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SUMMARY

This thesis presents a mathematical framework and methods for understanding,

modeling, and deploying biologically inspired cellular actuators. Cellular actuators

are so named because they are modular units that can be connected in series and par-

allel bundles to actuate a given degree of freedom, much like muscle cells in biological

systems. Two important biological principles of these actuators are expounded upon

in this work: compliance, and quantization in actuation effort. Methods for modeling

and designing nested hierarchical strain amplifying mechanisms are presented. These

mechanisms serve the dual purpose of introducing natural compliance and adapting

the force-displacement operating characteristic of the active material to one more suit-

able for robotics applications. This thesis presents a systematic understanding and

design method, whereas previous work in this area has resorted to ad hoc methods.

Cellular actuator driven systems have a number of on-off inputs, similar to motor

units in human muscle. Methods are presented in this thesis that selectively activate

motor units in time to produce smooth motion despite an innate tendency toward

oscillatory behavior. The effectiveness of the design and control methods presented

are demonstrated on a biologically inspired camera positioning mechanism that is

driven by a pair of cellular actuators in an antagonistic configuration.

xvi



CHAPTER I

INTRODUCTION

The subject of this thesis is to lay the groundwork for a mathematical understanding

of biologically inspired actuators that posses quantization and flexibility. Biological

systems routinely perform tasks that range from extremely challenging to impossible

for even the most advanced robotic systems. For this reason, robotics researchers

often look to biology for inspiration in solving problems. The key to biological sys-

tems’ remarkable performance is their actuation. Two aspects inherent in biological

actuators: quantized inputs and flexibility, are crucial to the simple elegance and

remarkable capabilities of human muscle tissue. Figure 1 illustrates these elements of

bio-inspired actuation as they will be expounded upon in this thesis. This thesis seeks

to understand these concepts mathematically and lay a foundation for the systematic

design and deployment of actuators of this type in robotic systems.

Although biological motion systems are extremely complicated from the point of

view of cognitive and metabolic processes, from a motor system architecture perspec-

tive, they are elegant in their simplicity. Muscles consist of bundles of contractile

fibers which are activated by a simple neural on-off input. Effects of each individual

fiber are summed by the compliant tissue that connects them. This summation of

on-off inputs can be viewed as a quantization of the control input. The compliance

gives muscle tissue robustness of operation with regard to uncertain environments and

off-axis deformations. The on-off nature of the control inputs make the neural cir-

cuitry robust to signal disruptions such as capacitive coupling. If some muscle fibers

are damaged and become inactive, (which happens routinely), the high redundancy

of the system means that the desired task can still be completed.
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Figure 1: Biological actuation systems are made up of various on-off motor units, or
collections of fibers innervated by a single motor neuron. Efforts of various motor units
are coupled by elastic cytoskeletal tissue. Activation of motor units are coordinated
in time to minimize oscillation and keep the motion smooth.

This biological actuation scheme represents a paradigm shift when applied to the

robotics world, where a single analog actuator per degree of freedom is nearly uni-

versal. In most robotics contexts, “Redundancy in actuation” is understood to mean

more degrees of freedom than are necessary to achieve a specific end effector posi-

tion and orientation in the task space rather than multiple actuators per degree of

freedom as in muscle systems. This biologically inspired actuation paradigm holds

great promise for expanding the robustness and capability of robotic systems, but is

lacking in mathematical tools that can be used to understand the static and dynamic

performance of actuators of this type. This thesis seeks to provide a general mathe-

matical framework that can systematically ensure that engineering specifications are

met and serve as a foundation for further studies of flexible quantized systems.

1.1 Piezoelectric devices

Like human muscle, these actuators will require some sort of basic active unit that

contracts in response to an electrical stimulus. Numerous active materials are avail-

able that contract under the application of an electric field. These materials are
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Figure 2: Rhomboidal strain amplification

inorganic, but still exemplify the biological principles mentioned in the previous sec-

tion. The active material of choice in this thesis is piezoelectric ceramic1. It is widely

available, does not require extremely large voltages or currents, and is somewhat

compliant. Its force-displacement performance point, however, is not suitable for

robotics. Several chapters of this thesis are devoted to the discovery of methods to

shift the performance point to something more favorable, using rhomboidal strain

amplification mechanisms. An added advantage of rhomboidal strain amplification

methods is that because they are deformable, no additional parts are required simply

to introduce the necessary compliance.

The principle of rhomboidal strain amplification mechanisms is illustrated in Fig-

ure 2. Due to the geometry of the rhomboid, when an active material elongates,

expanding the major axis by a small amount, the minor axis will contract by a larger

amount.

Any robotic mechanism will possess large numbers of these amplifying mecha-

nisms, and often times they will be of small size. For these reasons, it is advanta-

geous to avoid actual hinges and instead machine the mechanism from a single piece of

stock. This results in compliant rhomboids, such as those shown in Figure 3. Figure

1This thesis uses a commonly available type called Lead Zirconate Titanate (PZT)
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(a) Localized compliance (b) DistributedCompliance

Figure 3: Various types of compliant rhomboidal mechanisms. Deformation shown
when a force is applied as shown by the arrows

3a shows a rhomboid with “flexure hinges” or zones of localized compliance, however,

this is not strictly necessary; an alternative is shown in Figure 3b.

The compliant mechanisms shown in Figure 3 have an amplification property

whose description is much more involved than that of the mechanism shown in Figure

2. This is complicated further when the amplification occurs in stages, as illustrated

by the examples in Figure 4. This thesis presents a more adequate description.

The engineering goal of this investigation is to find methods of producing amplified

piezoelectric actuators that are modular and can be connected together in series and

parallel combinations to have muscle-like properties. For this reason, they are well

suited to the cellular actuator paradigm.

1.2 Discretized actuation effort inspired by muscle fiber re-
cruitment

It is evident from Figure 4 that each device of this type will contain numerous piezo-

electric stacks. Piezoelectric material suffers from hysteresis, as shown in Figure 5.

To avoid this effect, this thesis will exploit the ability to independently command

each of the piezoelectric stack inputs and each stack will considered to be an on-off
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Figure 4: Multi-stage rhomboidal amplification mechanism. The output of each
stage is the input to the next. 4a shows the process diagrammatically and 4b shows
a physical device of this type.

input only. In this way, the actuator will only operate at the extreme tips of the

hysteresis loop, which are repeatable. This is analogous to the concept of motor units

in human muscle tissue.

Muscle systems work using the idea of recruitment. Since each motor unit can be

only completely on or completely off, the neuromuscular system modifies the number

of motor units in the on or off state to increase or decrease actuator effort. This

thesis will identify some fundamental recruitment strategies using principles of system

dynamics and control theory, and demonstrate them on cellular actuators.

1.3 Experimental apparati

The methods, designs, and algorithms discovered in this work will be demonstrated

on two hardware setups, shown in Figure 6, as appropriate to the situation. The

first is a replica of the 6-input, two-layer actuator of Ueda, Secord, and Asada [1]

in a single-ended configuration. The second is a single-degree-of-freedom camera

positioning mechanism driven by an antagonistic pair of three-layer actuators. This
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Figure 5: Hysteresis loop in a piezoelectric tweezer device. One path is for charging,
the other for discharging. Plot courtesy of Timothy McPherson.

device has 16 inputs per side.

The design of the camera positioning mechanism puts the methods and principles

discovered in this research into practice and demonstrates their use. The mechanism

itself will also serve as a convenient test bed for future work beyond this thesis, such

as validating hypotheses about the neural control of the ocularmotor system and

studying co-contraction phenomena.
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(a) Single-Ended 6 input actuator

(b) Biologically inspired camera positioner

Figure 6: Devices for experimental validation
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CHAPTER II

LITERATURE SURVEY

This chapter summarizes the contributions from various communities that set the con-

text for and provide principles relevant to the work conducted in subsequent chapters.

Because cellular actuators use compliant mechanisms to amplify the displacement of

piezoelectric actuators, there are representatives from the smart structures litera-

ture. A review of non-traditional camera positioning mechanisms is conducted, with

some background on the motion of the human eye. In addition, there are particu-

lar resources included from the system dynamics and control literature dealing with

quantized systems and control of flexible manipulators

2.1 Strain amplified piezoelectric stacks

Lead Zirconate Titanate (PZT) piezoelectric stack actuators, although inorganic, are

like biological muscle in that they exhibit a two-way interaction with the load. A

piezoelectric ceramic generates a voltage in response to a mechanical stress (the di-

rect piezoelectric effect) or a mechanical strain when an electric field is applied (the

converse piezoelectric effect) [2]. Piezoelectric stacks by themselves are of little use in

robotics applications due to their minuscule displacement. One method of mitigating

this is to use a piezoelectric stack in combination with a stick-slip friction mechanism

to move some other part, as in [3]. This technique has been used successfully in a

number of mechatronic positioning devices, but “ratcheting mechanisms” of this type

are not well suited to advanced robotic applications such as impedance control. A

more promising technique is the use of amplifying mechanisms to increase the dis-

placement. In this scheme, a piezoelectric stack actuator imposes a force-displacement

boundary condition on a strategically chosen point (the input) of a linearly elastic
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deformable body. The geometric properties of the deformable body are such that

the displacement at another particular point (the output) is much larger than the

displacement of the piezoelectric stack. The output point is connected to the load.

Of course, some of the electrical energy supplied to piezoelectric stack is stored in the

deformable body as strain energy, and in some sense this can be viewed as a parasitic

effect.

A summary of various techniques for optimizing these PZT plus compliant mech-

anism devices can be found in [4]. In general, the design of a compliant mechanism

has two distinct steps, a topology synthesis, followed by a dimensional synthesis [5].

One method is the “topological optimization” approach, whereby the designer be-

gins with a “ground structure” [6,7], usually a uniform truss with uniform members.

The algorithm modifies, and in some cases removes these members, resulting in a

topology. The thickness of various elements is refined during the dimensional syn-

thesis phase, which does not change the path from active element to load. Grossard,

et al. [8] use a variation on this approach using a component library of active and

passive ground structures, called FlexIn. Their optimization routine also includes

dynamic performance criteria, ensuring that all such modes are collocated. Although

this “automatic” approach is appealing, it is computationally intensive, and the pro-

cess does not apply engineering intuition in the intermediate stages of the process. A

degenerate structure may be produced and the designer will not know until late in

the process.

Several companies [9,10] produce commercial, modular versions of amplified piezo-

electric stacks using a rhomboidal architecture. Most of the research on rhomboidal

strain amplification methods focus on the design of regions of localized compliance, or

“flexure hinges” and how closely they approximate ideal hinges [11–16]. These works

present analytical and numerical evaluations that agree well with finite element anal-

ysis. It is also noteworthy that automatic topology synthesis methods searching for
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an optimal configuration have converged to rhomboid-like devices [17].

Even with an impressive displacement amplification factor of 10-20, [18, 19], the

displacement of these rhomboidal devices is still on the order of µm, still not large

enough for most robotics applications. Ueda, Secord, and Asada [1, 20] amplify this

displacement still further by placing several amplified stacks in series and amplifying

the output of this series combination a second time, calling the strain amplifier of the

commercial part the “first layer,” and the rhomboidal mechanism that amplifies the

output of the series combination the “second layer.” This multi-stage amplification

technique produces strains on the order of that of human muscle, approximately 22%.

Since this actuator has a strain rate similar to that of human muscle, its displacement

and force will scale with volume similarly to human muscle. Ueda, Secord, and

Asada’s actuator is a modular device, and the purpose is to use bundles of these

units much like the cells in a muscle. In fact, this work draws connections with the

Hill lumped parameter muscle model [21]. For this reason, actuators of this type

are termed cellular actuators, because many of them can be connected in series and

parallel combinations to achieve desired actuation characteristics, as human muscle

cells are. Secord and Asada [22, 23] combine this mechanism with mechanical stops

so that the resulting actuator will have a position-dependent stiffness as specific units

in the chain are activated. While the Hill model is in itself a useful construct, the

lumped parameters have no connection to the physical aspects of the design itself.

This thesis will address this, forging a connection between the physical manifestation

of the actuator and its performance.

A few additional works exist that present some sort of three-dimensional or multi-

stage compliant amplification mechanism [24,25], but none of them provide any ratio-

nale for their nested design other than to say that a single amplification mechanism

produced insufficient displacement. Nor do they provide a general mathematical de-

scription that describes the behavior of multi-layer nested structures across a wide

10



range of geometries and topologies. Structures such as these quickly become difficult

to analyze using traditional methods, even when only considering small numbers of

layers. As the number of layers becomes large, numerical techniques, such as finite el-

ement methods, can become unworkable due to the multiply connected topology and

the difficulty meshing the structure arising from interfaces and differences in charac-

teristic dimension between the layers. In addition, roboticists are primarily interested

in input-output behavior, not internal forces and nodal displacements, meaning that

a lot of computational power is wasted on calculating information that is not used.

2.2 Two-port networks to model two-way interactions

Traditional robotic mechanisms tend to be stiff when viewed from the environment.

More advanced robotics behave more like biological systems in that they have a

bicausal, or two-way interaction with the environment [26]. Karnopp, Margolis, and

Rosenberg [27] treat this interaction using the notions of multiport capacitors and

resistors. This thesis borrows a mathematically similar but conceptually different

idea, that of the two-port network [28, 29].

The two-port network has proved useful in the areas of telemanipulation [30, 31].

Abdalla, et. al. [6] use it to model interactions between piezoelectric stacks, a compli-

ant mechanism, and the load. Ueda, Secord, and Asada [1] use the two-port network

model in conjunction with fictitious Hill muscle model lumped parameters. In this

thesis, the two-port model is used to provide the necessary abstraction to explain the

complex interaction of numerous hierarchically arranged strain amplification mecha-

nisms in a tractable way. Two-port parameters are derived that have a direct con-

nection to the physical structure.

2.3 Automatic camera positioners and the human eye

One motivation for the work conducted in this thesis is that due to their inherent

flexibility and cellular structure, these actuators hold the potential to be used in a
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camera positioning mechanism that more closely replicates the structure and motion

of the human eye. Due to the quantized nature of the actuation, this mechanism

may be useful in testing hypotheses about the neurological mechanisms that govern

human eye movement. The eye can be reoriented with astounding performance by 6

lightweight recti muscles. They are compliant actuators that are activated in discrete

steps by neural impulses. Actuators employed by existing camera positioning mech-

anisms, surveyed in this section, all bear some key dissimilarities with the human

eye.

2.3.1 Automatic camera positioners using traditional actuators

Automatic camera positioning devices are nothing new; in fact, many such devices are

commercially available [32]. The vast majority of such devices are motor-on-motor

designs, which consist of a “pan” platform that moves relative to a fixed base, and

a tilt platform, which is mounted on and moves relative to the pan platform, or vice

versa. A third axis, the torsion (or rotation about the gaze axis) mechanism, may be

included as well. Examples of motor-on-motor designs include [33] and [34]. There

are drawbacks to this design. As a serial mechanism, each actuator has to be capable

of driving the inertia and supporting the weight of each successive stage. This is

inefficient, as the actuators typically weigh more than the camera itself. Often times

the the actuator for the successive stage makes up the majority of the inertia of a

given stage. These high inertias reduce the bandwidth of the mechanism. Naturally,

the motor-on-motor configuration is not a very energy efficient design, because con-

siderable power is being used to move the actuators, rather than just the camera

itself.

Certain notable non-serial camera positioners exist, and they work on a variety of

different principles. One option is to design a parallel, rather than serial mechanism,

which allows the actuators for all degrees of freedom to be mounted on the base.
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The agile eye is a three-degree-of-freedom parallel mechanism (pan, tilt, and torsion)

driven by servomotors and linkages arranged symmetrically. Because each motor does

not correspond directly to a given degree of freedom, the desired motor displacements

must be determined through inverse kinematics, which are complicated expressions.

Gosselin et. al. present the design [35, 36], kinematics [37], [38], and discussion of

dexterity and singularities [39] of the agile eye. A two-degree-of-freedom platform

which uses two linear motors and universal joints is described in [40]. Truong, et.

al [41] use a parallel mechanism with cable bevel transmissions. This cable circuit

allows both drive motors to be placed on the base.

2.3.2 Automatic camera positioner using non-traditional actuators

Several notable camera positioners exist which use non-traditional actuators. The

spherical pointing motor [40], [42] consists of three sets of orthogonal windings and

a permanent magnetic rotor mounted on a gimbal, which can be oriented by appro-

priately energizing the three coils. Chirikjian and Stein propose a spherical stepper

motor which uses close packing of various semi-regular circular packings on a fer-

romagnetic sphere and coils [43]. The coils have a different packing pattern than

the sphere, and as a result, the mechanism can reach a large finite set of final posi-

tions. The method of determining a proper step sequence to reach a given position

is presented. Villgrattner and Ulbrich [44] present a two degree of freedom camera

positioner which uses ultrasonic motors.

2.3.3 Human ocular motion

While these mechanisms represent unique and creative solutions to camera position-

ing, they have very little to do with how the human eye moves. The human eyeball,

or globe, is oriented by means of antagonistic pairs of recti and oblique muscles. The

range of achievable orientations follows Donders’ Law and Listing’s law, both for

saccadic motion and smooth pursuit [45]. Cannata and Maggiali [46] maintain that
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antagonistic pairs of contractile actuators with insertion points into the globe are key

to the eye’s kinematics.

Cannata and Maggiali’s eye is a cable-driven mechanism actuated by traditional

servomotors. In actuality, eye muscles consist of a finite number of on-off motor units,

or collection of muscle fibers innervated by a particular motor neuron. Cytoskeletal

tissue couples the active acto-myosin filaments to the load. Several researchers claim

that this property allows muscles to function well in unstructured environments [47],

since the elasticity of the muscle tends to return to a stable equilibrium when per-

turbed. Muscles are controlled by recruitment, whereby the nervous system increases

or decreases the number of motor units active to increase or decrease the amount of

actuation. Each individual motor unit can only be on or off; it cannot be proportion-

ally controlled [48].

The human eyeball, or globe, is supported by soft tissue, and can be considered

to have its center fixed with respect to a head-fixed reference frame [49] [50]. The

globe undergoes a pure rotation about this center point. The globe’s pan and tilt are

driven by two pairs of recti muscles, and torsion is driven by the obliques, which are

slightly weaker than the recti [49]. For saccadic motion and smooth pursuit (head-

fixed eye motions), the eyes obey Donders’ law, which states that the eye assumes

a single torsional value for each orientation, and Listing’s law, which states that all

orientations of the eye can be described in an angle-axis representation where the

axis vector (gaze direction) lies in the plane orthogonal to the primary gaze (Listing’s

Plane). The torsion for a given gaze direction is about an axis tilted out of Listing’s

Plane by half the angle of the gaze direction [45] [50]. The ends of the muscle are

inserted into the globe and pass by tissue known as “soft pulleys” [45], [51] before

reaching their insertion point in the skull.

Whether Donders’ and Listing’s law are enforced by mechanical considerations

or by neural “programming” is a subject of great debate. Haustein [50] argues that
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Donders’ law is not mechanically enforced, but rather is determined by the brain.

He argues that Listing’s law is also “software,” based on the fact that innervation

rates are linearly related to eye position. This linear relationship has been experi-

mentally verified up to ±25◦ [50]. Cannata and Maggiali [46] argue that there exists

a mechanical basis behind Listing’s Law. Given certain plausible simplifying geomet-

ric assumptions about the insertion points and modeling the soft pulleys as static

points, they show that any torque supplied by the four recti muscles produces a

Listing-compatible rotation, regardless of the control strategy that determines this

torque. They experimentally demonstrate this on a cable-driven eye-ball like mecha-

nism. Tweed and Vilus [52] suggest such a control strategy that, rather than using

subtractive feedback, as in a linear system, uses feedback based on quaternion mul-

tiplication. Their method accurately predicts Listing-compatible motion, as opposed

to previous negative feedback/integrator models.

Although representation of human eye kinematics is beyond the scope of this the-

sis, the actuator technology presented will allow future researchers to represent the

kinematics more closely. Contractile, flexible actuators that incorporate the concept

of motor units will allow researchers to apply these physiological mathematical tools

directly; there are no “gimbals” forcing them to relate motion planning and control

through Euler angles, as in a motor-on-motor mechanism, or through an additional

layer of non-biological inverse kinematics, which may introduce additional singulari-

ties, as in Gosselin’s agile eye.

2.4 Control of flexible systems

In the past two decades, robotic links have become thinner, more compliant and

lighter, to the point where the mass of the manipulator is barely larger than that

of the object being manipulated. This trend limits the hardware designer’s ability

to prevent oscillation in the members of robotic devices simply by making large,
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inflexible links, and the design teams rely more heavily on the control designer to

achieve a suitably damped response in the presence of flexibility.

2.4.1 Flexible manipulators

Approaches to limiting the amplitude of vibration of robotic members have been

numerous, most of which augment the rigid body state space with beam deflection

states. Various control laws have been proposed, e.g., traditional linear loop shaping,

feedforward, and nonlinear control techniques, such as sliding mode control [53], and

dynamic feedback linearization involving the first eigenfunction of an Euler-Bernoulli

beam [54]. Book [55] enumerates many of the challenges common to control of flexible

bodies and summarizes several approaches to modeling and mitigating the flexibility.

Nenchev, et. al. [56] determined control laws for manipulators with certain kinds

of kinematic redundancies. These control laws are able to suppress vibration of an

elastic base by projecting the control effort into the reaction null space, or the null

space of the inertia coupling matrix. Liaw and Shirinzadeh [57] present control of a

flexure-based micromanipulator mechanism using a neural network.

2.4.2 Command shaping approaches

In certain situations where the most significant natural frequencies of vibration are

known, command shaping techniques, which modify the reference command outside

of the feedback loop, can insure that the command does not excite any of the known

modes of the system. Input shaping [58] is an approach where the reference signal

is convolved with a series of impulses, whose spacing is determined by the resonant

frequencies of the system. It produces vibration-free point-to-point motion at the

expense of slowing the response. Since an input shaper’s transfer function is outside

the feedback loop, it cannot produce instability. Dı́az, Perira, Feliu, and Cela provide

a method to concurrently determine a shaper and add mass at strategic locations

that minimizes the additional delay incurred by the shaper [59].
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Pao [60] extended the input shaping concept to systems with multiple actuators.

She showed that by considering all control inputs simultaneously, one can solve for a

shaper that has a faster response than shaping each input separately. Lim, Stevens

and How [61] take a convex optimization approach to extend the abilities of input

shaping for multiple actuators to include additional effects, most notably, reducing

transient oscillation.

2.4.3 Switching control methods

The robots used in [60] and [61] both have servomotors which are capable of imple-

menting a continuously variable control input, but there are many systems where

on-off actuators are capable of achieving the desired end effector position. In fact, in

some cases switching control has certain advantages, such as simplifying the control

interface and creating less waste heat, even when the actuators are capable of contin-

uously variable actuation. In [62], the authors develop a direct switching controller

for a servomotor current control loop that compares favorably with PWM and linear

methods. This method can be extended to the full control loop, resulting in a form

equivalent to sliding mode control. Barth and Goldfarb [63] develop a switching con-

trol law for pneumatic actuators that is also based on sliding mode control. Singhose,

Seering, and Singer [64] showed that using a vector diagram approach with an on-off

actuator can provide a vibration-free command in the same manner as input shaping.

Sorensen, Hekman, and Singhose [65] take some steps toward applying input shaping

to systems with multiple discrete levels by looking at the results of approximating an

input shaped command by the admissible values.

Several works [66], [67] and [68] extend this method to account for and minimize

fuel usage, which is particularly important for flexible spacecraft. Song, Buck and

Agrawal [69] combine input shaping with pulse width modulation, rather than using

a vector diagram approach.
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2.4.4 Flexibility in biological systems

In contrast with traditional servomotors, biological actuators are by nature compliant

[21], and this renders biological systems capable of a number of fine motor motions

that are challenging for traditional actuators. Robots be equipped with such flexible

actuators could achieve motions of a more biological nature, and this would enhance

robotic capability, energy efficiency, and safety [70]. This compliance is manifest even

when the actuator is de-energized.

It is well known that biological muscles possess a number of resonant modes, and

that they are quantized in their actuation ability due to the finite number of axons

present in a given muscle group. When muscles are subjected to a vibratory stimulus,

they are able to provide active damping [71]. The neuromuscular mechanism by which

this occurs is not well understood, but it demonstrates that it is possible to remove

vibration from oscillatory modes even if the actuation is quantized.

2.4.5 Piezoelectric vibration suppression techniques

Use of PZT materials in active control of structural vibrations has been well studied.

In particular, Onoda, et. al. [72] used PZT actuators to create a variable stiffness

spring whose stiffness varies based on the location of the state in the phase plane,

driving the state to the origin. The PZT actuators do not actuate the flexible member,

but are rather used to couple and decouple additional structural elements to change

the stiffness at the appropriate time. Corr and Clark [73] extended this method by

applying a PZT stack to the structure with an resistor–inductor shunt instead of a

mechanical spring element. Although these approaches are of interest in robotics,

they would mainly be considered as additional measures to be added to the robot

once all options in the control architecture and joint actuation strategies had been

exhausted, since implementation of such a strategy would incur additional cost and

complexity.
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2.4.6 Feedback and sampled control for vibration suppression

Command shaping methods only suppress oscillation induced by the actuator itself;

it cannot reduce oscillation due to disturbances in the environment. Similar methods,

such as input shaping [58], likewise only add transfer zeros at specified frequencies;

they cannot add damping to lightly damped flexible poles and remove existing oscil-

lation.

There is a rich body of literature on control techniques for suppressing vibra-

tion in flexible automatic devices. Most of these take a sampled–data system with

a zero–order–hold as a given and few look at what can be done during the sample

period itself to suppress oscillation. Fujimoto and Hori [74], however, recognized

that the sampling rate is often times limited by the measurement rate of sensors and

A/D conversion, and often times the control signal can be changed more quickly. By

predicting the evolution of the state during the sample period at several intersam-

ple points, they were able to design a controller that would suppress oscillation at

frequencies approaching the Nyquist frequency for a flexible disk drive head.

2.5 Control of Quantized Systems

All digital control systems have quantization effects due to finite word length and dig-

ital to analog conversion. Most of the time, these effects are minor, and quantization

errors are typically treated as a white noise input disturbance. Delchamps [75] per-

formed a rigorous mathematical analysis of quantization and showed that by viewing

quantization of state feedback as a limited amount of information about the state that

knowledge of the state can be improved with successive quantized measurements. He

showed that a control law based on quantized state feedback measurements can drive

the state to within a prescribed distance of the origin for a finite amount of time,

provided the system is reachable. This is generally referred to as “practical stability,”

because the state cannot be shown to be within an arbitrarily small distance of the
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origin for all time. It has been shown that a logarithmic quantizer is stable [76,77]. Fu

and Xie [78] looked at quantization as an H∞ problem and looked at more arbitrary

quantizations.

The cellular actuator proposed by Ueda, Secord, and Asada [1] has equal inputs,

and therefore can be represented as a uniform quantizer on the input. Richter, et.

al. [79–81] treat the stability of a uniform quantizer on the input and the state using

the sector bound method. Brockett and Liberzon [82] proposed a hybrid control

scheme that changes the sensitivity of quantization of the state feedback based on

the value of the state and showed that such a scheme is Lyapunov stable.

Azuma and Sugie [83, 84] study optimality of quantized systems. In their work,

the quantization error is filtered and added to the input. Each of these methods

described in this section are interesting from a controller design point of view, but

they are mainly oriented toward information transmission. They do not consider the

case where the quantization is an artifact of the actuator itself. For example, since the

cellular actuator’s quantization cannot be changed on the fly, the methods of Brockett

and Liberzon cannot be implemented to stabilize the system. So while the methods

in these works are not directly applicable to the problems confronted in this thesis,

they provide an interesting context and some general principles have influenced the

development of the work.

2.6 Summary

Biological systems are characterized by a compliant interaction with the load, a two-

way relationship with the environment, and quantization in the control input to a

muscle. The area of biologically inspired actuators has recently produced a number

of unique devices and good constitutive models of the active materials, but there

is a void in terms of the number of analytical tools and systematic descriptions to

describe their behavior in a general way. This thesis aims to create some analytical
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and mathematical tools to aid in the understanding and use of these types of systems.

Several key principles are combined from disparate areas in the literature and put

into the context of biologically inspired systems. The following are those that most

shape lines of reasoning in this thesis. The performance characteristic of piezoelec-

tric ceramic (or other active materials) can be modified by using an appropriately

chosen compliant mechanism. This mechanism has the added effect of introducing

compliance and better replicating the two-way relationship characteristic of biological

systems. It is possible in both biological systems and in robotic systems to suppress

oscillation and generate smooth trajectories in spite of quantization, using carefully

timed switching inputs.

This chapter discussed a range of topics related to the modeling, performance

specification, and control of biologically inspired actuators. It draws from various

communities relevant to the work. The next chapter begins the study of nested strain

amplifying mechanisms, and presents an analytical model that reduces complicated

geometries to a simple set of parameters.
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CHAPTER III

TWO-PORT NETWORK MODELS FOR COMPLIANT

RHOMBOIDAL STRAIN AMPLIFIERS

This chapter describes the relationship between the geometry of a rhomboidal strain

amplifying mechanism and its input-output performance. With appropriate mechanical-

electrical analogies, a strain amplifying mechanism can be described as a two-port net-

work circuit model. Two-port networks are typically used to describe input/output

behavior of complicated or unknown electrical networks. This abstraction will prove

useful in subsequent chapters when various strain amplifiers are interconnected.

For the purposes of this thesis, a rhomboid can be considered to be any doubly

symmetric convex polygon composed of initially straight segments of elastic material.

The mathematical formulation for this generalized rhomboid will be presented, which

applies to mechanisms with both distributed and localized compliance. The two-port

network model is described in terms of a 2× 2 matrix which has units of stiffness.

The method of determining a two-port model for a rhomboid is demonstrated

for particular set of geometric parameters. The fidelity of model is evaluated by

comparing results with those returned by finite element methods for various sets

of these parameters. Finally, the two-port model is determined empirically for a

particular sample mechanism and the results compared to the analytical model.

3.1 Two-port models of strain amplifying compliant mech-
anisms

According to Choma, [28], the two-port network is a simple way to model an electrical

network when the mathematical models of the underlying components are either

unknown, or are inordinately cumbersome. The two-port concept allows the designer
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to analyze the network as a “black box” and focus on its input-output behavior, and

ignore the constitutive relationships interior to the network. Input-output behavior

can be described by simple passive impedances plus voltage-controlled current sources

or current-controlled voltage sources interior to the network. Interested readers can

find additional details in Appendix A.

With the appropriate mechanical-electrical analogies, two-port networks can also

be used to model rigid body or flextensional mechanical systems. This makes two-

port networks a simple but powerful analysis tool, one that is particularly useful for

describing the two-way interactions characteristic of biologically inspired actuation.

Abdalla [6] et al. model not only the compliant mechanism as a two port network,

but also the piezoelectric stack actuator itself. The four quantities of interest in the

model are the voltage applied to the stack, the charge stored in the stack, the force

applied by the stack, and the stack displacement. Because of the relationship between

these quantities, the electromechanical transduction of the PZT ceramic also lends

itself to a two-port network description. It is even more advantageous to model the

compliant mechanism as a two-port network, for then the interconnection laws for

two-port networks can simply and elegantly describe an entire multi-stage compliant

device, and if the source impedance (electrical) and terminal impedance (mechanical)

are known, the entire response can be predicted. This will be explored in Chapters

4 and 5. Abdalla, et al. show some key properties of the two-port model approach,

but do not explain how to determine the immittance matrix from the geometry and

material properties of the compliant mechanism constituting each layer, necessitating

the contribution described in this chapter. Abdalla’s method optimizes the compliant

mechanism for a particular load, whereas in robotic devices the load can vary widely.

The approach in [6] assumes that the designer begins the design with knowledge

of the load impedance. The authors show that the compliant mechanism and the

PZT stack can be designed separately, in that order. They also derive an expression
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for the efficiency and show that it varies inversely with the geometric advantage (or

displacement amplification factor) of the mechanism,

a =
δout
δin

. (1)

They then begin with an assumed truss ground structure and numerically follow a

topological optimization approach. The most efficient structure is the ground struc-

ture, which is the most rigid, and is therefore not useful. Using a quadratic cost

function with weights on the geometric advantage and efficiency, they arrive at an

optimal compliant mechanism for the assumed load. While Abdalla’s work highlights

the benefits of two-port modeling for compliant mechanisms, it is not clear how well

the mechanism will work across varying loads typical in robotics and how the model

will vary with manufacturing tolerances, because it does not draw the connection

between geometry and mechanism function in general.

Rhomboidal mechanisms are an intuitive topology and lend themselves well to

interconnections in series, parallel, and nested configurations and can thus be used to

construct muscle-like robotic actuators. Another good rationale for using rhomboidal

mechanisms is that automatically generated topology optimizations have converged

to structures that are rhomboidal in shape [17]. Trying to achieve a desired stroke

length with series combinations of piezoelectric stacks amplified a single time (such

as the commercially available Cédrat APA50XS) results in an overall actuator that

is too long relative to its stroke length.

3.2 Nested amplification mechanisms

Most of the discussion of nested mechanisms is deferred to Chapter 4, but a short

description is given here to motivate the discussion in this chapter. A nested ac-

tuator begins with single-layer amplified PZT stacks, concatenates a small number

of these in series, and amplifies their displacement a multiple times using compliant
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rhomboidal mechanisms. Each layer of amplification can be expressed as a two-port

network. Ueda, Secord, and Asada [1] propose such a multi-layer strain amplified

mechanism, and briefly mention its connection to the two-port network formalism.

Rather than supplying connections to the mechanism’s geometry, their immittance

matrix parameters are related to the stiffnesses in a lumped parameter Hill muscle

model, whose parameters are fictitious; Hill parameters have no connection to the

physical geometry and material constants. Using finite element methods, they de-

velop a prototype two-layer actuator optimized for maximum output displacement

given reasonable manufacturing constraints. However, this actuator has very low

force capability and the design procedure was performed using ad hoc methods. It is

not clear from this work how force-displacement specifications are satisfied by a set of

immittance parameters and how to determine the geometrical characteristics of the

various layers that meet these performance specifications.

In essence, Ueda, Secord, and Asada [1] solve the “forward” problem: given a

geometry, determine its performance characteristics. To produce actuators useful in

robotics, one must solve the “reverse” problem: given a set of performance specifi-

cations, determine the geometry characteristics that will meet these specifications,

i.e., determine what compliant mechanisms allow a robot to supply required forces

within the desired range of poses when a voltage is applied to a PZT stack. It is

the reverse problem that really benefits from an analytical model. The two-port model

of rhomboidal strain amplifying mechanisms presented in this article is a key step

towards making the reverse problem easier to solve, because it encapsulates compli-

cated geometric relationships in 3 elements per layer that are key to its input-output

behavior. Optimization routines generally must solve the forward problem multiple

times in order to find an optimal point. To analyze complicated series-nested com-

pliant actuators with multiple stages of amplification using finite element methods,

great care needs to be taken with the mesh at interfaces, thin sections, and changes
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in cross section to ensure that the problem will be numerically solvable. Even if a

search direction can be computed using finite differences, to perform a finite element

simulation, a new CAD model needs to be constructed. In addition, the finite element

results give no insight on how to choose the trial geometry to get closer to the goal.

This makes solving the reverse problem using finite element models extremely labor

intensive. The two-port approach allows the designer to find an analytical model for

a given choice of geometric parameterizations, and quickly get a sense of how chang-

ing each parameter affects the performance of the compliant strain amplifier and the

nested mechanism as a whole. Since this makes the forward problem a function eval-

uation, common optimization routines can be used, provided the parameterization

and constraints result in a convex problem. Search directions can be automatically

computed form the analytical model, and the only CAD model that need be created

is the one used for manufacture. Using the two-port formalism, it is easy to see how

manufacturing tolerances will affect the performance of the entire device. The two-

port model also shows clearly how each layer in a nested hierarchy contributes to the

function as a whole.

3.3 Finding expressions for the immittance parameters us-
ing Castigliano’s theorem

Since the rhomboidal strain amplification mechanism will be modeled as two-port

network, this work is less concerned with the internal stress and strain fields than

the input-output behavior of the mechanism. For this reason, it is natural to use

Castigliano’s theorem [85], since it provides an input-output relationship between the

loads on a structure and a displacement at a given point.

Castigliano’s theorem has been used in several previous works to determine the

stiffness of flexure hinges [12, 16]. Lobontiu and Garcia [13] characterize an entire

hinged mechanism in terms of three parameters, the input stiffness, the output stiff-

ness, and the displacement amplification and optimize the filleted flexure hinges to
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achieve a balance between amplification and stiffness, however, unlike a two-port

model, it does not describe the function of the mechanism across varying loads and

control inputs and was not formulated with large-stroke robotic applications in mind.

In an actual compliant displacement amplification mechanism, the amplification fac-

tor will vary with loading conditions and along the stroke necessitating a slightly more

involved description. The bilateral two-port approach adds a level of abstraction that

makes the problem tractable with larger numbers of parameters and is naturally suited

to representing the two-way interactions of nested multi-stage compliant mechanisms.

This analysis begins along the lines of the “chain method” described by How-

ell [86] for a simply connected body. Unlike Howell, this work is not interested in

a numerical evaluation of nodal displacements. Instead, the boundary conditions

for a multiply connected body are resolved analytically, resulting in an analytical

input-output model. In order to determine the two-port model of a general rhom-

boidal compliant mechanism, this analysis makes several simplifying, but justified,

assumptions. First, it assumes that the mechanism is symmetric about about two

orthogonal axes, aligned with the input and output directions. This allows deriva-

tion of the input-output relationships by analyzing a quarter mechanism. Second, it

assumes that forces are applied to a given layer only at the input and the output.

Third, it assumes that the compliant mechanism is composed of finitely many thin

straight segments rigidly connected in series and fillet radii are small relative to the

segment length and have negligible effect.

The method to determine the expressions for the immittances is summarized as

follows: first, it resolves the static indeterminacy in the doubly connected rhomboid,

eliminating the moment reaction in favor of the input and output forces. The internal

moment reaction is a hidden parameter and is subsumed in the two-port formalism.

This is possible because of the symmetry of the compliant mechanism. Second, Cas-

tiglianos theorem is applied in both the input and output directions. The third step
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Figure 7: Free body diagram of a general flexible segment with no loads applied to
its interior.

collects terms so that the two relations found in the second step correspond to the

two-port model relationships.

Consider a general single straight segment (i) rigidly connected to the preceding

segment (i− 1). The free body diagram of this segment is shown in Figure 7. In this

way, the internal forces in a given segment can be expressed in terms of its geometric

parameters and the forces in the preceding segment. Ni is the internal axial load,

Vi is the internal shear force, and Mi is the internal moment for segment i. zi is

the distance to a point on the segment, ranging from 0 to zfi . α(z) is the angular

deflection at zi. θi is the orientation of the segment in the undeformed configuration.

Beginning with the reactions at the fixed flange (section 0), one can propagate the

internal forces and moment outward from segment to segment through the quarter

mechanism until the point of application of the input force is reached.

Applying the equations of static equilibrium to section i, in matrix-vector form,

the internal forces and moments in segment i at a distance along the segment zi can

be expressed in terms of those in the preceding segment as:
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
Ni

Vi

Mi

 =i Pi−1


Ni−1

Vi−1

Mi−1

 (2)

where

iPi−1 =


cos(θi − θi−1) − sin(θi − θi−1) 0

sin(θi − θi−1) cos(θi − θi−1) 0

zi sin(θi − θi−1) zi cos(θi − θi−1) 1

 . (3)

To propagate this to the next segment, evaluate (2) at zi = zfi , which is a geomet-

ric parameter. The rhomboidal amplification layer is a doubly connected, statically

indeterminate structure. In order to solve a doubly connected structure, one needs

additional compatibility conditions expressed in terms of the displacement, which are

developed here. A generalized compliant mechanism that conforms to the assump-

tions above is shown in Figure 8. Nk,Mk, k = {P,Q,R} are the equivalent moment

and axial reactions from the removed section. The circled numbers {1 · · ·N} de-

note the index of each segment. Rx, Ry, and MR are the reactions at the fixed end

condition. To resolve the static indeterminacy, proceed as follows: imagine that the

structure is cut in half along A–A, discarding the right hand (light gray) half. A fixed

end condition is then applied at point R. Due to symmetry about A–A, each half of

the structure will carry half of the applied load Fout, and deform by the same amount

in the direction of Fout. Therefore, the right half will impose no shear reaction on the

left half. However, there will be a normal reaction force, NP , imposed by the right

half on the left half to insure that point P remains on the center line. The right half

will also apply a moment reaction MP on the left half, ensuring that the deflection

angle of the final segment is continuous at P. These two compatibility conditions allow

the determination of these unknown internal reactions.

Because the structure is also symmetric about B–B, the upper and lower quarters
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Figure 8: Doubly symmetric actuator composed of straight segments. Because of
the symmetry, the entire behavior can be determined by analyzing the black structure
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will each carry 1/2 of the load Fin, and deform in this direction by the same amount.

This allows the compatibility conditions to be expressed at point Q, simplifying the

results, discarding the upper, dark gray quarter, replacing it by its internal reactions

NQ and MQ. Because of symmetry about B–B, the internal reaction NQ = Fout/2.

Due to symmetry, the compatibility condition on the deflection angle stipulates that

the tangent at Q must remain unchanged from its undeformed configuration, or:

α(zfi ) = θN . (4)

where α is the function for the deflection angle of segment i. In [13,85], expressions for

redundant reactions are found using Castigliano’s theorem, but in this case, since only

one integration is required, it is simpler to proceed by direct integration of the moment

and then solve for MQ. Assuming each segment is linearly elastic, has negligible shear

deformation and undergoes small deflections, applying the well-known slope-moment
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relationship [85] gives:

α(zi) =
dv

dzi
=

1

EIi

∫
Mi(zi) dzi, (5)

where E is the Young’s modulus of the material, and Ii is the moment of inertia of the

segment, and v is the deflection. Integrating, augmenting (2), and evaluating at zfi ,

the internal forces and deflection angles of each segment can be propagated forward

according to:



Ni

Vi

Mi

αi(z
f
i )


=i P aug

i−1



Ni−1

Vi−1

Mi−1

αi(z
f
i−1)


. (6)

iP aug
i−1 =



cos(θi − θi−1) − sin(θi − θi−1) 0 0

sin(θi − θi−1) cos(θi − θi−1) 0 0

zfi sin(θi − θi−1) zfi cos(θi − θi−1) 1 0

zf 2
i

2EI
sin(θi − θi−1)

zf 2
i

2EI
cos(θi − θi−1)

zfi
EI

1


(7)

The compatibility conditions state that:



NN

VN

MN

αN(zfN)


=



NQ

VQ

MQ

0


. (8)

The first three equations are trivial, but the final equation can be solved to find

the expression for the unknown internal moment MQ in terms of Fin and Fout. Once

this expression is determined, it can be substituted it into the expression for MR and

propagated outward using (2). Now that the static indeterminacy has been resolved,

the expressions for the input displacement (displacement at Q along the direction of
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Fin), and the output displacement (displacement at R along the direction of Fout) can

be found using Castigliano’s theorem.

Because the integration limits in this application of Castigliano’s theorem are

finite constants, and for a linearly elastic structure, the strain energy/per unit length

will be continuous, the derivative can be brought inside the integral. Castigliano’s

theorem can then be expressed as:

δj =
N∑
i=1

∫ zfi

0

(
Mi

EIi

∂Mi

∂Fj
+

2(ν + 1)Vi
EAi

∂Vi
∂Fj

+
Ni

EAi

∂Ni

∂Fj

)
dzi, (9)

where ν is the Poisson’s ratio of the material, and Ai is the cross-sectional area of the

segment. Since each of the internal forces and moment is linear in the loads Fj, one

can use (2) to propagate the partial derivatives forward segment by segment, with

the internal forces and moment replaced by their partial derivatives. Assuming each

summand is calculated iteratively, [ Ni−1 Vi−1 Mi−1 ] and their partial derivatives will

not depend on zi, and thus are pulled out of the integral. The output displacement

can then be expressed as:

δj =
N∑
i=1


Ni−1

Vi−1

Mi−1


T

Qi


∂Ni−1

∂Fj

∂Vi−1

∂Fj

∂Mi−1

∂Fj

, (10)

where

Qi =

∫ zfi

0

iP T
i−1


1

EAi
0 0

0 2(ν+1)
EAi

0

0 0 1
EIi

 iPi−1 dzi. (11)

Performing the integration with respect to zi, and assuming each segment has a

rectangular cross section of width ti, results in:
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Qi =
1

24EIi


q11 q12 q13

q21 q22 q23

q31 q32 q33


q11 = 2(zfi t

2
i cos2(θi+1 − θi)

+ ((2ν + 1)zfi t
2
i + 4zf 3

i ) sin2(θi+1 − θi))

q12 = q21 = ((2ν + 1)zfi t
2
i + 4zf 3

i ) sin(2(θi+1 − θi))

q13 = q31 = 12zf 2
i sin(θi+1 − θi)

q22 = 2(zfi t
2
i sin2(θi+1 − θi)

+ ((2ν + 1)zfi t
2
i + 4zf 3

i ) cos2(θi+1 − θi))

q23 = q32 = 12zf 2
i cos(θi+1 − θi)

q33 = 24zfi (12)

Applying (10), requires a change of variable: F = Fin/2. This is necessary because

the quarter actuator carries the 1/2 the input force, and taking the partial derivative

with respect to the full input force Fin will yield an erroneous result. To find the

input displacement δin, apply (10) with Fj = F . This quantity will be multiplied by

2, since each half of the actuator undergoes this displacement. Applying (10) with

Fj = NQ yields the displacement of point Q. Because of symmetry about B–B, The

displacement at point Q can simply be multiplied by 2 to get the displacement of

point P, or δout.

Because each segment is a linearly elastic, Euler-Bernoulli beam with point loads,

one would anticipate that the displacement expression will be linear in the loads

multiplied by a multivariate cubic polynomial in d, h, and w. This is indeed the case.

However, the application of the symmetric compatibility conditions along section A–

A and B–B in Figure 8 make the expression more complicated. This analysis solved

(6) for the unknown moment reaction MQ, and this shows up in the denominator of

33



the expression. Because the denominator of the displacement expression arises from

the coefficient of the MQ term in (6), the denominator will be first order in d, h,

and w. However, looking at the relative order of the displacement expression (order

of the numerator - order of the denominator), it is 3, the same order as a simple

beam. If the structure is not rectangular, there are also trigonometric factors as part

of these expressions. For this reason, it is advisable to keep the number of geometric

parameters to a minimum, since the complexity of the expression will scale with the

number of geometric parameters.

Collecting terms in the expressions for δin and δout with respect to the loads Fin

and Fout, the denominator DM will be common, up to a multiplicative constant.

Therefore, these equations can be written as:

 δin

δout

 =
1

DM

 C11 C12

C21 C22


 Fin

Fout

 , (13)

where Cij are quartic factors of the geometric parameters. The compliance matrix

in this equation is precisely an immittance matrix of a two-port network. (Choosing

displacement to be analogous to voltage makes it an admittance matrix). Its inverse is

precisely the stiffness (impedance) matrix introduced in [1]. According to Maxwell’s

reciprocity theorem [6], at DC, the compliant mechanism will be a reciprocal two-port

network. Therefore, following the notation in [1] the stiffness form is written as:

 Fin

Fout

 =

 s1 s3

s3 s2


 δin

δout

 , (14)

where s1 corresponds to the stiffness in the input direction when the output is blocked,

s2 corresponds to the stiffness in the output direction when the previous amplification

layer is completely rigid, and s3 describes the cross-coupling from input to output,

e.g. how much force is generated at a fixed output due to a given input displacement.

s3 also has units of stiffness. This matrix is positive definite; The combined effect
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of the stiffnesses in the input and output load’s own direction will always be greater

than the cross-coupling effect, due to the storage of strain energy in the compliance

of the mechanism.

3.4 Model validation by finite element methods

The procedure in the previous section produces an analytical two-port model for

a wide class of geometries. In order to implement this method, the designer must

choose a useful set of geometric parameters that will be varied. The immittance

matrix will be a function of these parameters. To demonstrate how this procedure

works, this section considers an octagonal mechanism (N = 3) of constant thickness

(ti = t ∀ i), varies its parameters and compares the analytical model’s predictions

to Finite Element Methods (FEM). The associated geometric parameters and the

expected deformed shape with tensile input and output loads are shown in Figure 9.

Since the purpose of the FEM evaluation is merely to quantify how well the linear

model performs compared to a numerical approach, w/2 = 1 m and b = 2 mm were

chosen as general characteristic dimensions. This “meterstick” size gives an intuitive

feel for how much deformation should occur, providing a useful check. As long as

the size permits the device to be analyzed as a continuum, the mesh size will scale

with the geometry of a given part, and the level of accuracy should be the same. In

the actual application, w will be set by the previous layer and b is the thickness of

the plate from which the compliant mechanism is machined, so these quantities are

considered fixed. The FEM evaluation varied d, θ, and t one at a time with the sum

h + 2d held equal to w. θ was held at 45◦ when it was not being varied, d was held

at 500 mm when not being varied and t was held at 2 mm when not being varied.

Loads were chosen for each geometry such that the mechanism would have a small,

but visually discernible displacement at true scale.

The expressions in (13) were found using Wolfram Mathematica and evaluated
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Figure 9: Example parameters for model verification

numerically for the various choices of geometric parameters. The expressions for DM

and the various Cij can be found in Appendix B. One half of the compliant mecha-

nism was simulated for each set of parameters using Dassault Systèmes’ SolidWorks

Simulation finite element modeling software. The results for various geometries are

shown in Tables 1 - 6. In the case of variation of the parameter t, the load was varied

so as to keep the final displacement in a consistent range. The level of agreement

between the two methods is good, within 1% in most cases for thin mechanisms. As

the ratio between t and w approaches 0.1, the accuracy begins to suffer, but for most

useful compliant mechanisms, the ratio will be below this value.

3.5 Experimental Results

A series of experiments were performed in order to evaluate how well the expressions

developed in the previous sections match the behavior of a true mechanism, which
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Table 1: Mechanism displacements, varying d , h, Fin = 0.002 N, Fout = 0 N

d [mm]
δin δout

FEM Proposed Method % difference FEM Proposed Method % difference
2 1.481 1.488 0.47 -1.780 -1.787 0.39

5 1.486 1.487 0.06 -1.782 -1.788 0.34
10 1.479 1.485 0.41 -1.785 -1.791 0.34
50 1.469 1.473 0.27 -1.809 -1.816 0.39
200 1.404 1.409 0.35 -1.928 -1.816 6.16
500 1.225 1.230 0.41 -2.140 -2.127 0.61
900 0.932 0.937 0.54 -1.863 -1.870 0.37
990 0.847 0.852 0.59 -1.696 -1.700 0.23

Table 2: Mechanism displacements, varying θ, Fin = 0.002 N, Fout = 0 N

θ [◦]
δin δout

FEM Proposed Method % difference FEM Proposed Method % difference
85 1.462 1.468 0.49 -1.830 -1.836 0.33

80 1.442 1.448 0.42 -1.880 -1.884 0.21
70 1.398 1.404 0.43 -1.966 -1.971 0.26
60 1.344 1.350 0.44 -2.043 -2.048 0.26
30 0.967 0.971 0.41 -2.011 -2.018 0.36

Table 3: Mechanism displacements, varying t, Fin variable, Fout = 0 N

d [mm] Fin [N]
δin δout

FEM Proposed % difference FEM Proposed % diff
2 0.02 1.481 1.488 0.47 -1.780 -1.787 0.39

5
0.2

7.814 7.874 0.76 -13.50 -13.61 0.81
6 4.515 4.557 0.93 -7.804 -7.88 0.97
10 1 4.372 4.922 1.53 -8.377 -8.51 1.59
25 12 3.641 3.782 3.89 -6.285 -6.535 3.98
50 60 2.196 2.370 7.90 -3.779 -4.087 8.15
100 1200 5.131 5.978 16.5 -8.740 10.24 17.2

Table 4: Mechanism displacements, varying d , h, Fin = 0 N, Fout = 0.002 N

d [mm]
δin δout

FEM Proposed Method % difference FEM Proposed Method % difference
150 -9.43 -9.46 0.33 28.57 28.66 0.31

250 -9.84 -9.88 0.37 27.56 27.65 0.32
500 -10.57 -10.63 0.33 24.52 24.60 0.35
900 -9.31 -9.35 0.45 18.66 18.74 0.47
990 -8.40 -8.52 1.45 16.96 17.04 0.49
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Table 5: Mechanism displacements, varying θ, Fin = 0 N, Fout = 0.002 N

θ [◦]
δin δout

FEM Proposed Method % difference FEM Proposed Method % difference
45 -10.57 -10.63 0.33 24.52 24.60 0.35

35 -10.47 -10.51 0.36 24.69 24.78 0.35
30 -10.05 -10.09 0.41 25.09 25.18 0.36

27.5 -9.56 -9.69 1.4 25.48 25.5 0.08

Table 6: Mechanism displacements, varying t, Fin = 0 N , Fout variable

d [mm] Fin [N]
δin δout

FEM Proposed % diff FEM Proposed % diff
2 0.02 -10.57 -10.63 0.33 24.52 24.60 0.35

5
0.02 -0.6753 -0.6806 0.78 1.563 1.575 0.77
0.2 -6.725 -6.806 1.2 15.45 15.75 1.94

10 2 -8.376 -8.508 1.58 19.39 19.68 1.50
25 24 -6.285 -6.535 3.98 14.56 15.13 3.91
50 60 -3.780 -4.087 8.12 8.778 9.472 7.91
100 1200 -8.748 -10.24 17.06 20.53 23.86 16.2

measured the immittance parameters s1, s2, and s3 for a representative strain am-

plifying structure. The mechanism used was the outermost layer of the actuator for

the biologically inspired camera positioner, the design of which is described in Chap-

ter 5. The full three-layer actuator has a predicted stroke length of 5.6 mm, with a

resting length in the output direction of 20.6 mm. By way of comparison, 16 Cédrat

APA50XS strain amplified PZT stacks placed in series would have a stroke length of

1.26 mm and a resting length in the output direction of 76.3 mm. The three-layer

actuator uses 16 of these in its construction. The geometry of the compliant mech-

anism is of the class described in section 3.4; it is a constant thickness mechanism

whose geometry is parametrized by d, w, h, θ, and t. A photograph of the mechanism

is shown in Figure 10 and the numerical values of its parameters are found in Table

7. A rigid section was added to the middle to increase the height, because the chosen

value of h does not allow enough space for the internal layers to be placed within this

mechanism. The mechanism was machined from a 5mm thick plate of C655 High

Silicon Bronze, which has an elastic modulus of 105 GPa and a Poisson’s ratio of

0.346.
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Figure 10: Mechanism characteristics used in experiment. Parameters are as in
Figure 9.

Table 7: Parameter values used in experiment
Parameter Value Units

d 2.4 mm
h 1 mm
θ 6 ◦

t 0.15 mm

To identify s1, s2, and s3 experimentally, two experiments were conducted. The

first experiment (shown in Figure 11) varied the output displacement with the input

fixed and measured input and output force. The second experiment (shown in Figure

12) varied the input displacement with the output free and measured input force and

output displacement. Displacement (when it was the dependent variable) was varied

using a pair of NAI Aperture micropositioning stages. Force was measured using

Futek LSB200 load cells and displacement (when it was an dependent variable) was

measured using Microepsilon OptoNCDT laser position sensors. s1, s2, and s3 for this

mechanism were determined from the combined data from both experiments using

an unweighted least squares regression. Since the data was taken with either the

input or output in a fixed or free condition, owing to the nature of the sensors, two

experiments were necessary so that the measurements matrix would be full column

rank. For instance, placing a load cell at the output would block the laser beam, so

that output displacement and output force could not both be measured in the same

experiment. Testing in a fixed or free condition gave implicit knowledge that either

a force or displacement was zero.
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Figure 11: First experiment (input fixed)
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Figure 12: Second experiment (output free)

Table 8: Measured and modeled immittances

Parameter Analytical Model Experiment
[N/m] [N/m]

s1 83400 80000
s2 561 660
s3 6560 5770

The results of the experiments are shown in Table 8. The analytical model predicts

all parameters to within 18%.

3.6 Discussion

The purpose of this theoretical construction of the various immittance parameters

is not an end in itself. The goal of the two-port model is to give a designer a sim-

ple model that can be used to make an informed choice of geometry in the first

iteration of a design of the complete actuator, which consists of several compliant

layers. The formulation of this model makes the traditional mechanics of materials
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assumptions of linearity and small deformations. In fact, the errors on each of the

immittance parameters (which have units of stiffness) are on the order of errors found

in experimental evaluations of flexure hinge stiffness [87–89]. This evaluation is more

complicated because it is trying to determine a matrix of values that correspond to

coupled actions in orthogonal directions, not simply a stiffness in a given direction.

Since the mechanism evaluated was the outermost stage of a multistage amplification

mechanism for robot-scale displacement, rather than a single-stage mechanism, as in

previous works, the displacements are larger. One of the strengths of this modeling

approach is that it works equally well for distributed compliance as well as localized

compliance. The mechanism shown in Figure 10 takes advantage of this. However,

the drawback of distributed compliance is that the deformation can vary more widely

with manufacturing tolerances. So it is understandable that the errors are slightly

larger.

In addition, the mechanism considered represents an aggressive force-displacement

tradeoff, and as a result, the surrounding region of the design space is very sensitive

to parameter variations. This is illustrated in Figure 13. When θ is small, varying

θ while fixing d can be problematic because it can result in degenerate geometries,

so to preserve valid geometries, d = d′ tan θ/tan θ′ was chosen when generating the

surface shown, where d′ and θ′ are the nominal values. Although a small change in

one of the geometric parameters may affect blocked force and free displacement only

slightly, the immittances can vary widely.

Because the mechanism tested was so fragile, some permanent deformation oc-

curred either through the manufacturing process or shipping and handling. It was

assumed that the immittances would not be largely changed by this deformation, but

the residual stresses may have contributed to some of the error. There was some com-

pliance inherent in the micropositioning stages and the load cells and this may have

introduced some error in measurement. There also may have been some variation in
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Figure 13: Variation in immittance parameters: (a) s1, (b) s2, (c) s3 with geometry

the material constants from typical tabulated values.

3.7 Summary

Piezoelectric stack actuators have the potential to be of great usefulness in robotics

applications, but are limited by their low strain rate. This can be mitigated by the

use of compliant strain amplification mechanisms. This chapter presents a generalized

Euler-Bernoulli formulation for the two-port model of any doubly symmetric strain

amplification mechanism composed of a single loop of initially straight rectilinear

segments. Unlike previous works, which either present purely numerical two-port

models, or lists of long expressions, this provides an analytical two-port model. This

higher level of abstraction is a prerequisite for studying interconnections of these units

because without it the expressions can become unwieldy, as well as topologically

troublesome. A motivating example is shown for a particular class of mechanism

described by 5 geometric parameters. The model for this example has been verified

by finite element methods. In addition, a particular mechanism of this type has
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been evaluated experimentally and shows good agreement, with an accuracy better

than 18%. The analytical model for the two-port network can be used to eliminate

guesswork as to how many layers of amplification should be used in a nested compliant

mechanism. In Chapter 4, further interesting properties that emerge from nested

compliant mechanisms will be discussed and Chapter 5 will show how the models

developed in this chapter are used to choose geometries of each layer in response to

desired performance specifications.
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CHAPTER IV

NESTED HIERARCHICAL STRAIN AMPLIFICATION

MECHANISMS

The two-port network formalism described in Chapter 3 provides the necessary ab-

straction to describe the interconnections between the various stages in a simple,

tractable manner. Using this formalism, several interesting characteristics emerge.

When the geometries of the layers are chosen appropriately, it is possible to produce

actuators with strain rates, stiffnesses, displacement range, and force capability suit-

able for many novel robotic applications. Layer geometry selection will be demon-

strated in Chapter 5, but first it is important to present some key mathematical

characteristics of nested hierarchical strain amplification.

This chapter presents some useful theoretical results that emerge when considering

hierarchical interconnections of strain amplifying mechanisms when the immittance

parameters for each layer are known. The formulation considers a hierarchy that

may include large numbers of layers. Although the examples and experiments are

conducted on rhomboidal mechanisms, the results of sections 4.1, 4.4, 4.6, and 4.11

can be applied to a wide variety of hierarchical geometries, provided each stage admits

a two-port representation.

When studying mechanisms of this type, it quickly becomes apparent that making

the assumption that all internal layers operate at either their blocked force or free dis-

placement results in models that fail to predict the output performance. Instead, for

a given load/displacement characteristic, each internal layer is at some intermediate

force and displacement. There is not much value in computing these explicitly, but

they are important internal variables in the system. The key unifying theme is that
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Figure 14: Diagrammatic construction of a hierarchical nested strain amplifying
mechanism. The term nested is used because each stage is typically placed inside the
subsequent stage. The force and displacement produced by each stage serves as the
input to the next.

the output force and displacement of a given layer is the input force and displacement

to the subsequent layer, as illustrated in Figure 14. Beginning with this fact, with

knowledge of the immittances, the overall behavior and properties can be elegantly

described.

4.1 Performance metrics

Amplified piezoelectric stacks are unlike servomotors in several respects. Most im-

portantly, their force is not constant with stroke, but decreases with displacement.

Likewise, muscle forces depend on the length [26]. There are 3 natural metrics asso-

ciated these types of actuators, illustrated in Figure 15. The first (a) is the stiffness

of the de-energized actuator as perceived from the environment. The second (b) is

the free displacement, or the maximum displacement achieved when the actuator is
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Figure 15: Performance metrics for compliant actuators

energized. At this point the actuator can impose zero force on the environment.

The third (c) is the blocked force, or the force applied to the environment when the

environment prevents the actuator from moving. This is equivalent to an isometric

contraction in muscle.

Like biological actuation systems, these actuators can only contract, not extend.

Therefore they are often used in antagonistic configurations with a second actuator.

4.2 Antagonistic connections

Consider a mechanism driven antagonistically by two identical multi-stage amplified

actuators in the absence of any external load, with no preload at the neutral position,

such as the camera positioner illustrated in Figure 16. Each actuator consists of m

piezoelectric stacks with n layers of amplification. To achieve some desired position,

one of the cellular actuators (henceforth called the “active” actuator, or agonist)

will be energized, and will contract. Its antagonist (the “passive” actuator) will not

be energized, but will, due to its inherent stiffness, oppose the motion of the active

actuator. Therefore, the active actuator will stop short of its free displacement.
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Figure 16: Camera driven by an antagonistic pair

Using a two-port network framework [28] and assuming the material properties and

terminating electrical impedance characteristics of the piezoelectric stack are known,

it is possible to predict the maximum displacement of the antagonistically driven

device.

4.3 Interconnecting two-port strain amplifying mechanisms

The amplification mechanism of each layer can be described by a two-port network

model using the methods in Chapter 3. Recall that the mathematical relationship

between the input and output to the mechanism is described by:

 Fin

Fout

 =

 s1 s3

s3 s2


 δin

δout

 , (15)

where Fin, Fout, δin and δout denote the forces and displacement at the input and

output ports, respectively. s1, s2, and s3 have units of stiffness and are functions

of the geometry and material properties. The matrix in (15) is the stiffness matrix,

one of several immittance matrices [28] that is used to describe the two-port network

relationship. The strength of the two-port network approach is that it accurately
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accounts for the effects of both the control force applied by previous layers and envi-

ronmental or load forces from subsequent layers. Using this framework, it is possible

to model systems that do not have the high input impedance/low output impedance

characteristics necessary in most branches of circuit analysis. An alternate way of ex-

pressing this is to say that the two-port (or multiport) network succeeds in modeling

devices that have significant “back effects.”

The innermost, or “zeroth,” layer of a nested cellular device will be some active

material of known characteristic. Typically the manufacturer tabulates the totally

blocked, or clamped, force and the mechanical stiffness. This can be represented

as a Norton equivalent circuit, as shown in Figure 17, where the clamped force is

represented by a current source, and the mechanical stiffness is represented by the

Norton resistance. The displacement of this device, which is analogous to the voltage

across the Norton resistance, will depend on the load impedance. Several of these

zeroth layer units can be combined in series, and their Norton circuits combined ac-

cording to the methods of circuit analysis. The voltage across the Norton equivalent

resistance corresponds to the input displacement of the first layer displacement am-

plification mechanism. The current to the load impedance corresponds to the input

force. When the amplification mechanism is represented as a two-port network, this is

the voltage and current at the left hand port. With appropriate mechanical analogies,

this can be expressed as:

F in
1 = F block

0 − k0δ
in
1 (16)

Because series combinations of springs add compliances, not stiffnesses, the Norton

equivalent resistance is set to 1/k0. Interconnections between networks are described

in terms of matrix operations on the immittance matrices and are well known [28].

Therefore any combination of two-port networks can be readily analyzed. The topo-

logical relationships between the various layers in the hierarchy will be represented
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Figure 17: collapsing of two-port networks. Each square box represents a two-port
network, with a voltage and current at the right and left hand ports. The entire
hierarchy within the dashed lines is collapsed and replaced with its Norton circuit.

by the electrical connections of their two-port models.

4.4 Collapsing nested two-port models to Norton circuits

Since the impedance characteristic at the input to the first amplification layer is

known, and the immittances of the amplification mechanism’s two-port model is

known, the entire connection can be “collapsed” and replaced with its Norton equiva-

lent circuit that represents the characteristic at the output of the first layer. This can

be performed repeatedly, up to the outermost layer, which connects to the load. Fig-

ure 17 illustrates collapsing connections of two-port networks. The following derives

the equations that describe the collapsing process.

Consider an active material with blocked force F block
0 and stiffness k0. The output

of this Norton circuit is applied to the left hand port of a two-port network repre-

senting the first layer amplification mechanism. The displacement of the zeroth layer,

δin1 , is analogous to the voltage across the Norton resistance. To collapse the first
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layer, it is not necessary to assume a particular output impedance at the right hand

port of the two-port network. Using (16) and (15) the two-port relationship can be

represented by the following equation:

 F block
0 − k0δ

in
1

F out
1

 =

 s1 s3

s3 s2


 δin1

δout1

 (17)

Solving the upper of the two equations for δin1 results in the following expression:

δin1 =
F block

0 − s3δ
out
1

s1 + k0

(18)

Substituting this into the lower of the two equations in (17) and collecting terms

results in the following:

F out
1 =

s3F
block
0

s1 + k0

+
s2(s1 + k0)− s2

3

s1 + k0

δout1 (19)

Defining the following:

F block
1 =

s3F
block
0

s1 + k0

(20)

k1 =
s2(s1 + k0)− s2

3

s1 + k0

(21)

(19) can be written as:

F out
1 = F block

1 + k1δ
out
1 . (22)

This has physical significance; F block
1 is the fully blocked force of the displacement

amplified active material, and k1δ
out
1 is the stiffness as seen from the output of the

mechanism. Since this is an equivalent stiffness for the nested connection, it is referred

to as the lumped stiffness. In the Norton equivalent circuit, F block
1 corresponds to

the current source and 1
k1δout1

corresponds to the equivalent Norton resistance. This

procedure can be performed repeatedly for each subunit in the hierarchy.
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4.5 Displacement of the mechanism against the passive ac-
tuator

Modeling the device driven by the antagonistic pair as a rigid body that rotates about

a frictionless pivot, with no acceleration, the following relations hold:

δoutactive = −δoutpassive (23)

F out
active = F out

passive (24)

Assume that the antagonistic actuators are identical. Because the passive actuator is

off, the current source F block
0 will be zero. The stiffness, k0, at the zeroth layer of the

passive actuator will depend on the electrical terminating impedance on the leads of

the active material.

Because the passive actuator is not energized, it can be completely collapsed and

simply be represented as a terminal resistance 1
keq

across the active actuator. This is

illustrated in Figure 18. The displacement of the antagonistic mechanism corresponds

to the voltage across the right hand port of this outermost layer.

Using (17) and Ohm’s law, solving for δoutn gives:

δoutn = −
s3F

block
n−1

s1s2 − s2
3 + keq(s1 + kn−1) + s2kn−1

. (25)
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The free displacement of the actuator (against its own stiffness) has keq = 0 or:

δfree = −
s3F

block
n−1

s1s2 − s2
3 + s2kn−1

. (26)

Taking the ratio of the two:

δoutn

δfree
=

(
1 +

kout(s1 + kn−1)

s1s2 − s2
3 + s2kn−1

)
. (27)

Assuming that the electrical terminating impedance of the passive actuator is

chosen such that the zeroth layer has the same mechanical stiffness as that on the

active side, using (20) the stiffness from the point of view of the output can be written

as:

kout =
s2(s1 + kn−1)− s2

3

s1 + kn−1

. (28)

substituting into (27) gives δoutn /δfree = 1/2. Therefore, in an antagonist configuration

with identical actuators, each actuator must be designed so that its free displacement

is double that required by the angle specification.

4.6 Nesting of layers

If a passive actuator is in an antagonistic pair arrangement with an active actuator,

it will appear to the active actuator as a stiffness. This stiffness will depend on the

immittances of the previous layers, as well as the terminal stiffness of the zeroth layer.

This section will consider an amplified mechanism with n layers, with the outermost

layer (the actuator connected to the load) denoted layer n. The innermost layer (the

actuator connected to the active material) will be denoted layer 1. Immittances for a

given layer will be denoted with a leading superscript. k will be used to count layers

outward from the active material, and j ∈ N | n − j ∈ [ 0, k ] will be used to count

layers inward from outermost. The stiffness of a passive actuator with n layers is
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kpassive =n s2 −
ns2

3

ns1 +n−1 s2 −
n−1s23

n−1s1+n−2s2−
n−2s23

n−2s1+
n−3s2−

...

. (29)

For the jth layer, denoting

jx =n−j s2 −
n−js2

3
n−js1 + kn−j−1

(30)

where kn−j−1 is the lumped stiffness of the j − 1st layer and subsumes all terms for

i > j, it can be stated that:

−
n−js2

3
n−js1

<j−1 x−n−j s2 < 0. (31)

Therefore, approximating the stiffness of the passive actuator by truncating remaining

terms in the denominator will result in a conservative estimate of the displacement

for a nested structure.

4.7 Estimating stiffnesses of actuators with large numbers
of layers

(29) has a form of a continued fraction. This results in some desirable properties. The

following section will show that for an actuator with a large number of layers, the

properties of the entire actuator can be approximated to a desired degree of accuracy

by replacing the continued fraction representing the remaining layers by an arbitrary

constant. In the literature [90,91], these approximations are known as convergents.

This section intends to show that the sequence of convergents Pj is Cauchy, and

therefore, all convergents beyond some finite k lie within some interval of size ε of Pk

on R.

Lemma 1. All denominators for the continued fraction expansion of the stiffness of

a nested linearly elastic mechanism are positive.
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Proof. Each compliant mechanism has a positive definite immittance matrix. There-

fore, the determinant for any layer, ksk1s2 −k s2
3 > 0. Because any realizable nested

actuator will have a finite number of compliant mechanisms, the continued fraction

expansion terminates. The sequence of continued fraction expansions for the lumped

stiffness at the output of each layer, beginning with the innermost, will be referred to

as zk. The zeroth term of the sequence, z0 is constant. Because the stiffness is derived

from passive elastic material, z0 will be positive, and all elements of the immittance

matrix are positive. The remaining terms of the sequence can be expressed by the

recursive relation:

zk =k s2 −
ks2

3
ks1 + zk−1

(32)

This can be rewritten as

zk =
ksk2s1 −k s2

3 +k s2zk−1

ks1 + zk−1

(33)

if zk−1 > 0, zk > 0. The proof is completed by induction on k.

When a force is applied at the output of a compliant mechanism, it not only causes

a deformation in the output direction; it causes a deformation in the input direction

as well. This deformation at the input has an effect equivalent to a force transmitted

back to the output, even when no load is applied at the input. Essentially, Lemma

1 says the effective stiffness due to this back, then forward transmission, s2
3/s1 will

always be less than the input–clamped output stiffness, s2.

Lemma 2. In the set of all terminating continued fractions of the form:
pk = a0 −

b1

a1 − b2
a2− b3

...
ak−1−

bk
ck

| ai, bi > 0 ∀i, ck ∈
(

bk
ak−1

, cmax

]


(34)
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with ai, bi constant the maximum pk is achieved by choosing the maximum ck, cmax.

Proof. For k = 1, pk = a − b
c
. It is clear that this quantity is maximized by the

largest possible c. For the general case: define the quantity ak − bk
ck

= ck−1. ck−1

is maximized by ck = cmax. Therefore, by induction, choosing the maximum ck

maximizes all denominators, and pk is minimized.

This is equivalent to saying that the stiffest possible nested structure for a given

number of layers (proceeding from the outside in) can be realized by clamping the

input of the innermost mechanism considered.

Theorem 1. The sequence of convergents of the continued fraction expansion of the

stiffness of a nested mechanism, with successive denominators for n− j < k replaced

by k−1s1 +k s2 is Cauchy.

Proof. Any continued fraction can be represented by:

pn =n s2 −
ns2

3

ns1 +n−1 s2 −
n−1s23

n−1s1+

...
n−j+2s1+

n−j+1s2−
n−j+1s23

n−j+1s1+zj

. (35)

This considers the denominators from the top level, n, down to level n−j; zj represents

the continued fraction expansion for the remaining layers. It can be approximated

by:

zj ≈n−j s2 −
n−js2

3
n−js1 +n−j−1 s2

. (36)

Let yj represent the convergent where zj is replaced by the approximation in (36).

yj−1 represents the previous convergent in the sequence, replacing the final zj by n−js2.

By lemma 1, the quantity
n−js23

n−js1+zj
will be positive for all j. Also from lemma 1, it

can be determined that this quantity will not exceed n−js2. yj−1 and yj are identical

except for the terminating constant. Therefore, they are both of the form of the
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continued fraction in lemma 2. yj−1 terminates with the constant ck =n−j s1 +n−j s2

and yj terminates with the constant ck =n−j s1 +n−j s2 −
n−js23

n−js1+n−j−1s2
. By lemma 2,

and induction on j, the sequence of convergents is monotonically decreasing, or

yj−1 > yj ∀j. (37)

Applying lemma 1 at level n, the sequence is bounded below by 0. Since the sequence

is monotonically decreasing and bounded below, it must be Cauchy.

For any Cauchy sequence, for any arbitrary ε, one can find a k such that all terms

in the sequence beyond k are within a distance ε from one another [92]. Physically

speaking, this means that for an actuator consisting of nested compliant mechanisms,

a roboticist can approximate its stiffness to some desired accuracy by considering

merely the outer k layers and considering the lumped stiffness of the k − 1st layer to

be infinite. Alternatively, the kth layer can be said to be clamped at its input.

Theorem 1 says that outer layers, regardless of whether they are rigid or com-

pliant, have the greatest effect on the stiffness of the overall actuator. Therefore,

the innermost layers do not need to have as strict tolerances as the output layers to

achieve a uniform result from actuator to actuator. It also means that the electrical

terminating impedance of the passive actuator is not critical for actuators with large

numbers of layers, justifying the assumption made in Section 4.5. The procedure of

Theorem 1 provides an upper bound on the true stiffness.

An alternate choice is to approximate zj by n−js2 −
n−js23
n−js1

instead. The sequence

of these approximants (which are not convergents, strictly speaking, since they do

not result from a strict truncation) will be denoted by xj. This is equivalent to the

stiffness perceived at the output when the innermost mechanism is considered free to

deform in the input direction. It will be shown that yj and xj have the same limit.

Theorem 2. The sequences yj and xj converge to the same limit.
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Proof. Any continued fraction of the form in Lemma 2 can be represented by the

recursive relation:

Bj+1 = aj+1Bk − bj+1Bj−1

Aj+1 = aj+1Ak − bj+1Aj−1

yj+1 =
Bj+1

Aj+1

B−1 = 1

B0 = a0

A−1 = 0

A0 = 1 (38)

This is shown in Rockett and Szüsz [91]. In this case aj+1 =n−j+1 s1 +n−j s2 and

bj+1 =n−j+1 s2
3. Using an a similar procedure, it is simple to demonstrate that xj+1

can be written as:

xj+1 =
Bj+1 − kj+1Bj

Aj+1 − kj+1Aj
(39)

where kj+1 =
n−js23
n−js1

. Note that each term of xj is written in terms of the Bj, Aj used

to construct yj. It can be shown that the sequence yj − xj approaches zero in the

limit. After algebraic manipulations, the j + 1st term of the sequence can be written

as:

yj+1 − xj+1 =
yj − yj+1

Aj+1

kj+1Aj
− 1

. (40)

The numerator approaches zero for large j by Theorem 1. To show that the entire

sequence goes to zero it is sufficient to show that
Aj+1

Aj
6= kj+1. This can be proved by

contradiction.

58



Assume that for all j greater than some k the sequence
Aj
Aj−1

= kj. Then
Aj+1

Aj
=

kj+1. This can be rewritten as:

Aj+1 = kj+1Aj = aj+1Aj − bj+1Aj−1. (41)

collecting terms and substituting in the immittances results in:

n−js2
3Aj−1 =

(
n−js1 +n−j−1 s2 −

n−j−1s2
3

n−j−1s1

)
Aj. (42)

This quantity will be divided by Aj−1. Since j is assumed to be greater than k, the

sequence
Aj
Aj−1

= kj. Substituting in for this quantity in terms of the immittances:

n−js2
3 =

n−js2
3

n−js1

(
n−js1 +n−j−1 s2 −

n−j−1s2
3

n−j−1s1

)
. (43)

Simplifying:

n−j−1sn−j−1
2 s1 −n−j−1 s2

3

n−j−1sn−j1 s1

= 0. (44)

All ksi are finite, and the numerator of (44) is simply the determinant of the immit-

tance matrix for layer n − j − 1. This must be strictly positive for all j, hence the

contradiction and the result is proved.

A simple numerical example of the convergence is shown in Figure 19. Two-port

network immittance parameters were chosen randomly for each of the 6 layers with

ks1 ∈ (0, 18), ks2 ∈ (0, 27), and ks3 ∈ (0,min [
√

ksk1s2, 16]).

The lumped stiffness of the remaining unconsidered layers will be in the interval

[0,∞). xj represents the stiffness of the actuator when this lumped stiffness for the

remaining layers is zero. yj represents the stiffness of the actuator when this lumped

stiffness for the remaining layers is infinite. For a finite nonzero compliance, the

stiffness of the overall actuator should be between the values of xj and yj. Since

these are the same in the limit, then the compliance of the innermost layers have
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Figure 19: Convergence of the various approximations for passive actuator stiffness.

a negligible effect on the overall stiffness of the passive actuator for actuators with

many layers.

4.8 Experimental evaluation of stiffness convergents

In order to see how these theorems apply to an engineering situation, this section will

examine the convergents for a particular actuator with known immittances for each

layer. The details of how the geometry of each layer was chosen will be presented

in Chapter 5. The immittance parameters for each rhomboidal strain amplification

mechanism can be calculated from the geometry using the method in Chapter 3.

These immittances can be used to calculate the convergents.

The convergents can be measured using a collection of experiments. The experi-

ment that measures y0 takes the third layer alone, as it is the outermost layer. The

third layer is fixed in the input direction as shown in Figure 20. The output position

is varied using an NAI aperture micropositioning stage, and the force is recorded

using a Futek LSB200 load cell with a 1 N range. y0 was determined from a linear fit

to the force-displacement data. Because the input was fixed, the experiment is really
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Figure 20: Experimental evaluation of y0

recording the stiffness of half the rhomboidal mechanism. Therefore, the mechanism

was inverted and the procedure repeated, and the average value taken.

To measure x0, a similar procedure was used, shown in Figure 21. This time

the input is free to contract along the major axis (input) as the minor (output) axis

extends. x0 was recorded from a linear fit to the force-displacement data.

To measure y1, the second layer was installed within the third layer, and a steel

block was installed along the input axis of each rhomboid in the second layer, as shown

in Figure 22. The steel block can be considered rigid compared to the rhomboidal

mechanisms. The output of the third layer was extended using the microposition-

ing stage as in the previous experiments. x1 was determined using the same setup,

but with the blocks removed. Both were determined from linear fits to the force-

displacement data.

The first layer is the strain amplifying mechanism incorporated into the APA50XS,

and there is no way to test it independently without damage. Cédrat also tabulates
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Figure 21: Experimental evaluation of x0

Figure 22: Experimental evaluation of y1. The evaluation of x1 is similar, but with
the rigid blocks removed. y2 = x2 is similar, but with the rigid blocks replaced by
Cédrat APA50XS amplified piezoelectric actuators.
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Figure 23: Measured and theoretical stiffness convergents for a 3 layer cellular
actuator

the blocked force and stiffness for the entire part, not separately for the piezoelectric

stack and compliant mechanism. Therefore, the continued fraction is considered to

terminate here, and x2 ,y2 and the lumped stiffness are synonymous. This value is

equal to F block/δfree. Since F block and δfree are important in their own right, experi-

ments are conducted in subsequent sections to determine these quantities separately.

The resulting values were used to determine the experimental lumped stiffness value.

The experimental results and analytical predictions are shown in Figure 23. Al-

though the individual values themselves vary due to manufacturing inaccuracies and

misalignments in the setup, it is clear that the sequences xk and yk are monotoni-

cally increasing and monotonically decreasing, respectively, and that they converge

to the same limit. Hence, the consequences of the theorems are borne out by real

engineering situations.
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4.9 Blocked force and free displacement measurements

In addition to verifying the stiffness of the actuator, the blocked force and free dis-

placement were evaluated on the complete actuator prototype. The goal was to see

not only how closely the actuator matched the predicted values based on the model,

but also to see how repeatable the force and displacement values at the output are

when different combinations of piezoelectric stacks are activated.

The experiment to measure the blocked force is similar to that shown in Figure 22,

however, each rigid block is replaced with a set of first layer units (4 Cédrat APA50XS

amplified piezoelectric stacks in series). Each piezoelectric stack is activated one at

a time. The output is held stationary. The force at the output is measured and

recorded using the Futek LSB200 load cell for each level of activation. When all

inputs have been activated, they are deactivated one by one and the forces recorded.

16 trials were conducted, with an arbitrary activation/deactivation order each time.

The results are shown in Figure 24. Figure 24 shows that the force profile is quite

linear and very repeatable regardless of the order in which the piezoelectric stacks are

activated. Although the maximum blocked force falls short of the 0.907 N predicted

by the theoretical model for this geometry, it shows there is enough fidelity for the

model to be useful in generating the first iteration of a nested multilayer actuator

design. Accuracy will likely be better for less aggressive force/displacement tradeoffs

and will improve with better manufacturing and assembly techniques. The study of

manufacturing processes for these devices is beyond the scope of this thesis.

The free displacement of the actuator is measured using the setup shown in Figure

25. Due to the weight of the piezoelectric stacks and the low out of plane rigidity of the

third layer, there will be significant deflection if the actuator is suspended from one

end. For this reason the actuator is clamped at its centroid and both mounting flanges

are allowed to extend outward as piezoelectric stacks are activated. The piezoelectric

stacks are activated one by one as in the blocked force experiment. The position of
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Figure 24: Blocked force measurements with activation. Error bars are 1 standard
deviation.

each output flange is sensed by a Micro-epsilon optoNCDT laser positioning sensor

with a range of 20 mm. The two measurements are summed to determine the free

displacement. Results are shown in Figure 26.

As with the blocked force, the analytical model predicts a higher value than the

experiment (8 mm). The repeatability is also very good. The linearity is good through

activation of the first 8 units . Beyond this there is a visible reduction in the amount

of displacement per unit activated. This is due to a saturation effect; as the actuator

contracts, the angle in the deformed configuration approaches zero and the rhomboid

approaches a rectangle. This effect is not captured by the linear model. Because

this actuator is designed to be used in an antagonistic configuration, as described in

section 4.5, its extension will only be in the first half of its range. For comparison, a

trendline based on activation of the first 8 inputs has been added to Figure 26. The

dashed portion shows the line extrapolated to show the “effective free displacement.”

In actuators designed to be used in a single-ended configuration, this saturation effect

will be less pronounced.
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Figure 25: Free displacement experiment
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Figure 26: Free displacement measurements with activation. Error bars are 1 stan-
dard deviation.
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4.10 Series combinations of internal subunits

At any given layer in the nested hierarchy, subunits at the prior layer are combined in

series. This increases the displacement of the resulting actuator in two ways: first, the

displacement of the subunits are additive, resulting in a larger input displacement to

be amplified, second, the amplification mechanism has to be larger to accommodate

the series combination of subunits at its input, resulting in a larger displacement

at this output. The optimizations conducted in Chapter 5 will tend to produce an

outermost amplifying mechanism that is as wide as possible in order get the largest

displacement. This is intuitive, however, there is a need to estimate how much of

an effect adding an additional subunit to a given series combination will have on the

displacement and force capability of the subunit at the next layer in the hierarchy. It

turns out that simply multiplying by the number of units present does not adequately

describe the force-displacement relationship of series combinations in an internal layer,

and by using the two-port model the effect of adding an additional subunit to the

series combination can be evaluated.

This is illustrated in Figure 27. Figure 27a shows a strain amplifying mechanism

whose input is the effort of 4 subunits in series. Figure 27b shows an equivalent

mechanism, but with a single subunit and rigid spacers to transmit its action to the

input of the mechanism. How much better is the actuator in Figure 27a than the

one in Figure 27b in terms of displacement or force? Is there a point of diminishing

returns when adding more subunits is only marginally helpful? The answer can be

found using the two-port model.

Let the outermost amplifying layer be described by the two-port model of (15).

The rigid portions do not contribute to the amplification, so the mechanisms of Figure

27a and Figure 27b will have the same two-port model. Each of the internal subunits

will have a lumped stiffness k. Inactive units in the series combination will appear as

passive springs of stiffness k.
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(a) Four subunits in series (b) Single subunit with rigid spacer

Figure 27: Comparison of an actuator with the same outer layer and different
numbers of internal subunits
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Figure 28: Active and inactive subunits represented as springs

The amplifying layer will have n subunits, of which m will be active. Without

loss of generality, the active and inactive units can be represented as in Figure 28.

The active units will displace by an amount x and impart a force F to the inactive

units. The end of the series combination displaces by an amount δin, or the input

displacement to the amplifying mechanism.

When a subunit is activated, its new resting length is δfrees , or the free displacement

of that individual subunit. The force F can then be expressed as

F =
k

m
(mδfrees − x). (45)

applying equilibrium at point A and solving for x results in
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x =
m

n

(
(n−m)δfrees + δin

)
. (46)

Substituting this into (45) yields

F =
m

n
kδfrees − kδ

in

n
=
m

n
F block
s − kδ

in

n
. (47)

where F block
s is the blocked force of a single subunit. Substituting into (15) and solving

in the blocked and free cases gives

δfree = −m
n

s3F
block
s

s2
3 − s2(s1 + k/n)

(48)

F block =
m

n

s3F
block
s

s1 + k/n
. (49)

To compare the merits of a series combination of subunits, as in Figure 27a over

that with just a single subunit, as in Figure 27b for a given amplification layer with

immittances s1, s2, s3, simply consider the ratio of the absolute value of expression

(49) with an unspecified n to the absolute value of the same expression with n taken

to be 1, and likewise for (48). This results in the following expressions:

Rδ =
m(∆ + s2k)

n∆ + s2k
(50)

RF =
m(s1 + k)

ns1 + k
. (51)

where ∆ = s1s2 − s2
3 is the determinant of the stiffness matrix. One useful metric is

to find the minimum m for which both RF and Rδ exceed 2. This is the number of

units that need to be activated in order for the mechanism in Figure 27a to double

the performance of that in 27b.

Full activation of all subunits means m = n. Looking at (51), when k >> s1 (the

amplifying structure is extremely compliant in the input direction when compared
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to a subunit), RF approaches n, or simple multiplication. This is an intuitive upper

bound. It also means that the blocked force of the mechanism in Figure 27a will

be less than 4 times that of Figure 27b. It also underscores the importance of the

relative stiffnesses of various layers in the hierarchy. Looking at (50), it is clear

that Rδ approaches n as ∆ approaches 0. This describes the idealized or hinged

mechanism described in [20]. It is clear than that the non-ideal nature of the flexural

mechanism will cause the final displacement to be less than that predicted by simple

multiplication.

As n becomes large, RF approaches an upper bound of 1 +k/s1. Likewise, Rδ has

an upper bound of 1 + s2k/∆. Evaluating these simple metrics can be helpful to the

designer when choosing how many subunits to put in series at a given layer in the

hierarchy. Figures 29 and 30 show the progression of Rδ and RF , respectively with

increasing n at maximum activation.

4.11 Effectiveness of multiple layers and figures of merit

Nested mechanisms can produce more aggressive force-displacement tradeoffs than

a single compliant mechanism, reaching larger stroke lengths without drastically in-

creasing the resting length of the actuator. Each time a layer is added, some strain
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energy is stored in the compliant mechanism, so unlike the idealized mechanism, the

amplification effect is not simply multiplicative. The two-port network formalism

allows one to analyze the effect of adding successive layers of strain amplification,

determine if adding an additional layer is really a good idea, and estimate the point

of diminishing returns.

4.11.1 Reuse of the same mechanism

Suppose that a rhomboidal compliant mechanism has been designed such that it

amplifies the displacement of a piezoelectric stack while satisfying all manufacturing

constraints. This “two-dimensional” mechanism is shown in Figure 31a. However,

suppose also that this mechanism has a blocked force in excess of the requirements

and does not meet the stroke length requirements. How much does the designer gain

by reusing the same compliant mechanism to amplify the displacement still further,

generating the “three dimensional” mechanism shown in Figure 31b?
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(a) two dimensional mechanism (b) three dimensional mechanism

Figure 31: Multi-layer nested geometry with reuse of a compliant mechanism

4.11.1.1 Analysis of 3D nested structure with two identical compliant mecha-
nisms

Suppose that the expressions for the immittance matrix have been determined for the

compliant mechanism used in Figure 31a. The two-port force-displacement relation-

ship can then be expressed as in (15), where s1, s2, and s3 have units of stiffness, and

each are expressions of the geometric parameterization and material properties.

In order to represent the cascaded connection of two strain amplification mech-

anisms, a different immittance matrix, the forward transmission matrix, is needed.

This relationship expresses a different input-output choice for the same two-port

network. Fortunately, the forward transmission matrix can be calculated directly

following the procedure in [28] and is expressed as follows:

 −δout
Fout

 =
1

s3

 s1 −1

−∆ s2


 δin

Fin

 , (52)

where ∆ represents the determinant of the stiffness matrix in (15). δout is negated

to represent the change of direction of displacement with each added layer in the

hierarchy. It is more advantageous to experimentally measure and tabulate the stiff-

ness matrix in (15) than the forward transfer matrix because the stiffness matrix has

consistent units among all the elements, whereas the forward transfer matrix does
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not.

The forward transfer characteristic of the cascaded connection of two nested com-

pliant mechanisms is simply the product of the two forward transfer matrices. Denot-

ing the stiffness matrix elements for each layer with a leading superscript, beginning

with the innermost, the combined forward transfer characteristic is as follows:

 δout

Fout

 =
1

1s2
3s3

∗

 1s1
2s1 +1 ∆ −1s2 −2 s1

−2∆ 1s1 −1 ∆ 2s2
2∆ +1 s2

2s2


 δin

Fin

 , (53)

the negative sign having canceled out due to the direction being reversed twice. If

the two mechanisms are the same, as in Figure 31b, the leading superscripts become

unnecessary, and (53) becomes

 δout

Fout

 =
1

s2
3

 s2
1 + ∆ −s1 − s2

−∆(s1 + s2) ∆ + s2
2


 δin

Fin

 . (54)

4.11.1.2 Displacement amplification figure of merit

One important metric for strain amplified piezoelectric stacks is their free displace-

ment, or the displacement of the output when no load is applied. This is synonymous

with the maximum stroke length. One good dimensionless figure of merit that will

tell whether it is advantageous to add another instance of a given mechanism to am-

plify the displacement still further is the ratio of the free displacement of the three

dimensional mechanism in Figure 31b to that of the two dimensional mechanism in

Figure 31a. From (15) and (54) it can be shown that

FOM =
| δfree3D |
| δfree2D |

=
s3

s1 + s2

(55)

If this figure of merit is greater than one, it is worth adding another instance of

the compliant mechanism to amplify the displacement still further. However, since

the stiffness matrix must be positive definite, this figure is upper bounded by
√
s1s2

s1+s2
.
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Therefore, the figure of merit must lie below the surface shown in Figure 32. Using

the analytical expressions for the two-port model of the mechanism, one can look at

the figure of merit as it varies with geometric parameters. As an example, variation

with thickness and angle are plotted in Figure 33 over a wide range of values. The

maximum value is around 0.5. This suggests that there is nothing to be gained by

adding another instance of a known compliant mechanism; the free displacement is

actually lower!

This is not to suggest a figure of merit greater than one cannot be achieved
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when the two layers are allowed to vary independently, in fact, previous work [1,

23, 25] indicates that this is possible. In each of these cases, the geometry of the

outer layer is drastically different from the inner layer. The process for optimizing

multi-layer mechanisms is quite involved and will be addressed in Chapter 5. This

example shows how analytical expressions for the two-port immittance parameters

from Chapter 3 combined with the results in this chapter allow for quick evaluation

of nested topologies. In this way, one can determine whether there is a good range of

geometric parameters for a given performance characteristic, something that is not

easily done with purely numerical tools, such as finite element methods.

4.11.2 Mechanisms of different characteristic

The previous discussion shows that “re-using” a second instance of a strain amplifying

mechanism in an attempt to amplify the displacement still further results in an ac-

tuator with a smaller displacement than the single-layer actuator. This is intuitive;

if this method worked, roboticists could get unlimited displacement (albeit with a

small force) from a single piezoelectric stack. It is clear then, that each subsequent

layer added to the hierarchy must be more compliant than the prior layers in order

to increase the amplification factor still further. This is the case in the two-layer

mechanisms of [23, 25], [1].

Now consider augmenting an existing multi-layer amplified active material with

one additional layer and compare the free displacement of the two mechanisms. δfreeaug

will denote the free displacement of the mechanism with the additional layer added to

the hierarchy (or the augmented mechanism) and δfreeext will denote the free displace-

ment of the mechanism without the additional layer (or the existing mechanism).

Rewriting (55) with this new nomenclature, it becomes:

FOM =
| δfreeaug |
| δfreeext |

. (56)
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In order for the additional layer to have some benefit, FOM must be greater than

1. The output characteristic of the two general mechanisms are as follows:

 δoutext

F out
ext

 =
1∏n

k=1
ks3

Sn

 δin

F in

 (57)

Sn =

 s11 s12

s21 s22

 (58)

 δoutaug

F out
aug

 =

 n+1s1 −1

−n+1∆ n+1s2


 δoutext

F out
ext

 (59)

where F in and δin are the input force and displacement from the active material, F out
ext ,

and F out
aug are the forces at the output of the existing and augmented mechanisms, re-

spectively, and δoutext and δoutaug are the displacements of the existing and augmented

mechanisms. Sn is the product of all the forward transmission matrices [28] (with

1/ks3 pulled out front) of layers 1 through n in the existing mechanism. The ma-

trix in (59) is the forward transmission matrix of the additional layer. n+1∆ is the

determinant of the stiffness matrix for the additional layer.

The free displacement expressions can be found by setting F out
aug = 0 and F out

ext = 0

in (57) and (59) and solving for δoutext and δoutaug. Taking the ratio of the absolute values

and simplifying, the FOM becomes:

FOM =
n+1s3

n+1s2

−n+1 ∆
s11

s21

. (60)

if the existing mechanism has a single layer, denoting the additional layer as layer 2,

this becomes:

FOM =
2s3

2s2 +1 s2
2∆
1∆

. (61)
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For any valid geometry ks3 is upper bounded by
√
ks1

ks2. Substituting this into (61)

reveals that in order for FOM to be greater than 1, a necessary condition is:

√
2s2

2s1

+
2∆
1∆

√
1s2

1
2s2

1s2

< 1. (62)

This expression has two terms, both of which must be less than one. This leads to

several conclusions. The first term involves only the parameters of the additional

layer. In order for the additional layer to be effective, it must have a much higher

stiffness in the input direction than the output direction. The second term is more

complicated, and involves both layers. This term will be small if 2∆ << 1∆. For

an idealized (hinged) mechanism, described in [1], j∆ = 0. This means that to

contribute to the displacement, the outermost layer should be as close as possible to

an idealized layer, whereas the inner layer should not look anything at all like all like

the idealized mechanism. The second factor in the second term can be troublesome,

since a large 1s1 reduces the figure of merit. Since 1s2 does not appear in the second

factor of the second term, it to some degree can be used to increase the determinant.

In reality, the immittances are coupled in the geometric parameters of a given layer,

and cannot be set independently. The forgoing analysis shows that if a mechanism

already exists with a good FOM , having a compliant outer layer and stiffer inner

layers, it will be difficult to design an additional layer to amplify it further. However,

it may be possible to start from scratch and design a new multi-layer mechanism

with a larger free displacement that has more layers. This also underscores that the

main purpose of multi-layer amplification mechanisms is to mitigate the effects of

geometric constraints (such as the actuator’s envelope) on the aggressiveness of the

force-displacement tradeoff that prevent more aggressive trade-offs in a mechanism

with fewer layers.
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4.12 Summary

This chapter has discussed the method of “nesting” compliant strain amplification

mechanisms to produce larger strain rates and displacements than single-stage am-

plification mechanisms. Nesting becomes necessary because geometric constraints on

robotic devices often limit the amount of displacement amplification that can be pro-

duced by a single compliant mechanism. This chapter establishes a mathematical

framework to understand and calculate the properties of the entire actuator when the

properties of each stage in the hierarchy are known. Experimental results confirm

the mathematical trends observed. It is shown that the stiffness perceived from the

environment depends most strongly on the outermost layers in the hierarchy. For

this reason, any design criteria related to stiffness will not constrain the design of the

innermost layers.

This chapter has discussed the principles and metrics relevant to nested hierarchi-

cal strain amplification, and relevant mathematical features of the nested compliant

mechanism architecture. With these properties of nested mechanisms in hand, Chap-

ter 5 will show how a layered strain amplification mechanism can be selected to meet

a design specification described in terms of these metrics.
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CHAPTER V

A CAMERA POSITIONER DRIVEN BY MUSCLE-LIKE

ACTUATION

This chapter will show how the two-port formalism for a rhomboidal strain amplify-

ing mechanism can be put to use. The application is a biologically inspired camera

positioning mechanism that orients a camera by means of an antagonist pair of con-

tractile soft actuators containing a multi-stage hierarchical strain amplifier for piezo-

electric stacks. Performance specifications for the camera positioning mechanism can

be translated into performance specifications on the actuator itself.

The strain amplifier consists of several rhomboidal mechanisms, the output of each

of which is the input to the next. Using the relationships derived in Chapter 3 and

Chapter 4, various geometries or ranges of geometries can be quickly evaluated. Inter-

play between the various layers in the hierarchy is considered. Numerical, analytical,

and geometric parameter studies are conducted, and optimization tools are used to

identify a point in the parameter space that will give the camera a satisfactory range

of operation. From there, the parameter space is explored further to identify a design

with good overall performance.

5.1 Cellular actuators

Cellular actuators [1] consist of a number of lead zirconate titanate (PZT) ceramic

stacks and deformable amplification mechanisms. When a voltage is applied to a

piezoelectric material, it undergoes a mechanical strain, however, this strain is too

small to be useful in robotic applications. The PZT stack applies a load to the ampli-

fication structure at the input, which due to the geometry of the mechanism results

79



in a larger displacement at the output. This technique has been used successfully

for planar grippers [7]. Cellular actuators use a simple rhomboid geometry and are

modular devices. The rhomboid has a major diagonal, aligned with the PZT stack

actuation direction and a minor diagonal, aligned with the output direction. The

result is a larger output displacement, but smaller output force. Compliant mecha-

nisms such as rhomboidal strain amplifiers transmit an action from the input to the

output, but also transmit an action from the output to the input. For this reason,

they are modeled well by two-port network circuit models, which are described by

 jF in

jF out

 =

 js1
js3

js3
js2


 jδin

jδout

 , (63)

where jF in,j F out is the force at the input and output respectively, jδin,j δout are the

displacements at the input and output, respectively. js1, js2, and js3 are functions

of material and geometric properties, and the matrix in (63) is positive definite. As

in Chapter 4, the leading superscript, j, denotes the rhomboid’s position in the hi-

erarchy, consisting of n “layers”. In theory, a rhomboid can be designed to produce

js1, js2, and js3 that give any level of tradeoff desired, but certain factors limit this.

These include internal interferences under deformation, manufacturing constraints,

and buckling on thin sections. A solution is to use successive layers of nested rhom-

boids [1], each of which may include series-parallel combinations of subunits at lower

levels of amplification. A schematic of this mechanism-within-a-mechanism design

concept is shown in Figure 35. The PZT stacks themselves form the innermost layer

(layer 0). Once a good overall force-displacement tradeoff is achieved, cellular actu-

ators can be combined in series and parallel bundles in order to have the stroke and

maximum force required for the task.

Although PZTs can be controlled proportionally by varying the voltage, they are

subject to hysteresis and thus require complicated drive electronics. When many
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Figure 34: Single degree-of-freedom biologically inspired camera positioner
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Figure 35: Hierarchical nested mechanisms
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Figure 36: Positioner centered (black) and reoriented (green)
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stacks are available, reasonable resolution can be obtained by operating each stack in

an on-off manner and simply choosing how many stacks to activate, avoiding these

issues. In this way, collections of cellular actuators or cellular actuators with several

stacks per “cell” share principles in common with muscles; their action is a sum of

the individual units recruited and their effects are linked by an elastic medium.

5.2 Single-degree-of-freedom device

Although it is hoped that the research in this thesis will eventually lead to a three-

degree-of-freedom Listing-Donders compatible camera positioning mechanism, to ac-

complish the goals of this research, it is sufficient to build and test a single-degree-of-

freedom-device, shown in Figure 34. This will allow verification of recruitment-based

control algorithms and to review actuator performance independently of the kinematic

and design challenges of a 3 degree of freedom device, which will require some sort

of novel low-friction ball or gimbaled joint. The operation of the camera positioning

device is illustrated in Figure 36.

The camera positioner supports a LinkSprite LS-Y201 camera. Since the goal

is for the device to have performance similar to the human eye, it should have a

working angle of ±25◦ (consistent with the linear region of human eye motion [50]).

It should be capable of completing saccadic motions throughout its range within 50

ms [93]. The working range of the positioner is directly related to the actuator’s free

displacement (displacement of the actuator when no external force is applied). The

saccade speed can be related to the actuator’s blocked force (force applied by the

actuator when no displacement occurs) and the inertia of the camera mechanism.

With a moment arm of 5.84 mm, an antagonistic configuration, and adding a safety

factor to avoid operating at the extremes of displacement (where the force capability

is near zero), the desired free displacement comes out to be 8 mm.

Control and positioning is performed by a National Instruments NI cRIO-9024
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Figure 37: Discrete piezoelectric switching circuit with shoot-thru protection (single
channel)

device, which includes an embedded processor and 40 MHz FPGA. Switching signals

are generated by an NI 9401 module with a 100ns resolution. Because PZT requires a

high drive voltage, switching signals from the NI 9401 are sent to a custom switching

circuit that uses Avago ASSR302-C solid state switching ICs to connect each indi-

vidual stack to 150V or ground. The circuit is equipped with an electronic delay to

enforce a “break before make” condition on the switching IC to prevent damage. The

switching delay is nominally 80 µs. A simple schematic for a single channel is shown

in Figure 37. More detailed information is found in Appendix C. When the controller

indicates that a given input should be recruited, the PZT stack will be connected to

150V. In order to release a given input, both ends of the PZT stack must be connected

to ground so the charge stored can run into the ground plane. For this reason, simply

disconnecting the PZT is not sufficient and both bridges of the ASSR302C must be

used to control a single input. The circuit performs this operation automatically and

requires only one signal line per PZT stack.

5.3 Actuator design

5.3.1 Amplified PZT base units

To ease the implementation of the control algorithms, it is advantageous to have

a number of active units that is a power of two. In addition, a somewhat coarse

quantization was desired in order to show the algorithm’s effectiveness. So each
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PZT Stack

First Layer

Figure 38: PZT stack with a single layer of amplification

actuator in the antagonistic pair contains 16 PZT stacks. This example seeks to

determine the following:

• whether a nested compliant mechanism can be designed so that the action of

16 active units is sufficient to meet the desired free displacement

• if so, what blocked force can be achieved while also satisfying the desired free

displacement

Because assembling the PZT stack into the innermost layer involves careful man-

ufacturing techniques and closely held knowhow, the innermost layer consists of 16

amplified piezoelectric stacks from the Cédrat corporation, model APA50XS. The in-

cluded rhomboidal amplification mechanism constitutes the first layer, i.e., the first

layer amplification mechanism is pre-determined. A PZT stack with a single layer

of amplification is shown in Figure 38. 16 of these units in series have a free dis-

placement of 1.25 mm, which is well short of the desired value. So another layer of

amplification is necessary. Keeping in mind the principles of Chapter 4, this section

will search for a series of nested layers to produce the desired displacement.
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5.3.2 Two layer actuator

To further increase the strain rate, Cédrat units can be placed inside another rhom-

boidal mechanism, resulting in the two-layer structure shown in Figure 39. This

rhomboid will have parameters chosen for a good tradeoff. There are many possi-

bilities for parameterization of a rhomboidal mechanism; this mechanism uses the

set of parameters from the example in Chapter 3, shown again in Figure 40. When

multiple layers are being considered, each parameter will be given a subscript to de-

note the layer to which it applies, with the largest number referring to the outermost

layer. Using the methods of Chapter 3, it is possible to obtain the immittance matrix

elements js1,js2, and js3 as expressions of these parameters. Once the immittance

elements are determined, the free displacement and blocked force can be computed

from (63) as:

2δfree = −
2s3

1F block

2s1
2s2 −2 s2

3 +2 s2k1

(64)

2F block =
2s1

3F
block

2s1 + k1

, (65)

where 1F block is the blocked force and k1 is the stiffness of the APA50XS units.

Using Wolfram Mathematica’s NMaximize[] routine, the free displacement was

maximized subject to manufacturing and physical constraints. From this, several

things become evident: other than interior of the small surface shown in Figure 41,

maximizing blocked force and free displacement seem to be competing goals, and free

displacement falls off quickly with thickness, making it difficult to achieve a good

tradeoff given manufacturing tolerances.
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Figure 39: PZT stack with two layers of amplification
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Figure 40: Parameterization of a rhomboidal mechanism
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Figure 41: Region in θ, h, t space where both good force and displacement properties
can be achieved. Plot shown for 4 two-layer units in series with 4 Cédrat APA50XS
units each. d is fixed at 1 mm. Displacement threshold is 4 mm total, force threshold
is 0.5 N. Notice that the displacement threshold is only half of that required; the
specification is not met by this configuration.
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PZT Stack

First Layer

Second Layer

Third Layer

Figure 42: PZT stack with three layers of amplification

5.3.3 Three layer mechanism

Chapter 3 showed that for a given rhomboidal mechanism, the immittance matrix

elements js1, js2, and js3 are coupled, being analytical expressions of the same ge-

ometric parameters. This makes it difficult to achieve a favorable tradeoff between

blocked force and free displacement by modifying a single layer. Optimization of a

weighted function of force and displacement tend to return results that favor only

one, with the other quantity being unsuitable. One might speculate that better

tradeoffs can be achieved by exploiting the interplay between various layers, since the

immittance matrices of each layer are largely decoupled from one another. In ad-

dition, rhomboidal mechanisms alternate between contractile and extensile outputs

with each added layer, and a two-layer mechanism happens to be extensile. This can

be overcome by using a concave “bow-tie” shaped mechanism [22,23] but this topol-

ogy may interfere with device being driven, and is not very compact. Since a goal

of this research is to create actuation that is similar to human muscle, a compact,

contractile mechanism is necessary. The remainder of this chapter therefore explores

the three-layer mechanism shown in Figure 42, performing selection of the second and

third layer rhomboidal geometry. The third layer uses the same parameterization as

the second layer.
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The impedance of each layer affects the performance of the others; optimization of

each of the layers cannot be conducted separately. The optimization problem for the

three-layer actuator has 9 parameters, resulting in much greater complexity. The gen-

eral idea is to search the level surface corresponding to the desired free displacement

for the maximum blocked force on the surface. Wolfram Mathematica’s NMaximize[]

routine is unable to solve this problem directly with 9 parameters, so it proved nec-

essary to break the search into steps, “guiding” the optimization routines to find an

acceptable solution. This solution may not be globally optimal.

The first step maximized the lumped stiffness, or stiffness viewed from the out-

put, of the two-layer unit, independently of the third layer. Then the third layer

parameters were varied with the second layer geometry held fixed, maximizing free

displacement. The resulting geometry serves as the initial condition to an uncon-

strained maximization on the free displacement. This resulted in a maximum free

displacement of 12.9 mm, exceeding the specification.

The next step is to increase the blocked force. The natural procedure to arrive

at a final design is to modify the geometry in the neighborhood of the maximum

displacement and maximize the blocked force subject to the constraint that the free

displacement be greater than 8 mm, possibly by constraint deletion since the free

displacement constraint is a complicated function. While appealing, the numerical

realities of the problem rendered it unsolvable using Wolfram Mathematica’s opti-

mization routines. Therefore, the geometry selection proceeded by using a graphical

search for a solution, varying two or three of the most significant parameters at a

time.

5.3.4 Design constraints

There are a number of constraints on the geometry imposed when optimizing a rhom-

boidal strain amplifying mechanism. The ones applicable to this case are summarized
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here; analogous constraints in the general case should follow logically from this ex-

ample.

• Each rhomboid will be machined by wire EDM techniques, for which the mini-

mum thickness t is 0.1 mm.

• The length of the angled section along the actuation direction d must exceed

the desired displacement of the amplification stage. Otherwise the rhomboid

will fold up into a rectangle and the two-port model no longer applies. In this

case the minimum d3 was 2.4 mm.

• Although it is theoretically possible to have very small angles, there must still

be a discernible angle when manufacturing tolerances, assembly misalignments,

deformations during motion, and preloads are applied. In this case the angle of

all stages was limited to 6◦ < θ < 45◦.

• The length of each layer in the output direction must match the length of the

subsequent layer in the input direction. This was relaxed slightly between the

second and third layers, allowing for a rigid “spacer” no longer than 5 mm on

each side. Thus, w3 was allowed to vary in a 10mm range.

• Each rhomboid must have its major axis along the input direction, i.e., 2d+h <

w.

• d, θ, and w must be chosen so that the geometry results in a simple convex

polygon; anything else is considered a degenerate geometry and is not included.

In addition, the actuator must not impinge on itself when activated. For this

reason, a rigid section was added to the middle of the third layer to make room for

the first layer units.
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Figure 43: Variation in (simulated) blocked force with t3,t2

5.4 Results

It turns out that the thickness of the outermost layer t3 has the greatest effect on

the free displacement/blocked force tradeoff, and high displacement actuators tend

to have low t3, θ3 and d3 values, with high w3. These results are intuitive and

follow from the results in Chapter 4. A plot of blocked force vs. t3 and t2 is shown

in Figure 43. The surface is only plotted over regions that produce sufficient free

displacement. This shows that the blocked force is greatest along the level surfaces

where the displacement spec is just met.

The second layer parameter, t2, affects the shape of this level surface, and the

other second layer parameters do likewise. As can be seen in Figure 44, the free

displacement level surface is curved in h2-θ2 space, meaning that there is an internal

point that represents the best force in this region. A correct second layer impedance

is important to the design.

By plotting these surfaces for several t2, eventually the design summarized in
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(a) Allowable Free Displacement (b) Blocked Force

Figure 44: Variation in (simulated) performance with h2,θ2

Table 9: Final design of three-layer actuator

Quantity Value Units
d3 2.40 mm
h3 1.00 mm
θ3 6 ◦

t3 0.170 mm
w3 68.8 mm
d2 6.60 mm
h2 3.00 mm
θ2 35.1 ◦

t2 0.250 mm
3F block 0.907 N
3δfree 8.10 mm

Table 9 was selected. The resulting three layer actuator design has a free displace-

ment of 8.1 mm and a blocked force of 0.907 N. By way of comparison, the Cédrat

APA1000XL, the largest in their amplified piezoelectric stack actuator series, has a

free displacement of 1.05 mm and has a footprint nearly 7.5 times larger than the

three-layer actuator presented here. The APA100XL, like the other offerings from

Cédrat, has only a single stage amplification mechanism.
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Figure 45: Motion of the camera positioner

5.5 Positioner motion

Two instances of the piezoelectric cellular actuator designed in section 5.3 are placed

in an antagonistic pair arrangement. Figure 45 shows the response of the camera

to a quantized sinusoid with an amplitude of 16 units active (maximum activation).

Figure 46 shows the image capture from the camera at the center and extremes of

motion. It is theoretically possible to reach arbitrary positions for some finite length

of time using discretized control efforts. This will be discussed in Chapter 8.

Theoretically, each actuator should move 4 mm (half of its free displacement) at

maximum activation, exceeding the required angle of 25 degrees. Parasitic effects such

as misalignments, residual stresses from manufacturing and assembly, and bearing
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(a) Input = 16 (b) Input = 0 (c) Input = -16

(d) Input = 16 (e) Input = 0 (f) Input = -16

Figure 46: Camera images from full activation to the left, zero activation, and
full activation to the right. The antagonist actuator is not activated. The object is
roughly 200 mm from the camera imaging sensor. Photos 46d-46f taken by William
Gallagher.
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friction limit this somewhat, so the displacement of this first prototype is less than

that predicted by the theoretical model.

5.6 Summary

This chapter presents an analysis of the force-displacement tradeoffs involved in the

actuator design and shows how to find geometry that meets the requirements of

a camera positioner. Actuator performance is demonstrated on a single degree-of-

freedom device. It is compact enough to be used in autonomous robot navigation,

indoor security, and humanoid applications. The cellular actuator, a biologically in-

spired actuation technology that uses a multi-stage hierarchical compliant mechanism

to scale up the displacement of piezoelectric ceramic stacks, holds great potential to

more accurately replicate human eye motion than do traditional actuators. This

chapter shows that by exploiting the principles revealed in Chapters 3 and 4, com-

pact, large-strain actuators can be achieved. Chapters 6, 7 and 8 will discuss open

and closed loop control algorithms compatible with the discretized nature of these

actuators.
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CHAPTER VI

MINIMUM SWITCHING DISCRETE SWITCHING

VIBRATION SUPPRESSION ON A 6 INPUT,

TWO-LAYER CELLULAR ACTUATOR

The actuators developed in chapter 5 and [1] each contain several piezoelectric stacks

that can be activated independently. In order to avoid hysteresis and to simplify the

drive electronics, it is advantageous to make each of these inputs on-off only. The

compliant nature of the strain amplifying mechanisms developed in chapters 3 and 5

and the impulsive nature of the these on-off inputs can lead to oscillatory behavior.

In this way, these actuators bear similarity to human muscle, where efforts of on-off

muscle fibers are linked by compliant tissue.

This chapter presents a control method whereby the activation timings of these

discrete-valued inputs can be carefully coordinated to suppress multiple modes of

vibration. This method is demonstrated on a replica of the actuator used in [1].

The dynamic response of the actuator is determined experimentally and reveals two

significant lightly damped modes of vibration.

6.1 All On/All Off Control

Each time an actuator changes from one state to another (forward, off, reverse) its

effort is associated with an impulse. Each impulse is represented by a phasor in the

complex plane. The direction of the phasor, φj, is the angle corresponding to the

time delay from the initial impulse, tj, with respect to the natural period of the mode

of vibration, Tn, (angular frequency ωn) being considered.
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φj = 2π
tj
Tn

= ωntj (66)

If the vector sum of these impulses is zero, there will be no residual oscillation at

frequency ωn after the command is completed. Inputs to the cellular actuator have

only two states, on and off. Although each input can be independently commanded,

the switching method of Singhose, Singer, and Seering [64] can be applied by “linking”

inputs and applying the same command identically to all inputs. For example, if

activating 3 units will reach the desired steady state position, but a step command

is oscillatory, an on-off switching vibration suppression command can be identically

applied to 3 inputs, with the remainder inactive, to reach the goal without oscillation.

The vibration suppression command is computed as if the device had only a single

switching input. This will be referred to in this chapter as All On/All Off control.

6.2 Discrete Switching Vibration Suppression

Typically, in systems with on-off actuators, the input has a fixed amplitude. Although

Singhose, Seering and Singer [64] make provision for impulse amplitudes that take

different values, in their work, the variation in amplitude is used mainly to account

for reduction in oscillation over time due to damping effects, undamped amplitudes

being normalized to one. It is not set up for a highly discretized input, such as

redundant array of cellular actuators. If a degree of freedom is actuated by an array

of actuators, all of which produce the same amount of generalized force, the control

input u(t) at any time can be defined to be

u(t) =
m−1∑
j=0

Ajδ(tj), Aj ∈ D ⊂ Z, 0 /∈ D (67)

where Aj is some integer impulse amplitude, m is the total number of impulses, and

δ(tj) is the Dirac delta function. Each Aj is normalized with respect to the generalized

force provided by a single actuator, which is assumed to have the same magnitude in
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either direction. Since applying an impulse j at some time corresponds to turning a

certain number of actuators on or off, it is limited by practical considerations, namely,

how many actuators are, at a given time, in the “on” state and therefore available to

be turned off, and how many actuators are in the “off” state and are available to be

turned on. Thus, the set of possible input amplitudes, D, will change each time an

impulse is applied.

The vibration due to impulse Aj can be represented as a multiplicity of phasors

in the complex plane, each rotating at a natural frequency of vibration. It is assumed

that any amplitude reduction due to damping is negligible on the time scale of interest.

If damping is significant, appropriate scaling of the impulse amplitudes with time can

be incorporated.

Because the impulse amplitudes must take integer values, it is assumed that a set

of amplitude values are known a priori, and that the times at which they are applied,

which can vary continuously, are the unknowns. All timings can be expressed as a

phase φj with respect to the lowest natural frequency of the system. In order to

suppress vibration at all natural frequencies, the real and imaginary components of

the residual oscillation at all natural frequencies must be zero. This condition can be

derived from the vector diagram and amounts to solving the system below:
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A0 + A1 cosφ1 + · · ·+ Am−1 cosφm−1 = 0

A1 sinφ1 + . . .+ Am−1 sinφm−1 = 0

A0 + A1 cos
f2

f1

φ1 + · · ·+ Am−1 cos
f2

f1

φm−1 = 0

A1 sin
f2

f1

φ1 + · · ·+ Am−1 sin
f2

f1

φm−1 = 0

...

A0 + A1 cos
fn
f1

φ1 + · · ·+ Am−1 cos
fn
f1

φm−1 = 0

A1 sin
fn
f1

φ1 + · · ·+ Am−1 sin
fn
f1

φm−1 = 0

(68)

where fi is the natural frequency of the ith mode and there are n significant modes.

Since (68) contains two equations for every frequency to be suppressed, due to the

real and imaginary parts, the command must contain 2 impulses occurring at some

phase φ per frequency to satisfy the constraints.

Activating any single input in the array, while leaving the remaining inputs off, will

result in a steady state displacement. This displacement will be the same (to within

the accuracy measured in Chapter 4) regardless of which input is activated. Therefore

the steady state displacement due to any combination of inputs can be normalized

by this value. The desired steady state displacement can then be expressed as an

integer goal displacement yg, which corresponds to the total number of inputs turned

on. This adds an additional constraint that must be satisfied:

m−1∑
j=0

Aj = yg (69)

There may be many choices of Aj for which a set of φj exists that can achieve the

goal displacement and suppress vibration at the frequencies considered. There are a

number of advantages to choosing the minimum switching condition, or
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{Aj ∈ D ⊂ Z} such that
m−1∑
j

|Aj| is minimized (70)

6.3 Redundantly actuated flexible cellular actuator

When a device has multiple actuators for a single degree of freedom, this thesis will

use the term “redundant actuation” to describe this scenario. The cellular actuator

shown in Figure 47 is one such device. It is constructed from commercially available

strain-amplified [18] [94] [1] lead zirconate titanate (PZT) piezoelectric stack actuators

from the CEDRAT corporation, model APA50XS. These have a maximum no load

displacement of 80 µm [9]. This collection will be referred to as the “first layer.”

Because each of the first layer subunits has such a small displacement, 6 of them

are stacked in series so that the first layer output displacement is the sum of the 6

actuators. This strain is amplified by the “second layer,” a rhomboidal high silicon

bronze strain amplifier that surrounds the first layer. If a (non-square) rhombus has

some small strain along its major diagonal, ε0, the minor diagonal will experience a

larger strain, ε1 = α1ε0 where α1 > 1 [94] [1]. The first layer units in series actuate

along the major diagonal of the rhomboidal second layer. Figure 48 illustrates this

amplification concept. The second layer was designed to achieve 20% strain. The

design process to achieve this displacement (along the minor diagonal) is described in

detail in [1]. Cellular actuators can be cascaded to form robotic devices, as described

in [22].

Because each first layer unit actuates in the same direction and has the same

function, the numerous first layer units represent redundant actuation. This type of

actuator is equipped with redundancy deliberately because several first layer units

are necessary to achieve the desired stroke. Human muscle also possesses redundant

actuation to increase stroke length and force. Any given muscle group will have many

muscle fibers, each with many sarcomeres. Redundant actuation may also be present
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Figure 47: Two-layer cellular actuator

PZT stack

actuator
2nd layer

amplifier

Amplified

displacement
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amplifier

Figure 48: Cellular actuator schematic [95]
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in traditional automation to insure the device can continue functioning if a single

actuator fails.

This redundancy of actuation can be exploited to impose additional constraints

on the system while achieving the desired control objective, e.g., position, force. Most

notably, the redundancy of actuation can be used to limit vibration in the resonant

modes of the actuator. Although the individual piezoelectric stacks are capable of

receiving an analog command, it is desirable to restrict the command to each first

layer actuator to be simply “on” or “off.” The piezoelectric stacks possess hysteresis,

which is problematic for positioning applications. On-off commands mitigate the

hysteresis effect because the PZT stack only operates at the ends of the hysteresis

loop [2]. Analog commands require transistors to operate in the linear region, which

complicates the drive electronics and causes more heat to be dissipated, requiring

larger transistor spacing and increasing package size. Restricting the control input

to switching commands simplifies the firmware. This quantization limits the position

resolution, but when many actuators are combined in series-parallel combinations, the

position is indistinguishable from that of a continuously variable analog command.

The cellular actuator has two significant modes (n = 2) that need to be suppressed.

Because one end of the cellular actuator is fixed to a rigid support, the other end will

have a finite relative displacement as the actuator extends. The goal displacement is

normalized and can take any natural number from 0 to 6. In order for (68) and (69) to

be satisfied, there must be a total of m = 2n+ 1 = 5 impulses. m > 5 can be chosen

if some strategy is chosen for determining a solution for an underconstrained system

of equations, however, the additional impulses reduce the likelihood of reaching a

minimum switching solution. Since the first impulse occurs at t = 0, the phases φj of

the remaining four impulses must be found. Because the number of first layer units

on cannot exceed six, the amplitudes Aj must be chosen such that
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Figure 49: Flowchart depicting algorithm to determine switching pattern

{∀j ∈ [0, 5] ⊂ Z, Aj | 0 ≤
j∑

k=0

Ak ≤ 6} (71)

6.4 Determination of switching pattern

6.4.1 General case

The determination of the switching pattern for a general MSDSVS move is illustrated

in Figure 49 for the case where m = 2n+ 1.

The algorithm breaks neatly into two parts: The first part determines a set of
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impulse amplitudes that will reach the goal displacement with the minimum number

of changes in state to the inputs. The second part determines the phases that result

in a vector sum of zero, or zero residual oscillation. A is initially set to a vector of

length m, where all elements are 1. The vector of phases, φ, is set to some convenient

initial condition, such as evenly spaced angles between 0 and π. In general, the sum

of all the elements of this initial A will not equal the goal displacement, yg. To

correct this, the elements of A are either incremented or decremented using the rules

shown in Table 10. These rules ensure that no element of A will ever be zero, which

would correspond to deleting an impulse. This would result in too few impulses to

guarantee that (68) and (69) are satisfied. This results in a “stairstep” pattern (which

contains, by inspection, the minimum number of switches) if yg >= m. If yg < m,

this method produces one of several possible patterns with the minimum number of

negative valued input transitions. Negative amplitudes correspond to inputs in the

opposite direction of the desired displacement and represent wasted energy in one

sense, however, they may be necessary to suppress all vibrational modes, especially

for short moves. Once a “minimum switching” set of amplitudes is determined, the

vector A is passed to a numerical solver which attempts to solve (68) by changing

the phases φj. If the solver is successful, the set of amplitudes determined by the first

part of the algorithm and the phases returned by the solver constitute the MDSDSVS

command. If the solver is unable to determine a solution, A is modified using the final

rule shown in Table 10. This modifies the individual impulse amplitudes while leaving

their sum unchanged, moving to the configuration with the next fewest number of

individual input transitions.

6.4.2 Application to the cellular actuator

To generate commands for the cellular actuator, the phases φj are found by a custom

MatLab function, arb novib2f.m, which uses MatLab’s (R2009b) native fsolve.m
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Table 10: Command selection algorithm rules

Name Form Note
inc [ 0 · · · 0 1 0 · · · 0 ]T

Adec [ 0 · · · 0 − 1 0 · · · 0 ]T -1 has the same index as some Aj 6= 1
Adec [ 0 · · · 0 − 2 0 · · · 0 2 0 · · · 0 ]T -2 has the same index as some Aj = 1
Adec [ 0 · · · 0 − 2 0 · · · 0 1 0 · · · 0 1 0 · · · 0 ]T -2 has the same index as some Aj = 1

Ainc dec some Ainc + Adec
nonzero elements of Ainc and Adec

may not have the same index

function. fsolve.m employs an algorithm based on that proposed by Powell [96].

The cellular actuator has two significant resonant modes (n = 2), and 6 inputs, so 5

impulses are required for a minimum switching solution that achieves zero residual

vibration. The algorithm begins with

A = [A0 A1 · · · A5] = [1 1 1 1 1] (72)

.

arb novib2f.m then follows the procedure in the previous section to generate a se-

quence of impulses that results in a final position of yg. Ainc is some permutation of

the elements of [ 0 0 0 1 0]T , Adec is some permutation of the elements of [ 0 −2 0 1 0]T .

Once yg is achieved, fsolve.m attempts to find φj that result in zero residual vibra-

tion. If it is unsuccessful, Ainc dec of the form [ 0 −2 1 1 0]T is added and fsolve.m

attempts to find a solution. If it is possible to achieve a vibration-free move with

fewer than 5 impulses, fsolve.m may calculate two identical φj. In this case, the two

impulses are removed and replaced by a single impulse whose amplitude is the sum

of the two amplitudes. A hypothetical example illustrating this process is provided

in Appendix E.

6.4.3 Existence and uniqueness considerations

If the first candidate set of amplitudes, A that satisfies (69) and (71) results in a

successful set of φj that solves (68), for a given set of initial guesses, then it is a

minimum switching solution. However, what if the fsolve.m fails to find a solution?
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One could certainly choose another set of initial conditions and try again, but simply

trying many sets of initial guesses may still miss a valid solution. Even if the solver

returns a valid solution, might it converge to a different solution with the same number

of switches given a different set of initial guesses? Since (68) is a system of nonlinear

equations, no statements of existence, non-existence, or uniqueness can be made using

classical mathematical methods. Solutions to systems of nonlinear equations are still

an area of active research.

Under certain conditions, the Interval Newton Method [97] may be used to make

an analytical statement about the existence or uniqueness of a solution for a given

set of amplitudes. This depends on the ability to invert the Jacobian of (68), which is

singular at every multiple of π
4
fk
f1

radians, where fk is the highest natural frequency,

so its application will apply to a small local region rather than globally. Because

a solution may be near a singularity, small changes in the natural frequencies of

the system may mean that the new solution is not in the neighborhood of the old

solution. In fact, a candidate set of amplitudes may produce a solution for a given

set of natural frequencies, and fail to produce a solution for neighboring frequencies.

For this reason, it is important to verify all MSDSVS patterns experimentally.

6.5 Experimental setup

The relevant resonant frequencies to be suppressed and the desired final position (0-6

first units actuators on) are provided to arb novib2f.m, which returns a table with

the number of units on after each switch in the sequence and the time that each switch

occurs. An on-off sequence is determined for each individual input that is feasible

(a unit that is already on cannot be turned on), and the aggregate of all first layer

units at any given time must match the command returned by arb novib2f.m. If

the choice of sequence specifies that each input must change state an odd number of

times, the pattern for the forward direction can be used to command a motion of the
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length in the opposite direction, merely by inverting all input lines in the sequence.

This is called a “reversible” pattern.

The DSVS command is implemented by a Silicon Laboratories C8051F120DK

microcontroller development kit, running at 25.4 MHz. The command for each first

layer unit is generated by each of the 6 Programmable Counter Array (PCA) modules,

which toggles an output pin (CEX) state when a match occurs between a given

module’s internal register and the PCA clock, set to be the system clock/12. This

allows implementation of a command which suppresses resonant frequencies as low

as 32.3 Hz without rollover. The microcontroller is set to interrupt each time a PCA

match occurs on any module, and the subsequent match times are loaded into the

various PCA registers. If an output line is supposed to toggle at a given instant,

the PCA compare register is loaded with the next transition time at each match

interrupt. If it is supposed to maintain its value at the next switching time, the

PCA compare register is loaded with the maximum time value, preventing a match

from occurring on that module when the next switching time is reached. When the

final impulse occurs, the PCA clock is stopped and all output lines are held at their

current values until the next move command occurs. Move commands are invoked

by a serial command from a PC over RS-232 using the microcontroller’s UART and

PuTTY open-source telnet software.

Each microcontroller output is wired to an Avago ASSR302-C solid state switching

IC, which has two bridges per chip. This is a commercially available, easily procured,

low cost component, easily scalable to devices using a large number of cellular ac-

tuators. The “low” side of the PZT stack actuator in each first layer unit is always

connected to ground. When the upper bridge is activated, the “high” side of the PZT

is connected to ground. When the lower bridge is activated, the “high” side of the

PZT stack is connected to the source voltage, imposing a voltage across the PZT stack

and inducing a displacement. A pair of bridges per stack is necessary because the
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Figure 50: MSDSVS experimental setup

PZT stack actuators are capacitive; simply disconnecting a stack actuator from the

source voltage will not cause it to return to its unforced length. It must be grounded

so that it can discharge. The ASSR302-C has a delay of 70µs and an Rdson of 30 Ω

(typical). The drive voltage is provided by an American Power Design A5 series 5

Watt high voltage DC/DC converter. It supplies 33.3 mA at 150V. A delay circuit

with a time delay of 40µs prevents cross conduction.

One end of the cellular actuator is fixed to a rigid support. The position of the

other end is measured by a Micro-Epsilon optoNCDT ILD 2200-20 laser position

sensor with a sampling frequency of 10 kHz. For the verification of the MSDSVS

algorithm on cellular actuator hardware, the signal from the laser position sensor

was recorded with a LeCroy Waverunner 44MXi mixed signal digital oscilloscope. A

photo of the experimental setup is shown in Figure 50.
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Table 11: Parameters for experimental frequency response fit

Mode K ω, [rad/s] ζ
1 1.46E-3 478.61 0.0400
2 1.22E-3 2180.3 0.0175

6.6 Experimental results

The frequency response of the cellular actuator was obtained using an HP 3562a

spectrum analyzer to generate a sinusoidal input and compare it with the output of

the laser position sensor. For the purpose of obtaining the frequency response, the

cellular actuator was driven through a Cédrat CA45 amplifier, which has an unloaded

bandwidth of 10 kHz. A transfer function for a general vibratory system with two

significant modes of vibration with time delay was fit to the data. The frequency

response is shown in Figure 51. The mode shapes corresponding to the two resonant

peaks are displayed in Appendix D.

Since the displacement generated by the actuator results from deformation only,

and not from rigid body displacement, it can be represented as the sum of n lightly

damped second order systems:

G(s) =
n∑
i=1

Ki

s2 + 2ζiωis+ ω2
i

(73)

where for mode i, Ki is the residue, ωi is the natural angular frequency, ζ is the

damping ratio, and s is the LaPlace variable. The results from the experimental

transfer function fit for the 2 most significant modes are in table 11. The time delay

in the system was determined from the fit to be 3.9 ms.

The MSDSVS and all on/all off commands (command for yg = 6 shown in Figure

52) were applied to the cellular actuator. Commands for the remaining values of

yg are shown in Appendix F. Note that a monotonically increasing command was

not found for this particular set of natural frequencies. The response to a step (all
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Figure 51: Frequency response of cellular actuator

6 actuators transitioned at the same time) and the response to both vibration sup-

pression commands are shown in Figure 53. The step response shows considerable

oscillation (>50% overshoot), due to the lightly damped nature of the system. The

various commands are completed by 10 ms, so the remaining period of time shows

the decay of any residual oscillation once the command is completed. Note that the

response to All On All Off command has the largest transient during the command.

Despite the use of vibration suppression commands, there is still some discernible

oscillation remaining in the response after such a command is completed. This is

likely due to a combination of factors. Both All On All Off and MSDSVS methods are

based on linear analysis, and they suppress oscillation in an actuator that is described

accurately by a linear model. In actuality, some non-negligible nonlinear effects are

present. The natural frequency of the cellular actuator changes slightly as it extends.

The values in Table 11 are only exact for the intermediate position corresponding to

the DC offset of the spectrum analyzer, +2V, during the test because the frequency
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Figure 52: Step, All On/All Off and MSDS Commands to Cellular Actuator, yg = 6

sweep with the spectrum analyzer caused oscillation about this intermediate position.

The command was designed based on the frequency for this intermediate length, not

the natural frequency of the actuator when it was extended. Most of this remaining

oscillation could be removed by further empirical tuning if necessary. The second

mode is particularly problematic because its frequency is high enough to where the

dead time to prevent cross conduction and time delay in the system begins to become

significant. The time constant of the PZT and switching circuit is beginning to

become significant at the frequency of the second mode as well. For robotic devices

using large numbers of cellular actuators, however, the dominant modes will not be

high enough for this to be a concern. In addition, the assumption that an “on”

command has the same force magnitude as an “off” command, may not be entirely

accurate for the cellular actuator. If these properties are well known, adjustments

can be made to compensate for them when generating the command. Finally, during

the frequency response testing, it was observed that when the actuator was excited

with a pure sinusoid at the frequency of the first resonant mode, the output was not a

pure sinusoid. Instead, persistent oscillation at the frequency of the second mode was

superimposed over the response at the excitation frequency, indicating a nonlinear

dynamic effect which is not captured by the linear analysis.
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Figure 53: Dynamic Response of Step, All On/All Off and MSDSVS Commands,
yg = 6

When either MSDSVS or All On/All Off control is applied to the cellular actuator,

the largest component of the FFT (Figure 54) and the RMS oscillation (Figure 55)

are reduced by 50% or more in nearly all cases. In most cases, MSDSVS performed

slightly better. For yg = 6, the 2% settling time for a step command was measured

to be 699 ms. For the all on all off command, the settling time was 477 ms. For

MSDSVS, the settling time was 529 ms. With fine-tuning to compensate for all the

non-ideal behaviors, it is expected that the settling time for the vibration suppressed

commands can be reduced even further.

6.7 Discussion

If both MSDSVS and All On/All Off control both reduce oscillation, one may wonder

whether there are any advantages in using one over the other. The advantage of

All On/All Off control is that the command is nearly always shorter in duration,
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Figure 55: RMS oscillation, normalized by move distance
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and thus, in theory, it can reach a vibration-free response sooner than MSDSVS.

However, there are a number of advantages to MSDSVS. MSDSVS, since it has fewer

transitions, uses less energy than the All On/All Off solution. This corresponds to

a smaller control effort being used. In this particular application, there is a certain

amount of Joule heating that occurs when the PZT is energized and discharged. This

can be expressed as

EJ =

∫ T

0

i2Rdson dt (74)

where EJ is the energy dissipated, and i is the current, and T is the charging/discharging

time. In order to determine the amount of energy used for a move using a given com-

mand, the voltage supplied to the input of the DC/DC converter was measured using

a LeCroy ADP305 differential probe. The current to the DC-DC converter was mea-

sured with a LeCroy AP015 current probe. After subtracting steady state leakage

currents, the product of the two signals was integrated numerically over the time

duration of the move. Figure 56 shows how the difference in energy dissipated grows

quickly with an increase in the number of inputs. Table 12 shows the number of

switches required to reach a given position, which directly correlates to the results

shown in Figure 56. A “switch” corresponds to a transition of a single PZT stack, so,

for instance, implementing an impulse of Aj = 2 would count as two “switches,” since

2 stacks must be energized. Table 13 summarizes the information in Figures 54-56.

The MSDSVS command reduces the RMS oscillation by 73% and the amplitude of

the largest frequency component by 74%. All On/All Off control reduces oscillation

by nearly the same amount, but the MSDSVS command uses 37% less energy than

the All On All Off Command and shows better robustness properties.

Minimizing the number of cycles also has benefits for the life of the actuator.

Piezoelectric bimorphs have been known to delaminate at 108 cycles [2].

MSDSVS also has advantages with regard to robustness. Robustness is often
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Table 12: Number of switches required to reach yg for each command

yg Step All On All Off MSDSVS
1 1 5 5
2 2 10 6
3 3 15 5
4 4 20 8
5 5 25 7
6 6 30 8
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Figure 56: Energy consumption per move

Table 13: Overall performance comparison between commands
(RMS and FFT are normalized)

Command Avg RMS Avg FFT Avg Energy/Move Dist. [mJ]
Step 0.380 4950 11.9

All On All Off 0.135 1630 30.0
MSDSVS 0.102 1280 18.6
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characterized in terms of the residual amplitude of oscillation, Ar, produced by a given

All On All Off or MSDSVS command when an unmodeled or uncertain resonance of

frequency ω is present.

Ar =
|
∑m−1

k=0 Ake
jωφk
ω1 |∑m−1

k=0 Ak
× 100% (75)

The sensitivity plot (Ar vs ω) of the MSDSVS command and the All On/All Off

command is shown in Figure57. MSDSVS shows much less amplification, in general,

if there is an unmodeled lightly damped mode. Because of the periodic nature of

the vector diagram summation, both types of commands will suppress additional

frequencies higher than those they are designed to suppress. The All On All Off

command has two such frequencies near 590 Hz and 720 Hz, but across the board,

MSDSVS performs better. Figure 58 shows the time response of the cellular actuator

to an All On/All Off command and an MSDSVS command when both commands

were designed with an assumed first mode natural frequency of 45.7 Hz, rather than

the measured frequency of 76.1 Hz (yg = 6). MSDSVS still exhibits fair vibration

suppression properties, even when the frequency is off by 40%, whereas All On/All

Off control exhibits almost no vibration suppression.

Figure 59 shows the response when two masses are added to the cellular actuator,

but the commands are the same as shown in Figure 52, again producing a mismatch

between the frequencies suppressed by the command and the natural frequency. The

natural frequencies of the modified actuator are f1 = 56.8 Hz and f2 = 341 Hz.

In this case, both All On All Off control and MSDSVS still provide some benefit.

The amount of residual oscillation for the All On All off and MSDSVS methods are

comparable, as predicted by Figure 57 when the first mode is lowered.
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Figure 57: Sensitivity plot for All On/All Off control and MSDSVS
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Figure 58: Cellular actuator response when command designed based on incorrect
natural frequency
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Figure 59: Cellular actuator response when the natural frequency is changed

6.8 Summary

This chapter presented the discrete switching vibration suppression (DSVS) method

for flexible robotic systems with redundancy in actuation. This represents a greater

class of vibration suppression commands then applying existing approaches identically

to all inputs. DSVS successfully reduces the amplitude of oscillation when applied

to the redundant, flexible cellular actuator. Choosing the DSVS command with the

minimum number of total input transitions has specific benefits, namely, lower energy

usage and increased robustness to modeling errors.

Although the example mechanism used had two modes of vibration, this method

is sufficiently general to be used for systems with large numbers of vibrational modes,

provided a numerical solution to the system of equations can be found. When there

is only a single mode of vibration, the determination of appropriate switching times

can be greatly simplified, and this will be discussed in Chapter 7.
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CHAPTER VII

CONTROL OF THE BIOLOGICALLY INSPIRED

CAMERA POSITIONER

7.1 Introduction

Chapter 6 presented Minimum Switching Discrete Switching Vibration Suppression

(MSDSVS), a method for point to point motion with zero residual vibration for

systems with highly discretized redundant actuation. The method was demonstrated

on a 6 input actuator in a single-ended configuration with two significant modes of

vibration.

This chapter applies this method to the camera positioning mechanism of Chapter

5, which has two cellular actuators in an antagonistic configuration with 16 inputs

each. LabView firmware is developed that allows a user to complete any arbitrary

sequence of moves using MSDSVS to suppress residual oscillation.

7.2 Natural vibrational modes of the camera positioner

The natural frequencies of oscillation of the camera positioner were determined using

simple experiments. The 16 piezoelectric inputs on one side were excited by a swept

sinusoidal signal, generated by an Agilent function generator, which was amplified by

a Cédrat CA45 linear amplifier. The opposite side was not energized. The amplitude

was read in the time domain during the sweep and the maximum amplitude was noted

to be at 9.9 Hz. Since the natural frequencies were low, the residues and damping

values are not required for MSDSVS, and the change in amplitude was distinct enough

to resolve the resonant frequency to an accuracy of 0.1 Hz, this very simple experiment

is sufficient for the purposes of the investigation conducted in this chapter.
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Surprisingly, the amplitude of oscillation of any remaining modes was insignificant

relative to the amplitude of vibration of the first mode. Therefore, for satisfactory

operation of the camera positioning mechanism, it is only necessary to suppress a

single mode, greatly simplifying the determination and implementation of appropriate

MSDSVS commands. If higher modes prove to be troublesome on similar devices in

the future, the methods of Chapter 6 can be used.

7.3 Determination of MSDSVS switching patterns

Since the plant has only one natural frequency that needs to be suppressed, vibra-

tion suppression can be achieved using only 3 impulses. Given a set of amplitudes,

the timings can be calculated analytically using the following formulas, obtained by

setting the sum of the effects of all impulses to be equal to zero in the complex plane.

With a single mode, this results in:

φ1 = arccos
A2

2 − A2
0 − A2

1

2A1A0

(76)

φ2 = arcsin−A1 sinφ1

A2

(77)

where Ai ∈ D ⊂ Z are the integer amplitudes applied to the camera positioner and

φi represent the phase delay of impulse i with respect to the resonant frequency.

Requiring that

A2
2 − A2

0 − A2
1

2A1A0

∈ [ − 1, 1 ] (78)

and

A1 sinφ1

A2

∈ [ − 1, 1 ] (79)

(so that all φi ∈ R) defines the allowable set of amplitudes for which a vibration-free

point-to-point move is possible.
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Figure 60: Representation of impulses in the complex plane for an odd number of
impulses

Because (76,77) are analytical expressions, a solution is guaranteed, provided that

the relative magnitudes of the impulses result in arguments in the domain of the

inverse trigonometric functions. This means that a monotonic “staircase” solution is

always possible for a single frequency for move distances greater than 1. However, it is

simpler to compute the solution graphically than to use (76) and (77). Representing

the impulses as vectors in C, the first impulse corresponds to a vector directed along

the positive real axis. For even numbered distances, a vibration free move can be

computed that includes two impulses of equal amplitude, one along the positive real

axis and the other along the negative real axis. This is equivalent to a ZV shaper [58]

applied to a step input. For odd numbered move distances, the command can be

computed as follows:
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Table 14: MSDSVS patterns for the biologically inspired camera positioning mech-
anism

move distance A0 A1 A2 φ1 φ2

Units Activated ◦

1 1 -1 1 60 120
2 1 1 n/a 180 n/a
3 1 1 1 120 240
4 2 2 n/a 180 n/a
5 1 2 2 104.47 255.52
6 3 3 n/a 180 n/a
7 3 2 2 138.59 221.41
8 4 4 n/a 180 n/a
9 3 3 3 120 240
10 5 5 n/a 180 n/a
11 5 3 3 146.44 213.56
12 6 6 n/a 180 n/a
13 5 4 4 128.68 231.31
14 7 7 n/a 180 n/a
15 5 5 5 120 240
16 8 8 n/a 180 n/a

1. Decompose the move distance yg into yg = q + p, where q is even and p is odd.

p and q must be chosen such that (78) and (79) are satisfied.

2. Set the first amplitude, A0 = p. This lies along the positive real axis.

3. Set the two remaining amplitudes A1 = A2 = q/2.

4. A1 and A2 will be represented as vectors of equal magnitude in the complex

plane, at an angle φ above and below the negative real axis.

5. Solve for the φ that gives a vector sum of zero.

Figure 60 illustrates the phasors in the complex plane for an odd-numbered move.

The MSDSVS patterns computed using this method are listed in Table 14. When

multiple solutions were found, the one that could be completed in minimum time was

chosen. Phases can be converted to timings using the natural frequency of 9.9 Hz.

123



7.4 Experimental evaluation

The experimental setup consists of the camera positioner and drive circuit described

in Chapter 5. Firmware is developed for the positioning and control of the mechanism

on both the NI-Rio embedded processor and the FPGA backplane. The amplitude

and timing values of the MSDSVS patterns for all destinations are stored in a text

file stored in memory of the processor module. This file is read when the program

begins and stored in RAM. The user can designate the destination position using the

LabView front panel interface. When the user sets a new destination, the processor

algorithm computes the move distance based on the current position and the desti-

nation and loads the appropriate pattern into the FPGA’s memory. It then waits for

the user to initiate the move. If the user changes the destination without initiating

the move, the pattern is simply overwritten.

Once the user initiates the move, the FPGA executes the MSDS pattern, free from

any supervision by the embedded processor. Any input from the user during the move

will not be acted upon until the move completes. Timings are derived from the FPGA

40 MHz clock. The FPGA keeps track of which inputs are active and inactive during

the move, i.e. available for use or not available for use. Further details about the

firmware can be found in Appendix G.

The position is measured by a Midori Orange Pot CP-30H (hall effect variable

resistor). This is so that the true angle of the camera can be recorded for experimental

purposes. In applications such as autonomous vehicle navigation, the camera angle

could be determined using salient features in the image, and once calibrated, the

potentiometer could be removed.

7.5 Results

Figure 61 shows the step response of the camera positioner. It is evident that the

device is lightly damped from the large overshoot, particularly for the longer moves.
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Figure 61: Step response of the biologically inspired camera positioner. Curves
shown for a single direction, center to all 16 positions shown.

Locations 13-16 also show a saturation effect; most likely the overshoot causes the

output flange to collide with the first layer units. This is further motivation to

suppress oscillation in the device, as the quasistatic experiments in Chapter 4 showed

that no such collisions occur in the steady state, even at maximum activation.

Figure 62 shows the response to the various MSDSVS patterns for each of the 16

discrete positions. The resulting responses have low overshoot, or none at all. The

response reaches steady state within 0.14 s. Therefore this method is effective in

suppressing vibration for saccades.

7.6 Discussion

Figure 61 shows that there are some nonlinearities in the camera positioner system

dynamics. This is primarily due to variation in frequency with actuator length.

However, despite these nonlinear effects, the MSDSVS commands based on the simple

linear model of the system are effective for the range of motion of this device. For

long serial chains of actuators such as these, some more advanced or heuristic methods
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Figure 62: Minimum switching discrete switching vibration suppression response
of the biologically inspired camera positioner. Curves shown for a single direction,
center to all 16 positions shown.

may be necessary to mitigate the change in natural frequency with length.

7.7 Summary

This chapter has presented the use of MSDSVS on the biologically inspired camera

positioner. This method is useful for fast, saccadic-like motions to rapidly reorient

the camera. Experiments have shown that camera positioner has a single significant

resonant mode, greatly simplifying the computation of MSDSVS commands. The

response to the MSDSVS command shows a marked reduction in oscillation over

naive step commands, particularly for longer moves. Chapter 8 will present some

analysis and simulations on possible closed-loop control methods for smooth pursuit

motions for systems with highly discretized inputs and lightly damped high frequency

modes of vibration.
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CHAPTER VIII

INTERSAMPLE DISCRETIZATION OF CONTROL

INPUTS FOR FLEXIBLE SYSTEMS WITH QUANTIZED

CELLULAR ACTUATION

The methods of Chapters 6 are useful for point-to-point motion, however they are

limited, because they are unable to reduce oscillation emanating from disturbance

inputs in the environment. Some form of feedback control is required in order to do

reject disturbances.

However, if a feedback control system is designed, the control designer must con-

front the problem that the control input cannot take on a continuous range of values.

This chapter discusses this quantization of the input and presents a method whereby

high-precision switching between neighboring control input values can be used to re-

duce oscillation. The method is predicated on the assumption that the plant can

be partitioned easily into a low frequency model with dynamics below the Nyquist

frequency and some lightly damped modes above the Nyquist frequency. As discussed

in Chapter 7, the camera positioner has only one mode that is visible in the response,

and does not fit this paradigm. For this reason, the method is evaluated in simulation.

8.1 Concept

8.1.1 Physical considerations

In the case of a system driven by an array of cellular actuators the actuation is

quantized significantly. Often times to achieve the desired displacement using cellular

actuator technology, it is necessary to put several units in series. Units may also

be connected in parallel to achieve a higher force. Each PZT stack in the entire
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array can be considered to be an input. As in previous chapters, an actuator with

multiple inputs for a given degree of freedom is referred to as having redundant

actuation. This does not mean that the multiplicity of inputs is unnecessary, for in

this case, the multiplicity of amplified PZT stacks are needed to produce the desired

displacement or force. However, having multiple inputs per degree of freedom gives

the ability to enforce additional dynamic constraints beyond simply specifying an

output displacement or force.

Because of hysteresis present in the PZT material and the capacitive nature of

PZT stack actuators, it is advantageous to restrict operation of an individual PZT

stack to be simply “on” or “off”. This simplifies the drive electronics by eliminating

the need for linear drive transistors, and reduces the amount of energy dissipated as

waste heat. This limitation represents a quantization of the actuation in the system.

In order to be implemented on such an actuator array, any control input to the

actuator must be mapped to energizing a certain number of actuators. Usually the

total number of inputs represents a coarser precision than that imposed by typical

A/D converters. Because the actuator is compliant, the actuator itself may have high

frequency flexible modes. Therefore, the control must treat these flexible effects along

with the quantization effects.

In this chapter a control architecture is proposed which simultaneously treats the

quantization in actuation and dissipates energy in the flexible modes. This architec-

ture is called intersample discretization. The cellular actuators have a fast response

and therefore quantization in time can be neglected, so the actuator is capable of

switching between the neighboring integer values near the nominal control input for

the sample with high precision in time. These switches are chosen in such a way as

to drive the actual state value to that predicted by a simpler model.
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8.1.2 System modeling

Ignoring for the moment the quantization in actuation, and considering the system

dynamics of the actuator itself (possibly driving some rigid robotic link), energizing

some portion of the total input capability of the actuator array can be considered to

be a single input to the system with quantization. The output of the system is some

displacement at the end of the actuator or link, such as a joint angle. Assume that

any deformations are linearly elastic, and the behavior is adequately described by

simple lumped parameter models. Should any oscillation be induced in the system, it

is assumed that such oscillations will continue unabated for an arbitrarily long period

of time, and therefore damping can be neglected. A cellular actuator typically has

very lightly damped flexible poles, on the order of ζ = 10−2. This is common practice

for systems with very lightly damped flexible poles. Therefore, the system can be

reasonably well represented by a single input, single output, linear, time–invariant

model.

If the frequencies of oscillation of a flexible system are known, a continuous time

linear model of the system can be generated using the assumed mode method. The

frequencies of the modes with the most significant contribution can determined by

finite element analysis, finite differences, or experiment.

It is likely that the frequency of several flexible modes, ω, will be above the Nyquist

frequency, so it is not possible to suppress this oscillation by traditional discrete–

time control techniques. However, oscillations at these frequencies will appear in

the continuous–time output and degrade performance. This Chapter assumes that

the state is known (or can be estimated) at every sample time kT where k ∈ Z >

0. In addition, let there be a simplified reference model that includes only system

behavior that can be controlled by conventional discrete–time techniques at sampling

frequencies imposed by computational, communication, and sensor constraints. This

would typically be some low order system with dominant damped conjugate poles
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whose associated natural frequency is significantly below the sampling frequency.

8.1.3 Control design

A block diagram of the proposed control system is shown in Figure 63. G(z) is a

discrete–time controller designed to give the reference model the desired performance.

The output of G(z) is a continuously variable sampled data control input. It is

followed by the Intersample block, which maps the output of G(z), u, to a quantized

control input u(t) that can be implemented by the actuator, that is piecewise constant

but takes multiple values during the sample.

Intersample : R → N ⊂ Zm

u 7→ u(t) (80)

The goal of the Intersample block, given u and the state at time t = kT is to

choose a command u(t),which consists of piecewise constant values ui ∈ N , held from

ti ∈ [ 0, T ] to ti+1 such that when u(t) is applied to the flexible system, the value of

the state at the end of the sample t = (k + 1)T is as close as possible to the state of

the reference model, augmented appropriately (e.g. padded with zeros) so that the

state vectors of the reference model and the flexible system have the same dimension.

Figure 64 illustrates this idea.

Defining the state error at the end of the sample as

x̃((k + 1)T ) =

 xr((k + 1)T )

w

 − x((k + 1)T ), (81)

where w is some vector chosen appropriately to augment the state so that the sub-

traction can be effected and the result makes physical sense. Since the system is linear

and u(t) is piecewise constant the state at the end of the sample can be predicted

using:
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Figure 63: Block diagram of control system

x((k + 1)T ) = eAT x(kT ) +

p−1∑
i=1

ui eA((k+1)T−ti+1)

∫ ti+1

ti

eA(ti+1−t)B dt. (82)

A and B are the state and input matrices of the flexible system, respectively. ui ∈ N

and ti ∈ [ kT, (k + 1)T ] can be chosen according to some rule to create some u(t)

that drives the state to that of the reference model. The minimization problem is

then defined as

min
ui,ti

J, J(ui, ti) = x̃TPx̃, i = 1 . . .m, (83)

where P is a positive definite weighting matrix. Any such high frequency oscillations

will be minimized as the system state is brought near to the augmented reference

model state. This may require several samples, especially if N is small, limiting the

control authority.

8.2 Illustrative example

8.2.1 Mathematical formulation

Consider as an example a system that consists of rigid body mode, and an undamped

flexible second order system:
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Figure 64: Determination of integer–valued command

ẋ = Ax + Bu

y = Cx + Du

A =



0 1 0 0

−ω2 0 ω2 0

0 0 0 1

0 0 0 0


B =

[
0 0 0 1

M

]T
C =

[
1 0 0 0

]
D = 0. (84)

This model could represent a two mass system separated by a spring and is illustrated

in the block diagram shown in Figure 65. The intermediate signal between the two

blocks will be identical to the reference model output for the same input. To begin,

choose a simple single rigid mass as the reference model, (along the lines of (85)), and

then try to design an intersample discretization method that will remove oscillation

present in the flexible mode. The model for a simple mass of total mass M is:
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ẋr = Arxr + Bru

y = Crxr + Dru

Ar =

 0 1

0 0


Br =

[
0 1

M

]T
Cr =

[
1 0

]
Dr = 0. (85)

For simplicity, let M = 1 kg and T = 0.1 s. Using well–known discrete time

control design techniques, one can design a controller that will achieve a desired

damping ratio ζ = 0.707 and a rise time of 0.16 s:

G(z) =
56.9(z − 0.735)

z + 0.322
. (86)

To design the intersample discretization, the method begins with a candidate

function that is a pulse width modulated (PWM) version of u, with m pulses that al-

ternately take values of buc (floor(u)) and due (ceil(u)). This enforces the constraint

that

∫ T

0

u dt =

∫ T

0

u(t) dt. (87)

This signal can be viewed as the sum of a naive floor quantization signal buc and m

pulses of amplitude 1 and duration tdc, where tdc is chosen such that (87) is satisfied.
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Figure 66: Discretization using a PWM candidate function.

Leaving tdc constant, the times ti when the pulse begins are varied such that J is

minimized. Discretization starting from a PWM function is illustrated in Figure 66.

For the above example described by (84), it makes sense to choose w = xr((k+ 1)T ),

so that x̃3, x̃4 represent the difference in the rigid body mode due to the fact that the

true system receives the quantized input u(t), rather than the discrete time control

input u. Since for any two pulses { ti, tj }, tj − ti may be less than tdc, some pulses

may overlap, and due to their addition u(t) may contain values other than buc and

due. In fact, with this implementation,

N ≡ [ buc, buc+m ]. (88)

If x(kT ) is known, u(t) is piecewise constant and consists of a floor quantization

and a series of pulses of amplitude 1, (82) reduces to:

x((k + 1)T ) = eAT x(kT ) + buc
∫ (k+1)T

kT

eA((k+1)T−t)B dt

+
m∑
i=1

eA((k+1)T−(ti+tdc))

∫ ti+tdc

ti

eA(tdc−t)B dt. (89)

Since these are considered to be linear, time–invariant systems, these results apply

equally to any sample k. Therefore kT and (k + 1)T in the second and third terms

can be replaced by 0 and T , respectively. Defining
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Φ = eAT , (90)

ΓT =

∫ T

0

eA(T−t)B dt, (91)

Ξ = eAtdc , (92)

Γ =

∫ tdc

0

eA(tdc−τ)B dτ, (93)

using a change of variable on every term in the series τ = t− ti and using (90) - (93),

(89) can be rewritten as:

x((k + 1)T ) = Φ x(kT ) + buc ΓT + Φ Ξ−1

m∑
i=1

e−Ati Γ. (94)

Φ and ΓT only need to be evaluated once. Since tdc is constant for a given sample

k, Ξ and Γ will be evaluated once per sample, and not repeatedly during the opti-

mization routine. Since e−Ati will be evaluated as a truncated series expansion, and

T is much larger than the period of the flexible modes, it is important to approximate

e−Ati over as short a time interval as possible. Any approximation of e−Ati , will be

accurate for the earlier pulses, but not the later ones. Therefore, it is advantageous to

express (94) in terms of e−A(ti−ti−1). In this case, the algorithm will only be approx-

imating the matrix of exponentials over a time period on the order of T/m, rather

than T , if pulses are relatively evenly spaced. The global error will still increase

for later pulses due to multiplication of inaccurate matrices, but the local error for

each approximation should be smaller. Using well–known properties of the matrix of

exponentials (94) can be written as:

x((k + 1)T ) = Φ x(kT ) + buc ΓT + Φ Ξ−1

m∑
i=1

[
i∏

j=1

e−A(tj−tj−1)] Γ. (95)
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With a prediction of x((k+1)T ) given by (95), the optimal switch timings ti can be

computed using any suitable optimization routine. Then u(t) can be constructed for

any sample k simply by adding all m pulses of width tdc beginning at respective times

ti to buc. This results in an appropriately quantized input that can be implemented

by the actuator.

8.2.2 Computer simulation results

In order to calculate the appropriate Intersample function, the state of the system

at time t = kT must be known. Once measurement and estimation is complete and u

has been calculated, the command u(t) can be defined deterministically for the entire

sample. However, it is not possible to determine Intersample or u(t) for subsequent

samples because its calculation depends on the evolution of the state. In a real system,

this would require some measurement(s) and estimation of remaining state variables.

The system is simulated using a sample–by–sample approach. A value of x(kT ) is

returned by the previous iteration. x(0) can be chosen to be nonzero to simulate the

response to some existing amount of initial oscillation or error. G(z) is run for the

current sample to compute u. Transition timings for a PWM signal satisfying (87) are

computed based on u. These timings constitute the initial guess for the minimization

routine. This evaluation used MatLab’s fmincon.m optimization routine, which calls

an objective function program that computes x̃TPx̃ using the method described in

the previous section.

P =



ω 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


.

was chosen as the weighting matrix, since the effect of the mean position and velocity

error, as well as oscillation, are captured by the first two state values, two non–zero
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entries in P are sufficient. fmincon.m returns the timings ti that result in a minimum

value of the objective function. Once this computation is complete, lsim.m can be

used to determine the state history of the flexible system to the input u(t) during

the entire sample k. The value of the state at the end of the sample is passed to

the subsequent iteration and the process is repeated until some specified number of

samples has been completed.

Because the gain of G(z) is relatively high, simply quantizing based on consecutive

integers around u does not truly demonstrate the quantization effects inherent in a

device such as an array of cellular actuators. To achieve a more drastic quantization

effect, each time u is computed, it is divided by some integer value Q representing the

true quantization effect relative to the physical range of the controller, then quantized

to consecutive integers. The resulting command is then multiplied by Q to scale it

back up before simulation.

In this implementation, the reference model used to calculate x̃ and the flexible

system are simulated independently, i.e. state feedback from the flexible system is not

fed to the simulation of the reference model1. The reference model has no knowledge

of disturbances or oscillation in the system. Because of this, the fictitious discrete

time control input used to simulate the reference model may vary from u. However,

this is permissible, because the fictitious control input is not actually controlling

the flexible system. The output of the reference model is only used to design the

Intersample routine for that sample. The error that is used to calculate u is based

on the actual flexible system’s state feedback, and it is this controller that has the

capacity to reject low-frequency disturbances.

Figures 67 and 68 shows the model reference control input, u(k), the PWM signal

used to generate u(t), and u(t) with ω = 45 rad/s, Q = 32, and m = 5. A non–zero

initial condition, x = [ 0.05 0 0 0 ]T is given to induce oscillation in the system and

1This can be thought of as two copies of G(z)
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Figure 67: Control commands

represent the effect of a disturbance. Figure 69 a, b, and c show block diagram repre-

sentations without quantization, PWM discretization, and intersample discretization

based on a PWM candidate function, respectively. The response is shown in Figure

70 and the difference from the reference model is shown in Figure 71. This amplitude

of oscillation, relative to travel distance, is on the order of that seen in a single cellular

actuator when it is given a step input. The intersample discretization method is able

to reduce this oscillation to near zero in 6 sample periods. Figures 67 - 71 used Mat-

Lab’s expm.m command to compute the various state transition matrices. When the

accuracy of the approximation is reduced, the response deteriorates. Figure 72 shows

the response when only a quadratic approximation of eAt is used. in some cases, the

response can be improved when a low order approximation is used by increasing the

number of impulses.

Table 15 shows how the RMS error varies with the accuracy of the approximation

of eAt and the number of impulses (ω = 45 rad/s, Q = 32, x = [ 0.05 0 0 0 ]T at

t = 0). In general, a more accurate approximation and more pulses (or higher PWM

frequency) gives superior performance, but there are exceptions. Increasing the order

of the approximation by 1 or increasing m by 1 may not necessarily give superior

performance.
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Figure 69: Block diagrams for various discretizations.
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Figure 70: System response to control commands.
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Figure 71: Position error w.r.t. reference model.
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Figure 72: System response : quadratic approximation

Looking at Figure 67, it is obvious that for several samples, the optimization

routine has driven all pulses to be coincident and u(t) consists of one large pulse

starting at some strategic time, and u(t) for the remaining portion of the sample is

merely buc. This occurs mainly when the state error is large; once convergence has

been achieved, the pulses tend to spread out more. This makes intuitive sense; to stop

the system from oscillating in a switching control system, the controller must apply a

large impulse to the system when the velocity is highest. This has implications with

regard to the quantization. If the amplitude of oscillation is high, a finer quantization

does not allow the controller to apply as impulsive an input, and removing oscillation

will take longer than if the quantization is coarse. For intersample discretization to

achieve results in a reasonable amount of samples, the quantization has to result in
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Table 15: RMS error for various approximations, m

eAt Appx. Number of Pulses

order 5 9 16 27 54

expm.m 0.0644 0.0567 0.0564 0.0572 0.0567
10 0.0654 0.0598 0.0598 0.0571 0.0577
4 0.0713 0.0940 0.0928 0.0638 0.1154
2 0.0888 0.0613 0.0605 0.0769 0.0667

step changes in u(t) that are significant with respect to the size of changes in u and

‖x̃(kT )‖. Figure 73 shows the effect of increasing quantization on the convergence of

J . Given plant and controller gains for this example, a Q > 8 is desired. This suggests

that there may be some value in artificially making the quantization sensitivity coarser

than that required by the physical realities of the actuator if ‖x̃(kT )‖ is large, and

refining the quantization sensitivity toward the physical limit imposed by the actuator

as the response converges. This is in some ways analogous to the “zooming” approach

proposed in [82] with regard to quantized state feedback.

It should also be noted that given some non-zero initial condition, the amplitude

of oscillation may not be reduced monotonically. The oscillation amplitude may

“escape” somewhat for one or more samples, but the algorithm will subsequently

reduce any increase in the size of the state, giving the appearance of a “pulsating

effect” in the envelope.

As with any control system, there will always be a degree of uncertainty in the

model used to design the controller. The ability of the intersample discretization to

suppress oscillation deteriorates with uncertainty, but the algorithm would still be

considered effective for a large range around the true natural frequency. Figures 74

and 75 show the response when the frequency used to design the discretization has

been overestimated and underestimated by 15%, respectively. It can be seen that

although the response deteriorates somewhat, the algorithm is still effective.

How well the intersample discretization algorithm performs depends greatly on
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Figure 73: Objective function convergence

the frequency of oscillation. Figure 76 shows a case where the algorithm does not

perform well, due to a problematic ω. In many cases, simply changing the number

of pulses or changing the sampling frequency (either increasing or decreasing) allows

the algorithm to find a better solution. In Figure 76, only the frequency was changed

from the conditions in Figures 67 - 71; all other conditions were the same.

8.3 Intersample using an oscillatory mode as the reference
model

The camera positioning mechanism, by virtue of the spring-like nature of the antago-

nistic pair of cellular actuators, does not posses a rigid body mode. In fact, the model

described in Chapter 7 consists of a single lightly damped second order system with

a relatively low natural frequency. Experiments show that the remaining vibrational

modes do not contribute significantly to the response. However, it is not hard to

imagine that design changes, such as adding additional degrees of freedom or adding

additional cellular actuators in series to increase the travel angle could cause addi-

tional modes to become significant, and the methods of this chapter would come into

play. This section therefore examines applying the method in section 8.2 to systems

of this type. Intersample discretization will applied to the plant illustrated in Figure

77.
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Figure 74: System response, ω 15% below modified value
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Figure 75: System response, ω 15% above modified value
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Figure 76: System response ω = 125 rad/s
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Figure 77: Hypothetical camera positioner dynamic model: single-mode reference
model plus a high frequency lightly damped mode. The constant at the input is to
make the DC gain of the full model equal to the reference model.

8.3.1 Plant model and discrete time controller

Take then as the reference model the undamped second order system:

Gr(s) =
ωn

s2 + ω2
n

(96)

with ωn = 20π chosen for simplicity. With a little care, a discrete time compensator

can be designed that gives the reference model a satisfactory response:

G(z) = 167
z2 − 1.7z + 0.86

z2 − 0.64z − 0.36
, (97)

with a sampling time of 0.01 s. The development then proceeds similarly to that in

section 8.2. Assume then that the physical system has a second lightly damped mode

above the Nyquist frequency 2. The natural frequency of this mode will be denoted

ωhf . For this example, ωhf = 150π and ζ = 0.01 will be chosen, which lies between

Nyquist frequency and the sampling frequency.

The full plant model (expressed in controllable canonical form) is:

2There must be some damping, otherwise the full system with the discrete time controller will
be unstable. If the damping assumed in this mode is insufficient, the gain of G(z) can be reduced
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ẋ = Ax + Bu

y = Cx + Du

A =



0 1 0 0

0 0 1 0

0 0 0 1

−ω2
nω

2
hf −2ζω2

nωhf −(ω2
n + ω2

hf ) −2ζωhf


B =

[
0 ωn + ωhf −2ζωhf 4ζ2ω2

hf − ω3
n − ω3

hf

]T
C =

[
1 0 0 0

]
D = 0. (98)

Expressing the plant in controllable canonical form allows the choice of w = 0.

8.3.2 Intersample discretization applied to the two-mode system

A reference command of a unit step is applied to two-mode plant. Choosing Q = 32

makes the quantization of this example system roughly equivalent to the quantiza-

tion in the camera positioner’s actuation, assuming that the maximum control effort

required for this move uses most or all of the active units. For this example

P =



1 0 0 0

0 ωhf 0 0

0 0 ω2
hf 0

0 0 0 ω3
hf


.

was used with m = 9 pulses/sample. The control command is shown in Figure 78,

with a close-up of a few samples in Figure 79. The response is shown in Figure 80,

and the position error evolution of intersample discretization is compared to PWM

and the unquantized control applied to the full system in Figure 81. Once again,
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Figure 78: Control commands: two-mode system
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Figure 79: Close-up of control commands : two-mode system

the intersample discretization is able to reduce the amplitude of oscillation quite a

bit within the settling time of the reference model. The PWM discretization does

nothing to reduce oscillation. There is some residual oscillation in the intersample

discretization response. The amplitude of this oscillation can be reduced by using a

finer quantizer, but the response will in general take longer to converge.

8.4 Summary

This chapter has addressed a feedback control algorithm for cellular actuator driven

devices, such as the biologically inspired camera positioner. The flexible nature of

the actuation leads to a number of lightly damped high frequency resonances. The
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Figure 80: Two mode closed-loop step response
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number of inputs are coarse enough that quantization effects in amplitude need to

be considered. The control architecture designs a discrete time controller for a lower-

order reference model and determines switching patterns among the near neighbors

of the discrete control input so that the full system’s response approaches that of the

reference model under traditional discrete time control.

This chapter has proposed a control methodology that takes quantization effects

into account and uses optimal switching times to actively damp oscillatory modes

above the Nyquist frequency. By choosing a PWM signal as a candidate function

and modifying the start times of each pulse, so that each individual pulse has some

optimal, arbitrary switch timing, the algorithm can suppress oscillation generated

by the natural response to the command itself, as well as disturbances from the

environment. Simulations show that oscillation amplitude is substantially reduced

within a few sampling periods.
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CHAPTER IX

CONCLUSION AND SUGGESTIONS FOR FUTURE

WORK

This chapter presents a conclusion to the work conducted in this thesis. First, the

contributions to various areas are summarized. Finally, some suggestions are made

regarding future directions of research related to this work.

9.1 Concluding remarks

Traditional robotic systems have a single actuator per degree of freedom, each with

an analog input. This presents a stark contrast when compared to biological motion

systems, which operate under a completely different paradigm. Biological systems in-

herit remarkable properties from their quantized, flexible actuation. Robotic systems

that operate under this new paradigm promise to extend the biological advantages

of adaptability and robustness to failure, greater simplicity in control interface, and

better operation in unstructured environments to robots. To this end, researchers

have proposed the idea of cellular actuation, namely compact, modular, flexible units

that are recruited, or selectively activated in an on-off manner to produce motion.

This thesis presents a mathematical understanding of these phenomena crucial to

making robots that operate under this paradigm a reality, and demonstrates them

through relevant simulation and experimental examples, most notably an antagonis-

tically driven camera positioning mechanism.

Piezoelectric ceramic is a promising active material for actuators of this type, but

the force-displacement performance point needs to be shifted in order to use this in a

robotics context. Nested compliant hierarchical strain amplifiers can be used to shift

149



this performance point. Examples of nested hierarchical mechanisms have existed

prior to the work conducted in this thesis, but this represents the first work present-

ing a systematic method of designing nested strain amplifiers and understanding their

behavior. Chapters 3 and 4 reveal that analysis based on multiplicative amplification

of idealized hinged rigid rhomboids is overly optimistic and a more adequate un-

derstanding including the compliance in nested rhomboidal hierarchies is presented.

The two-port network circuit model with mechanical analogies is uses to describe the

input-output behavior. In two-port network models, input-output behavior can be

elegantly described by three immittance parameters.

Chapter 3 has presented a formulation that can be used to calculate the immit-

tances of a given stage in a hierarchical mechanism. In this way, the two-port model

can be calculated directly from the geometry, something that was not possible with

previous lumped parameter models with no connection to physical characteristics.

Chapter 4 has revealed interesting properties that emerge from the nested hierarchi-

cal structure. Paramount is that the stiffness of the actuator as perceived by the

environment depends most heavily on the outermost layers. It also showed mathe-

matically that for a nested mechanism to be successful, the outermost layer must be

very compliant when compared to the layers before it.

Chapter 5 discussed the practical aspects involved in designing nested amplifica-

tion mechanisms of this type and enumerated some archetypal constraints. It com-

pares relative merits of two-layer and three-layer designs and finally demonstrated a

systematic approach to set the various geometric properties of a three-layer actuator

based on design specifications derived from the performance of the human oculomotor

system. One important fact noted in Chapter 5 is that the immittance parameters for

a given layer are coupled in the geometric parameters. Since the immittances cannot

be set independently of one another for a given layer, this provides powerful motiva-

tion for the use of nested hierarchical mechanisms, namely that the immittances of

150



each stage in the hierarchy are largely independent from those of the rest.

Each level in the hierarchy of an actuator of this type will contain a series or

parallel combination of the units below it. For this reason, each actuator will have

a number of piezoelectric stacks. Chapters 6, 7 and 8 expound upon the quantized

nature of the control when each piezoelectric stack is viewed as an on-off unit, in order

to capture the benefits of the biological concepts of motor units and avoid the effects of

hysteresis in piezoelectric materials. This thesis treats the plant as a system that can

only accept integer-valued commands. Because of the compliance of the individual

strain amplifying units, systems using actuators of this type will tend to have lightly

damped resonant modes. Chapters 6, 7 and 8 provide several methods to improve

the dynamic performance with appropriate recruitment strategies for activating the

various inputs in time.

Chapter 6 presented a method for point-to-point motion with zero residual vi-

bration. The commands produced make use of integer-valued control inputs only

and thus can be implemented by quantized actuators of this type. This method can

be used on a system with an arbitrary number of modes, provided that a solution

to a system of nonlinear equations can be found. There are an infinite number of

commands that can produce this result, but the command of most interest is the

“minimum switching” command, which tends to be more robust to modeling errors,

has smoother transients, and uses the least energy. The method is shown to reduce

oscillation in both significant modes of a second order system.

Chapter 7 applied these concepts to the camera positioner designed in Chapter 5.

It is determined that with only a single “cell” per side, the camera positioner has only

a single significant mode and thus the calculation of switching commands is greatly

simplified. Firmware is developed to implement arbitrary move sequences provided

by a user

Although it was found not to be directly applicable to the camera positioner,
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Chapter 8 presents a closed-loop technique that discretizes a continuously valued

discrete time control command to its near neighboring integers during the sample in

such a way that oscillation is minimized. Simulation results show that the trajectory

converges within a few samples whereas PWM commands continue to oscillate.

9.2 Suggestions for future work

Although this thesis has laid a foundation for the study of muscle-like actuation, it

has by no means exhausted all lines of inquiry in this area. In fact, many interest-

ing questions emerge in light of the discoveries presented here. A few of the most

prominent are listed here:

9.2.1 Nested compliant strain amplifying mechanisms

1. The camera positioning mechanism used strain amplifying mechanisms that had

distributed compliance. It would be interesting to compare the relative merits

of using distributed compliance and localized compliance. Given manufacturing

constraints, one may perform better than the other.

2. This thesis used piezoelectric ceramic as the active material. Future work could

examine the use of other materials such as electroactive polymers or shape

memory alloy.

3. One key assumption in this analysis was that all active units were of the same

size and produced the same force. This is not the case in muscle systems; motor

units have different sizes and capabilities. The assumption of uniformity could

be relaxed and the analysis extended. The two-port formalism will still be

useful in this case, however, internal coupling between the units will need to be

considered to a greater degree.

4. The immittance matrices derived in this thesis are for the static case. Dynamic

two port models could be derived with transfer functions for each immittance
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parameter. It is not immediately clear whether the theorems presented in Chap-

ter 4 would hold in more general metric spaces composed of transfer function

elements. Convenient assumptions regarding mass distribution will be critical

to any analysis of this type.

9.2.2 Control of systems with quantized actuation

1. The method of Chapter 6 is focused on finding the point to point command

that uses the smallest number of switches. If this stipulation is relaxed, using

additional impulses it is possible to add constraints on robustness to variations

in frequency (enforcing that ∂Ar/∂ω = 0) or constraints on the transient such

as was performed in [61] for continuously variable inputs.

2. In this thesis, the plant is expressed in terms of modal coordinates. As these

devices scale in complexity, if closed loop control is to be applied, the sensing and

estimation problem will become very important. Naturally the most attractive

idea is that of “self-sensing,” where the piezoelectric stacks themselves are used

to reconstruct the system state. Some preliminary steps have been taken in this

regard, but are complicated by nonlinearity in the model [98]. Most existing

works on self-sensing are static and involve integration of the current [99–101].

There are even fewer works on sensing for nested mechanisms; the few that exist

are very recent [99, 102]. Even once good sensing technology is achieved, the

estimation problem for nested compliant mechanisms is both non-trivial and

interesting.

3. Since the camera positioning mechanism presented in this thesis has only a

single “cell” per side, the higher modes do not have a significant contribution.

However, for larger displacement mechanisms with longer chains of cells, higher

frequency modes will have greater prominence. Some of these may not be

observable from the output. Applying the methods of Chapter 8 may help to
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reduce the amplitude of vibration in these systems.
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APPENDIX A

TWO-PORT NETWORK CIRCUIT MODELS

Fig. 82 illustrates a two-port network with variable voltage and current at each

port. Of the four input-output quantities of interest, V1, V2, I1, I2, any two, (e.g.

both currents) can be designated as inputs, making the other two quantities (e.g.

both voltages) outputs. The input-output relationship is then described by a 2 × 2

immittance matrix. If the four elements of the immittance matrix are known for

a single choice of inputs, the immittance matrices for all remaining input-output

relationships can be expressed as functions of the elements of this first immittance

matrix.

For example, if the currents, I1 and I2 are chosen as inputs, then the voltages, V1

and V2, are outputs, then the immittance matrix elements are impedances, and the

relationship is as follows:

 V1

V2

 =

 Z11 Z12

Z21 Z22


 I1

I2

 (99)

If Z21 = Z12, then the network is termed a reciprocal two-port network [28,30]. If

V
1

V
2

+

-

+

-

I
1

I
2

Figure 82: Two-port electrical network model
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Z21 6= 0 and Z12 6= 0, the network is termed a bilateral two-port, that is, changes in

port 2 affect port 1, and vice versa [30]. Various relationships for interconnections of

two-port networks have derived, which can be found in [28], greatly facilitating the

analysis of complicated interconnected networks. For this reason, two-port networks

have found great utility in the field of telemanipulation [30,31].
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APPENDIX B

TWO PORT EXPRESSIONS FOR A GENERAL

OCTAGONAL COMPLIANT MECHANISM WITH A

SINGLE THICKNESS

The various Cij derived by solving the force-displacement relations using Castigliano’s

theorem are as follows:
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C11 = − csc2

(
θ

2

)
sec4

(
θ

2

)(
96d4 cos(θ)− 64d4 cos(2θ)

+ 32d4 cos(3θ)− 64d4 − 64d3h sin(θ)

− 64d3h sin(3θ)− 64d3w sin(θ)− 64d3w sin(3θ)

+ 64d2t2 cos(2θ)− 54.144d2t2 cos(3θ)

+ 11.072d2t2 cos(4θ) + 16d2 cos(θ)
(
3.384t2 + 3w2

)
− 75.072d2t2 − 48d2w2 cos(3θ)− 86dht2 sin(θ)

+ 11.072dht2 sin(2θ) + 34dht2 sin(3θ)− 5.536dht2 sin(4θ)

− 6dht2 sin(5θ) + 2dht2 sin(7θ)− 129.216dt2w sin(θ)

+ 11.072dt2w sin(2θ) + 43.072dt2w sin(3θ)

− 5.536dt2w sin(4θ)− 48dw3 sin(θ) + 16dw3 sin(3θ)

− 5h2t2 cos(θ) + 14h2t2 cos(2θ) + 5h2t2 cos(3θ)

− 4h2t2 cos(4θ)− h2t2 cos(5θ) + 2h2t2 cos(6θ)

+ h2t2 cos(7θ)− 12h2t2 − hw cos(θ)
(
18.536t2 + 8w2

)
+ 2hw cos(2θ)

(
20.536t2 + 8w2

)
+ 18.536ht2w cos(3θ)

− 4ht2w cos(4θ)− ht2w cos(5θ) + 2ht2w cos(6θ)

+ ht2w cos(7θ)− 39.072ht2w + 8hw3 cos(3θ)− 16hw3

− 2w2 cos(θ)
(
6.768t2 + w2

)
+ 4w2 cos(2θ)

(
6.768t2 + w2

)
+13.536t2w2 cos(3θ)− 27.072t2w2 + 2w4 cos(3θ)− 4w4

)
(100)
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C21 = C12 = 2
(
128d4 csc3(θ)− 128d4 csc(θ)

+ 384d4 cot2(θ) csc(θ)− 512d4 cot(θ) csc2(θ)

+ 384d3h cot2(θ) + 1152d3h csc2(θ)

− 512d3(2h− w) cot(θ) csc(θ)− 1152d3h− 12d2h2 cos2(θ)

− 24d2h2 cos(θ) + 9d2h2 cos(2θ)

+ 120d2h2 cot2(θ) + 258d2h2 csc2(θ) + 6d2h2 cos2(θ) cot2(θ)

− 24d2h2 cos(θ) cot2(θ)− 360d2h2 cot(θ) csc(θ)

− 249d2h2 − 541.44d2t2 sin(θ)− 866.304d2t2 cot(θ)

+ 324.864d2t2 cos(θ) cot(θ) + 64d2 csc(θ)
(
8.46t2 − 6w2

)
+ 64dht2 cos4(θ)− 128dht2 cos3(θ) + 128dht2 cos2(θ)

+ 32dht2 cos(2θ) + 56dht2 cos(4θ) + 384dht2 sin2(θ) cos(θ)

− 128dt2(4.384h+ 3.384w) cos(θ)− 24dht2 − 384dhw2

− 96h2w2 − 128ht2(h+ w) sin(θ) cos3(θ)

+128ht2(h+ w) sin3(θ) cos(θ)
)

(101)
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C22 = 2
(
512d4 csc2(θ)− 2048d4 cot(θ) csc(θ)

− 3072d3h cot(θ) + 1024d3(h+ w) csc(θ)+

192d2h2 sin(θ)− 1440d2h2 cot(θ) + 576d2h2 csc(θ)

+ 192d2h2 cos(θ) cot(θ) + 1536d2hw − 386.304d2t2 cos(θ)

+ 256d2t2 cot2(θ) + 768d2t2 csc2(θ)

− 32d2t2 cos(θ) cot2(θ)− 992d2t2 cot(θ) csc(θ)

+ 98.304d2t2 + 85dh3 sin(θ) + dh3 sin(3θ)

− 2d cot(θ)
(
115h3 + 322.58ht2 + 256t2w

)
+ 4d csc(θ)

(
43h3 + 120.756ht2 + 112t2w

)
+ 16d cos(θ) cot(θ)

(
5h3 + 12.46ht2 + 4t2w

)
− dh

(
h2 + 1.692t2

)
cos4(θ) cot(θ)

+ 2dh
(
h2 − 126.308t2

)
sin(θ) cos3(θ)

+ 4dh
(
h2 + 1.692t2

)
cos3(θ) cot(θ)

− dh cos2(θ) cot(θ)
(
96dh+ 25

(
h2 + 1.692t2

))
+ dh

(
3h2 + 261.076t2

)
sin3(θ) cos(θ)

− dh sin(θ) cos(θ)
(
96dh+ 29h2 + 305.068t2

)
+ 768dh2w + 416.972dht2 sin(θ) + 33.692dht2 sin(3θ)

+ 384dht2 sin(θ) cos2(θ) + 241.152dt2w sin(θ)

+ 32h4 + 128h3w + 16h2t2 cos(2θ)− 28h2t2 cos(4θ)

+ 260.576h2t2 − 32ht2(h+ w) cos4(θ) + 16ht2w cos(2θ)

−28ht2w cos(4θ) + 388.576ht2w + 128t2w2
)

(102)

the denominator common to all terms is:
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DM = 6144 E I (h+ w − 2d(cot θ − csc θ)) . (103)

The immittances in stiffness matrix form (which is most useful for data sheets and

the like) are obtained as follows:

s1 =
C11DM

C11C22 − C2
21

(104)

s2 =
C22DM

C11C22 − C2
21

(105)

s3 =
−C21DM

C11C22 − C2
21

(106)
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APPENDIX C

DISCRETE SWITCHING PIEZOELECTRIC DRIVE

CIRCUIT

The piezoelectric stacks at the heart of the Cédrat APA50XS actuators require a drive

voltage of 150V. The circuit shown in Figure 83 supplies 150V to the piezoelectric

stack when the pin labeled “Digital Input” is high. The exact circuit shown in the

figure was used to drive the single-ended 6 input actuator in Chapter 6.

This circuit will drive only one piezoelectric stack, so a single instance must be pro-

vided for each stack. High voltage switching is accomplished by the Avago ASSR302C

solid state relay, which has a much faster response time that mechanical relays. The

circuit includes “break before make” delay protection so that the 150V rail will never

be connected directly to ground through the ASSR302C bridge, as this condition will

destroy the IC.

The full schematic for the discrete PZT switching drive board used in the biolog-

ically inspired camera positioner is in the following pages1. Each board can drive 4

1R7-10 were later changed to 4.7K accommodate a lower current capability of the NI 9041 switch-
ing module. Schematics show boards as they arrived from the manufacturer.

74HCT14 74HCT14270 Ω 200 Ω 4700pF

74HC00

74HC32

ASSR302-C-2

+5V

470 Ω

+5V

470 Ω

150V

Avago ASSR302-C : Solid State

Switching Relay: Two Bridges Per

Chip

Digital Input

Piezo

Figure 83: Piezoelectric dual-bridge switching drive circuit
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piezoelectric stacks, so 8 boards were used in total to drive the camera positioner.

Schematic capture and board layout design were performed using Novarm DipTrace

software. PCB fabrication and board population were performed by Advanced Cir-

cuits, Aurora, CO. The version of the drive circuit shown in the schematic includes

status LEDs for signal visualization and debugging purposes.
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APPENDIX D

MODE SHAPES FOR THE SINGLE-ENDED 6 INPUT

ACTUATOR

Dassault Systems’ COSMOSWORKS finite element software was used to analyze the

vibrational modes of the 6 input, two layer cellular actuator with one end fixed and

predict its natural frequencies and mode shapes. The mode shapes are shown here.

left: mode 1, right: mode 2

Figure 84: Principal vibrational modes of a cellular actuator
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APPENDIX E

EXAMPLE SWITCHING ALGORITHM CALCULATION

Fig. 85 shows an example of the process conducted by arb novib 2f.m. In this case,

yg = 6. The initial A = [ 1 1 1 1 1 ] results in a final position
∑4

j=0Aj of 5, not 6, so

the pattern must be modified. Firstly, to satisfy (69), the vector [ 0 0 0 1 0 ] is added

to A, causing the second to last impulse to have an amplitude of 2, which satisfies the

desired yg with a monotonically increasing command, so it is guaranteed to have the

minimum number of switches. Next, fsolve.m attempts to find φj that satisfy (68).

For purposes of illustration, say that in this case, fsolve.m does not return a valid

solution. fsolve.m does not enforce φj < φj+1, so it is not strictly mathematically

necessary to try different permutations of A. However, from a numerical perspective,

the presence of local minima and singularities may affect the reachability of a solution

from a given set of initial conditions. Since the monotonic solution was not successful,

one must introduce an amplitude of -1. This example, adds [ 1 0 − 2 0 1 ] to A.

fsolve.m then attempts to find a solution. Say that it unsuccessful this time as well.

The algorithm then has the choice of introducing an additional negative impulse by

repeating the previous step, or increasing the absolute value of an existing negative

impulse. In this example, suppose it chooses the latter, and adds [ 0 1 − 1 0 0 ].

Suppose that this time fsolve.m returns a solution. This must be checked to make

sure that it does not violate (71). When the Aj are arranged in order of ascending φj,

this is determined to be the case. This is then designated as the minimum switching

command.

To implement this command, at t = 0 two PZTs would be turned on, then two of

those remaining off are turned on at t = φ1
ω1

. At t = φ2
ω1

two of the four turned on at
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[1 1 1 1 1] + [0 0 0 1 0]= [1 1 1 2 1] + [1 0 -2 0 1] = [2 1 -1 2 2]

Sum ≠ yg

Sum = yg

Solver Unsuccessful

1. Match goal displacement

5

2. Attempt to solve for zero vector sum

6

Solver Unsuccessful

3. Attempt next fewest configuration

[2 2 -2 2 2] = + [0 1 -1 0 0] 

Solver Successful

4. Repeat until solver successful

Figure 85: Illustration of arb novib 2f.m operation

previous timings would be turned off. At this point there are two PZTs on and four

off. Two of those off are turned on, and the remaining two turned on at the timings

corresponding to φ3 and φ4 to complete the command. This results in a total of 10

“switches.”
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APPENDIX F

MSDSVS COMMANDS FOR ADDITIONAL MOVE

LENGTHS FOR THE 6 INPUT CELLULAR ACTUATOR

In addition to the full stroke yg = 6, commands for the 5 intermediate positions of

the 6 input cellular actuator were developed. All On All Off control and MSDSVS

are identical for yg = 1. They are shown here.
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Figure 86: MSDSVS command: yg = 5
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Figure 87: MSDSVS command: yg = 4

172



0 1 2 3 4 5 6 7 8 9 10

x 10
−3

0

1

2

3

4

Time (sec)

N
u
m

b
er

 o
f 

A
ct

u
at

o
rs

 O
n

 

 

All On/All Off Control

MSDSVS

Figure 88: MSDSVS command: yg = 3
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Figure 89: MSDSVS command: yg = 2
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Figure 90: MSDSVS command: yg = 1
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APPENDIX G

CAMERA POSITIONER FIRMWARE

G.1 Architecture

The code implementing Minimum Switching Discrete Switching Vibration Suppres-

sion (MSDSVS) for the cellular actuator camera positioning mechanism consists of

two main LabView VIs. One VI, MSDSVS Realtime.vi runs on the embedded pro-

cessor of the cRIO-9118 module. MSDSVS Realtime.vi calls the subVi Read MSDSVS

Realtime.vi. The other, MSDSVS FPGA w write.vi, is converted to silicon and runs

on the Field Programmable Gate Array (FPGA) backplane. The embedded processor

code takes care of the user interface and identification of the appropriate MSDSVS

pattern for a user-initiated move based on current and desired location, as well as

some error checking. The algorithm for the embedded processor code uses the state

machine architecture depicted in Figure 91.

idle (default)

check
move

write
pattern

initiate
move

move
remaining

0,4,8,
5t

1,3,5f,7f,
9,B

2,6,7t,A,
C,D,E,F

Figure 91: State diagram representation of embedded processor code for selecting
MSDSVS Patterns
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Figure 92: LabView front panel user interface

The MSDSVS pattern selected is written to FPGA memory. The FPGA then ex-

ecutes the command free from any supervisory control from the embedded processor.

The FPGA uses the CompactRio onboard 40 MHz clock for precise timing.

G.2 User interface

The user can enter the desired location using the front panel interface shown in Figure

92 in the numeric control labeled “Position (0-16).” At this point the appropriate

pattern is loaded to the FPGA to move to that location, but the move is not initiated.

The user may change the destination any number of times without initiating the move.

Once the user is sure of the destination, he or she can push the “Go” button to start

the move. Any input during the move will have no effect. MSDSVS patterns are

loaded from the text file in the box labeled “MSDSVS File Path.” This master file

may not be changed at runtime. Current position and MSDSVS pattern for the next

intended move are displayed in the (cluster indicator) box labeled “MSDSVS Status

Info.” Remaining boxes are for debugging purposes only.
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