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SUMMARY

Rank-structured matrix representations, e.g., H2 and HSS, are commonly used to re-

duce computation and storage cost for dense matrices defined by interactions between many

bodies. The main bottleneck for their application is the expensive computation required to

represent a matrix in a rank-structured matrix format which involves compressing specific

matrix blocks into low-rank form. This dissertation is mainly about the study and appli-

cation of a hybrid analytic-algebraic compression method, called the proxy point method.

This work uncovers the full strength of this presently underutilized method that could po-

tentially resolve the above bottleneck for all rank-structured matrix techniques. As a result,

this work could extend the applicability and improve the performance of rank-structured

matrix techniques and thus facilitate dense matrix computations in a wider range of sci-

entific computing problems, such as particle simulations, numerical solution of integral

equations, and Gaussian processes.

Application of the proxy point method in practice is presently very limited. Only two

special instances of the method have been used heuristically to compress interaction blocks

defined by specific kernel functions over points. We address several critical problems of

the proxy point method which limit its applicability. A general form of the method is then

proposed, paving the way for its wider application in the construction of different rank-

structured matrix representations with kernel functions that are more general than those

usually used.

In addition to kernel-defined interactions between points, we further extend the applica-

bility of the proxy point method to compress the interactions between charge distributions

in quantum chemistry calculations. Specifically, we propose a variant of the proxy point

method to efficiently construct an H2 matrix representation of the four-dimensional elec-

tron repulsion integral tensor. The linear-scaling matrix-vector multiplication algorithm for

the constructed H2 matrix is then used for fast Coulomb matrix construction which is an

xv



important step in many quantum chemical methods.

Two additional contributions related toH2 and HSS matrices are also presented.

First, we explain the exact equivalence between H2 matrices and the fast multipole

method (FMM). This equivalence has not been rigorously studied in the literature. Numer-

ical comparisons between FMM andH2 matrices based on the proxy point method are also

provided, showing the relative advantages and disadvantages of the two methods.

Second, we consider the application of HSS approximations as preconditioners for sym-

metric positive definite (SPD) matrices. Preserving positive definiteness is essential for

rank-structured matrix approximations to be used efficiently in various algorithms and ap-

plications, e.g., the preconditioned conjugate gradient method. We propose two methods

for constructing HSS approximations to an SPD matrix that preserve positive definiteness.

xvi



CHAPTER 1

INTRODUCTION

Large dense matrices appear in many scientific computing problems, such as particle sim-

ulations, numerical solution of integral equations, and Gaussian processes. Usually, these

dense matrices are defined by non-compact interactions between many bodies (e.g., points

and distributions) and have specific block low-rank structures, meaning that certain blocks

of the matrices are numerically low-rank. For such a matrix, representing these blocks in

low-rank form can reduce the quadratic cost for matrix storage and matrix-vector multi-

plications and is referred to as representing the matrix in a rank-structured matrix format.

Depending on different block low-rank structures, there are different rank-structured ma-

trix formats, such as H [1, 2], H2 [3, 4], HSS [5], HODLR [6], directional H2 [7, 8], and

butterfly factorization [9]. The main bottleneck of applying all these rank-structured matrix

techniques is the expensive computation required to compress all the matrix blocks charac-

terized by block low-rank structure into low-rank form. For example, simply evaluating all

the matrix entries takes quadratic computation cost, making algebraic compression meth-

ods such as SVD or QR decompositions unfavorable. As a result, efficient compression

methods are critical for the construction and application of rank-structured matrix tech-

niques.

In this dissertation, we focus on a hybrid analytic-algebraic compression method, called

the proxy point method. This work uncovers the full strength of this presently underuti-

lized method that could potentially resolve the above bottleneck for all the rank-structured

matrix techniques. As a result, this work could further extend the applicability and improve

the performance of rank-structured matrix techniques and thus facilitate dense matrix com-

putations in a wider range of scientific computing problems.

For kernel functions from potential theory, such as the Laplace kernel and Stokes kernel,

1



Martinsson and Rokhlin [10] introduced the proxy surface method to efficiently compress

specific kernel matrix blocks into a low-rank form called interpolative decomposition [11]

(ID, to be explained in Section 1.2). This technique has been applied in a class of fast

direct solvers [10, 12, 13, 14] for kernel matrices based on HSS format and dramatically

reduces the HSS construction cost. Methods closely related to the proxy surface method

also exist which differ in their selection of so-called proxy points [15, 16]. Together, all

these methods, including the proxy surface method, have a general form that we refer to

as the proxy point method. While the proxy point method has its advantages compared to

purely algebraic or analytic compression methods, several important problems concerning

the method still remain unsolved, limiting its present application only to specific kernel

functions.

This dissertation focuses on the rigorous study and extensive application of the proxy

point method. We first address the unsolved problems concerning the method, paving the

way for its wider application in the construction of different types of rank-structured matri-

ces with kernel functions that are more general than those usually used. In addition to kernel

matrices (which are associated with kernel-defined interactions between points), we further

extend the applicability of the proxy point method to compress specific interaction blocks

defined by charge distributions in quantum chemistry calculations. Specifically, we propose

a variant of the proxy point method to efficiently construct an H2 matrix representation of

the four-dimensional electron repulsion integral (ERI) tensor. The linear-scaling matrix-

vector multiplication algorithm for the constructed H2 matrix is then used for Coulomb

matrix construction which is an important step in many quantum chemical methods.

Two additional contributions related toH2 and HSS matrices are also presented. (These

are not closely connected to the proxy point method and can be read independently.) In the

first contribution, we provide a detailed explanation of the exact equivalence between H2

matrices and the fast multipole method (FMM) [17, 18]. This equivalence has not been

rigorously studied in the literature. We also compare the numerical performance of two
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commonly used FMM libraries and our own H2 matrix library based on the proxy point

method. In the second contribution, we consider the application of HSS approximations as

preconditioners for symmetric positive definite (SPD) matrices. We propose two methods

for constructing HSS approximations to an SPD matrix that preserve positive definiteness

which is essential for the HSS approximations to be used as preconditioners in various

algorithms.

1.1 Outline and contributions

In Chapter 2, we provide a thorough review of the H2 matrix representation from a new

viewpoint. The structure of H2 matrices was originally proposed and explained as a com-

bination of the structure of H matrices, a simpler rank-structured matrix format, with spe-

cific restrictions on the low-rank approximation of various matrix blocks inH matrices. In

comparison, the new viewpoint gives a more direct explanation of H2 matrices. From this

viewpoint, we also propose modifications to improve the original structure ofH2 matrices.

This chapter serves as a background chapter and provides the basic concepts and notation

forH2 matrices that are used in the thesis.

In Chapter 3, we present and study a general form of the proxy point method for the

low-rank approximation of kernel matrices defined by kernel functions over points. Specif-

ically, we address several critical unsolved problems about the proxy point method: how

the method works, under what conditions the method works, and how to select a proper

set of proxy points. We note that the set of proxy points here is a key component in the

proxy point method and is critical to the effectiveness of the method. However, it is only

selected heuristically in practice. These problems limit the present application of the proxy

point method only to the construction ofH2 matrices with specific kernel functions. In this

chapter, we provide a rigorous error analysis for the proxy point method under a general

problem setting. Moreover, we propose a systematic and adaptive scheme to select a proper

set of proxy points under different problem settings.
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In Chapter 4, we extend the applicability of both the proxy point method andH2 matrix

representation to the four-dimensional electron repulsion integral (ERI) tensors in quan-

tum chemistry for fast Coulomb matrix construction. Constructing the Coulomb matrix is

equivalent to computing a matrix-vector multiplication where the matrix (referred to as the

ERI matrix) has entries defined as the Coulomb interactions between continuous charge

distributions. We propose to construct an explicitH2 matrix representation of the ERI ma-

trix to accelerate the Coulomb matrix construction. The main challenge of this approach is

still the expensive computation required in theH2 matrix construction to compress specific

blocks of the ERI matrix into low-rank form. A variant of the proxy point method is pro-

posed to tackle this challenge and also to avoid computing all the ERI entries. This variant

helps reduce theH2 matrix construction cost to nearly linear in the ERI matrix dimension.

As a result, this newH2-based approach to constructing the Coulomb matrix is fast and has

linear computation and storage cost.

In Chapter 5, we provide a detailed explanation of the exact equivalence between H2

matrices and FMM. It is known that FMM for the fast matrix-vector multiplication of a ker-

nel matrix is algebraically equivalent to multiplying by the matrix in H2 format where all

the low-rank approximations are analytically constructed by multipole expansions. How-

ever, this equivalence has not been rigorously studied in the literature. Moreover, we ex-

perimentally compare the numerical performance of two state-of-the-arts FMM libraries

and our own H2 matrix library currently under development with collaborators based on

the proxy point method. These numerical experiments demonstrate the relative advantages

and disadvantages between FMM and H2 matrices. It is worth noting that the proxy point

method plays a critical role in reducing H2 matrix construction cost in our H2 matrix li-

brary, leading to competitive performance compared to these FMM libraries.

In Chapter 6, we consider the application of approximate HSS representations as pre-

conditioners for SPD matrices. Given an SPD matrix, it is desirable to compute an HSS

approximation that is also positive definite, which is essential for the approximation to be
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used as a preconditioner in various algorithms. However, positive definiteness is not guar-

anteed as HSS approximations generally only focus on compressing matrix blocks into

low-rank form. We first provide a new recursive description of the construction process

of HSS approximations. Based on this new description, we propose two methods for con-

structing HSS approximations to an SPD matrix that preserve positive definiteness. Com-

pared to existing SPD rank-structured preconditioners, our proposed methods have similar

computation cost but are much more parallel and also are more stable in terms of preserving

positive definiteness.

1.2 Mathematical preliminaries

The two cornerstones of rank-structured matrix representations, including H2 and HSS

we mainly studied, are the block low-rank structure of matrices from applications and the

low-rank approximation of matrices. This section introduces the basic notation, facts, and

methods related to these two aspects.

1.2.1 Basic concepts

Given a matrix A ∈ Rm×n, a rank-r approximation of A with accuracy O(ε) can be written

in the form

A = U︸︷︷︸
m×r

V T︸︷︷︸
r×n

+ O(ε).

If r � min(m,n), A is said to be numerically low-rank with accuracy O(ε) and UV T is a

low-rank approximation of A. In this case, (m + n)r � mn and representing A by UV T

dramatically reduces the cost for matrix storage and matrix-vector multiplications. Given

a rank r, the optimal rank-r approximation of A in the 2-norm or in the Frobenius norm is

characterized by the singular value decomposition (SVD) of A. There exists an accurate

low-rank approximation of A if and only if A has fast-decaying singular values.
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1.2.2 Low-rank property of kernel matrices

Most dense matrices from applications that have block low-rank structures are associated

with interactions between many bodies. Of all these dense matrices, the most common and

the most fundamental ones are dense kernel matrices in the form K(X, Y ) where K(x, y)

is a non-compact bivariate function (called a kernel function), X and Y are two sets of

points, and K(X, Y ) has entries K(xi, yj) with all pairs of xi in X and yj in Y . In this

subsection, we characterize the block low-rank structure of kernel matrices defined by a

kernel function K(x, y).

Degenerate function approximation Let K(x, y) be a kernel function and X and Y be

two compact domains. For two sets of points, X0 ∈ X and Y0 ∈ Y , the low-rank prop-

erty of K(X0, Y0) is closely related to the existence of an accurate low-degree degenerate

approximation of K(x, y) in X × Y . A degenerate approximation of K(x, y) in X × Y is

formally defined as follows.

Definition 1. K(x, y) is said to have an r-term ε-expansion inX×Y if there exist functions

{ψi(x)}ri=1 and {φi(y)}ri=1 such that

∣∣∣∣∣K(x, y)−
r∑
i=1

ψi(x)φi(y)

∣∣∣∣∣ 6 ε, x ∈ X , y ∈ Y . (1.1)

The summation in eq. (1.1) is called a degenerate approximation (a.k.a. separated repre-

sentation) of K(x, y) with degree r and accuracy ε in X × Y .

Let Ψ(x) and Φ(y) denote the r-dimensional vectors consisting of functions {ψi(x)}ri=1

and {φi(y)}ri=1 from eq. (1.1), respectively. The approximation eq. (1.1) can be written as

K(x, y) = Ψ(x)TΦ(y) +O(ε). (1.2)

Substituting all pairs of xi ∈ X0 and yj ∈ Y0 into the above equation gives K(X0, Y0) ≈
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Ψ(X0)TΦ(Y0) where Ψ(X0) ∈ Rr×|X0| denotes the matrix of column vectors Ψ(xi) for

all xi ∈ X0 and Φ(Y0) is similarly defined. As can be noted, Ψ(X0)TΦ(Y0) is a rank-r

approximation to K(X0, Y0) with O(ε) error.

This observation shows that if there exists an accurate low-degree degenerate approxi-

mation of K(x, y) in X ×Y , i.e., r is O(1) and ε is sufficiently small, K(X0, Y0) with any

X0 ∈ X and Y0 ∈ Y is numerically low-rank.

Admissibility conditions To locate the numerically low-rank blocks of a kernel matrix,

algebraically checking the numerical rank of a blockK(X0, Y0) (e.g., by SVD) is expensive

and impractical. Instead, it is more common and efficient to check the pair of domains X

and Y to decide whether there exists an accurate low-degree degenerate approximation of

K(x, y) in X × Y and thus to decide whether K(X0, Y0) is numerically low-rank.

For kernel functions commonly used in practice, there exist geometric criteria for a pair

of domains X and Y that can decide whether such a degenerate approximation of K(x, y)

inX×Y exists. Such geometric criteria are referred to as admissibility conditions and a pair

of domains that meet the criteria are said to be admissible. Depending on kernel functions,

different rank-structured matrix formats exploit different admissibility conditions (and thus

different block low-rank structures) to locate the numerically low-rank blocks inside a ker-

nel matrix. Figure 1.1 shows examples of admissible pairs of domains in three different

situations.

1.2.3 Low-rank approximation methods

Algebraic methods A low-rank approximation of A ∈ Rm×n can usually be constructed

by truncating a specific matrix decomposition of A, such as SVD, pivoted QR decompo-

sition, and pivoted LU decomposition. These decomposition-based methods usually must

access all the matrix entries and thus have computation cost at least O(mn).

The main low-rank form we will use in this dissertation is the interpolative decomposi-
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(a) (b) (c)

Figure 1.1: Examples of admissible pairs of domains X × Y in three different situations:
(a) K(x, y) = log (|x− y|) in H format [2], (b) K(x, y) = log (|x− y|) in H2 format [4],
(c) 2D Helmholtz kernel function in the fast directional multilevel algorithm [19]. Ad-
missibility conditions generally have constraints on the relative size of certain geometric
features of X and Y which is characterized by the parameter d in the figures.

tion (ID) [12]. A rank-r ID approximates or represents A as

A ≈ U︸︷︷︸
m×r

AJ︸︷︷︸
r×n

, (1.3)

where U has bounded entries and AJ contains r rows of A. An ID approximation defined

in this way is said to have error below the error threshold ε0 if the 2-norm of each row of

A− UAJ is bounded by ε0.

Using an algebraic approach, an ID approximation with a given rank or a given error

threshold can be calculated using the strong rank-revealing QR (SRRQR) decomposition

[11] with typical computation cost O(mnr) (or O(mnr log r) in rare cases). The matrix U

computed by SRRQR can have all its entries bounded by a prespecified parameter Cqr > 1.

In most cases, the QR decomposition with greedy column pivoting can also be used to

construct an ID approximation and can usually obtain a well-bounded U .

Analytic methods As illustrated previously in Section 1.2.2, a degenerate approximation

Ψ(x)TΦ(y) of K(x, y) in X × Y provides an efficient way to construct a low-rank ap-

proximation of K(X0, Y0) with any X0 ∈ X and Y0 ∈ Y . Specifically, if this degenerate

8



approximation has degree r and accuracy ε, a rank-r approximation of K(X0, Y0) with er-

ror O(ε) is constructed by evaluating Ψ(X0) and Φ(Y0). Such an approach, referred to be

analytic, has computation cost O(r(m + n)). Analytic low-rank approximation methods

have been commonly used in many fast matrix-vector multiplication algorithms for kernel

matrices that are equivalent to multiplying the matrices in specific rank-structured matrix

formats, such as FMM [18, 20, 21], the panel clustering method [22], the fast directional

multilevel algorithm [19], and the butterfly method [23]. Common examples of degenerate

approximations used in practice include multipole expansions [18], polynomial interpola-

tions [20, 24], and pseudoskeleton approximations [19, 21, 25].

Comparison between algebraic and analytic methods In general, analytic methods re-

quire much less computation cost than algebraic methods. Also, the obtained approxima-

tion factors, i.e., Ψ(X0) and Φ(Y0), by analytic methods do not have to be stored and can

be dynamically computed when needed. In algebraic methods, the approximation factors

must be stored.

On the other hand, the degrees of the degenerate approximations used in analytic meth-

ods, which equal to the ranks of the obtained low-rank approximations, have to be manually

selected to obtain a given approximation accuracy. Given an accuracy threshold, the ap-

proximation rank obtained by analytic methods is always larger than the actual numerical

rank ofK(X0, Y0). The difference between this approximation rank and the numerical rank

can be significant, especially when X0 or Y0 lie in a much smaller subdomain of X or Y . In

comparison, algebraic methods can usually better capture the numerical rank ofK(X0, Y0).
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CHAPTER 2

REVIEW OF THEH2 MATRIX REPRESENTATION

The basic idea ofH2 matrix technique is to locate numerically low-rank blocks of a matrix

by specific admissibility condition and then compresses these blocks into low-rank form by

a nested approach. Usually, dense matrices defined by non-oscillatory interactions between

many bodies in low-dimension spaces can be effectively represented inH2 format. Such an

H2 matrix representation can have cost for both matrix storage and matrix-vector multipli-

cations linear in the matrix dimension. Originally, H2 format was introduced in Ref [4] as

an improvement of H format [1, 2] to further reduce the storage and multiplication cost in

numerical solution of integral equations. It later turns out that the pioneering fast multipole

method (FMM) [17, 18] for the fast matrix-vector multiplication of a specific kernel matrix

is algebraically equivalent to multiplying by the matrix inH2 format. H2 matrix technique

is thus sometimes referred to as the algebraic FMM as well. Moreover, although derived by

different approaches, hierarchically semi-separable (HSS) [5] matrix format is also equiv-

alent to a special H2 format that applies the weak admissibility condition (to be explained

in Section 2.1). In addition to the reduced storage and multiplication cost, an HSS matrix

can also be efficiently factorized and solved [5, 26].

In most existing literature, the structure of H2 matrices is explained as a combination

of the structure of H matrices with specific restrictions on the low-rank approximation of

various matrix blocks inH matrices, which can be unnatural and difficult to understand. In

this chapter, we review the structure ofH2 matrices from a more direct viewpoint. Based on

this new viewpoint, we also propose modifications to further improve the original structure

ofH2 matrices. These modifications are necessary for the exact equivalence between FMM

andH2 matrices (to be discussed in Chapter 5).

For ease of understanding, this chapter focuses on a kernel matrix K(X,X) defined by
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a non-oscillatory scalar kernel function K(x, y) that is smooth when x 6= y and a set of

pointsX in a low-dimensional space. Note thatK(X,X) can be non-symmetric ifK(x, y)

is not symmetric. The discussion in this chapter can be easily extended to the general case

K(X, Y ) with X 6= Y . If only reading this chapter for background knowledge, it would be

sufficient to read Sections 2.1 to 2.3 and 2.6.

The rest of the chapter is organized as follows.

• Section 2.1 describes the admissibility condition used by H2 matrices to locate nu-

merically low-rank blocks in K(X,X).

• Section 2.2 describes the hierarchical partitioning of the points in X and the associ-

ated hierarchical partitioning of the matrix K(X,X).

• Section 2.3 describes the H2 matrix representation of K(X,X) in the case of a per-

fect hierarchical partitioning of X and K(X,X).

• Section 2.4 describes the H2 matrix representation of K(X,X) in the general case,

i.e., with a non-perfect hierarchical partitioning of X and K(X,X), and introduces

novel modifications to the originalH2 format.

• Section 2.5 describes the fast matrix-vector multiplication for anH2 matrix.

• Section 2.6 describes the construction of anH2 matrix representation.
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2.1 Admissibility condition

For a non-oscillatory kernel function K(x, y) that is smooth when x 6= y, e.g.,

K(x, y) =
1

|x− y|
or K(x, y) = e−|x−y|

2

,

it is usually the case in a low-dimensional space (e.g., 2D and 3D) that there exists an

accurate low-degree degenerate approximation of K(x, y) in a pair of domains X × Y

satisfying the geometric condition,

ηmin(diam(X ), diam(Y)) 6 dist(X ,Y), η > 0, (2.1)

with a reasonably large parameter η, e.g., η = 1/2. In other words, eq. (2.1) is an admissi-

bility condition for K(x, y) and such a pair of domains X ×Y is admissible for K(x, y). A

larger η, requiring X and Y to be more separated, gives a stronger admissibility condition

and requires a smaller degree for an accurate degenerate approximation inX×Y . Rigorous

study of this observation, including the exact description of applicable kernel functions and

the effectiveness of this admissibility condition, can be found in Ref [27].

As to be shown in the next section, anH2 matrix representation of K(X,X) first parti-

tions X into small boxes of points. Thus, to construct an H2 matrix, a special box version

of eq. (2.1) is used as the admissibility condition to locate numerically low-rank blocks in

K(X,X). The commonly used one is that X and Y are admissible if X is a box and Y

is the complement of the union of X and all its adjacent same-sized boxes, or vice versa.

Domain Y is also referred to as the far field of X . Examples of such X × Y in 1D and 2D

are illustrated in Figure 2.1. This admissibility condition is referred to as the strong admis-

sibility condition for H2 format. An even stronger admissibility condition requires more

layers of same-sized boxes between a box domain and its far field. The weak admissibility

condition simply defines the far field of a box as its complement.
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(a) 1D (b) 2D

Figure 2.1: Illustration of the strong admissibility condition in 1D and 2D exploited byH2

matrices. These admissible pairs of domains are characterized by the edge length parameter
e > 0 in the figures.

In this chapter, we use the strong admissibility condition to review the structure of H2

matrices. Using this condition, blocksK(X0, Y0) andK(Y0, X0) inK(X,X) are identified

to be numerically low-rank and are to be compressed into low-rank form for an H2 matrix

representation ifX0 is in a box and Y0 is in the far field of the box. All the discussion in this

chapter can be easily adapted to describe H2 formats with other admissibility conditions.

The main difference is that a stronger admissibility condition locates fewer numerically

low-rank blocks but these blocks have smaller numerical ranks. It is worth noting that H2

format with the weak admissibility condition is exactly HSS format which is to be discussed

in more detail in Chapter 6.

For the rest of this chapter, we fix an accuracy threshold ε0 when describe a matrix to be

numerically low-rank and when discuss low-rank approximations of matrices. Moreover,

we assume that K(X0, Y0) and K(Y0, X0) with X0×Y0 in any X ×Y satisfying the strong

admissibility condition can always be approximated in low-rank form with accuracy O(ε0)

with a fixed rank r0. For kernel functions commonly used in practice, this assumption holds

true experimentally and can also be analytically justified in some cases. (However, we note

that, with the weak admissibility condition, the numerical rank of K(X0, Y0) may increase

with the absolute sizes of X and Y .)
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2.2 Hierarchical partitioning

The first step to construct an H2 matrix representation of K(X,X) is to hierarchically

partition the points in X into small clusters. Assume X is in a d-dimensional space and B

is a box with equal edges that encloses all the points in X . A hierarchical partitioning of X

can be obtained by an adaptive and recursive partitioning of B.

First, B is partitioned into 2d smaller same-sized boxes by bisecting all its edges. Within

these 2d boxes, boxes without any point inside are discarded, boxes with the number of

points inside less than a prescribed constant n0 stay untouched hereafter, and any box with

the number of points inside greater than n0 is partitioned into 2d even-smaller boxes. Re-

cursively, the newly obtained even-smaller boxes are further partitioned in the same manner

till all the finest boxes have the number of points inside less than n0. This hierarchical par-

titioning of B can be represented by a 2d-ary tree whose nodes correspond to the boxes. We

choose to number the nodes level-by-level from the root to the leaves of the tree. Figure 2.2

shows two examples of such a partitioning and numbering for points in 1-dimensional space

and an associated binary tree.

(a) perfect partition tree (b) non-perfect partition tree

Figure 2.2: Examples of a hierarchical partitioning of points in 1-dimensional space and
an associated binary tree: (a) a perfect binary tree for uniformly distributed points (b) a
non-perfect binary tree for non-uniformly distributed points.

Let T denote the partition tree. Let Xi denote the set of points lying in box i and

corresponding to node i in the tree. Using this notation, K(Xi, Xj) denotes the block in
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K(X,X) corresponding to the interactions between the points in box i and box j. With the

partition tree T ,X is hierarchically partitioned into {Xi}i∈T andK(X,X) is hierarchically

partitioned into blocks {K(Xi, Xj)}i,j∈T .

Some basic facts and notation related to the partition tree are listed as follows:

• The root node of T is at level 0, its children are at level 1, and etc. Denote the bottom

level as level L.

• Each leaf node in T corresponds to a box that has less than n0 points and that is not

further partitioned.

• “A lower level” refers to a level that has nodes further away from the root, or that has

a larger level number.

• Boxes in the same level are all of the same size. Boxes in upper levels are larger.

• Let level(l) denote the set of nodes in level l.

• Let level+(l) denote the union of level(l) and all the leaf nodes above level l. When

the tree is full at level l, then level+(l) = level(l).

• At each level l, all the point sets Xi with i ∈ level+(l) are disjoint and their union is

exactly X , i.e.,

Xi ∩Xj = ∅ for i 6= j ∈ level+(l) and
⋃

i∈level+(l)

Xi = X.

For ease of understanding, we first describe an H2 matrix representation of K(X,X)

with a perfect partition tree in the next section, which has the same structure as the original

H2 format. We then discuss the general case with a non-perfect partition tree in Section 2.4

which contains new modifications to the originalH2 format.
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2.3 H2 matrix with a perfect partition tree

Consider a perfect partition tree T , i.e., every level of T is full and all the leaves of T are

in level L. In this case, at each level l, level(l) = level+(l) and there are 2dl nodes in total

corresponding to the 2dl same-sized boxes partitioning box B that encloses X .

At each level l, X is partitioned into 2dl subsets {Xi}i∈level(l). Accordingly, K(X,X) is

partitioned into 2dl×2dl blocks {K(Xi, Xj)}i,j∈level(l). Figure 2.3a illustrates such a matrix

partitioning at each level for the 1D example in Figure 2.2a. According to the admissibility

condition, for each box i ∈ level(l), boxes in level(l) can be split into two subsets:

Fi = {k ∈ level(l) | box k is in the far field of box i}

Ni = level(l) \ Fi.

For example, for node 7 in Figure 2.3a, F7 = {9, 10, 11, 12, 13, 14} and N7 = {7, 8}.

Since Fi contains all the boxes in level l that are in the far field of box i, Xi and ∪k∈Fi
Xk

contain the points in box i and all the points that are in the far field of box i, respectively,

and have their associated matrix blocks,

K(Xi,∪k∈Fi
Xk) and K(∪k∈Fi

Xk, Xi),

to be both numerically low-rank with the rank bounded by r0 (by the assumption in Sec-

tion 2.1). Figures 2.3b and 2.3c plot these numerically low-rank blocks in the 1D example.

The two blocksK(Xi,∪k∈Fi
Xk) andK(∪k∈Fi

Xk, Xi) having numerical ranks bounded

by r0 suggests that their subblocks K(Xi, Xj) and K(Xj, Xi) with j ∈ Fi also have nu-

merical ranks bounded by r0. In the case of a perfect partition tree T , it can be proved that

j ∈ Fi is equivalent to i ∈ Fj and j ∈ Ni is equivalent to i ∈ Nj . Thus, we only need to

consider K(Xi, Xj) with j ∈ Fi or j ∈ Ni as a generic block in the level-l partitioning of

K(X,X).
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(a) hierarchical partitioning of K(X,X) and anH2 matrix representation of K(X,X)

(b) blocks K(Xi,∪k∈Fi
Xk) (c) blocks K(∪k∈Fi

Xk, Xi)

Figure 2.3: Illustration of a 3-level H2 matrix representation for points in 1-dimensional
space with a perfect partition tree. Subfigure (a) plots the admissible blocks (colored) and
inadmissible blocks (white) at each level. The final H2 matrix representation is composed
of all the inadmissible blocks at level 3 and some of the admissible blocks at levels 2
and 3. Subfigures (b) and (c) plot the numerically low-rank blocks K(Xi,∪k∈Fi

Xk) and
K(Xi,∪k∈Fi

Xk) at each level located by the admissibility condition. There is no low-rank
block for nodes 1 and 2 in level 1 since F1 and F2 are both empty.

We call K(Xi, Xj) with j ∈ Fi an admissible block and K(Xi, Xj) with j ∈ Ni an

inadmissible block. Admissible blocks are numerically low-rank based on the above dis-

cussion and inadmissible blocks are always assumed to be full-rank. At level l, the 2dl×2dl

blocks in the level-l partitioning ofK(X,X) can thus be categorized into admissible blocks

∪i∈level(l){K(Xi, Xj)}j∈Fi
and inadmissible blocks ∪i∈level(l){K(Xi, Xj)}j∈Ni

. Figure 2.3a

plots the admissible and inadmissible blocks at each level for the 1D example.

At any non-leaf level l 6= L, an inadmissible block consists of inadmissible blocks and

possible admissible blocks at level l + 1, while an admissible block consists of admissible

blocks in level l+ 1 (see the example in Figure 2.3a). To get the most storage and multipli-
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cation cost reduction by compressing as many and as large admissible blocks as possible

into low-rank form, an H2 matrix representation of K(X,X) with a perfect partition tree

T consists of two parts: (1) dense inadmissible blocks at the leaf level and (2) low-rank

approximations of all the admissible blocks at any level that are not contained in larger

admissible blocks. Figure 2.3a illustrates these two parts in the 1D example.

The low-rank approximations of different admissible blocks in an H2 matrix represen-

tation are not independent but closely connected to each other via two restrictions: (1) the

uniform basis property and (2) the nested basis property. It is worth noting that, if these

low-rank approximations are independent and without the two restrictions, the obtained

representation of K(X,X) is exactly anH matrix.

2.3.1 Low-rank approximations of admissible blocks

From the above discussion, K(Xi,∪k∈Fi
Xk) and K(∪k∈Fi

Xk, Xi) for each node i ∈ T

with nonempty Fi are numerically low-rank according to the admissibility condition. An

H2 matrix representation essentially focuses on compressing these identified blocks instead

of each individual admissible block K(Xi, Xj), which naturally leads to the uniform basis

property and the nested basis property.

In this subsection, we introduce the definitions of the two properties and explain how

they are derived from the viewpoint of compressing K(Xi,∪k∈Fi
Xk) and K(∪k∈Fi

Xk, Xi)

into low-rank form by a nested approach. For simplicity, all these blocks are to be approx-

imated in rank-r0 form.

Uniform basis property For the uniform basis property, the low-rank approximation of

an admissible block K(Xi, Xj) is in the form

K(Xi, Xj) ≈ UiBi,jV
T
j , (2.2)
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where Ui and Vj are matrices consisting of r0 basis vectors for approximating columns

and rows of K(Xi, Xj), respectively, and Bi,j is an intermediate matrix that makes this

approximation as accurate as possible.

The key observation in eq. (2.2) is thatUi does not depend onXj and Vj does not depend

on Xi. In other words, the low-rank approximation of K(Xi, Xj) shares the same column

basis matrix Ui as other admissible blocks that have rows associated with Xi. Similarly,

the approximation shares the same row basis matrix Vj as other admissible blocks that have

columns associated with Xj . For example, in Figure 2.3a, the low-rank approximations of

K(X7, X9) andK(X7, X10) share the same column basis matrix U7. These shared matrices

Ui and Vi associated with node i are referred to as the uniform column basis matrix and

uniform row basis matrix, respectively.

For a node i ∈ T , observe that K(Xi,∪k∈Fi
Xk) is the concatenation of all the admis-

sible blocks that have rows associated with Xi and K(∪k∈Fi
Xk, Xi) is the concatenation

of all the admissible blocks that have columns associated with Xi. For example, in Fig-

ure 2.3a, K(X7,∪k∈F7Xk) is the concatenation of the blocks K(X7, X9), K(X7, X10), . . .,

K(X7, X14). The low-rank approximations of these latter blocks need to share the same

column basis matrix U7 according to the uniform basis property.

The uniform basis property can be naturally derived by constructing the low-rank ap-

proximation of an admissible block K(Xi, Xj) based on the low-rank approximations of

K(Xi,∪k∈Fi
Xk) and K(∪k∈Fj

Xk, Xj). Here, K(Xi, Xj) is exactly the intersection block

of the latter two blocks, as exemplified in Figure 2.4. This specific low-rank approximation

approach for all the admissible blocks K(Xi, Xj) is described as follows.

At each level l, consider a rank-r0 approximation of K(Xi,∪k∈Fi
Xk) for each node i

at level l as,

K(Xi,∪k∈Fi
Xk) ≈ UiE

T
i = Ui

(
ET
k1,i

. . . ET
kfi ,i

)
, Fi = {k1, . . . , kfi}, (2.3)
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where Ui is of dimension |Xi| × r0 and each Ek,i is of dimension |Xk| × r0 and associated

with node k ∈ Fi. This approximation gives a rank-r0 approximation to each admissible

block K(Xi, Xk) with k ∈ Fi as

K(Xi, Xk) ≈ UiE
T
k,i, (2.4)

where Ui does not vary with different nodes k. As a result, all the blocks K(Xi, Xk) with

k ∈ Fi have their columns close to col(Ui) with the computed Ui in eq. (2.3).

Similarly, consider a rank-r0 approximation of K(∪k∈Fi
Xk, Xj) associated with each

node j at level l as

K(∪k∈Fj
Xk, Xj) ≈ GjV

T
j =


Gk1,j

...

Gkfj ,j

V T
j , Fj = {k1, . . . , kfj}, (2.5)

where Vj is of dimension |Xj| × r0 and each Gk,j is of dimension |Xk| × r0 and associated

with node k ∈ Fj . This approximation gives a rank-r0 approximation to each admissible

block K(Xk, Xj) with k ∈ Fj as

K(Xk, Xj) ≈ Gk,jV
T
j , (2.6)

where Vj does not vary with different nodes k. Thus, all the blocksK(Xk, Xj) with k ∈ Fj

have their rows close to col(Vj) with the computed Vj in eq. (2.5).

Recall that j ∈ Fi is equivalent to i ∈ Fj . The above discussion shows that an admissi-

ble block K(Xi, Xj) has all the columns close to col(Ui) and all the rows close to col(Vj).

Thus, K(Xi, Xj) can be approximated in a rank-r0 form as

K(Xi, Xj) ≈ UiBi,jV
T
j , (2.7)
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with an r0 × r0 intermediate matrix Bi,j to be computed, which is in the same form as

required by the uniform basis property. To minimize the approximation error in eq. (2.7),

the optimal Bi,j can be computed as U †iK(Xi, Xj)(V
T
j )† by which eq. (2.7) projects the

columns of K(Xi, Xj) onto col(Ui) and the rows onto col(Vj).

The approach to compressing an admissible block K(Xi, Xj) based on the low-rank

approximation of K(Xi,∪k∈Fi
Xk) and K(∪k∈Fj

Xk, Xj) is exemplified in Figure 2.4.

Figure 2.4: Illustration of the low-rank approximation to an admissible block K(X12, X8)
that leads to the uniform basis property based on the 1D example in Figure 2.3.

Nested basis property For the nested basis property, each non-leaf node i with children

{i1, i2, . . . , is} (s = 2d denotes the number of children) has its uniform column and row

basis matrices (associated with the uniform basis property) represented in nested forms,

Ui =



Ui1

Ui2
. . .

Uis


Ri, and Vi =



Vi1

Vi2
. . .

Vis


Si, (2.8)

for some transfer matrices Ri and Si to be computed. Equation (2.8) is also equivalent to

the fact that the column space of Ui is a subspace of a specific concatenation of the column
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spaces of Ui1 , Ui2 , . . . , Uis , i.e.,

col(Ui) ⊂
{
x =

( x1

...
xs

)
∈ R|Xi|

∣∣∣∣x1 ∈ col(Ui1), . . . , xs ∈ col(Uis)
}
.

The same interpretation applies to Vi and Vi1 , Vi2 , . . . , Vis . Recall that Ui and Vi are ba-

sis matrices obtained by compressing K(Xi,∪k∈Fi
Xk) and K(∪k∈Fi

Xk, Xi), respectively.

The nested basis property essentially restricts the selection of basis matrices Ui and Vi for

compressing these two associated blocks .

With the nested basis property, the basis matrices at parent nodes are expressed in terms

of the basis matrices of their children nodes via the transfer matrices Ri and Si. Thus, in an

H2 matrix representation, the basis matrices for non-leaf nodes are not explicitly formed

and can be recovered recursively from quantities at lower levels of the tree.

The nested basis property can be naturally derived by a nested approach to construct-

ing the low-rank approximations of K(Xi,∪k∈Fi
Xk) and K(∪k∈Fi

Xk, Xi) for all non-leaf

nodes i based on the low-rank approximations ofK(Xia ,∪k∈Fia
Xk) andK(∪k∈Fia

Xk, Xia)

that are associated with all the children ia of i. This nested low-rank approximation ap-

proach is described as follows.

For a non-leaf node i with its children {i1, i2, . . . , is}, it holds that Xi = Xi1 ∪ Xi2 ∪

· · · ∪Xis and thus K(Xi,∪k∈Fi
Xk) can be split as

K(Xi,∪k∈Fi
Xk) =



K(Xi1 ,∪k∈Fi
Xk)

K(Xi2 ,∪k∈Fi
Xk)

...

K(Xis ,∪k∈Fi
Xk)


.

Note that any box k ∈ Fi is in the far field of box i by definition and thus is also in the far

field of each child box ia of box i. As a result, the set of points in all the boxes k ∈ Fi is a
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subset of all the points in the far field of box ia, i.e.,

⋃
k∈Fi

Xk ⊂
⋃
k∈Fia

Xk.

Therefore, K(Xia ,∪k∈Fi
Xk) consists of a subset of the columns inK(Xia ,∪k∈Fia

Xk). For

example, for node 3 and its child node 7 in the 1D example Figure 2.5, ∪k∈F3Xk = X5∪X6

is a subset of ∪k∈F7Xk = X9 ∪X10 . . . ∪X14 and K(X7, X5 ∪X6) consists of a subset of

the columns in K(X7, X9 ∪X10 . . . ∪X14).

For each child ia of i, assume thatK(Xia ,∪k∈Fia
Xk) has been approximated by UiaET

ia

as in eq. (2.3) which gives a rank-r0 approximation of its subblock K(Xia ,∪k∈Fi
Xk) as

K(Xia ,∪k∈Fi
Xk) ≈ UiaE

T
Fi,ia

.

whereET
Fi,ia

denotes the columns ofET
ia associated with ∪k∈Fi

Xk. Plug this approximation

with each child node ia into K(Xi,∪k∈Fi
Xk) and we obtain

K(Xi,∪k∈Fi
Xk) ≈



Ui1E
T
Fi,i1

Ui2E
T
Fi,i2

...

UisE
T
Fi,is


=



Ui1

Ui2
. . .

Uis





ET
Fi,i1

ET
Fi,i2

...

ET
Fi,is


. (2.9)

Instead of directly compressingK(Xi,∪k∈Fi
Xk), we can compute a rank-r0 approximation

of the last matrix above as

(
EFi,i1 EFi,i2 . . . EFi,is

)T
≈ RiE

T
i . (2.10)
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Plugging eq. (2.10) into eq. (2.9), we have a rank-r0 approximation of K(Xi,∪k∈Fi
Xk) as

K(Xi,∪k∈Fi
Xk) ≈

 Ui1
Ui2

. . .
Uis

RiE
T
i = UiE

T
i ,

where the uniform column basis matrix Ui for node i is exactly defined as in eq. (2.8) using

the computed Ri in eq. (2.10).

The approximated matrix in eq. (2.10) has far fewer rows than K(Xi,∪k∈Fi
Xk) and, in

fact, the number of rows equals r0s which does not depend on the size of Xi. As a result,

this nested approach to compressingK(Xi,∪k∈Fi
Xk) for a non-leaf node i is much cheaper

than directly compressing K(Xi,∪k∈Fi
Xk). Further, the computed Ui by this approach is

exactly in the same form as required by the nested basis property for Ui.

Similarly, to compress K(∪k∈Fi
Xk, Xi), the matrix can be first split and approximated

based on the low-rank approximations associated with the children of i as

K(∪k∈Fi
Xk, Xi) =

(
K(∪k∈Fi

Xk, Xi1) K(∪k∈Fi
Xk, Xi2) · · · K(∪k∈Fi

Xk, Xis)

)
≈
(
GFi,i1V

T
i1

GFi,i2V
T
i2
· · · GFi,isV

T
is

)
. (2.11)

Then compute a rank-r0 approximation of
(
GFi,i1 , GFi,i2 , · · · , GFi,is

)
as

(
GFi,i1 , GFi,i2 , · · · , GFi,is

)
≈ GiS

T
i . (2.12)

Plugging eq. (2.12) into eq. (2.11), K(∪k∈Fi
Xk, Xi) is approximated in the rank-r0 form

K(∪k∈Fi
Xk, Xi) = GiS

T
i


V T
i1

V T
i2

. . .
V T
is

 = GiV
T
i , (2.13)

where the uniform row basis matrix Vi for node i is exactly defined as in eq. (2.8) using the

computed Si in eq. (2.12).
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Again, the approximated matrix in eq. (2.12) has r0s columns and this nested approach

to compressing K(∪k∈Fi
Xk, Xi) is much cheaper than directly compressing the matrix.

The computed Vi is exactly in the form as required by the nested basis property for Vi.

This nested approach to compressing K(Xi,∪k∈Fi
Xk) and K(∪k∈Fi

Xk, Xi) is exem-

plified in Figure 2.5.

Figure 2.5: Illustration of the nested low-rank approximation of block K(X3,∪k∈F3Xk)
that leads to the nested basis property based on the 1D example in Figure 2.3a.

2.3.2 Summary of anH2 matrix representation

AnH2 matrix representation ofK(X,X) constructs the low-rank approximations of blocks

K(Xi,∪k∈Fi
Xk) and K(∪k∈Fi

Xk, Xi) for all the nodes i ∈ T with nonempty Fi using a

nested approach from the leaves to the root of the tree (see Algorithm 1). Based on these

low-rank approximations, each admissible block K(Xi, Xj) can be approximated as

K(Xi, Xj) ≈ UiBijV
T
j , j ∈ Fi (2.14)

where Ui and Vi for each non-leaf node i are not formed but recursively defined as

Ui =

 Ui1
Ui2

. . .
Uis

Ri and Vi =

 Vi1
Vi2

. . .
Vis

Si (2.15)
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with the associated transfer matrices Ri and Si. The optimal intermediate matrix Bi,j can

be computed as U †iK(Xi, Xj)(V
T
j )†. As to be shown in Section 2.6, this optimal Bi,j can

be efficiently constructed without accessing all the entries in K(Xi, Xj).

Algorithm 1 Low-rank approximations of K(Xi,∪k∈Fi
Xk) and K(∪k∈Fi

Xk, Xi)

1: for l = L,L− 1, . . . , 1 do
2: for all node i at level l do
3: if i is a leaf node then
4: • compute K(Xi,∪k∈Fi

Xk) ≈ UiE
T
i .

5: • compute K(∪k∈Fi
Xk, Xi) ≈ GiV

T
i .

6: else
7: • compute

(
EFi,i1 EFi,i2 . . . EFi,is

)T ≈ RiE
T
i .

8: • compute
(
GFi,i1 GFi,i2 · · · GFi,is

)
≈ GiS

T
i .

9: end if
10: end for
11: end for

An H2 matrix representation is made up by dense inadmissible blocks at level L and

low-rank approximations eq. (2.14) of the admissible blocks at any level that are not con-

tained in larger admissible blocks. The components stored by anH2 matrix include:

• Uniform column and row basis matrices Ui and Vi for each leaf node i.

• Transfer matrices Ri and Si for each non-leaf node i with a nonempty Fi.

• Intermediate matrices Bi,j for the low-rank approximation eq. (2.14) of each admis-

sible block K(Xi, Xj) at any level that is not contained in a larger admissible block.

• Inadmissible blocks K(Xi, Xj) with i and j being leaf nodes.

Note that if K(x, y) is symmetric, we have K(Xi,∪k∈Fi
Xk) = K(∪k∈Fi

Xk, Xi)
T . In this

case, we only need to compute the low-rank approximation of each K(Xi,∪k∈Fi
Xk) and

set Vi = Ui for leaf nodes and Si = Ri for non-leaf nodes.

2.3.3 Storage cost

We estimate the storage cost of the above H2 matrix components in a simplified setting.

Consider a perfect L-level 2d-ary partition tree. Assume that there are exactly n0 points
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inside each leaf box and thus there are N = 2dLn0 points in total. Also, it is common in

practice to set the parameter n0 bounding the number of points in each leaf box to O(r0).

Uniform basis matrices Ui and Vi for each node i at the leaf level are of dimension

n0 × r0 and thus their total storage cost is

2× n0r0︸︷︷︸
storage per node

× 2dL︸︷︷︸
# of nodes

= 2Nr0.

Transfer matrices Ri and Wi for each node i at level l with L < l 6 2 (Fi is empty for any

node i in level 1) are of dimension 2dr0 × r0 and thus their total storage cost is

2
L−1∑
l=2

2dr2
0︸︷︷︸

storage per node

× 2dl︸︷︷︸
# of nodes

≈ 2r2
02dL ≈ 2Nr0.

For each node i, K(Xi, Xj) with j ∈ Fi is not contained in a larger admissible block only

if the parents of i and j are not in the far field of each other. There are at most 6d−3d boxes

j satisfying that box j is at the same level as box i and is non-adjacent to box i while their

parents are. Thus, the total storage cost of Bi,j is estimated as

L∑
l=2

(6d − 3d)︸ ︷︷ ︸
# of boxes

× r2
0︸︷︷︸

storage of Bi,j

× 2dl︸︷︷︸
# of nodes

≈ (6d − 3d)r2
02Ld ≈ (6d − 3d)Nr0.

For each leaf node i, there are at most 3d boxes j in Ni. Thus, the total storage cost of

inadmissible blocks at the leaf level is bounded by

2dL︸︷︷︸
# of nodes

× 3d︸︷︷︸
# of boxes

× n2
0︸︷︷︸

storage per block

≈ 3dNr0.

In total, the storage cost for an H2 matrix representation is around 2Nr0 + 2Nr0 + (6d −

3d)Nr0 + 3dNr0 ≈ 6dNr0 which is linear in the matrix dimension N .
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2.4 H2 matrix with a non-perfect partition tree

This section describes the structure of an H2 matrix representation with a non-perfect par-

tition tree, which contains novel modifications to the original structure of H2 matrices [4,

27]. These modifications are naturally derived from the viewpoint of H2 matrix structure

used in the last subsection. Only with these modifications, the H2 matrix representation

can be exactly equivalent to FMM (see Chapter 5).

Consider a non-perfect partition tree T . Recall that level+(l) is the union of nodes at

level l, i.e., level(l), and the leaf nodes above level l. At each level l, X is partitioned into

subsets that correspond to the nodes in level+(l), i.e.,

Xi ∩Xj = ∅, for i 6= j ∈ level+(l), and X =
⋃

i∈level+(l)

Xi,

and K(X,X) is partitioned into {K(Xi, Xj)}i,j∈level+(l). Figure 2.6a illustrates such a ma-

trix partitioning in a 1D example. In this example, level(3) = {7, 8, 9, 10} and level+(3) =

{5, 6, 7, 8, 9, 10}. According to the admissibility condition, for each box i ∈ level(l) (not

level+(l)), boxes in level+(l) can be split into two subsets:

Fi = {k ∈ level+(l) | box k is in the far field of box i}

Ni = level+(l) \ Fi.

For each node k ∈ level+(l)\ level(l), i.e., a leaf node above level l,Nk and Fk are defined

at the level where node k lies, say level lk, and they split level+(lk) instead. We note that

j ∈ Fi may not lead to i ∈ Fj anymore since j might be in level+(l)\ level(l). In this case,

Fj only contains nodes at or above the level where j lies and node i is not in Fj .

With this newly defined Fi, the numerically low-rank blocks associated with each node

i ∈ level(l) are still K(Xi,∪j∈Fi
Xj) and K(∪j∈Fi

Xj, Xi). Note that these two blocks as-

sociated with a node i ∈ level+(l)\level(l) are characterized at an upper level. Figures 2.6b
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(a) hierarchical partitioning of K(X,X) and theH2 matrix representation of K(X,X)

(b) blocks K(Xi,∪k∈Fi
Xk) with i ∈ level(l) (c) blocks K(∪k∈Fi

Xk, Xi) with i ∈ level(l)

Figure 2.6: Illustration of a 3-level H2 matrix representation for points in 1-dimensional
space with a non-perfect partition tree. In (a), inadmissible blocks are white at all levels,
level 2 has admissible blocks (yellow), and level 3 has admissible blocks (green) and par-
tially admissible blocks (blue). In (b) and (c), K(Xi,∪k∈Fi

Xk) and K(∪k∈Fi
Xk, Xi) are

plotted at each level. Note that the partially admissible block K(X9, X5) is colored in (b)
but not in (c), meaning that K(X9, X5) only shares the column basis matrix U9.

and 2.6c plot these blocks in the 1D example.

Just like in the case of a perfect partition tree, anH2 matrix representation of K(X,X)

compresses blocks K(Xi,∪j∈Fi
Xj) and K(∪j∈Fi

Xj, Xi) associated with all the nodes i

with non-empty Fi into the low-rank forms UiET
i and GiV

T
i , respectively. For any non-

leaf node i, it still holds that the set of points in all the boxes k ∈ Fi is a subset of all the

points in the far field of any child box of i, i.e.,

⋃
k∈Fi

Xk ⊂
⋃
k∈Fia

Xk, ia = i1, i2, . . . , is.
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Thus, blocks K(Xi,∪j∈Fi
Xj) and K(∪j∈Fi

Xj, Xi) can still be compressed by the nested

approach described in Algorithm 1 with the newly defined Fi based on level+(l).

The supplementary modifications to the structure of an H2 matrix with a non-perfect

partition tree is over the low-rank approximations of each individual block K(Xi, Xj) with

j ∈ Fi or i ∈ Fj . For node i ∈ level(l), K(Xi,∪k∈Fi
Xk) and K(∪k∈Fi

Xk, Xi) being

numerically low-rank suggests that K(Xi, Xj) and K(Xj, Xi) with j ∈ Fi are also numer-

ically low-rank. To further characterize these latter blocks, Fi is split into to two subsets:

F1
i = {k ∈ Fi | box i is in the far field of box k}

F2
i = {k ∈ Fi | box i is not in the far field of box k}.

Geometrically, F2
i only contains the leaf boxes k above level l that are separated from box

i but adjacent to an ancestor of box i. Meanwhile, F1
i contains all the boxes in Fi that are

at level l and also contains qualified leaf boxes in Fi that are above level l. For example,

for node 9 in Figure 2.6a, F1
9 = {7, 6} and F2

9 = {5}. Noting that ∪k∈Fj
Xk is the set of

all the points in the far field of a box j, it can thus be verified that

Xi ⊂
⋃
k∈Fj

Xk, ∀j ∈ F1
i ,

Xi

⋂ ⋃
k∈Fj

Xk = ∅, ∀j ∈ F2
i .

Given the splitting Fi = F1
i ∪ F2

i , the numerically low-rank blocks K(Xi, Xj) and

K(Xj, Xi) with j ∈ Fi are categorized into two classes:

1. admissible blocks: K(Xi, Xj) and K(Xj, Xi) with j ∈ F1
i

2. partially admissible blocks:K(Xi, Xj) and K(Xj, Xi) with j ∈ F2
i .

For j ∈ F1
i , K(Xi, Xj) is a subblock of both K(Xi,∪k∈Fi

Xk) and K(∪k∈Fj
Xk, Xj).

Based on the low-rank approximations of the latter two blocks, K(Xi, Xj) has its columns
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close to col(Ui) and rows close to col(Vj) and thus can be approximated as

K(Xi, Xj) ≈ UiBi,jV
T
j . (2.16)

Similarly, K(Xj, Xi) is a subblock of both K(Xj,∪k∈Fj
Xk) and K(∪k∈Fi

Xk, Xi) and can

be approximated as K(Xj, Xi) ≈ UjBj,iV
T
i .

For j ∈ F2
i , K(Xi, Xj) is a subblock of K(Xi,∪k∈Fi

Xk) but not of K(∪k∈Fj
Xk, Xj)

(recall thatXi∩∪k∈Fj
Xk = ∅). As a result, K(Xi, Xj) has its columns close to col(Ui) but

may not have its rows close to col(Vj) with the computed Vj for K(∪k∈Fj
Xk, Xj). Thus,

K(Xi, Xj) can only be approximated as

K(Xi, Xj) ≈ UiBi,j. (2.17)

Similarly, K(Xj, Xi) is not a subblock of K(Xj,∪k∈Fj
Xk) and can be approximated as

K(Xj, Xi) ≈ Bj,iV
T
i . (2.18)

In other words, partially admissible blocks only satisfy the uniform basis property partially,

sharing either row basis matrix or column basis matrix with other related blocks.

To summarize, at level l, K(Xi, Xj) with either i or j in level(l) are categorized into (1)

inadmissible blocks with i ∈ Nj or j ∈ Ni, (2) admissible blocks with i ∈ F1
j or j ∈ F1

i ,

and (3) partially admissible blocks with i ∈ F2
j or j ∈ F2

i . For a perfect partition tree, F2
i

is always empty and there is no partially admissible block. In the end, anH2 matrix with a

general partition tree T consists of three parts:

1. dense inadmissible blocks K(Xi, Xj) with both i and j being leaf nodes.

2. low-rank approximations UiBi,jV
T
j of the admissible blocks K(Xi, Xj) that are not

contained in larger admissible blocks.

31



3. low-rank approximations UiBi,j (for j ∈ F2
i ) or Bi,jV

T
j (for i ∈ F2

j ) of the partially

inadmissible blocks K(Xi, Xj) that are not contained in larger partially inadmissible

blocks.

Denote the sets of the associated pairs of nodes (i, j) for these three sets of blocksK(Xi, Xj)

as D, A, and Ap, respectively. These three sets of blocks exactly form a non-overlapping

partitioning of K(X,X) (see Figure 2.6a for an example).

In this generalH2 matrix representation, Ui and Vi are constructed by Algorithm 1 and

each intermediate matrix Bi,j should make the corresponding approximation accurate. In

addition to the H2 components discussed in Section 2.3.1, only intermediate matrices Bi,j

corresponding to the partially admissible blocks, i.e., (i, j) ∈ Ap, are newly introduced.

OriginalH2 matrix structure In the originalH2 matrix structure, there is no distinction

between partially admissible blocks and admissible blocks. For any two boxes i and j in

level+(l) satisfying i ∈ Fj or j ∈ Fi, K(Xi, Xj) is called an “admissible block” and is

approximated as UiBi,jV
T
j .

Let Ji denote the set of boxes j satisfying that i ∈ F2
j , i.e., box i is in the far field

of box j while box j is not in the far field of box i. Note that K(Xi, Xj) for any j ∈ Ji

is not a subblock of K(Xi,∪k∈Fi
Xk). Thus, to approximate K(Xi, Xj) by UiBi,jV

T
j , the

originalH2 matrix structure has to compute an effective uniform column basis matrix Ui by

compressing K(Xi,∪k∈Fi∪JiXk) instead of K(Xi,∪k∈Fi
Xk). Since ∪k∈Fi∪JiXk contains

points not in the far field of box i, K(Xi,∪k∈Fi∪JiXk) can have much larger numerical

rank than K(Xi,∪k∈Fi
Xk), leading to more columns in Ui and thus less cost reduction by

the finalH2 matrix representation.

2.5 H2 matrix-vector multiplication

With an accurate H2 matrix representation of K(X,X), the multiplication of K(X,X)

with a vector can be approximated by the multiplication of the H2 matrix with the vec-
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tor. The fast matrix-vector multiplication algorithm for the H2 matrix (abbreviated as H2-

matvec) is described as follows.

Consider a vector q to be multiplied byK(X,X) and the result vector b. For each i ∈ T ,

let qi and bi denote the subvectors of q and b, respectively, whose entry indices are the

column indices of K(X,Xi) within K(X,X). The basic idea of H2-matvec is to traverse

all the three sets of blocks K(Xi, Xj) in theH2 matrix, i.e., the blocks characterized by D,

A, and Ap, and accumulate the corresponding multiplications, i.e.,

bi = bi +K(Xi, Xj)qj, (i, j) ∈ D ∪A ∪Ap,

with K(Xi, Xj) in dense form or in low-rank form.

For inadmissible blocks K(Xi, Xj) with (i, j) ∈ D, the computation is straightforward

with the blocks in dense form as

bi = bi +
∑

(i,j)∈D

K(Xi, Xj)qj, for each leaf node i ∈ T .

For each admissible block K(Xi, Xj) with (i, j) ∈ A, its multiplication by qj , i.e.,

bi = bi +K(Xi, Xj)qj ≈ bi + UiBi,jV
T
j qj,

is computed in three steps V T
j qj , Bi,j(V

T
j qj), and bi = bi + Ui

(
Bi,j

(
V T
j qj
))

which cor-

respond to three consecutive steps of H2-matvec: forward transformation, intermediate

multiplication, and backward transformation.

Forward transformation This phase computes yj = V T
j qj for all the nodes j ∈ T . Note

that yj can be used for all the admissible blocks with columns defined by Xj . For each leaf

node j, yj is directly computed. For each non-leaf node j with children {j1, j2, . . . , js}, yj
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is recursively computed using the computed results yj1 , yj2 , . . . , yjs as

yj = V T
j qj = STj



V T
j1

V T
j2

. . .

V T
js





qj1

qj2
...

qjs


= STj



V T
j1
qj1

V T
j2
qj2
...

V T
js qjs


= STj



yj1

yj2
...

yjs


.

This phase thus computes yj recursively by traversing the partition tree from the leaves to

the root. See the lines 6-14 in Algorithm 2 for the exact computation.

Intermediate multiplication This phase first computes zi,j = Bi,jyj for each admissible

block K(Xi, Xj) with (i, j) ∈ A. Note that all the zi,j that share the index i are to be

multiplied by Ui and then added to bi as

bi = bi +
∑

(i,j)∈A

Uizi,j = bi + Ui
∑

(i,j)∈A

zi,j.

Only multiplying Ui once, it is more efficient to first sum over all these zi,j , then apply Ui,

and lastly add to bi. Thus, for each node i ∈ T , this phase further computes

zi =
∑

(i,j)∈A

zi,j =
∑

(i,j)∈A

Bi,jyj.

Backward transformation This phase computes bi = bi+Uizi for each node i ∈ T . For

a non-leaf node i with children {i1, i2, . . . , is}, bi is recursively accumulated as

bi = bi + Uizi = bi +



Ui1

Ui2
. . .

Uis


Rizi = bi +



Ui1 [Rizi]i1

Ui2 [Rizi]i2
...

Uis [Rizi]is


,
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where [Rizi]ia denote the subvector ofRizi associated with Uia . The addition bi = bi+Uizi

is reduced to bia = bia +Uia [Rizi]ia with all the children of i. Meanwhile, bia = bia +Uiazia

also has to be computed for each child ia. Only multiplying Uia once, it is more efficient to

first overwrite zia by zia = zia + [Rizi]ia and then multiply Uia by zia .

Recursively, this phase traverses the tree from the root to the leaves to overwrite each

zi by zi = zi + [Rpzp]i with p being the parent of i. As a result, for each leaf node i, zi

accumulates the intermediate multiplication results from all its ancestors. Adding Uizi to

bi for all the leaf nodes i in T finishes this phase. See the lines 21-28 in Algorithm 2 for

the exact calculation.

For each partially admissible block K(Xi, Xj) with (i, j) ∈ Ap, its multiplication can

be merged into the above three-step multiplication of admissible blocks as follows.

• For K(Xi, Xj) approximated by UiBi,j , i.e., j ∈ F2
i , its multiplication by qj is

computed in two steps: zi,j = Bi,jqj and bi = bi + Uizi,j . We only need to compute

zi,j and add it to the intermediate vector zi in the multiplication phase above. The

backward transformation will compute bi = bi + Uizi,j without extra modifications.

• For K(Xi, Xj) approximated by Bi,jV
T
j , i.e., i ∈ F2

j , its multiplication by qj is

computed in two steps: yj = V T
j qj and bi = bi + Bi,jyj . Note that yj has been

computed in the forward transformation. Then, directly compute bi = bi +Bi,jyj .

The overall H2-matvec is in Algorithm 2. This multiplication accesses all the compo-

nents of the H2 matrix, i.e., dense inadmissible blocks K(Xi, Xj), uniform basis matrices

Ui and Vi, transfer matrices Ri and Si, and intermediate matrices Bi,j , exactly once. Thus,

according to the storage cost of these components analyzed in Section 2.3.1, H2-matvec

has computation cost of scale 6dNr0 which is linear in the matrix dimension.
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Algorithm 2H2 matrix-vector multiplication
1: • initialize result vector b to zero.
2: • initialize intermediate vectors zi for all i ∈ T to zero.
3: for all (i, j) ∈ D do . Step 1: Dense multiplication
4: bi = bi +K(Xi, Xj)qj .
5: end for
6: for l = L,L− 1, . . . , 1 do . Step 2: Forward transformation
7: for all node i at level k do
8: if i is a leaf node then
9: yi = V T

i qi.
10: else
11: yi = STi (yTi1 , y

T
i2
, . . . , yTis)

T with children {i1, i2, . . . , is} of node i.
12: end if
13: end for
14: end for
15: for all (i, j) ∈ A do . Step 3: Intermediate multiplication
16: zi = zi +Bi,jyj .
17: end for
18: for all (i, j) ∈ Ap with j ∈ F2

i do . Partially admissible blocks
19: zi = zi +Bi,jqj .
20: end for
21: for l = 1, 2, . . . , L do . Step 4: Backward transformation
22: for all non-leaf node i at level l do
23: zia = zia + [Rizi]ia with all children ia ∈ {i1, i2, . . . , is} of node i.
24: end for
25: end for
26: for all leaf node i in T do
27: bi = bi + Uizi.
28: end for
29: for all (i, j) ∈ Ap with i ∈ F2

j do . Partially admissible blocks
30: bi = bi +Bi,jyj .
31: end for
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2.6 H2 matrix construction

In this section, we first discuss the general H2 matrix construction process. Furthermore,

we provide a detailed description about the construction of anH2 matrix with the low-rank

approximations of all the blocks K(Xi,∪k∈Fi
Xk) and K(∪k∈Fi

Xk, Xi) in an interpolative

decomposition (ID) form. Such anH2 matrix is referred to as an ID-basedH2 matrix.

General H2 matrix construction In general, the construction of an H2 matrix consists

of three steps: (1) apply Algorithm 1 to compute the uniform basis matrices Ui, Vi for leaf

nodes and the transfer matrices Ri, Si for non-leaf nodes; (2) compute intermediate matri-

ces Bi,j to make the corresponding low-rank approximations of admissible or partial ad-

missible blocks as accurate as possible; (3) compute all the inadmissible blocks K(Xi, Xj)

with (i, j) ∈ D. For each block K(Xi, Xj) with j ∈ Fi or i ∈ Fj , the optimal intermediate

matrix Bi,j minimizing the approximation error in the Frobenius norm can be computed as

Bi,j =


U †iK(Xi, Xj)(V

T
j )† j ∈ F1

i or i ∈ F1
j

U †iK(Xi, Xj) j ∈ F2
i

K(Xi, Xj)(V
T
j )† i ∈ F2

j

.

The approximation of K(Xi, Xj) defined by this Bi,j projects all the matrix columns onto

col(Ui) and/or projects all the matrix rows onto col(Vj). These optimal Bi,j can be recur-

sively constructed using Bia,jb associated with possible children ia of i and jb of j. In the

end, only Bi,j with (i, j) ∈ A and (i, j) ∈ Ap are kept for the final H2 matrix representa-

tion. Details of this recursive construction are described in Appendix A.

ID-based H2 matrix construction For each node i with non-empty Fi, we consider

compressing K(Xi,∪k∈Fi
Xk) and K(∪k∈Fi

Xk, Xi) into ID form as

K(Xi,∪k∈Fi
Xk) ≈ UiK(X row-id

i ,∪k∈Fi
Xk) (2.19)
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K(∪k∈Fi
Xk, Xi) ≈ K(∪k∈Fi

Xk, X
col-id
i )V T

i , (2.20)

where X row-id
i is a subset of Xi and thus K(X row-id

i ,∪k∈Fi
Xk) contains a subset of rows in

K(Xi,∪k∈Fi
Xk); Xcol-id

i is a subset of Xi and thus K(∪k∈Fi
Xk, X

col-id
i ) contains a subset

of columns in K(∪k∈Fi
Xk, Xi).

For each non-leaf node i with children {i1, i2, . . . , is}, the nested approach in Algo-

rithm 1 to computing the above two ID approximations can be written as

K(Xi,∪k∈Fi
Xk) ≈


Ui1K(X row-id

i1
,∪k∈Fi

Xk)

...

UisK(X row-id
is ,∪k∈Fi

Xk)

 =


Ui1

. . .

Uis

K(X̂ row-id
i ,∪k∈Fi

Xk)

K(∪k∈Fi
Xk, Xi) ≈

(
K(∪k∈Fi

Xk, X
col-id
i1

)V T
i1

. . . K(∪k∈Fi
Xk, X

col-id
is )V T

is

)

= K(∪k∈Fi
Xk, X̂

col-id
i )


V T
i1

. . .

V T
is

 ,

where X̂ row-id
i = ∪iaX row-id

ia and X̂col-id
i = ∪iaXcol-id

ia . As can be observed, the two matrices

to be actually compressed are still kernel matrix blocks. To compute the transfer matrices

Ri and Si, these two matrices are also compressed into ID form as

K(X̂ row-id
i ,∪k∈Fi

Xk) ≈ RiK(X row-id
i ,∪k∈Fi

Xk) (2.21)

K(∪k∈Fi
Xk, X̂

col-id
i ) ≈ K(∪k∈Fi

Xk, X
col-id
i )STi , (2.22)

where the computed X row-id
i and Ri together define the final ID approximation eq. (2.19) of

K(Xi,∪k∈Fi
Xk) with Ui represented in a nested form using Ri and similarly the computed

Xcol-id
i and Si together define the final ID approximation eq. (2.20) of K(∪k∈Fi

Xk, Xi).

The key benefit of using ID approximation to construct an H2 matrix is that the in-
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termediate matrices Bi,j can be computed far more efficiently than the general recursive

construction illustrated in Appendix A. For an admissible block K(Xi, Xj) with j ∈ F1
i ,

the columns in the ID approximation K(Xi,∪k∈Fi
Xk) ≈ UiK(X row-id

i ,∪k∈Fi
Xk) that cor-

respond to Xj give the approximation K(Xi, Xj) ≈ UiK(X row-id
i , Xj). Similarly, the

ID approximation K(∪k∈Fj
Xk, Xj) ≈ K(∪k∈Fj

Xk, X
col-id
j )V T

j gives K(X row-id
i , Xj) ≈

K(X row-id
i , Xcol-id

j )V T
j based on the fact that X row-id

i ⊂ Xi ⊂ ∪k∈Fj
Xk. Combining these

two approximations leads to

K(Xi, Xj) ≈ UiK(X row-id
i , Xcol-id

j )V T
j . (2.23)

The associated intermediate matrix Bi,j can thus be set to K(X row-id
i , Xcol-id

j ). Similar dis-

cussions apply to partially admissible blocks and Bi,j can be generally computed as

Bi,j =


K(X row-id

i , Xcol-id
j ) (i, j) ∈ A

K(X row-id
i , Xj) (i, j) ∈ Ap and j ∈ F2

i

K(Xi, X
col-id
j ) (i, j) ∈ Ap and i ∈ F2

j

.

As can be observed, Bi,j above can be directly computed using Xi, X row-id
i , Xj , and

Xcol-id
j . From the discussion in Section 2.3.3, it can be noted that the storage cost of these

intermediate matrices dominates the total storage cost of anH2 matrix. As a result, another

key benefit of using ID approximation to construct anH2 matrix is that the above definition

of Bi,j gives the option to not store Bi,j but dynamically compute them when needed as a

trade-off between computation and storage.

In our ownH2 matrix library currently under development with collaborators, dynami-

cally computing Bi,j can dramatically reduce the storage cost of H2 matrices. Experimen-

tally, it also turns out that, in the H2 matrix-vector multiplication, dynamically computing

Bi,j can actually lead to similar multiplication runtime as precomputing and storing Bi,j .

This is mainly due to that the communication cost to load Bi,j from memory can be as
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expensive as dynamically computing Bi,j in CPU.

The overall construction of an ID-basedH2 matrix is summarized in Algorithm 3.

Algorithm 3 Construct an ID-basedH2 matrix representation of K(X,X)

1: • construct a hierarchical partitioning of X which gives a L-level partition tree T .
2: for l = L,L− 1, . . . , 1 do
3: for all nodes i in level(l) do
4: if i is a leaf node then
5: • compute Ui and X row-id

i from an ID approximation of K(Xi,∪k∈Fi
Xk).

6: • compute Vi and Xcol-id
i from an ID approximation of K(∪k∈Fi

Xk, Xi).
7: else if i is a non-leaf node with children {i1, i2, . . . , is} then
8: • construct X̂ row-id

i = ∪iaX row-id
ia and X̂col-id

i = ∪iaXcol-id
ia .

9: • computeRi andX row-id
i from an ID approximation ofK(X̂ row-id

i ,∪k∈Fi
Xk).

10: • compute Si andXcol-id
i from an ID approximation ofK(∪k∈Fi

Xk, X̂
col-id
i ).

11: end if
12: end for
13: end for
14: • (optional, can be dynamically computed) compute inadmissible blocks K(Xi, Xj)

for all (i, j) ∈ D and intermediate matrices Bi,j for all (i, j) ∈ A and all (i, j) ∈ Ap.
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CHAPTER 3

INTERPOLATIVE DECOMPOSITION VIA PROXY POINTS

For kernel matrices, the main bottleneck of applyingH2 matrix techniques is the expensive

computation required to represent a matrix inH2 format, which in turn is dominated by the

low-rank approximation of all the numerically low-rank blocks identified by the admissibil-

ity condition. Compressing these blocks using purely algebraic methods, e.g., SVD and the

pivoted QR decomposition, usually leads to prohibitive quadratic construction cost. These

approximated blocks are all in the form K(X0, Y0) with X0 × Y0 in an admissible pair of

domains X × Y as illustrated in Figure 3.1. As a result, efficient compression methods

for such a block K(X0, Y0) are critical for the construction and application of H2 matrix

representations.

For kernel functions from potential theory, such as the Laplace kernel and Stokes kernel,

Martinsson and Rokhlin [10] introduced the proxy surface method to efficiently compress

K(X0, Y0) in interpolative decomposition (ID) form,

K(X0, Y0) ≈ UK(Xid, Y0), (3.1)

whereXid is a subset of points inX0 andK(Xid, Y0) contains a subset of rows inK(X0, Y0).

This technique is applied in a class of fast direct solvers [10, 12, 13, 14] for kernel matrices

based on HSS format and dramatically reduces the HSS construction cost. Methods closely

related to the proxy surface method also exist which differ in their selection of so-called

proxy points [15, 16]. Together, all these methods, including the proxy surface method,

have a general form that we refer to as the proxy point method. As to be discussed later,

while the proxy point method is more efficient than computing the ID using SRRQR alone,

several important problems concerning the method still remain unsolved which limits its
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present application to specific kernel functions. In this chapter, we address these problems

and generalize the application of the method to the construction of different types of rank-

structured matrices with kernel functions that are more general than those usually used.

Figure 3.1: Illustration of the proxy surface method. The proxy points Yp are uniformly
selected on the interior boundary Γ of Y . The ID approximation of K(X0, Y0) is efficiently
constructed via an algebraic ID approximation of K(X0, Yp).

Figure 3.1 gives a simple illustration of the proxy surface method for K(X0, Y0) with

the Laplace kernel K(x, y). The method first uniformly selects a small set of proxy points

Yp on the interior boundary of Y . An ID approximation of K(X0, Yp) is then computed

algebraically as K(X0, Yp) ≈ UK(Xid, Yp) using SRRQR. The obtained U and Xid are di-

rectly used in eq. (3.1) to construct the ID approximation ofK(X0, Y0). Usually,K(X0, Yp)

is a much smaller matrix than K(X0, Y0). The proxy surface method can thus be much

faster than computing the ID approximation of K(X0, Y0) using SRRQR alone. The proxy

point method generalizes the proxy surface method, where the proxy points Yp can be se-

lected in the whole domain Y and the domains X and Y can also be chosen adaptively for

different kernel functions and different rank-structured matrix formats.

The proxy point method, however, has limited application due to several unsolved prob-

lems. First, the effectiveness of the method is, so far, only supported by numerical results.

A rigorous explanation of how the proxy point method works and under what conditions

is still missing. Second, the proper selection of proxy points Yp is critical to controlling

the approximation accuracy of the method, and such a selection varies for different kernel

42



functions. However, Yp is only heuristically selected in practice. Figure 3.2 shows a numer-

ical example where the proxy point method with Yp selected as in Figure 3.1 works well

for the Laplace kernel but poorly for a Gaussian kernel. A more effective but still heuristic

selection of Yp for Gaussian kernels is suggested in Ref. [15]. These unsolved problems

limit the present application of the proxy point method to the construction of HSS and H2

matrices with specific kernel functions. To the best of our knowledge, only two specific

instances of the proxy point method have been heuristically used in practice: the proxy

surface method [10, 12, 13, 14] and a variant [15, 16] of the proxy surface method.

0 10 20 30 40 50
10-15

10-10

10-5

100

(a) Laplace kernel K(x, y) = log(|x− y|)
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(b) Gaussian kernel K(x, y) = e−0.1|x−y|
2

Figure 3.2: Relative approximation error of the proxy point method for K(X0, Y0) with
different approximation ranks and with two kernel functions. Let X = [−1, 1]2, Y =
[−5, 5]2\[−3, 3]2, and Γ = ∂([−3, 3]2) as shown in Figure 3.1. We randomly selected 400
points in X for X0 and 6400 points in Y for Y0, and uniformly selected 300 points on Γ for
Yp.

In this chapter, we present a general form of the proxy point method for a general kernel

function K(x, y) and a pair of compact domains X and Y satisfying the conditions that

K(x, y) in X ×Y is smooth and can be represented by an accurate, low-degree degenerate

approximation. In this general problem setting, we provide a rigorous error analysis for the

proxy point method. Using this error analysis, we further develop a systematic and adaptive

scheme to select proxy points that can guarantee the method to be effective, paving the way

for a wider application of the proxy point method in the construction of different types of
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rank-structured matrices. The rest of the chapter is organized as follows.

• Section 3.1 presents a general form of the proxy point method and describes a fun-

damental mathematical interpretation of how the method works.

• Section 3.2 provides a rigorous error analysis for the proxy point method under a

general setting, proving the effectiveness of the method.

• Section 3.3 gives guidelines for selecting a proper set of proxy points for a given

kernel functionK(x, y) and a pair of domains X ×Y , and also proposes a systematic

and adaptive proxy point selection scheme that can guarantee the proxy point method

is effective with the selected proxy points.

• Section 3.4 demonstrates numerical experiments that illustrate the effectiveness of

the proposed proxy point selection scheme in Section 3.3 and the performance of the

proxy point method inH2 matrix construction.
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3.1 Mathematical interpretation

Recall that the proxy surface method and its variant only work for specific kernel functions

with a pair of domains as exemplified in Figure 3.1. In this chapter, we focus on the proxy

point method as presented in Algorithm 4 which has a general form that contains both the

proxy surface method and its variant as special cases. It turns out that this general proxy

point method can compute a good ID approximation of K(X0, Y0) for any kernel function

K(x, y) with two compact domainsX andY satisfying the conditions thatK(x, y) inX×Y

is smooth and can be represented by an accurate, low-degree degenerate approximation

(i.e., X × Y is admissible for K(x, y)). The key is to select a set of proxy points Yp in

Y properly and adaptively according to K(x, y) and X × Y . To justify the effectiveness

of the proxy point method under the above general setting, this section first provides a

fundamental interpretation of how the proxy point method works.

Algorithm 4 Proxy point method
Input: K(x, y), X , Y , X0 ⊂ X , Y0 ⊂ Y .
Output: ID approximation of K(X0, Y0),

K(X0, Y0) ≈ UK(Xid, Y0), Xid ⊂ X0. (3.2)

Step 1: Select a set of proxy points Yp in Y . Points in Yp are independent of X0 and Y0.
Step 2: Compute U and Xid for eq. (3.2) by computing an algebraic ID approximation
of K(X0, Yp) using SRRQR with a given error threshold (or a given rank),

K(X0, Yp) ≈ UK(Xid, Yp). (3.3)

3.1.1 Algorithm interpretation

In the proxy point method Algorithm 4, the ID approximations eq. (3.2) and eq. (3.3) can

be viewed row-by-row as

K(X0, Y0) ≈ UK(Xid, Y0)⇐⇒ K(xi, Y0) ≈ uTi K(Xid, Y0), xi ∈ X0, (3.4)
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K(X0, Yp) ≈ UK(Xid, Yp)⇐⇒ K(xi, Yp) ≈ uTi K(Xid, Yp), xi ∈ X0, (3.5)

where uTi denotes the ith row of U . For each xi ∈ X0, the above two row approximations

are connected by the function approximation in domain Y ,

K(xi, y) ≈ uTi K(Xid, y), y ∈ Y . (3.6)

Evaluating this function approximation at Y0 and Yp gives the row approximations eq. (3.4)

and eq. (3.5), respectively. Furthermore, it always holds that

∥∥K(xi, Y0)− uTi K(Xid, Y0)
∥∥

2
/
√
|Y0| 6 max

y∈Y

∣∣K(xi, y)− uTi K(Xid, y)
∣∣ ,

with any ID components U and Xid.

From this viewpoint, a good ID approximation UK(Xid, Y0) toK(X0, Y0) can be found

by seeking U and Xid such that each function approximation defined in eq. (3.6) has small

error in the whole domain Y . To make the problem tractable, instead of considering the

approximation eq. (3.6) at every y ∈ Y , the proxy point method considers it at a finite set

of proxy points Yp ⊂ Y . With X × Y being admissible for K(x, y), it turns out that there

exists a proper selection of Yp such that the approximation eq. (3.6) to each K(xi, y) with

any ID components U and Xid has maximum absolute error bounded by a small multiple

of its root-mean-square error at Yp, i.e.,

max
y∈Y

∣∣K(xi, y)− uTi K(Xid, y)
∣∣ 6 O(1)

(∥∥K(xi, Yp)− uTi K(Xid, Yp)
∥∥

2
/
√
|Yp|
)
. (3.7)

Such a selection of Yp will be discussed in Section 3.3.

Assuming that we have a set of proxy points Yp satisfying eq. (3.7), the proxy point

method computes U andXid from eq. (3.3) using SRRQR, which has the approximation er-

ror
∥∥K(xi, Yp)− uTi K(Xid, Yp)

∥∥
2

for each row bounded by a specified error threshold. Ac-
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cording to eq. (3.7), the resulting U and Xid define a good function approximation eq. (3.6)

at points in Yp and thus in Y . Thus, the error of the ID approximation UK(Xid, Y0) to

K(X0, Y0) is controlled by the error of the ID approximation UK(Xid, Yp) to K(X0, Yp) as

∥∥K(xi, Y0)− uTi K(Xid, Y0)
∥∥

2
/
√
|Y0| 6 O(1)

(∥∥K(xi, Yp)− uTi K(Xid, Yp)
∥∥

2
/
√
|Yp|
)
.

As to be shown in Section 3.3, the number of proxy points Yp needed to satisfy eq. (3.7)

can be as small as the degree of a putative degenerate approximation of K(x, y) in X ×

Y with a given accuracy. As a result, K(X0, Yp) is usually a much smaller matrix than

K(X0, Y0) and the proxy point method in Algorithm 4 can be much faster than the direct

ID approximation of K(X0, Y0) using SRRQR alone.

3.1.2 Connection with pseudoskeleton approximation

The proxy point method is closely related to the degenerate approximation of K(x, y) in

X × Y in a pseudoskeleton form [28],

K(x, y) ≈ K(x, Ypt)K(Xpt, Ypt)
†K(Xpt, y), x ∈ X , y ∈ Y , (3.8)

where Xpt and Ypt are “pivot” points selected in X and Y , respectively. Pseudoskeleton

approximations with different choices of Xpt and Ypt are used in many fast matrix-vector

multiplication algorithms such as the kernel independent FMM [21, 25], the fast directional

multilevel algorithm [19], and the butterfly method [23]. Compression techniques such as

adaptive cross approximation [29] and skeletonized interpolation [30] are also in this form.

Specifically, it turns out that the proxy point method is equivalent to the combination of a

pseudoskeleton approximation of K(x, y) in X × Y and an algebraic recompression. For

two sets of points, X0 in X and Y0 in Y , a pseudoskeleton approximation eq. (3.8) defines
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a low-rank approximation of K(X0, Y0) as

K(X0, Y0) ≈ K(X0, Ypt)K(Xpt, Ypt)
†K(Xpt, Y0). (3.9)

Consider a recompression of the above low-rank approximation via computing an ID ap-

proximation UK(Xid, Ypt) to the factor K(X0, Ypt) using SRRQR. This computation is

analogous to the computation of eq. (3.3) in the proxy point method. With this ID approx-

imation, the approximation eq. (3.9) can then be written as

K(X0, Y0) ≈ UK(Xid, Ypt)K(Xpt, Ypt)
†K(Xpt, Y0)

≈ UK(Xid, Y0),

where the second approximation is obtained by substituting Xid and Y0 into eq. (3.8). This

final ID approximation UK(Xid, Y0) is exactly the result eq. (3.2) computed by the proxy

point method if Yp is selected as Ypt.

The main difference between the proxy point method and the above recompressed pseu-

doskeleton approximation is that there is no need for Xpt and K(Xpt, Ypt)
† in the proxy

point method. The matrix K(Xpt, Ypt) is usually close to singular and calculation of its

pseudoinverse can be numerically unstable. In practice, Ref. [21] applies a Tikhonov reg-

ularization to compute K(Xpt, Ypt)
† and Ref. [30] applies a backward stable algorithm to

compute K(Xpt, Ypt)
†K(Xpt, y) for a given point y.

3.1.3 Examples of proxy points

In the proxy point method, the key component is a set of proxy points Yp that satisfies

eq. (3.7). Clearly, the selection of proxy points in Y should depend on K(x, y) and X ×Y .

Based on the above connection between the proxy point method and the pseudoskeleton

approximation, it is natural to use pivot points Ypt from existing pseudoskeleton approxi-

mation methods as the corresponding proxy points Yp. Figure 3.3 shows three examples
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of proxy points borrowed from existing pseudoskeleton approximation methods. The ef-

fectiveness of some of these proxy point selections can be rigorously justified by the error

analysis in Section 3.2.

(a) (b) (c)

Figure 3.3: Examples of proxy points (marked as stars) borrowed from existing pseu-
doskeleton approximation methods for different kernel functions and corresponding admis-
sible domain pairs: (a) For smooth kernels that can be well approximated by polynomials
in Y , proxy points are selected as a tensor grid of Chebyshev points in Y based on Ref. [30].
(b) For smooth radial basis functions, proxy points are selected as multiple layers of uni-
form grid points around the interior boundary of Y based on Ref. [25]. (c) For oscillatory
kernels, proxy points are selected via the pivoted QR decomposition of a kernel matrix
defined by points densely selected in X and Y based on Ref. [19] (cf. Figure 3 in [31]).

3.2 Error analysis

In this section, we present a rigorous error analysis for the proxy point method, which

proves the effectiveness of the method and also provides theoretical guidance for selecting

the proxy points as to be discussed in Section 3.3. Recall that we always assume that X

and Y are compact and K(x, y) is smooth in X × Y in the following discussion.

Using the computed U and Xid from Algorithm 4, denote the error of the function

approximation eq. (3.6) to each K(xi, y) as

ei(y) = K(xi, y)− uTi K(Xid, y), xi ∈ X0, y ∈ Y . (3.10)

With this notation, the ith row of the error matrix K(X0, Y0)−UK(Xid, Y0) for the ID ap-
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proximation eq. (3.2) is exactly ei(Y0). Similarly, the ith row of the error matrixK(X0, Yp)−

UK(Xid, Yp) for the ID approximation eq. (3.3) is ei(Yp).

For an arbitrary set of points Y0 in Y , the best upper bound for ‖ei(Y0)‖2 is

‖ei(Y0)‖2 6
√
|Y0|max

y∈Y
|ei(y)| =

√
|Y0|‖ei(y)‖∞, (3.11)

where equality holds when |ei(y)| reaches the same maximum in Y for all points in Y0. On

the other hand, ‖ei(Yp)‖2 is bounded by the error threshold specified for the ID approxima-

tion eq. (3.3) of K(X0, Yp). Thus, the following error analysis for the proxy point method

seeks an upper bound for ‖ei(y)‖∞ in terms of ‖ei(Yp)‖2, i.e., an inequality in the form of

eq. (3.7).

For analysis purposes, consider a generic r-term ε-expansion of K(x, y) in X × Y ,

K(x, y) =
r∑
j=1

ψj(x)φj(y) +Rr(x, y), x ∈ X , y ∈ Y , (3.12)

where the remainder |Rr(x, y)| is bounded by ε. Assume that functions in {φj(y)}rj=1 are

linearly independent. Such an expansion eq. (3.12) shows that, for any x ∈ X , the function

K(x, y) in the single variable y ∈ Y is close to the r-dimensional function space spanned

by {φj(y)}rj=1 with distance less than ε, i.e.,

dist
(
K(x, y), span({φj(y)}rj=1)

)
= inf

f∈span({φj(y)}rj=1)
‖K(x, y)− f(y)‖∞ 6 ε.

Being a linear combination of K(xi, y) and {K(xj, y)}xj∈Xid , each error function ei(y) is

also close to span({φj(y)}rj=1) with small distance,

dist
(
ei(y), span({φj(y)}rj=1)

)
6 (1 + ‖ui‖1) max

x∈X0

dist
(
K(x, y), span({φj(y)}rj=1)

)
6 (1 + Cqr|Yp|)ε. (3.13)
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The first inequality above is based on the triangular inequality. The second inequality is

based on the facts that entries of U computed in eq. (3.3) are bounded by the prespecified

parameter Cqr for SRRQR and that |Xid| computed in eq. (3.3) is no greater than |Yp|.

To estimate ‖ei(y)‖∞ in terms of ‖ei(Yp)‖2, the idea is to first approximate ei(y) in

the function space span({φj(y)}rj=1) based on its values at points in Yp and then estimate

‖ei(y)‖∞ in this finite-dimensional space. To begin with, consider finding an approxima-

tion of ei(y) in span({φj(y)}rj=1) as

ei(y) ≈ c1φ1(y) + . . .+ crφr(y) = cTΦ(y), (3.14)

where c = (c1, c2, . . . , cr)
T and Φ(y) = (φ1(y), φ2(y), . . . , φr(y))T . The coefficient vector

c is selected to minimize the function approximation error at Yp, i.e.,

c = argv∈Rr min ‖ei(Yp)− vTΦ(Yp)‖2,

where Φ(Yp) ∈ Rr×|Yp| denotes the matrix of column vectors Φ(yj) for all yj in Yp. For the

uniqueness of c and thus the uniqueness of the approximant cTΦ(y), a necessary condition

that Yp needs to satisfy is

rank(Φ(Yp)) = r, (3.15)

meaning that row vectors of Φ(Yp) are linearly independent. Under this condition, c is

solved as cT = ei(Yp)Φ(Yp)
† and ei(y) is approximated as

ei(y) ≈ ei(Yp)Φ(Yp)
†Φ(y).

Let SYp(y) = (s1(y), s2(y), . . . , s|Yp|(y))T denote the vector Φ(Yp)
†Φ(y) of dimension

|Yp|. The above approximation process of ei(y) can be generalized as a linear operator

L : C∞(Y)→ span({φj(y)}rj=1) in the function space C∞(Y) that contains all the smooth
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functions in Y ,

Lf(y) =
∑
yj∈Yp

f(yj)sj(y) = f(Yp)SYp(y), f ∈ C∞(Y). (3.16)

This operator defines a generalized interpolation process such that Lf(y) is the unique

function in span({φj(y)}rj=1) whose values at points in Yp are equal to the projection of

f(Yp) onto the vector space span({φj(Yp)}rj=1), i.e., Lf(Yp) = f(Yp)Φ(Yp)
†Φ(Yp). Also,

it holds that Lf(y) = f(y) for any f(y) in span({φj(y)}rj=1) based on eq. (3.15).

We then estimate ‖ei(y)‖∞ based on its approximation ‖Lei(y)‖∞,

‖ei(y)‖∞ 6 ‖ei(y)− Lei(y)‖∞ + ‖Lei(y)‖∞

6 min
f∈span({φj(y)}rj=1)

(‖ei(y)− f(y)‖∞ + ‖f(y)− Lei(y)‖∞) + ‖Lei(y)‖∞

= min
f∈span({φj(y)}rj=1)

(‖ei(y)− f(y)‖∞ + ‖Lf(y)− Lei(y)‖∞) + ‖Lei(y)‖∞

6 min
f∈span({φj(y)}rj=1)

(‖ei(y)− f(y)‖∞ + ‖L‖∞‖f(y)− ei(y)‖∞) + ‖Lei(y)‖∞

= (1 + ‖L‖∞)dist(ei(y), span({φj(y)}rj=1)) + ‖Lei(y)‖∞, (3.17)

where the operator norm ‖L‖∞ is defined as

‖L‖∞ = max
f∈C∞(Y),f 6=0

‖Lf‖∞
‖f‖∞

= max
y∈Y
‖SYp(y)‖1. (3.18)

The second representation of ‖L‖∞ above is based on eq. (3.16) and Hölder’s inequality

|Lf(y)| 6 ‖f(Yp)‖∞‖SYp(y)‖1 6 ‖f‖∞‖SYp(y)‖1, y ∈ Y ,

where equality can hold true for some f ∈ C∞(Y) and thus the second equality in eq. (3.18)
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holds true. Also, Lei(y) = ei(Yp)SYp(y) can be bounded as

‖Lei(y)‖∞ 6 ‖ei(Yp)‖2 max
y∈Y
‖SYp(y)‖2. (3.19)

Lastly, substituting eqs. (3.13), (3.18) and (3.19) into eq. (3.17), ‖ei(y)‖∞ is bounded as

‖ei(y)‖∞ 6 (1 + max
y∈Y
‖SYp(y)‖1)(1 + Cqr|Yp|)ε+ ‖ei(Yp)‖2 max

y∈Y
‖SYp(y)‖2. (3.20)

We note that the above estimation of ‖ei(y)‖∞ in terms of ‖ei(Yp)‖2 works for any r-

term ε-expansion eq. (3.12) of K(x, y) and for any Yp satisfying the condition eq. (3.15).

Noting that the upper bound in eq. (3.20) does not rely on {ψj(x)}rj=1 in the expansion

eq. (3.12), eq. (3.20) can thus be further sharpened by fixing {φj(x)}rj=1 and varying

{ψj(x)}rj=1 to reduce ε that appears in the upper bound. Specifically, the minimal accuracy

ε∗ of an expansion eq. (3.12) using a fixed set of functions {φj(y)}rj=1 can be defined as

ε∗ = sup
x∈X

inf
f∈span({φj(y)}rj=1)

‖K(x, y)− f(y)‖∞, (3.21)

which describes the maximum distance between all the functions in {K(x, y)}x∈X and the

function space span({φj(y)}rj=1).

Combining the upper bound eq. (3.20), the minimal accuracy ε∗ in eq. (3.21), and the

inequality ‖ei(Y0)‖2/
√
|Y0| 6 ‖ei(y)‖∞ from eq. (3.11), the error bound for the proxy

point method can be summarized as follows.

Theorem 1 (Error bound for the proxy point method). Consider two compact domains

X and Y and a kernel function K(x, y) being smooth in X × Y . Given a set of linearly

independent functions {φj(y)}rj=1 in Y , the minimal accuracy ε∗ of all the possible degen-

erate approximations of K(x, y) in X × Y using {φj(y)}rj=1 is defined in eq. (3.21). If

the set of proxy points Yp satisfies the condition rank(Φ(Yp)) = r, the ID approximation

of K(X0, Y0) calculated by the proxy point method with Yp has error in the ith row ei(Y0)

53



bounded as

‖ei(Y0)‖2√
|Y0|

6

(
1 + max

y∈Y
‖SYp(y)‖1

)
(1 + Cqr|Yp|) ε∗ + ‖ei(Yp)‖2 max

y∈Y
‖SYp(y)‖2. (3.22)

Theorem 1 works for any set of linearly independent functions {φj(y)}rj=1 which will

be referred to as a set of basis functions. For the proxy point method, the additional as-

sumption that X × Y is admissible for K(x, y), i.e., there exists an accurate, low-degree

degenerate approximation of K(x, y) in X × Y , guarantees that there exists a small set

of basis functions {φj(y)}rj=1 such that the minimal accuracy ε∗ is negligible compared to

‖ei(Yp)‖2. With such {φj(y)}rj=1, the first term of the upper bound eq. (3.22) is negligible

if maxy∈Y ‖SYp(y)‖1 is of scale O(1). Theorem 1 then shows that

‖ei(Y0)‖2/
√
|Y0| 6 O(1)‖ei(Yp)‖2/

√
|Yp|,

if maxy∈Y ‖SYp(y)‖2 and |Yp| are also of scale O(1), which proves the effectiveness of the

proxy point method. The remaining problem becomes how to select a small set of proxy

points Yp so that maxy∈Y ‖SYp(y)‖2 and maxy∈Y ‖SYp(y)‖1 are of scale O(1).

3.3 Proxy point selection

3.3.1 Guidelines for selecting proxy points

Recall that the ultimate goal of a proper selection of the proxy points Yp is to guarantee that

‖ei(y)‖∞ is bounded by a small multiple of ‖ei(Yp)‖2/
√
|Yp|. Assume that ‖ei(Yp)‖2 6 εid

from the error threshold εid specified for the algebraic ID approximation of K(X0, Yp).

Based on Theorem 1, the guidelines for selecting proxy points are established as follows.

To simplify our discussion, the upper bound eq. (3.22) is slightly loosened as

‖ei(y)‖∞ .
(
ε∗|Yp|

3
2 + ‖ei(Yp)‖2

)
max
y∈Y
‖SYp(y)‖2, (3.23)
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using ‖SYp(y)‖1 6
√
|Yp|‖SYp(y)‖2. This upper bound relies on two important compo-

nents: basis functions {φj(y)}rj=1 and proxy points Yp ⊂ Y . Fixing a set of basis functions

{φj(y)}rj=1, eq. (3.23) gives the following guidelines for selecting proxy points:

1. Yp should satisfy rank(Φ(Yp)) = r as required by Theorem 1.

2. Yp should have O(1)r points for the efficiency of the proxy point method.

3. Yp should make maxy∈Y ‖SYp(y)‖2 of scale O(1).

To make ‖ei(y)‖∞ bounded by O(1)εid via eq. (3.23), the basis functions {φj(y)}rj=1

used in the above guidelines need to satisfy

ε∗|Yp|
3
2 ∼ ε∗r

3
2 6 O(1)εid. (3.24)

The number of basis functions r should also be small so that only a small number of proxy

points is selected following the guidelines. In other words, we need to use a small set of ba-

sis functions {φj(y)}rj=1 (small r) whose span is close to all the functions in {K(x, y)}x∈X

(small ε∗). As to be discussed next, such a set of basis functions can be selected heuris-

tically based on analytic properties of the kernel function. The basis functions can also

be selected in a numerical way, which is the approach used by the proposed proxy point

selection scheme in this section.

3.3.2 Selection of basis functions

General expansion techniques such as Taylor expansion, interpolation, and Fourier series

are commonly used to construct degenerate approximations of K(x, y) in X × Y , which

correspond to approximating functions in {K(x, y)}x∈X using specific basis functions, e.g.,

polynomials and trigonometric polynomials. If we know that K(x, y) in the single variable

y ∈ Y can be well approximated using a small number of polynomials or trigonometric

polynomials, then these basis functions can be used in the guidelines for selecting proxy
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points. The number of such basis functions r can be selected by trial-and-error or by

analytic estimation of the minimal accuracy ε∗ in terms of r.

Another idea that does not require a priori knowledge of a degenerate approximation

of K(x, y) is to use a finite subset of {K(x, y)}x∈X as the basis functions. Denote such a

subset as {K(xj, y)}xj∈Xp associated with a set of pointsXp inX . Based on the assumption

that X and Y are compact and K(x, y) is smooth in X × Y , it can be proved that there

always exists such a finite subset that can approximate all the functions in {K(x, y)}x∈X

with a given accuracy. The basic idea is that we can select a finite set of points Xp ⊂ X

such that, for any x ∈ X , there exists some x∗ ∈ Xp whose distance to x is below an

arbitrarily small threshold. Then, K(x∗, y) can approximate K(x, y) well in Y and thus so

can a linear combination of {K(xj, y)}xj∈Xp . We skip the detailed proof here. In practice,

the basis functions {K(xj, y)}xj∈Xp with the minimal accuracy ε∗ approximately below a

given threshold εp can be numerically selected as follows.

First sample domain Y to obtain a set of uniformly distributed points Y1 with high

point density. Similarly, sample domain X to obtain a set of points X1 which is larger

than the expected size of Xp (through trial-and-error as explained below). Compute an

ID approximation of K(X1, Y1) using SRRQR and define Xp as the subset of X1 that

corresponds to the row subset of this ID approximation, i.e.,

K(X1, Y1) ≈ U1K(Xp, Y1). (3.25)

The error threshold for this ID approximation is set to εp
√
|Y1|. This selection of Xp

satisfies the condition that K(x, Y1) for any x ∈ X1 can be approximated by a linear com-

bination of {K(xj, Y1)}xj∈Xp with root-mean-square error bounded by εp. Since K(x, y)

is smooth in X × Y and X1 and Y1 have high point densities in X and Y , respectively, we

can expect that functions in {K(x, y)}x∈X can be approximated by linear combinations of

{K(xj, y)}xj∈Xp with error O(εp). The above selection process can start with a relatively
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small set of points X1. If the ID approximation eq. (3.25) has full rank, i.e., Xp = X1, we

can double the size of X1 and repeat the selection process.

To make ε∗ satisfy the condition eq. (3.24), we can conservatively set εp a few orders

of magnitude smaller than εid while taking arithmetic rounding errors into account. This

selection of basis functions is summarized by Step 1 in Algorithm 5.

3.3.3 Selection of proxy points

Assume that we have a set of basis functions {φj(y)}rj=1 selected according to the above

discussion. Following the guidelines for selecting proxy points, we seek exactly r proxy

points such that rank(Φ(Yp)) = r and maxy∈Y ‖SYp(y)‖2 is of scale O(1). If |Yp| = r and

rank(Φ(Yp)) = r, it holds that SYp(y) = Φ(Yp)
−1Φ(y) where the pseudoinverse becomes

the exact inverse. Then the operator L defined in eq. (3.16) is exactly the interpolation op-

erator in span({φj(y)}rj=1) where Yp is the set of interpolation nodes and entries of SYp(y)

are the corresponding Lagrangian functions.

In numerical approximation theory, the norm of L, ‖L‖∞ = maxy∈Y ‖SYp(y)‖1, is

called the Lebesgue constant and is used to characterize the quality of interpolation nodes

Yp. For polynomials and trigonometric polynomials in a regular box domain, selections of

interpolation nodes leading to small Lebesgue constant have been well studied [32]. Since

‖SYp(y)‖2 6 ‖SYp(y)‖1, these interpolation nodes can be directly used as proxy points.

For example, if {φj(y)}rj=1 are polynomials in a 2D box Y of degree up to k − 1 for each

variable (r = k2), we can select Yp as a k × k tensor grid of Chebyshev nodes in Y as

illustrated in Figure 3.3a, which has maxy∈Y ‖SYp(y)‖2 that is well bounded, i.e.,

max
y∈Y
‖SYp(y)‖2 6 max

y∈Y
‖SYp(y)‖1 ≈

(
2

π
log(k + 1)

)2

.

Furthermore, we can also select Yp as a k × k tensor grid of Gauss-Lobatto nodes which

gives an even smaller scaling factor, maxy∈Y ‖SYp(y)‖2 = 1 (see Ref. [33]).
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Here, we consider the general case with basis functions of the form {K(xj, y)}xj∈Xp

and with irregular domain Y , where analytic choices of interpolation nodes with small

Lebesgue constant are not available. In this case, we introduce a numerical method to

select r proxy points Yp in Y such that maxy∈Y ‖SYp(y)‖2 is of scale O(1).

First, we sample domain Y to obtain a set of uniformly distributed points Y2 with

high point density. Then, we find an r-point subset Yp of Y2 that bounds ‖SYp(y)‖2 =

‖Φ(Yp)
−1Φ(y)‖2 at any point y ∈ Y2. To do this, compute a numerically exact SRRQR

decomposition of Φ(Y2) ∈ Rr×|Y2|,

Φ(Y2)P = Q(R1 R2), (3.26)

where P is a permutation matrix, Q is an orthogonal matrix, and R1 is an r × r upper-

triangular matrix. Let Yp be the subset of points in Y2 that corresponds to the columns of

R1 in the decomposition, i.e., Φ(Yp) = QR1. It is the key feature of SRRQR that, with

eq. (3.26), the matrix

Φ(Yp)
−1Φ(Y2) = (QR1)−1Q(R1 R2)P T = (Ir R

−1
1 R2)P T

has all its entries bounded by the prespecified parameter Cqr > 1. Thus, ‖SYp(y)‖ 6 Cqr
√
r

for any y ∈ Y2. Since Y2 is uniformly distributed and has high point density in Y , this

selection of Yp satisfies the condition that maxy∈Y ‖SYp(y)‖2 . Cqr
√
r.

This selection of proxy points is summarized by Step 2 in Algorithm 5. Also, we note

that this selection approach is closely related to the pseudoskeleton approximation method

used in Ref. [19] and the numerical construction of a special set of interpolation nodes

called Fekete points [34].
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3.3.4 Summary of the selection scheme

Algorithm 5 summarizes the overall systematic numerical scheme above to select the basis

functions and the proxy points. A heuristic “densification” step is included in Algorithm 5

in order to improve the quality of the set of selected proxy points. The motivation for this

additional step is explained below.

Algorithm 5 Proxy point selection scheme
Input: K(x, y), X , Y , εp.
Output: Proxy points Yp.

Step 1: Selection of basis functions {φj(y)}rj=1.

a. Sample domains X and Y to obtain two sets of uniformly distributed pointsX1 and
Y1 with high point density, respectively.

b. Compute an ID approximation eq. (3.25) of K(X1, Y1) using SRRQR with error
threshold εp

√
|Y1|.

c. Set {φj(y)}rj=1 as {K(xj, y)}xj∈Xp with Xp defined by eq. (3.25).

Step 2: Selection of proxy points Yp.

a. Sample domain Y to obtain a set of uniformly distributed points Y2 with high point
density.

b. Compute an exact SRRQR decomposition eq. (3.26) of Φ(Y2).

c. Set Yp as the subset of points in Y2 that corresponds to the columns of R1 in
eq. (3.26).

Step 3: Heuristic densification of Yp. For each point yj ∈ Yp, calculate the distance dj
between yj and its nearest neighbor in Yp. Randomly select one (or more) extra point in
the ball centered at yj with radius dj/3 and add it to Yp.

In Algorithm 5, Step 1 obtains a set of basis functions {K(xj, y)}xj∈Xp that can approx-

imate functions in {K(x, y)}x∈X with error O(εp). Step 2 then selects r = |Xp| number of

proxy points Yp that satisfies maxy∈Y ‖SYp(y)‖2 . Cqr
√
r. By eq. (3.23), the proxy points

Yp obtained by Step 1 and Step 2 satisfy the error bound

‖ei(y)‖∞ .
(
εpr

3
2 + ‖ei(Yp)‖2

)
Cqr
√
r, (3.27)

which justifies the effectiveness of the selected proxy points if εpr
3
2 is negligible or of
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similar scale as the error threshold εid specified for ‖ei(Yp)‖2.

However, note that εp is the root-mean-square error threshold for the algebraic ID ap-

proximation eq. (3.25). Due to arithmetic rounding errors, εp cannot be of smaller scale

than machine precision, εmachine. Thus, the error bound eq. (3.27) suggests that the approxi-

mation error of the proxy point method with Yp selected by Step 1 and Step 2 in Algorithm 5

may stagnate around εmachiner
3
2 if the specified error threshold εid is close to machine pre-

cision. Such error stagnation is indeed observed in some of our preliminary tests, where

the smallest relative approximation error of the proxy point method can only reach around

10−13 ∼ 10−10 with double precision (10−16) arithmetic. To tackle this possible error stag-

nation for extremely small error threshold εid, a heuristic densification of Yp by Step 3 in

Algorithm 5 is added where extra proxy points are added. This densification step turns out

to be experimentally effective as illustrated by the numerical results in the next section.

In terms of computation cost, Algorithm 5 is expensive due to the large number of

sample points in Y1 and Y2. Reusing the proxy points selected by Algorithm 5 is critical for

practical application of Algorithm 5. Luckily, in most rank-structured matrix applications,

the kernel function is translationally invariant, i.e.,

K(x, y) = k(x− y), for some univariate function k(·).

As a result, the proxy points selected by Algorithm 5 can be reused by simple translations

for different admissible pairs of domains in the construction of rank-structured matrices

(see the numerical tests in Section 3.4.5).

Lastly, in practice and for the numerical experiments in the next section, the sample

points X1, Y1, and Y2 in Algorithm 5 are randomly and uniformly sampled from X and Y

with their numbers of points heuristically decided for efficiency and simplicity. However,

to rigorously justify the arguments about X1, Y1, and Y2 in Sections 3.3.2 and 3.3.3, the

point densities of these sets should depend on the magnitude of the variation of K(x, y) in
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X × Y , about which we skip more detailed discussion. Possible approaches for reducing

the sizes of these sample point sets are the “weakly admissible meshes” used in Ref. [34]

and the tensor grid of Chebyshev nodes used in Ref. [30]. Another heuristic but usually

effective approach, similar to the idea used in Ref. [19], is to initially apply Algorithm 5

with small X1, Y1, and Y2 and recursively enlarge the three sets of points if needed.

3.4 Numerical experiments

In this section, we provide numerical tests to illustrate the effectiveness of the proxy point

selection scheme (Algorithm 5) and the performance of the proxy point method (Algo-

rithm 4) for general kernel functions and corresponding admissible domain pairs. The

parameter Cqr for SRRQR used in the proxy point method and in the proxy point selection

scheme is set to 2. In all the tests of Algorithm 5,X1 contains 1500 points sampled inX , Y1

contains 10000 points sampled in Y , Y2 is the same set of points as Y1, and the parameter

εp is set to 10−14. All these sets of sample points, X1 and Y1, are randomly and uniformly

sampled in their corresponding domains.

3.4.1 Basic tests

Consider the following four different problem settings:

1. K(x, y) = 1/
√

1 + |x− y|2, X = [−1, 1]2, Y = [3, 5]× [−1, 1].

2. K(x, y) = e−|x−y|
2 , X = [−1, 1]2, Y = [−7, 7]2\[−3, 3]2.

3. K(x, y) = e2πi|x−y|, X = B2(0, 2), Y = {y ∈ R2 : θ(y, l) 6 1/2, 4 6 |y| 6 16}

with l = (1, 0). (Note: Bd(0, a) denotes the d-dimensional ball centered at the origin

with radius a, and θ(y, l) denotes the angle between y and l.)

4. K(x, y) = e2πi|x−y|/|x− y|, X = B3(0, 2), Y = {y ∈ R3 : θ(y, l) 6 1/2, 4 6 |y| 6

8} with l = (1, 0, 0).
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For each problem setting above, the domains X and Y and the corresponding proxy points

Yp selected by Algorithm 5 are plotted in Figures 3.4 to 3.7.

Two sets of points X0 and Y0 are randomly and uniformly selected in X and Y , respec-

tively, with an average 100 points per unit of area in 2D or 50 points per unit of volume in

3D. For different approximation ranks, the relative approximation error of the proxy point

method with the selected Yp for K(X0, Y0) is also plotted in the figure for each of the prob-

lem settings. The relative error of the intermediate ID approximation of K(X0, Yp) in the

proxy point method is plotted as well.

As can be observed from the results, the proxy point method with proxy points selected

by Algorithm 5 has approximation error close to those of SVD and the ID approximation

using SRRQR. Also, the intermediate ID approximation of K(X0, Yp) has similar relative

error as the ID approximation of K(X0, Y0). This shows that the accuracy of the final ID

approximation in the proxy point method can be controlled by controlling the accuracy of

the ID approximation of K(X0, Yp).

3.4.2 Error bound for ‖ei(y)‖∞

The proxy point selection scheme in Algorithm 5 and the effectiveness of the proxy point

method are both based on Theorem 1 and the derived error bound eq. (3.23) for ‖ei(y)‖∞.

In this subsection, we numerically study the tightness of this error bound.

Consider K(x, y) = e−|x−y|
2 , X = [−1, 1]2, and Y = [−7, 7]2\[−3, 3]2. We randomly

and uniformly select 400 points in X for X0. We fix the error threshold εid = 10−6 for the

ID approximation of K(X0, Yp) with any Yp. In order to test the proxy point method with a

given number of proxy points, we use a simple modification of Algorithm 5. Specifically,

given an integer r, we select a set of r basis functions {K(xj, y)}xj∈Xp with Xp computed

by a rank-r ID approximation of K(X1, Y1) in Step 1 of Algorithm 5. Exactly r proxy

points Yp can be then selected by Step 2 of Algorithm 5 without densification.

Using this selection scheme, we vary r and select the corresponding r proxy points
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(a) proxy points
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(b) relative approximation error

Figure 3.4: Basic test for problem setting 1: K(x, y) = 1/
√

1 + |x− y|2, |X0| = 400,
|Y0| = 400, and |Yp| = 118. In this and the following three figures, “intermediate approx.”
refers to the relative error of the ID approximation ofK(X0, Yp) in the proxy point method.

(a) proxy points
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(b) relative approximation error

Figure 3.5: Basic test for problem setting 2: K(x, y) = e−|x−y|
2 , |X0| = 400, |Y0| = 16000,

and |Yp| = 384.

Yp. The error function ei(y) for each xi ∈ X0 is then defined by the ID approximation of

K(X0, Yp) with error threshold εid. For different Yp, Figure 3.8 plots maxxi∈X0 ‖ei(y)‖∞

and its upper bound derived from eq. (3.23), i.e.,

max
xi∈X0

‖ei(y)‖∞ . (r
3
2 ε∗ + εid) max

y∈Y
‖SYp(y)‖2, (3.28)
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(a) proxy points
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Figure 3.6: Basic test for problem setting 3: K(x, y) = e2πi|x−y|, |X0| = 1300, |Y0| = 6000,
and |Yp| = 330.

(a) proxy points
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(b) relative approximation error

Figure 3.7: Basic test for problem setting 4: K(x, y) = e2πi|x−y|/|x − y|, |X0| = 1700,
|Y0| = 22500, and |Yp| = 870. Domain Y is not plotted. The selected proxy points are
colored in (a) based on their x-axis coordinates for better visualization. Most of the proxy
points are near the boundary of Y excluding the outer hemispherical surface, i.e., |y| = 8.

where ε∗ and maxy∈Y ‖SYp(y)‖2 are numerically estimated for each set of proxy points Yp

based on the associated set of basis functions {K(xj, y)}xj∈Xp . Although having a large

gap, the upper bound eq. (3.28) captures the changing trend of maxxi∈X0 ‖ei(y)‖∞. Further

numerical tests show that the large gap between the upper bound eq. (3.28) and the actual

value maxxi∈X0 ‖ei(y)‖∞ is mainly due to the loose estimate of ‖ei(y) − Lei(y)‖∞ in
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eq. (3.17), i.e.,

‖ei(y)− Lei(y)‖∞ 6 (1 + max
y∈Y
‖SYp(y)‖2)(1 + Cqr|Yp|)ε∗ . r

3
2 ε∗max

y∈Y
‖SYp(y)‖2,

which is used to derive the first term in eq. (3.28).
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Figure 3.8: Values of maxxi∈X0 ‖ei(y)‖∞ and its upper bound eq. (3.28) for different num-
bers of proxy points selected by a simple modification of Algorithm 5.

3.4.3 Comparison of different selections of proxy points

As illustrated in the beginning of the chapter, improper selections of proxy points Yp can

lead to much larger approximation errors in the proxy point method when compared to

SVD. In this subsection, we compare the proposed proxy point selection scheme in Algo-

rithm 5 with existing heuristic selection schemes.

Consider again K(x, y) = e−|x−y|
2 , X = [−1, 1]2, and Y = [−7, 7]2\[−3, 3]2. Algo-

rithm 5 obtains 384 proxy points with densification, as illustrated previously in Figure 3.5.

We test three other heuristic choices of 384 proxy points: (1) uniform selection on the sur-

face ∂[−3, 3]2, (2) uniform and random selection in the annulus [−3.2, 3.2]2\[−3, 3]2, (3)

uniform and random selection in another wider annulus [−3.5, 3.5]2\[−3, 3]2. The heuristic

selection of proxy points in an annulus was suggested in Ref. [15] for Gaussian kernels.
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We randomly and uniformly select 400 points in X for X0 and 16000 points in Y for

Y0. The relative approximation errors of the proxy point method with the above four sets

of proxy points for K(X0, Y0) are plotted in Figure 3.9a. We apply the same test to another

Gaussian kernel K(x, y) = e−0.1|x−y|2 with the same domains X and Y , where 194 proxy

points are selected by Algorithm 5. The corresponding relative approximation errors are

plotted in Figure 3.9b.

As can be observed, Algorithm 5 outperforms the three heuristic selection schemes.

With these heuristic schemes, the relative approximation error can stop decreasing or even

increase when the approximation rank becomes large. One part of the reason for the in-

creasing approximation error is the numerical instability of computing the ID approxima-

tion of K(X0, Yp) for a large approximation rank. With an improper selection of proxy

points Yp (especially the selection on the surface), K(X0, Yp) can have numerical rank

smaller than the actual rank needed for an ID approximation of K(X0, Y0) to obtain a

given accuracy. As a result, the ID approximation of K(X0, Yp) computed by SRRQR

with a given approximation rank larger than the numerical rank of K(X0, Yp) becomes

numerically unstable.
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(a) K(x, y) = e−|x−y|
2
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(b) K(x, y) = e−0.1|x−y|
2

Figure 3.9: Relative approximation error of the proxy point method with different se-
lections of proxy points for two kernel functions. In the legend, “annulus 1” refers to
[−3.2, 3.2]2\[−3, 3]2 and “annulus 2” refers to [−3.5, 3.5]2\[−3, 3]2.
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3.4.4 Comparison with algebraic compression methods

In this subsection, we compare the proxy point method with three algebraic compression

methods: (1) ID using SRRQR, (2) adaptive cross approximation (ACA) with partial piv-

oting [29], and (3) a pseudoskeleton approximation method based on random column sam-

pling and the pivoted QR decomposition that is similarly presented in Ref. [35].

Consider the same test settings as in the previous subsection: K(x, y) = e−|x−y|
2 ,

X = [−1, 1]2, Y = [−7, 7]2\[−3, 3]2, 384 proxy points selected by Algorithm 5, 400

points in X for X0, and 16000 points in Y for Y0. For different approximation ranks,

Figure 3.10 plots the relative approximation errors and running times of the four differ-

ent compression methods. As can be observed, the proxy point method has slightly better

approximation accuracy and much less computational cost compared to ACA and the pseu-

doskeleton approximation method. However, it is worth noting that the accuracy difference

between these tested methods is also related to the actual distribution of points Y0 in the

domain Y . Meanwhile, all these methods and tests are implemented in Matlab without

code optimization. These facts could also affect the test results. More tests are needed for a

comprehensive comparison of these methods but these are outside the scope of this chapter.

We note that the running time of the proxy point method in Figure 3.10 does not include

the running time of the proxy point selection by Algorithm 5, which is 5.9 seconds. As

discussed in Section 3.3.4, the proxy point selection by Algorithm 5 should be viewed as

a precomputation step and the selected proxy points are used repeatedly when applying

the proxy point method in rank-structured matrix construction (see the numerical test in

Section 3.4.5). Thus, it is reasonable to ignore the running time of the proxy point selection

when comparing the proxy point method with other algebraic compression methods.

3.4.5 Application toH2 matrix construction

We now consider using the proxy point method to efficiently construct H2 matrix repre-

sentations with the strong admissibility condition for kernel matrices K(X,X) defined by
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Figure 3.10: Relative approximation error and running time of the proxy point method and
three different algebraic compression methods. The running time of the proxy point method
in (b) does not include the running time of the proxy point selection by Algorithm 5, which
is 5.9 seconds.

a non-oscillatory symmetric kernel function K(x, y) and randomly generated points X .

Readers can refer to Section 2.6 for details of the H2 matrix construction with the asso-

ciated blocks to be compressed into ID form. Also, readers can refer to Section 5.3 for a

comparative study of anH2 matrix library currently under development with collaborators

based on the proxy point method and another two commonly used FMM libraries.

In d-dimensional space (d = 2 or d = 3), we uniformly and randomly selectN points in

a square or cubical box with edge length L = N
1
d for X . This box, enclosing all the points,

is recursively partitioned into smaller boxes. Specifically, a box is uniformly subdivided

into 2d smaller boxes if it contains more than 300 points. With uniformly distributed points,

we partition all the boxes at every level until the finest level. At the kth level of the recursive

partitioning, the original box is partitioned into 2dk boxes with edge length L/2k. Such a

recursive partitioning has O(logN) levels in total.

H2 matrix construction at the kth level needs to compute ID approximations of 2dk

number of kernel matrix blocks. These blocks share the same form K(X0, Y0) where, for

some box B at the kth level, X0 is a set of points lying in B and Y0 is a set of points lying in

the far field of B. When K(x, y) is translationally invariant, we only need to select proxy
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points Yp using Algorithm 5 for K(x, y) with domains

X =

[
− L

2k+1
,
L

2k+1

]d
and Y =

[
−(L− L

2k+1
), L− L

2k+1

]d
\
[
− 3L

2k+1
,

3L

2k+1

]d
.

We can then apply the proxy point method to each K(X0, Y0) at the kth level with Yp

properly shifted according to the position of B relative to X .

We test two different problem settings: K(x, y) = 1/
√

1 + |x− y|2 in 2D andK(x, y) =

(1 + 0.01|x − y|)e−0.01|x−y| in 3D. The proxy point method is used to compute all the ID

approximations in the H2 matrix construction, where all the intermediate ID approxima-

tions of K(X0, Yp) in the method are computed with relative error threshold τ = 10−6.

Here, an ID approximation UAJ to a matrix A meets a relative error threshold τ if the

2-norm of each row of A − UAJ is bounded by τ times the maximum of the 2-norm of

each row of A. For comparison, theH2 matrix construction with all the ID approximations

computed using SRRQR with relative error threshold τ = 10−6 is also tested. All the tests

are implemented in Matlab.

Figures 3.11 and 3.12 plot the construction time, storage cost, and relative error of

H2 matrix constructions for the two problem settings, respectively. For a constructed H2

matrix, its relative error is measured as the relative error of 100 randomly chosen entries of

the product of the H2 matrix with a random vector compared with the entries of the exact

product of the original kernel matrix with the vector. The reported relative error results are

averaged over 20 independent tests.

The runtime of selecting proxy points is significant but its asymptotic complexity is only

O(logN) since Algorithm 5 is applied only once at each level of H2 matrix construction.

The proxy point method leads to nearly linear H2 matrix construction, which can also be

justified theoretically if we assume that the number of proxy points Yp selected at each level

is O(1). Also, the storage cost and relative error of H2 matrices constructed by the proxy

point method are close to those by SRRQR, indicating that the proxy point method is as
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(a) construction time (b) storage cost
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Figure 3.11: Results of H2 matrix construction for K(x, y) = 1/
√

1 + |x− y|2 in 2D:
(a) construction time of H2 matrices, (b) storage cost of the constructed H2 matrices, (c)
relative error of the constructed H2 matrices. “Proxy point method” and “SRRQR” refer
to the ID approximation methods used in the H2 matrix construction. In (a), “proxy point
selection” refers to the total runtime of selecting the proxy points by Algorithm 5 for H2

matrix construction. Reference lines for linear and quadratic scaling with N are plotted.

(a) construction time (b) storage cost
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Figure 3.12: Results ofH2 matrix construction for K(x, y) = (1 + 0.01|x− y|)e−0.01|x−y|

in 3D: (a) construction time ofH2 matrices, (b) storage cost of the constructedH2 matrices,
(c) relative error of the constructedH2 matrices.

effective as SRRQR in terms of the approximation rank and accuracy for ID approximations

inH2 matrix construction.
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CHAPTER 4

FAST COULOMB MATRIX CONSTRUCTION VIA COMPRESSING THE

INTERACTIONS BETWEEN CONTINUOUS CHARGE DISTRIBUTIONS

In this chapter, we extend the applicability of the proxy point method andH2 matrix repre-

sentations to matrices defined by interactions between continuous charge distributions for

fast Coulomb matrix construction in quantum chemistry. Constructing the Coulomb matrix

is one of the main steps in many quantum chemical methods. The Coulomb matrix can be

defined as

Jab =
∑
c,d

(φaφb|φcφd)Dcd, (4.1)

where D is a density matrix and (φaφb|φcφd) denotes an entry of a four-dimensional elec-

tron repulsion integral (ERI) tensor. Each entry of the ERI tensor is defined as

(φaφb|φcφd) =

∫
R3

∫
R3

φa(r1)φb(r1)
1

|r1 − r2|
φc(r2)φd(r2)dr1dr2, (4.2)

where φa, etc., are known basis functions. In quantum chemical methods where high accu-

racy is desired, the standard basis functions are Gaussian-type functions (GTFs)

φa(r) = (x− xa)l(y − ya)m(z − za)ne−α|r−ra|
2

,

where ra = (xa, ya, za) is the center of the function, α is an exponent, and (l+m+n) is the

total angular momentum. (In practice, the basis functions are a known linear combination

of GTFs that have the same center, and are called contracted GTFs. This fact does not

change the development of this chapter, and it will be ignored until Section 4.5 on numerical

experiments.)

In self-consistent field iterations, the Coulomb matrix is constructed repeatedly for dif-
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ferent density matrices while the ERI tensor is fixed. The computational challenge in con-

structing the Coulomb matrix is the fact that the ERIs are expensive to compute and, for

typical numbers of basis functions, the distinct, non-negligible ERIs are too numerous to

store in memory. The ERI tensor is central to many quantum chemical methods and a

variety of techniques have been developed to approximate the ERI tensor to reduce com-

putation and/or storage costs.

From eqs. (4.1) and (4.2), constructing the Coulomb matrix calculates the Coulomb

potential for a system of continuous charge distributions. Here, φaφb and φcφd are distribu-

tions; the latter multiplied by the corresponding charge weight Dcd is a charge distribution.

From this viewpoint, the ERI tensor (φaφb|φcφd) can be regarded as a matrix by folding

together its first two dimensions and folding together its last two dimensions so that (a, b)

denotes a matrix row index and (c, d) denotes a matrix column index. We will refer to this

matrix as the ERI matrix whose entries correspond to the pairwise interactions between

distributions. At the same time, the density matrix can be regarded as a vector. Thus, the

tensor contraction eq. (4.1) can be viewed as a matrix-vector multiplication.

The discrete case, i.e., the Coulomb potential for a system of point charges where the

ERI matrix is replaced by a kernel matrix defined byK(x, y) = 1/|x−y|, can be efficiently

calculated by FMM andH2 matrix technique. For the case of continuous distributions, the

continuous fast multipole method (CFMM) and related methods have been developed for

constructing the Coulomb matrix [36, 37, 38, 39, 40, 41]. These methods use the multipole

expansion technique from FMM to compress the interactions between “well-separated”

distributions into low-rank form and thus to accelerate the evaluation of these interactions.

The remaining interactions are evaluated directly.

Similar to FMM, CFMM is also algebraically equivalent to multiplying the ERI matrix

inH2 format. However, CFMM is not as efficient as one would hope. For two distributions

to be well-separated, they cannot overlap (to be described precisely in Section 4.2). As a

result, CFMM essentially uses a much stronger admissibility condition than that commonly
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used in FMM and H2 matrices for point charges, and thus defines far more inadmissible

blocks that have to be evaluated directly. For typical problems, a large number of distribu-

tions overlap, and thus the number of interactions that must be evaluated directly is large

[39]. These direct computations dominate the computation cost of CFMM.

In this chapter, we propose to construct an explicitH2 matrix representation of the ERI

matrix using an admissibility condition that is much weaker than the one used by CFMM.

This H2 matrix representation allows us to compress far more interactions in the ERI ma-

trix than could be compressed by CFMM, resulting in far fewer interactions that must be

computed directly. We then simply use the fast matrix-vector multiplication algorithm for

H2 matrices to construct the Coulomb matrix.

The main challenge of this new H2-based approach is the expensive computation re-

quired to represent the ERI matrix in this specific H2 format. The multipole expansion

technique in CFMM cannot be applied here since the block to be compressed can corre-

spond to overlapping distributions. To tackle this challenge, we propose a new variant of the

proxy point method which, just like the proxy point method for kernel matrices, can avoid

needing to explicitly form a block of the ERI matrix before compressing it. Experimentally,

the computation cost ofH2 matrix construction with this new variant turns out to be nearly

linear in the number of distributions. Combining with the linear-scaling H2 matrix-vector

multiplication algorithm, this H2-based approach to constructing the Coulomb matrix has

linear computation cost. This cost is still directly related to the number of direct interactions

in the H2 matrix representation, but we have effectively reduced this number compared to

CFMM.

The rest of the chapter is organized as follows.

• Section 4.1 introduces the previous work for approximating the ERI tensor to reduce

computation and/or storage cost.

• Section 4.2 describes the limitation of CFMM and experimentally illustrates that

there are more numerically low-rank blocks than those compressed by CFMM.
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• Section 4.3 describes the H2 matrix representation of the ERI matrix with the asso-

ciated blocks compressed into ID form.

• Section 4.4 describes the variant of the proxy point method which efficiently com-

presses the associated ERI matrix blocks inH2 matrix construction.

• Section 4.5 describes the numerical experiments for the proposedH2-based approach

to constructing the Coulomb matrix.

• Section 4.6 concludes this extended application of the proxy point method and H2

matrix technique and discusses future work in quantum chemical computations.
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4.1 Previous work

Besides CFMM, there have been significant efforts in the past to develop and use com-

pressed representations of the ERI tensor. Density fitting (e.g., [42, 43, 44]) and its variants

[45, 46, 47, 48, 49] represent the 4-index ERI tensor as the contraction of two 3-index

tensors or as the contraction of two 3-index tensors and a 2-index tensor. Pseudospec-

tral method [46] represents the ERI tensor as the contraction of a 3-index tensor and two

2-index tensor. Other decompositions of the 4-index ERI tensor, called tensor hypercon-

traction, have also been recently developed [50].

Block low-rank matrix representations have been used elsewhere in quantum chemistry

as well. Lewis, Calvin, and Valeev [51] use a 1-level matrix representation called “clus-

tered low-rank” for the 2-index and 3-index tensors in density fitting. Lu and Ying [52]

use interpolative decompositions to produce approximations of the ERI tensor in tensor

hypercontraction form.

4.2 Limitations of CFMM

In FMM and CFMM, space is partitioned into boxes and the potential at a point far from a

box due to the point charges (FMM) or charge distributions (CFMM) centered in the box

is expressed in terms of a multipole expansion. In FMM, if two boxes are not adjacent,

then the multipole expansion could be used to compactly describe the pairwise interactions

between the point charges across the two boxes. In CFMM, it is more complicated to deter-

mine whether or not a multipole expansion could be used to approximate the interactions

between charge distributions.

To explain the issue with charge distributions, consider the distribution φaφb which is a

product of two GTFs. By the Gaussian product rule, φaφb itself is a GTF with center along

the line joining the centers of φa and φb. For a distribution φ, in general, define its extent

λ with precision τ as the radius of the smallest ball centered at the center of the GTF such
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that |φ(r)| is less than τ outside the ball [38]. Whether two distributions overlap depends

on whether these balls overlap.

Now consider two sets of distributions, Φ = {ϕi} being the distributions centered in a

given box, and Θ = {θj} being the distributions centered in a non-adjacent box. Define

VΦ to be the numerical support of Φ, that is, the convex hull of the balls corresponding to

the distributions in Φ, and define VΘ similarly. In this notation, (Φ|Θ) is a block of the ERI

matrix and each of its entries is an ERI,

(ϕi|θj) =

∫
VΦ

∫
VΘ

ϕi(r1)
1

|r1 − r2|
θj(r2)dr1dr2, ϕi ∈ Φ, θj ∈ Θ.

If VΦ and VΘ do not overlap, then we can approximate 1/|r1−r2| by a multipole expansion,

(ϕi|θj) ≈
∫
VΦ

∫
VΘ

ϕi(r1)

(
s∑
l=0

l∑
m=−l

|r2|lY −ml (r2)
Y m
l (r1)

|r1|l+1

)
θj(r2)dr1dr2,

where Y m
l (r) is the spherical harmonic function of degree l and order m. Here, the multi-

pole expansion is of degree s and is centered at the origin which is assumed to be the center

of VΘ. The above expansion gives an approximation in degenerate form,

(ϕi|θj) ≈
s∑
l=0

l∑
m=−l

(∫
VΦ

Y m
l (r1)

|r1|l+1
ϕi(r1)dr1

)(∫
VΘ

|r2|lY −ml (r2)θj(r2)dr2

)
,

which is equivalent to a rank-(s+ 1)2 approximation of (Φ|Θ).

If VΦ and VΘ do overlap, then the above approximation is not possible, since the multi-

pole expansion of 1/|r1−r2| diverges when r1 and r2 are equal. In this situation, computing

the interactions between distributions in these two boxes cannot be accelerated by CFMM

and these interactions must be computed directly. The distinguishing feature of CFMM

compared to FMM is the need to identify sets of distributions whose numerical supports do

not overlap.

An important observation is that even if VΦ and VΘ do overlap, the ERI matrix block

76



(Φ|Θ) may still be numerically low-rank if Φ and Θ are distributions centered in non-

adjacent boxes. We simply do not have the analytical apparatus to find these low-rank

approximations. In this chapter, a new technique is proposed to find such approximations.

To illustrate the observation that (Φ|Θ) may be numerically low-rank although there is

no corresponding known degenerate expansion, consider two non-adjacent cubical boxes

of edge length L = 5 centered at (0, 0, 0) and (2L, 0, 0). For each box, select 600 GTF

distributions of the form (p/π)3/2e−p|r−ra|
2 with the same exponent p and different cen-

ters ra randomly distributed in the box. These GTFs represent very simple “spherical”

distributions.

As before, denote the two sets of GTFs as Φ = {ϕi} and Θ = {θj}. Denote the center

of each distribution ϕi as xi and the center of each distribution θj as yj . Each entry of the

ERI matrix block (Φ|Θ) can be calculated analytically as

(ϕi|θj) =
1

|xi − yj|
erf
(√

p

2
|xi − yj|

)
. (4.3)

Figure 4.1 plots the first 300 singular values of (Φ|Θ) for four different cases, corre-

sponding to different values of the exponent p in the GTFs, and thus GTFs with different

extents. The extent λ =
√

1
p

(
3
2

ln p
π

+ ln 1
τ

)
for each value of p is also shown in each

subfigure, assuming the extent precision τ = 10−10.

For comparison, we also plot in each subfigure the singular values of the matrix which

we denote as K(X, Y ), consisting of the entries K(xi, yj) for all pairs of centers xi and yj ,

with K(x, y) = 1/|x − y|. This is the matrix that describes the Coulomb interactions if

we had point charges (instead of distributions) at the location of each center. Since the two

boxes under consideration are non-adjacent, the singular values of K(X, Y ) decay rapidly

and K(X, Y ) is numerically low-rank. FMM considers these two sets of point charges to

be well separated.

When p = 10, the extent λ of the distributions is small, and (Φ|Θ) and K(X, Y ) have
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Figure 4.1: First 300 singular values of K(X, Y ) and (Φ|Θ) for GTFs with different ex-
ponents p. For each p, the corresponding value of the extent λ is also shown. Only the
ERI block (Φ|Θ) with p = 10 can be compressed using multipole expansions in CFMM,
although (Φ|Θ) in other cases is also numerically low-rank.

very similar singular values. When p = 1 and p = 0.1, the extent is larger and the distri-

butions from the two boxes can overlap. CFMM would consider the interactions between

these two boxes to be near-range in these cases, i.e., interactions based on multipole expan-

sions cannot be used. However, Figure 4.1 shows that the singular value decay of (Φ|Θ)

and K(X, Y ) is similar for the first 8 or more decades of singular values. Thus (Φ|Θ) in

these cases are also numerically low-rank.

When p = 0.01, the distributions are very diffusive and the singular value decay of

(Φ|Θ) is even faster than that of K(X, Y ). This odd result turns out to be quite natural

from the viewpoint of kernel functions. With a sufficiently small p, the formula eq. (4.3),

regarded as a kernel function between xi and yj , can be flatter than 1/|xi−yj| for xi and yj
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in the two non-adjacent boxes. Heuristically, this flatness usually indicates that eq. (4.3) can

be well approximated by a degenerate approximation with smaller degrees than 1/|xi−yj|,

leading to the faster singular value decay of (Φ|Θ) than that of K(X, Y ).

Based on these observations, and unlike CFMM, we will only use the centers of dis-

tributions, rather than both centers and extents, to decide whether an interaction can be

compressed by a low-rank approximation. A challenge is how to efficiently find such low-

rank approximations.

4.3 H2 matrix representation of the ERI matrix

In this section, we establish notation for representing and constructing the ERI matrix in

H2 format based on Chapter 2.

Hierarchical partitioning and ERI matrix blocks Constructing anH2 matrix represen-

tation of the ERI matrix starts with a hierarchical partitioning of the set of distributions,

or basis function products {φaφb}, for the molecular system and chosen basis set. Like in

the case of points, the space enclosing all the distributions is partitioned recursively and

adaptively into cubic boxes until the number of distributions centered in each finest box is

less than a prescribed small constant. This hierarchical partitioning can be represented by

an octree whose nodes correspond to the boxes.

Let T denote the partition tree. For brevity, we always assume T to be a perfect octree

in this chapter. The following discussion can be easily extended to the non-perfect partition

tree case based on Section 2.4. Let I denote the set of all distributions. Let Ii denote the

set of distributions with centers in box i and corresponding to node i in the tree. Using

this notation, (Ii|Ij) denotes the block in the ERI matrix corresponding to the Coulomb

interactions between distributions with centers in boxes i and j. The entire ERI matrix can

be denoted as (I|I).
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Admissibility condition According to the last section, we choose to use an admissibility

condition that is similar to the strong admissibility condition used for points in Section 2.1

to decide whether a block in the ERI matrix is numerically low-rank. Specifically, the far

field Y of a box X is defined as the complement of the union of X and all its adjacent

same-sized boxes. For two sets of distributions I0 and J0 with centers in X and Y , respec-

tively, the ERI matrix block (I0|J0) is expected to be numerically low-rank (to be justified

experimentally in Section 4.5) and thus is to be compressed into low-rank form in the H2

matrix representation.

4.3.1 H2 matrix construction

At each level l, let level(l) denote the set of nodes at level l and ∪i∈level(l)Ii = I . For each

node i ∈ level(l), according to the admissibility condition, boxes in level(l) are split into

two subsets,

Fi = {k ∈ level(l) | box k is in the far field of box i}

Ni = level(l) \ Fi.

Accordingly, (Ii|Ij) with j ∈ Fi is an admissible block and (Ii|Ij) with j ∈ Ni is an

inadmissible block. Let Ji = ∪k∈Fi
Ik which contains all the distributions in the far field

of box i. To construct an H2 matrix representation of (I|I), (Ii|Ji) and (Ji|Ii) are to be

compressed into low-rank form. Since (Ii|Ji) = (Ji|Ii)T , we only need to compress (Ii|Ji)

and set the uniform row basis matrix to be the same as the computed uniform column basis

matrix for each node i.

Consider a rank-r0 approximation of (Ii|Ji) in interpolative decomposition (ID) form,

(Ii|Ji) ≈ Ui(I
id
i |Ji), (4.4)

where Ui has r0 columns, I id
i is a subset of Ii, and (I id

i |Ji) contains r0 rows of (Ii|Ji).
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For each non-leaf node i with children {i1, . . . , i8}, the nested ID approximation of (Ii|Ji)

starts with splitting and approximating the block as

(Ii|Ji) =


(Ii1|Ji)

...

(Ii8|Ji)

 ≈

Ui1(I id

i1
|Ji)

...

Ui8(I id
i8
|Ji)

 =


Ui1

. . .

Ui8




(I id
i1
|Ji)
...

(I id
i8
|Ji)

 .

The last matrix above is then compressed into low-rank form

(
∪iaI id

ia |Ji
)
≈ Ri(I

id
i |Ji) (4.5)

with I id
i ⊂ ∪iaI id

ia ⊂ Ii, which computes the transfer matrix Ri and approximates (Ii|Ji) in

ID form as

(Ii|Ji) ≈


Ui1

. . .

Ui8

Ri(I
id
i |Ji) = Ui(I

id
i |Ji).

In fact, the components Ri and I id
i for a good ID approximation eq. (4.5) of (Îi|Ji) can

be computed more efficiently than by using SRRQR directly. Define

Îi = ∪ia∈{children of i}I
id
ia and Ĵi = ∪k∈Fi

∪ka∈{children of k} I
id
ka . (4.6)

The components Ri and I id
i can then be computed from the ID approximation

(Îi|Ĵi) ≈ Ri(I
id
i |Ĵi). (4.7)

Since (Îi|Ĵi) has fewer columns than (Îi|Ji), the direct computation of eq. (4.7) is cheaper

than that of eq. (4.5). Readers can refer to Refs. [14, 53] for more details.

One key benefit of using ID approximation to construct an H2 matrix is that the inter-

mediate matrices Bi,j can be efficiently computed (as already discussed in Section 2.6).
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For each admissible block (Ii|Ij) with j ∈ Fi, the columns of the ID in eq. (4.4) that cor-

respond to Ij give the approximation (Ii|Ij) ≈ Ui(I
id
i |Ij). Similarly, the ID approximation

(Ij|Jj) ≈ Uj(I
id
j |Jj) gives (Ij|I id

i ) ≈ Uj(I
id
j |I id

i ) based on the fact that I id
i ⊂ Ii ⊂ Jj .

Combining these two approximations leads to

(Ii|Ij) ≈ Ui(I
id
i |I id

j )UT
j . (4.8)

Thus, the associated intermediate matrix Bi,j can be set to (I id
i |I id

j ), which can be directly

computed using I id
i and I id

j .

An interesting observation is that the approximation eq. (4.8) has the form of a density

fitting (DF) approximation [42, 43, 44] where I id
i and I id

j would correspond to the set of

“auxiliary functions” for Ii and Ij , respectively. DF, however, is applied to the entire ERI

matrix (I|I). Thus, anH2 matrix representation of the ERI matrix can also be interpreted as

a generalization of DF. This generalization locally and hierarchically applies DF to certain

pairs of subsets of basis function products.

4.3.2 Comparison with CFMM

As already mentioned, CFMM is equivalent to multiplying the ERI matrix in a specific

H2 format. The main difference between this equivalent H2 format and the one we have

described in this section is that CFMM has a much stronger admissibility condition. In

CFMM, an ERI matrix block is admissible (a.k.a. far-field) if the corresponding two sets of

distributions have non-overlapping numerical supports. The block is inadmissible (a.k.a.

near-field) otherwise. Additionally, CFMM has the same hierarchical partitioning of I

but further splits each Ii into “branches” [40] according to the extents of distributions in Ii.

Thus, a leaf-level block (Ii|Ij) that corresponds to two sets of distributions with overlapping

numerical supports is further subdivided into smaller blocks, some of which can be defined

as admissible blocks. Also, CFMM uses the multipole expansion technique to compress
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the admissible blocks instead of ID approximations.

4.4 Accelerated compression via proxy points

For an ERI matrix, the construction of an H2 matrix representation is dominated by the

cost of the ID approximation of (Ii|Ji) for leaf nodes i and of (Îi|Ĵi) for non-leaf nodes i.

These ERI matrix blocks share the same form (I∗|J∗) where, for some node i, I∗ is a set of

distributions (Ii or Îi) centered in box i, and J∗ is a set of distributions (Ji or Ĵi) centered

in the far field of box i. In general, the set J∗ is much larger than the set I∗. Using purely

algebraic methods such as SRRQR to compress (I∗|J∗) leads to quadraticH2 construction

cost, due to needing at least to form and examine every element in (I∗|J∗). At the same

time, the multipole expansion technique used in CFMM cannot generally be applied here,

since I∗ and J∗ can have overlapping numerical supports.

This section introduces a variant of the proxy point method in Chapter 3 which is a hy-

brid analytic-algebraic method and can efficiently calculate an ID approximation of (I∗|J∗)

while avoiding the evaluation of all the elements in (I∗|J∗).

4.4.1 Splitting of J∗

Consider two sets of distributions, I∗ and J∗, as described above. Let B denote the box

that encloses the centers of distributions in I∗ and let Badj denote the union of B and its 26

adjacent, same-sized boxes. All the distributions in J∗ have their centers outside Badj. A

2D example of I∗, J∗, B, and Badj is illustrated in Figure 4.2.

We split J∗ into two subsets, Jnear and Jfar, where Jnear contains all the distributions in

J∗ that overlap with Badj and Jfar = J∗ \ Jnear. Figure 4.3 illustrates an example of this

splitting. We note that this splitting of J∗ is not related to the numerical support of I∗,

and distributions in both Jnear and Jfar may overlap with distributions in I∗. Since all the

distributions in J∗ have bounded extents, Jnear generally has O(1) number of distributions

and Jfar can be of size on the order of the total number of distributions, i.e., O(|I|). To
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Figure 4.2: 2D illustration of I∗, J∗, B, and Badj. Each circle around a red point denotes
one distribution in J∗. The radius of a circle is the extent of a distribution. Distributions
in I∗ are not plotted but the balls associated with these distributions generally can spread
outside Badj.

efficiently compute an ID approximation of (I∗|J∗), we will consider two parts: (I∗|Jnear)

and (I∗|Jfar). The former has a relatively small size; the latter is the critical part that we

discuss now.

Figure 4.3: 2D illustration of the splitting of J∗ (corresponding to Figure 4.2) into Jnear

and Jfar, where Jnear contains all the distributions that overlap with Badj and Jfar = J∗\Jnear.

For the case of point charges rather than charge distributions, methods already exist

for computing low-rank approximation to (I∗|Jfar) without needing to evaluate the entire

matrix itself (note that Jfar = J∗ for the case of point charges). As discussed in Chapter 3,

in the proxy surface and related methods [10, 14, 21, 54], the points in Jfar are replaced by
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a smaller set of proxy points on the surface ∂Badj between the points in I∗ and Jfar. This

does not work for charge distributions because the distributions in I∗ and Jfar may overlap.

One could redefine Jfar as the set of distributions that do not overlap with those of I∗, but

this would result in a very large set of distributions Jnear which we are trying to avoid in the

first place.

Moreover, the proxy point method proposed in Chapter 3 can not be directly applied to

(I∗|Jfar) since the method is developed and analyzed based on kernel matrices while ERI

matrix blocks are defined by specific integral-form interactions between distributions.

For the case of charge distributions, our approach to the low-rank approximation of

(I∗|Jfar) resembles the proxy point method and uses multiple layers of proxy points around

∂Badj. We begin below with a theoretical motivation for this approach.

4.4.2 Theoretical motivation

If we imagine each distribution ϕi in I∗ is a unit charge distribution, then its induced po-

tential pi(y) in R3\Badj is

pi(y) =

∫
R3

ϕi(r)
1

|r − y|
dr, y ∈ R3\Badj. (4.9)

For any ϕi ∈ I∗ and θj ∈ Jfar, the entry (ϕi|θj) of (I∗|Jfar) can be written as

(ϕi|θj) =

∫
R3

∫
R3

ϕi(r1)
1

|r1 − r2|
θj(r2)dr1dr2 =

∫
R3\Badj

pi(r2)θj(r2)dr2, (4.10)

where the numerical support of θj is entirely within R3\Badj by the definition of Jfar.

For analysis purposes, let U(I id
∗ |Jfar) be an ID approximation of (I∗|Jfar). Each entry of

(I∗|Jfar) is then approximated as

(ϕi|θj) ≈ uTi (I id
∗ |θj), ϕi ∈ I∗, θj ∈ Jfar,
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where uTi denotes the ith row of U . Substituting eq. (4.10) into the above equation gives

∫
R3\Badj

pi(r2)θj(r2)dr2 ≈
∫
R3\Badj

(
uTi P

id(r2)
)
θj(r2)dr2, (4.11)

where P id(y) denotes the vector of potentials pj(y) for all ϕj ∈ I id
∗ . This rewriting shows

that the ID approximation actually approximates each potential pi(y) in the domain R3\Badj

by uTi P
id(y) which is a linear combination of the potentials due to the distributions in I id

∗ .

Define the error of each approximation as

ei(y) = pi(y)− uTi P id(y), y ∈ R3\Badj, ϕi ∈ I∗. (4.12)

Using Hölder’s inequality, the elementwise error of the ID approximation in eq. (4.11) can

be bounded as

∣∣(ϕi|θj)− uTi (I id
∗ |θj)

∣∣ 6 max
y∈R3\Badj

|ei(y)|
∫
R3\Badj

|θj(r2)|dr2. (4.13)

From this analysis, a good ID approximation U(I id
∗ |Jfar) to (I∗|Jfar) can be found by

seeking U and I id
∗ such that each defined ei(y) in eq. (4.13) is small in the domain R3\Badj.

In other words, we seek a subset of the potentials {pj(y)}ϕj∈I∗ whose linear combination

can well approximate each pi(y) in the domain R3\Badj.

To make the problem tractable, instead of considering the approximation to pi(y) at

every y ∈ R3\Badj, we consider it at a finite set of proxy points Yp that lie in R3\Badj. An

approximation to pi(y) can be accurate in R3\Badj as long as it is accurate at a small set of

properly selected points Yp. Such a choice of Yp will be discussed in the next subsection.

Let P (y) denote the vector of potentials pi(y) for all ϕi ∈ I∗. Assuming we have a set

of proxy points Yp, then the approximation to P (y) can be computed by using SRRQR to
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compute the ID approximation,

P (Yp) =



p1(Yp)
T

p2(Yp)
T

...

p|I∗|(Yp)
T


≈ U



pi1(Yp)
T

pi2(Yp)
T

...

pik(Yp)
T


= UP id(Yp). (4.14)

The error in the ith row of this approximation is pi(Yp)T − uTi P
id(Yp) and has its norm

bounded by the error threshold specified for SRRQR. Thus, the ID approximation eq. (4.14)

defines an approximation uTi P
id(y) to each pi(y) with error ei(y) bounded at Yp. Based on

the previous analysis, the resulting U and I id
∗ from eq. (4.14) can then be used for the ID

approximation of (I∗|Jfar). The remaining problem becomes how to select an effective but

small set of proxy points Yp.

4.4.3 Proxy point selection

We define X to be the smallest cubical domain that encloses the numerical support of I∗.

In particular, X encloses B and shares the same center, as illustrated in Figure 4.4. Each

potential pi(y) defined in eq. (4.9) can be further written as

pi(y) =

∫
X
ϕi(r)

1

|r − y|
dr, y ∈ R3\Badj.

From this formula, it can be noted that pi(y) is a harmonic function outside X . As a linear

combination of potentials pj(y) for all ϕj(y) ∈ I∗, ei(y) defined in eq. (4.12) with any

uTi and I id
∗ is also harmonic outside X . By the maximum principle of harmonic functions,

ei(y) satisfies maxy∈R3\X |ei(y)| = maxy∈∂X |ei(y)| and thus

max
y∈R3\Badj

|ei(y)| =


maxy∈X\Badj |ei(y)| if X ⊃ Badj

maxy∈∂Badj |ei(y)| if X ⊂ Badj

. (4.15)
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As a result, it is sufficient to make ei(y) small in X\Badj (or on ∂Badj) in order to make

ei(y) small in R3\Badj. This indicates that we only need to select the proxy points Yp in

X\Badj (or on ∂Badj) for the ID approximation eq. (4.14).

Figure 4.4: 2D illustration of the selection of proxy points Yp in X\Badj.

For the case of point charges, X is within Badj and the proxy points are selected on

∂Badj. The calculation of U and I id
∗ for the ID approximation of (I∗|Jfar) via eq. (4.14) is

exactly the proxy surface method [10, 14]. In this case, Ref. [55] shows that the number of

proxy points needed only depends on the ratio of the radius of B to that of Badj and is not

related to the absolute size of ∂Badj.

For GTF distributions in I∗ (which have exponentially decaying tails), we continue

to expect that only a constant number of proxy points is needed on ∂X (or on ∂Badj when

X ⊂ Badj). With this idea, the proxy points are chosen heuristically as follows. IfX ⊂ Badj,

we select a fixed number of points uniformly distributed on ∂Badj. Otherwise, we select

multiple layers of evenly spaced cubic surfaces between and including ∂Badj and ∂X , with

a fixed number of proxy points distributed uniformly on each cubic surface. The number

of surfaces is proportional to the ratio of the distance between ∂X and ∂Badj to the edge

length of B. Figure 4.4 gives a 2D example of the selected proxy points. Such a selection

gives O(1) number of proxy points and thus the approximated matrix P (Yp) in eq. (4.14)

is also of O(1) size.

To be consistent with ERI notation (·|·), denote P (Yp) from eq. (4.14) as (I∗|Yp) where
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yj ∈ Yp stands for a point charge at yj and thus

(ϕi|yj) = (ϕi|δyj) =

∫
R3

ϕi(r)
1

|r − yj|
dr = pi(yj), ϕi ∈ I∗, yj ∈ Yp.

It is important to note that each entry of (I∗|Yp) above is not an ERI—it is a nuclear attrac-

tion integral and is much cheaper to evaluate than an ERI [56].

4.4.4 Algorithm for computing the ID of (I∗|J∗)

From the above discussion, to construct the ID approximation

(I∗|J∗) ≈ U(I id
∗ |J∗), (4.16)

it is sufficient to compute the components U and I id
∗ such that

(I∗|Jnear) ≈ U(I id
∗ |Jnear) and (I∗|Yp) ≈ U(I id

∗ |Yp).

Using the idea of the randomized ID approximation method [57], the components U

and I id
∗ are computed as follows. First, generate two random matrices Ω1 and Ω2 of dimen-

sion |Jnear| × |I∗| and |Yp| × |I∗|, respectively, whose entries follow the standard normal

distribution. Multiply (I∗|Jnear) with Ω1 and (I∗|Yp) with Ω2,

A1 = (I∗|Jnear)Ω1 and A1 = (I∗|Yp)Ω2.

Then, normalize each column of A1 and A2 to have unit norm and denote the normalized

matrices as Ã1 and Ã2. Lastly, compute U and I id
∗ from the ID approximation,

[Ã1, Ã2] ≈ U [Ã1, Ã2]I id
∗ ,:
, (4.17)

using SRRQR, where [Ã1, Ã2]I id
∗ ,:

denotes the subset of rows in [Ã1, Ã2] computed by this
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ID and I id
∗ ⊂ I∗ is associated with the indices of this subset.

The reason for the normalization step is that (I∗|Jnear) and (I∗|Yp) can have different

number of columns and also their entries can be of different magnitudes. As a result,

A1 and A2 can have their entries of different magnitudes. If directly computing an ID

approximation of [A1, A2], the obtained U and I id
∗ could be biased and define a better ID

approximation to the one of A1 and A2 that has larger entries.

This accelerated ID approximation of (I∗|J∗) is summarized in Algorithm 6. Noting

that (I∗|Jnear) and (I∗|Yp) only have O(1) number of columns, Algorithm 6 can be much

faster than the purely algebraic ID approximation using SRRQR alone. More importantly,

applying this compression method in H2 matrix construction can reduce the construction

cost to nearly linear in the number of distributions.

Algorithm 6 Efficient ID approximation of (I∗|J∗)
Input: I∗, J∗, Badj, X .
Output: U and I id

∗ for an ID approximation U(I id
∗ |J∗) to (I∗|J∗).

• Split J∗ into Jnear and Jfar.
• Select proxy points Yp in X\Badj (or on ∂Badj when X ⊂ Badj).
• Generate random matrices Ω1 ∈ R|Jnear|×|I∗| and Ω1 ∈ R|Yp|×|I∗|.
• Calculate A1 = (I∗|Jnear)Ω1 and A2 = (I∗|Yp)Ω2.
• Normalize the columns of A1 and A2 to obtain Ã1 and Ã2.
• Compute U and I id

∗ from an ID approximation of [Ã1, Ã2] using SRRQR.

We numerically demonstrate Algorithm 6 as follows. Consider a cube B = [−1
2
L, 1

2
L]3

of edge length L = 5 and Badj = [−3
2
L, 3

2
L]3. Select 600 and 20000 GTF distributions of

the form {(p/π)3/2e−p|r−ra|
2} with the same exponent p and different centers ra randomly

distributed in B and [−11
2
L, 11

2
L]3\Badj, respectively. Denote the two sets of GTFs as I∗

and J∗. To define X , let the extent precision be τ = 10−10. Two exponents p = 1 and

p = 0.1 are tested. Figure 4.5 shows the relative error of the low-rank approximation of

(I∗|J∗) calculated by Algorithm 6 for different choices of the rank. For both values of p,

Algorithm 6 gives relative errors close to those of SVD and ID using SRRQR. Meanwhile,

the intermediate approximation of [Ã1, Ã2] in Algorithm 6 has slightly larger relative errors

than the obtained ID approximation of (I∗|J∗). The accuracy of the final approximation can
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be controlled by controlling the accuracy of the ID approximation eq. (4.17) computed by

SRRQR.
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Figure 4.5: Relative error of the low-rank approximations of (I∗|J∗) in the Frobenius norm.
Three methods are used: SVD, ID using SRRQR, and Algorithm 6. In addition, the dashed
lines show the relative error of the intermediate approximation eq. (4.17) for [Ã1, Ã2]. The
test problem parameters are: (a) p = 1, λ = 4.6, |Jnear| = 1354, |Jfar| = 18646, and 1 layer
of proxy points in Yp with 384 points, (b) p = 0.1, λ = 13.4, |Jnear| = 8409, |Jfar| = 11591,
and 3 layers of proxy points in Yp with 1152 points.

4.4.5 Summary of theH2 method

We refer to the proposed Coulomb matrix construction method (Algorithm 7) as the H2

method. The method consists of two phases: (1) use the new compression technique to

construct anH2 matrix representation of the ERI matrix (I|I), and then (2) use the fastH2

matrix-vector multiplication algorithm to construct the Coulomb matrix.

Assuming that the ranks of the ID approximations in lines 4 and 10 of Algorithm 7

are bounded by a constant r (to be experimentally justified in Section 4.5), the first phase

has O(|I|r2) computation cost and the second phase has O(|I|r) computation cost. As

mentioned in the introduction of the chapter, in self-consistent field iterations, a Coulomb

matrix is constructed with different density matrices in each iteration while the ERI matrix

is fixed. The relatively expensive cost for constructing theH2 matrix representation can be
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amortized over many matrix-vector multiplications.

Algorithm 7 Construct the Coulomb matrix by theH2 method
Input: distribution set I , density matrix D.
Output: J = (I|I)D.

Phase 1: Construct anH2 matrix representation of (I|I)

1: • Hierarchically partition I into subsets {Ii} with L levels.
2: for node i at level L (the leaf level) do
3: • Compute Ui and I id

i from the ID approximation of (Ii|Ji) in eq. (4.4) using
4: Algorithm 6.
5: end for
6: for k = L− 1, L− 2, . . . , 3 do
7: for node i at level k do
8: • Construct Îi and Ĵi according to eq. (4.6).
9: • Compute Ri and I id

i from the ID approximation of (Îi|Ĵi) in eq. (4.7) using
10: Algorithm 6.
11: end for
12: end for
13: • (optional, see line 15) Construct inadmissible blocks (Ii|Ij) for each inadmissible

pair of nodes i and j at level L, and skeleton blocks (I id
i |I id

j ) for each admissible pair
of nodes i and j at the same level whose parent nodes are inadmissible.

Phase 2: Construct the Coulomb matrix
14: • Unfold the density matrix D as a vector.
15: • Apply the H2 matrix-vector multiplication algorithm to construct J = (I|I)D. If

line 13 is not applied, the inadmissible blocks and skeleton blocks are constructed
when needed in the matrix-vector multiplication.

16: • Fold the vector J as the computed Coulomb matrix.

The constructed H2 matrix representation has O(|I|r) storage cost. The representation

stores the following “necessary” components for each node i with a non-empty Ji: (1) I id
i ,

(2) Ui if i is a leaf node, and (3) Ri if i is a non-leaf node. Further, the representation

can either store the following components if line 13 of Algorithm 7 is applied, or compute

them when they are needed in the second phase of Algorithm 7: (4) inadmissible blocks

(Ii|Ij) for each inadmissible pair of nodes i and j at the leaf level, and (5) skeleton blocks

(I id
i |I id

j ) for each admissible pair of nodes i and j at the same level whose parent nodes

are inadmissible. These latter blocks are the intermediate blocks Bi,j associated with the

low-rank approximations eq. (4.8) to the admissible blocks used in the final H2 matrix
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representation.

As will be shown in the numerical tests, the storage cost for the inadmissible blocks

and the skeleton blocks is much larger than the storage required for the other components

in the H2 matrix representation. If these blocks are to be stored, they are best stored in

dense matrix format, since they do not have enough sparsity to warrant storage in a sparse

matrix format. In addition, storage of these blocks should be non-redundant, utilizing the

8-way symmetry present in the ERI tensor.

4.5 Numerical experiments

We test theH2 method and compare it to CFMM using two sets of molecular systems. The

first is a set of linear alkanes of different sizes. The second is a set of truncated protein-

ligand systems derived from the 1hsg system in the protein data bank. In this second

set, each system consists of a ligand with its protein environment within a certain radius.

Different radii give different sized systems. Such truncated systems are used in order to

make protein-ligand simulations tractable. See Ref. [58] for more information on these

systems.

These two sets of systems span an important determinant of CFMM and H2 method

performance. The alkane systems are long and narrow while the 1hsg protein-ligand sys-

tems are globular. One may say that they have 1D and 3D “shapes”, respectively. We thus

expect a larger proportion of interactions that can be compressed in CFMM and the H2

method for the alkanes than for the 1hsg systems.

Prescreening

In practice, many rows and columns of the ERI matrix are numerically zero. Specifically,

the row and column associated with a product φaφb can be neglected if |(φaφb|φcφd)| 6

δ for any φcφd. A threshold of δ = 10−10 is used in our tests. Such numerically zero

rows and columns can be identified efficiently as follows. From the Schwarz inequality
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|(φaφb|φcφd)| 6
√

(φaφb|φaφb)(φcφd|φcφd), a product φaφb and its corresponding row and

column can be neglected if

√
(φaφb|φaφb) 6

δ

maxc,d
√

(φcφd|φcφd)
, (4.18)

which only requires evaluating (φaφb|φaφb) for each pair of basis functions. This process

is called prescreening of basis function products [59]. Prescreening effectively reduces

the dimension of the ERI matrix. We refer to this reduced dimension as the “effective

dimension.”

Basis set and contracted basis functions

The cc-pVDZ basis set is used for both sets of molecular systems. Like almost all Gaussian

basis sets, the basis functions in this basis set are contracted GTFs (known linear combi-

nations of GTFs), as mentioned in the introduction of the chapter. The product of two

contracted GTF basis functions can be written as (neglecting contraction coefficients)

φaφb =
∑

χe∈[φa]

∑
χf∈[φb]

χeχf ,

where [φa] denotes the set of “primitive” GTFs that make up φa. Each ERI matrix entry

(φaφb|φcφd) can thus be written as the sum of ERIs with primitive GTFs as

(φaφb|φcφd) =
∑

χe∈[φa]

∑
χf∈[φb]

∑
χg∈[φc]

∑
χh∈[φd]

(χeχf |χgχh). (4.19)

CFMM and the H2 method can be applied to either the original contracted ERI matrix

(φaφb|φcφd) or the uncontracted ERI matrix (χeχf |χgχh). Compared to the contracted ERI

matrix, the uncontracted ERI matrix has larger dimensions, i.e., more products in {χeχf}.

However, there are also more products in {χeχf} that can be prescreened. A more impor-

tant advantage of using the uncontracted ERI matrix is that each χeχf is a primitive GTF
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and thus its numerical support can be more precisely described by a ball than contracted

GTFs, which improves the identification of well-separated interactions in CFMM and the

identification of Jnear, Jfar, and X for Algorithm 6 inH2 matrix construction.

Figure 4.6 plots the ratio of the effective ERI matrix dimension to the number of basis

functions for molecular systems of different sizes. The x-axis in this and other figures

is the size of the molecular system in terms of the number of contracted basis functions

{φa} (roughly 10 basis functions per atom). The figure shows that for our choice of δ =

10−10, the uncontracted ERI matrix is only about twice the dimension of the corresponding

contracted ERI matrix. For increasing molecular system size, the effective ERI matrix

dimension is expected to be asymptotically linear in the number of basis functions [56, 60].

This can be observed for the tested alkane molecules and is expected to be observed for

larger 1hsg molecules.
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Figure 4.6: Ratio of the effective ERI matrix dimension to the number of contracted basis
functions for two types of molecules of different sizes. This ratio is plotted against the size
of the molecular systems in terms of the number of contracted basis functions. Results for
both uncontracted and contracted ERI matrices are shown.

In the following numerical tests, we apply CFMM and the H2 method to uncontracted

and prescreened ERI matrices, i.e., the set of distributions I in Algorithm 7 contains the

primitive basis function products obtained by prescreening and uncontraction. In practice,

especially for basis sets with highly-contracted basis functions, it may be advantageous to
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work with contracted rather than uncontracted ERI matrices, which we intend to investigate

in future work.

Method settings

In both theH2 method and CFMM, the extent precision is set to τ = 10−10. The hierarchi-

cal partitioning of the set of distributions is stopped when each finest box has less than 300

distributions or has edge length less than 1 Bohr.

For the selection of proxy points Yp described in Section 4.4.3, when X is within Badj,

only one cubical surface ∂Badj is selected. Otherwise, we select cubical surfaces evenly

spaced between and including ∂Badj and ∂X . The total number of these cubical surfaces

is 3, 5, 7,. . ., when the ratio of the distance between ∂X and ∂Badj to the edge length of

B (when rounded up) equals 1, 2, 3,. . ., respectively. Figure 4.4 gives an example of three

selected cubical surfaces when the ratio equals one. The number of proxy points selected

on each cubical surface is 384, i.e., 8 × 8 uniform grid points on each face of the cubical

surface.

4.5.1 Total number of direct interactions and rank of the low-rank approximations

In CFMM, the computation of the interactions that cannot be accelerated by multipole

expansions dominates the total computation time. Similarly, in the H2 method, the com-

putation of the interactions associated with inadmissible blocks dominates the computation

time. In both cases, these interactions are evaluated directly. In this section, we compare

the two methods in terms of the total number of these interactions. For convenience, we

also refer to the interactions between two sets of distributions that are directly evaluated

in CFMM as entries of an inadmissible block, and the interactions between two sets of

distributions accelerated using multipole expansions in CFMM as entries of an admissible

block. We follow Ref. [40] in defining admissible and inadmissible blocks in CFMM.

Figure 4.7 plots the total number of entries in the inadmissible and admissible blocks
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in the two methods. The main experimental result of this paper is that CFMM has approx-

imately 5 times more inadmissible block entries (direct interactions) than the H2 method

for the alkane molecules, and approximately 18 times more for the 1hsg molecules. Thus,

the evaluation, multiplication, and storage of inadmissible blocks in CFMM are expected

to be 5 and 18 times more expensive than in theH2 method for the two types of molecules,

respectively. The result shows that the H2 method has even more advantage over CFMM

on globular molecules like 1hsg. The number of admissible block entries is large, but

these interactions are computed very efficiently (they are not computed explicitly in either

method).
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Figure 4.7: Total number of entries in the admissible and inadmissible blocks defined in
CFMM and in the H2 method for two types of molecules of different sizes. Redundant
interactions due to 8-way symmetry in the ERI tensor are not counted.

The maximum ranks of the low-rank approximations of all the admissible blocks in

each constructed H2 matrix representation are shown in Figure 4.8. Here, the results are

shown for two values of the relative error threshold, ε = 10−5 and ε = 10−7, which is

required for SRRQR in Algorithm 6. This threshold affects the approximation rank and

storage required for the admissible blocks in the H2 matrix representation. The figure

shows that the maximum rank is bounded for problems of different sizes. This justifies

the observation in Section 4.2 that we can simply use the centers of distributions to decide
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whether an interaction can be compressed by a low-rank approximation. With bounded

maximum rank, the H2 method (both phases in Algorithm 7) has computation cost and

storage cost that are linear in the effective dimension of the ERI matrix, as explained in

Section 4.4.5. The numerical results below in Sections 4.5.2 and 4.5.3 also confirm this

linear scaling property.
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Figure 4.8: Maximum rank of the low-rank approximations of all the admissible blocks in
the constructedH2 matrix representation for two types of molecules of different sizes.

4.5.2 H2 matrix construction

The first phase of Algorithm 7 is the construction of the H2 matrix representation of an

ERI matrix. In this subsection, the aim is to demonstrate this construction and show how

the H2 matrix storage and construction execution time vary with increasing problem size.

Again, we use two values of the relative error threshold ε for the ID approximations.

The storage cost for the H2 matrix representations is shown in Section 4.5.2. Results

are shown for both the case when line 13 in Algorithm 7 is applied and the inadmissible

blocks and skeleton blocks are stored (full H2), and the case when line 13 is not applied

and these blocks are not stored (minimal H2). The high cost of storing the inadmissible

and skeleton blocks is evident (although storage for the skeleton blocks is much less than

the storage for the inadmissible blocks). The results show that the storage cost is almost
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linear in the number of basis functions for alkane molecules in either storage mode. The

slightly superlinear cost for the 1hsg molecules is due to the slightly superlinear growth

of the effective dimension of the ERI matrix with the number of basis functions, as shown

earlier in Figure 4.6.

(a) 1D alkane molecules (b) 3D 1hsg molecules
.

Figure 4.9: Storage cost for H2 matrix representations of ERI matrices for two types of
molecules of different sizes. “Full H2” refers to storing both the necessary components
and the inadmissible and skeleton blocks according to Section 4.4.5. “Minimal H2” refers
to storing only the necessary components. Reference lines for linear and quadratic scaling
with the number of basis functions Nbf are also shown.

The timings for constructing theH2 matrix representations are shown in Section 4.5.2.

These timings should only be regarded as an indication of relative trends, as our codes are

implemented in Matlab. (ERIs and nuclear attraction integrals were computed analytically

using recurrence relations implemented in the Simint package [61] using the C program-

ming language.) For alkane molecules, the construction time is linear in the number of

basis functions. For 1hsg molecules, the construction time is slightly superlinear, again be-

cause of the slightly superlinear growth of the effective dimension of the ERI matrix with

the number of basis functions.

The timings for evaluating the inadmissible blocks in CFMM are also shown. As ex-

pected, these timings are much larger than for the H2 method, since there are far more

entries in these blocks for CFMM as shown earlier in Figure 4.7. Meanwhile, H2 matrix
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(a) 1D alkane molecules (b) 3D 1hsg molecules

Figure 4.10: Timings for constructing H2 matrix representations of ERI matrices for two
types of molecules of different sizes. “H2 constr.” refers to the timings for constructing the
H2 matrix without evaluating the inadmissible and skeleton blocks, i.e., the first phase of
Algorithm 7 without line 13. “Dense blocks inH2” refers to the timings for evaluating the
inadmissible and skeleton blocks, i.e., line 13 of Algorithm 7. “Inadm. blocks in CFMM”
refers to the timings for evaluating the inadmissible blocks in CFMM.

construction has similar execution time as evaluating the inadmissible blocks in CFMM.

Since the cost for constructing the H2 matrix representations can be amortized by many

matrix-vector multiplications (whose cost is to be shown next), the H2 method has better

overall performance compared to CFMM.

4.5.3 Coulomb matrix construction

In the second phase of Algorithm 7, the Coulomb matrix for a given density matrix is con-

structed based on the H2 matrix representation of the ERI matrix constructed in the first

phase. This second phase simply involves the fast H2 matrix-vector multiplication algo-

rithm. The aim of this subsection is to demonstrate how the execution time of this H2

matrix-vector multiplication algorithm in different settings (storing the inadmissible and

skeleton blocks or computing them dynamically) varies with increasing problem size. In

comparison to CFMM, the improvement in execution time is directly related to the number

of entries in the inadmissible blocks, as shown earlier in Figure 4.7. In this subsection, we
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also show the accuracy of the computed Coulomb matrix and demonstrate that this accu-

racy can be controlled by the SRRQR threshold, ε. For each molecule, we test Coulomb

matrix construction with two types of density matrices: (a) randomly generated symmetric

matrices whose entries follow the standard normal distribution, and (b) a density matrix

obtained after 10 self-consistent field (SCF) iterations of the Hartree-Fock method.

Section 4.5.3 plots the relative errors in the constructed Coulomb matrices, where the

“exact” Coulomb matrices are calculated directly. As before, we test two values of the

relative error threshold ε used for the ID approximations. The results show that the relative

error in the Coulomb matrices is consistent across the different types of molecules and

molecule sizes. More specifically, the relative error is close to the value of the threshold ε

for random density matrices, and is one order of magnitude smaller than the value of the

threshold ε for density matrices generated by SCF iterations.
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Figure 4.11: Relative error (in the Frobenius norm) of the Coulomb matrix constructed by
theH2 method for two types of molecules of different sizes. For random density matrices,
the results are the average of 5 independent tests.

Figure 4.12 plots the timings for the H2 matrix-vector multiplication used to construct

the Coulomb matrix for the two types of molecules of different sizes. Here, the ERIs

in the inadmissible and skeleton blocks are dynamically calculated when needed during

the matrix-vector multiplication. Just like for H2 matrix construction, the matrix-vector
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multiplication for a matrix in H2 format is almost linear in the effective dimension of the

ERI matrix (which is slightly superlinear in the number of basis function in the case of

1hsg).

The figure also shows the timings broken down into the portion for multiplying by

admissible blocks and by inadmissible blocks. It is evident that forming and multiplying

by the inadmissible blocks, i.e., computing the direct interactions, is the bottleneck, even

after the reduction in the total size of these blocks due to the H2 method compared to

CFMM.

(a) 1D alkane molecules (b) 3D 1hsg molecules

Figure 4.12: Timings for constructing Coulomb matrices by the H2 method where inad-
missible and skeleton blocks are dynamically calculated when needed (the second phase of
Algorithm 7 with line 13 not applied). The timing is also broken down into the portion for
multiplying by admissible blocks and by inadmissible blocks. For comparison, the timings
for the multiplications with inadmissible blocks in CFMM is also shown. The timings are
the average of 5 independent tests.

Figure 4.13 again plots the timings for Coulomb matrix construction for molecules of

different sizes, but this time we assume that the inadmissible and skeleton blocks have been

precomputed and stored. Due to memory limitations, only the alkane molecules are tested.

In this case, the multiplication of admissible blocks and that of inadmissible blocks require

a similar amount of time. With the H2 method, multiplying by the inadmissible blocks

when these blocks have been precomputed is no longer a clear bottleneck.
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Figure 4.13: Timings for constructing Coulomb matrices for alkane molecules by the H2

method where inadmissible and skeleton blocks have been precomputed and stored (the
second phase of Algorithm 7 with line 13 applied). The timings are also broken down into
the portion for multiplying by admissible blocks and by inadmissible blocks. The timings
are the average of 5 independent tests.

4.6 Conclusion

In this chapter, a new variant of the proxy point method is proposed to efficiently com-

press the interactions between continuous charge distributions. Using this method, an H2

matrix representation of the ERI matrix is constructed, which is then used to construct the

Coulomb matrix. This overall approach can also be viewed as extending the capability of

H2 matrices to represent the interactions between continuous charge distributions, at least

for charge distributions from Gaussian basis sets.

Our approach to constructing the Coulomb matrix has cost that appears to be nearly

linear in the effective ERI matrix dimension. The effective ERI matrix dimension has

been argued to be asymptotically linear (rather than quadratic) with the number of basis

functions [56]. More importantly, compared to CFMM, far fewer interactions need to be

directly computed. The promise of this approach is demonstrated using a common Gaus-

sian basis set on alkane and globular molecules of different sizes. In general, basis sets

using compactly-supported or fast-decaying basis functions could be used.
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The new proxy point method and theH2 matrix approach can be extended to accelerate

the tensor contractions in density fitting [42, 62, 43, 44] and, in general, quantum chem-

ical methods that already use CFMM. In particular, they could be extended to calculate

Coulomb energy gradients [63, 64, 65] and potentials for periodic systems [66, 67].

To further accelerate the proposed variant of the proxy point method and thus to reduce

the H2 matrix construction cost, it is possible to apply heuristic algebraic compression

methods, such as sampling-based methods [68, 28], to accelerate the intermediate ID ap-

proximation in Algorithm 6. Finally, it is also possible to use an even weaker admissibility

condition than that used in this chapter for H2 matrix representations to try to compress

even more interactions in the ERI matrix.
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CHAPTER 5

EQUIVALENCE AND COMPARISON BETWEEN FMM ANDH2 MATRICES

The original fast multipole method (FMM) [17, 18] was designed to accelerate the evalua-

tion of Coulombic or gravitational interactions between particles. Essentially, FMM calcu-

lates a matrix-vector multiplication by a kernel matrix defined by the 3D Laplace kernel (or

its gradient) with linear complexity. Later, variants of FMM such as the black-box FMM

[20] and the kernel independent FMM [21, 25] were proposed to adapt FMM to particle

interactions defined by kernel functions that are more general than the Laplace kernel. The

key component in FMM is the multipole expansion of the Laplace kernel, while in FMM

variants the multipole expansion is replaced by other general degenerate expansions such

as polynomial interpolations [20] and pseudoskeleton approximations [21, 25].

It is already folklore in the fast algorithm community that FMM is algebraically equiv-

alent to multiplying by a matrix in a specific H2 matrix format. In this thesis, we formally

show this equivalence. Further, we also provide analytic and numerical comparisons be-

tween FMM andH2 matrices. We test two state-of-the-arts FMM libraries and our ownH2

matrix library that is based on the proxy point method. Numerical experiments demonstrate

the relative advantages and disadvantages between the two methods.

The rest of this chapter is organized as follows.

• Section 5.1 explains the exact equivalence between FMM andH2 matrices.

• Section 5.2 discusses the analytic comparisons between FMM andH2 matrices.

• Section 5.3 discusses the numerical comparisons between FMM andH2 matrices.
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5.1 Exact equivalence between FMM andH2 matrices

Consider a kernel function K(x, y) and a set of points X in a low-dimensional space. Let

q be a vector of weights associated with the points in X . Forming the kernel summation,

bi =
∑
xj∈X

K(xi, xj)qj, xi ∈ X,

is nothing other than computing b = K(X,X)q where K(X,X) is a kernel matrix consist-

ing ofK(xi, xj) with all pairs of xi and xj in X . In the following discussion, the vector q is

referred to as a vector of charges and K(X,X)q is a vector of the induced potentials. For

a kernel block K(Xi, Xj), Xj is the set of source points and Xi is the set of target points.

In the case of K(X,X), both the source points and the target points are X .

FMM shares the same hierarchical partitioning ofX andK(X,X) as anH2 matrix rep-

resentation of K(X,X). An admissible (inadmissible) block in theH2 matrix corresponds

to a set of far field (near field) interactions in FMM. Also, FMM splits the multiplication

K(X,X)q into the multiplications of the same sets of blocks as in the H2 matrix, i.e., the

inadmissible, admissible, and partially admissible blocks denoted by the sets D, A, and

Ap, respectively.

Let T be the partition tree associated with FMM forK(X,X). For each node i ∈ T , let

qi and bi denote the subvectors of q and b, respectively, whose entry indices are associated

with Xi in X . FMM traverses all the three sets of blocks D, A, and Ap and accumulates

the corresponding multiplications, i.e.,

bi = bi +K(Xi, Xj)qj, (i, j) ∈ D ∪A ∪Ap,

with K(Xi, Xj)qj computed directly or computed indirectly but faster based on the multi-

pole expansion technique.
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5.1.1 Multiplication with inadmissible blocks

Multiplying an inadmissible block K(Xi, Xj) with (i, j) ∈ D by qj in FMM is the same as

in anH2 matrix. In FMM, such a blockK(Xi, Xj) is referred to as a source-to-target linear

operator (S2T) since it maps the charges qj at Xj to their induced potentials K(Xi, Xj)qj

at Xi. This is the first analogy between FMM andH2 matrices:

• For each pair of nodes (i, j) ∈ D, K(Xi, Xj) in anH2 matrix corresponds to the S2T

operator mapping from box j to box i.

5.1.2 Multiplication with admissible blocks

Consider an admissible block K(Xi, Xj) with (i, j) ∈ A. For simplicity, we assume that

nodes i and j are at the same level and their children {i1, i2, . . . , is} and {j1, j2, . . . , js}

are all leaf nodes. Figure 5.1 plots such a pair of (i, j) in a 1D example and illustrates the

computation of K(Xi, Xj)qj by FMM. We note that K(z,Xj)qj as a function of point z

in the space is the potential field induced by charges qj at Xj . Thus, K(Xi, Xj)qj can be

viewed as the evaluation of the potential field K(z,Xj)qj at z = Xi.

Figure 5.1: Illustration of FMM computing K(Xi, Xj)qj with (i, j) ∈ A in a 1D example
where j has its children j1 and j2 to be leaves and i has its children i1 and i2 to be leaves.

The basic idea of FMM is to approximate the overall potential field K(z,Xj)qj for z

in each child box domain ia of i using multipole expansions and local expansions and then

evaluate the approximate potential at z = Xi to computeK(Xi, Xj)qj . Given a box domain
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X and its far field Y , a multipole expansion centered at X refers to a linear combination

of specific basis functions {φk(z − zX )} defined in Y , i.e.,

f(z) = M1φ1(z − zX ) +M2φ2(z − zX ) + . . .+Mrφr(z − zX ), z ∈ Y (5.1)

where zX denotes the center of X , r is the degree of the expansion, (Mk)
r
k=1 are the co-

efficients of the expansion (referred to as the moments). Multipole expansions are used in

FMM to approximate the potential field in Y induced by any charges in X based on an

existing degenerate approximation of K(z, w) in Y × X as

K(z, w) ≈ λ1(w−zX )φ1(z−zX )+ . . .+λr(w−zX )φr(z−zX ), (z, w) ∈ Y×X (5.2)

where {λk(w − zX )} are known functions. For any n∗ charges q∗ at X∗ ⊂ X , their in-

duced potential field K(z,X∗)q∗ in Y can be approximated by a multipole expansion as in

eq. (5.1) using the degenerate approximation eq. (5.2) as

K(z,X∗)q∗

≈
∑
wi∈X∗

(λ1(wi − zX )φ1(z − zX ) + . . .+ λr(wi − zX )φr(z − zX )) qi

=

( ∑
wi∈X∗

λ1(wi − zX )qi

)
φ1(z − zX ) + . . .+

( ∑
wi∈X∗

λr(wi − zX )qi

)
φr(z − zX )

= M1φ1(z − zX ) +M2φ2(z − zX ) + . . .+Mrφr(z − zX )

where the moments (Mk)
r
k=1 are computed as



M1

M2

...

Mr


=



λ1(w1 − zX ) . . . λ1(wn∗ − zX )

λ2(w1 − zX ) . . . λ2(wn∗ − zX )

...
...

λr(w1 − zX ) . . . λr(wn∗ − zX )


q∗, X∗ = {w1, . . . , wn∗}. (5.3)
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Similarly, a local expansion centered at X refers to a linear combination of another

set of basis functions {ψi(z − zX )} defined in X . Opposite to multipole expansions, local

expansions are used to approximate the potential field in X induced by charges in Y based

on an existing degenerate approximation of K(z, w) in X × Y . In the original FMM [18]

for K(x, y) = 1/|x − y| in 3D, {φi(z)} and {ψi(z)} are selected as multipoles and solid

harmonics, respectively. Other basis functions have also been used in FMM variants.

To begin with, FMM first applies a source-to-multipole linear operator (S2M) to qja for

each child ja of j. This S2Mja operator is exactly the matrix in eq. (5.3) associated with box

ja and the points in Xja , mapping qja to the moments mja = (M ja
k )rk=1 = S2Mja(qja) of a

multipole expansion centered at box ja that approximates the potential field K(z,Xja)qja

in the far field of box ja, i.e.,

K(z,Xja)qja ≈
r∑

k=1

M ja
k φk(z − zja), z in the far field of box ja,

where zja denotes the center of box ja.

For each child box ja of j, FMM then constructs a new multipole expansion centered

at box j with moments mj,ja = (M j,ja
k )rk=1 to approximate K(z,Xja)qja in the far field of

box j via approximating the computed multipole expansion centered at box ja, i.e.,

K(z,Xja)qja ≈
r∑

k=1

M ja
k φk(z − zja) ≈

r∑
k=1

M j,ja
k φk(z − zj), z in the far field of box j,

where zj denotes the center of box j. Specifically, FMM applies a multipole-to-multipole

linear operator (M2M) to the moments mja for each child box ja. This M2Mja operator

maps mja to the moments mj,ja of this new multipole expansion centered at box j. Adding

up the moments mj,ja obtained from all the children ja,

mj = mj,j1 + . . .+mj,js = M2Mj1(mj1) + . . .+ M2Mjs(mjs),
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gives the moments mj = (M j
k)rk=1 of a multipole expansion centered at box j that approx-

imates the potential field K(z,Xj)qj in the far field of box j,

K(z,Xj)qj =
∑
ja

K(z,Xja)qja ≈
r∑

k=1

M j
kφk(z − zj), z in the far field of box j. (5.4)

FMM next approximates the potential field K(z,Xj)qj in box i by a local expansion

centered at box i (note that the points in Xj are in the far field of box i). Recall that box i is

in the far field of box j. The potential fieldK(z,Xj)qj in box i has been well approximated

by the computed multipole expansion with moments mj centered at box j (see eq. (5.4)).

Thus, such a local expansion can be constructed by approximating this computed multipole

expansion instead. Specifically, FMM applies a multipole-to-local linear operator (M2L)

to the moments mj . This M2Li,j operator exactly maps mj to the moments li = (Lik)
r
k=1

of a local expansion centered at box i satisfying

K(z,Xj)qj ≈
r∑

k=1

M j
kφk(z − zj) ≈

r∑
k=1

Likψk(z − zi), z in box i, (5.5)

where zi denotes the center of box i.

For each child box ia of i, FMM then constructs a new local expansion centered at box

ia with moments lia to approximate K(z,Xj)qj in box ia via approximating the computed

local expansion centered at box i, i.e.,

K(z,Xj)qj ≈
r∑

k=1

Likψk(z − zi) ≈
r∑

k=1

Liak ψk(z − zia), z in box ia. (5.6)

Specifically, FMM applies a local-to-local linear operator (L2L) to the moments li for

each child box ia of i. This L2Lia operator maps li to the moments lia of this new local

expansion centered at box ia.

Now, the potential field K(z,Xj)qj in each child box ia of i is approximated by the

last local expansion computed above centered at box ia with moments lia . Lastly, for all
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the points z∗ in Xia , K(z∗, Xj)qj is approximately computed by plugging z∗ into this local

expansion, i.e., eq. (5.6). This computation is equivalent to applying a local-to-target linear

operator (L2T), i.e., the matrix (ψk(z − zia))z∈Xia ;k∈{1,...,r}, to lia , which gives the final

result K(Xia , Xj)qj ≈ L2Tia(lia) for each child ia.

We note that the above S2M, M2M, M2L, L2L, and L2T operators (referred to as trans-

lation operators in FMM) are all analytically formulated based on the box locations and

the basis functions used in the multipole and local expansions. The exact definitions of

these translation operators can be found in Ref [18]. S2M and L2T operators also depend

on the points in the corresponding boxes and have been explicitly illustrated in the above

discussion. Writing all these translation operators in matrix form, the above computation

of K(Xi, Xj)qj by FMM can be represented as,

K(Xi, Xj)qj ≈


L2Ti1

. . .

L2Tis




L2Lj1
...

L2Ljs

M2Li,j×

(
M2Mj1 . . . M2Mjs

)
S2Mj1

. . .

S2Mjs



qj1
...

qjs


= L2Ti × L2Li ×M2Li,j ×M2Mj × S2Mj × qj, (5.7)

where L2Ti, L2Li, M2Mj , and S2Mj denote the corresponding bracketed matrices. For

example, applying S2Mj to qj gives the concatenated moments (mj1 ,mj2 , . . . ,mjs)
T in

child boxes of j, then applying M2Mj to (S2Mjqj) gives the moments mj in box j, and
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etc. In comparison, the computation of K(Xi, Xj)qj by anH2 matrix is represented as

K(Xi, Xj)qj ≈


Ui1

. . .

Uis

RiBi,jS
T
j


V T
j1

. . .

V T
js



qj1
...

qjs

 . (5.8)

Although the admissible block K(Xi, Xj) is assumed to have the children of i and j to

be leaf nodes, the above two representations, eqs. (5.7) and (5.8), of K(Xi, Xj)qj can be

easily extended to general admissible blocks (with more or fewer M2M and L2L operators

or transfer matrices Ri and Sj). Comparing the two representations, the analogies between

FMM andH2 matrices related to admissible blocksK(Xi, Xj) with (i, j) ∈ A are obtained

as follows.

• For each leaf node i ∈ T , the transpose of the uniform row basis matrix Vi corre-

sponds to the S2M operator for box i. The uniform column basis matrix Ui corre-

sponds to the L2T operator for box i.

• For each non-leaf node i ∈ T , the transpose of the transfer matrix Si corresponds

to the concatenated M2M operator, M2Mi, for box i. The transfer matrix Ri corre-

sponds to the concatenated L2L operator, L2Li, for box i.

• For each pair of nodes (i, j) ∈ A, the intermediate matrix Bi,j corresponds to the

M2L operator mapping from box j to box i.

5.1.3 Multiplication with partially admissible blocks

Consider a partially admissible block K(Xi, Xj) with (i, j) ∈ Ap. There are two different

cases: j ∈ F2
i and i ∈ F2

j . Figure 5.2 illustrates the computation of K(Xi, Xj)qj by FMM

in a 1D example for the two cases.

In the case of j ∈ F2
i , recall that box j is in the far field of box i but box i is not in

the far-field of box j. The multipole expansion centered at box j computed by the S2M
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(a) the case with j ∈ F2
i (b) the case with i ∈ F2

j

Figure 5.2: Illustration of FMM computingK(Xi, Xj)qj with (i, j) ∈ Ap in a 1D example.
The computation varies in two situations (a) j ∈ F2

i and (b) i ∈ F2
i .

operator above cannot accurately approximate the potential field K(z,Xj)qj in box i, since

this approximation is only accurate in the far field of box j. Instead, FMM directly applies

a source-to-local linear operator (S2L) to charges qj at Xj that maps qj to the moments li

of a local expansion centered at box i. This local expansion approximates the potential field

K(z,Xj)qj in box i. The remaining steps are the same as for admissible blocks, including

L2L and L2T operators applied to box i.

In an H2 matrix, K(Xi, Xj) is approximated by UiBi,j and K(Xi, Xj)qj is computed

in two steps: Bi,jqj and Ui(Bi,jqj). Since Ui corresponds to the composition of the L2L

and L2T operators applied to box i, it can thus be noted that

• For each pair of nodes (i, j) ∈ Ap with j ∈ F2
i , the intermediate matrix Bi,j corre-

sponds to the S2L operator mapping from box j to box i.

In the case of i ∈ F2
j , recall that box j is not in the far-field of box i. The local expansion

centered at box i computed by applying M2Li,j to box j cannot accurately approximate

K(z,Xj)qj in box i, since such a local expansion is accurate only when box j is in the

far field of box i. Instead, FMM directly evaluates the approximate potential at all the

points z∗ ∈ Xi by plugging z∗ into the multipole expansion centered at box j which is

computed by S2M and M2M operators, i.e., the expansion in the middle of eq. (5.5). This
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evaluation corresponds to the application of a multipole-to-target linear operator (M2T) to

the moments mj at box j which maps mj to the final approximate potential at Xi.

In an H2 matrix, K(Xi, Xj) is approximated by Bi,jV
T
j and K(Xi, Xj)qj is computed

in two steps: V T
j qj and Bi,j(V

T
j qj). Since V T

j corresponds to the composition of the S2M

and M2M operators applied to box j, it can thus be noted that

• For each pair of nodes (i, j) ∈ Ap with i ∈ F2
j , the intermediate matrix Bi,j corre-

sponds to the M2T operator mapping from box j to box i.

To summarize, with all these listed analogies, the exact equivalence between FMM and

H2 matrices is established. Replacing all the H2 matrix components in the H2 matrix-

vector multiplication algorithm (Algorithm 2 illustrated in Chapter 2) by the corresponding

translation operators in FMM exactly gives FMM for computing K(X,X)q.

In FMM, the combination of the translation operators and the multipole and local ex-

pansions essentially construct two degenerate approximations of K(x, y) in each box i and

its far field: one by the multipole expansion for source points in box i and one by the local

expansion for target points in box i. For each leaf box, the two degenerate approximations

of K(x, y) are explicitly known as shown in eq. (5.2). For each non-leaf box, the two

degenerate approximations are recursively constructed based on the associated M2M and

L2L operators. From the viewpoint of H2 matrices, these degenerate approximations cor-

respond to an analytic method used by FMM to compress the numerically low-rank blocks

K(Xi,∪k∈Fi
Xk) and K(∪k∈Fi

Xk, Xi) for each node i and to construct all the H2 matrix

components (the translation operators) analytically. Similarly, many variants of FMM, such

as the black-box FMM [20] and the kernel independent FMM [21, 25], can also be regarded

as anH2 matrix, simply with different analytic methods used for low-rank approximation.

5.2 Analytic comparison between FMM andH2 matrices

We now consider the analytic comparison between FMM and the H2 matrices with the

associated low-rank approximations to be constructed algebraically (referred to as algebraic
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H2 matrices). As illustrated in the last section, the main difference of FMM from algebraic

H2 matrices is that FMM compresses blocks K(Xi,∪k∈Fi
Xk) and K(∪k∈Fi

Xk, Xi) into

low-rank form based on specific degenerate approximations in box i and its far field. Thus,

FMM shares all the pros and cons of general analytic low-rank approximation methods.

Specifically, FMM is far more efficient in terms of constructing these low-rank approx-

imations than algebraic H2 matrices if given the same approximation rank. In addition,

FMM does not have to store the obtained approximation factors, i.e., the translation op-

erators or the H2 matrix components, and only needs to dynamically compute them when

needed. Thus, FMM requires much less storage than algebraicH2 matrices but, in sacrifice,

requires more computation when applying the translation operators.

On the other hand, the degrees of the degenerate approximations used in FMM, which

are the degrees of the applied multipole and local expansions, have to be manually selected

in order to meet a given accuracy threshold. In general, choosing the degree to control

the approximation accuracy of FMM requires trial-and-error. Furthermore, consider a box

X and its far field Y . For any X0 ⊂ X and Y0 ⊂ Y , compressing K(X0, Y0) based on

a degenerate approximation of K(x, y) in X × Y always has approximation rank larger

than the numerical rank of K(X0, Y0). In practice, this approximation rank can be promi-

nently larger, especially when X0 or Y0 lie in a far smaller subdomain of X or Y , e.g., a

lower-dimensional manifold in X . In comparison, algebraic methods generally can better

capture the numerical rank of K(X0, Y0). As a result, with the same accuracy, algebraic

H2 matrices can have smaller-rank approximations of all the blocks K(Xi,∪k∈Fi
Xk) and

K(∪k∈Fi
Xk, Xi) compared to FMM, leading to faster matrix-vector multiplications for al-

gebraic H2 matrices (note that the H2 matrix-vector multiplication scales linearly in the

approximation rank).
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5.3 Numerical comparison between FMM andH2 matrices

We now demonstrate numerical experiments to substantiate the above analytic comparisons

between the two methods, i.e., less construction and storage cost but slower matrix-vector

multiplications in FMM compared to algebraicH2 matrices.

We test three libraries: FMM3D1 library is used for the typical FMM, PVFMM2 library

[69] is used for the kernel independent FMM (KIFMM) [21], and H2Pack library is used

for algebraicH2 matrices. H2Pack is anH2 matrix library currently under development by

Hua Huang and the author, which applies the proxy point method proposed in Chapter 3 to

efficiently constructH2 matrices. It is worth noting that FMM3D works for three important

kernel functions, PVFMM works for kernel functions from potential theory, and H2Pack

can work for any general kernel functions. Kernel functions in all the three libraries should

be defined in a low-dimensional space, e.g., 2D and 3D.

We test kernel matricesK(X,X) defined by the 3D Laplace kernelK(x, y) = 1/|x−y|

and different-sized point sets X randomly generated by two types of distributions: random

distribution on the unit sphere in 3D (which is a 2D manifold) and random distribution

in the unit ball in 3D. The number of points in X ranges from 105 to 1.6 × 106. In the

hierarchical partitioning of X , a box is further partitioned into smaller boxes if it contains

more than 400 points. For all the libraries, three relative multiplication accuracies around

10−5, 10−8, and 10−11 are tested.

All the numerical tests are performed using an Intel Xeon Skylake node on the Stam-

pede2 supercomputer at Texas Advanced Computing Center. Such a node has two sockets

and 192 GB DDR4 memory, and each socket has an Intel Xeon Platinum 8160 processor

with 24 cores and 2 hyperthreads per core. All the tests are run using one thread per core

on all 48 cores. The three libraries are all compiled with Intel C/C++ compiler with opti-

mization flags “-xHost -O3”. Intel MKL 17.0.3 is used to perform optimized matrix-vector

1FMM3D (https://fmm3d.readthedocs.io/en/latest/index.html) is an improved version of the FMMLIB3D
software (https://github.com/zgimbutas/fmmlib3d).

2http://pvfmm.org
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multiplications, matrix-matrix multiplications, and FFT that appear in these libraries.

Tables 5.1 to 5.3 list the main test results characterized as follows.

• precomputation cost, runtime of specific precomputations in H2Pack and PVFMM

that can be reused for different sets of points but vary for different accuracy require-

ments and for different kernel functions. (FMM3D does not have precomputations.)

In H2Pack, the precomputation involves computing proxy points for the application

of the proxy point method (see Chapter 3) in H2 matrix construction. In PVFMM,

the precomputation involves computing fixed translation operators in KIFMM and

storing them into a file.

• setup cost, runtime of all the computations other than precomputations before the

matrix-vector multiplications, e.g., hierarchical partitioning of X in all the libraries

and theH2 matrix construction in H2Pack.

• peak memory, the peak memory usage recorded by the operating system which can

be used for a consistent comparison among the three libraries.

• storage cost, the storage cost of the translation operators in PVFMM and that of the

H2 matrix components in H2Pack. (FMM3D does not report its storage cost.)

• runtime and relative error of the multiplication. These results are averaged over

5 multiplications with 5 random vectors for each tested point set X . For each multi-

plication, its relative error is measured as the relative error of 100 randomly chosen

entries of the computed product compared with the entries of the exact product.

• rank and/or degree. The “degree” in PVFMM and FMM3D is a parameter char-

acterizing the number of expansion terms used. In PVFMM, the degree being k

corresponds to a rank-6k2 analytic approximation of each block to be compressed in

the equivalent H2 matrix format. In FMM3D, the degree being k corresponds to the
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approximation rank being (k + 1)2. In H2Pack, the maximum and average ranks of

all the low-rank approximations in each constructedH2 matrix are listed.

From the results, the cost forH2 matrix construction (“setup cost”) in H2Pack increases

with the number of points and the relative multiplication accuracy. This cost can be promi-

nently more expensive than the setup costs in PVFMM and FMM3D when the number of

points becomes large. For example, the setup takes 5.1, 0.8, and 0.9 seconds in H2Pack,

PVFMM, and FMM3D, respectively, for 1.6 × 106 points in the unit ball with relative

accuracy around 10−11. Meanwhile, the setup cost of H2Pack is relatively much cheaper

when points are on the unit sphere than in the unit ball. This is mainly due to the smaller

approximation ranks for all the blocks compressed in theH2 matrix construction.

The maximum and average approximation ranks in H2Pack are all much smaller than

those in PVFMM and FMM3D. The approximation ranks in H2Pack also vary with dif-

ferent point distributions, while PVFMM and FMM3D have fixed approximation ranks for

both types of point distributions. As a result of smaller approximation ranks, H2Pack is the

fastest library in matrix-vector multiplications among the three and this efficiency advan-

tage becomes even greater when dealing with points on the unit sphere, i.e., around 5 times

faster than PVFMM and 25 times faster than FMM3D.

The storage cost of H2Pack is proportional to the number of points and the approx-

imations ranks in the constructed H2 matrices. Meanwhile, the storage cost of PVFMM

changes very mildly under different problem settings. Thus, H2Pack has much smaller stor-

age cost for small problems compared with PVFMM but ultimately can have larger storage

cost when the number of points or the relative accuracy increases. For example, H2Pack

begins to have more storage cost for 8 × 105 points in the unit ball with relative accuracy

10−11. FMM3D does not report its storage cost but FMM theoretically should have very

small storage cost, since all the translation operators in FMM are implemented only using a

small constant number of analytic functions taking corresponding box locations and points

as inputs.
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It is worth noting that the peak memory recorded by the operating system depends on

the actual implementations of these libraries and can only be used as a rough reference

for comparing the three different methods. As can be noted, H2Pack has its peak memory

increasing much faster than PVFMM and eventually has larger peak memory than PVFMM

when dealing with large number of points and high relative accuracy, e.g., 8 × 105 points

in the unit ball with relative accuracy 10−11. Meanwhile, FMM3D also has increasing peak

memory with more points but has the smallest peak memory among the three libraries when

dealing with a large number of points.

Compared to FMM3D, both H2Pack and PVFMM have relatively expensive precom-

putations. However, since these precomputations can be reused when the kernel function

and the relative accuracy are fixed, the precomputation costs do not make a big difference

in the performance comparisons between the three libraries.

To summarize, both the analytical and numerical comparisons above justify that FMM

has less cost for setup and storage but slower matrix-vector multiplications than algebraic

H2 matrices. Thus, FMM is more suitable for problems where only a few multiplications

are required, e.g., particle simulations. Meanwhile, algebraicH2 matrices are more suitable

for problems where many multiplications are required, e.g., numerical solution of integral

equations, so that the expensive H2 construction cost can be amortized by many relatively

cheap multiplications.
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Table 5.1: Numerical results of the three libraries with relative accuracy around 10−5. “Pre-
comp” refers to the precomputations in H2Pack and PVFMM. “Mem” refers to the peak
memory usage recorded by the operating system. “Storage” refers to the storage cost of
translation operators in PVFMM and that ofH2 matrix components in H2Pack.

H2Pack
#pts ×105 precomp(s) setup(s) matvec(s) mem(MB) storage(MB) relerr max/avg rank

sphere 1 2.235 0.073 0.005 519 15 9.19E-06 27/15
sphere 2 2.687 0.084 0.009 436 29 1.07E-05 27/15
sphere 4 3.452 0.125 0.018 569 56 1.23E-05 27/14
sphere 8 4.753 0.220 0.037 839 109 1.33E-05 27/14
sphere 16 6.426 0.429 0.077 1345 217 1.37E-05 27/14

ball 1 2.104 0.102 0.011 669 41 5.20E-06 68/38
ball 2 2.409 0.153 0.018 823 88 8.01E-06 69/35
ball 4 2.129 0.180 0.035 836 156 8.77E-06 71/37
ball 8 2.674 0.293 0.095 1181 305 6.90E-06 72/38
ball 16 3.109 0.750 0.149 2418 669 1.00E-05 70/35

PVFMM
#pts ×105 precomp(s) setup(s) matvec(s) mem(MB) storage(MB) relerr degree rank

sphere 1 1.161 0.069 0.020 1164 1138 7.51E-06 5 150
sphere 2 1.117 0.087 0.027 1388 1186 8.85E-06 5 150
sphere 4 1.114 0.134 0.056 1799 1271 6.41E-06 5 150
sphere 8 1.163 0.328 0.132 2753 1461 9.91E-06 5 150
sphere 16 1.115 0.686 0.230 4528 1845 9.70E-06 5 150

ball 1 1.113 0.042 0.035 1128 1134 1.99E-05 5 150
ball 2 1.113 0.083 0.030 1355 1186 1.49E-05 5 150
ball 4 1.114 0.113 0.075 1751 1252 1.85E-05 5 150
ball 8 1.113 0.221 0.267 2547 1394 2.98E-05 5 150
ball 16 1.115 0.691 0.219 4518 1832 1.54E-05 5 150

FMM3D
#pts ×105 setup(s) matvec(s) mem(MB) relerr degree rank

sphere 1 0.041 0.120 238 8.81E-06 15 256
sphere 2 0.085 0.163 414 8.88E-06 15 256
sphere 4 0.183 0.329 747 9.41E-06 15 256
sphere 8 0.441 0.626 1397 8.61E-06 15 256
sphere 16 1.025 1.259 2784 9.56E-06 15 256

ball 1 0.042 0.167 302 6.55E-06 15 256
ball 2 0.081 0.168 353 6.85E-06 15 256
ball 4 0.170 0.192 554 6.77E-06 15 256
ball 8 0.443 1.266 1830 6.84E-06 15 256
ball 16 0.955 1.261 2025 6.75E-06 15 256
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Table 5.2: Numerical results of the three libraries with relative accuracy around 10−8.
H2Pack

#pts ×105 precomp(s) setup(s) matvec(s) mem(MB) storage(MB) relerr max/avg rank

sphere 1 2.120 0.101 0.006 778 40 2.29E-08 67/34
sphere 2 2.659 0.138 0.012 717 79 3.03E-08 69/32
sphere 4 3.491 0.194 0.023 908 151 3.22E-08 69/32
sphere 8 4.108 0.333 0.046 1320 303 3.67E-08 69/32
sphere 16 5.271 0.599 0.101 2046 584 3.50E-08 68/32

ball 1 2.108 0.194 0.016 857 123 1.61E-08 186/88
ball 2 2.692 0.330 0.042 1294 288 2.05E-08 191/72
ball 4 2.107 0.444 0.069 1652 498 2.39E-08 195/86
ball 8 2.860 0.668 0.144 2246 906 1.97E-08 195/85
ball 16 3.234 1.573 0.347 4642 2188 2.28E-08 194/75

PVFMM
#pts ×105 precomp(s) setup(s) matvec(s) mem(MB) storage(MB) relerr degree rank

sphere 1 2.981 0.048 0.030 1397 1211 2.35E-08 8 384
sphere 2 2.967 0.089 0.052 1597 1266 2.46E-08 8 384
sphere 4 2.966 0.138 0.122 2112 1358 1.75E-08 8 384
sphere 8 2.966 0.471 0.201 3288 1574 2.57E-08 8 384
sphere 16 2.967 0.658 0.420 4927 1994 2.70E-08 8 384

ball 1 2.970 0.043 0.041 1233 1205 3.57E-08 8 384
ball 2 2.957 0.087 0.058 1530 1264 2.48E-08 8 384
ball 4 2.955 0.115 0.118 1948 1331 3.55E-08 8 384
ball 8 2.959 0.336 0.330 2800 1477 4.07E-08 8 384
ball 16 2.954 0.883 0.454 5052 1971 3.97E-08 8 384

FMM3D
#pts ×105 setup(s) matvec(s) mem(MB) relerr degree rank

sphere 1 0.041 0.156 298 1.10E-08 21 484
sphere 2 0.084 0.295 454 1.21E-08 21 484
sphere 4 0.184 0.535 860 1.14E-08 21 484
sphere 8 0.418 1.099 1615 1.19E-08 21 484
sphere 16 1.027 2.138 3235 1.28E-08 21 484

ball 1 0.042 0.172 366 1.13E-08 21 484
ball 2 0.081 0.210 359 1.10E-08 21 484
ball 4 0.171 0.863 632 1.11E-08 21 484
ball 8 0.452 1.037 2113 1.11E-08 21 484
ball 16 0.926 1.322 2330 1.18E-08 21 484
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Table 5.3: Numerical results of the three libraries with relative accuracy around 10−11.
H2Pack

#pts ×105 precomp(s) setup(s) matvec(s) mem(MB) storage(MB) relerr max/avg rank

sphere 1 2.046 0.183 0.010 1222 131 1.56E-12 184/80
sphere 2 3.228 0.250 0.021 1160 264 2.30E-12 186/75
sphere 4 4.124 0.356 0.040 1616 500 2.41E-12 186/75
sphere 8 3.644 0.596 0.079 2398 965 2.58E-12 187/74
sphere 16 4.967 1.093 0.164 4035 1969 2.59E-12 312/75

ball 1 2.168 0.731 0.037 1676 398 2.28E-12 476/185
ball 2 2.119 1.114 0.083 2270 813 5.50E-12 491/109
ball 4 2.848 1.954 0.180 3590 1632 7.75E-12 490/170
ball 8 3.360 3.044 0.330 5426 2770 1.25E-11 499/168
ball 16 2.657 5.140 0.682 9442 5642 1.27E-11 507/109

PVFMM
#pts ×105 precomp(s) setup(s) matvec(s) mem(MB) storage(MB) relerr degree rank

sphere 1 9.700 0.055 0.054 1953 1445 1.29E-11 12 864
sphere 2 9.559 0.104 0.126 2196 1517 1.47E-11 12 864
sphere 4 9.558 0.159 0.234 2555 1624 9.75E-12 12 864
sphere 8 9.562 0.600 0.491 3535 1893 1.44E-11 12 864
sphere 16 9.575 1.014 0.890 5496 2392 1.69E-11 12 864

ball 1 9.547 0.056 0.060 1527 1434 2.76E-11 12 864
ball 2 9.578 0.158 0.151 2086 1510 2.22E-11 12 864
ball 4 9.652 0.180 0.181 2514 1578 2.73E-11 12 864
ball 8 9.595 0.410 0.430 3552 1880 4.31E-11 12 864
ball 16 9.607 0.784 1.123 5544 2351 2.17E-11 12 864

FMM3D
#pts ×105 setup(s) matvec(s) mem(MB) relerr degree rank

sphere 1 0.034 0.272 278 9.90E-12 29 900
sphere 2 0.078 0.472 553 1.08E-11 29 900
sphere 4 0.167 0.899 907 1.09E-11 29 900
sphere 8 0.375 1.698 1780 1.12E-11 29 900
sphere 16 0.917 3.541 3366 1.11E-11 29 900

ball 1 0.037 0.238 208 9.55E-12 29 900
ball 2 0.098 0.522 678 1.07E-11 29 900
ball 4 0.163 0.654 728 1.10E-11 29 900
ball 8 0.346 2.117 994 1.08E-11 29 900
ball 16 0.947 3.106 4502 1.14E-11 29 900
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CHAPTER 6

PRESERVING POSITIVE DEFINITENESS IN HSS MATRIX

APPROXIMATIONS

Other than matrix-vector multiplications, solving linear systems defined by dense matri-

ces with block low-rank structure is also common in practice, e.g., numerical solution of

integral equations and Gaussian processes. For kernel matrices defined by non-oscillatory

kernels and low-dimensional points, hierarchically semi-separable (HSS) matrix format has

been used to construct fast direct solvers [10, 12, 13, 14]. Although derived by different

approaches, HSS format is equivalent to H2 format with the weak admissibility condi-

tion. Specifically, an HSS matrix compresses all the off-diagonal blocks into low-rank

form, leading to fast decomposition and solve algorithms. To construct a direct solver, an

accurate HSS representation (rather than an approximate one) is needed but such a rep-

resentation can be expensive to construct and decompose due to the large approximation

ranks needed for the off-diagonal blocks. Instead, to fully exploit block low-rank structures

for solving linear systems, it is natural to use highly accurateH2 approximations (with the

strong admissibility condition) to accelerate matrix-vector multiplications or to use less

accurate HSS approximations as preconditioners in Krylov subspace methods.

Given a symmetric positive definite (SPD) matrix A, it is desirable to compute an ap-

proximate rank-structured representation that is also positive definite. However, positive

definiteness is not guaranteed as rank-structured representations all focus on compressing

matrix blocks into low-rank form. Preserving positive definiteness is essential for rank-

structured approximations to be used efficiently in various algorithms and applications,

e.g., using the H2 matrix representation to accelerate matrix-vector products in the conju-

gate gradient algorithm. The goal of this chapter is to propose two methods for constructing

HSS approximations to an SPD matrix that preserve positive definiteness.
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For constructing an HSS approximation using projection to compress the off-diagonal

blocks into low-rank form (e.g., using a truncated QR decomposition) [5, 26, 70], we give

a new recursive description of the process that says the HSS approximation Ahss can be

constructed recursively from the leaf level to the root level of the partition tree as

A = A(0) ⇒ A(1) ⇒ A(2) ⇒ . . .⇒ A(L) = Ahss,

where A(k) is an approximant constructed from A(k−1).

Based on this new description, two positive-definite-preserving methods are designed

by making sure that every stage of the construction, A(k−1) ⇒ A(k), maintains positive

definiteness. Both methods are efficient in that they can be implemented in parallel at each

level and their computational complexities are of the same order as existing HSS construc-

tion methods with purely algebraic compression approaches [26, 70]. Furthermore, the two

methods are also flexible in that they can be further combined with possible accelerated

compression techniques, such as the proxy point method introduced in Chapter 3, to help

reduce computational complexity.

Instead of directly producing an SPD rank-structured approximation of A, there cur-

rently exist methods that construct approximate Cholesky factors of A in HSS form [71,

72]. These algorithms are sequential in the sense that they all involve sequential updates to

Schur complements. Our algorithms are different in that they construct SPD HSS matrices

directly and are much more parallel.

Another approach to avoid the loss of positive definiteness is diagonal compensation.

Bebendorf and Hackbusch [73] builds an SPD H approximation by adding corrections to

the diagonal blocks based on the approximation of each off-diagonal block. Xia [74] adds

diagonal shifts to the intermediate blocks in the symmetric ULV decomposition [26, 5] of

HSS approximations when breakdowns occur. In comparison, our algorithms construct an

SPD HSS approximation only through the compression of off-diagonal blocks.
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Of our two methods, the second (called Method 2) is related to the recently developed

“structured incomplete factorization” (SIF) from Xia’s group [75], which also targets SPD

matrices. Both Method 2 and SIF use scalings by diagonal blocks, which for us is one way

to preserve positive definiteness. SIF produces a ULV-type factorization [5], which can

be constructed with much more parallelism than Cholesky factorizations. Although SIF

is likely but not guaranteed to be positive definite when more than one level is used, the

framework our two methods are based on can also be used to establish SIF variants that are

positive definite by construction.

This chapter also gives a new way of estimating the HSS approximation error, based on

the recursive description above. In fact, it can be proved that the errors at each stage are

orthogonal, giving

‖A− Ahss‖2
F = ‖A(0) − A(1)‖2

F + ‖A(1) − A(2)‖2
F + . . .+ ‖A(L−1) − A(L)‖2

F ,

which is also closely related to the error analysis of H2 approximations in Ref. [3]. By

working with ‖A(k)−A(k−1)‖2
F , both lower and upper bounds of ‖A−Ahss‖2

F are obtained.

It turns out that ‖A(k) − A(k−1)‖2
F at each stage can be bounded above and below within a

factor of 2. These bounds are directly related to the corresponding low-rank approximation

errors in the HSS construction process. Thus this error analysis justifies existing methods

(e.g., [26, 70]) in that they minimize the square of the approximation error at each stage

within a factor of 2.

By directly constructing an SPD HSS approximation rather than an approximation in

factored form, the errors incurred by the approximation process are better understood, es-

pecially by using the orthogonality of the errors at each stage, as shown above. Once an

SPD HSS approximation is constructed, an exact symmetric ULV decomposition [26] can

be computed, if needed, to be applied in various applications.

The rest of the chapter is organized as follows.
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• Section 6.1 describes the structure and notation of symmetric HSS matrices.

• Section 6.2 explains the new recursive description of the HSS construction process.

• Section 6.3 proposes two methods of constructing HSS approximations that preserve

positive definiteness based on the recursive description of HSS construction.

• Section 6.4 describes the implementation of the first proposed method.

• Section 6.5 describes the implementation of the second proposed method.

• Section 6.6 describes the error analysis of the general HSS construction process and

the two proposed methods based on the recursive description of HSS construction.

• Section 6.7 describes numerical experiments for preconditioning SPD matrices by

the two proposed methods in two general problems: solving linear systems Ax = b

and sampling correlated random vectors y ∈ N (0, A).

• Section 6.8 concludes this chapter with an overview of the future work for the pro-

posed methods.
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6.1 Symmetric HSS definition and notation

Any symmetric matrix A ∈ Rn×n can be associated with an index set I = {1, 2, . . . , n}.

Let T be a partition tree associated with a hierarchical partitioning of I . Let Ii denote

the index subset of I that corresponds to node i in T . For each non-leaf node i, Ii =

∪ia∈{children of node i}Iia and Ii1
⋂
Ii2 = ∅ for any two children i1 and i2 of i. The index set

associated with the root node is I , containing all the indices. MatrixA is thus hierarchically

partitioned into blocks AIi,Ij with any two nodes i, j ∈ T .

Usually, HSS matrices build upon binary partition trees. For simplicity, we assume T

is a perfect binary partition tree. Figure 6.1 shows an example of a 3-level binary partition

tree and the associated hierarchical partitioning of a matrix. We further use the following

notations.

• Let n denote the dimension of matrix A and ni denote the number of elements in Ii.

• For all i, j ∈ T , denote AIi,Ij as Aij when there is no ambiguity.

• Let level(k) denote the set of nodes at the kth level.

• For each i ∈ level(k), let ic denote the complement set level(k) \ {i}.

• For each non-leaf node i, denote its left and right children as li, ri.

• The block AIi,I\Ii (which is not a contiguous block of A in general) is called the HSS

block row of index set Ii, which we abbreviate asAiic . It has dimensions ni×(n−ni).

(An HSS block column can be defined similarly, but due to symmetry of A, this

concept will not be needed in this chapter.) The HSS representation exploits the low-

rank nature of these blocks. Figure 6.1 illustrates the HSS block rows in a 3-level

HSS matrix. As an example, A33c in the figure is (A34, A35, A36).

The level structure of the binary tree is important in this chapter. Nodes at the leaf level

are in level 1; their parents are in level 2, etc. The last level is the level just below the
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(a) hierarchical partitioning of A and an HSS matrix representation of A

(b) HSS block rows Aiic

Figure 6.1: Illustration of a 3-level HSS matrix representation of a matrix A with a perfect
binary partition tree. In this chapter, the levels are numbered upwards from the leaf level.
Subfigure (a) plots the admissible blocks (colored) and inadmissible blocks (white) at each
level. The HSS matrix representation is composed of all the inadmissible blocks at level 1
and some of the admissible blocks at levels 1, 2, and 3. Subfigures (b) plots the HSS block
rows Aiic at each level which are to be compressed in the HSS matrix construction.

root, called level L. This numbering of the levels is the reverse of what is generally used

in the HSS literature and in the previous chapters, but is more natural in this chapter, as the

construction of HSS representations is conceptually from the leaves towards the root.

HSS format is equivalent to H2 format with the weak admissibility condition where

HSS compresses the concatenation of all the off-diagonal blocks that have rows associated

with Ii, i.e., the HSS block row Aiic , for each node i ∈ T . Meanwhile,H2 format with the

strong admissibility condition discussed in Chapter 2 only compresses the concatenation of

some of these off-diagonal blocks. More specifically, at each level k, denote the low-rank
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approximation of Aiic with each node i ∈ level(k) as

Aiic ≈ UiE
T
iic . (6.1)

For any node j ∈ level(k) other than i, Aij is a subblock of both Aiic and Ajcj . Thus, Aij

is an admissible block and compressed in low-rank form as

Aij ≈ UiBijU
T
j , i 6= j ∈ level(k), (6.2)

with an intermediate matrix Bij to be computed. The only inadmissible block associated

with node i in the HSS format is the diagonal block Aii. The low-rank approximation

eq. (6.1) of Aiic for a non-leaf node i is constructed by the same nested approach as in

general H2 matrix construction using the existing low-rank approximations eq. (6.1) of

Alilci and Arirci , which leads to the nested representation of Ui,

Ui =

 Uli

Uri

Ri. (6.3)

An HSS representation of A is thus made up by dense inadmissible (diagonal) blocks at

the leaf level and low-rank approximations eq. (6.2) of the admissible (off-diagonal) blocks

at any level that are not contained in larger admissible (off-diagonal) blocks. See Figure 6.1

for a 3-level HSS matrix example. As can be easily verified, an admissible block Aij in an

HSS matrix is not contained in a larger admissible block if and only if nodes i and j are

siblings and share the same parent node. Based on the above description, we can also derive

the original recursive definition of a symmetric HSS matrix from Ref. [76] as follows.

Definition 2. Given a symmetric matrix A ∈ Rn×n, a binary partition tree T , and hierar-

chical index sets {Ii}i∈T , the matrix A is a symmetric HSS matrix if there are generators

Di, Ui, Ri associated with each non-root node i ∈ T and generators Bij associated with
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each pair of siblings i, j ∈ T that can be defined recursively from the leaf level to the root

level as follows. For each leaf node i, we define the generator Di = Aii. For each non-leaf

node i with children l1 and r2, the generator Di = Aii has the structure

Di =

 Dli UliBliriU
T
ri

UriB
T
liri
UT
li

Dri


with Ui and Ri satisfying the nested basis property as in eq. (6.3).

In the above recursive definition, the generatorsDi with leaf nodes i exactly correspond

to the inadmissible blocks at the leaf level in the HSS matrix. As an example, a 2-level HSS

matrix structure (see the partitioning in Figure 6.1 at levels 2 and 3) writes as


D3 U3B34UT

4

U4BT
34U

T
3 D4

U1B12U
T
2

U2B
T
12U

T
1

D5 U5B56UT
6

U6BT
56U

T
5 D6


. (6.4)

with U3 and U6 represented in the nested forms

U1 =

 U3

U4

R1 and U2 =

 U5

U6

R2,

For simplicity, we construct HSS approximations using a fixed approximation rank r

for HSS block rows and using perfect binary partition trees in the following discussion, but

these simplifications are easily lifted.

6.2 Recursive description of HSS construction

In this chapter, we focus on compressing each HSS block row Aiic into the form UiU
T
i Aiic

where the columns ofUi are orthonormal andUiUT
i is a projection operator. Moreover, each
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Figure 6.2: Recursive construction of a 3-level HSS approximation (corresponding to Fig-
ure 6.1). Green, yellow, and blue denote blocks that are compressed at each level. In
general, we say that A(k−1) is compressed at the kth level to obtain A(k), for k = 1, . . . , L.
To illustrate our notation, if k = 2 and i 6= j ∈ level(k), then A(k)

ij is a yellow block in
A(2), while A(k−1)

ij is the corresponding 4 green blocks in A(1) to be compressed to form the
yellow block.

off-diagonal block Aij is compressed into the form UiU
T
i AijUjU

T
j and thus the associated

intermediate matrix Bij is set to UT
i AijUj . We refer to this as the “projection method”

for compressing off-diagonal blocks and it is applied in many existing HSS construction

methods, e.g., [3, 5, 26, 70]. Algebraic compression methods such as SVD, the pivoted QR

decomposition, and randomized methods [57] can be used to construct such Ui.

We now introduce a recursive description of HSS construction using the projection

method that will simplify our derivation of SPD HSS approximations. This construction

process is described using the bottom-up level-by-level order.

Figure 6.2 gives an overview of the recursive description. Denote the original matrix

A as A(0). The blocks of A(0) partitioned at the first level (the leaf level) are denoted as

A
(0)
ij where i and j refer to index sets Ii and Ij , where i, j ∈ level(1). These non-diagonal

blocks are compressed into the form UiU
T
i A

(0)
ij UjU

T
j and the overall compressed matrix

(with its diagonal blocks untouched) is called A(1) as shown in Figure 6.2. The process is

then repeated using the index sets at levels 2 and 3, etc., corresponding to partitioning the

matrix by coarser and coarser blocks, until A(L) is obtained as the HSS approximation.

Formally, for levels k from 1 to L,

A(k) = diag({A(k−1)
ii }i∈level(k))
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+ diag({UiUT
i }i∈level(k))(A

(k−1) − diag({A(k−1)
ii }i∈level(k)))diag({UiUT

i }i∈level(k))

(6.5)

where the notation diag({Mi}i∈level(k)) denotes the block diagonal matrix composed of all

the blocks {Mi}i∈level(k) in order. For example, for the 2-level HSS matrix in eq. (6.4),

diag({Aii}i∈level(1)) =

( A33
A44

A55
A66

)
.

This notation will be abusively simplified as diag(Mi) with i ∈ level(k) implied for a given

level k.

We note that by the nested basis property, it can be proved that

UiU
T
i A

(k−1)
ij UjU

T
j = UiU

T
i A

(0)
ij UjU

T
j , ∀i 6= j ∈ level(k)

which says that it did not matter that, for example, blocks at level 2 were compressed using

compressed blocks at level 1; the result of the compression at level 2 is the same as if we

compressed the blocks of the original matrix directly. Practically, this means that for each

pair of siblings i and j belonging to level(k), the intermediate matrix Bij satisfies

Bij = UT
i A

(k−1)
ij Uj = UT

i A
(0)
ij Uj.

6.3 New HSS approximations that preserve positive definiteness

Given an SPD matrix A, our goal is to find an SPD HSS approximation. The recursive

description of HSS approximation presented in the last section allows us to simplify this

task. The recursive description can be written abstractly as

A = A(0) Ui=⇒
i∈level(1)

A(1) Ui=⇒
i∈level(2)

A(2) . . .
Ui=⇒

i∈level(L)
A(L) = Ahss.
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To construct an SPD HSS approximation Ahss, it suffices to make sure that each stage,

A(k−1) ⇒ A(k), computed by update formula eq. (6.5) maintains positive definiteness.

Following this approach, two methods are now presented.

6.3.1 Method 1

First, rewrite the update formula eq. (6.5) for level k as

A(k) = diag(UiU
T
i )A(k−1)diag(UiU

T
i ) + diag(A

(k−1)
ii − UiUT

i A
(k−1)
ii UiU

T
i ) (6.6)

where we remind the reader that i ∈ level(k) within each diag(·) is implied. The first term

on the right-hand side is positive semidefinite as we assume A(k−1) to be positive definite.

Meanwhile, the second term is a block diagonal matrix and thus it suffices to make sure

that each block in that matrix is positive definite.

As shown by Proposition 1 below, the only possible choice of Ui that makes A(k−1)
ii −

UiU
T
i A

(k−1)
ii UiU

T
i positive semidefinite is the one where col(Ui) is an invariant subspace

of A(k−1)
ii . In this chapter, we focus on the simplest invariant subspaces, those spanned

by any set of eigenvectors. The columns of Ui are chosen to be orthonormal eigenvectors

of A(k−1)
ii . In addition, Proposition 2 shows that this choice of Ui can guarantee A(k) to

be positive definite even though A
(k−1)
ii − UiU

T
i A

(k−1)
ii UiU

T
i can only be guaranteed to

be positive semidefinite. It is worth noting that a more general method might exist by

exploiting different invariant subspaces of A(k−1)
ii .

Proposition 1. Given a symmetric positive definite matrix A ∈ Rn×n and a tall and skinny

matrix U ∈ Rn×r with orthonormal columns, A − UUTAUUT is positive semidefinite if

and only if col(U) is an invariant subspace of A.

Proof. Define Ũ ∈ Rn×(n−r) with columns forming an orthonormal basis of col(U)⊥.
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Then,

A− UUTAUUT = (UUT + Ũ ŨT )A(UUT + Ũ ŨT )− UUTAUUT

= Ũ ŨTAŨŨT + Ũ ŨTAUUT + UUTAŨŨT . (6.7)

For any vector z = Ux + Ũy with x ∈ Rr, y ∈ Rn−r, the quadratic form is written as

zT (A−UUTAUUT )z = yT ŨTAŨy + 2xTUTAŨy. As long as UTAŨy is not zero, there

exists x ∈ Rr such that the quadratic form is negative. Thus, A − UUTAUUT is positive

semidefinite if and only if UTAŨ = 0. According to the definition of Ũ , (AU)T Ũ = 0

holds true if and only if col(AU) ⊂ col(U) which is equivalent to col(U) being an invariant

subspace of A.

Proposition 2. The choice of Ui being composed of orthonormal eigenvectors of A(k−1)
ii for

any i ∈ level(k) guarantees that A(k) constructed by formula eq. (6.6) is always positive

definite.

Proof. Based on eq. (6.7), if the columns of Ui are orthonormal eigenvectors of A(k−1)
ii ,

then A(k−1)
ii − UiU

T
i A

(k−1)
ii UiU

T
i = ŨiŨ

T
i A

(k−1)
ii ŨiŨ

T
i where the columns of Ũi form an

orthonormal basis of col(Ui)⊥ as before. The update formula eq. (6.6) for level k becomes

A(k) = diag(UiU
T
i )A(k−1)diag(UiU

T
i ) + diag(ŨiŨ

T
i )diag(A

(k−1)
ii )diag(ŨiŨ

T
i ).

Note that both A(k−1) and diag(A
(k−1)
ii ) are positive definite. In addition, diag(UiU

T
i ) and

diag(ŨiŨ
T
i ) are exactly the projection matrices that correspond to a pair of complementary

subspaces in Rn. As a result, for any nonzero x ∈ Rn, at least one of its projections z1 =

diag(UiU
T
i )x and z2 = diag(ŨiŨ

T
i )x is nonzero and hence the quadratic form xTA(k)x

written as xTA(k)x = zT1 A
(k−1)z1 + zT2 diag(A

(k−1)
ii )z2 is always positive. Thus, A(k) is

positive definite.

In summary, Method 1 is to choose each Ui to be composed of r orthonormal eigen-
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vectors of A(k−1)
ii . How to do this while minimizing the projection error and to also satisfy

the nested basis property at non-leaf levels will be discussed in Section 6.4. Pseudocode

for Method 1 thus far using the bottom-up level-by-level construction order is shown in

Algorithm 8.

Algorithm 8 Method 1 (abstract version)
Input: Original SPD matrix A
Output: SPD HSS approximation A(L)

• set A(0) = A
for k = 1, 2, . . . , L do
• compute Ui, ∀i ∈ level(k) satisfying

– columns of Ui are orthonormal eigenvectors of A(k−1)
ii

– Ui should minimize the projection error ‖A(k−1)
iic − UiUT

i A
(k−1)
iic ‖F

– if k > 1, the nested basis property must also be satisfied
• compress A(k−1) by formula eq. (6.5) to obtain A(k)

end for

6.3.2 Method 2

From eqs. (6.6) and (6.7), the update formula eq. (6.5) for level k can be written as

A(k) = diag(UiU
T
i )A(k−1)diag(UiU

T
i ) + diag(ŨiŨ

T
i A

(k−1)
ii ŨiŨ

T
i )

+ diag(UiU
T
i A

(k−1)
ii ŨiŨ

T
i + ŨiŨ

T
i A

(k−1)
ii UiU

T
i ), i ∈ level(k), (6.8)

where the columns of Ũi form an orthonormal basis of col(Ui)
⊥ as before. The sum of the

first and second terms can be proved to be positive definite by an argument similar to that in

Proposition 2. Thus, the block diagonal matrix diag(UiU
T
i A

(k−1)
ii ŨiŨ

T
i +ŨiŨ

T
i A

(k−1)
ii UiU

T
i )

is the term that might make A(k) indefinite.

In fact, the constraint that the columns of Ui are orthonormal eigenvectors of A(k−1)
ii in

Method 1 makes UiUT
i A

(k−1)
ii ŨiŨ

T
i + ŨiŨ

T
i A

(k−1)
ii UiU

T
i exactly zero. From this point of

view, the key is to try to get rid of this term. Thus, Method 2 can be designed as follows.

Notice that if A(k−1)
ii is an identity matrix, then UiUT

i A
(k−1)
ii ŨiŨ

T
i will be zero and A(k)

will be positive definite. Identity diagonal blocks remind us of scaling by diagonal blocks.
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Ignoring for now the nested basis property and focusing on one update, A(k−1) ⇒ A(k),

the idea is to symmetrically scale A(k−1) by its diagonal blocks, and then to compress the

scaled off-diagonal blocks using formula eq. (6.5).

Formally, first calculate the symmetric factorization of A(k−1)
ii = SiS

T
i for each node

i ∈ level(k), and scale the matrix A(k−1) as C(k−1) = diag(S−1
i )A(k−1)diag(S−Ti ). Then,

compress the off-diagonal blocks of C(k−1) using formula eq. (6.5) to obtain

C(k) = diag(C
(k−1)
ii ) + diag(ViV

T
i )(C(k−1) − diag(C

(k−1)
ii ))diag(ViV

T
i ) (6.9)

with i ∈ level(k), where Vi ∈ Rni×r has orthonormal columns. Intuitively, Vi should be

chosen to minimize the projection error ‖C(k−1)
iic − ViV T

i C
(k−1)
iic ‖F . Finally, define A(k) =

diag(Si)C
(k)diag(STi ) which can be generated recursively as

A(k) =diag(A
(k−1)
ii )+ diag(SiViV

T
i S

−1
i )(A(k−1)− diag(A

(k−1)
ii ))diag(S−Ti ViV

T
i S

T
i ) (6.10)

where each off-diagonal block is compressed as A(k)
ij = SiViV

T
i S

−1
i A

(k−1)
ij S−Tj VjV

T
j S

T
j .

Denote Ui = SiVi and W T
i = V T

i S
−1
i . Unlike before, this newly-defined Ui does not

have orthonormal columns and UiW
T
i is not a projection matrix. However, the matrix

SiViV
T
i S

−1
i can be proved to be the projection onto the subspace col(SiVi) with inner

product defined as (x, y) = xTS−Ti S−1
i y.

The update formula eq. (6.10) gives a positive definite matrix and the only requirement

so far has been that the columns of Vi are orthonormal. However, we still must guarantee

that the nested basis property is satisfied, which will place an additional condition on Vi.

Based on the definition of the nested basis property in eq. (6.3), there should exist Ri

such that

Vi = S−1
i

Uli
Uri

Ri

which is equivalent to col(Vi) ⊂ col
(
S−1
i

(
Uli

Uri

))
. By the definition of C(k−1) and the
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update of A(k−2) to A(k−1) through eq. (6.10), it can be noted that

col(C(k−1)
iic ) ⊂ col(S−1

i A
(k−1)
iic ) ⊂ col

(
S−1
i

(
Uli

WT
li
A

(k−2)
lii

c

UriW
T
ri
A

(k−2)
rii

c

))
⊂ col

(
S−1
i

(
Uli

Uri

))
.

Previously, Vi is chosen to compress C(k−1)
iic as ViV T

i C
(k−1)
iic . Thus the sufficient condition

col(Vi) ⊂ col(C(k−1)
iic ) to satisfy the nested basis property can be enforced naturally.

Pseudocode for Method 2 thus far using the bottom-up level-by-level construction order

is shown in Algorithm 9.

Algorithm 9 Method 2 (abstract version)
Input: Original SPD matrix A
Output: SPD HSS approximation A(L)

• set A(0) = A
for k = 1, 2, . . . , L do
• construct a symmetric factorization A(k−1)

ii = SiS
T
i , ∀i ∈ level(k)

• calculate the scaled off-diagonal blockC(k−1)
ij = S−1

i A
(k−1)
ij S−Tj ,∀i 6= j ∈ level(k)

• compute Vi, ∀i ∈ level(k) satisfying
– columns of Vi are orthonormal and col(Vi) ⊂ col(C(k−1)

iic )

– Vi should minimize the projection error ‖C(k−1)
iic − ViV T

i C
(k−1)
iic ‖F

• compress A(k−1) by formula eq. (6.10) to obtain A(k)

end for

6.4 Implementation of Method 1

The previous section gave the description of two SPD HSS construction methods with-

out implementation details. Here, an efficient implementation of Method 1 is presented.

The implementation is related to building an HSS representation using projection method,

which we explain first. This method, which does not try to preserve positive definiteness,

will be called the standard HSS method in this chapter and it is exactly the symmetric

version of the method in Ref. [70].
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6.4.1 Standard HSS construction using projection

For level k from 1 to L, define the r × r matrix M (k)
ij = UT

i A
(k−1)
ij Uj , ∀i 6= j ∈ level(k)

which satisfies A(k)
ij = UiM

(k)
ij U

T
j by the update formula eq. (6.5). Here, i, j for M (k)

ij are

used as partition tree node indices like those in Ui and Bij and do not refer to the pair of

index subsets Ii × Ij like in A(k)
ij . Notice that for each pair of siblings i, j ∈ level(k), the

associated intermediate matrix Bij = UT
i A

(k−1)
ij Uj = M

(k)
ij .

We also define M (k−1)
ij where i and j (with i 6= j) belong to level(k) rather than

level(k − 1) as the 2r × 2r matrix that satisfies

A
(k−1)
ij =

 A
(k−1)
lilj

A
(k−1)
lirj

A
(k−1)
rilj

A
(k−1)
rirj

 =

 Uli

Uri


 M

(k−1)
lilj

M
(k−1)
lirj

M
(k−1)
rilj

M
(k−1)
rirj


 UT

lj

UT
rj

 .

At the leaf level, Ui for each i ∈ level(1) is computed to minimize the projection error

when compressing A(0)
iic . At level k > 1, Ui for each i ∈ level(k) is defined implicitly by

Ri which is computed to minimize the projection error when compressing A(k−1)
iic .

By exploiting the nested basis property and the above relation between A
(k−1)
ij and

M
(k−1)
ij for i, j ∈ level(k), the projection error is

∥∥∥A(k−1)
iic − UiUT

i A
(k−1)
iic

∥∥∥
F

=
∥∥∥M (k−1)

iic −RiR
T
i M

(k−1)
iic

∥∥∥
F

(6.11)

where M (k−1)
iic is naturally defined as

(
M

(k−1)
ij1

,M
(k−1)
ij2

. . .
)
, with {j1, j2, . . .} = ic. In

addition, by the nested basis property, the columns of Ui being orthonormal is equiva-

lent to the columns of Ri being orthonormal. Thus the thin matrix M (k−1)
iic of size 2r ×

2r(|level(k)|− 1) is the target matrix to compress to obtain Ri. After that, {M (k)
ij }i,j∈level(k)

can be calculated from {M (k−1)
pq }p,q∈level(k−1) as

M
(k)
ij = RT

i M
(k−1)
ij Rj.

138



To summarize, the standard HSS approximation is given in Algorithm 10 and it has

O(rn2) computational complexity with fixed rank r.

Algorithm 10 Standard bottom-up level-by-level HSS construction
Input: HSS rank r, original matrix A
Output: HSS approximation with components {Di}, {Bij}, {Ui}, {Ri}

At the leaf level
• set Di = Aii, ∀i ∈ level(1)
• compute Ui ∈ Rni×r, ∀i ∈ level(1) satisfying

– columns of Ui are orthonormal
– Ui should minimize ‖Aiic − UiUT

i Aiic‖F
• compute M (1)

ij = UT
i AijUj , ∀i 6= j ∈ level(1)

• set Bij = M
(1)
ij for every pair of siblings i, j ∈ level(1)

for k = 2, 3, . . . , L do
• compute Ri ∈ R2r×r, ∀i ∈ level(k) satisfying

– columns of Ri are orthonormal
– Ri should minimize ‖M (k−1)

iic −RiR
T
i M

(k−1)
iic ‖F

• compute M (k)
ij = RT

i M
(k−1)
ij Rj , ∀i 6= j ∈ level(k)

• set Bij = M
(k)
ij for every pair of siblings i, j ∈ level(k)

end for

6.4.2 Method 1: constrained optimization problem

In Method 1, at level k, we seekUi that minimizes the projection error ‖A(k−1)
iic −UiUT

i A
(k−1)
iic ‖F ,

for i ∈ level(k), while Ui is also constrained to be exactly r orthonormal eigenvectors of

the diagonal block A(k−1)
ii . Ignoring for now the nested basis property that must also be

satisfied at non-leaf levels, this leads to the following constrained optimization problem.

Problem 1. Given an orthogonal matrix V ∈ Rm×m and a target matrix B ∈ Rm×l, find

r columns of V , which we call U ∈ Rm×r, such that U minimizes the projection error

‖B − UUTB‖F .

The solution is as follows. Any r columns of V can be represented asU = V P (Ir, 0)T ,

where P is a permutation matrix. Substituting this U into the projection error expression,
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the problem becomes finding the permutation P that minimizes

‖B − UUTB‖F =
∥∥B − V P ( Ir 0

0 0 )P TV TB
∥∥
F

=
∥∥P TG− ( Ir 0

0 0 )P TG
∥∥
F

where G = V TB ∈ Rm×l. Thus we only need to choose a permutation of the rows of G

such that the first r rows of P TG have the largest norms.

As ‖P TG‖F = ‖B‖F , we have ‖B−UUTB‖F 6 (1− r
n
)

1
2‖B‖F where equality holds

only when all the rows of G have the same norm.

6.4.3 Method 1: full implementation

At level 1, the diagonal blocks A(0)
ii ∈ Rni×ni for i ∈ level(1), are typically small, and their

eigen-decompositions are readily computed. The Ui that are sought can be computed by

solving Problem 1 where V is the matrix of eigenvectors and the target matrixB is the HSS

block row A
(0)
iic .

At non-leaf levels k, we need Ui to satisfy the nested basis property in addition to

minimizing the projection error and the columns of Ui being constrained to be selected

orthonormal eigenvectors of the diagonal block A(k−1)
ii .

For i ∈ level(k), the diagonal block A(k−1)
ii can be written as

A
(k−1)
ii =

 A
(k−2)
lili

UliU
T
li
A

(k−2)
liri

UriU
T
ri

UriU
T
ri
A

(k−2)
rili

UliU
T
li

A
(k−2)
riri

 .

The columns of Ui ∈ Rni×r being eigenvectors ofA(k−1)
ii is equivalent to there being a r×r

diagonal matrix Σi such that

A
(k−1)
ii Ui = UiΣi

A
(k−1)
ii

 Uli

Uri

Ri =

 Uli

Uri

RiΣi
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 A
(k−2)
lili

Uli UliU
T
li
A

(k−2)
liri

Uri

UriU
T
ri
A

(k−2)
rili

Uli A
(k−2)
riri Uri

Ri =

 Uli

Uri

RiΣi.

By induction, A(k−2)
lili

Uli = UliΣli , and A(k−2)
riri Uri = UriΣri . Thus the calculation continues

as  UliΣli UliU
T
li
A

(k−2)
liri

Uri

UriU
T
ri
A

(k−2)
rili

Uli UriΣri

Ri =

 Uli

Uri

RiΣi

 Σli UT
li
A

(k−2)
liri

Uri

UT
ri
A

(k−2)
rili

Uli Σri

Ri = RiΣi. (6.12)

The term UT
li
A

(k−2)
liri

Uri is exactly Bliri or M (k−1)
liri

and has been calculated at the previous

level. Denote the leading matrix in eq. (6.12) as Ei =
(

Σli
Bliri

BT
liri

Σri

)
.

Every step above is invertible. Thus, the columns of Ui being orthonormal eigenvectors

of A(k−1)
ii is equivalent to the columns of Ri being orthonormal eigenvectors of the small

2r × 2r symmetric matrix Ei.

Now, consider computingUi to minimize the projection error ofA(k−1)
iic . From eq. (6.11),

minimizing ‖A(k−1)
iic − UiU

T
i A

(k−1)
iic ‖F under the nested basis constraint is equivalent to

minimizing ‖M (k−1)
iic − RiR

T
i M

(k−1)
iic ‖F . By the analysis above, with eigen-decomposition

Ei = ViΛiV
T
i , the optimalRi can be obtained by solving Problem 1 with orthogonal matrix

Vi, target matrix M (k−1)
iic , and desired rank r.

The efficient implementation of Method 1 can now be given in Algorithm 11. With

fixed rank r, the complexity of the algorithm is O(rn2).

6.5 Implementation of Method 2

The main difference between Method 2 and the standard HSS method is the symmetric

scaling by diagonal blocks at each level. At first glance, the decomposition A(k−1)
ii = SiS

T
i
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Algorithm 11 Method 1 with bottom-up level-by-level construction
Input: HSS rank r, original SPD matrix A
Output: SPD HSS approximation with components {Di}, {Bij}, {Ui}, {Ri}

At the leaf level
• set Di = Aii, ∀i ∈ level(1)
• compute eigen-decomposition Aii = ViΛiV

T
i , ∀i ∈ level(1)

• compute Ui by solving problem 1 with Vi, Aiic and r, ∀i ∈ level(1)
• store diagonal matrix Σi = UT

i AiiUi, ∀i ∈ level(1)

• compute M (1)
ij = UT

i AijUj , ∀i 6= j ∈ level(1)

• set Bij = M
(1)
ij for each pair of siblings i, j ∈ level(1)

for k = 2, 3, . . . , L do
• compute eigen-decomposition Ei =

(
Σli

Bliri

BT
liri

Σri

)
= ViΛiV

T
i , ∀i ∈ level(k)

• compute Ri by solving problem 1 with Vi, M
(k−1)
iic and r, ∀i ∈ level(k)

• store diagonal matrix Σi = RT
i EiRi, ∀i ∈ level(k)

• compute M (k)
ij = RT

i M
(k−1)
ij Rj , ∀i 6= j ∈ level(k)

• set Bij = M
(k)
ij for each pair of siblings i, j ∈ level(k)

end for

and the application of S−1
i do not appear to be practical due to the large size of these blocks

at higher levels. However, as shown below, the storage cost and computational complexity

to obtain Si and to apply S−1
i at each level can be reduced and are only related to the off-

diagonal block rank r. The complexity of Method 2 is still of the same order as that of the

standard HSS method.

Similar to the standard HSS construction procedure, for level k from 1 to L, define

M
(k)
ij = V T

i S
−1
i A

(k−1)
ij S−Tj Vj ∈ Rr×r for i 6= j ∈ level(k) which satisfies A(k)

ij =

UiM
(k)
ij U

T
j . If i and j are siblings, also define Bij = M

(k)
ij by the update formula eq. (6.10).

At the leaf level, all calculations can be performed directly because the matrices are

small. For compressions at non-leaf level k, i.e., to obtain A(k) from A(k−1), the following

quantities need to be calculated.

• For i ∈ level(k), the symmetric decomposition A(k−1)
ii = SiS

T
i .

• For i 6= j ∈ level(k), the scaled off-diagonal block C(k−1)
ij = S−1

i A
(k−1)
ij S−Tj .

• For i 6= j ∈ level(k), M (k)
ij = V T

i S
−1
i A

(k−1)
ij S−Tj Vj = V T

i C
(k−1)
ij Vj .
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• For i ∈ level(k),

Ri =

 V T
li

V T
ri


 S−1

li

S−1
ri

SiVi (6.13)

to satisfy the nested basis property for Ui = SiVi.

We now show how each of these four quantities can be computed efficiently.

Symmetric decompositionA(k−1)
ii = SiS

T
i At the leaf level, the Cholesky decomposition

A
(0)
ii = SiS

T
i can be directly calculated. At non-leaf levels k, using compression at the

previous level, A(k−1)
ii for i ∈ level(k) can be written as

A
(k−1)
ii =

 A
(k−2)
lili

UliBliriU
T
ri

UriB
T
liri
UT
li

A
(k−2)
riri

 ,

with Uli = SliVli , Uri = SriVri , and Bliri = V T
li
S−1
li
A

(k−2)
liri

S−Tri Vri . Knowing that A(k−2)
lili

=

SliS
T
li

and A(k−2)
riri = SriS

T
ri

, diagonal block A(k−1)
ii can be decomposed as

A
(k−1)
ii =

 Sli

Sri


 I VliBliriV

T
ri

VriB
T
liri
V T
li

I


 STli

STri

 . (6.14)

Hence, only a symmetric decomposition of the middle matrix is needed. For this, we will

use the following proposition.

Proposition 3. Consider a matrix H =
(
In1 M

MT In2

)
∈ R(n1+n2)×(n1+n2), where sub-block

M ∈ Rn1×n2 is rank r with SVD M = UΣV T , U ∈ Rn1×r, Σ ∈ Rr×r, V ∈ Rn2×r. The
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eigen-decomposition of this matrix is


U√

2

U√
2

Ũ 0

V√
2

−V√
2

0 Ṽ





Ir + Σ

Ir − Σ

In1−r

In2−r




U√

2

U√
2

Ũ 0

V√
2

−V√
2

0 Ṽ


T

,

where the columns of Ũ and Ṽ form orthonormal bases of col(U)⊥ and col(V )⊥ respec-

tively. Furthermore, based on this eigen-decomposition, if H is SPD, singular values of M

must be less than one and hence the eigenvalues of H are within (0, 2).

The proposition can be verified by direct calculation. Now, Bliri is a small r× r matrix

and its full SVD can be readily calculated as Bliri = QliΣliriQ
T
ri

. As A(k−1)
ii is SPD, the

matrix in the middle of eq. (6.14) is also SPD and can be decomposed as S̄iS̄Ti where

S̄i =

 VliQli√
2

VliQli√
2

Ṽli

VriQri√
2

−VriQri√
2

Ṽri




(Ir + Σliri)
1
2

(Ir − Σliri)
1
2

In1+n2−2r


(6.15)

based on Proposition 3 and the columns of Ṽli and Ṽri form orthonormal bases of col(Vli)
⊥

and col(Vri)
⊥ respectively. Thus, a recursive definition of Si by eq. (6.14) is obtained as

Si =

 Sli

Sri

 S̄i (6.16)

where S̄i only requires Vli , Vri and Bliri at the previous level.

Scaled off-diagonal block C(k−1)
ij = S−1

i A
(k−1)
ij S−Tj First consider the one-sided multi-

plication S−1
i A

(k−1)
ij for i 6= j ∈ level(k). Using compression at the previous level, A(k−1)

ij
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can be written as

A
(k−1)
ij =

 SliVliV
T
li
S−1
li

SriVriV
T
ri
S−1
ri

A
(k−2)
ij

 SljVljV
T
lj
S−1
lj

SrjVrjV
T
rj
S−1
rj


T

=

 SliVliV
T
li
S−1
li

SriVriV
T
ri
S−1
ri

 Ã
(k−2)
ij ,

where Ã(k−2)
ij denotes the multiplication of the last two matrices in the first line above.

Combining this expression with eq. (6.15) and eq. (6.16), we obtain

S−1
i A

(k−1)
ij

= S̄−1
i

VliV T
li
S−1
li

VriV
T
ri
S−1
ri

 Ã
(k−2)
ij

=


(Ir+Σliri)

−1
2

(Ir−Σliri)
−1

2

I





QT
li
V T
li√

2

QT
ri
V T
ri√

2

QT
li
V T
li√

2

−QT
ri
V T
ri√

2

Ṽ T
li

0

0 Ṽ T
ri


VliV T

li
S−1
li

VriV
T
ri
S−1
ri

Ã(k−2)
ij

=


(Ir+Σliri)

−1
2

(Ir−Σliri)
−1

2

I





QT
li√
2

QT
ri√
2

QT
li√
2

−QT
ri√
2

0 0

0 0


V T

li
S−1
li

V T
ri
S−1
ri

 Ã
(k−2)
ij

=

I2r

0


(Ir + Σliri)

− 1
2

(Ir − Σliri)
− 1

2


 QT

li√
2

QT
ri√
2

QT
li√
2

−QT
ri√
2


V T

li
S−1
li

V T
ri
S−1
ri

 Ã
(k−2)
ij .

Denote Ti =

(
(Ir+Σliri

)−
1
2

(Ir−Σliri
)−

1
2

)( QT
li√
2

QT
ri√
2

QT
li√
2

−QT
ri√
2

)
which is a 2r × 2r matrix. Mul-
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tiplying the equation above by S−Tj on the right and unraveling Ã(k−2)
ij , we obtain

S−1
i A

(k−1)
ij S−Tj =

 I2r

0

Ti
V T

li
S−1
li

V T
ri
S−1
ri

A(k−2)
ij

S−Tlj Vlj

S−Trj Vrj

T Tj ( I2r 0

)

=

 I2r

0

TiM
(k−1)
ij T Tj

(
I2r 0

)
(6.17)

where M (k−1)
ij =

(
M

(k−1)
lilj

M
(k−1)
lirj

M
(k−1)
rilj

M
(k−1)
rirj

)
. From this equation, each scaled off-diagonal block

C
(k−1)
ij only has the top-left 2r × 2r sub-block being nonzero. This structure of C(k−1)

ij

arises from the ordering of the eigenvalues in the eigen-decomposition in Proposition 3.

Evidently, the calculation of C(k−1)
ij only requires multiplications of matrices with dimen-

sions 2r × 2r.

Let us also briefly consider the cost of choosing Vi to minimize the projection error

‖C(k−1)
iic −ViV T

i C
(k−1)
iic ‖F . With the constraint col(Vi) ⊂ col(C(k−1)

iic ), only the first 2r rows

of Vi are nonzero. Thus both the storage and computational complexity of choosing Vi are

similar to that of choosing Ri in the standard HSS construction procedure.

Calculation of M (k)
ij After finding Vi to compress the scaled off-diagonal blocks C(k−1)

ij ,

matrix M (k)
ij at the kth level can be efficiently obtained by

M
(k)
ij = V T

i

 I2r

0

TiM
(k−1)
ij T Tj

(
I2r 0

)
Vj. (6.18)

Calculation of Ri By the definition of Si in eq. (6.16) and eq. (6.15), the calculation of

Ri through eq. (6.13) can be simplified as

Ri =

V T
li

V T
ri

 S̄iVi

146



=

V T
li

V T
ri


 VliQli√

2

VliQli√
2

Ṽli

VriQri√
2

−VriQri√
2

Ṽri




(Ir+Σliri)
1
2

(Ir−Σliri)
1
2

I

Vi

=

 Qli√
2

Qli√
2

0 0

Qri√
2

−Qri√
2

0 0




(Ir + Σliri)
1
2

(Ir − Σliri)
1
2

I

Vi. (6.19)

Due to the zeros in the leading matrix above, the calculation of Ri only requires the multi-

plication of a 2r × 2r matrix by a 2r × r matrix.

The efficient implementation of Method 2 is now given in Algorithm 12. With fixed

rank r, the complexity of the algorithm is also O(rn2). We remark that for the general case

where HSS off-diagonal blocks have different ranks, the above procedures can be easily

adapted.

6.6 HSS approximation error analysis

For all the construction methods discussed above, the HSS approximation is constructed

level-by-level as A = A(0) ⇒ A(1) ⇒ ...⇒ A(L) = Ahss using update formula eq. (6.5) or

eq. (6.10). The approximation error ‖A(0) − A(L)‖F can be bounded as

‖A(0) − A(L)‖F 6
L∑
k=1

‖A(k−1) − A(k)‖F , (6.20)

which can be found by computing ‖A(k−1) − A(k)‖F at each level.

6.6.1 Error estimation for the standard HSS method

For update formula eq. (6.5), we now provide an exact expression for ‖A(0) − A(L)‖2
F ,

demonstrating that the errors at each level are orthogonal to each other in a specific sense.
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Algorithm 12 Method 2 with bottom-up level-by-level construction
Input: HSS rank r, original SPD matrix A
Output: SPD HSS approximation with generators {Di}, {Bij}, {Ui}, {Ri}

At the leaf level
• set Di = Aii, ∀i ∈ level(1)
• compute the Cholesky decomposition Aii = SiS

T
i , ∀i ∈ level(1)

• compute the scaled off-diagonal block C(0)
ij = S−1

i AijS
−T
j , ∀i 6= j ∈ level(1)

• compute Vi ∈ Rni×r, ∀i ∈ level(1) satisfying
– columns of Vi are orthonormal and col(Vi) ⊂ col(C(0)

iic )

– Vi should minimize ‖C(0)
iic − ViV T

i C
(0)
iic ‖F

• set Ui = SiVi, ∀i ∈ level(1)

• compute M (1)
ij = V T

i C
(0)
ij Vj , ∀i 6= j ∈ level(1)

• set Bij = M
(1)
ij for every pair of siblings i, j ∈ level(1)

for k = 2, 3, . . . , L do
• compute SVD Bliri = QliΣliriQ

T
ri

, ∀i ∈ level(k)
• construct Ti in eq. (6.17) by Σliri , Qli and Qri , ∀i ∈ level(k)

• compute the top-left 2r×2r nonzero sub-block of C(k−1)
ij as C

(k−1)

ij = TiM
(k−1)
ij T Tj

by eq. (6.17), ∀i 6= j ∈ level(k)
• compute the first 2r rows V i of Vi, ∀i ∈ level(k) satisfying

– columns of V i are orthonormal and col(V i) ⊂ col(C
(k−1)

iic )

– V i should minimize ‖C(k−1)

iic − V iV
T

i C
(k−1)

iic ‖F
• compute Ri by eq. (6.19) using Σliri , Qli , Qri and V i, ∀i ∈ level(k)

• compute M (k)
ij = V

T

i C
(k−1)

ij V j , ∀i 6= j ∈ level(k)

• set Bij = M
(k)
ij for every pair of siblings i, j ∈ level(k)

end for

Proposition 4. For the recursive construction formula eq. (6.5) with the columns of Ui

being orthonormal,

‖A(0) − A(L)‖2
F =

L∑
k=1

‖A(k−1) − A(k)‖2
F . (6.21)

Proof. With a matrix partitioning by index subsets at the kth level, 0 < k < L, the approx-

imation error can be written as

‖A(0) − A(L)‖2
F =

∑
i,j∈level(k)

‖A(0)
ij − A

(k)
ij + A

(k)
ij − A

(L)
ij ‖2

F .
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We will first show that each term in the summation above can be split as

‖A(0)
ij − A

(k)
ij + A

(k)
ij − A

(L)
ij ‖2

F = ‖A(0)
ij − A

(k)
ij ‖2

F + ‖A(k)
ij − A

(L)
ij ‖2

F (6.22)

which then implies that

‖A(0) − A(L)‖2
F = ‖A(0) − A(k)‖2

F + ‖A(k) − A(L)‖2
F , 0 < k < L. (6.23)

Consider any i, j ∈ level(k). If i = j or if i and j are siblings, then A(k)
ij will not be

modified by the update formula at any of the subsequent levels. Thus, A(k)
ij = A

(L)
ij and

eq. (6.22) holds true in this case. If i and j are not siblings, block A(L)
ij is obtained by the

compression of some larger block with indices Ip × Iq where p, q are siblings and Ii ⊂ Ip,

Ij ⊂ Iq. By the equation A(L)
pq = UpU

T
p A

(0)
pq UqU

T
q and the nested basis property for Up,

it can be proved that col(A(L)
ij ) ⊂ col(Ui). Symmetrically, the row space of A(L)

ij satisfies

col((A(L)
ij )T ) ⊂ col(Uj).

From the construction process, A(k)
ij = UiU

T
i A

(k−1)
ij UjU

T
j = UiU

T
i A

(0)
ij UjU

T
j and thus

A
(0)
ij − A

(k)
ij can be written as

A
(0)
ij − A

(k)
ij = A

(0)
ij − UiUT

i A
(0)
ij + UiU

T
i (A

(0)
ij − A

(0)
ij UjU

T
j ).

Notice that the columns ofA(0)
ij −UiUT

i A
(0)
ij are orthogonal to col(Ui) and the rows ofA(0)

ij −

A
(0)
ij UjU

T
j are orthogonal to col(Uj). Meanwhile, the columns and rows of A(k)

ij − A
(L)
ij

are within col(Ui) and col(Uj) respectively. By the Pythagorean theorem and properties

mentioned above, the splitting in eq. (6.22) can be proved as

‖A(0)
ij − A

(k)
ij + A

(k)
ij − A

(L)
ij ‖2

F

= ‖A(0)
ij − UiUT

i A
(0)
ij ‖2

F + ‖UiUT
i (A

(0)
ij − A

(0)
ij UjU

T
j ) + A

(k)
ij − A

(L)
ij ‖2

F

= ‖A(0)
ij − UiUT

i A
(0)
ij ‖2

F + ‖UiUT
i (A

(0)
ij − A

(0)
ij UjU

T
j )‖2

F + ‖A(k)
ij − A

(L)
ij ‖2

F
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= ‖A(0)
ij − A

(k)
ij ‖2

F + ‖A(k)
ij − A

(L)
ij ‖2

F ,

from which eq. (6.23) follows.

Now, it can be observed that in the level-by-level construction process, A(L) can also be

regarded as an HSS approximation to A(l) for any 0 < l < L. Thus, eq. (6.23) also holds

true when replacing index 0 by l, allowing us to recursively apply eq. (6.23) for l from 0 to

(L− 2) with k = l + 1 to prove the proposition.

It is worth mentioning that this proposition for HSS approximations can be easily ex-

tended to analyze the error of generalH2 approximations with the projection method. This

proposition is also closely related the error analysis ofH2 approximations in Refs. [3, 77].

For the HSS approximation with update formula eq. (6.5), an upper bound for the square

of the approximation error for one stage can be obtained as

‖A(k−1)−A(k)‖2
F =

∑
i 6=j∈level(k)

‖A(k−1)
ij − UiUT

i A
(k−1)
ij UjU

T
j ‖2

F

=
∑

i 6=j∈level(k)

‖A(k−1)
ij −UiUT

i A
(k−1)
ij ‖2

F +‖UiUT
i (A

(k−1)
ij −A(k−1)

ij UjU
T
j )‖2

F

6
∑

i 6=j∈level(k)

‖A(k−1)
ij − UiUT

i A
(k−1)
ij ‖2

F + ‖A(k−1)
ij − A(k−1)

ij UjU
T
j ‖2

F

= 2
∑

i∈level(k)

‖A(k−1)
iic − UiUT

i A
(k−1)
iic ‖2

F . (6.24)

Meanwhile, from the 2nd line above, ‖A(k−1) − A(k)‖2
F can be bounded from below as

‖A(k−1) − A(k)‖2
F >

∑
i∈level(k)

‖A(k−1)
iic − UiUT

i A
(k−1)
iic ‖2

F .

With these lower and upper bounds, the strategy of choosing each Ui to minimize the

projection error of HSS block rows A(k−1)
iic is justified in that the strategy minimizes the

square of the approximation error at each stage within a factor of 2.
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Instead of a fixed rank r for Ui, the compression may be performed with a threshold ε

such that ‖A(k−1)
iic − UiUT

i A
(k−1)
iic ‖2

F 6 ε2. In terms of ε, the upper bound on the square of

the approximation error for one stage is

‖A(k−1) − A(k)‖2
F 6 2|level(k)|ε2 = 2L−k+2ε2,

giving a bound on the error for the entire approximation as

‖A− A(L)‖F 6

(
L∑
k=1

2(L−k+2)ε2

) 1
2

= ε
(
2L+2 − 4

) 1
2 ≈ 2ε(n/n0)

1
2 ,

where n0 is the average size of the index subsets {Ii}i∈level(1) at the leaf level. Meanwhile,

we have the approximate lower bound ‖A − A(L)‖F >
√

2ε(n/n0)
1
2 , if the compression

satisfies ‖A(k−1)
iic − UiUT

i A
(k−1)
iic ‖2

F ≈ ε2.

6.6.2 Error estimation for Method 1

In the standard HSS method, Ui is chosen at each level to minimize the projection error

‖A(k−1)
iic − UUTA

(k−1)
iic ‖F such that the columns of Ui are orthonormal and, for non-leaf

levels, Ui satisfies the nested basis property. In Method 1, we have the additional require-

ment that the columns of Ui are eigenvectors of A(k−1)
ii . It is clear that the achievable

minimum of Method 1 will not be better than that of the standard HSS method. From the

error analysis of the constrained optimization problem in Section 6.4.2, the minimum pro-

jection error can be as large as (1 − r
ni

)
1
2‖A(k−1)

iic ‖F . This worst case projection error can

be much worse than the bounds on the projection error for the standard HSS method.

However, for kernel matrices defined by many SPD smooth kernel functions, Method

1 may sometimes give good approximations as measured by ‖A(k−1)
iic − UUTA

(k−1)
iic ‖F . A

plausible explanation of when this might happen is as follows.

Based on the Mercer’s theorem, any SPD smooth kernel K(x, y) on a compact domain
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Ω has an eigenfunction expansion as,

K(x, y) =
∞∑
k=1

λkφk(x)φk(y), ∀x, y ∈ Ω,

where {φk(x)} are orthonormal in L2(Ω) and {λk} decreases monotonically to zero. De-

note the sum of the first r terms as K(r)(x, y) and the remainder term as R(r)(x, y). Their

L2-norms in Ω× Ω are ‖K(r)‖2
L2

=
∑r

k=1 λ
2
k and ‖R(r)‖2

L2
=
∑∞

k=r+1 λ
2
k.

Consider two point sets I = {xj}pj=1 and J = {yj}qj=1 in domains Ω1 and Ω2 respec-

tively. Define Ω = Ω1∪Ω2 for the above eigenfunction decomposition. Choose r such that

‖R(r)‖L2/‖K(r)‖L2 is relatively small, say 10−2. We can write the diagonal block AII and

off-diagonal block AIJ as,

AII = (K(xj, xl))xj ,xl∈I = K
(r)
II +R

(r)
II

=



λ1φ1(x1) . . . λrφr(x1)

λ1φ1(x2) . . . λrφr(x2)

...
...

λ1φ1(xp) . . . λrφr(xp)





φ1(x1) . . . φr(x1)

φ1(x2) . . . φr(x2)

...
...

φ1(xp) . . . φr(xp)



T

+ (R(r)(xj, xl))xj ,xl∈I ,

AIJ = (K(xj, yl))xj∈I,yl∈J = K
(r)
IJ +R

(r)
IJ

=



λ1φ1(x1) . . . λrφr(x1)

λ1φ1(x2) . . . λrφr(x2)

...
...

λ1φ1(xp) . . . λrφr(xp)





φ1(y1) . . . φr(y1)

φ1(y2) . . . φr(y2)

...
...

φ1(yq) . . . φr(yq)



T

+ (R(r)(xj, yl))xj∈I,yl∈J .

From the viewpoint of numerical integration, ‖R(r)
II ‖2

F can be roughly estimated as

‖R(r)
II ‖

2
F =

|I|2

|Ω1× Ω1|
∑ |Ω1× Ω1|

|I|2
|R(r)(xj, xl)|2≈

|I|2

|Ω1× Ω1|
‖R(r)

∣∣
Ω1×Ω1

‖2
L2
.
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Thus, similar to the other matrices above, it is likely to hold that

‖R(r)
II ‖F ∼ O(|I|‖R(r)

∣∣
Ω1×Ω1

‖L2) ‖K(r)
II ‖F ∼ O(|I|‖K(r)

∣∣
Ω1×Ω1

‖L2)

‖R(r)
IJ ‖F ∼ O(

√
|I||J |‖R(r)

∣∣
Ω1×Ω2

‖L2) ‖K(r)
IJ ‖F ∼ O(

√
|I||J |‖K(r)

∣∣
Ω1×Ω2

‖L2).

Call Φ the matrix that is common in the above expressions for AII and AIJ . If we

assume that both ‖K(r)|Ω1×Ω1‖L2 and ‖K(r)|Ω1×Ω2‖L2 are of the same scale as ‖K(r)‖L2 ,

‖R(r)
II ‖F will be relatively small compared to ‖K(r)

II ‖F . Thus, based on AII = K
(r)
II + R

(r)
II

and K(r)
II being rank r, it is likely that the rank-r principal eigenvector space of AII is close

to col(K(r)
II ) = col(Φ). Similarly, the rank-r principal left-singular vector space of AIJ is

also likely close to col(K(r)
IJ ) = col(Φ). As a result, it is possible that the rank-r principal

eigenvector space of AII and the rank-r principal left-singular vector space of AIJ are

close. If the spaces are close, then choosing U as some principal orthonormal eigenvectors

of AII may give a small projection error ‖AIJ − UUTAIJ‖F .

The above assumption about ‖K(r)|Ω1×Ω1‖L2 and ‖K(r)|Ω1×Ω2‖L2 may not hold in gen-

eral. A common example is for K(x, y) = e−‖x−y‖
2 with two domains, Ω1 and Ω2, that are

far apart. As a good approximation of K(x, y), K(r)(x, y) on Ω1 × Ω2 should have much

smaller L2 norm than on Ω1 × Ω1. However, it is worth noting that, in this case, a highly

accurate approximation to AIJ may not be necessary for preconditioning. Numerical tests

are now presented to illustrate the above argument.

Consider two clusters I and J where each contains 100 uniformly randomly distributed

points within a unit cube. The centers of the two cubes lie at (0, 0, 0) and (L, 0, 0). For

K(x, y) = e−‖x−y‖
2 , the diagonal block AII and off-diagonal block AIJ are defined as

above. The relative projection error ‖AIJ − UUTAIJ‖F/‖AIJ‖F vs. rank r is shown in

Figure 6.3 with two different cluster locations (L, 0, 0) for cluster J . The columns of U are

chosen as:

• r left singular-vectors of AIJ associated with the largest singular values,
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• optimal r orthonormal eigenvectors of AII chosen by solving Problem 1,

• r orthonormal eigenvectors of AII associated with the largest eigenvalues,

• optimal r columns chosen by solving Problem 1 using a random orthogonal matrix

generated by the QR decomposition of a Gaussian random matrix. The mean value

from 10 tests is plotted in the figure.

In addition, the curve (1− r
n
)

1
2 for the worst case error is also plotted for comparison.

Figure 6.3 shows that using eigenvectors of AII gives good approximation errors espe-

cially when compared to using columns of a random orthogonal matrix. In addition, the

closeness between using optimal and principal eigenvectors ofAII , as well as the difference

between results for nearby and distant clusters, both support the argument above.

0 5 10 15 20 25 30
Rank r for projection

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

R
el
a
ti
v
e
P
ro
je
ct
io
n
E
rr
o
r
in

‖
·
‖
F

principal singular vectors of AIJ

optimal eigenvectors of AII

principal eigenvectors of AII

random

theoretical worst

(a) (L, 0, 0) = (1, 0, 0), ‖AIJ‖F
‖AII‖F = 0.53
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(b) (L, 0, 0) = (3, 0, 0), ‖AIJ‖F
‖AII‖F = 2.2e-3

Figure 6.3: Relative projection error with K(x, y) = e−‖x−y‖
2 for the cases of (a) nearby

and (b) distant clusters.

6.6.3 Error estimation for Method 2

Due to the scaling of the off-diagonal blocks, Proposition 4 does not work for Method 2.

Here, we directly estimate the HSS approximation error of Method 2 using the inequality
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eq. (6.20). The square of the error at each level k can be bounded as

‖A(k−1) − A(k)‖2
F =

∑
i 6=j∈level(k)

‖A(k−1)
ij − SiViV T

i S
−1
i A

(k−1)
ij S−Tj VjV

T
j S

T
j ‖2

F

=
∑

i 6=j∈level(k)

‖Si(C(k−1)
ij − ViV T

i C
(k−1)
ij VjV

T
j )STj ‖2

F

6
∑

i 6=j∈level(k)

‖Si‖2
2 ‖Sj‖2

2 ‖C
(k−1)
ij − ViV T

i C
(k−1)
ij VjVj‖2

F

6 max
i∈level(k)

‖Si‖4
2

∑
i 6=j∈level(k)

‖C(k−1)
ij − ViV T

i C
(k−1)
ij VjVj‖2

F

6 2 max
i∈level(k)

‖A(k−1)
ii ‖2

2

∑
i∈level(k)

‖C(k−1)
iic − ViV T

i C
(k−1)
iic ‖2

F .

The last inequality above is obtained by the same method used in eq. (6.24).

Assume Vi is chosen to satisfy ‖C(k−1)
iic − ViV

T
i C

(k−1)
iic ‖2

F 6 ε2 with error threshold

ε. The remaining part is to estimate maxi∈level(k) ‖A(k−1)
ii ‖2 at each level. For any node

i ∈ level(k), eq. (6.14) gives the diagonal block as

A
(k−1)
ii =

 Sli

Sri


 I VliBliriV

T
ri

VriB
T
liri
V T
li

I


 STli

STri

 .

AsA(k−1)
ii is positive definite, the matrix in the middle is also SPD and its largest eigenvalue

should be less than 2 based on Proposition 3. Thus, ‖A(k−1)
ii ‖2 can be bounded as

‖A(k−1)
ii ‖2 6

∥∥∥∥∥∥∥
 Sli

Sri


∥∥∥∥∥∥∥

2

2

∥∥∥∥∥∥∥
 I VliBliriV

T
ri

VriB
T
liri
V T
li

I


∥∥∥∥∥∥∥

2

6 2 max(‖A(k−2)
lili
‖2, ‖A(k−2)

riri
‖2)

6 2 max
j∈level(k−1)

‖A(k−2)
jj ‖2 6 . . . 6 2k−1 max

j∈level(1)
‖A(0)

jj ‖2 6 2k−1‖A‖2.
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The square of the approximation error can then be bounded as

‖A(k−1) − A(k)‖2
F 6 22k−1‖A‖2

2|level(k)|ε2 = 2L+k‖A‖2
2ε

2.

Finally, the HSS approximation error of Method 2 satisfies

‖A− A(L)‖F 6 2L/2‖A‖2ε

L∑
k=1

2k/2 = ‖A‖2ε

√
2√

2− 1
(2L − 2L/2) ≈

√
2√

2− 1

n

n0

‖A‖2ε

where n0 is the average size of the index subsets {Ii}i∈level(1) at the leaf level.

Note that the compression in Method 2 is applied to the scaled off-diagonal block

C
(k−1)
iic , i.e., finding Vi ∈ Rni×r that minimizes ‖C(k−1)

iic − ViV T
i C

(k−1)
iic ‖2

F . Assuming that

the original HSS block row A
(k−1)
iic has fast-decaying singular values, the scaled block row

C
(k−1)
iic may not necessarily have this property. Hence, the rank of the approximation for

a given ε may be large. Heuristically, choosing Vi to minimize the approximation error

‖A(k) − A(k−1)‖2
F at each stage might be a better method, but an efficient way to do this is

currently unclear.

6.7 Numerical results

As example applications, we are concerned with the preconditioning of symmetric positive

definite matrices by HSS approximations in two general problems: solving linear systems

Ax = b using the preconditioned conjugate gradient (PCG) method and sampling corre-

lated random vectors y ∼ N (0, A) using a preconditioned Lanczos process [78].

To apply the preconditioners, we use the symmetric ULV factorization [26]. The fol-

lowing settings are shared for all experiments:

• Hierarchical partitioning of points: A full binary partition tree is constructed by

recursively partitioning a set of points using the principal components analysis algo-

rithm such that leaf nodes have no more than 100 points.
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• Rank of HSS block rows: Two settings: 1) The rank of Ui is fixed as a constant, r. 2)

The rank of Ui is adaptively chosen using a constant relative error threshold τ in the

associated compression of A(k−1)
iic or C(k−1)

iic .

• Algorithm for the projection method: The randomized algorithm in [57] is used to

estimate the principal column space of the compression target matrix with fixed rank

or relative error threshold in all the HSS approximations.

• Stopping criteria: A threshold ε = 10−8 is applied for all the experiments. PCG

stops at iteration i when the relative reduction of the residual satisfies ‖ri‖/‖r0‖ 6 ε

and the Lanczos method stops when the relative difference between two consecutive

iterates satisfies ‖yi+1 − yi‖/‖yi‖ 6 ε.

• Methods: Four methods are tested: Block Jacobi, Standard HSS with the projection

method, Method 1, and Method 2, denoted as BJ, HSS, SPDHSS1, and SPDHSS2,

respectively. The Block Jacobi preconditioner is composed of the diagonal blocks

associated with the leaf nodes of the partition tree. All methods are implemented in

Matlab.

6.7.1 Inverse multiquadric kernel

The inverse multiquadric kernel is a non-compact radial basis function and is defined as

K(x, y) =
1√

1 + c|x− y|2
, x, y ∈ Rd,

where c is a parameter that controls the flatness of the kernel function.

To maintain constant point density, N points are randomly and uniformly distributed in

a cube with edge length 3
√
N in 3D. We use parameters c = 0.5 with fixed rank r = 50

or relative error threshold τ= 1e-2. A test with τ = 8e-2 only for SPDHSS2 is included.

Results are shown for different values of N in Table 6.1. No preconditioning results can
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be shown for standard HSS as these approximations are not positive definite in any of our

settings. Also, BiCGStab with the standard HSS approximation as a preconditioner usually

does not converge within 2N steps for most of the test settings.

With fixed rank r, the approximation errors for both SPDHSS1 and SPDHSS2 are al-

ways larger than for standard HSS, as expected. The iteration counts for SPDHSS1 and

SPDHSS2 both increase with N , as the compression of larger blocks with fixed rank gives

less accurate HSS approximations. In addition, SPDHSS1 requires less construction time

than standard HSS which could also have been expected.

With τ=1e-2, the iteration count using SPDHSS2 is scalable for both solving and sam-

pling. This is at the price of much larger ranks for off-diagonal blocks as reflected by the

storage cost. The results suggest that, in this example, the scaled HSS block rows C(k−1)
iic

in Method 2 have slower-decaying singular values than HSS block rows A(k−1)
iic in standard

HSS. Meanwhile, SPDHSS2 with τ=8e-2 obtains a better balance between construction

cost and preconditioner effectiveness.

To compare with standard HSS, we increase the rank r for the cases with N = 8000,

12000, 16000 such that standard HSS approximations are also positive definite. Results

are shown in Table 6.2. An interesting phenomenon, which also appears with larger r and

with other kernels, is that although standard HSS has a smaller approximation error, it has

worse preconditioning performance compared to SPDHSS2.

The HSS approximation time and storage cost vs.N are shown in Figure 6.4. With fixed

rank, SPDHSS1 and SPDHSS2 both have quadratic computational complexities. With

fixed τ , these super-linear storage results indicate that ranks of the off-diagonal blocks in

both methods are related to N .

6.7.2 RPY kernel

The Rotne-Prager-Yamakawa (RPY) kernel D(x, y) : R3 × R3 → R3×3 is a positive def-

inite tensor function that describes the hydrodynamic interactions between particles in a
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Table 6.1: Numerical results for the inverse multiquadric kernel with c = 0.5. The it-
eration count and consumed time for solving and sampling, relative approximation error
‖Aapprx −A‖F/‖A‖F , construction time of preconditioners (including HSS approximation
and symmetric ULV decomposition), and storage cost of the ULV factors of the HSS ap-
proximations are presented.

N 4000 8000 12000 16000 20000

Solving Unprecond. 5970/20.8 11542/144.8 15708/372.2 15973/741.3 22240/1533.6
iter/time BJ 757/3.1 1299/17.9 1248/34.8 1400/66.8 1540/111.9

(sec.) r=50 SPDHSS1 253/3.9 375/15.0 475/28.0 463/38.6 483/51.9
SPDHSS2 195/2.9 305/10.1 373/20.9 348/29.7 430/46.8

τ=1e-2 SPDHSS1 184/2.5 294/10.0 329/19.2 308/29.4 348/43.0
SPDHSS2 11/0.3 11/0.8 15/2.0 11/2.5 13/3.8

τ=8e-2 SPDHSS2 48/1.0 58/3.4 99/8.7 64/9.3 78/15.7

Sampling Unprecond. 567/12.1 670/36.2 962/107.1 912/129.9 989/185.8
iter/time BJ 269/2.7 374/12.7 283/15.9 308/23.1 352/41.0

(sec.) r=50 SPDHSS1 136/3.3 163/8.2 181/11.9 164/16.9 183/26.0
SPDHSS2 113/2.3 126/5.9 156/11.3 155/15.6 145/20.0

τ=1e-2 SPDHSS1 104/1.7 146/5.8 138/9.5 129/14.0 126/17.2
SPDHSS2 9/0.3 9/0.8 11/1.7 8/2.1 10/3.3

τ=8e-2 SPDHSS2 33/0.8 37/2.4 53/5.1 35/5.5 41/8.8

Relative r=50 SPDHSS1 6.3e-2 7.7e-2 8.7e-2 9.1e-2 9.6e-2
error SPDHSS2 6.9e-2 8.3e-2 1.1e-1 1.1e-1 1.1e-1

HSS 1.1e-2 1.6e-2 2.1e-2 2.4e-2 2.7e-2
τ=1e-2 SPDHSS1 2.7e-2 3.0e-2 3.1e-2 3.2-e2 3.2e-2

SPDHSS2 1.3e-3 1.2e-3 1.2e-3 1.2e-3 1.2e-3
HSS 2.4e-2 2.6e-2 2.8e-2 3.0e-2 3.0e-2

τ=8e-2 SPDHSS2 1.6e-2 1.4e-2 1.6e-2 1.5-e2 1.8e-2

Construct. r=50 SPDHSS1 0.7/0.1 3.5/0.2 8.0/0.3 17.4/0.5 22.1/0.5
time (sec.) SPDHSS2 2.3/0.1 10.4/0.3 16.4/0.4 34.8/0.5 51.4/0.4
apprx/ulv HSS 1.7/- 7.4/- 13.4/- 20.4/- 34.6/-

τ=1e-2 SPDHSS1 0.5/0.1 2.1/0.3 4.6/0.5 8.8/0.6 13.1/0.7
SPDHSS2 11.9/0.4 50.8/1.2 130.9/2.5 257.4/4.3 421.1/6.4
HSS 3.0/- 11.1/- 23.3/- 48.5/- 61.5/-

τ=8e-2 SPDHSS2 5.1/0.2 24.2/0.7 46.9/1.1 98.9/1.8 157.3/2.7

Storage Dense Matrix 122 488 1098 1953 3051
(MB) r = 50∗ 14 28 41 58 68

τ=1e-2 SPDHSS1 20 45 75 101 134
SPDHSS2 87 248 485 744 1062

τ=8e-2 SPDHSS2 44 119 214 334 479
∗With a fixed rank, ULV factors of all the HSS approximations have the same storage cost.
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Table 6.2: Comparison among different preconditioning methods for the inverse multi-
quadric kernel for three problem sizes when the standard HSS approximation is positive
definite. The relative error (relerr), iteration count for solving (solve) and sampling (sam-
ple) are shown. The relative error does not appear to be always correlated with iteration
count.

r = 518, N = 8000 r = 665, N = 12000 r = 730, N = 16000
relerr solve sample relerr solve sample relerr solve sample

HSS 3.0e-5 12 10 5.3e-5 19 13 7.4e-5 22 16
SPDHSS1 1.2e-2 147 81 1.2e-2 174 85 1.3e-2 143 66
SPDHSS2 8.8e-4 7 6 2.1e-3 7 6 4.2e-3 10 8
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Figure 6.4: HSS approximation time and ULV factor storage cost vs. N for the inverse
multiquadric kernel with c = 0.5. Linear fittings are drawn with dashed lines.

viscous fluid. We previously used this kernel in coarse-grained macromolecular simula-

tions [79, 80], and the need to construct positive definite preconditioners for sampling in

this application was the original motivation for this work. The RPY kernel is defined as

D(x, y) =


kBT
6πηa

I3 if x = y

kBT
8πη|r|

[(
I3 + rrT

|r|2

)
+ 2a2

|r|2

(
1
3
I3 − rrT

|r|2

)]
if |x− y| > 2a

kBT
6πηa

[(
1− 9

32
|r|
a

)
I3 + 3

32
|r|
a
rrT

|r|2

]
if |x− y| < 2a

, with r = x− y,

where kB, T, η are fixed physical quantities and a is the radius of the particles. In this test,

a = 1 and constant kBT
6πηa

= 1. We place N non-overlapping particles randomly inside a

cube with a width chosen such that the volume fraction is 0.3. Note that RPY kernel matrix
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with N particles is of size 3N × 3N .

Results are presented in Table 6.3. The standard HSS approximations with r = 50 or

τ=1e-2 are not positive definite for any tested N . This is a challenging problem, as none

of the methods give scalable preconditioning performance. Although the construction cost

is high in some cases, it can be amortized over the many sample vectors that must be

computed for the same matrix in real applications.

Table 6.3: Numerical results for RPY kernel with particle volume fraction 0.3.
N 4000 6000 8000 10000 12000

Sampling Unprecond. 105/4.4 116/10.2 123/15.3 131/24.9 136/36.4
iter/time BJ 113/5.2 127/12.0 128/16.9 136/27.4 143/40.0

(sec.) r=50 SPDHSS1 68/4.3 75/9.6 81/13.3 89/21.4 98/33.5
SPDHSS2 65/4.0 80/10.6 86/14.3 95/22.8 103/35.3

τ=2e-2 SPDHSS1 24/3.2 26/5.7 28/8.8 29/12.3 30/16.4
τ=8e-2 SPDHSS2 19/2.4 22/4.7 24/7.7 24/11.0 26/17.0

Relative r=50 SPDHSS1 2.2e-1 2.3e-1 2.4e-1 2.4e-1 2.5e-1
error SPDHSS2 1.9e-1 1.9e-1 2.0e-1 2.1e-1 2.2e-1

τ=2e-2 SPDHSS1 5.2e-2 5.4e-2 5.8e-2 5.8e-2 6.0e-2
τ=8e-2 SPDHSS2 2.7e-2 2.9e-2 2.8e-2 2.6e-2 2.9e-2

Construct. r=50 SPDHSS1 3.1/0.19 6.6/0.36 12.0/0.39 16.9/0.50 24.6/0.77
time (sec.) SPDHSS2 6.7/0.19 16.0/0.37 25.8/0.39 37.3/0.51 54.5/0.65
apprx/ulv τ=2e-2 SPDHSS1 9.9/2.11 20.4/3.44 35.8/4.59 50.4/6.14 72.7/7.52

τ=8e-2 SPDHSS2 87.8/1.89 178.5/3.22 349.6/5.23 581.3/7.71 866.0/12.96

Storage Dense Matrix 1099 2472 4395 6867 9888
(MB) r = 50 45 76 92 129 155

τ=2e-2 SPDHSS1 461 731 955 1251 1509
τ=8e-2 SPDHSS2 380 645 1008 1455 1837

6.7.3 Boundary integral equation

Consider the 3D Laplace equation in a bounded Lipschitz domain Ω with Dirichlet condi-

tion u = uD on ∂Ω. The indirect boundary integral equation [77] for this problem leads to

a linear system V x = b with

Vij =

∫
τi

∫
τj

1

4π‖x− y‖2

dxdy, bi =

∫
τi

uD(x)dx, (6.25)

where {τi} is a partitioning of ∂Ω and matrix V is known to be always SPD.
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In this test, ∂Ω is the unit sphere and we solve the linear system above with uniform

triangulations with different numbers of triangles, N . Entries of b are randomly selected

from [−1, 1]. Results are shown in Table 6.4.

Table 6.4: Numerical results for the boundary integral equation over the unit sphere with
different N . The meshes and matrices are constructed by the package BEM++[81].

N 3206 6500 9008 12600 34184

Solving Unprecond. 80/0.32 92/0.96 104/1.92 106/3.56 140/34.32
iter/time BJ 35/0.16 37/0.40 39/0.79 44/1.58 51/11.14

(sec.) r=50 SPDHSS1 20/0.23 21/0.67 22/0.91 23/1.52 25/7.36
SPDHSS2 11/0.14 13/0.43 13/0.54 15/1.06 18/5.34
HSS 11/0.14 13/0.35 14/0.58 15/1.14 17/5.55

τ=1e-2 SPDHSS1 9/0.36 10/1.28 10/1.74 10/3.00 11/17.26
SPDHSS2 10/0.13 11/0.35 5/0.33 11/1.00 10/3.82
HSS 9/0.10 10/0.27 10/0.44 10/0.71 11/3.77

τ=5e-2 SPDHSS1 16/0.19 18/0.53 18/0.84 20/1.50 22/8.9

Relative r=50 SPDHSS1 1.3e-1 1.4e-1 1.4e-1 1.4e-1 1.6e-1
error SPDHSS2 6.0e-2 9.0e-2 9.5e-2 1.0e-1 1.3e-1

HSS 2.0e-2 2.8e-2 3.3e-2 3.7e-2 4.7e-2
τ=1e-2 SPDHSS1 1.7e-2 2.0e-2 2.0e-2 2.1e-2 2.4e-2

SPDHSS2 1.7e-2 2.0e-2 4.0e-3 1.7e-2 7.0e-3
HSS 1.4e-2 1.7e-2 1.5e-2 1.8e-2 2.1e-2

τ=5e-2 SPDHSS1 8.7e-2 9.8e-2 1.0e-1 1.1e-1 1.2e-1

Construct. r=50 SPDHSS1 0.4/0.07 1.8/0.23 2.8/0.28 6.9/0.45 52.2/1.17
time (sec.) SPDHSS2 1.1/0.08 4.6/0.17 7.6/0.28 23.9/0.32 125.5/0.82
apprx/ulv HSS 0.8/0.08 3.4/0.17 5.6/0.23 16.6/0.32 91.2/0.82

τ=1e-2 SPDHSS1 1.7/0.82 8.1/3.19 15.8/6.14 33.0/11.41 410.2/127.95
SPDHSS2 1.4/0.10 5.4/0.23 12.8/0.37 22.1/0.62 164.1/1.68
HSS 0.7/7e-2 2.7/0.16 6.1/0.23 10.6/0.32 67.5/0.91

τ=5e-2 SPDHSS1 0.4/0.10 1.4/0.20 2.6/0.27 5.16/0.41 37.3/1.10

Storage Dense Matrix 78 322 619 1211 8915
(MB) r = 50 11 23 30 46 128

τ=1e-2 SPDHSS1 157 552 941 1588 8237
SPDHSS2 15 35 58 81 275
HSS 10 21 32 46 143

τ=5e-2 SPDHSS1 16 32 43 59 151

In contrast to the previous problems, the standard HSS approximations using our cho-

sen rank r and thresholds τ are found to be positive definite for these integral equation

problems. Here, standard HSS should be the preconditioner of choice but there is no guar-

antee that the standard HSS approximations for these problems are always positive definite.

Thus, it is still of interest to see how SPDHSS1 and SPDHSS2 perform.

162



Similar to what was observed in Table 6.2, the preconditioning performance of SPDHSS2

is close to that of standard HSS, even though standard HSS gives more accurate approx-

imations. A disadvantage of SPDHSS1 here is also evident: for the small relative error

threshold τ=1e-2, SPDHSS1 needs much larger ranks than standard HSS to compress the

off-diagonal blocks as reflected by the enormous storage cost. This is corroborated by Fig-

ure 6.3 shown earlier, where the decay of relative errors in Method 1 is much slower than

that of the truncated SVD. This disadvantage suggests that SPDHSS1 should only be used

for low-accuracy preconditioning operations by controlling its off-diagonal block rank r.

To summarize, based on the three tests above, SPDHSS2 is more effective than SPDHSS1

for preconditioning but requires greater construction time and storage. SPDHSS1 is faster

to construct but cannot provide highly accurate approximations with low-rank compres-

sion. A careful rank selection for HSS off-diagonal blocks in both methods is needed to

balance the trade-off between preconditioner quality and construction cost. Like the stan-

dard HSS construction, both methods have O(rn2) computational complexity. We remark

that our implementations are sequential and runtimes can be improved by taking advantage

of parallelism. In addition, if the original matrix can be represented by an H2 matrix with

the strong admissibility condition that is accurate enough to be SPD, it is then possible to

further reduce the construction cost of both methods by taking advantage of the low-rank

structures in these forms.

6.8 Conclusion

In this chapter, we designed two positive-definite-preserving HSS approximation algo-

rithms based on a recursive description of constructing HSS representations. Method 1 is

different from all existing methods in that the Ui used to compress the off-diagonal blocks

are based on the diagonal blocks and do not require factoring HSS block rows. That this

cheaper alternative can provide good approximations in some cases, as well as its gen-

eralization to different choices of invariant subspaces for Ui, are worthy of further study.
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Method 2 chooses Vi to compress off-diagonal blocks after scaling. It is also worthwhile

to explore how to choose Vi to directly minimize the approximation error ‖A(k) − A(k−1)‖

(before scaling) at each stage, while also preserving positive definiteness.

This chapter also provided a method of understanding the errors incurred at each stage

of an HSS approximation when projection is used to compress off-diagonal blocks. This

use of projection led to the elegant result that the errors at each stage are orthogonal to

each other. Experimentally, we observed that smaller approximation error is not always

correlated with better preconditioned convergence rate. Better control of the preconditioned

convergence behavior via the approximations chosen in rank-structured representations is

a long-term goal of this research.
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APPENDIX A

RECURSIVE CONSTRUCTION OF INTERMEDIATE MATRICES

This appendix describes the recursive construction of intermediate matrices Bi,j in Sec-

tion 2.6 in order to construct anH2 matrix representation of a kernel matrix K(X,X). For

each block K(Xi, Xj) with j ∈ Fi or i ∈ Fj , the optimal intermediate matrix Bi,j in the

Frobenius norm can be represented as

Bi,j =


U †iK(Xi, Xj)(V

T
j )† j ∈ F1

i or i ∈ F1
j

U †iK(Xi, Xj) j ∈ F2
i

K(Xi, Xj)(V
T
j )† i ∈ F2

j

. (A.1)

All these optimal Bi,j with j ∈ Fi or i ∈ Fj can be recursively constructed using Bia,jb

associated with possible children ia of i and jb of j. In the end, only Bi,j with (i, j) ∈ A

and (i, j) ∈ Ap are kept for the finalH2 matrix representation. This recursive construction

is described as follows.

When i and j are both leaf nodes,Bi,j can be directly constructed according to eq. (A.1).

Otherwise, we first consider the case where both i and j are non-leaf nodes with children

{ia} and {jb}. In this case, it can be shown that i and j are at the same level, j ∈ F1
i , and

i ∈ F1
j . Each child jb of j is also in F1

ia with all the children ia of i. Assume that each child

intermediate matrix Bia,jb has been computed as

Bia,jb = U †iaK(Xia , Xjb)(V
T
jb

)†.

Based on the nested forms of Ui and Vj , Bi,j can thus be computed as

Bi,j = U †iK(Xi, Xj)(V
T
j )†
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= R†i



U †i1

U †i2
. . .

U †is


K(Xi, Xj)



(V T
j1

)†

(V T
j2

)†

. . .

(V T
js )†


(STj )†

= R†i



Bi1,j1 Bi1,j2 . . . Bi1,js

Bi2,j1 Bi2,j2 . . . Bi2,js

...
...

...

Bis,j1 Bis,j2 . . . Bis,js


(STj )† = R†i B̄i,j(S

T
j )†. (A.2)

where B̄i,j denotes the matrix made up by all the children intermediate matricesBia,jb . This

block B̄i,j is of dimension 2dr0 × 2dr0 and thus computing R†i B̄i,j(S
T
j )† has O(1) cost.

We then consider the case when i is a non-leaf node and j is a leaf node. In this case,

j ∈ Fi is either at the same level as i or at an upper level. Similar to the above discussion,

denote B̄i,j as the vertical concatenation of intermediate matrices Bia,j with all children ia

of i. Matrix Bi,j can then be efficiently computed as

Bi,j =

 R†i B̄i,j(V
T
j )† j ∈ F1

i

R†i B̄i,j j ∈ F2
i

. (A.3)

Similarly, when i is a leaf node and j is a non-leaf node, i ∈ Fj is either at the same

level as j or at an upper level. Denote B̄i,j as the horizontal concatenation of intermediate

matrices Bi,jb with all children jb of j. Matrix Bi,j can then be efficiently computed as

Bi,j =

 U †i B̄i,j(S
T
j )† i ∈ F1

j

B̄i,j(S
T
j )† i ∈ F2

j

. (A.4)

The overall construction of an H2 matrix representation of K(X,X) combines Algo-

rithm 1 and the above recursive construction of Bi,j and is shown in Algorithm 13. The
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recursive construction of Bi,j and Algorithm 1 can be merged together to traverse the par-

tition tree T once. Moreover, using the computed Bi,j at a lower level, the approximated

matrices in Algorithm 1 for non-leaf nodes can be further replaced by smaller matrices,

which helps reduce the low-rank approximation cost. We skip detailed discussion about

this cost-reduction technique and interested readers can refer to Ref. [27].

Algorithm 13 Construction of anH2 matrix representation of K(X,X)s
Input: X , K(x, y)
Output: H2 matrix components: T , Ui, Vi, Ri, Si, and Bi,j

1: • construct a hierarchical partitioning of X which gives a partition tree T .
2: • apply Algorithm 1 to construct Ui, Vi, Ri, and Si for each node i ∈ T .
3: for l = L,L− 1, . . . , 1 do
4: for all nodes i and j in level+(l) do
5: if i and j are both leaf nodes then
6: • compute Bi,j using eq. (A.1).
7: else if i and j are both non-leaf nodes then
8: • compute Bi,j using eq. (A.2).
9: else if i is a non-leaf node and j is a leaf node then

10: • compute Bi,j using eq. (A.3).
11: else if i is a leaf node and j is a non-leaf node then
12: • compute Bi,j using eq. (A.4).
13: end if
14: end for
15: end for
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[3] W. Hackbusch and S. Börm, “Data-sparse approximation by adaptiveH2-matrices,”
Computing, vol. 69, no. 1, pp. 1–35, Sep. 2002.

[4] W. Hackbusch, B. Khoromskij, and S. A. Sauter, “On H2-matrices,” Lectures on
Applied Mathematics, pp. 9–29, 2000.

[5] S. Chandrasekaran, M. Gu, and T. Pals, “A fast ULV decomposition solver for hi-
erarchically semiseparable representations,” SIAM Journal on Matrix Analysis and
Applications, vol. 28, no. 3, pp. 603–622, Jan. 2006.

[6] S. Ambikasaran and E. Darve, “An O(N logN) fast direct solver for partial hierar-
chically semi-separable matrices,” Journal of Scientific Computing, vol. 57, no. 3,
pp. 477–501, Dec. 2013.

[7] M. Bebendorf, C. Kuske, and R. Venn, “Wideband nested cross approximation for
Helmholtz problems,” Numerische Mathematik, vol. 130, no. 1, pp. 1–34, 2015.
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