"In presenting the dissertation as a partial fulfillment of the requirements for an advanced degree from the Georgia Institute of Technology, I agree that the Library of the Institution shall make it available for inspection and circulation in accordance with its regulations governing materials of this type. I agree that permission to copy from, or to publish from, this dissertation may be granted by the professor under whose direction it was written, or such copying or publication is solely for scholarly purposes and does not involve potential financial gain. It is understood that any copying from, or publication of, this dissertation which involves potential financial gain will not be allowed without written permission.

A NEW METHOD FOR PLASTIC DESIGN IN STRUCTURAL STEEL

A THESIS

Presented to the Faculty of the Graduate Division Georgia Institute of Technology

In Partial Fulfillment

of the Requirements for the Degree Master of Science in Civil Engineering

> By Ralph Stanley McChesney, Jr. March 1956

615 12 R

A NEW METHOD FOR PLASTIC DESIGN

IN STRUCTURAL STEEL

Date Approved: Mar. 15, 1956

ACKNOWLEDGEMENTS

In the development of this thesis the author is greatly indebted for the considerable assistance and encouragement afforded him in particular by Dr. W. F. Atchison and Dr. F. W. Schutz. Dr. Atchison was simply "indispensable" in the development of the computer phase of this thesis; his technical skill plus his ability to disseminate this skill in a form readily discernible by others is rare indeed. Dr. Schutz's ability to recognize the feasibility of ideas, as well as to make pertinent suggestions and evaluations, was necessary for the completion of this thesis. The author would also like to thank Dr. E. K. Ritter for making equipment and facilities at the Rich Electronic Computer Center available for his use.

TABLE OF CONTENTS

				Page
ACKNOWLEDGEMENTS	• •	 	 •••	ii
LIST OF TABLES	• •	 	 	iv
LIST OF ILLUSTRATIONS .	••	 	 • • •	۷
ABSTRACT	• •	 	 	vi

CHAPTER

I.	INTRODUCTION TO PLASTIC DESIGN IN STRUCTURAL STEEL	1
II.	PLASTIC ANALYSIS BY THE METHOD OF EQUILIBRIUM INEQUALITY MATRIX	7
III.	COMBINING INEQUALITY SYSTEMS OF ELEMENTARY MECHANISMS	17
IV.	POSITIVE AND NEGATIVE ELEMENTARY MECHANISMS	24
V.	FORMING EQUILIBRIUM INEQUALITIES	28
VI.	COMBINING EQUILIBRIUM INEQUALITIES FOR A MINIMUM LOADING CONDITION	33
VII.	COMPUTER PROGRAM FOR DETERMINING MINIMUM LOADING CONDITIONS FOR A STRUCTURAL SYSTEM	40
APPENDIX	"A"; COMPUTER PROGRAM	47
APPENDIX	"B" ; FORMING STATICAL EQUILIBRIUM EQUATIONS	52
APPENDIX	"C"; EXAMPLES	54
BIBLIOGR	лрну	57

LIST OF TABLES

Table		Page
l.	Arrangement of Terms for Computer Program	42
2.	Address Assignment of Terms	43

LIST OF ILLUSTRATIONS

Figure	P	age
1.	IDEALIZED STRESS-STRAIN DIAGRAM	4
2.	IDEALIZED M – ϕ CURVE	5
3.	BEAM MECHANISM	9
4.	GEOMETRY OF COLLAPSING MECHANISM	9
5.	FRAME ABCDEF	17
6.	MOMENT DIAGRAMS FOR MECHANISM BCE	18
7.	COLLAPSE MECHANISM BCE - ABEF OR ACEF	21
8.	REDUCTION FORMULA FOR MECHANISMS	23
9.	FRAME ABCDE	24
10.	POSITIVE MECHANISM ABDE & MOMENT DIAGRAM	25
11.	NEGATIVE MECHANISM ABDE & MOMENT DIAGRAM	25
12.	FRAME ABCDE WITH LOADING AT B AND C	26
13.	MECHANISM BCD - ABDE (DOES NOT EXIST)	26
14.	MECHANISM BCD - ABDE & MOMENT DIAGRAM	27
15.	FRAME ABCDE WITH LOADING AT B & C (SAME DIRECTION)	28
16.	FRAME ABCDE WITH LOADING AT B & C (OPPOSITE DIRECTION)	30
17.	CORRECT COLLAPSE MECHANISM BCDE & MOMENT DIAGRAM	30
18.	CORRECT COLLAPSE MECHANISM ABC & MOMENT DIAGRAM	31
19.	FRAME ABCDE WITH LOADING AT B & C	35
20.	CORRECT COLLAPSE MECHANISM ACDE	38
21.	FRAME 1-2-3-4-5	41.
22.	STORAGE DIAGRAM	<u>1</u> ,1,
23.	ARRANGEMENT OF ANSWER	46

N.

ABSTRACT

The ability of mild structural steel to deform plastically after the yield point stress has been reached, thereby permitting greater stress on previously lower-stressed members in a given structure, is the basis of the plastic methods of structural analysis. A given structural system may be proportionally loaded until sufficient points of yielding (plastic hinges) occur to transpose the system into a failure mechanism. Present practical methods of plastic analysis seem usually to assume several collapse mechanisms and test each for the lower load carrying capacity. The usual test is to draw moment diagrams to insure that the correct mechanism has been selected.

A new method is presented whereby it is possible to make a direct, systematic selection of the failure mechanism. A failure mechanism will be composed of one or more elementary mechanisms, or simple mechanisms operating under each separate load of the loading system. It is possible to derive equilibrium equations for each elementary mechanism. No method is currently available for combining directly the equilibrium equations of various elementary mechanisms. However, by utilizing the inequality resulting from a knowledge of the extreme values necessary for the formation of a plastic hinge, it is possible to set up a system of inequalities representing all possible elementary mechanisms in the structure. This system of inequalities can be reduced by a method suggested by a mathematician, L. L. Dines, for reducing a system of inequalities.

v

At each section where a plastic hinge may occur in an elementary mechanism, two inequalities may be derived; each section inequality represents the rotation of the hinge in a fixed direction. Section inequalities for sections where plastic hinges occur in a mechanism may be grouped together as a system of inequalities representing the mechanism. However, all inequalities in the system must represent consistent hinge rotation for a mechanism operation. Therefore, two systems of inequalities are possible; one system operating in a direction consistent with the elemental loading and the other system operating in a direction inconsistent with the elemental loading. The equilibrium equation for the mechanism may be substituted in one of the section inequalities. This introduces a load term into the system. The system of inequalities may be reduced until the formation of an I-minor matrix which is I-definite, ie. it has a column which contains either all negative or all positive terms. When this occurs, the I-minor representing the mechanism will contain only a plastic moment term and a load term. The value for the load term which just satisfies this inequality represents the minimum load, or the collapse load for the mechanism.

The same reduction may be performed for a combination mechanism. A numerical method has been established to systematically delete extraneous elementary mechanisms from a combination mechanism consisting of all possible elementary mechanisms. This numerical method has been successfully programmed for the ERA 1101 Digital Computer at the Rich Computer Center. This will facilitate additional research and study of the problems involved in Plastic Design.

vi

CHAPTER I

INTRODUCTION TO PLASTIC DESIGN IN STRUCTURAL STEEL

If a system of loads acting on a structural system is increased in a gradual and proportional manner, some point within the system will reach its limiting elastic value of resisting moment. Further increase in load will result essentially in the plastification of such sections which have reached the limiting elastic value of resisting moment or the yield-point stress. Section plastification leads to the concept of a plastic hinge, which considers that such sections will act as if hinged except with a restraining moment known as the plastic moment. The plastic hinge concept is reasonable because of the ability of mild structural steel to deform plastically after the yield stress has been reached. Increase of loads on the structural system will cause increased stress on those members which remain elastic until sufficient plastic hinges have formed to transform the structural system into a failure mechanism.

The concept of a structural system being converted into a mechanism is the basis of many proposed methods of analysis designed to take advantage of the capacity of structural steel to deform plastically, thereby allowing the structural system to draw upon reserve strength of components having lower stress under an elastic behavior assumption. Such methods would have the unique feature of basing design criteria on ultimate load, rather than yield stress. This should result in the more

l

economic and efficient use of steel as a structural material.

Probably the best method of approach to the problem of using the mechanism concept would be one which considered both the elastic and plastic properties of the structure. Such a method should give the stress history of the structure so that factors such as excessive deflections, instability, fracture, fatique, and inelastic stress reversal, could be considered as well as the attainment of maximum plastic strength. At present no method of an elastic-plastic nature is available which can be practically and accurately applied to the analysis of structural systems of any complexity. It should also be emphasized that methods featuring steel in a plastic range are not always appropriate, particularly with loading conditions conducive to fatique-type failure and situations in which stress reversal is likely.

Another approach is to actually assume a mechanism and then test to see whether the mechanism assumed is the correct one. Such a method would concern itself almost exclusively with the attainment of maximum plastic strength because consideration of other factors generally necessitates a knowledge of the progress of collapse during the sequence of hinge formation. The method of dealing with an assumed collapse mechanism has the advantage of simplicity because the analysis of the collapse mechanism is essentially the analysis of a statically determinate system.

Present methods of quickly assuming the correct trial collapse mechanism are dependent greatly on the skill and judgement of the analyst. Some methods are rather involved due to geometric considerations n ecessary for the test of the mechanism and for the determination of the

ultimate load. This paper proposes to show a method by which a direct, systematic selection of the correct collapse mechanism could be made. Features of this new method may also be readily adapted for purposes of simplification to present methods of analysis.

A collapse mechanism may be tested by the consideration of two fundamental principles of plastic design first established by H. J. Greenberg and W. Prager (1). A brief, concise statement of these principles as given by P. S. Symonds and B. G. Neal (2) will be given in the immediate following paragraphs.

The first principle is known as the statical principle. It may be stated briefly as follows:

The actual collapse load is the largest load at which it is possible to find a system of bending moments satisfying all equilibrium conditions with that load and nowhere violating a plasticity condition.

where

 $W_{c} = collapse load$

W' = load satisfying all equilibrium conditions and fully plastic moment of no member is exceeded

The second principle is known as the kinematic principle. It may be stated briefly as follows:

The actual collapse load never exceeds the load corresponding to any mechanism into which the frame is converted by a suitable disposition of plastic hinges.

$$W_c \leq W$$

where

- $W_c = collapse load.$
- W¹ = load corresponding to any configuration of hinges which reduces the frame to a mechanism.

Most methods of analysis involving the selection of a mechanism are facilitated by making a number of simplifying assumptions. The remainder of this chapter will be concerned with some of the more important of these assumptions.

The yield stress may be considered constant (see fig. 1) with increased strain in the portion of the stress-strain curve normally utilized in plastic analysis. A number of investigators have demonstrated experimentally that the error introduced by such an assumption is minor for most grades of structural steel.¹

¹Considerable research is currently being conducted to determine the validity of assumptions made in plastic analysis and the possible magnitude of error for each assumption. Much additional information can be obtained by a careful perusal of the references cited in the bibliography of this paper. The idealized stress-strain relationship leads to an idealized Moment versus Curvature, or $M-\phi$, curve (see fig. 2).

In the idealized $M-\phi$ curve, plastic hinges occur at distinct locations where all plastic rotation is assumed to occur such that the hinge length approaches zero. In actuality the extent of a hinge is dependent upon loading, shape of member cross section, and the geometry of the structural system. At a plastic hinge location a member acts as if it were hinged except with a constant restraining moment known as the plastic moment (3).

Shear forces may normally be neglected in plastic analysis. The maximum error introduced in the value of plastic moment due to the neglect of these forces is likely to be less than five per cent (2).

Axial or normal forces could contribute as much as fifteen per cent reduction in the value of the plastic moment. Such forces could also contribute buckling effects. Axial and buckling effects could perhaps be resolved by some scheme wherein the effective plastic modulus of a section may be reduced to compensate for this effect.

Most plastic methods of design utilize proportional loading. This means that all loads are defined by a single parameter such that they increase in fixed proportions.

Hinge locations are assumed to occur at points of loading, at changes of geometry of the structure, and at changes in the plastic section modulus of members. Hinge locations under uniform loads can be located with reasonable accuracy by methods involving successive approximations or by methods which involve representing the uniform load by a system of concentrated loads.

CHAPTER II

PLASTIC ANALYSIS BY THE METHOD OF EQUILIBRIUM INEQUALITY MATRIX

The plasticity condition at any section in a structural system can be represented mathematically by a pair of inequalities

$$-M_{pi} \leq M_{i} \leq M_{pi}$$

or
$$-M_{i} - M_{pi} \geq 0, \quad M_{i} - M_{pi} \geq 0$$

where M_{pi} , - M_{pi} represent the extreme values necessary for the formation of a plastic hinge and M_i represents the actual moment at the section. The absolute values of M_{pi} and - M_{pi} are equal in virtually all cases for steel members, and will be so assumed.

In a structural system having sufficient hinges formed so that a mechanism type collapse is imminent, changes in curvature at hinge locations may differ both in magnitude and in sense (sign). The sign convention to be used is such that increments of bending moment always have the same sign as increments of curvature at a given section, that is,

$$\frac{dM_i}{dk_i} \ge 0$$

where M_i represents the moment at the section and k_i represents the curvature. Consequently, when comparing the plasticity conditions at several sections, it is necessary to consider the relative effect of

curvature at each section. This can be effected by introducing into the section plasticity inequality a non-dimensional constant k, defined as

$$0 < k_r = \frac{k_i}{k_s}$$

where k_i represents the curvature at any section and k_s represents an arbitrarily assumed curvature standard for the structural system. It will be shown that the introduction of k_r to the section plasticity inequality, that is,

will have no deleterious effect in the analyses to follow.

P. S. Symonds and B. G. Neal (4) suggested a method of plastic design analysis which involved writing the pair of inequalities for each possible hinge location, combining these with equilibrium equations relating the bending moments, and then systematically reducing them so as to evaluate the largest value of the load for which all of the plasticity conditions could be satisfied. The method suggested had as its basis a method suggested by L. L. Dines (5) involving a matrix reduction of a system of linear inequalities. The method of Symonds and Neal, although probably systematic, is, by their own admission, too laborious for practical analysis of complex frames.

The new method presented in this paper utilizes the basic idea presented by Symonds and Neal but effects simplifications chiefly through the medium of stricter adherence to the methods and procedures of L. L. Dines. Consider a fixed-end beam mechanism (fig. 3) having plastic hinges at sections A, B, and C.

BEAM MECHANISM

Fig. 3

(The sign convention is such that positive moments put tensile stresses in the side of the member adjacent to the dashed line.)

@ Section	A	:	- M _A	- Mp	1	0
@ Section	В	:	MB	- Mp	3	0
@ Section	C	:	- M _C	- Mp	1	0

when each section is considered individually. If we are to compare the plasticity condition at each section, consideration must be made for the effects of curvature at the sections, readily determined from the geometry of the collapsing structure, as follows:

Fig. 4

GEOMETRY OF COLLAPSING MECHANISM

	Decoron	A		A =	•
0	Section	B	:	k _B =	1.50
0	Section	C		$k_{C} =$	0.5 0

Let $k_B =$ arbitrarily assumed curvature standard for the system @ Section A : $k_T = \frac{k_A}{k_B} = \frac{2}{3}$ @ Section B : $k_T = \frac{k_B}{k_B} = 1$ @ Section C : $k_T = \frac{k_C}{k_B} = \frac{1}{3}$ Therefore, for comparison purposes, the plasticity condition is @ Section A : $-\frac{2}{5}M_A - \frac{2}{5}M_C \ge 0$

@ Section A :
$$-\frac{2}{3}M_A - \frac{2}{3}M_p ≥ 0$$
@ Section B : $M_B - M_p ≥ 0$
@ Section C : $-\frac{1}{3}M_C - \frac{1}{3}M_p ≥ 0$

when all sections are considered collectively. The inequality, modified for curvature effects, representing the plasticity condition at a section will be called the "section inequality".

Consideration of the equilibrium of the fixed-end beam mechanism, collapse imminent, yields the equilibrium equation

$$M_{\rm B} = \frac{2}{3} M_{\rm A} + \frac{1}{3} M_{\rm C} + \frac{2}{9} PL$$

where M_A , M_B , and M_C are the plastic moments at sections A, B, and C respectively, and $\frac{2}{9}$ PL is the simple moment at section B. The section inequality at section B may be modified, as follows,

$$M_{\rm B} - M_{\rm p} \ge 0$$

$$\frac{2}{3}M_{\rm A} + \frac{1}{3}M_{\rm C} - M_{\rm p} + \frac{2}{9}PL \ge 0$$

to form a new inequality, which will be called the "equilibrium inequality". The remaining two section inequalities may now be written with the equilibrium inequality as a system of linear inequalities representing an elementary, or beam mechanism.

column 1 column 2 column 3 column 4

The system of linear inequalities will now be solved for the minimum load, P, which will just satisfy the plasticity conditions at all hinge locations, that is, the plasticity conditions which will just satisfy the two fundamental principles of Plastic Design for the mechanism or combination of mechanisms under consideration.

The two fundamental principles of Plastic Design, stated briefly, are

Statical Principle :
$$W' \leq W_c$$

Kinematic Principle : $W_c \leq W''$

where W_c is the collapse load; W' is the load satisfying all equilibrium conditions and the fully plastic moment of no member is exceeded; and W'' is the load corresponding to any configuration of hinges which reduces the frame to a mechanism.

The method of L. L. Dines will be used to solve for the minimum,

ultimate load, P. Pertinent definitions, theorems, corollaries, and general information from Dines' paper (5) will be presented as needed in this chapter. This paper will attempt to show that the solution to the system of linear inequalities is a legitimate application of Dines' procedure.

Form the matrix of coefficients for the system of linear inequalities representing the mechanism illustrated in figure 3.

 $M = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} & -1 & \frac{2}{9} \\ = -\frac{2}{3} & 0 & \frac{2}{3} & 0 \\ 0 & -\frac{1}{3} & -\frac{1}{3} & 0 \end{bmatrix}$

The following definition, as well as all subsequent information of this type in this chapter, will be quoted directly from Dines' paper (5).

A matrix will be said to be I-positive (or I-negative) with respect to a given one of its columns if all elements of that column are positive (or negative). In either case the matrix will said to be I-definite with respect to that column. A matrix will be said to be I-positive (or I-negative, or I-definite) if it possesses a column to which it is I-positive (or I-negative, or I-definite).

On the basis of this definition it is apparent that matrix M is I-negative, I-definite with respect to column 3. Matrix M is not I-definite with respect to columns 1, 2, and 4.

Consider any column r, such as column 1 of matrix M. The elements of this column can be divided into three classes, viz.,

those	which	are	positive:	air	#	a <u>11</u> =	3
those	which	are	negative:	ajr		^a 21 = -	23
those	which	are	zero:	akr	H	a31 =	0

the number of elements in the respective classes being represented by P , N , and Z . In matrix M , column 1 , P = N = Z = 1 . Form matrix $M_1^{(1)}$ (or $M_1^{(r)}$), derived from matrix M as follows:

To each pair of elements, a_{ir} , a_{jr} ; (a_{11} , a_{21}); the first positive and the second negative, corresponds one row of the derived matrix, the elements of which are second order determinants,

air ail air ai2 air air air air air air air air airajr aj1 ajr aj2 $To each zero element <math>a_{Kr}$ corresponds one row of the derived matrix,

 a_{k1} , a_{k2} , a_{kr-1} , a_{kr+1} , a_{kn} The matrix $M_1^{(r)}$ will then consist of the rows so formed, their number being P(N) + Z.

$$M_{1}(1) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{32} \end{vmatrix} \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \\ a_{33} \end{vmatrix} \begin{vmatrix} a_{11} & a_{14} \\ a_{22} & a_{24} \\ a_{34} \end{vmatrix} = \begin{vmatrix} \frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} & -1 \\ -\frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & 0 \end{vmatrix} = \begin{vmatrix} \frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & 0 \end{vmatrix}$$

Further simplification of matrix $M_1^{(1)}$ may be made through the medium of conventional determinant analysis.

$$\mathbb{M}_{1}^{(1)} = \begin{vmatrix} a_{11}a_{22} - a_{21}a_{12} \\ a_{32} \end{vmatrix} = \begin{vmatrix} a_{33} \\ a_{33} \end{vmatrix} = \begin{vmatrix} a_{34} \\ a_{34} \end{vmatrix}$$

$$= \begin{vmatrix} \begin{pmatrix} \frac{2}{3} \\ \frac{2}{3} \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} - \begin{pmatrix} -\frac{2}{3} \\ \frac{1}{3} \end{pmatrix} & \begin{vmatrix} \frac{2}{3} \\ \frac{2}{3} \end{pmatrix} - \begin{pmatrix} \frac{2}{3} \\ \frac{2}{3} \end{pmatrix} \begin{pmatrix} -\frac{1}{3} \\ \frac{2}{3} \end{pmatrix} & \begin{vmatrix} \frac{2}{3} \\ \frac{2}{3} \end{pmatrix} \begin{pmatrix} -\frac{1}{3} \\ \frac{2}{3} \end{pmatrix} & \begin{vmatrix} 0 \\ \frac{1}{3} \end{vmatrix} & \begin{vmatrix} 0 \\ 0 \end{vmatrix}$$

$$\begin{split} \text{If} \quad a_{11} = -a_{21}; \\ \text{M}_{1}^{(1)} = \begin{vmatrix} |a_{11}(a_{22} + a_{12})| & |a_{11}(a_{23} + a_{13})| & |a_{11}(a_{24} + a_{14})| \\ |a_{32}| & |a_{33}| & |a_{34}| \end{vmatrix} \\ & - \begin{vmatrix} ||(\frac{2}{3})[0 + (+\frac{1}{3})]| & |(\frac{2}{3})[-1 + (-\frac{2}{3})]| & |(\frac{2}{3})[0 + (+\frac{2}{9})]| \\ ||-\frac{1}{3}| & |-\frac{1}{3}| & |o| \end{vmatrix}$$

The I-rank of a matrix (basis of solution) is not altered if (1) any two rows or any two columns are interchanged; (2) all elements of any row or any column are multiplied by the same positive constant.

Multiplying combined rows 1 and 2 by $\frac{1}{a_{11}}$; $\frac{3}{2}$: $M_1^{(1)} = \begin{vmatrix} a_{22} + a_{12} & a_{23} + a_{13} & a_{24} + a_{14} \\ a_{32} & a_{33} & a_{34} \end{vmatrix} = \begin{vmatrix} \frac{1}{3} & -\frac{5}{3} & \frac{2}{9} \\ -\frac{1}{3} & -\frac{1}{3} & 0 \end{vmatrix}$ Similarly, from $M_1^{(1)}$, form matrix $M_2^{(12)}$: $M_2^{(12)} = \begin{vmatrix} a_{23} + a_{13} + a_{33} & a_{24} + a_{14} + a_{34} \end{vmatrix} = \begin{vmatrix} -2 & +\frac{2}{9} \end{vmatrix}$

The matrix $M_1^{(r)}$ (or $M_1^{(1)}$) will be called the I-complement of the rth column of M . The matrices $M_1^{(1)}$, $M_1^{(2)}$, ..., $M_1^{(n)}$ will be called the I-minors of n I columns of the matrix M .

A matrix will be said to be of I-rank k if it possesses at least one I-minor of k columns which is I-definite, but does not possess any I-minor of k 1 columns which is I-definite. Derived matrices may be formed until there is no column which is not I-definite. Successive I-complements may be formed by considering each derived matrix operationally as the original matrix; this was done in deriving $M_2^{(12)}$ from $M_1^{(1)}$. Matrix $M_2^{(12)}$ has two columns which are I-definite and no columns which are not I-definite. Therefore matrix M is of I-rank 2.

Theorem I: A necessary and sufficient condition for the existence of a solution to the system (1) is that the I-rank of the matrix M be greater than zero.

Theorem II: If the I-rank of the matrix is k (>0), then the system (1) possesses a solution in which k-l of the unknowns may be assigned values at pleasure.

Theorems I and II dictate that either of the columns in matrix $M_2^{(12)}$ may be assigned values at pleasure if the sum of both columns always exceeds zero. The two principles of Plastic Design dictate that values assigned must just satisfy the inequalities. Therefore the sum of the two columns may be equated to zero, and the minimum load P determined.

$$-2 M_{p} + \frac{2}{9} PL = 0$$
$$P = 9 \frac{M_{p}}{L}$$

The central feature of Dines' method for systems of linear inequalities is a concept analogous to the rank of a matrix, which he calls the inequality-rank or I-rank of the matrix. The application of plastic analysis to this method involves merely the formation of a

sequence of I-minors of the matrix of coefficients, each I-minor being the I-complement of a column of its predecessor, the process to be continued until an I-definite matrix is obtained. The successive I-minors are the matrices of the successive systems of inequalities occurring in the elimination.

CHAPTER III

COMBINING INEQUALITY SYSTEMS OF ELEMENTARY MECHANISMS

The combination of inequality systems for elementary mechanisms is readily accomplished by considering all systems as one system and reducing by Dines' method. The resulting reduction will give the minimum load for all systems, provided no section where a plastic hinge may be possibly eliminated is used in forming an equilibrium inequality. Consider frame ABCDEF (see fig. 5) having possible mechanisms as beam mechanism EDE , beam mechanism <u>BCE</u> , and panel mechanism <u>ABEF</u> .

Fig. 5

FRAME ABCDEF

The inequality system representing a typical mechanism <u>BCE</u> may be derived by first developing the statical equilibrium equation,² then

²See the appendix for a brief explanation as to the derivation of statical equilibrium equations.

forming the equilibrium inequality at some hinge section in the mechanism, and finally writing in the remaining section inequalities. The equilibrium equation may be easily derived by consideration of the moment diagram (see fig. 6).

Fig. 6 MOMENT DIAGRAMS FOR MECHANISM BCE

Equilibrium Equation: $M_{C} = 0$.	.67 $M_{\rm B}$ + 0.33 $M_{\rm E}$ + 0.33 PL
Section Inequality $@C : M_C -$	$M_p \ge 0$
Equilibrium Inequality @C : 0.67	$M_{\rm B}$ + 0.33 $M_{\rm E}$ - 1.00 $M_{\rm p}$ + 0.33 PL > 0
Section Inequality @B : -0.67	$M_B - 0.67 M_p \ge 0$
Section Inequality @E :	$-0.33 M_{\rm E} -0.33 M_{\rm D} \ge 0$

 M_A , M_C , and M_D are selected as redundant moments because there is no possibility that a plastic hinge could be eliminated at sections A, C, or D. A similar operation is done to derive other mechanism inequalities. All systems may be written together as one system.

Column Number	l MB	2 M _E	3 M _A	4 Mp	5 PL	Row
Beam Mechanism BCE	0.67 -0.67 0	0.33 0 -0.33	0 0 0	- 1.00 - 0.67 - 0.33	0.33 0 0	(1) (2) (3)

Beam Mechanism	0.33	0.67	0	- 1.00	0.33	(4)
BDE	-0.33	0	0	-0.33	0	(5)
	0	-0.67	0	- 0.67	0	(6)
Panel Mechanism	-1.00	1.00	-1.00	-1.00	0.67	(7)
ABEF	1.00	0	0	-1.00	0	(8)
	0	-1.00	0	-1.00	0	(9)
	0	0	1.00	-1.00	0	(10)

Row operation so that column 1 may be eliminated:

1.00	0.50	0	-1.50	0.50	(1)	
1.00		<u> </u>	-1.00	0	(2) Omit because	
0	-1.00*	0	-1.00	0	(3) of duplication	n.,
1.00	2.00	0	-3.00	1.00	(4)	
-1.00	0	0	-1.00	0	(5,2)	
0	-1.00	0	-1.00	0	(6) duplication	
-1.00	1.00	-1.00	-1.00	0.67	(7)	5
1.00	0	0	-1.00	0	(8)	
0	-1.00	0	-1.00	0	(9,3,6)	
0	0	1.00	-1.00	0	(10)	

Reduce column 1, considering all possible row combinations:

0	0.50	0	-2.50	0.50	(1) + (5,2)
0	1.50	-1.00	-2.50	1.17	(1) + (7)
0	2.00	0	-4.00	1.00	(4) + (5, 2)
- 0	3.00	-1.00	-4.00	1.67	(4) + (7)
0	0	0	-2.00	0	(5,2)+(8)
0	1.00	-1.00	-2.00	0.67	(7) + (8)
0	-1.00	0	-1.00	0	(9,3,6)
0	0	1.00	-1.00	0	(10)

Row operation so that column 2 may be eliminated:

0	1.00	0	-5.00	1.00	(1) + (5,2)
0	1.00	-0.67	-1.67	0.78	(1) + (7)
0	1.00	0	-2.00	0.50	(4) + (5,2)
0	1.00	-0.33	-1.33	0.56	(4) + (7)
0	0	0	-2.00	0	(5,2)+(8)
0	1.00	-1.00	-2.00	0.67	(7) + (8)
0	-1.00	0	-1.00	0	(9,3,6)
0	0	1.00	-1.00	0	(10)

*Section inequalities may be converted to ± 1 immediately since they may be changed at pleasure to facilitate reduction.

		0 -0.67 0 -0.33 -1.00 1.00 0	-6.00 -2.67 -3.00 -2.33 -3.00 -1.00 -2.00	1.00 0.78 0.50 0.56 0.67 0 0	(1) + (5,2) + (9,3,6) (1) + (7) + (9,3,6) (4) + (5,2) + (9,3,6) (4) + (7) + (9,3,6) (7) + (8) + (9,3,6) (10) (5,2) + (8)
Row opera	ation so .	that colum	m 3 may be	e eliminat	ed:
0	0	0 -1.00	-6.00 -4.00	1.00	(1) + (5,2) + (9,3,6) (1) + (7) + (9,3,6)
0	0	0	- 3.00	0.50	(4) + (5,2) + (9,3,6) (4) + (7) + (9,3,6)
0	0	-1.00	- 3.00	0.67	(7) + (8) + (9,3,6)
0	0	0	- 2.00	0	(5,2) + (8)
Reduce co	2 ממתוך	considerir		sible row	combinations.
	,	COUPTOCI TI	P arr pos		COMPTHE OTOTIS :

	0	0	0	-5.00	1.17	(1) + (7) + (9,3,6) + (10)
	0	0	0	- 8.00	1.67	(4) + (7) + (9,3,6) + (10)
	0	0	0	-4.00	0.67	(7) + (8) + (10)
	0	0	0	-6.00	1.00	(1) + (5,2) + (9,3,6)
	0	0	0	- 3.00	0.50	(4) + (5,2) + (9,3,6)
	0	0	0	-2.00	0	(5,2)+(8)
L						

The reduction has been completed and the remaining expressions should be equated to zero and solved for the minimum load.

Mechanism \underline{BCE} - Mechanism \underline{ABEF} = (1) + (7) + (9,3,6) + (10)Mechanism \underline{BDE} - Mechanism \underline{ABEF} = (4) + (7) + (9,3,6) + (10)Mechanism \underline{ABEF} = (7) + (8) + (10)Mechanism \underline{BCE} = (7) + (8) + (10)Mechanism \underline{BCE} = (1) + (5,2) + (9,3,6)Mechanism \underline{BDE} = (4) + (5,2) + (9,3,6)Mechanism does not exist = (5,2) + (8)

Reduce column 2, considering all possible row combinations:

BCE + ABEF	- 5.00 M	мр +	1.17	PL	=	0	;	Ρ	-	4.29 Mp
BDE + ABEF	-8.00 M	мр +	1.67	PL	=	0	;	P	=	4.80 M
ABEF	-4.00 M	м _р +	0.67	PL	=	0	;	P	=	6.00 Mp
BCE	-6.00 N	мр +	1.00	PL	=	0	;	Ρ	•	6.00 M
BDE	-3.00 N	мр +	0.50	PL		0	;	Р	H	6.00 M
No Mechanism	-2.00 N	м _р +	0	PL	=	0	;	P	=	00

Since <u>BCE</u> + <u>ABEF</u> gives the smallest minimum load, <u>BCE</u> + <u>ABEF</u> is the correct collapse mode (see fig. 7).

FIG. 7 COLLAPSE MECHANISM BCE - ABEF OR ACEF

Because each plastic moment term in the equilibrium inequality can be matched by its complement in the section inequality by utilizing the appropriate row operation, the reduction may be done by simultaneously adding the equilibrium inequality and the complemented section inequalities.

Consider the system of inequalities for the mechanism BCE .

row 1 row 2 row 3	0.67 MB -0.67 MB	+ 0.33 M _E - 0.33 M _E	-1.00 Mp -0.67 Mp -0.33 Mp	+ 0.33	PL	» ∦ ∦ 0 0 0	
Add rows	1,2,&3 :		- 2.00 Mp	+ 0.33	PL	≥ 0	
Solve fo	or minimum :	load:			P	= 6.00	M

Let $(M_p)_B$ and $(M_p)_E$ represent the relative plastic stiffness at sections B and E respectively. The reduction may be done as follows using only the equilibrium inequality.

Equilibrium Inequality: $0.67 \text{ M}_{\text{B}} + 0.33 \text{ M}_{\text{E}} - 1.00 \text{ M}_{\text{p}} + 0.33 \text{ PL} \ge 0$ Reduction: $(-0.67 (\text{M}_{\text{p}})_{\text{B}}) + (-0.33 (\text{M}_{\text{p}})_{\text{E}}) + (-1.00 \text{ M}_{\text{p}}) + 0.33 \text{ PL} \ge 0$ $-2.00 \text{ M}_{\text{p}} + 0.33 \text{ PL} \ge 0$ $P = 6.00 \frac{\text{M}_{\text{p}}}{\text{P}}$

This method may also be applied to any combination of equilibrium inequalities. Consider the combination of mechanisms BCE and ABEF.

$$\begin{array}{rcl} \text{BCE} & 0.67 \text{ M}_{\text{B}} + 0.33 \text{ M}_{\text{E}} & -1.00 \text{ M}_{\text{p}} + 0.33 \text{ PL} \geq 0 \\ \hline \text{ABEF} & -1.00 \text{ M}_{\text{B}} + 1.00 \text{ M}_{\text{E}} & -1.00 \text{ M}_{\text{p}} + 0.67 \text{ PL} \geq 0 \end{array}$$

Utilize appropriate row operation on the equilibrium inequality representing <u>BCE</u> so that addition of inequalities will result in the elimination of the plastic hinge at section B in the resulting equilibrium inequality.

 $\frac{BCE}{ABEF} = \frac{1.00 \text{ M}_{B} + 0.50 \text{ M}_{E}}{-1.00 \text{ M}_{B} + 1.00 \text{ M}_{E} - 1.00 \text{ M}_{F} - 1.00 \text{ M}_{p} + 0.50 \text{ PL} \ge 0}{1.00 \text{ M}_{F} + 0.67 \text{ PL} \ge 0}$ $\frac{BCE}{ABEF} = \frac{ABEF}{-1.00 \text{ M}_{F} - 1.00 \text{ M}_{F} - 2.50 \text{ M}_{p} + 1.17 \text{ PL} \ge 0}{-1.00 \text{ M}_{F} - 2.50 \text{ M}_{p} + 1.17 \text{ PL} \ge 0}$ Reduction: $\left[\left(-1.50 \text{ (M}_{p})_{E} \right) + \left(-1.00 \text{ (M}_{p})_{F} \right) + \left(-2.50 \text{ (M}_{p})_{F} \right) \right] + 1.17 \text{ PL} \ge 0$ $-5.00 \text{ M}_{p} + 1.17 \text{ PL} \ge 0 \text{ ; } P = 4.29 \text{ M}_{F}$

A method has been demonstrated for the direct combination of elementary mechanisms and the computation of the minimum load for the new combined mechanism. Difficulty may be encountered in setting up basic statical equilibrium equations and in selecting section to form equilibrium inequality. Care must be exercised so that section forming equilibrium inequality does not correspond to a section where a plastic hinge may possibly be eliminated by combination with other possible mechanisms.

The reduction process may be described by means of a reduction formula (see fig. 8).

CHAPTER IV

POSITIVE AND NEGATIVE ELEMENTARY MECHANISMS

Oftentimes it is difficult to predict the direction in which a combination mechanism will operate. Therefore it may be necessary to try combinations of elementary mechanisms considering some elementary mechanisms to operate in two directions. A mechanism operating in the direction of mechanism loading will be called a "positive mechanism", while a mechanism acting in a direction opposing mechanism loading will be called a "negative mechanism". For example, frame ABCDE (see fig. 9) may be converted into a positive mechanism <u>ABDE</u> (see fig. 10) or a negative mechanism <u>ABDE</u>. The negative mechanism (see fig. 11) will produce a negative ultimate load.

Fig. 9 FRAME ABCDE

Therefore the correct collapse mode is due to the combination of mechanism BCD with negative mechanism ABDE .

The determination of the correct collapse mode requires testing all possible mechanisms for all possible plastic hinge eliminations. A method will be given in a subsequent section for testing all possible hinge eliminations. The determination of the number of elementary mechanisms possible, considering positive and negative mechanisms, is given by the modified rule (6) which follows.

Rule: N = number of possible plastic hinges
X = redundancies
2 (N - X) = number of elementary mechanisms

Any possible combination of these mechanisms should be investigated to determine the smallest possible load or ultimate load.

CHAPTER V

FORMING EQUILIBRIUM INEQUALITIES

Equilibrium inequalities are formed from equilibrium equations using sections where there is no possibility that a plastic hinge may be eliminated when combining with other possible mechanisms. If no section meets this requirement it will be necessary to form sufficient equilibrium inequalities that all possible hinge eliminations may be considered. One section may be satisfactory for a positive mechanism and be completely unsatisfactory for a negative mechanism. Consider a frame ABCDE (see fig. 15) with mechanisms ACDE and ABC.

Fig. 15 FRAME ABCDE WITH LOADING AT B & C (SAME DIRECTION)

Machanim

AODT

Meenanton A															
Equilibrium	Equation:			-	MA	+	MC	-	MD	+ M_E	-	1 <u>1</u> F	PL	=	C
Equilibrium	Inequality	@A	:	-	MC	+	MD	-	M _E	- Mp	+	1월 F	?L	3	C
Equilibrium	Inequality	@E	:	+	MA	-	MC	+	MD	- M _p	+	1월 F	PL	3	0
Using Reduct:	ion Formula.	, Cl	nap	oter	r II	II	;	P	=	2.67 M	D				

Mechanism ABC :

Equilibrium Equation: $-\frac{1}{2}M_A + M_B - \frac{1}{2}M_C - \frac{1}{2}PL = 0$ Equilibrium Inequality @B :+ $\frac{1}{2}M_A + \frac{1}{2}M_C - M_p + \frac{1}{2}PL \ge 0$ Using Reduction Formula, Chapter III ; $P = 4.00 \frac{M_D}{12}$

Combine mechanism <u>ABC</u> with mechanism <u>ACDE</u> using the equilibrium inequality for ACDE in either form.

Mechanism \underline{ABC} : + M_A	+ M_{C}		- 2 Mp	+ PL	≥ 0
Mechanism ACDE :	- M _C	+ M _D - M _E	- M _p	+ 1 <u>2</u> PL	≥ 0
<u>ABC</u> <u>ACDE</u> : + M_A		+ M _D - M _E	- 3 Mp	+ 2½ PL	≥ 0
			P =	2.40 L	
Mechanism \underline{ABC} : + M_A	+ ^M C		-2 Mp	+ PL	≥ 0
Mechanism ACDE : + MA	- M _C	+ M _D	- M _p	+ 1½ PL	≥ 0
ABC ACDE :+2 M _A		+ M _D	- 3 Mp	+ 2 ¹ / ₂ PL	≥ 0
			P =	2.40 M	

Sections A , D , or E would be satisfactory for forming equilibrium inequalities because there is no possibility of eliminating a plastic hinge at these sections. A plastic hinge can be eliminated at section C and therefore section C is unsatisfactory in this particular application. Section A may be made unsatisfactory by reversing the load at section C (see fig. 16).

Fig. 16 FRAME ABCDE WITH LOADING AT B & C (OPPOSITE DIRECTION)

Mechanism AC	DE :															
Equilibrium	Equation:			+	MA	-	MC	+	MD	- M	E	-	12	PL	-	0
Equilibrium	Inequality	@A	:	+	MC	-	MD	+	ME	- M	þ	+	2/12	PL	11	0
Equilibrium	Inequality	@E	:	-	MA	+	MC	-	$M_{\rm D}$	- M	þ	+	1/2	PL	1	0
							P	=	8.0							

Combine mechanism \underline{ABC} with mechanism \underline{ACDE} using the correct equilibrium inequality formed at section E.

Mechanism A	BC :	+ MA	+ M_C		- 2 Mp	+ PL	1	0
Mechanism A	CDE :	- M _A	+ M _C	- M _D	- M _p	+ 12 PL	1	0
ABC + ACDE	:	+	-2 M _C	- M _D	- 3 Mp	+ 1 ¹ 2PL	*	0
	(M _A	elimi	nated)		P =	4.00 M		

Fig. 17 CORRECT COLLAPSE MECHANISM BCDE & MOMENT DIAGRAM

Actually the combined mechanism failure (see fig. 17) occurs simultaneously with the local failure on column AC (see fig. 18) because both collapse modes have the same minimum value for P.

Fig. 18 CORRECT COLLAPSE MECHANISM ABC & MOMENT DIAGRAM

Combine mechanism <u>ABC</u> with mechanism <u>ACDE</u> using the incorrect equilibrium inequality formed at section A .

Mechanism <u>ABC</u> : + M_A + M_C	$-2 M_p + PL \ge 0$
Mechanism <u>ACDE</u> : + M _C - M _D	$+ M_{\rm E} - M_{\rm p} + \frac{1}{2} PL \ge 0$
$\underline{ABC} + \underline{ACDE} : + M_A + 2 M_C - M_D$	+ $M_E - 3 M_p + 1\frac{1}{2} PL \ge 0$
(MA not eliminated)	$P = 5.33 \frac{M_{\rm p}}{T^2}$

 M_A can be eliminated in the combination of <u>ABC</u> with <u>ACDE</u>. Therefore, the equilibrium inequality at section A is not satisfactory. Unsatisfactory sections for forming equilibrium inequalities can usually be determined by inspection. When in doubt, it may be necessary to try several equilibrium inequalities formed at different sections.

When combining elementary mechanisms, derive as many equilibrium inequalities as possible from the same given section inequality so that this section may be effectively eliminated from the analysis, thus simplifying the computation. Before forming the equilibrium inequalities, no substitution of terms should be made from the equilibrium equation of one mechanism to that of another; an exception may be made in the case of a "joint mechanism" which has a load term of zero.

CHAPTER VI

COMBINING EQUILIBRIUM INEQUALITIES FOR A MINIMUM LOADING CONDITION

All possible equilibrium inequalities for a structural system may be considered as a collection of definite or separate objects which may be called the "aggregate of the system equilibrium inequalities". In turn, each equilibrium inequality will be the aggregate of the individual plastic moment terms, etc., operative in the respective mechanism. Therefore, the aggregate of the system equilibrium inequalities represented by K will be composed of partial aggregates K_1 , K_2 , K_3 , ..., K_n , each partial aggregate being equal to the respective equilibrium inequality aggregate, with n being equal to the total number of mechanisms available for combination in the structural system. Let k_1 , k_2 , k_3 , ..., k_n represent the aggregates formed by abstracting respectively K_1 , K_2 , K_3 , ..., K_n from aggregate K. The aggregate k_1 will will represent a finite cardinal number of aggregate K. Similarly, k_2 , k_3 , ..., k_n will represent different finite cardinal numbers of aggregate K.

The aggregate systems previously defined are conformable to the following basic mathematical theorems.

 If K is any aggregate of different finite cardinal numbers, there is one, k₁, amongst them which is smaller than the rest, and therefore the smallest of all.

(2) Each aggregate K = { k } of different finite cardinal numbers can be brought into the form of a series

 $K = (k_1, k_2, k_3, \dots, k_n)$ such that

 $k_1 < k_2 < k_3 \dots < k_n$

All aggregates which have been considered may be assigned values according to a definite mathematical formulation. The value of aggregate K will be the minimum load determined for the equilibrium inequality resulting from adding all component equilibrium inequalities together. The value of aggregate k_{l} , etc., will be the minimum load determined for the equilibrium inequality resulting from adding all component equilibrium inequalities together and subtracting the equilibrium inequality composing the abstracted K_{i} -type aggregate such as K_{l} .

Upon determination of the aggregate such as k_1 , k_2 , k_3 , ..., or k_n having the smaller positive minimum load, this aggregate may now be considered as aggregate K and the process repeated with the exception that previously eliminated aggregates will not be eliminated again. When all k -type aggregates have been formed, their values will be compared with the value of the current aggregate K. If the value of the current aggregate K is less than the value of the smallest k -type aggregate formed, then the operation will cease and the current aggregate K represents the equilibrium inequality for the correct collapse mode. For purposes of comparison a negative minimum load may be considered as nonexistant.

Consider frame ABCDE (see fig. 19) having possible mechanisms BCD , ABDE, ABDE, and BCD. 2P 2 Mp -Mo Fig. 19 FRAME ABCDE WITH LOADING AT B & C Equilibrium Equations: Mechanism $\overline{\text{ABDE}}$, $\overline{\text{ABDE}}$: $\pm M_A \mp M_B \pm M_D \mp M_E \pm PL = 0$ Mechanism \overline{BCD} , \overline{BCD} : $\pm \frac{1}{2}M_B \neq M_C \pm \frac{1}{2}M_D \pm PL = 0$ Equilibrium Inequalities: Mechanism $\overline{\text{ABDE}}$, $\overline{\text{ABDE}}$: $\pm M_{\text{B}} \mp M_{\text{D}} \pm M_{\text{E}} - M_{\text{D}} \mp \text{PL} \ge 0$ Mechanism \overline{BCD} , \overline{BCD} : $\mp \frac{1}{2}M_B \mp \frac{1}{2}M_D$ $- 2M_b \mp PL \ge 0$ Row operations on equilibrium inequalities to facilitate hinge elimination: Mechanism $\overline{\text{ABDE}}$, $\overline{\text{ABDE}}$: $\pm M_{\text{B}} \neq M_{\text{D}} \pm M_{\text{E}} - M_{\text{p}} \neq \text{PL} \ge 0$ Mechanism \overline{BCD} , \underline{BCD} : $\mp M_B \mp M_D - l_4 M_D \mp 2PL \ge 0$ $K = \begin{bmatrix} K_{1} = \begin{bmatrix} -M_{B} & -M_{D} & -\mu_{M_{p}} & -2PL \ge 0 \end{bmatrix}$ $K_{2} = \begin{bmatrix} +M_{B} & -M_{D} & +M_{E} & -M_{p} & -PL \ge 0 \end{bmatrix}$ $K_{3} = \begin{bmatrix} -M_{B} & +M_{D} & -M_{E} & -M_{p} & +PL \ge 0 \end{bmatrix}$ $K_{L_{1}} = \begin{bmatrix} +M_{B} & +M_{D} & -\mu_{M_{p}} & +2PL \ge 0 \end{bmatrix}$ (BCD) (ABDE) (ABDE) (BCD) Evaluate K : $0 + 0 + 0 - 10 M_p - 0 PL \ge 0$ P = ~

 $k_{1} = \begin{bmatrix} K_{2} = [+M_{B} - M_{D} + M_{E} - M_{p} - PL \ge 0] \\ K_{3} = [-M_{B} + M_{D} - M_{E} - M_{p} + PL \ge 0] \\ K_{4} = [+M_{B} + M_{D} - 4M_{p} + 2PL \ge 0] \end{bmatrix}$ -6M_p +2PL ≥ 0 Evaluate k1 :+ MB + MD $P = 4 \frac{M_{D}}{L}$ $k_{2} = \begin{bmatrix} k_{1} = \begin{bmatrix} -M_{B} & -M_{D} & -LM_{p} & -2PL \ge \vec{0} \\ k_{3} = \begin{bmatrix} -M_{B} & +M_{D} & -M_{E} & -M_{p} & +PL \ge \vec{0} \\ k_{4} = \begin{bmatrix} +M_{B} & +M_{D} & -LM_{p} & +2PL \ge \vec{0} \end{bmatrix}$ Evaluate $k_2 := M_B + M_D - M_E - 9M_p + PL \ge 0$ $P = 12 \frac{M_{1}}{L}$ $k_{3} = \begin{bmatrix} K_{1} = \begin{bmatrix} -M_{B} & -M_{D} & -4M_{p} & -2PL \ge \vec{0} \end{bmatrix}$ $k_{2} = \begin{bmatrix} +M_{B} & -M_{D} & +M_{E} & -M_{p} & -PL \ge \vec{0} \end{bmatrix}$ $K_{4} = \begin{bmatrix} +M_{B} & +M_{D} & -4M_{p} & +2PL \ge \vec{0} \end{bmatrix}$ Evaluate $k_3 : +M_B - M_D + M_E - 9M_p - PL \ge 0$ $P = -12 \frac{M_{p}}{12}$ $k_{l_{1}} = \begin{bmatrix} K_{l} = \begin{bmatrix} -M_{B} & -M_{D} & -l_{M_{p}} & -2PL \ge 0 \end{bmatrix}$ $K_{2} = \begin{bmatrix} +M_{B} & -M_{D} & +M_{E} & -M_{p} & -PL \ge 0 \end{bmatrix}$ $K_{3} = \begin{bmatrix} -M_{B} & +M_{D} & -M_{E} & -M_{p} & +PL \ge 0 \end{bmatrix}$ -6Mp -2PL≥ 0 Evaluate k4 :-MB -MD $P = -4 \frac{M_{p}}{T^{2}}$

 $k_1 < k_2 < K$; k_3 , k_4 nonexistant; let $k_1 = K'$.

$$k_{2'} = \begin{bmatrix} K_{3} = \begin{bmatrix} -M_{B} + M_{D} - M_{E} - M_{p} + PL \ge 0 \\ K_{L} = \begin{bmatrix} +M_{B} + M_{D} & -hM_{p} + 2PL \ge 0 \\ P = 2.67 & \frac{M_{D}}{P} \\ P = 2.67 & \frac{M_{D}}{P} \\ \end{bmatrix}$$
Evaluate $k_{3'} : 2M_{E} - M_{D} + M_{E} - M_{p} - PL \ge 0 \\ K_{L} = \begin{bmatrix} +M_{B} - M_{D} + M_{E} - M_{p} - PL \ge 0 \\ -M_{B} - hM_{p} - 2PL \ge 0 \\ \end{bmatrix}$
Evaluate $k_{3'} : 2M_{E} + M_{E} - 5M_{p} + PL \ge 0 \\ P = 8 & \frac{M_{D}}{P} \\ k_{4'} : \begin{bmatrix} K_{2} = \begin{bmatrix} +M_{B} - M_{D} + M_{E} - M_{p} - PL \ge 0 \\ K_{3} = \begin{bmatrix} -M_{B} + M_{D} - M_{E} - M_{p} - PL \ge 0 \\ \end{bmatrix} \\ Evaluate k_{4'} : & -2M_{p}^{-}(0)PL \ge 0 \\ \end{bmatrix}$
Evaluate $k_{4'} : & -2M_{p}^{-}(0)PL \ge 0 \\ P = \infty \\ k_{2'} < k_{3'} < k_{4'} < K ; let k_{2'} = K'' \\ k_{3''} = \begin{bmatrix} K_{L} = \begin{bmatrix} +M_{B} + M_{D} & -hM_{p} + 2PL \ge 0 \\ \end{bmatrix} \\ Evaluate k_{3''} : + M_{B} + M_{D} & -hM_{p} + 2PL \ge 0 \\ P = 3 & \frac{M_{D}}{E'} \\ \end{bmatrix}$
Evaluate $k_{3''} : -M_{B} + M_{D} - M_{E} - M_{p} + PL \ge 0 \\ P = 4 & \frac{M_{D}}{E'} \end{bmatrix}$

 $K^{"} < k_{3}"$, $K^{"} < k_{4}"$; Therefore K" represents the equilibrium inequalities for the elementary mechanisms composing the correct collapse mode (see fig. 20).

Fig. 20 CORRECT COLLAPSE MECHANISM ACDE

This method is absolute when all mechanisms, both positive and negative, are considered. However, because all mechanisms may not be recognized and consequently considered, it is extremely advisable to draw the moment diagram to ascertain that the correct collapse mode has been determined. This method has an extreme disadvantage inasmuch as row operations, which are necessary to facilitate hinge elimination, must be done prior to combining all mechanism equilibrium inequalities. The necessity for prior row operation may cause an inequality to appear several times in different forms in the aggregate of inequalities. Computation can be shortened by not considering mechanisms which obviously could not be a component mechanism of the final collapse mode. Again, it is advisable to draw the moment diagram to ascertain that the correct collapse mode has been determined.

Dispite some inherent disadvantages in the method outlined, it is superior in most instances to a system dependent upon trial of all combinations which may result in plastic hinge eliminations, the number of trials being roughly proportional to the factorial of the number of possible hinge eliminations.

A number of examples have been worked and are included in the appendix of this paper. These examples will demonstrate how to handle several problems of different types as well as to show simplifications through the use of tabular format and procedure.

CHAPTER VII

COMPUTER PROGRAM FOR DETERMINING MINIMUM LOADING CONDITIONS FOR

A STRUCTURAL SYSTEM

One of the chief disadvantages of any method of plastic analysis is the necessity for repeating the entire analysis of a structural system for a variation in loading conditions or a variation in member size. The amount of work required can become prohibitive for more than a few such variations. Design by the plastic methods could be greatly facilitated by the development of design charts for a great many common types of structures. The computative work required for such design charts could be greatly reduced by the use of high-speed digital computing equipment.

For the most satisfactory results, design methods used with such equipment should involve a procedure which can be reduced to a systematic, arithmetic operation. The method of analysis described in Chapter VI of this paper satisfies the requirement for a systematic, arithmetic operation or procedure. A program for this method has been written for the Remington Rand 1101 Digital Computer in accordance with programming manual PX 77000-A.

The method for arranging data, the data required, and the location or address where this data will be stored in the computer memory will be described in this section. The program, together with operational data, is included in the appendix of this paper.

A typical equilibrium inequality may be divided into three types of parts - section plastic moment terms, the plastic stiffness term, and the load term. An aggregate composed of a number of equilibrium inequalities may be arranged in format so as to have columns corresponding to each plastic moment term at each section, a column corresponding to the plastic stiffness term, and a column corresponding to the load term. To adapt this aggregate to the computer program it is necessary to multiply the entire aggregate by -1.

Consider frame 1-2-3-4-5 (see fig. 21) having possible mechanisms 1-2-4-5, 1-2-4-5, 2-3-4, and 2-3-4.

Fig. 21 FRAME 1-2-3-4-5

Equilibrium Inequalities:

Mechanism I	-2-4-5 :	+ M2	- M ₄	+ M5	- Mp	- PL	>	0
Mechanism 1	-2-4-5 :	- M2	+ M ₄	- M5	- Mp	+ PL	1	0
Mechanism 2	-3-4 :	- M2	- M1		-4Mp	- 2PL	2	0
Mechanism 2	-3-4 :	+ M2	+ M4		-4Mp	+ 2PL	1	0
Multiply the a	aggregate	of equi	Libri	um ineq	ualiti	es by	-1	:
Mechanism I	-2-4-5 :	- M2	+ M24	- M5	+ Mp	+ PL	≥ 0	
Mechanism 1-	-2-4-5 :	+ M2	- M.	+ Mg	+ M	- PL ;	> 0	

Mechanism	2-3-4	:	M_2	+	M_{4}	+4Mp	+	2PL	≥	0
Mechanism	<u>2-3-4</u>	:	- M2	_	M ₁	+4Mp	-	2PL	≯	0

Table 1 represents the described column arrangement for the mechanisms in frame 1-2-3-4-5.

	Load Column	Plastic Stiffness	Section Plastic Moment Columns					
	-PL	Column - -Mp	-M2	-M24	-M5			
1	l	l	-1	l	-1			
	-1	l	l	-1	l			
Î	2	4	ı	l	0			
	- 2	<u>)</u>	-1	-1	0			
	0	10	0	0	0			
			G					
			$(M_p)_2$	(Mp)4	(Mp)5			
			٦	7	7			

Table 1. Arrangement of Terms for Computer Program

1-2-4-5
1-2-4-5
2-3-4
2-3-11

Mechanism

Summation of all mechanisms.

Section Plastic Stiffness

In table 1 the constant @ represents the number of inequalities composing the aggregate. The constant G represents the total number of section plastic moment columns plus one.

The memory of the 1101 computer is a magnetic drum having 2¹¹⁴ or 16,384 locations (addresses) where numerical information may be stored in the form of a twenty-four binary digit number or word at each address used. The computer will interpret some of these words as instructions, but will use others as operands. The addresses allocated for the operands in the Plastic Design Routine are shown in the Storage Diagram (see fig. 22).

The values shown in table 1 may be assigned addresses in accordance with the Storage Diagram. Table 2 gives table 1 values with their respective address assignments.

12	-PL	-Mp	-M2	-M ₂	-M5	Mechani	ism
9 4	1	1	-1	1	-1		
(20201)	(20202)	(20203)	(20204)	(20205)	(20206)	1-2-4-5	Кı
<u>0 4</u> (20301)	<u>-1</u> (20302)	1 (20303)	1 (20304)	- <u>1</u> (20305)	1 (20306)	1-2-4-5	K2
<u>G_4</u> (20401)	2 (20402)	(20403)	(20404)	1 (20405)	0 (20406)	2-3-4	ĸ3
<u>G_4</u> (20501)	(20502)	(20503)	(20504)	(20505)	(20506)	2-3-4	К)4
P	0	10	0	0	0		K
(20001)	(20002)	(20003)	(20004)	(20005)	(20006)		
			1.1.1				

Table	2.	Address	Assignment	of	Terms
	-	THOUGH CHAIN	warm the me have a serie of the series of	-	

T. C.	(Mp)2	(Mp)4	(Mp)5
high no.	1	- 1	1
(20101)	(20104)	(20105)	(20106)

Section Plastic Stiffness

It is necessary to multiply the values listed in table 1 and table 2 by appropriate scale factors in order to get the answer to a suitable number of decimal places. The scale factor may be expressed as

GROUP 1	LINDEX								
1	2	3	4	5	6	-	77		ORBIT
P	≤(-PL)	€(-M)	(-M) ≥	≤(-M)	≤(-M2)	-	£(-M60)	· · ·	TNDEX
200013	20002	20003	20004	20005	20006	-	20077	K	2000
m a	7		[(nr)	1 /20 \	1 /25)	_	(24.)		
T. C.					(Mp)3	-	(Mp)60		
LEOTOT	1		20104	20103	20100		2011	a 1 a -	
θ	-PL	-Mo	-M	-M2	-M3	-	-1460	1. D	
20201	20202	20203	20204	20205	20206	-	20277	КŢ	2020
00007	-PL	-Mp	-M	-M2	-M3	-	-M60	77	0000
20301	20302	20303 M	20304	20305	20306	-	20311	^K 2	2030
20101	20/102	20103	20101	20105	20106	-	20177	Ka	2010
G	-PL	-Mo	-M	-M2	-M3	-	-M60	C	2040
20501	20502	20503	20504	20505	20506	-	20577	K),	2050
	-PL	-Mp	-M1	-M2	-M3		-M60		
	20602	20603	20604	20605	20606		20677	K5	2060
content	20702	20703	20701	20705	-113	-	-160	V	0070
aunt epe	-PL	-M	-M	-Mo	=Mo	-	-M60	r6	2010
	21002	21003	21004	21005	21006	-	21077	K ₇	2100
	-PL	-Mo	-M1	-M2	-M3	-	-M60	-	() ()
	21102-	21103-	21104-	21103-	21106-2	117	7 - 7	K8-	2110-
72	37002	37003	37004	37005	37006-	370	77	KTT	8 3700

P = Minimum Load

PL = Load Term

Mp = Plastic Stiffness Term

Mi = Section Plastic Moment Term

 $(M_p)_i = Section Plastic Stiffness Term$

9 = Total Number of Inequalities

G = Total Number of Plastic Moment Terms + 1

Ki = Equilibrium Inequality for Elementary Mechanism

K = Summation of Equilibrium Inequalities

T. C. = Test Constant

Fig. 22

STORAGE DIAGRAM

*Addresses are expressed in octal notation, ie. radix is eight.

power of ten. Suitable scale factors may be readily determined by an operation generalized somewhat as follows:

$$(P)(lo^{x}) = \frac{|(M_{p})(lo^{p})| + |(M_{1})(lo^{r})\chi(M_{p})_{1}(lo^{s})|}{(PL)(lo^{n})}$$

10P must equal 10rs .

Therefore, 10x is equal to 10p-n .

p, r, s, n, & x = exponents of 10. P = Minimum Load. PL = Load Term. M_D = Plastic Stiffness Term. M₁ = any Section Plastic Moment Term. (M₀)₁ = Plastic Stiffness Term at section i.

Appropriate selection of scale factors so that x is equal to three has been found satisfactory in most cases and allows the program to converge properly.

The minimum load P equal to infinity for the initial problem setup may be satisfactorily handled by letting P equal the computer's maximum positive value which is octal 37777777; similarly, the test quantity C. T. will normally be assigned this maximum positive value.

The output from the computer will be printed in decimal form. The answer will consist of the minimum load P for the equilibrium inequality representing the mechanisms composing the collapse mode, an entry of one line consisting of ones and zero's to signify plastic hinge locations, and an entry of two lines consisting of two's and zero's to signify component equilibrium inequalities. In the lines signifying plastic hinge locations and component equilibrium inequalities, zero represents the absence of a hinge or an inequality. A one signifies the location of a plastic hinge and a two signifies the presence of an equilibrium inequality. The order and arrangement of these terms matches the original order and arrangement of terms.

Arranging scale factors so that the answer has a scale factor of 10^{\times} 10^3 , the answer to the example problem would appear as illustrated in figure 23.

COMPUTER PROGRAM

APPENDIX "A"

TITLE:	Plas	stic	Design	Routine	e #	1						START:	37777
INTERLAC	E:	C	SKIPS	• ^b 17,	28	;	^b 16,	27	;	b15,	26	STOP:	1 4373

ADDRESS	CONTENTS	ADDRESS	CONTENTS	ADDRESS	CONTENTS
37777	11100077				
00077	00000001	04077	35020301	10077	35037415
00177	35020103	04277	11000677	10177	11110277
00277	11100377	04377	35003177	10277	00000060
00377	00000100	04377	27003277	10377	35037416
00477	35037402	04477	11020401	10477	11110577
00577	11100677	04577	12104677	10577	00000033
00677	00020200	04677	00000002	10677	35037417
00777	35037400	04777	35037404	10777	56000000
01077	11101177	05077	35037405	11077	110(20000)
01177	00020202	05177	11105277	11277	350(37500)
01277	35037401	05277	00000037	11277	71011077
01377	11101477	05377	35037406	11377	27011077
01477	37777777	05477	11105577	11477	71011177
01577	35037301	05577	00000052	11577	27011177
01677	11101777	05677	35037407	11677	11037405
01777	00000000	05777	11106077	1177	47212077
02077 02177 02277 02377 02577 02577 02677 02677 02777	35020000 35020102 35037300 35037403 11020301 47002777 45003777 35020301	06077 06177 06277 06377 06477 06577 06677 06777	00000074 35037410 11106377 00000070 35037411 11106677 00000064 35037412	12077 12177 12277 12377 12477 12577 12577 12677	35037405 45011077 11037404 35037405 11112577 00020000 27011077 11113077
03077	11103177	07077	11107177	13077	00037500
03177	(00020200)	07177	00000062	13177	27011177
03277	350(20200)	07277	35037413	13277	56000000
03377	12037402	07377	11107477	13377	11020301
03477	35003177	07477	00000066	13477	47013677
03577	27003277	07577	35037414	13577	45013074
03677	45002477	07677	11107777	13677	35020301
03677	11020201	07677	00000072	13777	12020103

ADDRESS	CONTENTS	ADDRESS	CONTENTS	ADDRESS	CONTENTS
14077 14277 14277	14020201 47014377 45015277	01074 01174 01274	27017477 11020501 47201374	06074	45013377
14377 14477 14577 14677 14777	12037402 12037403 35037403 12037400 27015377	01474 01474 01574 01674 01774	45016777 11020401 35020501 11102074	06474 06574 06674 06674	41000000 14020001 46007274 47207074
15077 15177 15277 15377 15477 15577 15677 15777	27015677 27015777 11020000 140(20200) 47015777 11020102 350(20200) 110(20200)	02074 02174 02274 02374 02474 02574 02574 02674 02774	00020002 27016777 11102374 00037102 27017177 11102674 00020102 27017377	07074 07174 07274 07374 07474 07474 07574 07674 07674	56000000 45013377 11037101 14037301 46010074 47207674 56000000 45013377
16077 16177 16277 16377 16477 16577 16677 16777	47016377 56000000 45013377 11037401 12037403 56000000 27017077 110(20002)	03074 03174 03274 03374 03474 03574 03574 03674 03774	11103174 00037202 27017477 56000000 37000000 220 (37202) 43000000 71003574	10074 10174 10274 10374 10474 10474 10574 10574 10674	56000000 110371400 120371403 35137100 110(37100) 350(37300) 7101014714 2701014714
17077 17177 17277 17377 17477 17577 17677	140(20202) 350(37102) 43000000 610(20102) 350(37202) 71016777 45000074	04074 04174 04274 04374 04474 04574 04674 04674	27003574 11020501 47304374 35020501 41000000 45003574 36037201 11020401	11074 11174 11274 11374 11374 11474 11574 11674 11674	71010574 27010574 11037405 47211474 35037405 45010474 11037404 35037405
00074 00174 00274 00374 00474 00574 00674 00674	27016777 71017077 27017077 71017177 27017177 71017377 27017377 71017377	05074 05174 05274 05374 05474 05574 05674 05674	35020501 11105274 00037202 27003574 56000000 11037102 46015073 56000000	12074 12174 12274 12374 12474 12574 12574 12674 12774	11112174 00037100 27010474 11112474 00037300 27010574 56000000 45013377

ADDRESS	CONTENTS	ADDRESS	CONTENTS	ADDRESS	CONTENTS
13074 13174 13274 13274 13374 13474 13574 13674 13674	11020201 35020301 11020102 35037403 11037400 27015377 27015677 27015777	00073 00173 00273 00373 00473 00573 00673 00673	71017574 27017574 14100373 35037430 46200573 41000000 45017374 11101073	05073 05173 05273 05373 05473 05573 05673 05673	11020501 47205273 35020501 45003473 11020401 35020501 53002773 56000000
14074 14174 14274 14274 14374 14474 14474 14574 14674 14774	1111),17), 00020202 27017077 11037300 14020000 47015074 56000000 45017274	01073 01173 01273 01373 01473 01573 01673 01773	00037420 27017574 11101373 00037406 120(37427) 27001673 53037406 11001473	06073 06173 06273 06373 06473 06573 06673 06773	11020301 63004677 36037430 11020301 47006673 45010673 35020301 110(20200)
15074 15174 15274 15374 15474 15574 15674 15674	110(37300) 350(20000) 71015074 27015074 71015174 27015174 11037405 47216074	02073 02173 02273 02373 02473 02573 02673 02673	14102173 12000001 27001473 14102473 00037417 47001273 53102773 00000045	07073 07173 07273 07373 07473 07573 07673 07773	47107173 53137410 53037406 11037406 47007773 53002773 11020201 35037430
16074 16174 16274 16374 16474 16574 16674 16674	35037405 45015074 1037404 35037405 11012577 27015174 11116774 00037300	03073 03173 03273 03373 03473 03573 03673 03773	56000000 11103273 00037427 27001473 11020101 240(20004) 47004273 110(20004)	10073 10173 10273 10373 10473 10573 10673 10773	11037402 12037403 35037400 12037400 27006773 45006373 11020201 35020301
17074 17174 17274 17274 17374 17474 17574 17574	27015074 45013377 11020001 63117474 00000012 350(37420) 45000073	04073 04173 04273 04373 04373 04573 04573 04673 04773	47204173 53337407 46004473 53137406 53037417 71003573 27003573 27003573	11073 11173 11273 11373 11473 11573 11673 11773	11020102 35037403 11037400 27006773 56000000 110(37500) 350(20000) 71011573

ADDRESS	CONTENTS
12073 12173 12273 12373 12473 12573 12573 12673 12773	27011573 71011673 27011673 11037405 47212573 35037405 45011573 11037404
13073 13173 13273 13273 13473 13473 13573 13673 13673 13773	35037405 11012577 27011673 11013077 27011573 53002773 53002773 11114073
14073 14173 14273 14373	00020004 27003573 27003773 55000000
15073 15173 15273 15373 15473 15573 15673	15115173 77777777 35037200 11037201 63037200 36037101 45006474

APPENDIX "B"

FORMING STATICAL EQUILIBRIUM EQUATIONS

STATICAL EQUILIBRIUM EQUATION FOR A TYPICAL BEAM MECHANISM

 $-\frac{1}{2}L$ $-\frac{1}{2}L$ $-\frac{1}{2}L$ $-\frac{1}{2}$

EXAMPLES

APPENDIX "C"

	MB	MD	ME	Mp	PL		(e., e
1 2 3 4	-1 1 -1 1	-1 -1 1 1	0 1 -1 0	-4 -1 -1 -4	-2 -1 1 2		BCD ABDE ABDE BCD
	0	0	0	-10	0	00	£
¥ -7 ¥ -2 ¥ -3 ¥ -4	1 -1 1 -1	1 1 -1 -1	0 -1 1 0	-6 -9 -9 -6	2 1 -1 -2	4.00 12.00 -12.00 -4.00	
∡ - 1	1	1	0	-6	2	4.00	'2'
z´-2 z´-3 z´-4	0 2 0	2 0 0	-1 1 0	-5 -5 -2	3 1 0	2.67 8.00 ∞	
≾'- 2	0	2	-1	-5	3	2.67	""
≤″-3 ≤″-4	1 -1	1 1	0 -1	-4 -1	2 1	3.00 4.00	
3+4	0	2	-1	-5	3	2.67	Y

EXAMPLE I: TABULAR ARRANGEMENT FOR EXAMPLE PROBLEM OF CHAPTER VI

EXAMPLE II: MECHANISM FAILURE WITH JOINT ROTATION

INEQUALITIES:

Joint Mechanism 1-2-3 : $M_1 - M_3 - M_p \ge 0$ $-M_1 + M_3 - M_p \ge 0$ Beam Mechanism 3-4-5 : $M_3 + M_5 - 8 M_p + PL \ge 0$

Mp 4Mp 4Mp			Relative Plastic Stiffness			
Mi	М3	M5	Mp	PL	Mp L	1 2.10
ן 1-1 0	-1 1 1	0 0 1	-1 -1 -8	0 0 1	20 20 16	1-2-3 1-2-3 3-4-5
0	1	l	-10	1	18	
-1 1 0	2 0 0	1 1 0	-9 -9 -2	1 1 0	22 14 2 0	
l	0	l	-9	1	<u>ז</u> לד.	
0 1	1 -1	1 0	-8 -1	1 0	16	

FINAL COLLAPSE MECHANISM:

BIBLIOGRAPHY

官的即的员

BIBLIOGRAPHY (CITED REFERENCES)

- Greenberg, H. J., and W. Prager, "On Limit Design of Beams and Frames," Proceedings of the American Society of Civil Engineers, 77, Separate No. 59, Feb. 1951.
- (2) Symonds, P. S., and B. G. Neal, "Recent Progress in the Plastic Methods of Structural Analysis," <u>Journal of the Franklin Institute</u>, 252, Nov. 1951, pp.393-397.
- (3) Beedle, L. S., B. Thurlimann, and R. L. Ketter, Plastic Design in Structural Steel - Lecture Notes, Lehigh University - American Institute of Steel Construction, Sept. 1955, sections 2.2 - 2.5.
- (4) Neal, B. G., and P. S. Symonds, "The Calculation of Collapse Loads for Frame Structures," Journal of the Institution of Civil Engineers, 35, 1950-51, pp. 21-40.
- (5) Dines, L. L., "Systems of Linear Inequalities," <u>Annals of Mathematics</u>, 28, 1919, p. 191-198.
- (6) Beedle, L. S., B. Thurlimann, and R. L. Ketter, Plastic Design in Structural Steel - Lecture Notes, Lehigh University - American Institute of Steel Construction, Sept. 1955, section 5.6.

BIBLIOGRAPHY (OTHER REFERENCES)

- 1. Cantor, Georg, Contributions to the Founding of the Theory of Transfinite Numbers. New York: Dover Publications, Inc., 1915 (reprint of English translation by Philip E. B. Jourdain), pp. 85-103.
- 2. Frazer, R. A., W. J. Duncan, and A. R. Collar, <u>Elementary Matrices</u>, 1st ed. Cambridge: Cambridge University Press, 1952.
- 3. Horne, M. R., "Fundamental Propositions in the Plastic Theory of Structures," Journal of the Institution of Civil Engineers, 34 (1950), p.174.
- 4. Johnston, B., C. H. Yang, and L. S. Beedle, "An Evaluation of Plastic Analysis as Applied to Structural Design," <u>Welding Journal</u>, 32(5) (1953), pp. 225s-232s.
- 5. Phillips, Aris, Introduction to Plasticity. New York: The Ronald Press Company, 1956.
- 6. Richards, R. K., Arithmetic Operations in Digital Computers. New York: D. Van Nostrand Company, Inc., 1955.
- 7. Timoshenko, S., Strength of Materials, Vol. II, 2nd ed. New York: D. Van Nostrand Company, Inc., 1941.