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Abstract: 

A requirement for human robot collaboration is that the robot’s movements display intent early in the 

interaction so that a human may respond to the action appropriately. Regarding autonomous navigation, 

local planning is responsible for creating this motion relative to a global plan in an environment with 

dynamic obstacles. This research is the augmentation, implementation, and testing of ROS embedded 

local planners DWA and TEB for the purpose of creating legible motion 

Introduction 

As robots become more accessible in the home environment, it becomes important that a robot’s 

navigation pathing be legible for humans the robot is commonly interacting with [1]. Human reactionary 

movement is largely based on the perceived intent of the movements of the obstacle or entity the human is 

attempting to overcome. Making functional movement less a necessity when interacting with people as 

intent representation becomes the dominant requirement [2]. Human agents are not static, and so to 

produce legible motion in a practical human filled environment, what is responsible for overcoming 

obstacles is here augmented. More specifically, local planners interpret dynamic movements of the 

environment and create a pathing to handle the detected objects, this research considers the augmentation 

of local planners to produce legible object avoidance, which per a global plan produces legible paths. 

Then in testing the augmented paths, first in simulation and then physically, a relative measure of 

legibility be determined. 

Functional vs Legible Motion 

Functional motion is defined as motion that prioritizes efficiency where in legible motion attempts 

illustrate intent by orienting a robot’s physical model towards goal earlier in execution of an action [2], 

which may yield suboptimal execution times, but the intent is more easily communicated 

  

Figure 1. This displays a representation of the differences between functional and legible motion 

Methods and Materials 

The two algorithms considered are the Dynamic Window Approach (DWA) and the Timed Elastic Band 

(TEB) planners paired with the base navigation stack global planner all built within the ROS middleware 

Dynamic Window Approach 



The Dynamic Window Approach (DWA) provides a sample-based optimization by predicting several 

different possible velocity movements within the robot’s control space relative to a global path and 

produces a local grid map for which the samples are generated After throwing out illegal movements the 

DWA selects the best trajectory at a given velocity defined by a cost function that assesses distance from 

global path, distance to goal and obstacle avoidance for some predefined step size [3]. The onboard 

controller then translates to determine directional velocities to produce the found “best” trajectory. By 

manipulating the values of the cost function and deciding pathing tolerance for the DWA for what is and 

is not valid, thus creating different means of reaching a goal [4], possibly more legible. Because the DWA 

is easy to augment and is computationally quick, through simple augmentation of its core cost function, 

more legible paths based around object avoidance and goal progression, more legible consideration for 

path generation should be prioritized in implementation. 

Timed Elastic Band 

The Timed Elastic Band planner provides a continuous optimization solution to local planning. By 

sampling a subset of the subscribed global plan within the local cost map, a local goal is defined. By 

default, TEB optimizes out one path that takes the least amount of time and executes that found path at 

each time interval of the found trajectory. To prevent the algorithm from getting fixed on one solution for 

any optimal pathing, other admissible paths are also simultaneously generated using a version of 

homotopy along several trajectories among different topologies [5] which, by varying the distance at each 

time interval and then running the same optimization function over the generated new paths, thus 

providing several solutions and preventing becoming fixed. Which in terms of legibility should better 

account for dynamic objects. The cost function deciding the optimality depends on the Levenberg-

Marquardt algorithm to create a best fit curve to the constraint approximations specifically defined by 

constraints and predefined weights. Given that this optimization forces a relatively smooth curve and 

legible actions also resemble smooth curves [6], use of TEB to create a curve around obstacles relative to 

a global path is the intuition in using it for increasing legibility. 

Procedure  

Beginning with the implementation of DWA, the central cost function determines the behavior of the 

algorithm. The cost function is the following equation 

𝐶𝑜𝑠𝑡 = (𝑤1 ∗ 𝑃𝑑) + (𝑤2 ∗ 𝐺𝑑) + (𝑤3 ∗ 𝑂𝑑/100) 

Where 𝑃𝑑 represents the path deferment from the last received trajectory relative to the global plan and 

scores higher paths that do not defer much. Goal distance denoted 𝐺𝑑 in the function, is the distance from 

the goal by any trajectory produced scoring higher trajectories that end closer to the goal. Lastly is the 

variable 𝑂𝑑 which represents the object tolerance for any trajectory. Each of these variables are 

multiplied by a weight whose relationship to the other weights determines the behavior of the algorithm 

[7]. Therefore, in comparing weight relationships before attempting to find optimal weights, a clear 

domain of weight distribution becomes evident on which to begin searching for the most legible behavior. 

Through augmenting the weights such that behavior was noticeably different when running a simulated 

Fetch in an environment with static obstacles, the following domain classes were used as denoted in. It is 

also important to note that because the assumed core of creating legible motion in local planning is 

obstacle avoidance [8], the 𝑂𝑑 variable is never lowered beyond its default value as it is the variable that 

scores the behavior that needs to be exhibited. 



 

Figure 2. A relational graph denoting the amount of weight given to the input variables of the algorithm 

Relational Behavior 

The default configuration prioritizes taking paths that are closer to the path already traveled and only 

considers object avoidance and path deferment when it becomes necessary to continue progressing 

towards the goal [9]. Increasing the weight on the path distance variable gave an exaggerated result of the 

typical trajectories generated by the default configuration, but instead occasionally became stuck and 

obstacles that were able to be overcome with the default weights now were insurmountable.  Similarly, 

with increasing the allowance for goal tolerance, Fetch would often get stuck as within any iteration close 

to an obstacle where the default would have disqualified, became a valid a trajectory, this configuration 

marks it as valid because the goal of the algorithm then becomes moving towards the goal above all else. 

Finally forcing the algorithm to better avoid obstacles yields smoother curves, but with too many static 

obstacles in a simulated environment, a metaphysical wall is built making all trajectories invalid as the 

robot cannot produce a trajectory outside of the object tolerance. 

  

Figure 3. A depiction of the metaphysical wall problem, notice that there exists a “barrier” around the 

humans as they are recognized as objects. 

Taking the extreme cases and combining them with lowered object tolerance is represented by the last 

two combined domains in the figure. Dampening the weight on goal tolerance and subsequently 

increasing the weights on obstacle avoidance and path deferment, in simulation, the algorithm continues 

to the goal, but begins running into the problem of a metaphysical wall. Using a similar configuration, bu 
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instead prioritizing simply moving towards the goal along with increased object avoidance, yielding 

curved paths around obstacles that move towards the goal, but not is easily perceived as legible because 

path direction changes heavily from each step in the iteration to the next, given the variable controlling 

path distance from the previous iteration is decreased.  

Timed Elastic Band 

By default, the TEB generates a smooth, relatively legible curve.   

  

Figure 4. A subgoal of the global path within RViz created using default TEB. The top path is shown as 

the preferred time optimal path.  

The paths generated similarly to the DWA by means of a cost function, however TEB performs a best fit 

via the following formula for perceived obstacles in any time step. 

𝑏∗ =  ∑ 𝜎𝑖𝑓𝑖
2(𝑏)

𝑖
, ⅈ ∈ {𝐽, 𝑃}  

Note that the notation b* represents the optimal pathing and is equal to the aggregate of non-linear least 

squares constrained by objectives denoted by 𝐽 and penalties 𝑃 and then multiplied by some weight 𝜎𝑖. 

The optimal discretized trajectory 𝑏∗ is obtained by my minimizing the cost function while still 

attempting to accurately represent the objectives and penalties specified by parameters defined within the 

algorithm [10] 

With TEB the individual weights are left default while the bounds of the constraints are instead changed 

which allows for different pathing behavior. The augmented constraint values are increased inflation 

distance, the buffer zone around obstacles, and keeping this above the minimum obstacle distance, which 

attempts to mandate a minimum curve around obstacles. Distinctive paths as shown in the following 

figure are generated.  



 

Figure 5. This displays how the augmented TEB allowing for more curved legible paths compared Figure 

4 within simulation 

Physical Implementation 

When faced with the physical dynamic obstacles in a real environment, the DWA algorithm is unable to 

overcome the issue of the metaphysical wall experienced when the obstacle bias dominated the weight 

distribution regardless of any tangible increase in consideration for object avoidance. Fetch is able to 

consistently reach a goal pose when running TEB as the local planner, being that TEB continues to search 

for a solution despite it’s given constraints. 

Findings  

In simulation, using the Dynamic Window Approach is relatively effective in increasing legible motion as 

curved paths can be the forced preference, however because the curved paths are made inconsistent by the 

path deferment weight being decreased, the curved paths may be generated in changing directions when 

faced with several static objects. Dynamic objects in the physical implementation were insurmountable 

making the implementation DWA infeasible to implement for the purpose of increased legibility.  

The Timed Elastic Band local planner generates more legible paths as it, by construct, generates smooth 

curves which is natively more representative of legible motion. In physical motion 

DWA nor TEB are built for legibility and so forcing parameters for a desired use that the planner is not 

built for yields suboptimal results. Local planning focuses on object avoidance which enables the 

metaphysical wall problem. Because TEB creates a subset of the subscribed global plan, if the algorithm 

is instead configured not for only optimality, but solely generating legible curves from the beginning pose 

to the subset goal, a more consistent pathing could be generated. Thus, creating a legible planner rather 

than repurposing others. 
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