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52 Ŝggms for many concentric coils. The optimal coil is marked with a circle. . . 74

53 Dipole/quadrupole coil geometry with dipole in red and quadrupole in blue. . 75

54 Subset of the dipole/quadrupole coils being analyzed. . . . . . . . . . . . . . . 76

55 Maximum dipole/quadrupole soil sensitivity for all coil heads considered. . . . 77
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SUMMARY

This dissertation presents a new method of optimizing coils for electromagnetic

induction (EMI) systems used in subsurface sensing. The new optimization method uses

stream functions to represent wire coils rather than attempting to optimize wire coils directly.

Stream functions allow a more general optimization than is possible with conventional wire

coils.

To support the new optimization procedure, a set of normalized metrics was also de-

veloped. These metrics take into account important coil characteristics, such as target

sensitivity, soil sensitivity, power dissipation, coil coupling, thermal noise, etc.

The metrics are applicable to both conventionally-de�ned wire coils and to the stream

function representation, and the metrics allow comparison between wire coils and stream

function coils. The metrics are independent of system electronics and also coil parameters

such as conductor type and size and overall coil dimensions.

The new optimization method was used to optimize coils represented as stream functions.

The new method makes use of several techniques including the exploitation of problem sym-

metry to reduce the number of unknowns. Even with various methods to reduce the number

of unknowns, the problem would be intractable without exploiting the partial convexity of

the problem statement. By using a convex optimization technique, coils can be optimized in

hours instead of the unfathomable number of years a brute-force technique would require.

The coils that were optimized using the stream-function representation have new, in-

teresting wire paths. These coils were shown to perform signi�cantly better than those

optimized using a conventional representation, especially when the performance in magnetic

soils was considered. The resulting coils are superior to the canonical wire coils from Chap-

ter 6, and their combined metric, Ŝggm + Ŝggms, is from 2.3 to 10.2 dB better depending on

which groups of coils are being compared.
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CHAPTER I

INTRODUCTION

Systems using electromagnetic induction (EMI) have many varied applications, including

the detection of obscured conductive objects, medical imaging, nondestructive testing, and

wireless, short-range power transfer. The details of these methods may di�er slightly, but

the coils used to transmit and receive �elds are very important in each application. Im-

provements in the performance of these systems can be made by optimizing the coil winding

patterns. An optimization procedure for induction coils was developed in the context of

coils used for the detection of objects buried in the ground. Normalized metrics for the com-

parison of these coils were also developed to aid in their optimization. This work focuses on

coils for use in continuous-wave (CW) EMI systems in particular, but minor modi�cations

could be made to optimize coils for other uses.

Systems that use electromagnetic induction have been in use for over a century to detect

obscured metallic objects. Alexander Graham Bell constructed a crude induction balance

sensing system in an attempt to locate the bullet lodged in President Gar�eld's back, and

induction-based sensors were put to use in the detection of mines and unexploded ordnance

as far back as World War I [4,69]. EMI systems, such as those designed by Gerhard Fisher,

were later put to use by treasure hunters to search for buried objects such as lost coins

or rings [69]. Currently, there are many systems of varying complexity being used for the

detection of many di�erent types of buried conductive objects.

EMI systems have proven to be e�ective tools for detecting buried metallic objects, but

they su�er from several limitations and trade-o�s. While EMI systems are very good at

detecting conductive objects, their range is limited to one or two coil diameters because of

the quasi-static nature of the �elds. Their range decreases dramatically when the targets are

small, weakly conductive, or buried in mineralized soil. If the system is a continuous-wave

system, which transmits and receives concurrently, it is highly desirable for the transmit and
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receive coils not to couple to one another because the target signals are often very weak.

Coil con�gurations that have negligible coupling have been known for many years, but these

con�gurations typically have the detriment of limiting either the range of detection or the

coils' rejection of the soil response.

The current work aims to create coil designs that have minimum mutual coupling while

minimizing the signal induced in the receive coil by the soil and maximizing their sensitivity

to targets. Normalized metrics to allow comparison with other coils were developed to aid

these goals.

Many traditional methods for designing coils are very restrictive in the winding pat-

terns that the coils can take. A more generalized representation for the coils was created

using stream functions. This representation has the bene�t of allowing a partially convex

optimization procedure to be used, which allows optimizations to be done in a reasonable

amount of time over many dimensions. The optimization also allows the �eld directions

produced by the system to be optimized to improve target imaging, and it can be extended

to allow the creation of arrays of multiple coils.

Coils were optimized using the stream function method, and the new coils are anywhere

from 2.3 to 10.2 dB better than existing wire coils that are examined in Chapter 6 when the

soil sensitivity is considered in addition to the target sensitivity. These traits enhance the

ability of systems to detect buried objects, particularly in mineralized soil.

The stream functions were then converted to a simple wire-wound representation. By

calculating the normalized metrics for the stream functions and for the wires by using two

di�erent methods, the validity of using stream functions as a method of representing and

optimizing coils was demonstrated. Not only do stream functions provide a more general

method of representing coils, but the new coil families generated using the optimization

could also be re�ned as wire coils, further improving their performance.

1.1 EMI Sensing Principles

Continuous-wave EMI systems use a transmit coil driven with a time-varying current to

produce a magnetic �eld, which induces eddy currents in conductive targets. The eddy

2



HTX

Ieddy

TX RX

Htarget

Figure 1: Illustration of a simple EMI system and target.

currents then produce a secondary �eld that induces an electromotive force (EMF) in the

receive coil, as illustrated in Figure 1 [1]. The EMF induced in the receive coil indicates the

presence of conductive objects.

EMI systems typically operate at frequencies of up to a few hundred kilohertz, and

the �elds produced by EMI systems are magneto-quasistatic. Therefore, the displacement

current can be neglected and a quasistatic analysis can be used [22].

1.1.1 Coil Sensitivity and Target Detection

The transmit coil creates a magnetic �eld at the target that induces a magnetic dipole

moment on the target as a result of the target's magnetic polarizability. The dipole moment

of the target then induces a voltage at the receive coil. The full expression for the open-

circuit voltage induced in the receive coil by a target that has been excited by a signal from

the transmit coil is

VRX =
jωµ0

IRX

~HRX · ¯̄m · ~HTX , (1)

where ω is angular frequency, µ0 is magnetic permeability, ~HTX is the transmit �eld, ¯̄mp is

a dyad representing the magnetic polarizability of the target, and ~HRX is the �eld produced

by the receive coil if it is driven by the current IRX [53,62]. The dyad ¯̄mp is dependent upon

the target's shape and orientation relative to the coil head [1,64]. If the target is positioned

in a manner such that the coils couple into the eddy current modes of the target, a voltage

will be induced in the receive coil, and detection will be straightforward. However, if the

target is positioned such that the transmit coil does not couple into the eddy current modes

of the target, very little voltage will be induced in the receive coil, and detection will be

di�cult. Therefore, if the transmit and receive coils each produce �elds that are oriented in
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a single direction, the system may be blind to a target in certain orientations relative to the

coil head. Movement of the coil head about the target can partially mitigate this issue by

altering the direction of the �elds at the target. On the other hand, systems with more than

two coils may have coils transmitting and/or receiving in many or all possible orientations

rather than relying on the operator to move the coil head relative to the target [51].

Though EMI systems are good at detecting conductive objects near the surface of the

earth, their range is limited. In a way this is desirable because many items of interest are

often buried close to the surface, and the sensor naturally excludes clutter (detected objects

or anomalies that are not targets) that is buried deeper than the sensor's maximum detection

depth. However, the range of EMI systems is typically on the order of one coil diameter,

and when the coils are only 25 cm in diameter, the range becomes limiting [1].

Detection is particularly di�cult when there is an excessive amount of interference in the

search area or the targets are very small, weakly conductive, or are buried in magnetically

permeable soil. Even if the targets are large, the signals received from them will be small

compared to the signal of the transmit coil [1]. Therefore, system design typically requires

that the transmit and receive coils have minimum mutual coupling, lest the receive coil

senses only the transmit coil and not the target.

1.1.2 Coil Coupling

The transmit and receive coils can couple to one another both inductively and capacitively.

The inductive coupling can be minimized through winding techniques or by properly posi-

tioning the coils with respect to one another. As long as the coils are separated su�ciently,

capacitive coupling between the coils is not problematic, but the coils may be shielded indi-

vidually if necessary. A signi�cant portion of the remaining signal in the receive coil resulting

from coupling can be removed through signal processing techniques [52].

1.1.3 Soil Response

In addition to sensing electrically conductive materials, EMI systems also sense magnetically

permeable materials by aligning the dipole moments within the material. The alignment

increases the magnetic �eld, which is then sensed by the system in the same manner as
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Figure 2: Two-coil head illuminating target buried in soil.

conductive materials [1]. Unfortunately, magnetically permeable soil can present issues for

EMI systems by inducing a non-negligible voltage in the receive coil [11]. The induced

voltage can be signi�cant, making detection of the much smaller target response di�cult or

impossible.

The soil response (the voltage induced in the receive coil by the soil) can be viewed as

indirect coupling between the transmit and receive coils. The soil response of a pair of coils

can be determined by integrating the product of the sensitivity and the soil susceptibility,

χ, over the soil half space (such as the system in Figure 2) as

Vsoil = jωµ0

∫

soil
χ
~HTX · ~HRX

IRX
dV . (2)

In an attempt to mitigate the e�ects of the soil, systems often include a ground-balance

feature that attempts to remove the signal generated by the soil from the signal that includes

the target and the soil [54].

Because the portion of the head's sensitivity map that penetrates the soil changes as the

head's height above the ground varies, it is clear that the voltage induced by a mineralized

soil will change as the head height is varied. This change in the soil response can make

detection di�cult, even if the coils have been ground-balanced.

Coils can also couple capacitively with the ground or the target, problems which can be

mitigated through proper shielding of the coil head [39,50].

1.2 Ground Penetrating Radar

Ground penetrating radar (GPR) is also used for subsurface sensing, but GPR-based systems

typically encounter di�erent problems than those of EMI systems. For example, EMI systems
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do not produce a propagating wave, so there is no round trip time [20]. Therefore, depth

data is more di�cult to obtain with an EMI system than with a GPR.

EMI systems are better at locating conductive objects and typically have much better

discrimination of conducting objects than GPRs, but EMI systems typically cannot detect

non-conductive targets. EMI systems are sometimes combined with GPR systems to either

reduce false alarm rates or to allow detection of both conductive and non-conductive objects

[9,34]. However, the coils of the EMI system and the antennas of the GPR must be designed

with their co-location in mind.

1.3 Excitation Types

Two primary excitation types�pulsed-induction and continuous-wave�are in use for EMI

systems. The focus for this work is continuous-wave systems, but some of the coil principles

for CW systems can be applied to pulsed systems that require separate transmit and receive

coils.

1.3.1 Continuous-wave

The simplest continuous-wave systems transmit a single frequency and provide the most

rudimentary object detection, but most CW designs use at least a single transmit coil and

a separate single receive coil in their coil head. Co-location of the transmit and receive coils

in a single coil head is a common feature of many designs because it makes the detector

compact and also improves target pinpointing.

The need for separate transmit and receive coils is dictated by the nature of continuous

transmission. It is problematic to simultaneously transmit a signal using one coil and receive

a signal of the same frequency on the same coil. The receive electronics typically do not

have the dynamic range and stability that would be necessary to detect a very small target

signal that is combined with the large excitation created by the transmit coil, necessitating

separate transmit and receive coils with very low coupling between the transmit coil and the

receive coil.

The most advanced CW systems, such as the Georgia Tech EMI system, transmit and

receive on multiple frequencies simultaneously, which allows gathering amplitude and phase
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data over a broad range of frequencies [6,50,64]. In the Georgia Tech EMI system, multiple

measurements made over a broad frequency range allow advanced signal processing to be

used to classify objects and to estimate the location of the objects [64].

1.3.2 Pulsed-Induction

Pulsed-induction sensors transmit a time-domain pulse that excites targets using the same

mechanisms as a CW system [7]. Pulsed induction systems have the advantage of not

requiring the transmit and receive coils to be nulled to one another (or needing only one coil

for both transmit and receive). In the case of a pulsed system that does not have separate

transmit and receive coils or has coils that are inductively coupled, the system must wait to

sample the �elds until the voltage induced in the receive coil by the transmit coil has died

down. If sampling the signal is not delayed, the receive electronics will be saturated by the

large transmit pulse [7].

Pulsed induction sensors make use of the change in the decay rate of the pulse to infer

information about the target. Small targets or targets of low conductivity create very small

signals that decay quickly. If the signals decay too quickly, a pulsed system will time-gate

out the received signal and detect nothing.

1.4 Coil Con�gurations

Many coil con�gurations, ranging from single-coil designs to multi-coil arrays, have been used

over the years in CW EMI systems. The simplest handheld CW systems use a single coil,

but two-coil designs are both more prevalent and more sophisticated. A few small systems

also use multiple transmit or multiple receive coils, but most arrays are not hand-held [51].

The following section will discuss some of the most common two-coil heads.

1.4.1 Two-coil Heads

Two-coil CW systems must have coils with minimum mutual coupling. Perhaps the most

obvious way to create a coil pair with minimum coupling is to make the two coils orthogonal

so that no �ux from the transmit coil passes through the receive coil, as illustrated in Figure

3(a). Some early designs did just that, but these coils have poor spatial resolution and are
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often very bulky [14,67]. It is rare to see a modern orthogonal-coil system used for anything

other than geophysical sensing, such as mapping groundwater or �nding large anomalies,

because it performs poorly when attempting to pinpoint small objects.

Rather than restricting the �ux created by the transmit coil from passing through the

receive coil, most other designs work on an induction balance principle, where the coils are

wound so that equal and opposite amounts of �ux from the transmit coil pass through the

receive coil, making the voltage induced in the receive coil sum to zero. One such coil pair is

the dipole/quadrupole (Figure 3(b)), which typically uses a dipole as the transmit coil and a

quadrupole (a �gure-8) coil as the receive. These coils provide excellent rejection of magnetic

soils and rejection of interference from other electromagnetic sources, but they have poor

depth performance, both because the �eld of the quadrupole decays much more quickly

with distance than the �eld created by a dipole and because the �elds of the transmit and

receive coils are orthogonal on the coil head's axis. The quadrupole has the added bene�t

of being immune to the change in soil response that most heads see when their height above

a mineralized soil half-space is varied [10].

The double-D (Figure 3(c)) consists of two partially overlapping, dipole-like coils that

may be of varying shapes. The partial overlap of the coils provides the balance that mini-

mizes the mutual coupling between the coils and also creates narrow peaks in the center of

their sensitivity map, allowing good target pinpointing [35]. The double-D does not perform

as well in magnetic soils as the dipole/quadrupole, but the double-D has better detection

depth in weakly magnetic soils where it su�ciently rejects the soil response when held at

the proper height [11, 35]. It �rst appeared in the 1930s, but has since been produced in

various forms by many companies [24, 44].

Bucked-primary concentric coil heads (Figure 3(d)), where the primary coil has two sets

of loops wound in opposite directions such that the net �ux through the receive coil is zero,

have been used as well [26,58,70]. These coils appear to have good depth performance and

spatial resolution but perform poorly in mineralized soils. A bucked-secondary concentric,

in which the transmit and receive coils of the bucked-primary coil are swapped, is also

possible [66].
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Stacked coaxial coils, like those shown in Figure 3(e), have been used as detector heads

on commercial detectors produced by a few companies, such as Geophex [15,29]. They may

cancel the signal induced by the soil to some degree, but it is unclear how well they perform

in this regard.

The omega coil (Figure 3(f)), where a largely circular transmit coil has a portion folded

inward over a smaller, circular receive coil, has also been used by manufacturers [25,39]. Its

chief advantages appear to be its simple construction and the ease with which the coils can

be nulled by adjusting the small portion of the transmit coil that is folded back.

Many other small coil heads have been designed. These heads include small arrays, coils

with orthogonal cancellation windings or external bucking transformers, and other unusual

con�gurations [50, 63, 68]. However, these coils all must trade o� the features of good soil

rejection, good depth performance, compact size, good spatial resolution, and minimum

coupling.

1.5 Optimization

It appears that many coil heads were designed by trial and error with minimum coupling as

the primary goal. There has been very little published on coil design, and essentially nothing

has been published concerning the optimization of coils speci�cally for EMI systems. There

is a method for calculating the sizes and locations of the coils in a nulled-primary system,

but no optimization is performed [70]. Companies do some optimization of their designs for

EMI systems, but the methods are trade secrets.

There has, however, been material published on the design and optimization of coils

for use in magnetic resonance imaging (MRI). These methods are designed for optimizing

shim or gradient coils and attempt to create coils with speci�ed �elds in a certain area.

They may attempt to create coils with minimum inductance, minimum resistance, or both.

Self-shielded coils are also a possibility. However, none of these methods deal with creating

two coils with minimum mutual coupling.

Simple, brute force methods, where a few parameters are varied and all possible answers

are evaluated, have been used for very simple problems, but such an approach is hardly
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Figure 3: Common extant coil heads.
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appropriate for more di�cult problems [31]. The target �eld approach speci�es magnetic

�elds using Bessel functions. Then an inversion is performed to determine the necessary

current distributions to create the speci�ed �elds [60].

Variational methods may be employed along with the target �eld approach to minimize

the inductance of the coil [61]. Another method solves for the current needed to create a

speci�ed �eld by representing the coil with a wire grid and then formulating the problem as

a matrix equation that may be solved either directly or numerically [32]. Such a method is

geometrically restrictive, and appears di�cult to modify for additional constraints.

The simulated annealing method has been used to create optimal MRI coils as well

[41,59]. The mutual inductance between two coils could be incorporated into the simulated

annealing method. However, this method can be computationally intensive, and though it

is better than some other methods at �nding an optimal solution, a global maximum is not

guaranteed. It is also geometrically restrictive.

Coils have also been represented by stream functions as a way to lower the constraints

on current paths. In one case, the energy of the coils was minimized using a least-squares

procedure [43]. A later paper used a stream function representation to design coils with

a speci�c �eld, maximum current density, and minimum stored energy [45]. In the second

paper, the convexity of the problem was exploited, but only a single coil was considered.

1.6 Dissertation Organization

This dissertation is divided into three main parts plus appendices. Part 1 details the model-

ing and optimization of spiral wire coils using simple basis functions. Only maximizing the

coil sensitivity and minimizing the coil coupling is considered. Proof of concept coils were

produced, and some interesting measurements, including coil resonance issues, are presented.

These coils demonstrate some of the practical di�culties with coil design.

Part 2 introduces normalized metrics that can be used to characterize and optimize wire

coils. These metrics allow fair comparison between coils of di�ering types. Part 2 also

includes the optimization of various types of wire coils using these new metrics. The opti-

mization considers power dissipation and soil sensitivity in addition to the target sensitivity
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and mutual coupling of earlier coils.

Part 3 generalizes the normalized metrics from the wire coils of Part 2 to coils de�ned

using stream functions. These metrics are then used to optimize coils using a stream func-

tion representation. The stream functions allow more general coils that are not limited to

the paths of the wire coils from Part 2. The shape of the coil is created as part of the

optimization. The stream functions require a large number of unknowns, so a bi-convex op-

timization procedure was developed to e�ciently optimize these coils. The best coils created

using the new optimization were then converted to wire coils, and the metrics of the wire

coils were compared to the metrics of the corresponding stream functions, demonstrating

good agreement. These new coils are shown to peform better with respect to target and soil

sensitivity metrics than the canonical coils of Chapter 6.
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PART 1

Simple Optimization of Spiral, Wire-Wound

Coil Geometries
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CHAPTER II

MODELING WIRE-WOUND COILS WITH CONVENTIONALLY

CONSTRAINED PATHS

To begin the investigation of the feasibility of optimization of wire coils for EMI systems,

a simple polynomial representation of wire spirals was developed along with a two-stage

optimization procedure that allows coils to be designed for minimum mutual coupling and

maximum sensitivity. Several di�erent iterations of spiral wire coils were designed and

produced using these methods. Testing of these coils revealed multiple implementation di�-

culties that will be valuable in the production stream-function coils. Additionally, attempts

to compare the new spiral coils to existing designs revealed that normalized metrics were

needed to be con�dent in the accuracy of comparisons to other coils. The development of

these metrics is detailed in Chapter 5.

2.1 Modeling Wire Coils

Consider coils con�gured in a system such as that shown on the right of Figure 4, where the

transmit coil lies in the plane z = −δ and with δ > 0, and the receive coil lies in the plane

z = 0. The axis for each coil is coincident with the z-axis. Since EMI systems typically

operate at frequencies below 1MHz, a magnetoquasistatic analysis, which is used here, will

su�ce [22].

2.1.1 Representation of coils

To achieve dipole-like behavior and minimal mutual coupling, the current distribution (φ̂-

directed in a polar coordinate system) on both coils must vary with the radius, ρ. Addition-

ally, these coils must be easy to implement for use in a sensing system. Spiral coils can be

wound so that the current distribution varies and even reverses. They are also easy to use

for both the transmission or reception of signals since they require only a single feed.

However, optimizing a spiral coil is very di�cult due to the large number of degrees of

14



z

ρ

z

ρJ

J

Figure 4: An illustration of a system composed of two annuli of current, where the axis of
symmetry of each annulus is the z-axis (left), and a representation of the same system as
two nonuniformly-wound spiral coils, with the transmit coil on top (right).

freedom and the fact that the problem is not convex. Instead the current density of a spiral

coil can be approximated by using an in�nitely thin annulus with a surface current density

that varies with ρ and remains constant in φ, similar to the coils in the system on the left

in Figure 4. To simplify the coil model, the surface current density, Jρ(ρ), is represented by

a set of basis functions, Fn(ρ),

Jρ(ρ) =
N∑

n=0

anFn(ρ) . (3)

The current on the annulus will be optimized, and then the spiral will be implemented

by creating physical wire coils carrying a current, I. These coils are de�ned by the path

φ = w(ρ), where φ is the angular coordinate and ρ the radial coordinate in a polar coordinate

system. The φ̂-directed surface current density is represented on the annulus in terms of the

spiral function,

Jρ(ρ)φ̂ =
I

2π

dw(ρ)

dρ
φ̂ . (4)

This operation averages the current over the φ-coordinate and makes the approximation that

the current on the spiral is entirely in the φ̂-direction, ignoring the presence of the ρ̂-directed

current that will be present in a spiral. Using (3) and (4), φ is found as a function of ρ,

φ = w(ρ) =

N∑

n=0

2πan
I

∫
Fn(ρ)dρ . (5)

Expressing φ in this manner allows a spiral to be easily de�ned and optimized by adjusting

the basis function coe�cients, an.
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2.1.2 Coil Magnetic Field

Using the Biot-Savart law and (3), the magnetic �eld, ~H, of an annulus of current can be

written as

~H(~r) =
N∑

n=0

an

∫ ρmax

ρmin

∫ 2π

0

Fn(ρ′)ρ′φ̂× (~r − ~r ′)
4π|~r − ~r ′|3

dφ′dρ′ =

[
a0 a1 . . . aN

]

︸ ︷︷ ︸
a>




~ξ0(~r)

~ξ1(~r)

...

~ξN (~r)




︸ ︷︷ ︸
ξ(~r)

, (6)

where the observer is at a position, ~r, and where ~r ′ = ρ′ρ̂ + z′ẑ. Coordinate variables

relating to sources are denoted by primed variables. In this particular case, z′ = −δ for the

transmit coil, and z′ = 0 for the receive coil. This expression can be written as a product

of a and ξ, where the vector a contains basis function coe�cients, and ξ contains the pre-

computed integral. Pre-computing the integral in (6) signi�cantly reduces the complexity

of the problem. The coe�cients, a, can be adjusted using an optimization algorithm to

produce the maximum possible �eld.

2.1.3 Calculation of coil energy

When a system of two coils is optimized, both the energy stored in the magnetic �eld of a

single coil and the mutual energy of two coils must be constrained. The energy of a single

coil with magnetic �eld, H, can be expressed as [56]

Ws =
µ0

2

∫

V
H2dV , (7)

where µ0 is the permeability of free space. Similarly, the mutual energy of a pair of spiral

coils with �elds of ~HTX and ~HRX can be expressed as [56]

Wm = µ0

∫

V

~HTX · ~HRXdV . (8)

In order to use Ws and Wm in an optimization routine, these energies must be written

in terms of the coe�cients of basis functions, as shown in Appendix A. Let a represent the

coe�cients of basis functions for the transmit coil current density and b the receive coil

coe�cients. Then the mutual energy of the transmit and receive coils can be shown to be
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Wm = b>Ma , (9)

where M is the mutual inductance matrix between the currents represented by the transmit

and receive coil basis functions. The energies stored in both loops are computed analogously

to Wm as

WTX =
1

2
a>LTXa , (10)

WRX =
1

2
b>LRXb , (11)

where LTX and LRX are the inductance matrices between the currents expressed by the

basis functions for the transmit and receive coils, respectively.

2.1.4 Coil energy and coupling factor

As a metric for evaluating the mutual coupling, the coupling factor, c, is used. The coupling

factor is normally de�ned in terms of the mutual inductance, M , between the coils and the

self inductances, LTX and LRX of the coils. However, the coupling factor may be written in

terms of the energies stored in the �elds of the transmit and receive coils as

c =
M√

LTXLRX
=

Wm

2
√
WTXWRX

. (12)

As can be seen, minimizing the mutual energy, Wm, minimizes the coupling factor.

2.1.5 Received Voltage

The transmit coil creates a time-varying magnetic �eld, ~HTX, that induces a dipole mo-

ment, ~M , on a target near the coil. The dipole moment is related to ~HTX by its magnetic

polarizability dyadic, ¯̄m, with units of m3: ~M = ¯̄m · ~HTX. The dipole moment induces an

open-circuited voltage, VRX, at the terminals of the receive coil that can be computed using

reciprocity as in equation (6) of [62],

VRX =
−jωµ0

IRX

~M · ~HRX . (13)

~HRX is the �eld that would be produced if the receive coil were driven by a current of IRX.
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Substituting the expression for ~m into (13) gives an equation for the open-circuit voltage

of the receive coil in terms of the transmit and receive coil �elds, the receive coil current,

and the magnetic polarizability dyadic of the target,

VRX =
jωµ0

IRX

~HRX · ¯̄m · ~HTX . (14)

Since the current is simply related to the inductance and the stored energy by IRX =
√

2WRX
LRX

,

(14) becomes

VRX =
jωµ0

√
LRX√

2WRX

~HRX · ¯̄m · ~HTX . (15)

In this optimization, both LRX and WRX are constrained to be constants. Also, the �eld is

optimized on the z-axis where the magnetic �elds of both coils are entirely z-directed. Thus,

a reasonable measure of the possible value of VRX can be found by making ¯̄m proportional to

the identity dyad. With these simpli�cations, VRX is simply proportional to the dot product

of the transmit and receive coil magnetic �elds,

VRX ∝ ~HRX · ~HTX . (16)

2.2 Optimization

The operation of maximizing the voltage in the receive coil has been shown to be proportional

to maximizing the dot product of the transmit and receive coil magnetic �elds, which is

de�ned as the objective function,

O = ~HRX · ~HTX . (17)

O may be computed e�ciently using (6) and can be viewed as a measure of the sensitivity

of the coils. Similar measures of the sensitivity are de�ned in [11, 55]. The problem has

been written in such a manner that it may be primarily solved by a two-stage, iterative

optimization procedure. The �outer� optimization is a standard nonlinear minimization

algorithm that performs an operation analogous to

a = arg max
a∈RN

{ ~HTX(a) · ~HRX(b)}, subject to: WTX = 1 , (18)

which attempts to �nd an a such that the objective function, O, is maximized. This opera-

tion also constrains the energy stored in the transmit coil to be one so that the currents will
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be bounded. This constraint is imposed by normalizing the initial transmit current density

function coe�cients, ag, so that the transmit coil energy must always be one,

a =
ag√

1
2ag

>Tag

. (19)

In addition to simplifying the implementation of the optimization algorithm, this normal-

ization also reduces the degrees of freedom by one.

During each iteration of (18), the following �inner� optimization is performed,

b = arg max
b∈RN

{| ~HRX(b)|}, subject to: WRX = 1,Wm = 0 . (20)

In this �inner� optimization, the maximum �eld of the receive coil at the chosen point is

found, with the constraints that the energy stored in the receive coil be one to bound the

currents and the mutual energy of the transmit and receive coils be zero. Other constraints,

such as constraining the moment of the receive coil, could also be added. The operation in

(20) must be performed on each iteration of (18) because the mutual energy is calculated

using a. Most importantly, (20) is convex, so it guarantees that the solution is a global

maximum. It also may be performed very quickly when formulated as a convex optimization

problem, which was speci�ed using the Matlab package CVX [18,19].

2.3 Spiral Conversion

This optimization procedure is designed to optimize the current density on two annuli of

current, such as those on the left side of Figure 4, and thus it does not work perfectly for the

desired spiral coils (right of Figure 4). Therefore, if the annuli are optimized for a speci�c

separation, δ = δa, and subsequently made into coils using (5), the coupling factor of the

annuli will null at δ = δa. However, the coils will exhibit a non-negligible coupling factor

when their separation is δa. It was found empirically that slightly adjusting the spacing

of these same spiral coils to a di�erent separation, δ = δs, allows the coupling factor to

be nulled. If a downhill simplex method�where each iteration requires performing the

preceding optimization upon annuli and then converting them to spirals�is used, annuli

can be found with a separation of δa that yield spirals with a nulled coupling factor at a

desired coil separation, δs. The algorithm converges within a few iterations because the
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initial error in the position of the null is not great, and a set of coils with the correct spacing

is obtained.
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CHAPTER III

OPTIMIZATION OF WIRE-WOUND SPIRAL COILS

With the basic metrics and optimization procedure previously de�ned in Chapter 2, coils

can be optimized and built. The �rst pair of coils detailed in this work was built before

the optimization procedure was amended to account for the approximation made when

transforming the annuli of current to spiral coils. As a result, the coils do not null at the

proper spacing. They are singled-sided coils that served as a proof-of-concept to verify that

the design and optimization procedures worked as intended and could be transferred to a

physical design. The second set was designed as double-sided coils manufactured on printed

circuit boards (PCBs) after this procedure was introduced.

3.1 Basis functions and spiral winding theory

Both coil pairs were optimized using a polynomial basis of order one, F (ρ) = a0 + a1ρ, to

describe the current density Jρ(ρ). Using (5) and the polynomial basis, φ can be found as

a function of ρ for our test cases,

φ(ρ) =
2π

I

(
a0ρ+

a1ρ
2

2

)
, (21)

as is explained in detail in Appendix D. As noted previously, other basis functions could

be chosen. Choosing an order of one instead of higher orders constrains the solution space,

which simpli�es the outer optimization in (18). Because the outer optimization is not convex,

there is the danger of �nding a local rather than global maximum. Thus, reducing the size

of the vector a decreases the possibility of a non-optimal solution and increases the speed

of the algorithm. Choosing a simple set of basis functions also limits the complexity of the

current distribution on the annulus, thereby limiting the complexity of the spiral, which

makes winding the spiral simpler.

In addition to limiting the complexity of the coil with the choice of basis functions, the

value of I can be used to adjust the winding density. A larger I will decrease the density,
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and vice versa. Winding density is a concern, particularly for the transmit coil, which may

carry a relatively high amount of power. A desire to increase the number of turns to raise

the coil inductance must be balanced with a need for low resistance, which, in the case of a

PCB requires wider traces and thus a lower winding density.

3.1.1 Experimental Setup

The experimental setup for measuring both the magnetic �eld produced on axis by each

coil and the coupling factor between the two coils at low frequencies is relatively simple. To

measure the �eld, Hcoil, produced by one of the coils, the coil was driven by the RF output

of a network analyzer. A 1Ω resistor was connected in series with the coil and connected

to the reference channel on the network analyzer to serve as a measure of the current, Icoil,

�owing in the coil. A second, much smaller coil was connected to channel A of the network

analyzer and used as a �eld probe. By manually calibrating the �eld probe with a gauss

meter and then measuring Va/Vr, the voltages measured by the network analyzer on channels

A and R, respectively, the quantity Hcoil/Icoil could be calculated. The coupling factor was

measured in a similar manner by replacing the small �eld probe with the receive coil. The

mutual inductance of the coils could then be related in a simple manner to the quantity

Va/Vr.

A custom front-end for the network analyzer was used to measure the coupling over a

range of frequencies. The custom interface is impedance-matched to the analyzer and has

a low noise �gure as well as a high input impedance to lessen the impact of instrument

loading.

3.1.1.1 Comparison Coils

The optimized spiral coils are compared with two commonly used transmit/receive coil

pairs - a double-D coil pair (Figure 5(a)) and a dipole/quadrupole coil pair (Figure 5(b)).

Both comparison coil pairs have outer radii equal to the radii of the spiral test coils. The

cross sectional areas of the wires used in the single turn comparison coils are equal to the

combined cross sectional areas of the multiple turns of wire used in the spiral test coils.

These comparisons are by no means perfect, but they serve to show that the optimization
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(a) Double-D. (b) Dipole/quadrupole.

Figure 5: Comparison coil system geometries.

has promise to create coils better than those designs currently in widespread usage. A much

more involved treatment of fairly comparing coil designs whose physical parameters have

not been �nalized is provided in Chapter 5.

3.1.2 Single-Sided Coils

The �rst prototype system presented is a single-sided coil design, meaning that each coil

consists of a spiral with turns existing in only one plane. This system was designed using the

optimization procedure described in (18) and (20) and did not use the additional algorithm

introduced to adjust for the coupling factor null position error caused by approximating an

annulus of current as a spiral. Consequently, a design null location of 1 cm di�ered from

both the theoretical location after conversion to a spiral, which is calculated with Neumann's

formula, and the experimentally measured null location. Measurements for this system were

taken at 3 kHz.

3.1.2.1 System Geometry

The single-sided coil parameters are ρmin = 8.1 cm, the minimum radius, ρmax = 12.6 cm,

the maximum radius, δ = 1 cm, the separation between the two coils, and zopt = 50.0 cm,

the point on the z-axis at which the objective function, O, was maximized.
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(a) Transmit coil. (b) Receive coil.

Figure 6: Optimized coils for use in a single-sided coil system with inter-coil spacing of 1.0
cm.

3.1.2.2 Theoretical Results

After optimization, the coil designs in Figure 6(a) and Figure 6(b) are the result. Note the

reversal of the winding direction in each coil; this reversal is necessitated by the desire for

both minimal mutual coupling between the two coils and positive dipole moments.

Figure 7 shows the overall theoretical responses of the optimized spiral system, a comparably-

sized dipole-quadrupole system, and comparably-sized double-D coil system, each with a

stored energy of one in both coils. The optimized spiral system shows an improvement

of 14.5 dB in the product of the magnetic �eld strength of the transmit and receive coils

over the dipole-quadrupole system at the optimization point of 0.5 m on the z-axis and an

improvement of 1.5 dB over the double-D system. It should be noted that the product of

the magnitudes of the transmit and receive coil magnetic �elds have been used rather than

the dot product. This gives a reasonable metric for comparison with the quadrupole/dipole

system, which has perpendicular transmit and receive magnetic �elds on axis resulting from

the quadrupole coil. The objective function will be improved upon in the characterization

of coils in later chapters.
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Figure 7: A theoretical comparison of the product of the magnitude of the magnetic �elds
from the single-sided coil pair along the z-axis with a more traditional dipole/quadrupole
pair and a double-D coil pair. All structures have equal outer radii.

Table 1: Coil Inductance
Inductance Calculated Measured

LTX 28.97 µH 29.33 µH
LRX 25.29 µH 26.06 µH

3.1.2.3 Experimental Results

The optimized coil pro�les were manufactured as grooves in a 3D printed composite form,

and 20 by 40 mil transformer wire was then wound into the grooves by hand to create the

coils. Portions of the transmit and receive coils created in this manner are shown in Figure

8. As a method of verifying the accuracy of the coils, their self inductances were measured

and compared with theory. The measured inductances deviate by no more than 3% from

their theoretical values (Table 1). The on-axis, normalized �eld strength of the optimized

coils was measured at 3 kHz in the laboratory and then compared with theory (Figure 9).

The measured �elds on axis agree with theory to within 6%.

As a �nal veri�cation of the agreement of the theory and �nal coils, the coupling factor, c,

between the optimized transmit and receive coils at various separations was both calculated

and measured (Figure 10). As previously mentioned, the desired location of the coupling
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(a) Transmit coil. (b) Receive coil.

Figure 8: Portions of the single-sided transmit coil (a) and the single-sided receive coil (b)
constructed using a composite form and 20 x 40 mil transformer wire.
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Figure 9: Experimentally measured �elds of single-sided transmit and receive coils com-
pared with theory.

factor null does not coincide with the theoretical null calculated using Neumann's formula.

The desired null is at a separation of 1 cm, while the null calculated from the spirals in

Figures 6(a) and 6(b) is actually at 8.1mm. The theoretical and experimental coupling

factor measurements di�er by a maximum value of 6.6× 10−3 and the experimental null is

at approximately 8.2 mm of separation, which is 0.1 mm from null at 8.1 mm calculated

from theory, and 1.8 mm from the desired null at 1 cm.

3.1.3 Double-Sided PCB Coils

3.1.3.1 System Geometry

This pair of coils was initially designed as a pair of single sided coils, which were then

later transformed into double-sided coils. The single-sided coil parameters are the minimum

radius, ρmin = 8.1 cm, the maximum radius, ρmax = 12.6 cm, the separation between the

two coils, δ = 7.5 mm, and zopt = 50.0 cm, the point on the z-axis at which the objective

function, O, will be maximized.

3.1.3.2 Theoretical Results

The coil designs in Figure 11 are the result of the optimization. Like the �rst pair of coils,

the windings reverse direction to achieve both minimal mutual coupling between the two
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Figure 10: Experimentally measured coupling factor of single-sided coil pair compared
with the coupling factor computed with Neumann's formula and the design value.

coils and positive dipole moments.

As can be seen in Figure 6, the �rst set of coils designed has feeds that are not entirely

on the exterior of the coil. Their inductances are also lower than desirable for use in some

sensor systems. Both problems can be solved by making both the transmit and receive coils

double-sided. Thus, for example, the single-sided transmit coil produced by the optimization

in (18) was mirrored, creating two identical, but y-coordinate inverted coils. These were then

spaced apart by 63 mils and connected in series, creating a system with two double-sided

coils. Any error in the coupling factor null due to the double-sided coils was removed by

the operation that adjusts for the similar coupling factor error encountered with single-sided

coils.

Figure 12 shows the overall theoretical responses of the optimized spiral system, a

comparably-sized dipole-quadrupole system, and comparably-sized double-D coil system,

each with a stored energy of one in both coils. The optimized spiral system shows an im-

provement of 16.0 dB in the product of the magnetic �eld strength of the transmit and

receive coils over the dipole-quadrupole system at the optimization point of 0.5 m on the

z-axis and an improvement of 2.4 dB over the double-D system. As with the single-sided

coils, the product of the magnitudes of the transmit and receive coil magnetic �elds has
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(a) Transmit coil. (b) Receive coil.

Figure 11: Optimized spiral-wound coils for use in a double-sided coil system with inter-coil
spacing of 7.5 mm.

been used rather than the dot product.

3.1.3.3 Experimental Results

The optimized coils were subsequently manufactured on two-sided printed circuit boards

of FR-4 with 3 oz copper. Portions of these two coils are show in Figure 13. The trade-

o� between the winding density and the width of the traces is apparent on the transmit

coil in Figure 13(a). To decrease the resistance of the transmit coil and allow it to carry

more current, the trace widths are variable, widening from 30 to 80 mils as the traces

become further apart. This technique was not used on the receive coil due to lower current

requirements. As a method of verifying the accuracy of the coils, their self inductances were

measured and compared with theory. The measured inductances deviate by no more than

3% from their theoretical values (Tables 2 to 5). The on-axis, normalized �eld strength of

the optimized coils was also measured at 100 Hz in the laboratory and then compared with

theory (Figure 14). The measured �elds on axis agree with theory to within 3%.

As a �nal veri�cation of the correctness of both theory and coil designs, the coupling

factor, c, between the optimized transmit and receive coils at various separations was both

calculated and measured (Figure 15). The theoretical and experimental coupling factor

measurements di�er by a maximum value of 7.4 × 10−3 and null at approximately 7.4 mm
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Figure 12: Theoretical comparison of the product of magnitude of the magnetic �elds from
the double-sided spiral coil pair along the z-axis with a more traditional dipole/quadrupole
pair and a double-D coil pair. All structures have equal outer radii.

(a) Transmit coil. (b) Receive coil.

Figure 13: Portions of the the double-sided coils printed on PCBs using 3 oz copper.
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Figure 14: Comparison of the simulated magnetic �eld of the double-sided coil pair with
the measured �eld of the physical system.

Table 2: TX PCB Theory

PCB L (µH) R (Ω)

Theory 317.07 3.18

of separation, which is 0.1 mm from the desired separation of 7.5 mm.

Table 3: RX PCB Theory

PCB L (µH) R (Ω)

Theory 333.75 20.98
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Figure 15: Coupling factor measured for varying separations of the double-sided coil pair
compared with the coupling factor computed using Neumann's formula.

Table 4: TX PCB
PCB L (µH) R (Ω)

A 317.7 3.62
B 317.8 3.72
C 317.7 3.68
D 317.8 3.59

Table 5: RX PCB
PCB L (µH) R (Ω)

A 341.7 24.08
B 341.4 23.08
C 341.4 22.06
D 341.9 25.07
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CHAPTER IV

SPIRAL COILS AND RESONANCE

The coils designed and built in the preceding chapter showed that the optimization could

produce viable coils, but there were several issues. The coils exhibited non-negligible drift

when connected to the Georgia Tech EMI system as a result of uneven heating of the

transmit coil caused by the variable trace widths. This led to the creation of a new pair

of coils optimized in the same manner as before. However, the transmit coil is designed to

use magnet wire with a rectangular cross section that was hand-wound in a polycarbonate

form. The receive coil was designed on a PCB as before.

After the new coils were manufactured, an investigation of resonances within the coils

was undertaken.

4.0.1 Coil Geometry

The transmit coil was wound with 0.48 by 1.93 mm rectangular magnet wire on both sides

to reduce its resistance. The wire on either side is spaced apart by 0.5 mm, creating a total

coil thickness of approximately 4.4 mm. The wires are held in place by grooves machined

into a polycarbonate form. The receive coil was produced on a 1.6 mm thick double-sided

FR-4 PCB with 3 ounce copper traces that are 0.254 mm wide.

Both coils have an inner diameter of 17.78 cm and an outer diameter of 26.67 cm. The

coils were designed to have a nulled coupling factor at a center-to-center separation, δ,

(because the coils are of non-negligible thickness, the center of a coil was de�ned as midway

between the two sides for simplicity) of 9.5 mm. The coils were optimized for maximum

on-axis sensitivity at z = 53.3 cm. The coils are arranged as in Figure 4, with the transmit

coil lying in the z = 0 plane.

After optimization using the method described in Section 3, coils with the wire paths

shown in Figure 16 on either side were the result. Figure 17(a) and Figure 17(b) are pictures

of the coils after production.
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(a) Transmit coil. (b) Receive coil.

Figure 16: Coil geometries.

4.1 Results

4.1.1 Coil comparisons

The optimized coils are �rst compared with two common coil types�double-D (Figure 18(a))

and dipole/quadrupole (Figure 18(b)) coils�used in EMI systems. Both pairs of coils have

outer radii equivalent to the radii of the optimized coils, and the energy stored in all coils is

normalized to a value of 1 J for purposes of comparison.

The sensitivity of the optimized coil pair is then compared to the sensitivities of the

double-D and quadrupole/dipole coils using the above models and the Biot-Savart law. In

Figure 19, the spiral coils show an improvement in sensitivity of 2.5 dB over the double-D

coil pair and 15.4 dB over the dipole/quadrupole coil pair at the optimization point of 53.3

cm.

4.1.2 Experimental measurements

To verify that the physical coils match the design, the self inductances and the resistances

of the coils were also measured and compared with theory. The measured inductances (LTX

= 309 µH and LRX = 365 µH) deviate from theory by less than 5%, and the measured

resistances (RTX = 0.55 Ω and RRX = 22.8 Ω) deviate by less than 8% from theory.

The individual on-axis magnetic �elds of the transmit and receive coils were measured

at 1 kHz and then normalized to the current �owing in the coils. These �elds, shown in

Figure 20, exhibit good agreement with the �elds calculated using the Biot-Savart law.
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(a) Transmit coil. (b) Receive coil.

Figure 17: Photos of half of the transmit and receive coils produced using wire wound in
polycarbonate and on a PCB, respectively.

(a) Double-D coil. (b) Dipole/quadrupole coil.

Figure 18: Comparison coil geometries.
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Figure 19: Comparison of the sensitivities of the optimized coil pair, a double-D coil pair,
and a quadrupole/dipole coil pair, all with equal stored energy and outer radii.

Next, the coupling factor of the coils was measured over a range of spacings at 1 kHz

and compared in Figure 21 with the coupling factor computed using Neumann's formula.

The coils were designed to null at 9.5 mm center-to-center spacing, as marked by the dashed

black lines in Figure 21. The measured null is at approximately 9.4 mm. The resolution

of the measurement system is approximately 1.0 mm, so, as with the �eld comparison, this

agreement is very good. It can be concluded that these coils match the coils that were

designed.

4.2 Capacitive Loading

These coils were designed to be used with a system that operates at frequencies up to

approximately 100 kHz, so the mutual coupling over a wide band is of interest. Ideally, the

mutual coupling would be �at across all frequencies, but due to various coupling mechanisms,

it is not. For simplicity, the e�ective mutual inductance,Meff , which, by (12), is proportional

to the coupling factor will be used. Meff is de�ned in terms of the voltage at the output of

the receive coil, VRX , and the current �owing into the transmit coil, ITX , as
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Figure 21: Coupling factor of coils, both measured and computed. The intersection of the
dashed lines indicates the design value.
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Figure 22: A comparison of the e�ective mutual inductance of the spiral coils with a
quadrupole/dipole pair.

Meff =
VRX
jωITX

. (22)

The coupling of the coils was �rst nulled at 10 kHz, and then the e�ective mutual

inductance was measured from 10 kHz to 1 MHz. Although the band of interest only reaches

to 100 kHz, there are resonances at higher frequencies that increase the in-band coupling.

This measurement is shown in Figure 22, where it is compared with the measured e�ective

mutual inductance of a quadrupole/dipole coil of equal outer diameter. Ideally, the e�ective

mutual inductance would be a �at line, but, due to the resonances at 500 kHz and 600 kHz,

it is not. Therefore, the resonances are problematic. The e�ective mutual inductance of the

spiral coils is approximately 20 dB higher than the quadrupole/dipole coils. This is partially

due to inaccuracies in the coil spacing and partially due to the resonances.

The transmit and receive coils are both self resonant, with the 500 kHz resonance result-

ing from the transmit coil and the 600 kHz resonance from the receive coil. There is also a

much higher resonance at 1.5 MHz from the receive coil that is not shown. These resonances

result from capacitive loading of the coils. For example, because the sides of the receive coil

are close together (less than 1.6 mm), there is a signi�cant amount of capacitance between
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the traces on either side of the coil. The transmit coil has a similar problem, though it only

has one resonance.

4.2.1 Circuit model

The receive coil can be viewed as three inductors, where the windings between the winding

reversal and the outer edge of the coil on one side is one inductor of value L2, the same

windings on the other side form another inductor of equal value L2, and the windings

between the reversal and the inner edge of the coil on both sides are lumped into a single,

third inductor with value L1. The manner in which the coil is broken up into lumped

elements is shown in Figure 23(b). Because the transmit coil has so few turns between the

reversal and the outer edge of the coil, it can be viewed as a single inductor with value LT

(Figure 23(a)).

These ideas can be transformed into a lumped-element circuit model, as seen in Figure

24, with a few capacitors representing the distributed capacitances within the coils. The

transmit coil is shown on the left, and the receive on the right, with the output of the

transmit coil being across the resistor, R. For clarity, this circuit is slightly simpli�ed from

the circuit used for calculations. The resistances of the coil windings and the e�ects of

coupling between all inductors have been omitted from the �gure, though they are included

in the model. Note also the dot convention, which indicates that the inductor L1 is wound

in the opposite direction of L2. It should be clear from this circuit model that the reversal

of the receive coil causes its two resonances.

The lumped-element model can be used to approximate the frequency response of the

coils. There are several important parameters to consider when analyzing the frequency

response of the coils. The curve from 10 kHz to the �rst resonance is dependent upon both

the capacitances, C1 and CT , as well as the coil spacing. The self and mutual inductances

of all the inductors may be calculated using Neumann's formula, and the resistances can

be calculated as well. However, there is not a simple method of calculating the values of

the lumped capacitors that are used to model the distributed capacitance within the coils.

Therefore, the nelder-mead simplex method was used to �t the model to the measured data
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by adjusting the coil spacing and capacitance values. This curve �t, shown in Figure 25

yields a spacing of approximately 9.4 mm and capacitor values of C1 = 286 pF, C2 = 209

pF, and CT = 212 pF.

The model can be veri�ed to be an approximation of reality by checking that changing

the value of C1 by soldering a 300 pF capacitor in parallel with the inner windings changes

the resonance equally in both the model and the measurements. As can be seen in Figure

26, this is the case. The lowest resonance moves from 500 kHz to 425 kHz in both the

model and measured data. The same check is performed with a 120 pF capacitor, and the

data graphed in Figure 27. This moves the lowest resonance to approximately 470 kHz for

both the model and measurement. The curves do not match exactly between the model and

measurements for either case, but this is not unexpected. The spacing of the coils partially

controls this curve, and the spacing has changed minutely between measurements because

the coils must be disassembled to add the capacitor. Figure 28 shows the change in the

model over a range of three spacings to illustrate this e�ect. Varying the spacing by only

0.05 mm causes a great di�erence in the depth of the null at low frequencies.

With the caveats that small changes in spacing can greatly a�ect the low-frequency null

and that the use of lumped-elements is imperfect, it is claimed that the model is adequate

for predicting and understanding the behavior of these coils because the model correctly

predicts the movement of the resonances resulting from the addition of capacitors.

4.2.2 Resonance cancellation

It has been shown that changing the value of C1 a�ects the location of the lowest resonance.

Now, consider the e�ect of C1 within the simple circuit model. With C1 in the model, the

current through either inductor labeled L2 will not be equal to the current through L1. If C1

is removed, this should remove a resonance and make the current through L2 equal to the

current through L1. Figure 29 shows that after removing C1, the e�ective mutual inductance

stays �at past 100 kHz. Also, at 100 kHz, Meff has been reduced by 24 dB over the model

of our coils that includes C1. Thus, not only has removing C1 removed a resonance, but it

has also greatly reduced the in-band e�ects of the mismatch in the currents through L1 and
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L2 on the e�ective mutual inductance of the coils.

It is now postulated that the negative e�ects of C1 can be mitigated by adding the ca-

pacitors C3 to the coil, as shown in Figure 30. In theory, these capacitors could make the

currents through L1 and L2 more equal. Because this model is very simple, exactness is not

expected, but it should provide a rough idea as to the behavior of the coil with capacitors

added. If the value of C3 is swept in the model, Figure 31 results. Thus, the model predicts

that the addition of capacitors in parallel with the outer receive coil windings could reduce

the in-band e�ects of C1 signi�cantly. At 300 kHz, capacitors of 79 pF reduce the e�ective

mutual inductance by 22 dB, and at 100 kHz, there is a 13.7 dB reduction.

As a quick test of this theory, the coils were reassembled and then the mutual coupling

nulled with no added capacitors. Then, without disassembling the coils, several di�erent

capacitors (78 pF, 150 pF, and 220 pF) were soldered across the outer coil windings on both

sides. Figure 32 shows the results. The design value of 79 pF does not reduce the mutual

inductance as expected, but it does have an e�ect. Cursory experimentation with other

capacitor values on hand illustrates that improvements can be made. At 100 kHz, 220 pF

capacitors lower the e�ective mutual inductance of the coils by 11.8 dB, and at 60 kHz, the

mutual inductance is reduced by 12.3 dB.

With some �ne tuning, this may be an e�ective method for reducing the e�ect of reso-

nances within the receive coil. However, if this does not prove to be as e�ective as hoped,

other avenues will need to be explored to reduce capacitive coupling within the coils.
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(a) The transmit coil, where LT encompasses
both sides of the coil.

(b) The receive coil, where L1 encompasses
the corresponding turns on both sides of the
coil. There are two inductors with the value
L2, each representing turns on one side.

Figure 23: Illustration of the conversion of coils to lumped inductors.

Figure 24: Lumped element model of the transmit coil (left) and receive coil (right). The
output of the receive coil is across R, a 14 kΩ resistor in the measurement equipment. The
resistances of the inductors and the dependent sources that result from mutual coupling
between all inductors have been omitted from the diagram for simplicity.
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Figure 25: Comparison of the model for the e�ective mutual inductance of the coils to the
measured data.
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Figure 26: The model and physical coil with a 300 pF capacitor in parallel with C1. The
measurement without an additional capacitor is included for comparison.
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Figure 27: The model and physical coil with a 120 pF capacitor in parallel with C1. The
measurement without an additional capacitor is included for comparison.
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Figure 28: Model of the e�ective mutual inductance for three di�erent coil spacings. The
middle spacing is the result of the original model �t. The original measurement that the
model was �tted to is also included for comparison.
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Figure 29: The e�ect of removing C1 from the model.

Figure 30: Circuit model of the transmit coil (left) and receive coil (right). The output of
the receive coil is across R, a 14 kΩ resistor that is part of the measurement system.
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Figure 31: Illustration of the e�ect of di�erent values of capacitor C3 on the model.
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Figure 32: E�ective mutual inductance of physical coils with various capacitors placed
across the outer receive coil windings.
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PART 2

Comparison and Optimization of

Traditional, Wire-Wound Coil Geometries
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CHAPTER V

NORMALIZED METRICS FOR WIRE COILS

The work in previous chapters has dealt with creating coil heads through various optimiza-

tion procedures. During this work, it became apparent that adequately comparing di�erent

coil head designs to one another is cumbersome because many factors determine how well

di�erent coil heads perform when constructed and attached to a system. For example,

coil dimensions, wire diameters, transmit power, ampli�er noise, and winding geometry all

in�uence both target sensitivity and soil sensitivity.

Metrics are needed to compare coil heads based only upon their winding geometry, so

creating normalized target and soil sensitivity metrics that remove these extraneous factors

is desirable. It is also important that the metrics be directly comparable and extensible to

the stream function coil heads so that the metrics may be used in future work on optimized

coil heads.

There are not any existing methods of comparing coil heads for EMI systems that have

these properties, nor does there appear to be any literature that compares coil heads fairly

while accounting for both target and soil sensitivity using normalized metrics. For example,

there are papers that design and compare EMI coils based on their ability to produce uniform

�elds and based on the behavior of their �elds at speci�c locations [2, 3]. There are also

papers that optimize and compare coils for maximum power transfer or to create optimal

air-core magnetometers [28, 38]. Finally, work exists that compares various MRI coils and

also work that compares a few common EMI coil types with respect to their performance in

soil but not including target sensitivity [12, 13, 71]. None of these provides the overarching

normalized metrics we need for comparing our optimized coils or a complete optimization

and analysis of the performance of some of the coil types most commonly used in EMI

systems.

After the creation of normalized coil metrics, yet another problem arises�both the target
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and soil sensitivity are multi-dimensional. Target sensitivity varies as the target is moved

relative to the coil head, and soil sensitivity generally varies with the height of the coil head

above the soil and the tilt of the head with respect to the soil. The multi-dimensionality

must be reduced to ease coil head comparisons.

In the following sections, normalized metrics are developed. The metrics are then used

to optimize and compare double-D, dipole/quadrupole, and concentric coil heads to one

another in Chapter 6.

TX RX

target

soil

air

Figure 33: Two-coil head illuminating a target buried in soil.

5.1 Target Sensitivity

As stated before, when a conductive target is placed within the �eld produced by the trans-

mit coil, energy is coupled between the transmit and receive coils through the target, re-

sulting in an induced voltage at the terminals of the receive coil (Figure 33). This voltage

can be�and often is�taken as a measure of target sensitivity, and is what was used when

creating the spiral-wound wire coils.

Using reciprocity, the induced voltage can be written as

Vr = jωµ0ITX

~HRX · ¯̄m · ~HTX

IRXITX
, (23)

where ¯̄m is the magnetic polarizability dyad of the target1, ITX is the current �owing in

the transmit coil, ~HTX is the transmit �eld at the target location, and ~HRX is the �eld

that would be produced at the target location if the receive coil were driven by the current

IRX [62]. A comparison between coils using the expression in (23) is not as meaningful as it

1The target is assumed to be representable by the dipole model, and the �elds across the target are
assumed to be relatively uniform.
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may appear. Vr cannot simply be normalized by jωµ0ITX to give a fair comparison between

two di�erent coil head designs.

5.1.1 Power Dissipation and Thermal Noise

The quantities ~HTX and ~HRX contain information about the geometries of the transmit and

receive coils, respectively. However, the geometry can also include multiple turns of the

same shape. For a given current, these turns e�ectively increase the �eld compared to a

single turn, i.e. a dipole coil with multiple, identically shaped turns appears better than a

dipole with a single turn if only Vr is considered. So, to fairly compare two coil heads, their

sensitivities can be normalized by their lengths (e�ectively removing the advantage of extra

turns).

The resistance of the coils is an important parameter that must be accounted for correctly

because it directly impacts the power consumption of the transmit coil and the noise response

of the receive coil. All else being equal, if one transmit coil dissipates less power than another,

then the coil that heats less is superior. Similarly, receive coils that produce small amounts

of thermal noise are desirable. Ideally, the dissipated power or thermal noise should be kept

constant between coil heads that are being compared.

The resistance of a coil is easily computed if the current is assumed to be uniform in the

wires:

R =
l2

σV
, (24)

which in this form consists of the conductor length, l, the volume of the conductor, V , and

the conductivity, σ. Increasing the conductivity or conductor volume and decreasing the

length will decrease the dissipated power or thermal noise voltage of a coil, and vice versa.

These concepts can be introduced into the target sensitivity calculations. First, consider

the power dissipated by the transmit coil,

PTX =
l2TXI

2
TX

σVTX
. (25)

Rearranging (25) results in an expression for the current,

ITX =

√
PTXσVTX

lTX
, (26)
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which can be substituted into the ITX term in the numerator of (23). ITX can be assumed to

be positive and real without loss of generality and is also assumed to be uniformly distributed

in the wire.

Next, consider the expression for the the thermal noise voltage of the receive coil,

|Vn| =
√

4kTRRX∆f , (27)

where k is Boltzmann's constant, T is the temperature, RRX is the resistance, and ∆f is

the bandwidth. Substituting the resistance of the receive coil, RRX = l2RX/σVRX into the

expression for the thermal noise voltage of the receive coil gives

|Vn| =

√
4kT∆fl2RX

σVRX
. (28)

It should be noted that only the thermal noise of the receive coil is considered in this

paper. Other forms of noise such as environmental noise, ampli�er noise, and motion induced

noise are not considered.

5.1.2 Creating a Normalized Sensitivity

The transmit current expression from (26) can be substituted into the induced voltage

equation, (23), but including the thermal noise voltage requires a ratio. This ratio is the

SNR at the terminals at the receive coil, and it can be calculated by combining (23), (26),

and (28) as

|Vr|
|Vn|

=
ωµ0σ

√
PTXVRXVTX√
4kT∆f

~HRX · ¯̄m · ~HTX

IRXlRXIRXlRX
. (29)

Note that the terms ~HTX/ITX and ~HRX/IRX are independent of the currents.

Quantities such as the transmit power, the volumes of the conductors, receiver bandwith,

etc. in�uence the SNR, but they are not characteristics of winding patterns. It is therefore

desirable to normalize the SNR by everything on the left half of (29). The remaining

expression is multiplied by the fourth power of the radius,2 r�though other characteristic

2Care must be taken in choosing the characteristic dimension as it has a strong e�ect on the normalized
sensitivity. For example, if square and round coils are being compared, choosing the radius of the round
coils is clear, but for the square coils, choosing the radius to the center of the side or the corner makes a
sqrt(2) di�erence in the radius. The sqrt(2) di�erence in the characteristic dimension results in a factor of
4 di�erence in the normalized sensitivity. The correct choice of the radius in this example depends on the
physical constraints desired for the coils. One choice is correct if the coils are constrained to �t into a square
and the other is correct if the coils are constrained to �t into a circle.
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dimensions could be chosen�to make the normalized sensitivity independent of coil and

system size (but not target size). This gives an expression for normalized target sensitivity,

ŜT = r4
~HRX · ̂̄̄m · ~HTX

IRXlRXITXlTX
, (30)

where the magnetic polarizability of the target, ¯̄m, has been normalized by its spectral norm:

̂̄̄m = ¯̄m/|| ¯̄m||. Note that the sensitivity is a function of the symmetry of the target. For this

work, ¯̄m is chosen to be the identity dyad, which represents an in�nitesimal, spherical

(rotationally symmetric) target.

5.2 Soil Sensitivity

Mineralized soil (soil where the magnitude of the magnetic susceptibility, χ, is nonzero)

will induce a voltage in the receive coil by changing the e�ective coupling between the

transmit and receive coils. This voltage3 can be a signi�cant problem if the soil is heavily

mineralized or the target is small or weakly conductive. Comparing the performance of coils

in mineralized soil is therefore important, so a normalized soil sensitivity metric will now be

developed.

The voltage induced in the receive coil as a result of energy coupled through the soil

between the transmit and receive coils can be written as

Vs = jωµ0ITX

∫

soil
χ
~HTX · ~HRX

ITXIRX
dV , (31)

where χ is the magnetic susceptibility of the soil, and under the Born approximation, ~HTX

and ~HRX are calculated in free space. This expression can be considerably simpli�ed by

recognizing that the method of images can be used and the Born approximation eschewed [8].

The integral can be written in terms of the mutual inductance, M̂
T̂X,RX

, between a transmit

coil that is mirrored about the air/soil interface and the receive coil [13]:

Vs = jωITX
χ

2 + χ
M̂

T̂X,RX
, (32)

where the soil is assumed to be homogeneous and isotropic.

3Highly conductive soils can also induce an unwanted voltage in the receive coil. However, a treatment
of the e�ects of conductive soils is beyond the scope of this paper.
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A cursory examination shows that (23) and (32) are similar. It is sensible to once again

substitute (26) into (32) and divide by (28), which gives the following expression,

|Vs|
|Vn|

=
ωσ
√
PTXVRXVTX√
4kT∆f

χ

2 + χ

M̂
T̂X,RX

lTXlRX
. (33)

Next, note that the mutual inductance can be written in terms of the coil �elds as

M̂
T̂X,RX

= 2µ0

∫

soil

~HTX · ~HRX

ITXIRX
dV , (34)

so (33) must be normalized by the factor

2µ0
ωσ
√
PTXVRXVTX√
4kT∆f

χ

2 + χ
(35)

to remove quantities that are not characteristics of the winding pattern and multiplied by

the characteristic dimension, r, in order to make the normalized sensitivity independent of

coil and system size. The result of these operations is the normalized soil sensitivity,

Ŝs = r
M̂

T̂X,RX

2µ0lTXlRX
. (36)

Note that the mutual inductance term can be calculated for arbitrary geometries easily using

Neumann's formula [36,56].

5.3 Optimization Parameters

The target sensitivity, ŜT, of each coil head varies spatially in three dimensions, and the

soil sensitivity, Ŝs, varies with both the height of the coil head above the soil and its tilt

relative to the soil. The dimensionality of these parameters must be reduced to help with

comparisons, with the caveat that the choices are somewhat arbitrary, though it is believed

that they are apt for the coils being analyzed.

5.3.1 Mean Target Sensitivity

The coil heads that are being compared are all designed to be handheld, two-coil heads

(with one transmit and one receive coil) that are intended primarily to be swept side-to-side

by an operator. In general, it is desirable to have a sensitivity pattern4 that is broad along

4Here we will consider the sensitivity �pattern� to be a quantity analogous to an antenna pattern that
describes how well the coil head detects a target�in this case a sphere
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the y-axis (down-track direction), while the pattern in the x-direction (cross-track) is less

important (see Figure 34)�in fact, a narrow cross-track pattern helps to improve target

localization. Finally, good depth performance is obviously of interest.

Therefore, there are three dimensions to consider: x (cross-track), y (down-track), and

z (depth). It is logical to calculate the sensitivity over a cube of some �nite portion of the

coil head's search region and then attempt to reduce the sensitivity pattern within this cube

to a manageable quantity.

Knowledge of the general pattern shapes is useful in determining metrics for these coils.

In particular, the double-D pattern is generally broad down-track and narrow cross-track

with the peak close to the origin. The pattern of a concentric coil head is rotationally

symmetric about the origin, and the pattern of a dipole/quadrupole peaks in the center of

the two quadrupole loops while nulling on the y-axis.

Therefore, for some coils, such as the double-D and the dipole/quadrupole, it is �rst

necessary to take the maximum of the sensitivity in the x-dimension of the sensitivity cube

because the pattern is not centered:

Ŝm (y, z) = max
x

(∣∣∣ŜT (x, y, z)
∣∣∣
)
. (37)

This reduces the sensitivity cube to a 2-D sensitivity matrix that is a function of y and z.

Next, to encourage a broad downtrack pattern, the geometric mean over 80%5 of the coil

head's maximum dimension (2r) in the y-dimension is taken:

Ŝgm (z) = geo_mean
y

(
max
x

(∣∣∣ŜT (x, y, z)
∣∣∣
))

. (38)

This results in a sensitivity metric that is a function only of z, reducing the 2-D sensitivity

matrix to a sensitivity vector. A geometric mean rather than a max or an arithmetic

mean is used because a broad pattern in the y-direction is desirable, and regions of poor

sensitivity within the sensitivity cube are given more importance by a geometric mean than

an arithmetic mean. For example, a single location with zero sensitivity will make the

geometric mean zero.

5An arbitrary choice, but one that we believe to be appropriate. A di�erent dimension could be chosen
depending upon the coil application.
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Ŝgm is a function of depth, so another geometric mean, Ŝggm is taken over Ŝgm�this time

in the z-dimension, reducing the sensitivity matrix to a scalar value�to create a volume

target sensitivity metric6.

5.3.2 Soil Sensitivity

Like the target sensitivity, the soil sensitivity has multiple dimensions�it varies as the coil

head is tilted relative to the soil (or as the surface of the ground becomes rough) and as

the height of the head above the soil changes. However, the worst case within the normal

range of soil heights and tilts over which the coils will be used is the most important. The

soil response of all three coil head types generally increases as they are brought closer to

the surface of the soil, but because coil heads are generally operated above a certain height

and because the soil response will be calculated at each height with the coils tilted, we have

arbitrarily chosen to calculate the soil response for the coil heads starting at 0.2r above the

soil. In addition to the minimum height that has been chosen, it makes sense to calculate

the soil sensitivity for various soil heights (hs) and tilts (tc) and then take the maximum over

all heights (0.2r < hs < 1.0r) and tilts (0 < tc < 10 degrees) within a reasonable range. The

rotational symmetry of the concentric head requires only one tilt angle while the double-D

and dipole/quadrupole heads require two angles each.

Finally, low soil sensitivity is desirable but not at the expense of target sensitivity. To

this end, it is desirable to balance good target sensitivity with low soil sensitivity, so it makes

sense to take the ratio our various mean target sensitivity metrics and the maximum soil

sensitivity:

Ŝgms =
Ŝgm

max
(∣∣∣Ŝs

∣∣∣
) , (39)

and

Ŝggms =
Ŝggm

max
(∣∣∣Ŝs

∣∣∣
) . (40)

6Taking a mean over depth seems like a poor metric since Ŝgm decreases dramatically with depth. This
would be true for an arithmetic mean because the strong responses would overwhelm the weak responses,
but it is not true for the geometric mean because it equally weighs the strong and weak responses. The
geometric mean can be thought of as an arithmetic mean of the log of the response.
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5.3.3 Target Sensitivity versus Soil Sensitivity

Designing coil heads with high target sensitivity and low soil sensitivity is desirable. How-

ever, these two traits are not always positively correlated, so both traits must be considered

independently in an optimization. In the quest to design a good �all-around� coil head,

trading o� some raw target sensitivity for a large reduction in soil sensitivity is possibly

desirable, but, obviously, reducing the target sensitivity too much in the quest for low soil

sensitivity will negatively impact performance in lightly mineralized soils. A metric that

strikes a balance between the two traits is necessary.

The metric Ŝggm gives a simple measure of target sensitivity. The metric Ŝggms gives

a simple measure of the target sensitivity relative to the soil sensitivity, but it does not

consider the absolute value of the target sensitivity. A coil with very poor target sensitivity

can still appear very good if the soil sensitivity is negligible.

For this work, this is handled by making a parametric graph, Figure 62, which plots

Ŝggm against Ŝggms for a range of double-D coil parameters for all coil heads considered and

is used to choose optimized double-D, concentric, and dipole/quadrupole coil heads. This

considers both the target sensitivity of a coil head and the target sensitivity versus the soil

sensitivity of a coil head. If lines of -1 slope (such as the dashed lines in Figure 62) were

drawn through each coil, the best performing coil head would be the one with the greatest

y-intercept.
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CHAPTER VI

OPTIMIZING AND COMPARING WIRE-WOUND COILS

6.1 Coil Analysis

Now double-D, concentric, and dipole/quadrupole coil heads can be optimized. Each coil

head type is characterized by one or two geometric parameters, which can be swept over

reasonable ranges to vary the shape of the coil head. Metrics from the previous sections

are calculated as the coil heads are permuted, and the best coils of each type can then be

determined and compared to one another. All coils are constrained to �t into a square box

with side lengths of 2r by 2r.

These coil heads are typically constructed as tightly wound multi-turn coils. The wind-

ings are generally su�ciently close together so that they can be accurately modeled as a

single large turn for the purpose of computing their magnetic �elds. Then the normalized

metrics, (30) and (36), will be essentially the same whether applied to the multi-turn coil

or the single turn approximation because the length of the wire used in the metrics is pro-

portional to the number of turns in the coil. For simplicity, the coils modeled here will use

this single wire approximation. Note that the un-normalized metrics for the multi-turn and

single turn approximation will also be essentially the same when the quantities such as the

transmit power, the volumes of the conductors, receiver bandwith, etc. are the same.

6.1.1 Double-D coils

An example of the double-D coil head geometry chosen for analysis is shown in Figure 34.

The coils are constrained to both �t in and �ll a box that is 2r on each side. Each coil is

made out of the halves of two ellipses with the same semi-major axis and di�erent semi-

minor axes, r1 and r2. During analysis, the ratio r1/r2 is swept over 10−1 < r1/r2 < 101.5,

while the overall width of each coil is determined by the overlap needed to null the coupling

between the transmit and receive coils. A subset of the coils created for analysis is shown

in Figure 35.
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Figure 34: Optimal double-D coil geometry enclosed in a bounding box showing semi-minor
axes r1 and r2, with the transmit coil in red and the receive in blue.

Figure 35: Subset of the double-D coils being analyzed.

The metrics Ŝggm, Ŝggms, and max
(
Ŝs

)
were calculated over the range of r1/r2 and

plotted in Figure 36 against r1/r2, and Ŝggm and Ŝggms are also plotted against one another

as a black line in Figure 62.

The optimal coil is much more apparent in Figure 62 than in Figure 36, illustrating the

di�culty of choosing an optimal coil based on separate graphs of Ŝggm, Ŝggms, and Ŝs. Note
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how Ŝggm and Ŝs are roughly correlated, but Ŝggm and Ŝggms are poorly correlated. The

best coil head is chosen and plotted as a circle on Figures 36 and 62. The geometry of the

optimized coil head, for which r1/r2 = 0.623, is shown in Figure 34. It has Ŝggm = −66.68

dB and Ŝggms = −13.72 dB.

Figure 38 shows soil sensitivity cuts at various heights above the soil and tilts about

the x-axis (θ) and the y-axis (φ) in degrees. The graphs appear o�-center because the two

coils of the double-D do not lie in exactly the same plane�there is an o�set of r/60 in the z-

direction to avoid nonphysical solutions resulting from overlapping coil turns. Interestingly,

as the double-D is tilted, its soil sensitivity tends to improve. Figures 37, 39 and 40 illustrate

the narrow cross-track and broad down-track sensitivity pattern of the double-D.

Figure 36: Ŝggm, Ŝggms, and max
(
Ŝs

)
for the range of double-D coils. The optimal coil is

marked on each curve with a black circle.

The soil sensitivity was calculated at many heights above the ground, both for a level coil

and for a coil that has been both tilted and rotated to account for all possible orientations.

The maximum tilt used is the amount of tilt that would nearly touch the ground at the coil's
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Figure 37: Double-D target sensitivity cuts in the x− y plane for multiple depths of z/r.
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Figure 38: Optimal double-D soil sensitivity for various heights above the soil and tilts
relative to the soil.

closest reasonable distance from the soil. The max tilt happens to be about ten degrees.

The soil sensitivity for level coils plus minimum and maximum soil sensitivities is plotted in

Figure 43.
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Figure 39: Optimal double-D x-z plane target sensitivity cut.

Figure 40: Ŝm of the optimal double-D coil head.
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Figure 41: The maximum of the target sensitivity in x for several heads labeled by their
r1/r2 at a target distance of z = 0.2r.
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Figure 42: The results of (38) for di�erent depths, given in terms of r.
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6.1.2 Concentric Coils

Concentric coil heads, such as the one pictured in Figure 44(a) with interconnected turns,

will not be analyzed. This coil head consists of a single transmit coil and a receive coil with

two counterwound sections, one inner and one outer. The mutual inductance between the

transmit and receive coils is nulled by adjusting the turns ratio between the inner and outer

sections of the receive coil. In the �gure, the turns ratio, n, is two: n = tRX,inner/tRX,outer

(where t is the number of turns). It is assumed that the turns are tightly wound, so that

the radius of each turn in a bundle is the same.

In order to simplify the representation, the coils were modeled di�erently from the coil

head shown in Figure 44(a), ignoring the connection between the inner and outer portions

of the receive coil. There are now e�ectively two receive coils, and the weighted sum of

the voltage at the �terminals� of each receive coil will be the total received voltage (Figure

44(b)).

The single transmit coil has radius rT and the two counterwound receive coils have radii

r1 and r2, respectively. Each receive coil was modeled with a single turn, so the turns ratio

is now analogous to a ratio of currents, n = IRX1/IRX2, where IRX1 and IRX2 are the currents

�owing in the two receive coils. The transmit coil was spaced r/25 away from the receive

coil in the z-direction to avoid nonphysical solutions where the two coils could become

superimposed.

RX
TX

(a) Concentric coil head geom-
etry.

r1

rTr2

(b) Modi�ed concentric coil
head geometry.

Figure 44: Illustration of a normal concentric coil and the concentric coil model used for
coil optimization.
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The coils are parameterized by two ratios, αT = rT/r1 and αR = r2/r1, and the two

parameters were swept over the ranges 10−0.7 < αT < 101 and 10−0.7 < αR < 10−0.1. With

the geometry set for each αT and αR, the turns ratio that gives null coupling between the

transmit and receive coils was calculated.

6.1.3 Turns Ratio Calculation

The mutual coupling, c, between the transmit and receive coils must be zero for the coil

head to operate properly. Achieving this with a single receive coil with two counterwound

sections is relatively straightforward. With a current �owing through the receive coil, the

ratio of turns between the two counterwound sections was adjusted until the �ux through

the transmit coil is zero. In the model, the turns ratio adjusts the ratio of currents.

The coupling factor for a single transmit and single receive coil is

c =
MTR√
LTLR

=
WM√

2WLTWLR
, (41)

whereMTR is the mutual inductance between the transmit and receive coils, LT and LR are

the transmit and receive coil self inductances, respectively,WM is the energy coupled between

the transmit and receive coils, and WLT and WLR are the self energies of the transmit and

receive coils, respectively.

It is apparent that nulling the coupling amounts to setting the energy coupled between

the transmit and receive coils to zero. This energy is

EM = ITX

[
MTX,RX1 MTX,RX2

]


IRX1

IRX2


 . (42)

By recognizing that the only important factor in the currents is the ratio between the two

receive currents, the following substitutions can be made:

[
MTX,RX1 MTX,RX2

]



1

n


 = 0 . (43)

The mutual inductances can be calculated quickly using a formula in [56]. The turns ratio

is then

n =
MTX,RX1

MTX,RX2
. (44)
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6.1.4 Target Sensitivity

The expression in (30) can be used directly for the coils in Figure 44(a), but it requires

modi�cation for use with the three coil model. First, de�ne the normalized magnetic �eld

as

Ĥα = ~Hα/Iα , (45)

where α denotes the coil with current Iα and �eld ~Hα.

Consider the numerator of (30), and recognize that the receive �eld is no longer simple

and must be altered:

~HRX = IRX1ĤRX1 + IRX2ĤRX2 . (46)

Rede�ne the two �elds in terms of a single current using the turns ratio:

~HRX = IRX1ĤRX1 + nIRX1ĤRX2 = IRX1

(
ĤRX1 + nĤRX2

)
. (47)

Now consider the denominator of (30), speci�cally the term IRXlRX:

IRXlRX = IRX1lRX1 + IRX2lRX2 , (48)

where lRX1 and lRX2 are the lengths of the two receive coils. Rede�ning in terms of IRX1

and the turns ratio gives

IRXlRX = IRX1 (lRX1 + nlRX2) . (49)

Combining terms gives a new normalized target sensitivity as

ŜT = r4
ĤTX · ̂̄̄m ·

(
ĤRX1 + nĤRX2

)

lTX (lRX1 + nlRX2)
. (50)

6.1.5 Soil Sensitivity

However, (36) must be modi�ed in a manner similar to (30) to account for the multiple

receive coils:

Ŝs = r
M̂

T̂X,RX1
+ nM̂

T̂X,RX2

2µ0lTX (lRX1 + nlRX2)
. (51)
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Figure 45: Subset of the concentric coils being analyzed.

6.1.6 Coil analysis

A subset of the range of concentric coils being analyzed is shown in Figure 45.

Once again, Ŝggm and Ŝggms were calculated for the range of coils and plotted in Figure

62 as a red area. The optimal coil was then chosen and plotted on the same graph as a black

x.

The optimized coil has Ŝggm = −63.93 dB and Ŝggms = −17.09 dB, and the geometry

is shown in Figure 46. The coil head has αt = 0.42 and αr = 0.42, and thus the transmit

coil and inner receive coil have the same radius. The turns ratio of the receive coil is 0.292.

The broad target sensitivity pattern of this concentric coil head is illustrated in Figure 47,

and the soil sensitivity of this coil versus height above the soil and tilt relative to the soil

is shown in Figure 49. The symmetry of concentric coils causes an interesting property�as

the coil head is tilted, the soil sensitivity remains largely constant.
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Figures 50 and 51 show the values of Ŝggm and max
(∣∣∣Ŝs

∣∣∣
)
for each coil head that was

considered. On these two graphs, Ŝggm is roughly correlated with soil sensitivity, Ŝs. The

ratio of these two quantities is shown in Figure 52. The correlation between Figures 50 and

52 is less clear than that between Ŝggm and Ŝs�hence the need for a ratio. Comparing

Figure 52 to Figure 50 shows how a coil that appears good when considering Ŝggms�for

example, any of the coils in the top portion with Ŝggms = −5 dB�is ∼ 70 dB down in raw

target sensitivity compared to the best coils in Figure 50.

Figure 46: Optimal concentric coil geometry.

Figure 47: Ŝm of the optimal concentric coil.
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Figure 48: Sensitivity in the y-z plane of the optimal concentric coil.
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Figure 49: Soil sensitivity of the optimal concentric coil for many heights above the soil
and tilts relative to the soil.
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Figure 50: Ŝggm for many concentric coils. The optimal coil is marked with a circle.
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Figure 51: Maximum of the soil sensitivity for each concentric coil head.

73



Figure 52: Ŝggms for many concentric coils. The optimal coil is marked with a circle.
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6.1.7 Dipole/quadrupole coils

Finally, a dipole/quadrupole coil head was optimized. The dipole coil is the transmit, and

the quadrupole coil (a �gure-8) is the receive coil that provides the nulled coupling between

the two coils. The geometry of the coil is shown in Figure 53. Two parameters were varied

during the optimization: cr, the maximum radius of the dipole, and cs, the spacing between

the two coils. In calculating the shape of the dipole coil, the point at which cr intersects the

bounding box is where the coil is �attened against the box, and the corners are smoothly

radiused. A similar strategy was used for the quadrupole with a bounding box with sides

equal to 2r − 2cs.

2r

2r

cr

cr − cs

cs

x̂

ŷ

Figure 53: Dipole/quadrupole coil geometry with dipole in red and quadrupole in blue.

The variables cr and cs are taken to be in relation to the size of the bounding box as

crr = cr/r and csr = cs/r and are swept over 1 <= crr <= 1.3 and 0.1 <= csr <= 0.8. A

subset of the dipole/quadrupole coils being analyzed is shown in Figure 54.

Figure 56 shows Ŝggm for all the coil heads and Figure 55 the maximum soil sensitivity

with the optimal coil marked with a black circle. The target sensitivity is roughly correlated

with the soil sensitivity, and roughly inversely correlated with Ŝggms (Figure 57). However,

the correlation is once again not good enough to choose an optimal coil solely from Ŝggm or

Ŝs.

The optimal coil head geometry, which has csr = 0.44 and crr = 1.1, is shown in Figure 58.
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Figure 54: Subset of the dipole/quadrupole coils being analyzed.
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Figure 55: Maximum dipole/quadrupole soil sensitivity for all coil heads considered.
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Figure 56: Ŝggm in dB as a function of crr and csr for dipole/quadrupole coil heads.
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Figure 57: Ŝggms as a function of crr and csr for all dipole/quadrupole coil heads.
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Figure 58: Optimal dipole/quadrupole coil.

This coil head has Ŝggm = −72.21 dB and Ŝggms = −11.3 dB and is denoted on Figure 62 by

a black star. The sensitivity graphs in Figures 59 and 60 illustrate the o�-center maximum

sensitivity and nulled on-axis sensitivity of the dipole/quadrupole. Finally, Figure 61 is

a graph of the soil sensitivity for various soil heights and tilts. The dipole/quadrupole

soil sensitivity shows very little variation when tilted down-track, but it changes quite a

bit when tilted cross-track. Of course, there is very little soil sensitivity at all (in the

ideal case, it would be zero) when the coil head is level. It should be noted that, since the

dipole/quadrupole soil sensitivity worsens instead of improves when it is tilted, the apparent

target sensitivity performance of the dipole/quadrupole head relative to the soil sensitivity

can be altered by adjusting the maximum tilt about the y-axis.

6.2 Conclusion

Now the optimized coil heads can be compared to one another and their traits summarized.

Figure 62 is a plot of the Ŝggm against Ŝggms for all the coils considered in this paper. The red

and blue regions span all the coil head con�gurations considered during optimization for the
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Figure 59: Ŝm of the optimal dipole/quadrupole coil head.

Figure 60: Target sensitivity in the x-z plane of the optimal dipole/quadrupole coil head.
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Figure 61: The soil sensitivity of the optimal dipole/quadrupole coil over a range of heights
above the soil and tilts relative to the soil.
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concentric and dipole/quadrupole coil heads, respectively, and the black line is the double-D

coil heads. Within the geometries that are reasonable to produce, the concentric coil heads

give the most opportunity for tweaking performance, while the double-D performance varies

very little with shape. The region for the dipole/quadrupole is somewhat misleading because

altering the amount of tilt changes the maximum soil response of the dipole/quadrupole.

The dashed lines are lines of constant ∆Ŝggm/∆Ŝggms, so moving along one of the dashed lines

gives a constant tradeo� between target and soil sensitivity.

By this metric, the double-D coil head performs the best, the concentric is 1 dB down,

and the dipole/quadrupole is 2 dB below the concentric. As can be seen in Figure 62 or read

from Table 6, the order in terms of mean target sensitivity is di�erent, with the concentric

performing best, the double-D second, and the dipole/quadrupole last, and performance

of the various coils is reversed when the soil is considered. Figure 63 is a plot of Ŝgm,

and Figure 64 shows the maximum soil sensitivity of the three coils versus soil height. By

considering Figures 62, 63, and 64 together, a good picture of each coil head's performance

can be formed.

The concentric coil head has very good target sensitivity at all depths but the worst

soil rejection, so it would perform best in lightly mineralized soils. The double-D peforms

less well than the concentric in terms of target sensitivity but much better when the soil

is considered, hence its position as a good all-around coil that performs well in moderately

mineralized soils. Finally, the dipole/quadrupole su�ers with depth penetration as a result

of the quadrupole receive coil, but its soil rejection is very good.

Common coil head types have been optimized and analyzed using metrics that remove

various factors that in�uence coil head performance other than coil winding patterns. These

results can be used for comparison to new coil head designs�such as those optimized using

our partially convex algorithm�to determine their performance relative to existing coil

heads [48].
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Figure 62: Plot of the volume sensitivity against the ratio of the volume sensitivity to soil
sensitivity for all the coils considered in this paper. The red and blue regions span all the coils
swept during optimization for the concentric and dipole/quadrupole coil heads, respectively.
The black line denotes the double-D coil heads, and the markers are the optimal coils from
each set.
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Figure 63: Ŝgm vs depth for each optimal coil.
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Figure 64: Ŝs vs height for all three optimal coils.
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Table 6: Optimal coil metrics
Coil Performance

Coil head Ŝggm (dB) Ŝggms (dB)

Concentric -63.93 -17.09
Double-D -66.68 -13.72
Dipole/quadrupole-72.21 -11.3
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PART 3

Optimization and Comparison of

Generalized Coil Geometries
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CHAPTER VII

EVALUATION OF NORMALIZED METRICS FOR STREAM

FUNCTIONS

In Chapter 2, wire-wound spiral coils were optimized using a simple basis function in polar

coordinates, and in Chapter 6, wire-wound double-D, concentric, and dipole/quadrupole

coils were optimized using simple parameterizations with few variables. These optimizations

produced good results, but the parameterizations used needed to be very restrictive to

make the problems tractable. For example, the basis function in Chapter 2 allows only

concentrically-wound coils, so double-D and dipole/quadrapole-like coils are not possible.

There are obviously more solutions than just these coils, such as those in Chapter 6, so a

much more general parametrization is needed.

It is very di�cult to generalize the optimization of wire-wound coils if the location of

the wires is directly parameterized because the wires must be constrained not to cross for

practical solutions. To overcome this di�culty, the current in a wire coil will be represented

by a continuous surface current that can then later be approximated by a wire-wound coil.

The surface current can then be represented by a stream-function on triangular mesh that is

parameterized with linear pyramidal basis functions. The stream function inherently forces

the current to be divergence free for any set of parameters for the mesh. To make a realizable

coil, a normal component of the current cannot exist on the edge of the coil, which can be

forced when the edge nodes are set to zero.

The stream function representation ful�lls the need for more generalized coils while

also being simple enough to optimize on a standard PC when the problem is formulated

in a manner that can make use of a convex optimization algorithm, such as one used by

CVX [18,19]. It does, however, introduce di�culties that did not exist with the wire-wound

optimizations earlier in this work. In addition to maximizing the target sensitivity and

minimizing the mutual coupling between the transmit and receive coils, a dissipated power
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term must be introduced to restrict the optimization from simply adding in�nite power to

the coils.

In Chapters 5 and 6, the dissipated power was implicity constrained by the normalization

in (30). In this chapter, the dissipated power must be explicitly constrained because of the

representation needed for convex optimization. The power constraint is also more important

here, because of the generality of the solution allowed by the stream function representation.

Without the power constraint, the optimizer can null the mutual coupling between the

coils by using large but tightly wound adjacent circulating currents on the transmit and

receive coils. These large circulating currents are impractical both because they will cause a

signi�cant power loss in the coils and because they require an impractically large number of

turns. The constraint on the power dissipation will penalize these large circulating currents

and cause the the currents on the coils to vary more slowly. Two power constraints are

considered: one that is suitable for a wire-wound coil, and one that is suitable for a coil that

will be cut from a printed-circuit board (PCB).

As in Chapter 6, the soil sensitivity will also be included. It is a very important consid-

eration as the soil becomes more magnetic or conductive and the targets become smaller or

more weakly conductive because the signal created by the soil can begin to obscure targets.

E�cient methods for computing the target sensitivity, soil sensitivity, dissipated power,

and mutual coupling metrics from the parameters for the stream function are developed in

the following sections.

7.1 Formulation

Coils are typically wound using wires or traces on PCBs, but, given su�cient winding density,

the wires can be approximated as surface currents, ~K [47]. The surface currents can then

be represented by a stream function, ξ, as

~K = ẑ ×∇ξ (52)

on a surface with the normal ẑ [37]. Stream functions can be viewed as similar to potential

functions, where the current density �ows along equipotential curves, and the gradient of

the stream function determines the magnitude and direction of the current density.
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(a) Symmetric mesh. (b) Example stream function.

Figure 65: A symmetric mesh and example stream function.

The stream function, such as the one in Figure 65(b), is represented by the linear pyra-

midal basis functions that are commonly used in the �nite-element method (FEM) on a

triangular mesh, which was created here with DistMesh (Figure 65(a)). The mesh is sym-

metric about its y-axis, and the matching basis function coe�cients are forced equal to one

another. Forcing mesh symmetry is desirable as it creates a symmetrical sensitivity pattern

that makes identifying target locations easier. Asymmetrical coils are undesirable as they

create more complex sensitivity patterns, which makes the identi�cation of target locations

more di�cult. Forcing symmetry has the additional desirable e�ect of halving the number

of unknowns, removing solutions that are rotations of one another, decreasing the degrees

of freedom, and improving optimization speed.

7.1.1 Basis Functions

Calculations on triangular patches are most easily done using local barycentric coordinates

{L1, L2, L3}, which are also used as the basis functions on each cell [42]. These coordinates

can be expressed in terms of the x and y coordinates of the cell vertices by solving the

following system of equations.
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


x

y

1




=




x1 x2 x3

y1 y2 y3

1 1 1







L1

L2

L3



, (53)

where (x1, y1), (x2, y2), and (x3, y3) are the coordinates of the triangular patch vertices and

L1, L2, and L3 are the barycentric coordinates and also the basis functions. Solving for the

barycentric coordinates gives

Li =
1

2A
(pi + qix+ riy) , (54)

where pi, qi, and ri are functions of the locations of the vertices:

pi = xi+1yi+2 − xi+2yi+1 (55)

qi = yi+1 − yi−1 (56)

ri = xi−1 − xi+1 , (57)

and the area of the triangular patch is

A =

∣∣∣∣
1

2
(qi+1ri−1 − qi−1ri+1)

∣∣∣∣ , (58)

where (xi, yi) are the coordinates of the ith vertex of the triangle.

Within a cell, the basis functions are simply equal to the barycentric coordinates, L1,

L2, and L3. A pyramidal basis function (Figure 66), ξm, is centered on a mesh vertex and

is created from the barycentric coordinates in the cells adjacent to each vertex.

Linear pyramidal basis functions in this coordinate system are simply equal to the

barycentric coordinates L1, L2, and L3. Because the basis functions are linear, their gradi-

ents are constants on each cell:

∇Li =
1

2A
(x̂qi + ŷri) , (59)

which makes the current in each cell constant and easy to calculate.

The basis functions, ξ, as written have a maximum value of one and minimum of zero.

They can then be scaled by coe�cients a =

[
a0 a1 · · · aM

]
(transmit coil) and b =
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Figure 66: Linear pyramidal basis function centered on a mesh vertex [42].

[
b0 b1 · · · bN

]
(receive coil) to create a variable stream function based on the mesh.

The stream functions representing the transmit and receive coils are now

ξTX =
M∑
amξm , (60)

and

ξRX =

N∑
bnξn . (61)

7.1.2 Magnetic Field

The magnetic �eld created by current �owing on a closed path can be calculated from

~H (~r) =
1

4π

∮

c

Id~L× ~r
|~r|3

. (62)

Using (60), the magnetic �eld, ~HTX, of the coil at point ~r can be written as

~HTX (~r) =
1

4π

(∫

S′

~K ×
(
~r − ~r ′

)

|~r − ~r ′|3
dS′

)
=

N∑

n

am
1

4π

∫

S′

(ẑ ×∇ξm)×
(
~r − ~r ′

)

|~r − ~r ′|3
dS′ (63)

=

[
a0 a1 · · · aM

]




hx0 hy0 hz0

hx1 hy1 hz1
...

...
...

hxM hyM hzM




= a>HTX ,

where ~r−~r ′ is a vector from the source to the point of observation. Likewise, the receive �eld

can be written as ~HRX = b>HRX. The matricesHTX andHRX can be precomputed, so only
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the coe�cients must be adjusted during optimization, making it very e�cient to compute

~HTX and ~HRX. In the following sections, other parameters will be written in similar forms

that allow basis function coe�cients to be adjusted easily without heavy computation.

7.1.3 Dissipated Power

The dissipated power is used to constrain the coils to be smooth. Two power constraints

were investigated. In both, the coils were modeled as conductive plates that support surface

currents. Using the constant-resistance model, which has a plate of constant thickness,

Rs = 1/σt, the power dissipated can be written as

Pd =

∫

S
Rs

∣∣∣ ~K
∣∣∣
2
dS =

1

σt

∫

S

∣∣∣ ~K
∣∣∣
2
dS , (64)

where σ is the conductivity of the plate, and t is the thickness. Rewriting in terms of basis

functions and their coe�cients for the transmit coil gives

Pd,con =
N∑

m=1

N∑

n=1

aman
1

σt

∫

S
∇ξm · ∇ξndS =

1

σt
a>PTXa , (65)

where the integral results have been collected into the PTX matrix. This constant-resistance

model is a good representation of a coil that will be cut from a PCB as it can have traces

that vary in width with a small spacing between the traces.

The variable-resistance model is a good representation for a wire-wound coil. The varying

resistance of the plate approximates the e�ects of the spacing for the constant diameter wire

that is usually used to wind coils. The variable-resistance is made by adjusting the thickness

of the copper plate based upon the closeness of the windings. A good approximation is

to make the the thickness of the copper plate vary in proportion to the current density

it supports, t = c
∣∣∣ ~K
∣∣∣, where c is simply a constant of proportionality with units m2/A.

Substituting into Pd,

Pd =

∫

S
Rs

∣∣∣ ~K
∣∣∣
2
dS =

∫

S

1

σc
∣∣∣ ~K
∣∣∣

∣∣∣ ~K
∣∣∣
2
dS =

1

σc

∫

S

∣∣∣ ~K
∣∣∣ dS (66)

Thus, the new power dissipation expression is

Pd,prop =
1

σc

∫

S

∣∣∣ ~K
∣∣∣ dS . (67)
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The reformulation of (67) is troublesome because it cannot be written as in (65). For

the optimization, Pd,prop must be written in terms of a vector of basis function coe�cients,

so (67) is evaluated by summing the contributions of each triangular cell to the current. The

current on the t-th cell is

~Kt =

3∑

i=1

ẑ ×∇aiξi , (68)

where the indices, i, are local indices of basis functions at each corner of the cell. Since

the basis functions are linear, the current is constant on a cell. The current on the t-th cell

takes the form of ~Kt = Kx,tx̂ + Ky,tŷ, and so the magnitude of the current in the t-th cell

is simply Kt =
√
K2
x,t +K2

y,t. Pd,prop is now

Pd,prop =
1

σc

T∑

t=1

KtAt (69)

where T is the number of cells in the mesh and At is the area of the t-th cell.

Writing this expression in a form that can be recognized as convex by the program

(CVX) used for optimization requires some minor re-writing. It must be written in terms

of the coe�cients, a, and some form of the CVX function norms(). A T ×M matrix, Cx,

that relates the basis function coe�cients to the x̂-directed current density on each cell, kx

- and therefore only has three non-zero entries per row - is created,

kx = Cxa , (70)

where kx is a vector with T entries. The ky vector is similar,

ky = Cya . (71)

Each nonzero entry in Cx is the contribution of one basis function to the x̂-directed current

density on the corresponding cell. Combining (59) with (68) gives the current on a triangular

cell as

~Kt =
1

2At

3∑

i=1

−x̂ri + ŷqi . (72)

A local basis function i maps to a global basis function m; therefore, a nonzero entry in Cx

is − 1
2At

ri, and one in Cy is
1

2At
qi. kx and ky can be combined into a T × 2 matrix, K, as

K =

[
kx ky

]
=

[
Cxa Cya

]
. (73)

95



K =




kx1 ky1

kx2 ky2

...
...

kxT kyT




(74)

The integral of the magnitude of the surface current density in (67) can be written in

terms of the elements of K as

Kint =
T∑

t=1

√
|kxt|2 +

∣∣kyt
∣∣2 , (75)

where the expression is recognized by CVX to be convex when written as

sum(norms([Cx*a, Cy*a],2,2)), where norms() is special CVX function. The dissipated

power is then

Pd =
A

σc
Kint , (76)

which is equivalent to the expression in (69).

Thus by way of (73), the expression for dissipated power in (76) is a function of the basis

function coe�cients, a, and the surface current integral in (73) can be written as a sum of

the l-2 norms of the rows of K using the norms() function, which is recognized as convex in

CVX. This allows the use of the dissipated power within the coil optimization subroutine.

7.1.4 Mutual Energy

The mutual energy between the transmit and receive coils can be written in terms of their

magnetic vector potential and the current density [56] as

W =

∫

V

~KRX · ~ATXdV . (77)

Because the coils exist only on a surface, (77) can be written as

W =

∫

S

~KRX (~r) · ~ATX (~r) dS , (78)

where ~K is the current on the receive coil and ~A is the magnetic vector potential created by

the transmit coil.
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Substituting for ~K in the expression for the magnetic vector potential, ~A, in all space

resulting from ~K on S yields

~ATX (~r) =
µ0

4π

∫

S′

~K
(
~r ′
)

|~r − ~r ′|
dS′ =

M∑

m=0

am
µ0

4π

∫

S′

ẑ ×∇ξm
|~r − ~r ′|

dS′

︸ ︷︷ ︸
Mm

, (79)

where µ0 is the magnetic permeability of free space. Then, substituting with the stream

function basis gives

W =

∫

S
(ẑ ×∇ξRX) · ~ATXdS (80)

=

∫

S

(
ẑ ×∇

∑
bnξn

)
·
(∑

amMm

)
dS (81)

=
∑

m

∑

n

ambn

∫

S′
(ẑ ×∇ξn) ·MmdS

︸ ︷︷ ︸
M ′
mn

(82)

where

M ′mn =

∫

S
(ẑ ×∇ξn) ·

(∫

S′

µ0

4π

ẑ ×∇ξm
|~r − ~r ′|

dS′
)
dS (83)

M ′mn =
µ0

4π

∫

S

∫

S′
(ẑ ×∇ξn) · (ẑ ×∇ξm)

|~r − ~r ′|
dS′dS . (84)

Using a vector identity,

(A×B) · (C ×D) = (A · C) (B ·D)− (B · C) (A ·D) (85)

(A×B) · (A×D) = (A ·A) (B ·D)− (B ·A) (A ·D) (86)

= (B ·D)− (B ·A) (A ·D) (87)

(ẑ ×∇ξm) · (ẑ ×∇ξn) = (∇ξm · ∇ξn)− (∇ξm · ẑ)︸ ︷︷ ︸
0

(ẑ · ∇ξn)︸ ︷︷ ︸
0

(88)

= ∇ξm · ∇ξn (89)

Then,

M ′mn =
µ0

4π

∫

S

∫ ′

S

∇ξm · ∇ξn
|~r − ~r′|

dS′dS , (90)

and the mutual energy between the two coils can be written as

WM =

∫

S

~KRX (~r) · ~ATX (~r) dS =
M∑

m=0

N∑

n=0

ambn
u0

4π

∫

S

∫

S′

∇ξm · ∇ξn
|~r − ~r ′|

dS′dS = a>Mb , (91)
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which allows the coupling between the coils to be nulled during optimization. The coupling

factor between the transmit and the receive coil is

c =
WM√

2WTWR
, (92)

where WT and WR are the self energies of the transmit and receive coils. WT and WR can

be calculated in a similar manner to WM, but the singularity must be handled [33].

7.2 Sensitivity

The receive coil �eld is calculated in the same manner as the transmit coil �eld, and then

the two are combined to calculate the sensitivity, S, at ~r as

ST = ~HTX (~r) · ˆ̄̄m · ~HRX (~r) = a>HTXMpH
>
RXb , (93)

where ¯̄m is the magnetic polarizability of the target, and ̂̄̄m = ¯̄m/|| ¯̄m||. As before, the

polarizability dyad is chosen to be the identity matrix, which represents a sphere, and

Mp = ̂̄̄m.

The normalized sensitivity of a wire coil was derived before as

ŜT = r4
~HRX · ̂̄̄m · ~HTX

IRXlRXITXlTX
, (94)

and now an equivalent equation for the stream function coils is needed. The denominator

IRXlRXITXlTX at �rst appears problematic because stream functions lack de�nable lengths

of current paths, but this can be solved with a simple integration. The surface current

density, ~K, of the stream function is known. Because the current is con�ned to the surface,

it �ows in closed paths, which can be viewed as in�nitesimally wide strips of current. The

total current, ∆I �owing in a di�erential width ∆w is ∆I =
∣∣∣ ~K
∣∣∣∆w. Or,

I =

∫ ∣∣∣ ~K
∣∣∣ dw , (95)

which when integrated over di�erential area (∆w∆l) on the surface supporting the stream

function gives Il =
∣∣∣ ~K
∣∣∣∆w∆l, or

Il =

∫

S

∣∣∣ ~K
∣∣∣ dS . (96)
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The normalized sensitivity of a stream function then becomes

ŜT = r4
~HRX · ̂̄̄m · ~HTX∫

S

∣∣∣ ~KRX

∣∣∣ dS
∫
S

∣∣∣ ~KTX

∣∣∣ dS
, (97)

or when written in matrix form using (75),

ŜT = r4a
>HTXMpH

>
RXb

Kint,TXKint,RX
(98)

7.3 Soil Sensitivity

As before, the voltage induced in the receive coil by an isotropic magnetic soil can be written

as

Vs = jω
χ

2 + χ
ITXM̂T̂X,RX

, (99)

where ω is the frequency of operation, χ is the magnetic susceptibility, ITX is the current in

the transmit coil, and M̂ is the mutual inductance between the receive coil and a transmit

coil that has been mirrored across the air-soil interface, as in Figure 67 [13,49]. Vsoil can be

normalized by the quantity jω χ
2+χ and then multiplied by IRX to yield the energy coupled

through the soil between the transmit and receive coils that is independent of the magnetic

susceptibility of the soil. M̂ can be written as matrix of mutual inductances between basis

functions, making the soil energy

Wsoil = a>M̂
T̂X,RX

b , (100)

which has the same form as Wm. Wsoil illustrates how the soil acts as a secondary coupling

path for energy between the two coils. This, however, is not a particularly useful quantity

because it is not normalized. Vs can be normalized in exactly the same fashion as in section

5.2 to obtain

Ŝs = r
M̂

T̂X,RX

2µ0lTXlRX
. (101)

This can the be modi�ed to

Ŝs = r
ITXM̂T̂X,RX

IRX

2µ0ITXlTXIRXlRX
, (102)

which when written in matrix form for use with stream functions becomes

Ŝs =
r

2µ0

a>M̂
T̂X,RX

b

Kint,TXKint,RX
, (103)

where Kint is de�ned in (75).
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Figure 67: Receive coil and transmit coil that has been mirrored across the air/soil interface.
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CHAPTER VIII

PROCEDURE FOR OPTIMIZING STREAM FUNCTIONS

In Chapter 7, a method of representing surface currents using a stream function de�ned on

a triangular mesh was shown. Metrics for determining the goodness of coils that were �rst

exhibited in Chapter 5 were then reformulated for stream functions in Chapter 7. These

metrics can now be used to optimize coils represented by stream functions.

A brute force optimization method as was used in Chapter 6 is intractable for the purpose

of optimizing stream functions with many degrees of freedom, so an ad hoc iterative convex

optimization technique was developed to optimize sets of coils. Similar alternating convex

searches exist in the literature, but this one was not designed following any particular method

[16,65].

The following sections detail the optimization procedure and the supporting mechanics

that make it work. The sections have some overlap, but the aim is to provide the reader

with an overview of the intricacies of the methods and algorithms developed for optimizing

coils. Section 8.1 is a brief, high-level discussion of the two equations at the heart of the

optimization, while Section 8.2 provides an overview of the processes surrounding these two

equations. The remaining sections describe speci�c implementation issues relating to Section

8.2.

8.1 Basic Theory of Convex Optimization of EMI Coils Using Stream
Functions

As an example of the di�culty of optimizing even simple coils, the wire coils from Chapter 6

with only two degrees of freedom took several days to optimize using a brute-force approach.

The highly constrained nature of those coils allowed for the brute force optimization, which

is simple to implement and guarantees an optimal solution if each parameter is sampled

su�ciently. The stream function can represent a much greater range of coil geometries than

the wire parameterizations of Chapter 6. As a result, the stream function has many more
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(a) Symmetric mesh. (b) Example stream function.

Figure 68: A mesh and an example associated stream function.

parameters, so a brute force optimization is not practical. For example, consider the stream

functions de�ned on the triangular meshes that will be used in Chapter 9 (Figure 68). The

stream functions have approximately 2,000 unknowns once symmetry and edge unknowns

have been accounted for. If each coe�cient were varied over 100 di�erent levels, which is

much less that would be required to get a good answer, and if the metrics could be evaluated

in one second, which is shorter than the required time even using the pre-computed matrices

of Chapter 7, then the calculation time would be approximately 103992 years, which is clearly

impractical.

Even other optimization methods such as gradient descent would have considerable di�-

culty as a result of the many local maxima and minima within the solution space. This can

be seen in Figure 50 for a simple problem that is only a function of 2 parameters and has two

local maxima. The ability to use a convex optimization is highly desirable for purposes of

speed, but unfortunately, the expression for the target sensitivity is not convex. Fortunately,

the problem can be broken into two halves, each of which is convex. These two halves are

achieved by �xing the currents on one coil and solving for the currents on the other coil, as
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shown in the following two equations.

a =arg max
a∈RN

{GeoMean
~r

[
ST (a,b, ~r)

]
}, (104)

subject to:

Max
h,θ,φ

[
|Wsoil (a,b, h, θ, φ) |

]
< W0,soil,

Wm (a,b) = 0,

Pd,TX (a) < P0,TX .

b =arg max
b∈RN

{GeoMean
~r

[
ST (a,b, ~r)

]
}, (105)

subject to:

Max
h,θ,φ

[
|Wsoil (a,b, h, θ, φ) |

]
< W0,soil,

Wm (a,b) = 0,

Pd,RX (b) < P0,RX .

The parameters in these equations are de�ned in (76), (91), (93), and (100). The objec-

tive function is a geometric mean over the target sensitivity at a number of points in space,

which is a concave function that can be maximized. In addition to the concavity of the

objective function, the constraints must also meet certain requirements within CVX [5,17].

Both expressions for the dissipated power and the expression for the maximum of the mag-

nitude of the soil sensitivity at any particular height or tilt are convex, and the mutual

energy is a�ne. The optimization goes back and forth between solving these two equations

until the solution converges. The techniques used to implement these equations in CVX are

shown in Listing 8.1.

In equations (104) and (105), it might seem more natural to remove the power con-

straint and optimize the normalized sensitivity, ŜT, instead of ST as was done in Chapter

6. Unfortunately, the normalized quantities developed in Chapter 8 are not forms that will

be recognized by CVX as valid expressions. However, optimizing ST while constraining the

power is equivalent, so the form in (104) and (105) is chosen since it �ts into the CVX

framework. Likewise, the soil energy (100) and mutual energy (91) between the coils are
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used instead of the normalized soil sensitivity (103) and coil coupling factor (92). As a

result, none of the expressions in Listing 8.1 are normalized, and the dissipated power must

be included to both constrain the stored energy and enforce smoothness upon the stream

function. It might at �rst appear that constraining the stored energy is also sensible, but

this is not the case, as is seen in Appendix B.

Equations (104) and (105) make up the two gray boxes in the �ow chart of Figure

70. All of the accompanying code and problem setup goes toward framing the problem

parameters such that they can be input to these two equations, with their output being the

basis function coe�cients a and b that give coil analogues with maximum target sensitivity,

ŜT, while constraining the soil sensitivity, Wsoil, and the dissipated power, Pd and forcing

the mutual energy between the coils, Wm, to zero.

8.2 Overview of a Practical Optimization Algorithm for Stream Func-
tions

The algorithm for de�ning the system geometry, calculating important parameters, and

solving for optimal coils is described in the �owcharts of Figures 69 and 70 and the code in

Listing 8.1. Each �owchart is broken into two sections, the �rst being data setup for the

second section, which is an optimization loop. The code listed in 8.1 nests within the two

gray optimization boxes of Figure 70, and the entirety of Figure 70 nests within the gray

optimization box of Figure 69.

Note that there are two nested optimization loops. The inner loop is the optimization

described by (104) and (105). If this optimization could be performed perfectly, it would be

the only optimization required, but this optimization is not perfect and can become trapped

in any one of many local maxima. The outer optimization loop serves two purposes. First, it

repeatedly calls the inner optimization loop with di�erent initial guesses for b. By running

the inner optimization multiple times it greatly increases the chance of �nding the global

maximum or at least a good local maximum. Second, the outer loop recomputes the metrics

on a desired set of target positions. The best of these repeated runs on the complete set of

metrics is chosen as the optimal solution.
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In addition to issues with the optimization problem requiring multiple runs and iter-

ations to �nd a good solution, the optimization would still be slow without taking more

measures beyond formulating it as partially convex. The CVX code in Listing 8.1 is still

very computationally intensive if it is performed on a full set of metrics, i.e. full grids of

sensitivity points and of heights and tilts above the soil. The points at which the metrics

are calculated are very sparse for the purposes of the optimization iterations, but after a run

completes, the full grids can be calculated. Additionally, the full grids, such as those used

to create Figures 109 to 111 for example, are still the results of very large matrices, which

take very long to calculate. In Chapter 9, coils with multiple di�erent soil constraints will

be optimized, but they all use the same sets of precomputed matrices, greatly saving time.

8.3 Optimization Problem Setup

The optimization begins by de�ning the coil geometry, which includes the size and shape of

the coils and their relation to one another (in this case, their separation). The examples in

Chapter 9 solely consider coaxial circular planar coils that are separated by a set distance.

However, the code can handle coils of any shape and orientation, provided that they can be

de�ned as surfaces.

After de�ning the geometry of the surfaces, triangular meshes are created on those

surfaces. In this instance, DistMesh, a function that uses a "Delaunay triangulation routine

in MATLAB and tries to optimize the node locations by a force-based smoothing procedure,"

was used to create the mesh and the matrices containing node locations p and linkages t that

de�ne the mesh [40]. The initial edge length is set to determine the �neness of the resulting

mesh. In this particular case, the mesh was mirrored because it was desired for the coils to be

symmetrical about the x−axis, and the basis functions at the mirrored points were set equal

to one another. The mirroring prevents identical solutions that are rotations of one another,

which is believed to improve the convergence of the optimization in addition to reducing

the number of unknowns. With the mirroring, the only identical rotational solutions that

are allowed are those that are 180° from one another. As will be seen later, these rotated

solutions are very apparent in the results. The mirrored meshes (such as Figure 68(a)) used
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for the transmit and receive coils are identical for the example optimizations in the next

chapter.

Other important system geometry parameters need to be de�ned as well. This includes

hloc, the discrete points in space at which the magnetic �eld of each coil will be calculated

for purposes of optimizing the coil sensitivity. The soil response of the coils varies both

with the height of the coils above the soil (hsoil) and with the tilt of the coils relative to

the soil (θ,φ). Therefore, the soil response, which should be minimized, must be calculated

over a range of heights and tilts during optimization. The number of sensitivity points

and the number of heights and tilts all must be chosen wisely to keep calculation times to

reasonable amounts. Even with the many tweaks made to improve speed, feeding too many

variables to the optimization subroutine can drastically increase compute times to the point

of intractibility.

Once the two meshes have been created, matrices needed for use within the optimization

can be created. The matrices Ss, hTX, and hRX depend on both the meshes and on their

relation to the soil or other points in space. The matrices L, P, CCx and CCy depend only

upon the geometry of a single mesh, and the matrix M depends on the geometry of the

meshes and their relation to one another. Once these matrices have been calculated, they

must be compressed to remove any entries relating to vertices that lie on the edge of the

meshes. This satis�es the condition that current cannot �ow into or out of the surface that

de�nes the coil and has the e�ect of reducing the number of unknowns.

The pre-calculation of these matrices is especially important to the speed of the actual

optimization subroutine, as they allow only simple matrix multiplies to be needed. The

soil response matrix is especially expensive to calculate (taking several hours, even with

aggressive parallelization), as it contains the interactions between basis functions on two

di�erent meshes and spans several dimensions, including two di�erent tilt variables and a

height variable.

The �ow chart in Figure 69 includes precomputation of important matrices to speed

calculation during optimization and sets up the system geometry. The parameters are then

passed to an optimization loop that performs multiple separate optimizations and then
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calculates the metrics for each pair of coils. The optimization block from Figure 69 contains

the �owchart of Figure 70, which contains the code to properly scale the inputs and then

alternate between the two halves of the optimization until a solution is reached.

Finally, the optimization constraints must be de�ned. Within the optimization, the soil

response can be constrained, and the dissipated power must be constrained to be less than

a set value. The energy coupled directly between the coils must also be constrained to zero.

As before, the dissipated power must be constrained to prevent the optimization attempting

to add in�nite power in an attempt to maximize the sensitivity. Since the dissipated power

has been normalized, it can simply be set to one.

The soil sensitivity is more di�cult because it does not vary with any set relation to

the dissipated power. The soil sensitivity, does not, however, need to be constrained for the

optimization to produce useful results, unlike the mutual coupling or the dissipated power.

As a result, the optimization can be run without a soil constraint. In Chapter 9, examples

with and without the soil contraint will be shown.

There also must be limits set for the maximum number of iterations and the maximum

number of runs. These could be automated based upon several di�erent metrics for conver-

gence, but the author simply chose them empirically. They will be discussed more in later

sections where they apply.

8.4 Outer Optimimization Loop

The meshes, matrices, and constraints from the previous section can now be fed to the outer

optimization loop of Figure 69. The gray optimization box feeds these parameters to a

subroutine that performs the optimization for a single set of coils, starting with a random

guess for the basis function coe�cients, and returns the best basis function coe�cients, a

and b, and the associated coarse metrics (ŜT and Ŝs) mentioned in the prevous section.

These metrics were calculated either in space, in the case of target sensitivity, or heights

above the soil and coil tilts, in the case of soil sensitivity. This was done to speed optimiza-

tion, and is su�cient for this purpose. However, the true target and soil sensitivities of the

optimized coils may not be exactly represented. Therefore, the metrics are recalculated over
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a �ner set of points (ŜT,f and Ŝs,f). From these, the aggregated metrics Ŝggm and Ŝggms are

calculated. Run results are stored, and then the loop begins again with a di�erent, random,

initial guess. Once the speci�ed number of runs is �nished, Ŝggm and Ŝggms are used to

choose the best coil pair from the set of runs.

Each run (outer optimization loop iteration) gives a single pair of optimized coils given

a random initial guess.

8.5 Inner Optimization Input Initialization

Once the inputs from Figure 69 have been fed to the optimization function�which begins at

the top of Figure 70�they must be scaled. The target sensitivity is being maximized subject

to the energy coupled between the two coils being zero, the soil sensitivity being less than

a chosen value, and the power being constrained. There must be scale factors for ST, L, P ,

and Ss in order for the optimization to work properly. The solver within CVX will naturally

struggle if these quantities vary over a large range, or for example, when attempting to make

an already small value equal to zero, as in the case of the mutual energy.

It makes sense to scale the energy stored in each coil to approximately one. If this same

scale factor is applied to the mutual energy calculation, the solver can produce meaningful

results when forcing the mutual energy to zero during optimization. The scale factor used

is the spectral norm of the self inductance matrix,

Lscale =

√
max

(
eig
(
L>L

))
. (106)

Note that the soil sensitivity is represented in the optimization as the energy coupled through

the soil between the two coils. Therefore, it makes sense to use the same scale factor for the

soil as for the mutual energy, Ss,scale = Lscale. The target sensitivity must be also be scaled

to bring its value into a reasonable range for CVX. Since its value is not necessarily in the

same range as the energies, the target sensitivity is scaled separately as

ST,scale =

√
max

(
eig
(
hTXh>RX

))
. (107)

The dissipated power scaling is less straightforward as a result of the proportional equation.
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Figure 69: Optimization system setup and outer wrapper loop.
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Inputs from Optimization Setup, Figure 69
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Figure 70: Scale factors and partially convex optimization.
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Listing 8.1: Matlab optimization code

1 n = length(rxhVec(:,1,1));

2
3 cvx_begin quiet

4 variable rx(n,1)

5 expression St(size(yy))

6 [ri,ci] = size(yy); %cols are y−axis, rows are z−axis

7 count = 1;

8 %calculate the sensitivity at each defined point in space

9 for ic = 1:ci

10 for ir = 1:ri

11 St(ir,ic) = rx'*rxhVec(:,:,count)*(tx'*txhVec(:,:,count))'/

scale.St(count);

12 count = count + 1;

13 end

14 end

15 disp(['RX St size ' num2str(size(St))])

16 maximize(geo_mean(geo_mean(St,1),2))

17 subject to

18 tx'*M*rx/scale.L == 0;

19 cc*sum(norms([CCx*rx CCy*rx],2,2))/scale.P <= PCon;

20 if ∼isempty(SsCon)
21 for ii = 1:length(Ss(1,1,:))

22 abs(tx'*Ss(:,:,ii)*rx*chi/scale.SsT(ii)) <= SsCon;

23 end

24 end

25 cvx_end

26
27
28 count = 1;

29 for ir = 1:ri

30 for ic = 1:ci

31 hRx(ri,ci,:) = rx'*rxhVec(:,:,count);

32 count = count + 1;

33 end

34 end
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The power scaling

Ss,scale = T 1/4

√
max

(
eigs

(
C>xCx

))
+ max

(
eigs

(
C>y Cy

))
(108)

was used to bring it into a reasonable range. Fortunately, the relative values of these

quantities are not particularly important, and they will undergo a separate normalization

for comparison purposes later.

Because the optimization works in two halves, where the stream function on one coil is

optimized while the stream function on the other is held constant, an initial guess must be

made to start the optimization loop. In this case, the receive coil is optimized �rst, so a

random guess is made for ξTX, and then it is normalized by Pd and scaled by Pscale as in

Listing 8.2.

Listing 8.2: Matlab optimization code

1 txxi = txxi/((cc*sum(norms([CCxT*txxi CCyT*txxi],2,2)))/scale.P)

8.6 Inner Optimization Loop

As has been stated, the overall problem cannot be solved all at once because the expressions

forWsoil,Wm, and ST are bilinear matrix inequalities, which are not convex. However, when

split into two halves where the basis functions for one coil are �xed and those for the other

coil are varied, these expressions become a�ne. Alternating back and forth between solving

the two halves can produce a reasonable solution after a su�cient number of iterations, and

since each half of the problem is convex, a solution to each half of the problem is guaranteed.

This process is illustrated in the inner optimization loop box of Figure 70.

The normalized vector of random numbers, bn, from the previous section is passed to

a subroutine that performs the procedure in (104), which �nds the basis functions for a

transmit coil that minimizes the coupling between the two coils, maximizes their target

sensitivity, and constrains both their soil sensitivity and power dissipation. The code for

this subroutine is given in Listing 8.1. Then the resulting transmit coil basis function

coe�cient vector, a, is passed to (105), which performs the same convex optimization as

(104) but for the receive coil. The optimization goes back and forth between (104) and
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(105), adding a small, gradually decreasing amount of noise between each iteration, which

speeds convergence

The power constraints P0,TX and P0,RX are typically set to the same value, which needs

only to be chosen intelligently to allow the solver to work [46]. In this case, a value of one is

appropriate for the solver. While this algorithm converges well, it does not always converge

to the maximum possible value, so it must be run many times.

The value of W0,soil is actually updated on each iteration because cs is speci�ed, and the

energy stored in the coils changes with each iteration.

8.6.1 Noise

Noise, which decreases as the loop iterates, is added to the resulting stream function coe�-

cients to lessen the chances of becoming caught in a local maxima.

ξRX = ξRX + max
(

mean
(
[ξRX ξTX]

)) (
−1 + 2 ∗ rand (N) 0.9nopt

)
(109)

This is then normalized once again to force the power dissipated by the noisy coil to be equal

to one. An identical process is performed to optimize the transmit coil given the receive

from the previous step. Then noise is added to the resulting receive coil, the power is set

back to one, and the process repeats until the maximum speci�ed iterations are reached.
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CHAPTER IX

STREAM FUNCTION EXAMPLE OPTIMIZATIONS

The optimization procedure described in Chapter 8 will now be used to optimize coil pairs.

As before, these example coils are intended for use in a handheld system that can be swept

side-to-side by an operator, and many of the design choices made are geared toward this

goal. The coils are also desired to have good performance in magnetic and/or conductive

soils and to be reasonable to construct.

9.1 System Geometry and Optimization Parameter Choices

The transmit and receive coils are represented by identical triangular meshes on discs (Figure

71). Other more complex meshes�or more than two meshes�could be used.

Figure 71: Coil mesh used for optimization.

The coils are arranged as in Figure 72. Both coils are centered on the z-axis, the transmit

coil is at z = 0, and the receive coil is at z = −δ. δ is the separation between the coils, with

the intended search direction being +z, pointing into the ground.
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Both meshes have radii, r, of 13.3 cm, and vertical, inter�mesh spacing, δ, of r/25 = 5.3

mm. DistMesh takes an initial edge length as an input, and this is chosen to be 0.004

mm, a condition that gives a mesh with 3,972 vertices. As before, the meshes are made

symmetrical about the x-axis to force symmetry in the coil geometries. This has the added

bene�t of removing rotational solutions and reducing the number of unknowns that must

be calculated.

Figure 72: Coil geometry for optimization, where +z points into the ground, and the
transmit coil sits at z=0.

Two sets of spatial parameters must be de�ned for the basic optimization algorithm:

target sensitivity and soil sensitivity. Once the points for these are de�ned, the matrices

needed for target and soil sensitivity can be pre-calculated.

9.1.1 Target Sensitivity

The target sensitivity can be optimized over any set of points in space, but recall from Section

5.3.1 that both good depth performance and a broad pattern along the y-axis (down-track

direction) are desirable, while the pattern in the x-direction (cross-track) is less important.

The points need to be chosen appropriately to achieve the desired coil performance. Op-

timizing the target sensitivity at a single point in space does not give coils well-suited for

good depth performance, nor does it create a pattern that is broad in the y-direction, as

is desired. Optimizing the target sensitivity on a line of points on the +z axis gives good

depth performance, but it still does not give the broad pattern that is desired for target
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Table 7: Regions over which the target sensitivity is calculated

Inner Loop Outer Loop

xmin � −0.2r
∆x � 0.05r
xmax � 0.2r
ymin 0 0
∆y 0.1r 0.05r
ymax 0.8r 0.8r
zmin 0.2r 0.2r
∆z 0.1r 0.05r
zmax 1.5r 1.5r

detection. It does however often result in concentric or near-concentric types of coils, which

are interesting in the sense of a di�erent coil con�guration. Both of these de�ciencies are as

would be expected from the way the optimization is de�ned. Therefore, it was determined

that optimizing the target sensitivity over a portion of the y − z plane is the best method

for creating coils that perform well given the de�nitions of Ŝggm and Ŝggms. In addition, it

is desirable to have coils that peak up near x = 0, so it is easier for an operator to locate

a target. By choosing a plane of points instead of a volume of points, preference is given

to coils with sensitivities that peak near x = 0 while also keeping the optimization problem

tractable.

Recall from Section 8.4 that the optimization is set up to use a coarse set of points

for the inner optimization and a �ne set of points for the outer optimization because of

computational issues. The coarse set of points was chosen to be on a plane for most of

the optimization examples for the reasons mentioned above, but a few line optimizations

will be presented to show how a di�erent de�nition of the objective function a�ects the

optimization results. The �ne set of points are spaced over a volume in space and used to

compute the aggregated metrics Ŝggm and Ŝggms that are described in Chapter 5. To further

improve optimization times, the grid is calculated only over one half of the plane (as shown

in Figure 73) because the other half can be inferred from symmetry, speeding calculations

during optimization. The optimization points are shown in Table 7.
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Figure 73: An illustration of the area over which the target sensitivity is calculated for
optimization.

9.1.2 Soil Sensitivity

As explained in Chapter 5, the soil sensitivity is crucial for coil performance in magnetic

or conductive soils. It can be calculated over a range of heights and tilts, as illustrated

in Figure 74. The soil sensitivity is generally worse the closer a coil is to the soil; only a

few heights close to the soil are necessary to capture the worst-case soil sensitivity. The

sensitivity changes�and is typically worse�when the coil is tilted relative to the ground.

There is no guarantee the coil will be held completely parallel to the soil, nor is the ground

guaranteed to be �at; it may be bumpy. Calculating the soil response when the coil is tilted

relative to a �at plane should roughly account for both of these situations.
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Figure 74: Illustration of the geometry used for the soil sensitivity calculations, showing

the height (hs) and tilt (angles δ and/or φ) relative to the soil. Note that hs is measured to

the center of the transmit coil.

Unfortunately, the calculations for soil sensitivity are very expensive, both to create the

soil response matrix and to use within the optimization, so a very sparse set of points must

be used (Table 8). Ideally, a much �ner set of points would be used because these are not

guaranteed to be the worst soil response within the range of -10 to +10 degrees.

The full soil response matrix (steps of one degree) can take over a day to calculate on an

eight core AMD Ryzen 7 2700 clocked at 3.8 GHz, and a set of tilts for one soil height can

create a matrix of approximately 25 GB. For example, the four graphs of Figure 101 are the

result of 100 GB of data, which does not �t into the memory of most desktop computers.

Table 8: Range of parameters over which the soil sensitivity is calculated

Inner Loop Outer Loop

θmin (deg) −10 −10
∆θ (deg) 10 10
θmax (deg) 10 10

φmin −10 −10
∆φ 10 10
φmax 10 10
hs,min 0.2r 0.2r
∆hs 0.1r 0.1r
hs,max 0.4r 0.5r
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9.2 Optimizing Example Coils

There are several layers to the idea of optimizing coils using the partially convex procedure

of Chapter 8. That optimization is not guaranteed to �nd a global maximum because it

is only partially convex. Therefore, the optimization must be run multiple times to have a

better chance of �nding a good answer. This will be called an optimization set, where each

set is composed of multiple runs of the outer optimization in Figure 69 with identical inputs

save for the random initial guess. Each run has multiple iterations of the inner optimization

of Figure 70, where the optimzation bounces between equations 104 and 105, which are

solved using SeDuMi within CVX [57]. CVX can translate convex optimization problems to

give to several solvers, the default being SDPT3, but due to problems with SDPT3, SeDuMi

was used.

For the purpose of these examples, identically de�ned coil pairs were optimized for two

di�erent target sensitivity calculations and also for several di�erent soil constraints. The

two di�erent target sensitivity calculations are for points on both a grid on the y − z plane

and on a line on the z-axis. For each di�erent combination of soil constraint and target

sensitivity parameters, a di�erent optimization set of 100 runs was executed, where each set

was composed of 100 back-and-forth iterations. Rather than a set number of iterations, it

would probably be more e�cient to use an adaptive convergence metric, but for this work

100 iterations should be more than su�cient to achieve convergence. For simplicity, each

set is identi�ed by an alphanumeric code as shown in the �rst column of Table 9.

Prior to optimization, practical values for the constraint W0,soil used in equations 104

and 105 are not known. The maximum value of aggregate normalized target sensitivity,

Ŝggm, is partially dependent upon the maximum soil sensitivity that is allowed. That is,

the constraint on the soil sensitivity, and therefore the soil energy, Wsoil, also indirectly

constrains the energy stored in each coil. Reducing the stored energy also reduces the target

sensitivity. However, the exact relationship between the target and soil sensitivity is not

known a priori. Additionally, as a result of the manner in which the optimization works,

the maximum possible value of the soil sensitivity is not known either.

In order to choose a practical range for this constraint, an optimization set was run
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without a soil constraint. The average of the soil sensitivity resulting from these runs was

then calculated, and this averaged value, W0,soil = 0.1504, is shown in Table 9 for the

optimization set G1001. Percentages of the averaged soil sensitivity, e.g. 75%, 50%, 25%,

etc., can be used as soil constraints in later optimizations, as shown in Table 9.

Table 9: Target Sensitivity Variables

Opt Set Target Points Soil Constraint (%) W0,soil P0,TX P0,RX

G100 Grid none 0.1504 1 1

G50 Grid 50 0.0752 1 1

G25 Grid 25 0.0376 1 1

G15 Grid 15 0.0226 1 1

G10 Grid 10 0.0150 1 1

L100 Line none 0.1432 1 1

L50 Line 50 0.0716 1 1

L25 Line 25 0.0358 1 1

The optimization sets were run for the percentages of the average soil response that are

shown in Table 9 and for the two di�erent target senstivity calculation types of Table 7. The

values of Ŝggm and Ŝggms are tabulated for the best coil from each optimization in Table 10.

With major matrices (primarily the soil sensitivity matrix) precalculated, a grid sensitiv-

ity set of 100 runs takes approximately 1.5 days to complete using a Ryzen 7 2700 processor

clocked at 3.8 GHz, while a line target sensitivity set of 100 runs completes in around one

day. These calculations times can vary greatly depending on the number of nodes in the

mesh and the number of target and soil sensitivity points and height/tilts.

1Note that this average response will vary as a function of optimization setup.
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Table 10: Ŝggm and Ŝggms for the best coil from every optimization set

Target Points Soil Constraint (%) Ŝggm (dB) Ŝggms (dB) Run Number

Grid none -63.8 -16.9 27

Grid 50 -65.4 -12.3 36

Grid 25 -67.3 -8.2 30

Grid 15 -69 -5.4 11

Grid 10 -70.4 -3.3 25

Line none -67.1 -15.3 43

Line 50 -67.9 -14.3 72

Line 25 -69.8 -10.3 63

As before, plotting Ŝggm against Ŝggms is convenient for helping choose the �best� coils, by

providing an easy visual comparison between target and soil sensitivity. There is a tradeo�

between the two, where typically increased target sensitivity (desirable) brings increased soil

sensitivity (undesireable). The relationship between the two, however, is not one-to-one, and

di�erent applications may have di�erent requirements for soil rejection.

Figure 75 shows a comparison plot of Ŝggm against Ŝggms for the wire coils of Chapter

6 and the various stream function optimization sets. For every set, the best coil is marked

with a larger corresponding symbol. The sets optimized with the target sensitivity on a

line are worse than those optimized on a grid, as is to be expected. The manner in which

Ŝggm and Ŝggms are calculated inherently favors a broader pattern than will be created by

optimizing on a line on the z-axis. The grid sensitivity optimized without a soil constraint

matches the aggregate target sensitivity of the best of the wire-wound coils, and it is also the

best target sensitivity of all of the stream function coils. This too is as should be expected,

since all of the other sets were optimized with a constrained soil sensitivity that reduces

the maximum possible target sensitivity. Note how the coil sets that have a constrained

maximum soil sensitivity all lie on lines (with the exception of some failed optimization

runs). This is simply a function of the soil constraint since Ŝggms is the sum of Ŝggm and the
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maximum value of the soil response. The optimization naturally forces the soil response to

its maximum, making the relationship between the two values constant for all answers.

The G50 and G25 set answers will be used for detail analysis later in the chapter, both

due to their varied families of coils and their improvements over existing coils. Note how

the 50% soil constraint case shows a loss of 2.4 dB in target sensitivity while gaining 4.6 dB

of soil rejection. Clearly there are gains to be had with respect to the soil with intelligent

winding of coils.

Figures 76 and 77 show Ŝgm versus height and ŜT on boresight for the best coils from

each optimization set. These are largely as would be expected. Coils created with the same

target sensitivity calculation but with less constrained soil sensitivity perform best, and the

line sensitivity coils' target sensitivity performs better on boreight close to the coil than it

does in Ŝgm relative to the grid target sensitivity coils.

Figure 78 shows the maximum of the soil sensitivity for the best coil of every set as a

function of height above the soil. The coils optimized on a line for target sensitivity actually

perform favorably in comparison to the grid sensitivity calculations. An analysis with more

tilts and heights than shown here and in Table 8 would be preferable for increased accuracy,

but for purposes of example, these are deemed su�cient.

The di�erences in the coil �winding� con�gurations created by the optimization are of

interest. Di�erent constraints (e.g. soil sensitivity, target sensitivity, etc.) create di�erent

coil current paths, which are equivalent to windings in a wire coil. The coil �winding�

con�gurations are related to the shape of the stream function, so the shape of the stream

function can be used as a proxy for comparing coils. To this end, a metric of the di�erence

of the shapes between every coil pair of every set was calculated, accounting for the 180°

rotational possibility and the fact that either coil in a pair could be used as the transmit

coil. This di�erence is shown graphically in the dendrogram of Figure 79, where each leaf is

a di�erent coil pair. A cuto� of 3.8 was used to color sets of similar coils, and their values

of Ŝggm and Ŝggms are plotted in matching colors on Figure 80, which matches the sets of

Figure 75. There are various outliers from the sets, but in large part each optimization

set contains one or two coil families that are distinct from every other set. That is, each
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optimization set creates a di�erent coil shape by way of the di�erent constraints used for

each set. Note the best performing coil of the G15 set is an outlier, which demonstrates that

the optimization routine is imperfect as a result of its biconvex property.

Figure 75: Ŝggm plotted against Ŝggms for the wire comparison coils of Chapter 6 and for

stream function coils optimized over di�erent soil constraints and target sensitivity points.
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Figure 76: Ŝgm versus distance from the coil for the best coil from every optimization set.

Figure 77: Target sensitivity on coil boresight for the best coil from every optimization set.
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Figure 78: Maximum of the soil sensitivity over all tilts plotted against the height above

the soil for the best coil from every optimization set.
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Figure 79: A dendrogram created with a cuto� of 3.8 for all the stream function coils of all
the grid optimization sets.
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Figure 80: Ŝggm plotted against Ŝggms for every grid stream function coil. The colors and

legend are matched to the dendrogram of Figure 79.

9.3 Optimization Convergence

The coils resulting from the 50% and 25% soil constraints within the grid target sensitivity

optimization sets demonstrate desirable improvements over the common wire coils of Chapter

6. The following analysis shows the convergence within runs of the 50% soil constraint and

also the convergence of the optimization set of the 25% case. Additionally, examination

of the 25% case demonstrates how the stream functions, and therefore the coils, can vary

within a single set with the same constraints.
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9.3.1 Example of Run Convergence Within G50 Optimization Set

To illustrate convergence and the di�erences possible between stream functions within a

set of runs over one soil constraint, the G50 set will now be examined. First, consider

the best answer from this set. Figures 81 to 84 illustrate the changes in the stored and

mutual energies, dissipated power, soil response, and target sensitivity as the optimization

iterates within a single inner optimization run (in this case, the best answer from the set).

Note how the optimization immediately forces the dissipated power to its maximum value

as it places as much energy into the coil as possible while still constraining the mutual

energy to zero. The oscillations visible at the beginning of all four graphs are a result of

the noise added between each iteration. The soil sensitivity is also gradually pushed to its

maximum constraint�as would be expected�to add more energy and consequently more

target sensitivity. Finally, the objective function usually converges within approximately 70

iterations.

Figure 81: The self and mutual energies over the course of the inner optimization loop from

the best coil of the 50% soil grid set.
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Figure 82: The dissipated power over the course of the inner optimization loop for the G50
case.

Figure 83: Soil sensitivity convergence over the course of the inner optimization loop for
the G50 case.
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Figure 84: Target sensitivity convergence over the course of the inner optimization loop for
the G50 case.

Figures 85 and 86 show the normalized target sensitivity and the soil energy, Wsoil, for

each of the 100 runs for the G50 case plotted as the optimization algorithm iterates back

and forth. As can be seen, the target sensitivity generally converges within 70 iterations.

The few points which appear to have not converged early are a result of a failed convex

optimization that has been restarted with a new random guess.

The soil sensitivity reaches its constraint early on, and demonstrates the same split

that results from the two separate optimizations with added noise. As expected, the solver

places the soil sensitivity at its maximum constraint in an attempt to add as much energy

as possible to the coils. However, it is interesting that SeDuMi is unable to push the soil to

its maximum immediately (Figures 83 and 86), unlike the dissipated power of Figure 82.

Figures 85 and 86 demonstrate again that the algorithm converges well for all but a few

cases where SeDuMi has failed.
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Figure 85: Target sensitivity convergence over the course of the inner optimization loop for
every run within the G50 set. Outliers in the 85 to 95 dB range are a result of failed convex
solver restarts.

Figure 86: Soil energy, Wsoil, convergence over the course of the inner optimization loop for

every run within the G50 set.
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9.3.2 Example of Optimization Set Convergence within the G25 Optimization
Set

Now consider, for example, the stream functions from the G25 optimization set. As in

Figure 79, by taking the average of the norm of the di�erence between stream functions

from di�erent runs, the coils can be grouped by physical similarity. This is illustrated in

Figure 87, which is a dendrogram of the di�erences between stream functions, where each

leaf is a di�erent coil pair, and a threshold of four has been set to color the di�erent clusters

of coils. Six clusters result, though three are single coils, with the sole coil of cluster two

being very similar to clusters one and �ve.

The colors from the multi-coil clusters are carried over to the plot of Ŝggm versus Ŝggms

in Figure 88. Clusters one and �ve make up the majority of the solutions, with the coils

from cluster one being generally better than those of cluster �ve, though they do make

up two distinct sets. These sets are evident in the histograms of Figures 89, 90 and 92,

where there are two distinct peaks corresponding to clusters one and �ve. The histograms

demonstrate that the optimization has converged to two primary types of solutions with

the two peaks. Because many solutions are in the best group (group 1), it is reasonable to

assume that the best solution is somewhat optimal. It is certain that they are better than

the answers reached with simple wire coils. However, because of the bi-convex nature of the

optimization, these are not guaranteed to be the absolute best possible answers.

The best coils within each cluster are plotted in Figures 93 to 98. The similarity of

the best coils within each cluster indicate that the solutions are somewhat optimal. The

physical similarity between the stream functions of clusters one, two, and �ve is evident in

Figures 93, 94 and 97. These stream functions all resemble double-D coils with a few extra

balancing turns. The better coils of cluster one show larger loops that run closer to the edge

of the disc however, which give them their superior depth performance. The coils of clusters

three, four, and six do not perform as well by the metrics set in previous chapters, but they

do have an interesting shape (Figures 95, 96 and 98). They are non-circular concentric coils

with smaller balancing turns o� to the sides.

Note that Figure 89 is a histogram of the �nal Ŝggm calculation, and Figure 90 is a
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histogram of the value of Ŝgg as it is output from the optimization with reduced points. The

two values are plotted against each other in Figure 91. The roughly diagonal line of Figure

91 shows that optimizing on the plane is a good surrogate for optimizing over a much larger

cube of points, which would be much more computationally expensive.

Figure 87: Dendrogram illustrating the di�erence between stream functions from the G25

set.
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Figure 88: Ŝggm plotted against Ŝggms for the G25 set, with colors matched to the dendro-
gram in Figure 87.

Figure 89: A histogram of Ŝggm for the G25 set.
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Figure 90: A histogram of the normalized objective function of the G25 set. In this case, it
is the geometric mean of the target sensitivity at the optimization points on the target grid.

Figure 91: Ŝgg (the normalized objective function from optimization) plotted against Ŝggm.
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Figure 92: A histogram of Ŝggms for the G25 set.
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(a) TX. (b) RX.

(c) TX. (d) RX.

(e) TX. (f) RX.

Figure 93: The three best coils from cluster 1 of the G25 set.
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(a) TX. (b) RX.

Figure 94: The only coil solution from cluster 2 of the G25 set.

(a) TX. (b) RX.

Figure 95: The only coil solution from cluster 3 of the G25 set.
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(a) TX. (b) RX.

(c) TX. (d) RX.

(e) TX. (f) RX.

Figure 96: The three best coils from cluster 4 of the G25 set.
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(a) TX. (b) RX.

(c) TX. (d) RX.

(e) TX. (f) RX.

Figure 97: The three best coils from cluster 5 of the G25 set.
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(a) TX. (b) RX.

Figure 98: The only coil solution from cluster 6 of the G25 set.
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9.4 Best Results from Each Optimization Set

The following three sections are analyses of some of the characteristics of the best coils

resulting from each of the eight di�erent optimization sets.

9.4.1 Best Stream Functions from Each Set

The stream functions of the best answers from the grid and line target sensitivity optimiza-

tion sets are shown in Figures 99 and 100, respectively.

Within the grid target sensitivity analysis, the solutions are all broadly similar except

for the set with unconstrained soil response. The G100 set without a soil constraint is

a concentric coil pair with a small balancing loop o� to the side to minimize the coupling

between the transmit and receive coils. It is interesting that the receive coil from this set has

not had its turns pushed to the edge where they would provide maximum depth performance.

Rather, the turns do not take up the entire diameter of the coil, similar to the concentric

answers of Chapter 6. The other four coil pairs are broadly similar to double-D coils, with a

small balancing winding opposite the larger primary winding. The area contained within the

primary windings of these coils gradually decreases as the soil response constraint tightens,

and eventually the primary windings begin to separate from the edges of the full coil surface,

reducing the target sensitivity.

142



(a) No soil TX. (b) 50% soil TX. (c) 25% soil TX.

(d) No Soil RX. (e) 50% soil RX. (f) 25% soil RX.

(g) 15% soil TX. (h) 10% soil TX.

(i) 15% soil RX. (j) 10% soil RX.

Figure 99: The best coils from each grid target sensitivity optimization set.
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(a) No Soil TX. (b) 50% soil TX. (c) 25% soil TX.

(d) No Soil RX. (e) 50% soil RX. (f) 25% soil RX.

Figure 100: The best coils from each line target sensitivity optimization set.
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9.4.2 Soil Sensitivity of the Best Coils from each Set

The soil sensitivity over a range of heights, hsr, and tilts, θ and φ, is shown in Figures 101

to 108 for the best coil from every optimization set.

Unlike the tilt calculations from the optimization, these plots were made with tilts in

steps of one degree. With a few exceptions, the maximum soil response does not necessarily

occur at the maximum tilt as it did with earlier wire coils. The ten degree steps used

during optimization still provide a reasonably accurate soil sensitivity calculation, but given

enough time and computer memory, more granularity may be desirable for a more thorough

optimization.

The marked asymmetry of the coils from the grid sensitivity optimization is noticeable

in the soil sensitivity with respect to tilt in Figures 101 to 105. For these coils, the soil

sensitivity shows a much greater change with respect to tilt in φ than it does to tilt in θ, as

would be expected from a coil that approximates a double-D.

The soil sensitivity of the coils from the line sensitivity optimization demonstrates a

much more balanced change with respect to φ and θ in Figures 106 to 108, as would be

expected from coils that are much more rotationally symmetric than those from the grid

optimizations.
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Figure 101: The normalized soil sensitivity for the best coil from the G100 set plotted over

a range of heights above and tilts reltaive to the soil.

Figure 102: The normalized soil sensitivity for the best coil from the G50 set plotted over

a range of heights above and tilts relative to the soil.
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Figure 103: The normalized soil sensitivity for the best coil from the G25 set plotted over

a range of heights above and tilts relative to the soil.

Figure 104: The normalized soil sensitivity for the best coil from the G15 set plotted over

a range of heights above and tilts relative to the soil.
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Figure 105: The normalized soil sensitivity for the best coil from the G10 set plotted over

a range of heights above and tilts relative to the soil.

Figure 106: The normalized soil sensitivity for the best coil from the L100 set plotted over

a range of heights above and tilts relative to the soil.
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Figure 107: The normalized soil sensitivity for the best coil from the L50 set plotted over

a range of heights above and tilts relative to the soil.

Figure 108: The normalized soil sensitivity for the best coil from the L25 set plotted over

a range of heights above and tilts relative to the soil.
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9.4.3 Target Sensitivity of the Best Coils from each Set

Plots of various cuts of the target sensitivity for the best coil from each optimization set are

shown in Figures 109 to 123 for the grid target sensitivity calculations and in Figures 124

to 132 for the line target sensitivity calculations. While at points close to the coils' surfaces,

the �eld can be quite variable, as distance from the coil face increases, all the coils begin to

look like dipoles, as would be expected.

The patterns are, of course, consistent with the coil windings, but it is interesting to note

the sensitivity pattern characteristics of the various coils. In Figures 109 to 111, the G100

case demonstrates notable asymmetry on the right half of the coil where the optimization

placed the balancing turns. While its overall target sensitivity is quite good, the asymmetry

in the sensitivity could cause minor target localization problems at shallow depths.

In contrast to the G100 case, the sensitivity patterns of the other four grid target sen-

sitivity optimization sets are much more similar to one another. These patterns, shown in

Figures 112 to 123, are also similar to the double-D coil patterns of Chapter 6. Symmetry

in the x− and y− axes is good, with a nice peak in the center that is elongated along the

y−axis, as was intended to happen as a result of the grid used for target sensitivity opti-

mization. Of these four, the G25 coil has the most symmetrical stream functions, and as

a result it also has the most symmetrical target sensitivity pattern. These attributes are

desirable both from a manufacturing standpoint and from a useability perspective.

The L100 case of Figures 124 to 126 shows good rotational symmetry, as would be ex-

pected of a coil that approximates a concentric coil. The L50 and L25 cases of Figures 127

to 129 and 130 to 132 begin to exhibit more lopsided-ness, both in their winding and subse-

quenty in their senstivity patterns, as the soil sensitivity is constrained and the optimization

attempts to meet that constraint.
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Figure 109: The normalized target sensitivity, ŜT, of the best answer for the G100 case on

x− y cuts at various distances from the coil pair.
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Figure 110: The normalized target sensitivity, ŜT, of the best answer for the G100 case on

the x− z plane.

Figure 111: The normalized target sensitivity, ŜT, of the best answer for the G100 case on

the y − z plane.
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Figure 112: The normalized target sensitivity, ŜT, of the best answer for the G50 case on

x− y cuts at various distances from the coil pair.

153



Figure 113: The normalized target sensitivity, ŜT, of the best answer for the G50 case on

the x− z plane.

Figure 114: The normalized target sensitivity, ŜT, of the best answer for the G50 case on

the y − z plane.
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Figure 115: The normalized target sensitivity, ŜT, of the best answer for the G25 case on
x− y cuts at various distances from the coil pair.
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Figure 116: The normalized target sensitivity, ŜT, of the best answer for the G25 case on
the x− z plane.

Figure 117: The normalized target sensitivity, ŜT, of the best answer for the G25 case on
the y − z plane.
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Figure 118: The normalized target sensitivity, ŜT, of the best answer for the G15 case on
x− y cuts at various distances from the coil pair.
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Figure 119: The normalized target sensitivity, ŜT, of the best answer for the G15 case on
the x− z plane.

Figure 120: The normalized target sensitivity, ŜT, of the best answer for the G15 case on
the y − z plane.
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Figure 121: The normalized target sensitivity, ŜT, of the best answer for the G10 case on
x− y cuts at various distances from the coil pair.
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Figure 122: The normalized target sensitivity, ŜT, of the best answer for the G10 case on
the x− z plane.

Figure 123: The normalized target sensitivity, ŜT, of the best answer for the G10 case on
the y − z plane.
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Figure 124: The normalized target sensitivity, ŜT, of the best answer for the L100 case on
x− y cuts at various distances from the coil pair.
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Figure 125: The normalized target sensitivity, ŜT, of the best answer for the L100 case on
the x− z plane.

Figure 126: The normalized target sensitivity, ŜT, of the best answer for the L100 case on
the y − z plane.

162



Figure 127: The normalized target sensitivity, ŜT, of the best answer for the L50 case on
x− y cuts at various distances from the coil pair.
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Figure 128: The normalized target sensitivity, ŜT, of the best answer for the L50 case on
the x− z plane.

Figure 129: The normalized target sensitivity, ŜT, of the best answer for the L50 case on
the y − z plane.
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Figure 130: The normalized target sensitivity, ŜT, of the best answer for the L25 case on
x− y cuts at various distances from the coil pair.
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Figure 131: The normalized target sensitivity, ŜT, of the best answer for the L25 case on
the x− z plane.

Figure 132: The normalized target sensitivity, ŜT, of the best answer for the L25 case on
the y − z plane.
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9.5 Conversion of Stream Functions to Wire Coils

It is not possible to build a coil that exactly replicates a stream function, but the stream

functions can be approximated by wire coils. The wires used to form each coil should

be a single, continuous current path that closely approximates the currents in the stream

function. Ideally, the path will be a smooth spiral path; however, it is nontrivial to compute

such a path. A simpler but less elegant way to form the path is to use equal level contours

for the path. This technique uses the the well-known feature of stream functions that the

current �ows parallel to the contours, and equal current �ows between equally spaced level

contours. The contours can then be connected in series to from a single coil.2

In a practical coil, it is necessary to put the coils in series, but in the computer model,

it is only necessary to put the same current on each of the contours. For example, the level

curves of the stream function in Figure 133(c) can be converted to wires like those in Figure

133(b).

The best coils from the G50 and G25 sets were converted to concentric wire coils as a

proof of concept. They can be analyzed using the same codes that were used for the wire

coils of Chapters 5 and 6. These codes are based on simple, well-known procedures, such as

Biot-Savart and Neumann's formula. As these codes are formulated in a completely di�erent

and well-tested manner than the stream function codes, there is reasonable con�dence that

the stream function optimization is working as intended because the two separate solutions

(wire coil and stream functions) match with acceptable accuracy.

The G25 coil is a particularly nice candidate for a wire conversion in that its transmit and

receive coils are very symmetric, and it has both good target sensitivity and soil rejection.

The G50 coil is not quite as symmetric as the G25 case, but it is also a reasonable solution

that could be simply constructed.

2The countours can be simply connected in series using the method used for the concentric coil in Figure
44(a). The unconnected turns can also be reformed to create a spiral as was done in Chapter 4, though a
spiral conversion from a stream function is non-trivial.
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9.5.1 Wire Conversion Process

A modi�ed version of the Matlab function tricontour() was used to determine the level

curves of the stream function [21]. It was modi�ed to place a contour in the center of a strip

of current, such as in Appendix A, where each level curve is equally spaced in the value of

the stream function. The stream functions and the resulting contours are shown in Figures

133(a) to 133(f) and Figures 134(a) to 134(d).

9.5.2 Wire Coil Smoothing

Unfortunately, these contours are not particularly smooth as a result of the discretization of

the stream function across the triangular mesh of the discs, as can be seen in Figures 133(a)

and 133(e), which are the raw output of tricontour(). More triangles could be added

to the mesh used for the stream function to smooth the level curves, but this becomes

computationally expensive very quickly. Instead, the contours can �rst be re-sampled to

more evenly space the points on the curves; if this is not done, the inductance and magnetic

�eld calculations can be problematic. In this case, the points are spaced so that they are

approximately dl apart, where

dl =
rmax

100
, (110)

and rmax is the maximum coil radius. Then the contours can be smoothed using sgolayfilt()

with a second order polynomial. The coils were smoothed with a window length of 25, and

the transmit and receive coils for the G25 case are shown in Figures 133(b) and 133(f).

Larger smoothing windows were considered, but a window of 25 points was deemed to be

su�cient. In both raw and smoothed wire coil representations, red turns are clockwise and

blue turns are counterclockwise.

Important metrics were calculated for the coils when the number of level contours varies

from 10 to 45. Results are shown for the no smoothing case, G25-N, and the smoothing case,

G25-S and shown in Tables 11 and 12. The metrics do not change appreciably between the

stream function case and the raw and smoothed cases, so the smoothed coils are reasonable

for use in this analysis.
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(a) Transmit coil for G25-N30 case. (b) Smoothed transmit coil for the G25-S30 case.

(c) Transmit coil stream function for the G25 case. (d) Receive coil stream function for the G25 case.

(e) Receive coil for G25-N30 case. (f) Smoothed receive coil for the G25-S30 case.

Figure 133: Illustrations of the conversion of coils from stream functions to raw wire coils
and then to smoothed wire coils for the G25 case.
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(a) Receive coil stream function for the G50 case. (b) Transmit coil for the G50-S30 case.

(c) Receive coil stream function for the G50 case. (d) Receive coil for the G50-S30 case.

Figure 134: Illustrations of the conversion of coils from stream functions to smoothed wire
coils for the G50 case.
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9.5.3 Wire Coil Coupling Correction

The coupling between the transmit and receive coils for varying numbers of contours is listed

in Tables 11, 12 and 14 and plotted in Figure 135, and the coupling is not su�ciently nulled

for any of the cases. This is not unexpected, since the coupling is very sensitive to small

geometric changes in the current paths3. As was done in Chapter 3 with the double-sided

spirals, the coupling can be "re-nulled" by altering the spacing between the transmit and

receive coils or by shifting one of the coils in the x-y plane. The coupling was calculated for

the G50-S30 and G25-S30 cases (the 30 turn cases) for sweeps of the separation (z) and for

translations in the x-y plane. The results are plotted in Figure 136. While the coupling can

theoretically be nulled by shifting the coils relative to one another in any of the three axes,

a shift in the x-direction is the most sensitive, so that is the approach that will be used here

to re-null the coil coupling before examining the e�ectiveness of the simple conversion to

wire coils.

The coils were "re-nulled" by shifting them relative to each other in the x-direction, and

the amount of shift is presented in Table 13. The amount of shift varied from -5.7 to 1.1

mm depending on the number of contours. The shift signi�cantly reduces the coupling but

has an insigni�cant impact on the other metrics.

3The coupling of the optimized stream-function answers is mostly numerical noise, and is listed as ap-
proximately zero in the tables

(a) G50-S case. (b) G25-S case.

Figure 135: Coupling versus contours.
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(a) Coupling versus separation for the G50-S30
case.

(b) Coupling versus separation for the G25-S30
case.

(c) Coupling versus translation for the G50-S30
case.

(d) Coupling versus translation for the G25-S30
case.

Figure 136: Coupling versus separation and translation for the G25 and G50 cases.
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9.5.4 Number of Turns

Ŝggm, max
(
Ŝs

)
, and Ŝggms were calculated for a range of contours for the G25 and G50

cases and are shown in Tables 11 to 14 and plotted in Figures 137, 138, 141 and 142. As

should be expected, Ŝggm and Ŝs are not perfectly consistent as the number of contours

changes. The soil sensitivity was also plotted against height above the soil for di�erent

numbers of contours in Figures 140 and 144 and against the number of contours for several

di�erent heights above the soil in Figures 139 and 143. These �gures show that the metrics

are a surprisingly good match to the stream function as the number of contours varies. Even

with only ten contours, the metrics are in reasonable agreement with the stream function.

Therefore, these wire coils will perform almost as well as the stream function coils.

Table 11: G25-N Results

# contours Ŝggm (dB) max
(
Ŝs

)
(dB) Ŝggms (dB) LTX (H) LRX (H) coupling

stream -67.3 -59.1 -8.2 N/A N/A ≈ 0

10 -67.1 -57.4 -9.68 2.70e-5 2.78e-5 4.8e-3

15 -68.5 -57.4 -11.0 5.59e-5 6.32e-5 3.6e-2

20 -67.2 -57.4 -9.84 1.03e-4 1.22e-4 5.7e-4

25 -67.2 -57.4 -9.82 1.64e-4 1.89e-4 1.5e-3

30 -67.2 -57.4 -9.80 2.39e-4 2.71e-4 2.5e-3

35 -67.2 -57.4 -9.77 3.29e-4 3.67e-4 3.0e-3

40 -67.2 -57.4 -9.76 4.32e-4 4.78e-4 3.2e-3

45 -67.6 -58.9 -8.65 5.34e-4 6.03e-4 9.7e-3
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Table 12: G25-S Results

# contours Ŝggm (dB) max
(
Ŝs

)
(dB) Ŝggms (dB) LTX (H) LRX (H) coupling

stream -67.3 -59.1 -8.2 N/A N/A ≈ 0

10 -67.1 -57.4 -9.67 2.70e-5 2.78e-5 4.5e-3

15 -68.4 -57.4 -11.0 5.59e-5 6.32e-5 3.7e-2

20 -67.2 -57.4 -9.83 1.03e-4 1.22e-4 8.7e-4

25 -67.2 -57.4 -9.80 1.64e-4 1.89e-4 1.2e-3

30 -67.1 -57.4 -9.78 2.39e-4 2.71e-4 2.2e-3

35 -67.1 -57.4 -9.76 3.29e-4 3.67e-4 2.7e-3

40 -67.1 -57.4 -9.74 4.32e-4 4.78e-4 2.9e-3

45 -67.6 -58.9 -8.63 5.35e-4 6.04e-4 9.9e-3

Table 13: G25-S Results with Adjusted Translation

# contours Ŝggm (dB) max
(
Ŝs

)
(dB) Ŝggms (dB) coupling translation in x (mm)

10 -67.3 -58.2 -9.11 2.15e-5 1.1

15 -67.4 -58.1 -9.33 9.69e-5 -5.7

20 -67.2 -57.3 -9.92 3.15e-6 -0.20

25 -67.2 -57.5 -9.68 1.35e-6 0.28

30 -67.2 -57.7 -9.54 1.73e-6 0.54

35 -67.2 -57.8 -9.45 3.12e-5 0.65

40 -67.2 -57.8 -9.41 5.90e-5 0.70

45 -67.2 -57.6 -9.66 2.59e-5 -2.0
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Figure 137: Ŝggm and Ŝs versus contours for the G25-L case.

Table 14: G50-S Results

# contours Ŝggm (dB) max
(
Ŝs

)
(dB) Ŝggms (dB) LTX (H) LRX (H) coupling

stream -65.4 -53.1 -12.3 N/A N/A ≈ 0

10 -65.5 -53.3 -12.2 3.18e-5 3.12e-5 7.2e-3

15 -65.0 -51.9 -13.1 7.23e-5 7.41e-5 9.8e-3

20 -65.5 -53.4 -12.1 1.30e-4 1.27e-4 7.1e-3

25 -65.2 -52.5 -12.7 2.04e-4 2.04e-4 3.5e-3

30 -65.0 -51.9 -13.1 2.94e-4 3.00e-4 10.2e-3

35 -65.3 -52.7 -12.6 4.02e-4 4.00e-4 6.92e-4

40 -65.1 -52.2 -12.8 5.27e-4 5.32e-4 6.1e-3

45 -65.3 -52.8 -12.5 6.68e-4 6.62e-4 0.97e-3
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Figure 138: Ŝggm and Ŝggms versus contours for the G25-L case.

Figure 139: Ŝs versus contours for the G25-S case.
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Figure 140: Ŝs versus hsr for di�erent numbers of contours for the G25-S case.

Figure 141: Ŝggm and Ŝs versus contours for the G50-S case.
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Figure 142: Ŝggm and Ŝggms versus contours for the G50-S case.

Figure 143: Ŝs versus contours for the G50-S case.
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Figure 144: Ŝs versus hsr contours for the G50-S case.

9.5.5 Self Inductance

The self inductance is dependent upon the number of contours chosen, which is set by the

number of turns chosen for the coils. In a practical implementation, the allowable inductance

for the coil will be tied to the peformance of the other electronics in the EMI systems, such

as the transmit and receive ampli�ers. There is also an upper limit to the number of turns

based on how tightly the turns can be wound together. The Georgia Tech EMI system

desires coils with a self inductance on the order of 300 µH, which is approximately 30 turns

for these coils. Coils with 30 turns will therefore be used as examples to show how wire coils

compare to the stream functions from which they were derived. The raw inductances versus

contours of Figures 145(b) and 145(d) were divided by the number of turns and plotted

in Figures 145(a) and 145(c). Note how the inductance goes as roughly the square of the

number of turns, as should be expected.
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(a) L/n2 for the G25-S case. (b) L for the G25-S case.

(c) L/n2 for the G50-S case. (d) L for the G50-S case.

Figure 145: Self inductances of coils plotted against contours.
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9.6 Target and Soil performance

Once the coils have been converted to wires and smoothed, and their coupling �xed by

shifting the coils relative to one another in the x-direction, their target sensitivity and soil

sensitivity performance can be analyzed and compared to the stream functions from which

they are derived.

Cuts in x − y, x − z, and y − z of the target sensitivity for the G25-S30 and G50-S30

wire coils are shown in Figures 146 to 148 and Figures 149 to 151. Overall, the sensitivity

patterns compare very well with the patterns from their corresponding stream functions

(Figures 112 to 114 and 115 to 117).

The soil sensitivity for di�erent heights and tilts is shown for the wire coils and stream

functions in Figures 152(a), 152(b), 153(a) and 153(b). At �rst glance, the soil response

does not appear to be overly similar, particularly for the G25 case. This is not surprising

because the soil sensitivity is sensitive to small changes in the coil geometry, as is covered

in more detail in Appendix C. However, the maximum values of these graphs�which is the

soil sensitivity, Ŝs, that is used in the metrics�and these maximum values of the same soil

sensitivity for the stream-function coils do not vary much between the stream function and

wire coil cases.

9.7 Conclusions

Example coils using the new optimization method based on stream functions have been

demonstrated for several cases. The resulting coils have new, interesting wire paths. The

coils are superior to the canonical wire coils from Chapter 6, and their combined metric,

Ŝggm + Ŝggms, is from 2.3 to 10.2 dB better depending on which groups of coils (excluding

the G100 set) are being compared. If one cares most about target sensitivity, the G100 and

concentric coils are the best.

However, if one cares most about Ŝggms, the stream-function coils are very interesting.

The G10 stream-function coils perform the best of all the coils with regards to the soil, but

the tradeo� in target sensitivity is signi�cant. The signi�cant tradeo� with target sensitivity

is the reason for focusing on analysis and wire conversion of the G50 and G25 coils in the
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Figure 146: x− y cuts of ŜT for the G25-S30 case.

Figure 147: x− z cut of ŜT for the G25-S30 case.
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Figure 148: y − z cut of ŜT for the G25-S30 case.

Figure 149: x− y cuts of ŜT for the G50-S30 case.
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Figure 150: x− z cut of ŜT for the G50-S30 case.

Figure 151: y − z cut of ŜT for the G50-S30 case.
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(a) G25-S30 case (wires).

(b) G25 stream function case.

Figure 152: Soil sensitivities versus height and tilt for the G25 case with both wires and
stream functions.
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(a) G50-S30 case (wires).

(b) G50 stream function case.

Figure 153: Soil sensitivities versus height and tilt for the G50 case with both wires and
stream functions.
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Figure 154: Summary of Ŝggm versus Ŝggms for the canonical wire coils, the best stream
functions, and the wire conversions of the G25-S30 and G50-S30 cases.

preceding sections. For the G50 coil, trading 1.6 dB of Ŝggm gives a gain of 3.7 db of

Ŝggms, and for the G25 coil trading o� 3.6 dB of Ŝggm gives a gain of 8.7 db in Ŝggms.

Once converted to wire coils, the G25 and G50 coils do not perform quite as well as their

corresponding stream functions, as can be seen in Figure 154, but they are still within 1.3

dB of the stream functions in the Ŝggm + Ŝggms metric.
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CHAPTER X

CONCLUSIONS AND FUTURE WORK

10.1 Conclusions

An initial investigation of the feasibility of optimizing spiral coils using a simple polynomial

basis function was made. These coils proved promising, but they demonstrated the need

for a fair means of comparing coils and also demonstrated the need for canonical coils

to which new coils can be compared. The polynomial basis that was used restricted the

coils to concentric, non-uniformly wound spirals, which showed a need for a more general

representation. The general representation was later created by representing coils as stream

functions.

To quantify the goodness of coils, new metrics were introduced that can be used to fairly

compare coils. These metrics take into account important coil parameters such as target

sensitivity, soil sensitivity, power dissipation, thermal noise, etc. The metrics are normalized

to allow fair comparison between all types of wire- and stream-function-based coils. The

target and soil sensitivity metrics in particular are normalized so that they are independent

of such parameters as wire diameter, coil size, transmit and receive electronics, etc. In other

words, it is desirable to remove these system-dependent parameters to allow easy and fair

comparison of the performance of di�erent current paths.

Simple, brute-force optimization methods could be used to null the coupling of double-D,

dipole/quadrupole, and concentric coils, all of which are common coil types in use today.

The new normalized metrics were then used to analyze and compare these conventional wire

coil designs for two-coil EMI system heads. The optimized wire coils could then be used as

a baseline to which the target and soil sensitivity of new coils could be compared.

A more general coil representation was then created by using stream functions instead

of discrete current paths. The stream functions allow optimization of coils without �rst
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specifying a geometry. Discretizing and optimizing wire-wound coils is generally very re-

strictive in the sense that the optimization of wire-wound coils using conventional methods

is restricted to a chosen con�guration. Starting with a concentric coil as a base will not

produce a more optimal double-D coil as a result. Problems with wires crossing and the

choice of initial coil representation forcing a particular �nal coil con�guration are obviated.

While the stream function is a very general manner to represent a coil by converting

divergence-free surface currents to a simple surface, the discretization of the stream function

leads to a very large number of unknowns. The large number of unknowns would make

a brute-force optimization method unfeasible. For example, the stream functions on the

triangular meshes used in this dissertation would be impossible to optimize with current

computing capabilities using brute-force methods. The optimization problem that creates

a pair of coils with minimum mutual coupling and maximum target sensitivity for a given

soil sensitivity could fortunately be formulated as a bi-convex problem, and some of the

geometrical symmetry could also be exploited to reduce optimization times to be on the

order of a day.

Examples using the new optimization method based on stream functions were demon-

strated for several soil sensitivity cases in Chapter 9. In the same chapter, the new stream-

function coils were converted to wire coils and were shown to have essentially the same

performance. The resulting coils are superior to the canonical wire coils from Chapter 6,

and their combined metric, Ŝggm + Ŝggms, is from 2.3 to 10.2 dB better depending on which

groups of coils (excluding the G100 set) are being compared.

If only target sensitivity and not soil sensitivity is a concern, the concentric coils and

the stream-function coils with no soil sensitivity constraint (G100 case) are almost equal

in performance. However, if the soil sensitivity is important, the new stream-function coils

with a soil constraint can perform signi�cantly better. For the G50 coil, trading o� 1.6 dB

of Ŝggm gives a gain of 3.7 db of Ŝggms, and for the G25 coil trading o� 3.6 dB of Ŝggm gives a

gain of 8.7 db in Ŝggms. Once converted to wire coils, the G25 and G50 coils do not perform

quite as well as their corresponding stream functions, as can be seen in Figure 154, but they

are still within 1.3 dB of the stream functions in the Ŝggm + Ŝggms metric.
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10.2 Future Work

Many small improvements could be made to the system representation and optimization.

For example, improved granularity of the soil sensitivity calculations (more heights and

tilts) can be considered to improve the accuracy of the soil metrics at the possible expense

of computer time. There are certainly more speed and e�ciency improvements that could

be made.

It could also be desirable to force the transmit and receive coils to be mirror images

of one another, such as in the double-D coils of Chapter 6; however, it is not immediately

clear how this may be achieved while still retaining the partial convexity exploited during

optimization.

External correlated interference signals, such as the noise from power lines or switching

power supplies could be included in the optimization. Canceling these noise sources can

be desirable because they can be large enough to cause problems detecting weak targets.

Dipole/quadrupole coils do cancel these correlated noise sources, but they do so with a

considerable reduction in target sensitivity over a coil like a double-D.

It is relatively straightforward to implement the stream-function coils for a low-bandwidth

and low-frequency system; however, there are a bevy of challenges to physically implement-

ing the wire coils created in Chapter 9 for a wideband system. There almost certainly will

be resonance issues like those encountered in Chapter 4 that impact coil performance and

will have to be overcome. Ideally, the capacitive e�ects that cause these problems would be

modeled, but they are beyond the scope of this work. It is likely that when physically built,

the coil coupling will not null properly because of the sensitivity to the relative positioning

of the two coils. This can be manually tweaked after the two coils have been produced as is

shown in 11(a) in Chapter 3 and also in Chapter 9 in Figures 136(a) to 136(d).

The metrics and bi-convex optimization method have been developed in a general manner

so that they are valid in far more situations than could be considered in this dissertation.

The optimization can be extended to much more complex coil arrangements, such as coils of

varying shapes, coils with surfaces that are non-planar, systems with more than two coils,

or arrays of coils. For example, coils that wrap elegantly around a GPR could be optimized.
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This would require a complex surface to wrap around the GPR and would be relatively

straightforward using the metrics and bi-convex optimization that has been developed. This

is useful because GPRs and EMI sensors are often used together, and co-locating the two

sensors is often problematic.

The metrics and methods developed here for EMI coils for subsurface sensing could also

be extended for applications to geophysical sensing, medical imaging, nondestructive testing,

wireless, short-range power transfer, and other inductive systems that use coils.

All of the coils�with the exception of the dipole/quadrupole�in this work were opti-

mized while assuming an isotropic target. It would be interesting to see what kind of coils

the stream function optimization would make for other target symmetries. For example,

would optimization produce a dipole/quadrupole coil if an x-directed target symmetry were

chosen? Or would a new type of coil be produced? Using these ideas it would be possible

to make coils that exploit the symmetry of a speci�c target.

The coils developed from the stream functions in Chapter 9 are fairly complex, but they

have a somewhat simple underlying pattern. Many of the coils in Chapter 9 look very

similar, and their pattern may be a useful new coil type. This pattern is a cross between

the double-D and dipole/quadrupole coils of Chapter 6. It would be interesting to make a

parametric path that describes these patterns and to use the optimization procedure of Part

2 to optimize coils based on this path. These coils could possibly outperform the coils of

Part 2 and almost match the performance of the new coils in Part 3.

In this work, the raw target response of the sensor was optimized with the idea of it

being scanned side-to-side by hand to locate targets like a conventional metal detector. If

the sensor is scanned by a robot or other machine, and the position of the sensor is known

at all times, it is possible to invert the data to acquire more target information [23, 27, 30].

For this application, it would be best to optimize the inverted data instead of the raw target

response. By combining the work in this dissertation with the work in [27] on computing

bounds of the inverse, it should be possible to optimize a sensor to improve the quality of

the inverted data.
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APPENDIX A

NUMERICAL CALCULATION OF COIL ENERGY

To easily calculate the mutual energy of two annuli of current, each annulus is divided into a

series of smaller concentric annuli of equal width, ∆ρ, as in Figure 155. The total magnetic

�eld from the transmit coil, ~HTX, divided into K annuli, will be the sum of the �elds from

each individual annulus, ~Hk,

~HTX =

K∑

k=1

~Hk , (111)

where the k-th annulus is located at position ρk. ~HRX is computed similarly,

~HRX =
L∑

l=1

~Hl . (112)

Substituting these two expressions into (8) gives the mutual energy of the transmit and

receive coils,

Wm =
K∑

k=1

L∑

l=1

µ

∫

V

~Hk · ~Hldv . (113)

The integral in (113) is the mutual energy between the k-th annulus of current on the

transmit coil and the l-th annulus of current on the receive coil. This mutual energy can

also be expressed in terms of the mutual inductance between annuli k and l and the total

 ρk

 ρ

 Ik

 J

∆ρ

Figure 155: Illustration of the method used to divide an annulus �rst into K annuli of width
∆ρ and then into loops of current. Here, the k-th loop of current, Ik, is found from the
current density, J , on the annulus of current.

192



current carried by each [56],

Wkl = MklIkIl = µ

∫

V

~Hk · ~Hldv . (114)

Substituting this equation into (113) yields

Wm =

K∑

k=1

L∑

l=1

MklIkIl , (115)

which, when written in matrix form becomes

Wm = I>RXMITX . (116)

For purposes of calculation, each annulus of width ∆ρ can be approximated as a current

carrying �lament, which henceforth will be referred to as a �loop,� with a radius equal to

the average radius of the corresponding annulus.

ITX is a vector of length K where each entry is the current on one of the loops in our

multiple-loop approximation to an annulus. The vector IRX of length L for the receive coil

is de�ned analogously to ITX. Entries of the matrix M are the mutual inductances between

the loops in the two structures (but not between loops in the same structure). As a result,

they can be quickly calculated as follows [56],

Mkl =
2µ0√
m

√
rkrl[(1−

1

2
m)K(m)− E(m)] , (117)

m =
4rkrl

(rk + rl)2 + δ2
, (118)

where rk and rl are the radii of loops in the transmit and receive coils and K and E are the

complete elliptic integrals of the �rst and second kinds. The mutual inductance matrix, M,

describes the mutual inductance between the two annuli.

The mutual energy between the transmit and receive coils has been written in terms of

currents, ITX and IRX, on the coils. Now (116) can be written in terms of M and the basis

function coe�cients a and b. The surface current density on the transmit coil has been

represented with basis functions,

JTX =
N∑

n=0

anFn(ρ) . (119)
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Now current �owing on the loops must be calculated. If the loops are spaced ∆ρ apart, then

loop k = 1 is located at ρ1 = ρmin + ∆ρ
2 and loop k = K is located at ρK = ρmax− ∆ρ

2 . The

current �owing in the k-th loop, as illustrated in Figure 155, is

ITX,k =

∫ ρk+ ∆ρ
2

ρk−∆ρ
2

JTXdρ , k = 1, . . . ,K . (120)

Combining (119) and (120) gives the current of a single loop at position ρk,

ITX,k =
N∑

n=0

anYnk , (121)

Ynk =

∫ ρk+ ∆ρ
2

ρk−∆ρ
2

Fn(ρ)dρ . (122)

Making the substitution of (122) and converting to matrix notation gives

ITX = Ya . (123)

IRX can be de�ned analogously as

IRX = Zb . (124)

Substituting (123) and (124) into (116) yields,

Wm = (Zb)>M(Ya) = b> Z>MY︸ ︷︷ ︸
S

a . (125)

After some simple algebra in (125), a form for the calculation of the mutual energy of the

transmit and receive coils in terms of the basis function coe�cients is derived,

Wm = b>Sa . (126)

Equations (10) and (11) can be derived in a manner similar to that used to �nd (9).

Because S is part of an optimization constraint and is also computed prior to optimization,

this method is very fast.
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APPENDIX B

OPTIMIZATION CONSTRAINTS AND COIL Q FACTOR

The concept of a coil quality factor was developed in the author's early investigations on

optimizing coils using stream functions, which were before the introduction of normalized

metrics. The following discussion deals with optimizing stream function coils using a convex

optimization much like the one introduced in Chapter 8, where the two equations are

a = arg max
a∈RQ

{HTX(a)ẑ ·HRX(b)ẑ},

subject to: WTX < Wmax,Wm = 0, Pd,TX < Pd,max , (127)

and

b = arg max
b∈RQ

{HTX(a)ẑ ·HRX(b)ẑ},

subject to: WRX < Wmax,Wm = 0, Pd,RX < Pd,max . (128)

The goal of this discussion is to understand the interplay between coil sensitivity, dissipated

power, and stored energy when using an optimization that exploits the partial convexity

of Equations 127 and 128. This knowledge is used to explain the reasoning for the choices

of optimization constraints. For simplicity, only coils with equal power dissipations were

considered, and both transmit and receive coils used the same mesh.

B.1 Coil Parameters and Optimization

A pair of example coils was optimized and then used to explain some of the characteristics

of the solution space. The example coils are represented by a pair of discs arranged as

in Figure 4, each with a radius of 13.33 cm, spaced apart by 9.0 mm, and optimized for

maximum �eld product at 0.5334 m away from the transmit coil along the z-axis. Each disc

is represented with a triangular mesh, and the stream function on each disc is represented
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with linear pyramidal basis functions. Finally, the discs are arbitrarily chosen to consist of

0.5 mm thick copper sheets, giving a surface resistance of 8.4× 10−6Ω/sq.

To illustrate the relationship between the stored energy and power dissipation, the op-

timization procedure presented in [46] was run on the example coils with the stored energy

unconstrained and the dissipated power constrained. When this optimization is done for

di�erent maximum dissipated powers and the resulting stored energy from each optimiza-

tion is plotted against the dissipated power constraint, the line labeled Q′max in Figure 156

results. Therefore, coils with values of dissipated power and stored energy that lie in the

shaded area in Figure 156 labeled �exclusion zone� cannot exist.

Figure 156: Achievable values of Q'.

B.2 Quality Factor

The quality factor of a component can be de�ned by Q = ωW/Pd, where ω is the angular

frequency at which the system operates, W is the energy stored in the coil, and Pd is the

average dissipated power. This de�nition makes it convenient to de�ne a second quantity,

Q′, such that Q′ = Q/ω. Now, the edge of the exclusion zone is de�ned by coils with a Q′ of

6.4× 10−4 sec. The stream functions of these coils of the same Q′ are all simply scaled (and

possibly rotated) versions of each other. For example, if the surface currents corresponding
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to the solutions with Q′ = Q′max were doubled, then the dissipated power, stored energy,

and sensitivity would increase by factors of four, but the stream functions would have the

same pro�les. Examples of optimized transmit and receive coil stream functions with a Q′

of 6.4× 10−4 sec are shown in Figure 157. These solutions have been normalized to have a

dissipated power of 1 W.

(a) Transmit coil. (b) Receive coil.

Figure 157: Stream functions (units of amps) with a Q′ of 6.4× 10−4 sec.

(a) Transmit coil. (b) Receive coil.

Figure 158: Stream functions (units of amps) with a Q′ of 3.7× 10−4 sec.

Since all solutions with the same Q′ are scaled versions of each other, the possible

stored energy and power dissipation combinations that can be solutions to this optimization

problem can be reduced to a single line. For example, the dotted line in Figure 156 at 1
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(a) Transmit coil. (b) Receive coil.

Figure 159: Stream functions (units of amps) with a Q′ of 1.0× 10−4 sec.

W spans all possible values of Q′ and therefore all the possible stream functions (to within

some multiplicative scale factor).

To illustrate how the stream function solution changes when Q′ is varied, two more

optimizations were performed, one with a Q′ of 3.7 × 10−4 (Figure 158), and the second

with a Q′ of 1.0 × 10−4 (Figure 159), as illustrated by the two other lines of constant Q′

in Figure 156. The solutions have both been normalized to have a dissipated power of 1

W as before, so they are represented by the intersections of the lines of constant Q′ with

the dashed line of constant power in Figure 156. The sensitivities of the three sets of coils

that have been optimized at di�erent values of Q′ and equal power dissipated power are

shown in Figure 160. The sensitivity is highest for the biggest Q′ when the dissipated

power is held constant. Also, the stream functions of higher Q′ solutions are much smoother

than low Q′ solutions, as illustrated by the change in smoothness over Figures 157, 158,

and 159. Therefore, the �best� solution is the one with the highest Q′, not only because a

higher sensitivity is desirable, but because a smoother solution is much easier to convert to

a wire-wound coil.

B.3 Optimization Constraint Implications

What does this mean for optimization constraints? For a given dissipated power, there is a

maximum stored energy that cannot be exceeded. Changing the dissipated power constraint
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Figure 160: Comparison of the on-axis sensitivity for various values of Q′ at a constant
dissipated power of 1 W.

without constraining the stored energy will simply give a scaled and possibly rotated pair

of equivalent stream functions, all with the same Q′. Constraining the stored energy below

its maximum is possible, but it has no useful purpose because it lowers the sensitivity for a

given dissipated power.

The stored energy is implicitly constrained by constraining the dissipated power, and

therefore a stored energy expression is not needed in the �nal optimization. The exact

value of the dissipated power constraint is unimportant because an optimization with an

unconstrained stored energy will give solutions of constant Q′.
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APPENDIX C

STREAM FUNCTION AND WIRE COIL SOIL EQUIVALENCY

Most of the important parameters related to coil performance do not change greatly when

a stream function coil is converted to a wire coil. However, the changes in the magnetic

�elds produced by the coils do cause a noticeable change in the coil coupling and the coil

soil response. As treated in Chapter 3, the coil coupling can be re-nulled by shifting the

coils relative to one another.

The soil response is more di�cult. It might be possible to improve the soil response

through a secondary optimization procedure on the newly created wire coils, but that is

beyond the scope of this work. It is however possible to brie�y analyze the e�ects of the

stream to wire conversion on the soil response.

The coil coupling is the most sensitive parameter to the conversion because the distances

between segments on the two coils are very small. The soil response is calculated by �rst

mirroring the transmit coil across the air-soil interface, so the distance between the two coils

is greater for this calculation, making coils that couple strongly to the soil insensitive to the

conversion process.

C.1 Dipole/Dipole Test

This can be illustrated by examining two simple, identical dipoles like the one in Figure

161(b) that is built on the mesh of Figure 161(a). When converted to wires, the coils look

like Figure 161(c). The soil response can be calculated for both the stream function and the

wires, and it is plotted in Figure 162.

These coils couple strongly both when level and when tilted. The absolute di�erence

between the two is shown in Figure 163(a) and is much smaller than response. As a result,

the error between the wire and stream function representations, shown in Figure 163(b), is

acceptably low.
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(a) Mesh basis. (b) A simple stream-function dipole test coil.

(c) A simple wire dipole test coil.

Figure 161: Test coils.

(a) Stream function. (b) Wire coils.

Figure 162: Soil response over various heights and tilts for the dipole/dipole test coils.
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(a) Absolute di�erence between the soil response of
the stream function and wire coils.

(b) Percent error between the soil response of the
stream function and wire coils.

Figure 163: Errors between the soil response of the stream function and the wire coil
conversion for the dipole/dipole coils.

C.2 Dipole/Quadrupole Test

Testing the same scenario using a dipole/quadrupole representation, as shown in Figures

164(a) and 164(b) as stream functions and in Figures 164(c) and 164(d) as wires, yields a

somewhat di�erent result to the dipole/dipole coils. When level, the dipole/quadrupole coils

do not couple well to the soil, and as a result of the quadrupole symmetry, when tilted in

Θ, the soil response does not change much, while there is considerable change when tilted

in φ, as can be seen in Figure 165. While the soil responses actually match well, there is a

large percent error when the coils are level as a result of the deep null in the soil response

in this orientation (Figure 166).

C.3 Soil Response and Wire Conversions

The conversion to wires from stream functions does cause small errors in the soil response.

These di�erences are only noticeable when the soil response is nulled. Also, somewhat

surprisingly, the number of turns used for the wire conversion does not appear to greatly

impact the accuracy.
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(a) A simple dipole test coil. (b) A simple quadrupole test coil.

(c) Wire conversion of the dipole coil. (d) Wire conversion of the quadrupole coil.

Figure 164: Illustration of the conversion of a dipole and quadrupole stream function test
coils to the associated wire coils.

(a) Stream function. (b) Wire coils.

Figure 165: Soil response over various heights and tilts for the dipole/quadrupole test coils
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(a) Absolute di�erence between the soil response of
the stream function and wire coils.

(b) Percent error between the soil response of the
stream function and wire coils.

Figure 166: Errors between the soil response of the stream function and the wire coil
conversion for the dipole/quadrupole coils.
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APPENDIX D

VARIABLE RESISTANCE

D.1 Conversion to Spiral

The coils are �rst viewed as rotationally symmetric, such that they consist of discs or annuli

that support a surface current density, ~K, with zero divergence. Therefore, the surface

current density is only directed in the φ̂ direction and has a pro�le such as that in Figure

167. The total current, I, �owing on a surface perpendicular to a line segment, ∆r, can

be written as I = ~K∆r. It is desirable to approximate this surface current with a spiral.

Obviously, this would be simple to do with loops of current, but unconnected loops of

current require multiple driving sources. A spiral seems to be the obvious choice. Of course,

the spiral will introduce a small amount of error because the current will now be partially

ρ̂-directed instead of completely φ̂-directed.

In transforming to a spiral, I must be constant because only one wire will be used. For

a given ∆r, there must also be some movement, ∆φ, in the φ̂ direction for a given current

density, ~K. If there is movement in ∆r along a current distribution such as that in Figure

168, then there must also be movement in ∆φ around the disc in order to place enough

current into the space ∆φ∆r. Therefore,

~K =
I

∆r

∆φ

2π
. (129)

K =
I

∆r

∆φ

2π
=

I

2π

dφ

dρ
=

N∑

n=0

anFn(ρ) . (130)

This smears I over an area of ∆r∆φ. Expand φ as

φ =
M∑

m=0

gm(ρ) . (131)

dφ

dρ
=

2π

I

N∑

n=0

Fn(ρ) . (132)
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Figure 167: K vs r for a given value of φ.

Figure 168: Surface Current.
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Then, rearranging terms,

dφ =
2π

I

N∑

n=0

Fn(ρ)dρ . (133)

φ =
2π

I

N∑

n=0

∫
Fn(ρ)dρ =

M∑

m=0

gm . (134)

φ =
2π

I

∫
Fn(ρ)dρ

︸ ︷︷ ︸
Q(ρ)

. (135)

φ(ρ) =
2π

I
[Q(ρ) + c] . (136)

Simultaneous equations can now be written to solve for the current and constant c given

a chosen number of turns and starting point of φ = 0. Choose 2πz for an even number of

spiral turns.

0 =
2π

I
Q(ρmin) + c . (137)

2πz =
2π

I
Q(ρmax) + c . (138)




2πQ(ρmin) 1

2πQ(ρmax) 1







1
I

c


 =




0

2πz


 . (139)

where Bmin = 2πQmin
I and Bmax = 2πQmax

I .

Take a given surface current density distribution, J . Then the total current �owing in

the φ̂ direction is Itot =
∫ ρmax
ρmin

Jdρ, and the value for I is determined by I = Itot
Numturns . If

a speci�c number of turns is chosen and there are still an even number of turns, then the

following can be done (note, �turns� denotes the total amount of φ traversed by the spiral,

thus a reversal can cause a non-integer number of turns)




0 −1

2π −1






z

c


 =



Bmin

Bmax


 . (140)

Now the polynomial representing the current density returned by the optimization algo-

rithm will not pass through zero φ at either edge of the coil unless the coil has no hole in

the center.
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