed) regime. In addi-

tional to the notations introduced in Section 1.5, let us fix E[A] = E[S] = 1 (recalling that

A and S represent the inter-arrival time and service time respectively). For B > 0, α > 1,

and n > B
α
α−1 , let λn,B,α

∆
= n − Bn

1
α , and QnA,S,B,α denote the FCFS GI/GI/n queue

with inter-arrival distribution Aλ−1
n,B,α, and service time distribution S. If for any given

initial condition, the total number of jobs inQnA,S,B,α (number in service + number waiting

in queue) converges in distribution (as time goes to infinity, independent of the particular
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initial condition) to a steady-state r.v. Qn
A,S,B,α(∞), we say that “Qn

A,S,B,α(∞) exists”. For

n large, Qn
A,S,B, 1

2

is said to be in the Halfin-Whitt (a.k.a. Quality-and-efficiency driven,

QED) scaling regime [31]. As Reed [1] had studied QnA,S,B,α for n large when S is de-

terminstic and α ∈ (1, 2), we will generally say that QnA,S,B,α is in the Halfin-Whitt-Reed

regime when n is large and α ∈ (1, 2). Similarly, if for any given initial condition, the

waiting time (i.e. time in system between time of arrival and time at which service begins)

for the jth job to arrive to QnA,S,B,α converges in distribution (as j → ∞, independent of

particular initial condition) to a steady-state r.v. W n
A,S,B,α(∞), we say that “W n

A,S,B,α(∞)

exists”.

Let us also introduce some notations for the stable law, which will be relevant when we

describe the main results. More on stable law and the associated generalized central limit

theorem is discussed in Section 3.4.1. Following the notations in [122, 29], let Sα(σ, β, µ)

denote a real-valued random variable having stable distribution, with stability parameter

α > 0, the scale parameter σ > 0, the skewness parameter β ∈ [−1, 1] and the shift

parameter µ ∈ (−∞,∞). When α ∈ (1, 2), µ = E[Sα(σ, β, µ)] < ∞ and Sα(σ, β, µ) has

characteristic function E[eiθSα(σ,β,µ)] = exp(−(σ|θ|)α(1 − iβ(sgnθ) tan(πα/2) + iµθ)),

where sgnθ is the sign of θ ∈ R. Let Ŝα(t, β, µ)t≥0 denote an (α, β)-stable Levy motion

s.t. Sα(0, β, µ) = 0 and Ŝα(s+ t, β, µ)− Ŝα(s, β, µ) ∼ t
1
αSα(1, β, µ),∀s, t ≥ 0.

Also, for two r.v.s X, Y , let X ∼ Y denote equivalence in distribution. In addition,

for t > 0, let Γ(t)
∆
=
∫∞

0
xt−1 exp(−x)dx denote the Γ-function. For α ∈ (1, 2), let

Cα
∆
= (1− α)

(
Γ(2− α) cos(π

2
α)
)−1, where we note that Cα ∈ (0,∞) for all α ∈ (1, 2).

3.2.2 Main results

We begin by formalizing Answers 3.1 and 3.3, i.e. stating our simple and explicit bounds,

as well as the implied tightness results. We note that our tightness results are essentially

the best possible, as the results of [1] show that when inter-arrival times have infinite sec-

ond moment square-root scaling is no longer appropriate. In particular, the only case left
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unresolved is that in which E[S] < ∞ but E[S1+ε] = ∞ for all ε > 0. Furthermore, even

in that case, we believe our techniques could be extended to prove tightness and explicit

bounds. For a real number x, let x+ ∆
= max(x, 0).

Theorem 3.1 (Answer 3.3). Suppose that E[A2] < ∞, and E[S1+ε] < ∞ for some ε ∈

(0, 1]. Then for all B > 0 and n > 4B2 such that Qn
A,S,B,2(∞) exists, it holds that for all

x ≥ 16, P
(
n−

1
2

(
Qn
A,S,B,2(∞)− n

)
≥ x

)
is at most

10100

(
ε
(
1− E[exp(−S)]

))−7

(10E[S1+ε])
1
ε (B−1 +B−2)x−

ε
1+ε .

Corollary 3.1 (Answer 3.1). Suppose that E[A2] < ∞, E[S1+ε] < ∞ for some ε ∈ (0, 1],

and for someB > 0,Qn
A,S,B,2(∞) exists for all sufficiently large n. Then

{
n−

1
2

(
Qn
A,S,B,2(∞)−

n
)+
, n > 4B2

}
is tight.

Finally, we formalize Answer 3.2, extending the Halfin-Whitt-Reed regime to generally

distributed service times. First, we formalize the Halfin-Whitt-Reed scaling regime through

an appropriate set of assumptions.

HWR-α Assumptions.

• α ∈ (1, 2);

• There exists CA ∈ (0,∞) s.t. limx→∞ x
αP(A > x) = CA;

• There exists ε ∈ (0, 1] s.t. E[S1+ε] <∞;

• For each fixed B > 0, Qn
A,S,B,α(∞) and W n

A,S,B,α(∞) exists for all sufficiently large

n.

Then our formalization of Answer 3.2 is as follows.
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Theorem 3.2 (Answer 3.2). If the HWR-α assumptions hold, then
{
n−

1
αQn

A,S,B,α(∞), n ≥

1
}

is tight. Furthermore, for all x > 0,

lim sup
n→∞

P
(
n−

1
α (Qn

A,S,B,α(∞)− n) > x

)
≤ P

(
sup
t≥0

(
− (

CA
Cα

)
1
α Ŝα(t, 1, 0)−Bt

)
> x

)
.

(3.1)

Note that our bound does not depend on the particulars of the service time distribu-

tion at all. As −Ŝα(t, 1, 0) is a so-called spectrally negative Levy process (i.e. all jumps

are negative), it is well-known that supt≥0

(
− (CA

Cα
)

1
α Ŝα(t, 1, 0) − Bt

)
follows a simple

exponential distribution (cf. [123]). In particular, we have the following corollary, which

follows immediately from Theorem 3.2 and ([123]).

Corollary 3.2. If the HWR-α assumptions hold, then for all x > 0,

lim sup
n→∞

P
(
n−

1
α (Qn

A,S,B,α(∞)− n) > x

)
≤ exp

(
−
( B

CAαΓ(−α)

) 1
α−1x

)
. (3.2)

We now proceed to prove the main results.

3.3 Explicit bounds and proof of Theorem 3.1

In this section we prove Theorem 3.1, from which our tightness result Corollary 3.1 will

immediately follow. We proceed by extending the framework of [63, 113] to the heavy-

tailed setting and will rely heavily on some of the bounds discussed in Chapter 2.

The first bound is already introduced in Theorem 2.2, which bounds the steady-state

queue length of a GI/GI/n by the supremum of a relatively simple one-dimensional ran-

dom walk. Customized to our particular setting (i.e. in terms of the Halfin-Whitt(-Reed)

regime), it states that

Theorem 3.3 (Theorem 2.2,[63]). Suppose thatB > 0, α > 1, n > B
α
α−1 , andQn

A,S,B,α(∞)
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exists. Then for all x ≥ 0,

P
(
n−

1
α

(
Qn
A,S,B,α(∞)−n

)
≥ x

)
≤ P

(
n−

1
α sup
t≥0

(
A(λn,B,αt)−

n∑
i=1

Ni(t)

)
≥ x

)
. (3.3)

We note that in Chapter 2, while the proven bounds for pooled renewal processes relied

heavily on the assumption that E[S2] <∞, some of the intermediate results such as Lemma

2.6 and Lemma 2.18 are also applicable even when the variance is infinite, which we will

further exploit to provide the needed bounds even in the heavy-tailed setting.

3.3.1 Novel bound for variance of pooled heavy-tailed renewal processes

In this section, we prove a novel simple, explicit, and non-asymptotic bound for the vari-

ance of a heavy-tailed equilibrium renewal process, i.e. V ar[N1(t)]. We note that for the

case E[S2] < ∞, both the renewal function (i.e. E[No(t)]), and the variance of N1(t),

are understood fairly precisely, with fairly tight bounds known (especially under further

assumptions e.g. finite third moment, cf. [124, 125, 126, 83]). The correct asymptotic

scaling is also known in the heavy-tailed setting, under additional assumptions such as that

S is regularly varying, and/or belongs to the domain of attraction of an appropriate sta-

ble law (cf. [127, 128, 129, 130, 131]), and in some of our later large deviation results

we will use certain of these precise asymptotics. We also note that the literature contains

certain non-explicit general results regarding the central moments of N1(t) under minimal

moment conditions, showing e.g. that E[S1+ε] < ∞ implies that E[|No,1(t) − µSt|1+ε] is

asymptotically sublinear in t (cf. [102]), although these results do not seem amenable to

our analysis. Here we provide a different result (which is, to our knowledge, new) under

minimal assumptions on S. The result builds on an elegant bounding argument of [132],

and a well-known explicit integral representation for V ar[N1(t)] (cf. [124, 125, 126, 29]).

Lemma 3.1. Suppose that E[S1+ε] < ∞ for some ε ∈ (0, 1]. Then for all t ≥ 0, it holds
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that

V ar[N1(t)] ≤ (4E[S1+ε])
1
ε

(
t+ t1+ 1

1+ε

)
.

Our proof proceeds by first expressing V ar[N1(t)] in terms of an integral involving the

renewal function, and then using a result of [132] to bound the renewal function (and the

aforementioned integral). We begin by stating the desired integral representation.

Lemma 3.2 ([124, 125, 126, 29]). For all t ≥ 0, it holds that

V ar[N1(t)] = 2

∫ t

0

((
E[No(s)] + 1− s

)
− 1

2

)
ds.

We next state the appropriate result from [132], customized to our own setting. In

particular, the following lemma follows immediately from [132] Theorem 2, by taking the

function h defined there to be h(x) = x1+ε.

Lemma 3.3 ([132] Theorem 2). Suppose that E[S1+ε] < ∞ for some ε ∈ (0, 1]. Then for

all t ≥ 0, it holds that

t− 1 ≤ E[No(t)] ≤ t− 1 + (E[S1+ε])
1

1+ε (E[No(t)] + 1)
1

1+ε . (3.4)

We note that Lemma 3.3 does not directly provide an easily used bound for E[No(s)] +

1 − s, as the right-hand-side of (3.4) is essentially a “recursive bound” for E[No(s)], i.e.

E[No(s)] is bounded in terms of a different function of E[No(s)]. We now show how to use

Lemma 3.3 to provide explicit bounds for E[No(s)] + 1− s.

Corollary 3.3. Under the same assumptions as Lemma 3.3, for all t ≥ 0,

E[No(t)] + 1− t ≤ (2E[S1+ε])
1
ε (1 + t

1
1+ε ).

Proof of Corollary 3.3. Let us fix t ≥ 0. Letting Yt
∆
= E[No(t)] + 1− t, we conclude from
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Lemma 3.3 that

0 ≤ Yt ≤ (E[S1+ε])
1

1+ε (Yt + t)
1

1+ε . (3.5)

If Yt = 0, we are done. Thus suppose Yt > 0. Then (3.5) implies that

Y
ε

1+ε

t ≤ (E[S1+ε])
1

1+ε (1 +
t

Yt
)

1
1+ε . (3.6)

We first prove that Yt ≤ max

(
t,
(
2E[S1+ε]

) 1
ε

)
. Indeed, suppose for contradiction that

Yt > max

(
t,
(
2E[S1+ε]

) 1
ε

)
. Then (3.6) implies that

(
2E[S1+ε]

) 1
1+ε < (E[S1+ε])

1
1+ε2

1
1+ε ,

itself a contradiction, thus proving the desired statement, which itself implies that

0 < Yt ≤
(
2E[S1+ε]

) 1
ε + t. (3.7)

Plugging (3.7) into the right-hand-side of (3.5), applying the subadditivity of the function

f(x) = x
1

1+ε (which follows from concavity), and the fact that E[S1+ε] ≥ 1 (by Jensen’s

inequality since E[S] = 1), we find that

Yt ≤ (E[S1+ε])
1

1+ε

((
2E[S1+ε]

) 1
ε + 2t

) 1
1+ε

≤ (E[S1+ε])
1

1+ε

((
2E[S1+ε]

) 1
ε
× 1

1+ε + (2t)
1

1+ε

)
≤ 2

1
ε
× 1

1+ε × (E[S1+ε])
1

1+ε
×(1+ 1

ε
) × (1 + t

1
1+ε )

≤ (2E[S1+ε])
1
ε (1 + t

1
1+ε ),

completing the proof.

With Lemma 3.2 and Corollary 3.3 in hand, we now complete the proof of Lemma 3.1.
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Proof of Lemma 3.1. It follows from Lemma 3.2 and Corollary 3.3 that for all t ≥ 0,

V ar[N1(t)] ≤ 2(2E[S1+ε])
1
ε

∫ t

0

(
1 + s

1
1+ε

)
ds

≤ (4E[S1+ε])
1
ε

(
t+ t1+ 1

1+ε

)
,

completing the proof.

3.3.2 Proof of Theorem 3.1

In this section we complete the proof of Theorem 3.1. We first apply Theorem 3.3 by

applying a straightforward union bound to the right-hand-side of (3.3), along with non-

negativity and some basic monotonicities, to conclude the following.

Lemma 3.4. Suppose that B > 0, α ∈ (1, 2], and n > B
α
α−1 . Then for all x ≥ 0,

P

(
n−

1
α supt≥0

(
A(λn,B,αt)−

∑n
i=1Ni(t)

)
≥ x

)
is at most

P

(
n−

1
α sup
t≥0

(
A
(
λn,B,αt

)
− (n− 1

2
Bn

1
α )t

)
≥ 1

2
x

)
(3.8)

+ P

(
n−

1
2 sup
t≥0

((
nt−

n∑
i=1

Ni(t)
)
− B

2
n

1
2 t

)
≥ 1

2
x

)
. (3.9)

Bounding (3.8), the supremum associated with the arrival process

We first bound (3.8). As here we want the most general result possible (i.e. only assuming

finite second moment for the inter-arrival time distribution), we will proceed by relating the

supremum to the waiting time in an appropriate single-server queue and applying King-

man’s bound (as opposed to e.g. the analysis in [113] which required stronger moment

assumptions). We begin with a simple observation, following from the basic properties of

ordinary and equilibrium renewal processes. For y > 1, let Wy denote a r.v. distributed

as the steady-state waiting time in a GI/GI/1 queue with inter-arrival times distributed as
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yA and service times the constant 1.

Observation 1. Suppose that B > 0, α ∈ (1, 2], n > B
α
α−1 , and Qn

A,S,B,α(∞) exists. Then

for all ν > λn,B,α and z ≥ 0,

P

(
n−

1
α sup
t≥0

(
A
(
λn,B,αt

)
− νt

)
≥ z

)
(3.10)

is at most

P

(
n−

1
α sup
k≥0

(
k − ν

k∑
i=1

Ai
λn,B,α

)
≥ z − n−

1
α

)
.

It follows from Lindley’s representation of the steady-state waiting time that (3.10) is at

most

P

(
n−

1
αW ν

λn,B,α
≥ z − n−

1
α

)
.

Next, we recall the celebrated Kingman’s bound for waiting times in aGI/GI/1 queue,

only stating the result as customized to our particular setting.

Lemma 3.5 ([133], Kingman’s Bound). Suppose that E[A2] <∞. Then for all y > 1,

E[Wy] ≤
y2σ2

A

2(y − 1)
.

Combining Observation 1 (with ν = n − 1
2
Bn

1
α ), Lemma 3.5 (with y =

n− 1
2
Bn

1
α

n−Bn
1
α

),

Markov’s inequality, and some straightforward algebra (e.g. the fact that x ≥ 4 implies

x
2
− n− 1

α ≥ x
4
, and n > (2B)

α
α−1 implies n− 1

2
Bn

1
α

n−Bn
1
α
≤ 2), we derive the following bound for

(3.8).

Lemma 3.6. Suppose that E[A2] < ∞, B > 0, α ∈ (1, 2], and n > (2B)
α
α−1 . Then for all

x ≥ 4, (3.8) is at most

102σ2
AB
−1n1− 2

αx−1.
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Bounding (3.9), the supremum associated with the departure process

We proceed by using Lemma 3.1 to verify that the conditions of Lemma 2.6 hold for ap-

propriate parameters, which we use to bound (3.9). In particular, we prove the following.

Lemma 3.7. Suppose that E[S1+ε] < ∞ for some ε ∈ (0, 1). Then for all B > 0, n ≥ 1,

and x ≥ 16, (3.9) is at most

1092ε−7(8E[S1+ε])
1
ε

(
1− E[exp(−S)]

)−5
(B−1 +B−2)x−

ε
1+ε .

Proof of Lemma 3.7. By Lemma 3.1, we find that for all t ≥ 1,

E
[
|

n∑
i=1

Ni(t)− nt|2
]
≤ (8E[S1+ε])

1
εnt1+ 1

1+ε .

By Lemma 2.18, applied with k = n, p = 3, θ = 1, we find that for all t ∈ [0, 1],

E
[
|

n∑
i=1

Ni(t)− nt|3
]
≤
( 108

1− E[exp(−S)]

)5
max

(
nt, (nt)

3
2

)
.

Thus we find that the conditions of Lemma 2.6 are met with

C1 = (8E[S1+ε])
1
ε , C2 =

( 108

1− E[exp(−S)]

)5
, r1 = 2 , s1 = 1+

1

1 + ε
, r2 = 3.

Taking ν = B
2
n

1
2 , λ = x

2
n

1
2 , we conclude that (3.9) is at most

(
106ε−1

)7

(8E[S1+ε])
1
ε

( 108

1− E[exp(−S)]

)5

×
(
n
(B

2
n

1
2

)−(1+ 1
1+ε

)(x
2
n

1
2

)− ε
1+ε + n

3
2

(1

4
xBn

)− 3
2

)
.

Combining with some straightforward algebra completes the proof.

With Lemma 3.7 in hand, we now complete the proof of Theorem 3.1.
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Proof of Theorem 3.1. Using Lemma 3.7 to bound (3.8), and Lemma 3.6 to bound (3.9),

we conclude from Theorem 3.3 (after some straightforward algebra) that for all B > 0,

n > 4B2, and x ≥ 16, P
(
n−

1
2

(
Qn
A,S,B,2(∞)− n

)
≥ x

)
is at most

1092ε−7(8E[S1+ε])
1
ε

(
1− E[exp(−S)]

)−5
(B−1 +B−2)x−

ε
1+ε

+ 102σ2
AB
−1x−1.

Combining with some straightforward algebra, and Theorem 3.3, completes the proof.

3.4 The Halfin-Whitt-Reed regime, and proofs of Theorem 3.2 and Corollary 3.2

In this section, we generalize the analysis of Reed from [1] to the case of general service

times, and call the corresponding scaling regime the Halfin-Whitt-Reed regime. First, we

will need some additional background on so-called α-stable processes and the generalized

central limit theorem.

3.4.1 α-stable processes and the generalized central limit theorem

The celebrated central limit theorem describes the behavior of normalized partial sums of

i.i.d. random variables which have finite variance, and proves that the sequence of normal-

ized sums converges in distribution to a standard normal r.v. In this section we describe

the generalization of these results to the setting in which the variance is infinite. To do

so, we must describe the family of variables to which such a sequence of normalized sums

can converge, the family of so-called α-stable distributions. We note that many different

parametrizations appear for these variables throughout the literature, and we stick to the

conventions of [29]. An α-stable distribution is specified by four parameters: an index pa-

rameter α ∈ (0, 2], scale parameter σ > 0, skewness parameter β ∈ [−1, 1], and location

parameter µ ∈ (−∞,∞). We will let Sα(σ, β, µ) denote a r.v. with the corresponding

distribution. Then the generalized central limit theorem may be stated as follows. Here we
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only state a special case which will suffice for our purposes, e.g. only treating the case in-

volving a pure Pareto tail, only treating non-negative r.v.s, only treating the case α ∈ (1, 2),

etc. For α ∈ (1, 2), letCα
∆
= (1−α)

(
Γ(2−α) cos(π

2
α)
)−1, where we note thatCα ∈ (0,∞)

for all α ∈ (1, 2).

Theorem 3.4 (Generalized central limit theorem (cf. [29])). Suppose that limx→∞ x
αP(A >

x) = C ∈ (0,∞) for some α ∈ (1, 2). Then {n− 1
α

∑n
i=1(Ai− 1), n ≥ 1} converges in dis-

tribution to ( C
Cα

)
1
αSα(1, 1, 0), and we say thatA belongs to the normal domain of attraction

of this limiting r.v.

There is also an analogous generalized version of the central limit theorem for renewal

processes. Before stating this result, we will need to define the so-called α-stable Levy

motion, a natural heavy-tailed generalization of Brownian motion (whose marginal distri-

butions will be α-stable distributions). Recall that a Levy-process is a stochastic process

with sample paths in the D-space (e.g. may have jumps) with stationary and independent

increments, which takes value 0 at time 0, and has the property that for all t ≥ 0, the

probability that the process jumps at time t equals 0. A Levy-process L(t)t≥0 is said to

be an (α, β)-stable Levy motion with index parameter α ∈ (0, 2] and skewness parameter

β ∈ [−1, 1] if for all t, s > 0, L(s + t) − L(s) is distributed as t
1
αSα(1, β, 0). We denote

this process by Ŝα(t, β, 0).

Theorem 3.5 (Generalized central limit theorem for renewal processes (cf. [29])). Under

the same assumptions as Theorem 3.4,
{
n−

1
α

(
Ao(nt)−nt

)
0≤t≤T , n ≥ 1

}
and

{
n−

1
α

(
A(nt)−

nt
)

0≤t≤T , n ≥ 1
}

both converge weakly, in the M1 topology, to

−(
C

Cα
)

1
α Ŝα(t, 1, 0)0≤t≤T .

94



3.4.2 Extending the Halfin-Whitt-Reed regime to general service times, and proof of

Theorem 3.2

In this section we use our stochastic-comparison approach, and results associated with our

explicit bounds (i.e. Theorem 3.1), to extend the Halfin-Whitt-Reed regime beyond the

case of deterministic process times. In particular, we complete the proof of Theorem 3.2.

We proceed by means of a series of lemmas, and begin by proving the needed tightness

result.

Lemma 3.8.
{
n−

1
α supt≥0

(
A(λn,B,αt)−

∑n
i=1Ni(t)

)
, n ≥ 1

}
is tight.

Proof of Lemma 3.8. By Lemma 3.4, it suffices to prove tightness (separately) of

{
n−

1
α sup
t≥0

(
A
(
λn,B,αt

)
− (n− 1

2
Bn

1
α )t

)}
, (3.11)

and {
n−

1
2 sup
t≥0

((
nt−

n∑
i=1

Ni(t)
)
− B

2
n

1
2 t

)}
. (3.12)

As tightness of (3.12) follows immediately from Lemma 3.7, it suffices to demonstrate

tightness of (3.11). However, tightness of (3.11) follows immediately from Observation 1,

applied with ν =
n− 1

2
Bn

1
α

n−Bn
1
α

, and Theorem 7.1 of [117], which gives sufficient conditions

for tightness of the sequence of waiting times associated with a sequence of single-server

queues with heavy-tailed inter-arrival times in heavy traffic.

Next, we prove the appropriate weak convergence result.

Lemma 3.9. For all T > 0,
{
n−

1
α supt∈[0,T ]

(
A(λn,B,αt) −

∑n
i=1Ni(t)

)
, n ≥ 1

}
con-

verges weakly to supt∈[0,T ]

(
− ( C

Cα
)

1
α Ŝα(t, 1, 0)−Bt

)
.
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Proof of Lemma 3.9. Note that n−
1
α

(
A(λn,B,αt)−

∑n
i=1Ni(t)

)
equals

(
λn,B,α
n

)
1
α × λ−

1
α

n,B,α

(
A(λn,B,αt)− λn,b,αt

)
+ n

1
2
− 1
α × n−

1
2

(
nt−

n∑
i=1

Ni(t)
)

− Bt.

Combining with Theorem 3.5, Lemma 3.7, and the basic properties of J1 and M1 conver-

gence, e.g. continuity of the supremum map (cf. [29]), completes the proof of the desired

weak convergence.

To prove Theorem 3.2 we want to extend Lemma 3.9 to show the convergence of the

all time supremum. Note that such a result is not immediate, as the framework of weak

convergence (of stochastic processes) generally deals only with compact time intervals, so

extra care must be taken to handle such an infinite time horizon. We also note that closely

related ideas were used in the proof of Lemma 7 and Theorem 2 in [63], although their

proofs made use of the service time distribution having finite second moment, and our

result is stated in considerably greater generality. Now, we prove the following general

result, giving sufficient conditions under which the convergence of the supremum of some

(stationary) process over compact interval can be extended to the supremum over the entire

real line. We defer all relevant proofs to the appendix.

Lemma 3.10. Suppose that {Yn(t)t≥0, n ≥ 1} is a sequence of stochastic processes on

D[0,∞) with stationary increments, and that Y∞(t)t≥0 is a fixed stochastic process (also

with stationary increments, on D[0,∞)). Suppose also that:

1. Yn(0) = 0 w.p.1 for all n ≥ 1;

2. {supt≥0 Yn(t), n ≥ 1} is tight;

3. For all M > 0, limt→∞ P
(
Y∞(t) ≥ −M

)
= 0;
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4. For each fixed T > 0, {sup0≤t≤T Yn(t), n ≥ 1} converges weakly to sup0≤t≤T Y∞(t).

Then {supt≥0 Yn(t), n ≥ 1} converges weakly to supt≥0 Y∞(t).

With Lemmas 3.8, 3.9 and 3.10 in hand, we now complete the proof of Theorem 3.2.

Proof of Theorem 3.2. In light of Theorem 3.3, it suffices to verify that
{
n−

1
α

(
A(λn,B,αt)−∑n

i=1Ni(t)

)
t≥0

, n ≥ 1

}
satisfies the conditions of Lemma 3.10. In light of Lemmas 3.8

and 3.9, it suffices to verify condition 3. It follows from the basic properties of Levy pro-

cesses that Ŝα(t, 1, 0) has the same distribution as t
1
αSα(1, 1, 0), and thus for all M > 0

and t > 0, P
(
Y∞(t) ≥ −M

)
equals

P
(
− (

C

Cα
)

1
α t

1
αSα(1, 1, 0) ≥M +Bt

)
.

Condition 3 then follows from the fact that α > 1, and Sα(1, 1, 0) is a.s. finite. Combining

the above verifies that the conditions of Lemma 3.10 are met, completing the proof.

With Theorem 3.2 established, we now prove Corollary 3.2 using a well-known result

that the all time supremum of a spectrally negative Levy process follows a simple exponen-

tial distribution.

Proof of Corollary 3.2. LetX(t) ≡ −( C
Cα

)
1
α Ŝα(t, 1, 0)−Bt. It suffices to show supt≥0X(t) ∼

expo(( B
CAαΓ(−α)

)
1

α−1 ). As the process {X(t), t ≥ 0} is indeed a negative-drifted Levy sta-

ble motion with no positive jumps (cf. [29]), [123, Proposition 5] states that supt≥0X(t)

distributed exponentially. Now we find the exact rate. Recalling when α ∈ (1, 2), the

characteristic function for Sα(1, 1, 0) is

ϕ(s) = E[eisSα(1,1,0)] = exp(−|s|α(1 + i sgn(s) tan(
πα

2
)),
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we have

E[eisX(t)] = E[eis(−
CA
Cα

t
1
α Sα(1,1,0)−Bt)] = ϕ(−sCA

Cα
t

1
α )e−isBt,

which for s ≥ 0 and t ≥ 0, can be simplified as (cf. [123, Section 8])

E[eisX(t)] = et(Kα(si)α)−iBs, with Kα , −(CA/Cα) sec(
πα

2
).

Then for s ≥ 0, t ≥ 0, we have the analytic continuation E[esX(t)] = et(Kαs
α−Bs) =

etψ(s), when setting ψ(s) , Kαs
α − Bs. It then follows from [123, Proposition 5] that

supt≥0X(t) ∼ expo(γ), where γ is the largest (positive) root solving ψ(s) = Kαs
α −

Bs = 0, namely, γ = ( B
Kα

)
1

α−1 . It then follows from the definition of Cα and the fact that

Γ(s) = (s− 1)Γ(s− 1) for all complex number s that is not integers less than or equal to

zero, that γ = ( B
CAαΓ(−α)

)
1

α−1 , concluding the proof.

3.5 Conclusion

In this chapter, we provided the first analysis of steady-state multi-server queues in the

Halfin-Whitt regime when service times have infinite variance. We proved that under min-

imal assumptions, i.e. only that service times have finite 1 + ε moment for some ε > 0

and inter-arrival times have finite second moment, the sequence of stationary queue length

distributions, normalized by n
1
2 , is tight in the Halfin-Whitt regime. This confirmed that the

presence of heavy tails in the service time distributions does not change the fundamental

scaling of the steady-state queue length, as n
1
2 was also the correct scaling in the light-tailed

case. Furthermore, we developed simple and explicit bounds for the steady-state queue in

multi-server queues in the Halfin-Whitt regime, under only these minimal assumptions.

Also, for the setting where instead the inter-arrival times have an asymptotically Pareto

tail with index α ∈ (1, 2), we extended recent results of [1] (who analyzed the case of

deterministic service times) by proving that for general service time distributions, the se-

quence of stationary queue length distributions, normalized by n
1
α , is tight (here we used
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the scaling of [1], which we named the Halfin-Whitt-Reed scaling regime). Interestingly,

our derived bounds do not depend at all on the specifics of the service time distribution,

and are nearly tight even for the case of deterministic service times.

Our work leaves several interesting directions for future research. Even within the

Halfin-Whitt regime, there is the obvious question of deriving tighter explicit bounds, e.g.

doing away with the massive constant appearing in our bounds, and developing tighter

bounds on the demonstrated tail decay rate. Even more interesting is the question of deriv-

ing any kind of simple and explicit bounds that scale universally across different notions

of heavy traffic, as was accomplished under the assumption of a finite 2 + ε moment in

[113]. As the heavy-tailed service times can cause very different types of scaling across

different notions of heavy traffic, deriving such bounds would likely require fundamentally

different methods of analysis. Another question along these lines is to develop a clearer

understanding of the connection (under e.g. the Halfin-Whitt scaling) between the finite-

ness of moments of the steady-state queue length, and how those moments scale with the

traffic intensity. Although the question of which moments are finite is by now fairly well

understood [56], the question of how those finite moments scale in heavy traffic remains

largely open, where we note that some interesting progress there follows from the recent

results of [113].

3.6 Appendix

3.6.1 Proof of Lemma 3.10

Proof of Lemma 3.10. First, we claim that

lim
T→∞

lim sup
n→∞

P
(

sup
t≥T

Yn(t) ≥ 0
)

= 0. (3.13)
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Indeed, for all M > 0, by a union bound and stationary increments P
(

supt≥T Yn(t) ≥ 0
)

is at most

P
(
Yn(T ) ≥ −M

)
+ P

(
sup
t≥0

Yn(t) ≥M
)
. (3.14)

It follows from (2) - (3) that for any given ε > 0, we may select Mε, Tε ∈ (0,∞) s.t.

P
(
Y∞(Tε) ≥ −Mε

)
< ε

2
, lim supn→∞ P

(
supt≥0 Yn(t) ≥ Mε

)
< ε

2
. Combining with (4),

(3.14), and the monotonicity of the supremum operator, it follows that for all T ≥ Tε,

lim supn→∞ P
(

supt≥T Yn(t) ≥ 0
)
< ε. Combining with the definition of limit completes

the proof of (3.13).

It follows from (3.13) that for any x ≥ 0, we may construct a strictly increasing sequence

of integers {Tx,k−1 , k ≥ 1} s.t. for all k ≥ 1,

lim sup
n→∞

P
(

sup
t≥Tx,k−1

Yn(t) ≥ x

)
< k−1.

Thus by a union bound, for all x ≥ 0 and k ≥ 1,

lim sup
n→∞

P
(

sup
t≥0

Yn(t) ≥ x

)
≤ lim sup

n→∞
P
(

sup
0≤t≤Tx,k−1

Yn(t) ≥ x

)
+ k−1.

By letting k → ∞, and applying (4), the monotonicity of the supremum operator, and the

Portmanteau Theorem, we conclude that for all x ≥ 0,

lim sup
n→∞

P
(

sup
t≥0

Yn(t) ≥ x

)
≤ P

(
sup
t≥0
Y∞(t) ≥ x

)
. (3.15)

Next, we prove the analagous result for lim infn→∞ P
(

supt≥0 Yn(t) > x

)
. In particular,

for any fixed T , (4), the monotonicity of the supremum operator, and the Portmanteau
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Theorem imply that

lim inf
n→∞

P
(

sup
t≥0

Yn(t) > x

)
≥ P

(
sup
t∈[0,T ]

Y∞(t) > x
)
.

Combining with the monotonicity of the supremum operator, and letting T →∞, it follows

that for all x ≥ 0,

lim inf
n→∞

P
(

sup
t≥0

Yn(t) > x

)
≥ P

(
sup
t≥0
Y∞(t) > x

)
. (3.16)

Combining (3.15) and (3.16), with the definition of weak convergence, completes the proof.
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CHAPTER 4

LARGE DEVIATIONS FOR HEAVY-TAILED QUEUES IN THE HALFIN-WHITT

REGIME

4.1 Introduction.

4.1.1 Large deviations in Halfin-Whitt regime

To study the likelihood of rare events and develop metrics to quantify their consequences

are among the most fundamental tasks when designing and analyzing a stochastic model,

as those events, however unlikely, may have serious consequences. Large deviation theory

provides ways to study those rare events, generally through analyzing the asymptotic be-

havior of the tail probabilities of sequences of random variables. Although vast literature

have been developed to provide theoretical probabilities to general analysis of the large de-

viation behavior (e.g. [134, 135, 136]), explicit solutions to any particular stochastic model

often remain difficult to get. Large deviation is a potent tool for analyzing queueing system

in steady state (e.g. [137, 138, 139, 140]), not only because it is of practical interest to

understand some key performance metrics (e.g. stationary waiting time and queue length)

under extreme situations, it is also because sometimes (bounds on) the tail behaviors of

those performance metrics (large deviation behaviors) are relatively easier to study, if not

the only ones analytically available.

Under the Halfin-Whitt regime, outside of the case of exponentially distributed service

times, the known characterizations for the limiting process (when such a limit is known

to exist) are quite complicated. As such, considerable effort has gone into understanding

certain properties of this limit, where many of these results have pertained to the large devi-

ations behavior of the limiting process. In particular, for the case of inter-arrival times with

finite second moment and service times with finite support, [46] prove that the weak limit

102



(associated with the sequence of normalized steady-state queue lengths) has an exponential

tail, with a precise exponent identified as − 2B
c2A+c2S

, where c2
A(c2

S) is the squared coefficient

of variation (s.c.v) of inter-arrival (service) times. Namely, they prove that under those as-

sumptions, the associated weak limit Q̂ satisfies limx→∞ x
−1 log

(
P
(
Q̂ > x

))
= − 2B

c2A+c2S
.

Put another way, the probability that the limiting process exceeds a large value x behaves

(roughly up to exponential order) like exp
(
− 2B

c2A+c2S
x
)
. The known results for the case

of exponentially distributed and H∗2 service times yields the same exponent. The stochas-

tic comparison approach of [63] was able to prove that the same exponent yields an up-

per bound on the large deviations behavior of any subsequential limit of the associated

sequence of normalized queue-length random variables assuming only that there exists

ε > 0 s.t. inter-arrival and service times have finite 2 + ε moments, with equality for the

case of exponentially distributed inter-arrival times. Far less is known when it comes to

the large deviation behavior associated with the queueing systems with heavy-tailed inter-

arrival or/and service time distribution under Halfin-Whitt regime.

In [63], the authors note that the identified limiting large deviations exponent − 2B
c2A+c2S

equals zero when either inter-arrival or service times have infinite variance, and leave as an

open question identifying the correct behavior in the presence of heavy tails. We further

investigate this open question in the chapter. This is particularly interesting to inves-

tigate as the vanishing large deviation exponent suggests that a fundamentally different

behavior may arise for the (properly scaled) steady-state queue length in the presence of

heavy tails, a subject that was previously cast light on in [121], where the steady-state wait-

ing time of the M/GI/s queue was studied, and it was shown that the steady-state waiting

time distribution “inherits” the heavy tails of the service time distribution.

To be more specific, in this chapter, complementing the tightness results established in

Chapter 3, we will investigate the large deviation behavior of the scaled limiting process

under 1) traditional Halfin-Whitt regime when service times are heavy-tailed (Pareto tail

with index α ∈ (1, 2)) and inter-arrival times have finite second moment and 2) under the
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Halfin-Whitt-Reed regime when inter-arrival times are heavy-tailed (Pareto tail with index

α ∈ (1, 2)) and service times have at least 1 + ε moment for some ε ∈ (0, 1]. Note that the

tightness of the sequences associated to above two cases were proven in Corollary 3.1 and

Theorem 3.2 respectively.

4.1.2 Main contribution

First, for the special case that the inter-arrival times have finite second moment and the ser-

vice times have an asymptotically pure Pareto tail, i.e. limx→∞
P(S>x)
xα

= C for some α ∈

(1, 2) and C ∈ (0,∞), we explicitly bound the large deviations behavior of the correspond-

ing diffusion limit (under n
1
2 scaling, as was established in Corollary 3.1). In particular,

we prove that the tail has a subexponential decay, i.e. that limx→∞ x
1−α log

(
P
(
Q̂ > x

))
is at most an explicit strictly negative constant. Furthermore, for the case of Markovian

inter-arrival times, we prove a lower bound which certifies that this is indeed the exact

large deviations behavior. Interestingly, in contrast to the light-tailed (i.e. finite variance)

setting, here we find that rare events are fundamentally more likely, with the probability

of seeing a large queue length xn
1
2 decaying like exp(−C ′xα−1) with α − 1 ∈ (0, 1) and

C ′ an explicit constant. This in essence resolves the question of the previously identi-

fied large deviations exponent− 2B
c2A+c2S

which vanishes in the infinite-variance setting, since

limx→∞
C′xα−1

x
= 0. From a practical standpoint, this insight is important, as it suggests

that when service times are heavy-tailed (which as noted is a setting relevant in several

service-system applications), it is much more likely to see large queue lengths, where we

successfully quantify the meaning of “much more likely”.

Second, we further investigate the quality of the bound in Corollary 3.2. We show that

when inter-arrival times have an asymptotically pure Pareto tail for some α ∈ (1, 2) and

service times have at least 1 + ε moment for some ε ∈ (0, 1], under Halfin-Whitt-Reed

regime, the upper bound stating that the right tail of the limiting distribution of steady

state queue length (under n
1
α scaling) decays at least exponentially fast with rate being
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some explicit constant, i.e. that limx→∞ x
−1 log

(
P(Q̂ > x)

)
is at most an explicit strictly

negative constant, is in some sense nearly tight. Indeed, for the case of deterministic service

times, we prove a lower bound that exactly matches the upper bound.

4.1.3 Chapter outline

The rest of the chapter proceeds as follows. We state our main results in Section 4.2. We

prove our large deviations bounds for the setting that inter-arrival times have finite variance

and service times are heavy-tailed in Section 4.3. The large deviations bounds for the

setting that inter-arrival times are heavy-tailed under the generalized Halfin-Whitt-Reed

regime are studied in Section 4.4. We provide a summary of our results and directions for

future research in Section 4.5. Finally, we include a technical appendix in Section 4.6.

4.2 Main results

In this section, we formally state our main results. All notations are inherited from Section

3.2.1 (in addition to Section 1.5).

We begin by formulating a particular set of assumptions which we will need to state our

results (which should be taken in addition to any assumptions posited to hold throughout

the entire chapter, e.g. E[A] = E[S] = 1).

GH1 Assumptions.

• E[A2] <∞;

• There exists αS ∈ (1, 2) and CS ∈ (0,∞) s.t. limx→∞ x
αSP(S > x) = CS;

• lim supt↓0 t
−1
(
P(S ≤ t)− P(S = 0)

)
<∞;

• For each fixed B > 0, Qn
A,S,B,2(∞) exists for all sufficiently large n.

Let

CB,S
∆
= −C−1

S B3−αS(
αS − 1

3− αS
)2−αS(2− αS).
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Then our large deviation results when service times are asymptotically Pareto and inter-

arrival times have finite second moment may be formalized as follows.

Theorem 4.1. Under the GH1 Assumptions,

lim sup
x→∞

x−(αS−1) log

(
lim sup
n→∞

P
(
n−

1
2 (Qn

A,S,B,2(∞)− n) > x

))
≤ CB,S.

If in addition A is exponentially distributed, namely the system is M/GI/n, then

lim inf
x→∞

x−(αS−1) log

(
lim inf
n→∞

P
(
n−

1
2 (Qn

A,S,B,2(∞)− n) > x

))

= lim sup
x→∞

x−(αS−1) log

(
lim sup
n→∞

P
(
n−

1
2 (Qn

A,S,B,2(∞)− n) > x

))
= CB,S.

Roughly, Theorem 4.1 implies that when service times are asymptotically Pareto with

power law decay parameter αS ∈ (1, 2), the probability of the queue exceeding a large

queue length xn
1
2 decays roughly as exp

(
−CB,SxαS−1

)
, which (since αS−1 < 1) decays

sub-exponentially. Namely, rare events are much more likely in this setting, as opposed

to the light-tailed setting analyzed in [63], for which the decay was exponential. Note

that CB,S is increasing in B, and hence in some sense seeing large queue lengths become

“less likely” as B increases, which makes sense as when B is large the system is less

loaded, where we note that a similar monotonicity was observed in [63]. Interestingly, the

variability of the inter-arrival times does not appear in CB,S , in contrast to the exponent

identified in [63] for the light-tailed setting.

Recall

HWR-α Assumptions.

• α ∈ (1, 2);

• There exists CA ∈ (0,∞) s.t. limx→∞ x
αP(A > x) = CA;

• There exists ε ∈ (0, 1] s.t. E[S1+ε] <∞;
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• For each fixed B > 0, Qn
A,S,B,α(∞) and W n

A,S,B,α(∞) exists for all sufficiently large

n.

Then our large deviation results when inter-arrival times are asymptotically Pareto and

service times have at least 1 + ε moment for some ε ∈ (0, 1] may be formalized as follows.

Theorem 4.2. Under the HWR-α Assumptions,

lim sup
x→∞

x−1 log

(
lim sup
n→∞

P
(
n−

1
α (Qn

A,S,B,α(∞)− n) > x

))
≤ −

( B

CAαΓ(−α)

) 1
α−1 .

If in addition S is deterministic, namely the system is GI/D/n, then

lim inf
x→∞

x−1 log

(
lim inf
n→∞

P
(
n−

1
α (Qn

A,S,B,α(∞)− n) > x

))

= lim sup
x→∞

x−1 log

(
lim sup
n→∞

P
(
n−

1
α (Qn

A,S,B,α(∞)− n) > x

))
= −

( B

CAαΓ(−α)

) 1
α−1 .

Theorem 4.2 shows that the bound on the large deviation exponent is in some sense

tight, with an exact match in the case of deterministic service times. Note that the upper

bound on the large deviation exponent,−
(

B
CAαΓ(−α)

) 1
α−1 , has nothing to do with the service

time distribution. As a matter of fact, during the proof of Theorem 3.2 where the tightness

and weak limit of
{
n−

1
α (Qn

A,S,B,α(∞) − n), n ≥ 1
}

were established, the service time

distribution played virtually no roles but washed away. Thus it is logical to wonder if the

bound is tight for more general classes of service time distributions. We leave it as an open

question to explore in the future.

4.3 Large deviations under GH1 Assumptions, and proof of Theorem 4.1

In this section, we prove our large deviations results for the setting in which E[A2] < ∞

and S is asymptotically Pareto with infinite variance, i.e. Theorem 4.1. Our proof proceeds

in a manner analogous to the large deviations results proven in [63]. Recall the stochastic
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comparison upper bound (2.4, 3.3) and write it in the Halfin-Whitt-Reed regime notation

(with α = 2), we have

P
(
n−

1
α

(
Qn
A,S,B,2(∞)− n

)
≥ x

)
≤ P

(
n−

1
α sup
t≥0

(
A(λn,B,2t)−

n∑
i=1

Ni(t)

)
≥ x

)
. (4.1)

In particular, we will use our tightness result (Corollary 3.1) to prove that our bounds for

Qn
A,S,B,2(∞) − n (4.1) behave like certain Gaussian processes in the Halfin-Whitt regime,

where we note that (as in [63]) some care will have to be taken as these bounds are in the

form of suprema over an infinite time horizon. We will then use known results from the

theory of Gaussian processes and heavy-tailed renewal processes to derive the appropriate

large deviations behavior.

4.3.1 Preliminary weak convergence results.

Before embarking on the proof of Theorem 4.1, we establish some preliminary weak con-

vergence results to aid in our analysis. For an excellent review of weak convergence, and

the associated spaces (e.g. D[0, T ]) and topologies/metrics (e.g. uniform, J1), we refer

the reader to [29]. Recall that a Gaussian process on R is a stochastic process Z(t)t≥0 s.t.

for any finite set of times t1, . . . , tk, the vector
(
Z(t1), . . . , Z(tk)

)
has a Gaussian distribu-

tion. A Gaussian process Z(t)t≥0 is known to be uniquely determined by its mean function

E[Z(t)]t≥0 and covariance function E[Z(s)Z(t)]s,t≥0, and refer the reader to [141], and the

references therein for details on existence, continuity, etc. Let ℵ(t)t≥0 denote the w.p.1 con-

tinuous Gaussian process s.t. E[ℵ(t)] = 0,E[ℵ(s)ℵ(t)] = c2
A min(s, t), namely a driftless

Brownian motion. Then we may conclude the following from the well-known Functional

Central Limit Theorem (FCLT) for renewal processes (see [29] Theorem 4.3.2 and Corol-

lary 7.3.1)

Theorem 4.3. Under the GH1 Assumptions, for any T ∈ [0,∞), the sequence of processes

{λ−
1
2

n

(
A(λn,B,2t) − λn,B,2t

)
0≤t≤T , n ≥ 1} converges weakly to ℵ(t)0≤t≤T in the space

108



D[0, T ] under the J1 topology.

We now give a weak convergence result for
∑n

i=1Ni(t), which is stated in [29, Theorem

7.2.3] and formally proven in [142, Theorem 2].

Theorem 4.4. There exists a w.p.1 continuous Gaussian process D(t)t≥0 s.t. E[D(t)] =

0,E[D(s)D(t)] = E[
(
N1(s) − s

)(
N1(t) − t

)
] for all s, t ≥ 0. Furthermore, under the

GH1 Assumptions, for any T ∈ [0,∞), the sequence of processes {n− 1
2

(∑n
i=1 Ni(t) −

nt
)

0≤t≤T , n ≥ 1} converges weakly to D(t)0≤t≤T in the space D[0, T ] under the J1 topol-

ogy.

Let Z∞(t)t≥0 denote the Gaussian process s.t. Z∞(t) = ℵ(t)−D(t) for all t ≥ 0, and

Z∞,B(t)t≥0 denote the Gaussian process s.t. Z∞,B(t) = ℵ(t) − D(t) − Bt for all t ≥ 0.

Existence and continuity of both these processes follows from Theorems 4.3 and 4.4, which

further imply the following (as similarly noted in [63]).

Corollary 4.1. Under the GH1 Assumptions, for any T ∈ [0,∞), the sequence of processes

{n− 1
2

(
A(λn,B,2t) −

∑n
i=1Ni(t)

)
0≤t≤T , n ≥ 1} converges weakly to Z∞,B(t)0≤t≤T in the

space D[0, T ] under the J1 topology.

4.3.2 Preliminary large deviations results.

Next, we will need to establish some results from the theory of large deviations of Gaussian

processes and their suprema. We note that the relationship between the large deviations

of suprema of Gaussian processes and the large deviations of queueing systems is well

known, and there is a significant literature studying the large deviations of such processes

(e.g. [143]). We will rely heavily on the following result, proven in [143] Proposition 1,

describing the large deviation behavior of the supremum of certain Gaussian processes. We

note that a special case of the same result, customized to the light-tail setting, was also used

in [63]. Before stating the result, let us recall the definition of a regularly varying function.
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Definition 4.1 (Regularly varying function). A function f : R+ → R+ is regularly varying

with index γ if for all t > 0, limx→∞
f(tx)
f(x)

= tγ .

We note that as the complimentary c.d.f.s of heavy-tailed distributions are typically reg-

ularly varying, the analysis of regularly varying functions is pervasive in the study of heavy-

tailed phenomena, and we refer the interested reader to [144] for an excellent overview of

the subject. Then the aforementioned large deviations result is as follows.

Lemma 4.1 ([143] Proposition 1). Suppose G(t)t≥0 is a centered, continuous Gaussian

process with stationary increments, satisfying the following conditions.

• The associated variance function E[G2(t)] is continuous (onR+) and regularly vary-

ing with index 2H for some 0 < H < 1.

• There exists ε > 0 s.t. limt↓0 E[G2(t)]| log(t)|1+ε <∞.

Then for all β > H and c > 0,

lim
x→∞

(
E[G2(x

1
β )]

x2
logP(sup

t≥0
Z(t)− ctβ ≥ x)

)
= −1

2
c

2H
β (

H

β −H
)−

2H
β (

β

β −H
)2.

We now use Lemma 4.1 to analyze the large deviations behavior of Z∞,B(t)t≥0, by

proving that Z∞(t)t≥0 satisfies the conditions of Lemma 4.1 for an appropriate parame-

ter of regular variation. The proof relies on certain known results regarding variance of

heavy-tailed renewal processes (cf. [131]). In particular, we recall a useful result regard-

ing the variance of heavy-tailed renewal processes. Such results have been proven under

considerable generality (e.g. even when the first moment does not exist, and for asymptotic

scaling beyond the second moment), although here we state the result customized to our

own purposes and assumptions.
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Lemma 4.2 ([131]). Under the GH1 assumptions,

lim
t→∞

V ar[N1(t)]

t3−αS
= 2
(
(αS − 1)(2− αS)(3− αS)

)−1
CS.

With Lemma 4.2 in hand, we now prove that Z∞(t)t≥0 satisfies the conditions of

Lemma 4.1 for an appropriate parameter of regular variation, deferring all proofs to the

appendix.

Lemma 4.3. Under the GH1 Assumptions, Z∞(t)t≥0 satisfies the conditions of Lemma 4.1,

where E[Z2(t)] is regularly varying with index 3− αS .

Finally, we combine Lemmas 4.1 - 4.3 to prove the desired large deviation results for

Z∞,B(t)t≥0, again deferring the proof to the appendix.

Lemma 4.4. Under the GH1 Assumptions,

lim
x→∞

(
x1−αS log

(
P
(

sup
t≥0
Z∞,B(t) ≥ x

)))
= CB,S; (4.2)

Next, we state an additional large deviation-type result, which corresponds to the prob-

ability thatZ∞,B exceeds a large value at the single time at which it is most likely to exceed

that value (which will connect to an appropriate lower bound for multi-server queues). The

utility of considering such a quantity, in conjunction with the classical notion of large de-

viations considered in Lemma 4.4, is well-known in the large-deviations literature, and we

refer the interested reader to [63] for further discussion. We again defer all proofs to the

appendix.

Lemma 4.5. Under the GH1 Assumptions,

lim
x→∞

(
x1−αS log

(
sup
t≥0

P
(
Z∞,B(t) ≥ x

)))
= CB,S. (4.3)
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4.3.3 Connecting the large deviations of the limit to the limit of the large deviations,

and proof of Theorem 4.1

We now connect the large deviations of Z∞,B to the large deviations of n−
1
2

(
A(λn,B,2t)−∑n

i=1Ni(t)
)

(for large n, in an appropriate sense) by proving that {n− 1
2 supt≥0

(
A(λn,B,2t)−∑n

i=1Ni(t)
)
, n ≥ 1} converges weakly to supt≥0Z∞,B(t), through the lens of Lemma

3.10. We now complete the proof of Theorem 4.1, noting that our proof proceeds similarly

to the proof of the analogous large deviations result (which assumed E[S2] <∞) in [63].

Proof of Theorem 4.1. We begin by noting that under the GH1 assumptions {n− 1
2

(
A(λn,B,2t)−∑n

i=1Ni(t)
)
, n ≥ 1} satisfies the conditions of Lemma 3.10, with limiting stochastic pro-

cessZ∞,B. Indeed, condition (2) follows immediately from our proof of Theorem 3.1. Con-

dition (3) follows from Lemma 4.2, since that lemma (along with the definition of Z∞,B)

implies that lim supt→∞
V ar[Z∞,B(t)]

t3−αS
< ∞, which (combined with the strictly negative lin-

ear drift of Z∞,B and a straightforward argument involving the normal distribution which

we omit) implies condition (3). Finally, Condition (4) follows from Corollary 4.1, along

with the continuity of the supremum map in the J1 topology, and the fact that convergence

in J1 implies convergence of all co-ordinate projections corresponding to times t such that

w.p.1 the limit process has no jump exactly at time t (which will in this case be all t ≥ 0)

[29]. It thus follows from Lemma 3.10 that {n− 1
2 supt≥0

(
A(λn,B,2t)−

∑n
i=1Ni(t)

)
, n ≥ 1}

converges weakly to supt≥0Z∞,B(t). It follows (e.g. from the Portmanteau Theorem) that

for all x ≥ 0,

lim sup
n→∞

P
(
n−

1
2 sup
t≥0

(
A(λn,B,2t)−

n∑
i=1

Ni(t)
)
≥ x

)
≤ P

(
sup
t≥0
Z∞,B(t) ≥ x

)
.

The first part of Theorem 4.1 (i.e. the upper bound) then follows by combining with Lemma

4.5 and the stochastic comparison result (4.1).

We now prove the second part of Theorem 4.1, i.e. the lower bound, by first reviewing of
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a lower bounds from [63] that complements Theorem 3.3. In [63], The authors also prove

that the steady-state queue length can be lower-bounded by a different type of supremum,

essentially dual to that (3.3) (with the supremum and probability operators interchanged),

which we now state here. Let Zn,B,α be a Poisson r.v. with mean λn,B,α.

Theorem 4.5 ([63]). Under the same assumptions as Theorem 3.3, supposing in addition

that A is exponentially distributed, it holds that for all x ≥ 0,

P
(
n−

1
α

(
Qn
A,S,B,α(∞)−n

)
≥ x

)
≥ P(Zn,B,α ≥ n)×sup

t≥0
P
(
n−

1
α

(
A(λn,B,αt)−

n∑
i=1

Ni(t)
)
≥ x

)
.

(4.4)

Thus suppose A is exponentially distributed. Let N be a standard normal r.v. Then it

follows from Theorem 4.5 that for all x ≥ 0 and t ≥ 0, lim infn→∞ P
(
n−

1
2Qn

A,S,B,2(∞) >

x
)

is at least

lim inf
n→∞

P
(
Zn,B,2 ≥ n

)
× lim inf

n→∞
P
(
n−

1
2

(
A(λn,B,2t)−

n∑
i=1

Ni(t)
)
> x

)
,

which by the convergence of the Poisson to the normal, Corollary 4.1, and the Portmanteau

Theorem is at least

P
(
N ≥ B

)
× P

(
Z∞,B(t) > x

)
.

Taking the supremum over all t ≥ 0, we conclude that

lim inf
n→∞

P
(
n−

1
2 (Qn

A,S,B,2(∞)− n) > x
)
≥ P

(
N ≥ B

)
× sup

t≥0
P
(
Z∞,B(t) > x

)
. (4.5)

Combining with Lemma 4.5 and a straightforward limiting argument (the details of which

we omit) then completes the proof.
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4.4 Large deviation under HWR-α assumptions, and proof of Theorem 4.2

Now we prove the large deviation result under the Halfin-Whitt-Reed regime, when inter-

arrival times have an asymptotically pure Pareto tail for some α ∈ (1, 2) and service times

have at least 1 + ε moment for some ε ∈ (0, 1], i.e. Theorem 4.2.

Recall the bound from Theorem 3.2 and Corollary 3.2,

lim sup
n→∞

P
(
n−

1
α (Qn

A,S,B,α(∞)− n) > x

)
≤ P

(
sup
t≥0

(
− (

CA
Cα

)
1
α Ŝα(t, 1, 0)−Bt

)
> x

)
(4.6)

= exp
(
−
( B

CAαΓ(−α)

) 1
α−1x

)
. (4.7)

Then the first part of Theorem 4.4 follows trivially from (4.7). For the second part,

and it suffices to find a lower bound that have the exact same exponential rate of decay,

under the assumption of deterministic service times. For that we first introduce following

result, which follows from the results of [1], where the author actually proved the analogous

results for waiting times. We include a formal proof translating those results to the setting

of steady-state queue in the appendix.

Theorem 4.6 ([1]). Suppose the HWR-α assumptions hold for some α ∈ (1, 2), and in

addition S is deterministic (i.e. the queueing system is a GI/D/n queue). Then there is a

dense subset S ofR+ s.t. for all x ∈ S,

lim
n→∞

P
(
n−

1
α

(
Qn
A,S,B,α(∞)− n

)+
> x

)
= P

(
sup
k≥0

(
− (

CA
Cα

)
1
αSα(k, 1, 0)−Bk

)
> x

)
.

(4.8)

Intriguingly, we can observe that weak limit in (4.8) is nearly identical to the (4.6),

the only difference being that the supremum is taken over positive integer times, instead

of all positive real times. In light of Theorem 4.6, our upper bound (holding for general
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service time distributions) is in some sense nearly tight even for the very special case of

deterministic service times. Indeed, it is well-known that for a process with stationary and

independent increments, there are straightforward ways to neatly bound the gap between

the all-time supremum and the supremum over integer times (cf. [145, 146]). We now use

such analysis to prove that the large deviations behavior of our upper bound is matched for

the special case of deterministic service times, i.e. both exhibit the same exponential rate

of decay, completing the proof of Theorem 4.2.

Proof of Theorem 4.2. Our approach is very similar to that used in [145]. Let X(t)
∆
=

−(CA
Cα

)
1
αSα(t, 1, 0)− Bt. For x > 0, let τ(x)

∆
= inf

{
t ≥ 0 : X(t) ≥ x

}
, with τ(x) =∞

if the process never reaches a value greater than or equal to x. In that case, for any x > 0 and

c ∈ (0, x), it follows from stationary and independent increments, and the strong Markov

property, that

P
(

sup
t≥0

X(t) > x, sup
k≥0

X(k) ≤ x− c
)
≤ P

(
τ(x) <∞, inf

s∈[τ(x),τ(x)+1]
X(s)−X

(
τ(x)

)
≤ −c

)
= P

(
τ(x) <∞

)
× P

(
inf
s∈[0,1]

X(s) ≤ −c
)

= P
(

sup
t≥0

X(t) > x
)
P
(

inf
s∈[0,1]

X(s) ≤ −c
)
. (4.9)

Combining with the fact that (by a union bound)

P
(

sup
t≥0

X(t) > x
)
≤ P

(
sup
k≥0

X(k) > x− c
)

+ P
(

sup
t≥0

X(t) > x, sup
k≥0

X(k) ≤ x− c
)
,

(4.10)

we conclude that

P
(

sup
t≥0

X(t) > x
)
≤ P

(
sup
k≥0

X(k) > x− c
)

+ P
(

sup
t≥0

X(t) > x
)
P
(

inf
s∈[0,1]

X(s) ≤ −c
)
,
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and thus

P
(

sup
t≥0

X(t) > x
)
≤ P

(
sup
k≥0

X(k) > x− c
)
×
(
P
(

inf
s∈[0,1]

X(s) > −c
))−1

. (4.11)

As infs∈[0,1] X(s) is a.s. finite, we may select c sufficiently large to ensure that P
(

infs∈[0,1]X(s) >

−c
)
> 0, in which case taking the appropriate limit as x→∞ completes the proof.

4.5 Conclusion

In this chapter, we provided the first large deviation analysis of steady-state multi-server

queues in the Halfin-Whitt regime when service times have infinite variance. When ser-

vice times have an asymptotically Pareto tail with index α ∈ (1, 2), we are able to bound

the large deviations behavior of the limiting process (defined as any suitable subsequential

limit) and derived a matching lower bound when inter-arrival times are Markovian. Inter-

estingly, we find that the large deviations behavior of the limit has a sub-exponential decay,

differing fundamentally from the exponentially decaying tails known to hold in the light-

tailed setting. Also, for the setting where instead the inter-arrival times have an asymptoti-

cally Pareto tail with index α ∈ (1, 2), we prove a universal bound on the large deviations

behavior of the associated limiting process, and prove that even the setting of deterministic

service times yields a matching large deviations exponent.

Our work also leaves several interesting directions for future research. It would be

very interesting (to again use stochastic comparison approach) to analyze the large devia-

tions behavior of multi-server queues with heavy-tailed service times for a fixed number

of servers, where it is known that the interaction between the number of servers, the traffic

intensity, and the large deviations behavior can be very subtle [118]. Also, it will be very

interesting to further investigate to what extent the bound on the large deviation exponent

introduced in Theorem 4.2 is tight (tightness was only certified for the case of determin-

istic service times). As we can see, during the proof where tightness and weak limit of
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{
n−

1
α (Qn

A,S,B,α(∞) − n), n ≥ 1
}

were established, the service time distribution played

virtually no roles but were washed away. It would be interesting to consider other spe-

cial classes of service time distributions, gaining more insights on the actual quality of the

bound.

4.6 Appendix

4.6.1 Proof of Lemma 4.3

Proof of Lemma 4.3. That Z(t)t≥0 is (w.p.1) continuous, centered, and has the stationary

increments property follows from the corresponding properties of ℵ(t)t≥0 and D(t)t≥0.

Since

E[Z2(t)] = c2
At+ V ar[N1(t)], (4.12)

continuity of E[Z2(t)], as well as the fact that limt↓0 E[Z2(t)] log2(t) = 0, follows from

the integral representation Lemma 3.2. Combining with the regular variation implied by

Lemma 4.2 completes the proof.

4.6.2 Proof of Lemma 4.4

Proof of Lemma 4.4. It follows from Lemma 4.3 that under the GH1 Assumptions, we

may apply Lemma 4.1 to supt≥0Z∞,B(t), with G(t)t≥0 = Z∞(t)t≥0, c = B, β = 1, H =

1
2
(3− αS). It follows from Lemma 4.2 and (4.12) that (in the language of Lemma 4.1)

lim
x→∞

((E[G2(x
1
β )]

x2

)
xαS−1

)
= 2
(
(αS − 1)(2− αS)(3− αS)

)−1
CS, (4.13)

and

−1

2
c

2H
β (

H

β −H
)−

2H
β (

β

β −H
)2 = −2B3−αS(3− αS)−(3−αS)(αS − 1)−(αS−1). (4.14)

Combining with Lemma 4.1 and some straightforward algebra completes the proof.
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4.6.3 Proof of Lemma 4.5

Proof of Lemma 4.5. For x ∈ R+, let TS,x
∆
= (3−αS)x

B(αS−1)
, and let G denote a standard normal

r.v. Note that

lim inf
x→∞

(
x1−αS log

(
sup
t≥0

P
(
Z∞,B(t) ≥ x

)))

≥ lim inf
x→∞

(
x1−αS log

(
P
(
Z∞,B(TS,x) ≥ x

)))

= lim inf
x→∞

x1−αS log

(
P
(
G > 2(αS − 1)−1x

(
E[Z2

∞,B(TS,x)]
)− 1

2

))
. (4.15)

As it follows from Lemma 4.3 that limx→∞ x
(
E[Z2

∞,B(TS,x)]
)− 1

2 = ∞, and standard

bounds for the normal distribution c.d.f. (cf. [83] Lemma 6) imply that there exists y0

s.t. y > y0 implies P(G > y) ≥ exp(−y2

2
− y), we may further conclude that (4.15) is at

least

− lim inf
x→∞

x1−αS
(

2(αS − 1)−2x2
(
E[Z2

∞,B(TS,x)]
)−1

+ 2(αS − 1)−1x
(
E[Z2

∞,B(TS,x)]
)− 1

2

)
,

which by Lemma 4.2, (4.12), and some straightforward algebra equals CB,S . Combining

with the fact that, by the basic properties of the supremum operator,

lim sup
x→∞

(
x1−αS log

(
sup
t≥0

P
(
Z∞,B(t) ≥ x

)))

is bounded (from above) by the left-hand-side of (4.2) completes the proof.

4.6.4 Proof of Theorem 4.6

In [1], Reed proves the following result.

Theorem 4.7. Suppose that the HWR-α assumptions hold, and in addition S is determin-

istic (i.e. the system is GI/D/n). Then {n1− 1
αW n

A,S,B,α(∞), n > B
α
α−1} converges in
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distribution to supk≥0

(
− (CA

Cα
)

1
αSα(k, 1, 0)−Bk

)
.

With Theorem 4.7 in hand, we now apply the distributional Little’s Law (and more

generally the methodology of [115], which had been applied to the light-tailed setting) to

derive the corresponding result for queue-lengths, Theorem 4.6.

Proof of Theorem 4.6. Since the system is FCFS with i.i.d. inter-arrival and service times,

and service times are deterministic (and hence there is no over-taking), the Distributional

Little’s Law applies ([147]), and we have

Qn
A,S,B,α(∞)− n ∼ A

(
λn,B,α

(
1 +W n

A,S,B,α(∞)
))
, (4.16)

with A(t)t≥0 and W n
A,S,B,α(∞) independent. Let {A′i, i ≥ 1} denote the sequence of inter-

event times in A(t)t≥0, i.e. A′1 is drawn from the equilibrium distribution, and {A′i, i ≥ 2}

are i.i.d. distributed as A. Then for all x > 0, P
(
n−

1
α

(
Qn
A,S,B,α(∞)− n

)
> x

)
equals

P

(
A

(
λn,B,α

(
1 +W n

A,S,B,α(∞)
))

> n+ xn
1
α

)

= P

( dn+xn
1
α e∑

i=1

A′i ≤ λn,B,α
(
1 +W n

A,S,B,α(∞)
))

= P

(∑dn+xn
1
α e

i=1 (A′i − 1)

dn+ xn
1
α e 1

α

≤
λn,B,α

(
1 +W n

A,S,B,α(∞)
)
− dn+ xn

1
α e

dn+ xn
1
α e 1

α

)
.(4.17)

It follows from Theorem 3.4 that

{∑dn+xn
1
α e

i=1 (A′i − 1)

dn+ xn
1
α e 1

α

, n ≥ 1

}
converges in distribution to

(CA
Cα

) 1
αSα(1, 1, 0). (4.18)

119



Theorem 4.7 implies that

{
λn,B,αW

n
A,S,B,α(∞)

dn+ xn
1
α e 1

α

, n ≥ 1

}
converges in distribution to sup

k≥0

(
−(
CA
Cα

)
1
αSα(k, 1, 0)−Bk

)
.

(4.19)

Also, it is easily verified that

lim
n→∞

λn,B,α − dn+ xn
1
α e

dn+ xn
1
α e 1

α

= −B − x. (4.20)

As in [115], it then follows from the independence of {A′i, i ≥ 1} and W n
A,S,B,α(∞), and

the CLT for triangular arrays (cf. [148]) that for all x which are continuity points of the

c.d.f. of supk≥1

(
− (CA

Cα
)

1
αSα(k, 1, 0)−Bk

)
, it holds that

lim
n→∞

P
(
n−

1
α

(
Qn
A,S,B,α(∞)− n

)
> x

)
= P

(
sup
k≥1

(
− (

CA
Cα

)
1
αSα(k, 1, 0)−Bk

)
> x

)
.

(4.21)

The desired result then follows by applying the max-plus operator to both sides.
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[35] J. Köllerström, “Heavy traffic theory for queues with several servers. II,” Journal
of Applied Probability, vol. 16, no. 02, pp. 393–401, 1979.

[36] J. Dai, A. Dieker, and X. Gao, “Validity of heavy-traffic steady-state approxima-
tions in many-server queues with abandonment,” Queueing Systems, vol. 78, no. 1,
pp. 1–29, 2014.

[37] A. Braverman, J. Dai, et al., “Steins method for steady-state diffusion approxima-
tions of M/Ph/n+M systems,” The Annals of Applied Probability, vol. 27, no. 1,
pp. 550–581, 2017.

123



[38] A. Braverman and J. Dai, “High order steady-state diffusion approximation of the
Erlang-C system,” arXiv preprint arXiv:1602.02866, 2016.

[39] A. Braverman, J. Dai, J. Feng, et al., “Steins method for steady-state diffusion ap-
proximations: an introduction through the Erlang-A and Erlang-C models,” Stochas-
tic Systems, vol. 6, no. 2, pp. 301–366, 2016.

[40] I. Gurvich, J. Huang, and A. Mandelbaum, “Excursion-based universal approxima-
tions for the Erlang-A queue in steady-state,” Mathematics of Operations Research,
vol. 39, no. 2, pp. 325–373, 2013.

[41] I. Gurvich et al., “Diffusion models and steady-state approximations for exponen-
tially ergodic Markovian queues,” The Annals of Applied Probability, vol. 24, no.
6, pp. 2527–2559, 2014.

[42] A. Mandelbaum, W. A. Massey, and M. I. Reiman, “Strong approximations for
Markovian service networks,” Queueing Systems, vol. 30, no. 1, pp. 149–201, 1998.

[43] A. J. E. M. Janssen, J. Van Leeuwaarden, and B. Zwart, “Corrected asymptotics for
a multi-server queue in the Halfin-Whitt regime,” Queueing Systems, vol. 58, no. 4,
p. 261, 2008.

[44] A. Janssen, J. S. Van Leeuwaarden, and B. Zwart, “Refining square-root safety
staffing by expanding Erlang C,” Operations Research, vol. 59, no. 6, pp. 1512–
1522, 2011.

[45] D. Gamarnik and A. Zeevi, “Validity of heavy traffic steady-state approximations
in generalized Jackson networks,” The Annals of Applied Probability, pp. 56–90,
2006.
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