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ABSTRACT 
• 

The ability of mild structural steel to deform plastically after 

the yield point stress has been reached, thereby permitting greater 

stress on previously lower-stressed members in a given structure, is 

the basis of the plastic methods of structural analysis. A given struc

tural system may be proportionally loaded until sufficient points of 

yielding (plastic hinges) occur to transpose the system into a failure 

mechanism. Present practical methods of plastic analysis seem usually to 

assume several collapse mechanisms and test each for the lower load 

carrying capacity. The usual test is to draw moment diagrams to insure 

that the correct mechanism has been selected. 

A new method is presented whereby it is possible to make a direct, 

systematic selection of the failure mechanism. A failure mechanism will 

be composed of one or more elementary mechanisms, or simple mechanisms 

operating under each separate load of the loading system. It is possible 

to derive equilibrium equations for each elementary mechanism. No method 

is currently available for combining directly the equilibrium equations 

of various elementary mechanisms. However, by utilizing the inequality 

resulting from a knoi-dedge of the extreme values necessary for the 

formation of a plastic hinge, it is possible to set up a system of 

inequalities representing all possible elementary mechanisms in the 

structure. This system of inequalities can be reduced by a method sug

gested by a mathematician, L. L. Dines, for reducing a system of 

inequalities, 
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vi 

At each section where a plastic hinge may occur in an elementary 

mechanism, two inequalities may be derived; each section inequality 

represents the rotation of the hinge in a fixed direction* Section 

inequalities for sections where plastic hinges occur in a mechanism may 

be grouped together as a system of inequalities representing the mechanism. 

However, all inequalities in the system must represent consistent hinge 

rotation for a mechanism operation. Therefore, two systems of inequalities 

are possible; one system operating in a direction consistent with the 

elemental loading and the other system operating in a direction inconsist

ent with the elemental loading. The equilibrium equation for the mechanism 

may be substituted in one of the section inequalities. This introduces 

a load term into the system. The system of inequalities may be reduced 

until the formation of an I-minor matrix which is I-definite, ie. it has 

a column which contains either all negative or all positive terms, Iiflien 

this occurs, the I-minor representing the mechanism will contain only a 

plastic moment term and a load term. The value for the load term which 

just satisfies this inequality represents the minimum load, or the 

collapse load for the mechanism. 

The same reduction may be performed for a combination mechanism. 

A numerical method has been established to systematically delete extraneous 

elementary mechanisms from a combination mechanism consisting of all 

possible elementary mechanisms. This numerical method has been success

fully programmed for the ERA 1101 Digital Computer at the Rich Computer 

Center. This will facilitate additional research and study of the problems 

involved in Plastic Design. 

• 
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CHAPTER I 

• 

INTRODUCTION TO PLASTIC DESIGN IN STRUCTURAL STEEL 

If a system of loads acting on a structural system is increased 

in a gradual and proportional manner, some point within the system will 

reach its limiting elastic value of resisting moment. Further increase 

in load will result essentially in the plastification of such sections 

which have reached the limiting elastic value of resisting moment or 

the yield-point stress. Section plastification leads to the concept of 

a plastic hinge, which considers that such sections will act as if 

hinged except with a restraining moment known as the plastic moment. T he 

plastic hinge concept is reasonable because of the ability of mild 

structural steel to deform plastically after the yield stress has been 

reached. Increase of loads on the structural system will cause increased 

stress on those members which remain elastic until sufficient plastic 

hinges have formed to transform the structural system into a failure 

mechanism. 

The concept of a structural system being converted into a 

mechanism is the basis of many proposed methods of analysis designed to 

take advantage of the capacity of structural steel to deform plastically, 

thereby allowing the structural system to draw upon reserve strength of 

components having lower stress under an elastic behavior assumption. Such 

methods would have the unique feature of basing design criteria on 

ultimate load, rather than yield stress. This should result in the more 
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economic and efficient use of steel as a structural material. 

Probably the best method of approach to the problem of using the 

mechanism concept would be one which considered both the elastic and 

plastic properties of the structure. Such a method should give the stress 

history of the structure so that factors such as excessive deflections, 

instability, fracture, fatique, and inelastic stress reversal, could be 

considered as well as the attainment of maximum plastic strength. At 

present no method of an elastic-plastic nature is available which can be 

practically and accurately applied to the analysis of structural systems 

of any complexity. It should also be emphasized that methods featuring 

steel in a plastic range are not always appropriate, particularly with 

loading conditions conducive to fatique-type failure and situations in 

which stress reversal is likely. 

Another approach is to actually assume a mechanism and then test 

to see whether the mechanism assumed is the correct one. Such a method 

would concern itself almost exclusively with the attainment of maximum 

plastic strength because consideration of other factors generally 

necessitates a knowledge of the progress of collapse during the sequence 

of hinge formation. The method of dealing with an assumed collapse 

mechanism has the advantage of simplicity because the analysis of the 

collapse mechanism is essentially the analysis of a statically determinate 

system. 

Present methods of quickly assuming the correct trial collapse 

mechanism are dependent greatly on the skill and judgement of the analyst. 

Some methods are rather involved due to geometric considerations 

n ecessary for the test of the mechanism and for the determination of the 



ultimate load. This paper proposes to show a method ty which a direct, 

systematic selection of the correct collapse mechanism could be made. 

Features of this new method may also be readily adapted for purposes of 

simplification to present methods of analysis. 

A collapse mechanism may be tested by the consideration of two 

fundamental principles of plastic design first established by H. J. 

Greenberg and W. Prager (1). A brief, concise statement of these 

principles as given by P. S. Symonds and B. G. Neal (2) will be given 

in the immediate following paragraphs. 

The first principle is known as the statical principle. It may 

be stated briefly as follows: 

The actual collapse load is the largest load at which it is possible 
to find a system of bending moments satisfying all equilibrium 
conditions with that load and nowhere violating a plasticity condition. 

W1 =£ W„ c 

where 
W« = collapse load 
c 

W! =• load satisfying all equilibrium conditions and fully 
plastic moment of no member is exceeded 

The second principle is known as the kinematic principle. It may 

be stated briefly as follows: 

The actual collapse load never exceeds the load corresponding to 
any mechanism into which the frame is converted by a suitable 
disposition of plastic hinges. 

Wc * ¥« 



where 

k 

Wc «• collapse load, 

W1 = load corresponding to any configuration of hinges 
which reduces the frame to a mechanism, 

Most methods of analysis involving the selection of a mechanism 

are facilitated by making a number of simplifying assumptions. The 

remainder of this chapter will be concerned with some of the more 

important of these assumptions, 

The yield stress may be considered constant (see fig. 1) with 

increased strain in the portion of the stress-strain curve normally 

utilized in plastic analysis, A number of investigators have demon

strated experimentally that the error introduced by such an assumption 

is minor for most grades of structural steel.^ 

PUttfc forge. 
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Fig. 1 IDEALIZED STRESS*STRAIN DIAGRAM 

-"-Considerable research is currently being conducted to determine 
the validity of assumptions made in plastic analysis and the possible 
magnitude of error for each assumption. Much additional information can 
be obtained by a careful perusal of the references cited in the biblio
graphy of this paper. 



The idealized stress-strain relationship leads to an idealized 

Moment versus Curvature, or M-jrf , curve (see fig. 2). 
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2 IDEALIZED M - 0 CURVE 

In the idealized M-^ curve, plastic hinges occur at distinct 

locations -where all plastic rotation is assumed to occur such that the 

hinge length approaches zero. In actuality the extent of a hinge is 

dependent upon loading, shape of member cross section, and the geometry 

of the structural system. At a plastic hinge location a member acts as 

if it were hinged except with a constant restraining moment known as the 

plastic moment (3)# 

Shear forces may normally be neglected in plastic analysis. The 

maximum error introduced in the value of plastic moment due to the 

neglect of these forces is likely to be less than five per cent (2). 

Axial or normal forces could contribute as much as fifteen per 

cent reduction in the value of the plastic moment. Such forces could 

also contribute buckling effects. Axial and buckling effects could 

perhaps be resolved by some scheme wherein the effective plastic modulus 
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of a section may be reduced to compensate for this effect. 

Most plastic methods of design utilize proportional loading. This 
• 

means that all loads are defined by a single parameter such that they 

increase in fixed proportions. 

Hinge locations are assumed to occur at points of loading, at 

changes of geometry of the structure, and at changes in the plastic 

section modulus of members. Hinge locations under uniform loads can be 

located with reasonable accuracy by methods involving successive 

approximations or by methods which involve representing the uniform load 

by a system of concentrated loads. 



CHAPTER II 

PLASTIC ANALYSIS BY THE METHOD OF EQUILIBRIUM INEQUALITY MATRIX 

The plasticity condition at any section in a structural system can 

be represented mathematically by a pair of inequalities 

or - ̂  - Mpi 9 0 , 
«L-Mpi^° 

where M ^ , - MDi represent the extreme values necessary for the forma

tion of a plastic hinge and M* represents the actual moment at the 

section. The absolute values of 1L^ and - M . are equal in virtually 

all cases for steel members, and will be so assumed* 

In a structural system having sufficient hinges formed so that a 

mechanism type collapse is imminent, changes in curvature at hinge 

locations may differ both in magnitude and in sense (sign). The sign 

convention to be used is such that increments of bending moment always 

have the same sign as increments of curvature at a given section, that 

15, 

^ 0 

where Kj_ represents the moment at the section and k^ represents the 

curvature. Consequently, when comparing the plasticity conditions at 

several sections, it is necessary to consider the relative effect of 



curvature at each section. This can be effected by introducing into the 

section plasticity inequality a non-dimensional constant kj. defined as 

0 " *r " -|j-

where k^ represents the curvature at any section and ks represents 

an arbitrarily assumed curvature standard for the structural system. It 

will be shown that the introduction of kr to the section plasticity 

inequality, that is, 

- 1c,. ̂  * I4. % * kj. y 

will have no deleterious effect in the analyses to follow. 

P. S. Symonds and B. G. Neal (U) suggested a method of plastic 

design analysis which involved writing the pair of inequalities for each 

possible hinge location, combining these with equilibrium equations 

relating the bending moments, and then systematically reducing them so 

as to evaluate the largest value of the load for which all of the 

plasticity conditions could be satisfied. The method suggested had as its 

basis a method suggested by L. L. Dines (5>) involving a matrix reduction 

of a system of linear inequalities. The method of Symonds and Neal, 

although probably systematic, is, by their own admission, too laborious 

for practical analysis of complex frames. 

The new method presented in this paper utilizes the basic idea 

presented by Symonds and Neal but effects simplifications chiefly through 

the medium of stricter adherence to the methods and procedures of 



Consider a fixed-end beam mechanism (fig. 3) having plastic 

hinges at sections A, B, and C. 

V* f *te D/S*~J.;~ (The sign convention is such 
H • • • * * r/C/Sr/C •bJla+ ~~~4+l„~ ™««,««+« ~„+ 4-~-„4 

J £ jS Mng' str & 

Fig. 3 BEAM MECHANISM 

that positive moments put tensile 
esses in the side of the 

member adjacent to the dashed 
line.) 

@ Section A : - MA - ML ^ 0 

@ Section B : MB - }/L & 0 

@ Section G : - MQ - ML ̂  0 

•when each section is considered individually. If we are to compare the 

plasticity condition at each section, consideration must be made for the 

effects of curvature at the sections, readily determined from the geometry 

of the collapsing structure, as follows; 

@ Section A : 

© Section B : 

@ Section C : 

kR = l.£ 0 WB 

o.$ © 
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Let k^ =s arbitrarily assumed curvature standard for the system 
D 

• 

@ Section A : k
r = -r*— * -4* 

kB 3 

Section B : kj. - J2L. « 1 
*B 

Section C : kr - TT "T 
Therefore, for coirparison purposes, the plasticity condition is 

Section A : ~ * MA ~ ? % ^ ° 

@ Section B : Mg - M ^ 0 

§ Section C : ~ * *fc ~ \ \ ^ ° 

when all sections are considered collectively. The inequality, modified 

for curvature effects, representing the plasticity condition at a section 

will be called the "section inequality". 

Consideration of the equilibrium of the fixed-end beam mechanism, 

collapse imminent, yields the equilibrium equation 

h * | M A + - ? * % + I P L 

where M^ , Mg , and MQ are the plastic moments at sections A, B, and 

C respectively, and £. PL is the simple moment at section B. The section 

inequality at section B may be modified, as follows, 

& 0 

MB - Mp > 0 

In 
3 MA 

+ K - Mp 4- | PL 
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to form a new inequality, which will be called the "equilibrium inequa

lity" • The remaining two section inequalities may now be written with 

the equilibrium inequality as a system of linear inequalities represent

ing an elementary, or beam mechanism, 

column 1 column 2 column 3 column h 

row 1 | M + i M„ - M + 1PL ^ 0 
3 A * 3 C p 9 

row 2 - £ M - £ M ** 0 
3 A 3 P 

row 3 - i M - 1 M ^ 0 

The system of linear inequalities will now be solved for the 

minimum load, P, which will just satisfy the plasticity conditions at 

all hinge locations, that is, the plasticity conditions which wiU just 

satisfy the two fundamental principles of Plastic Design for the mechanism 

or combination of mechanisms under consideration. 

The two fundamental principles of Plastic Design, stated briefly, 

are 

Statical Principle : W1 ^ Wc 

Kinematic Principle : ¥ ^ W1 f 

where Wc is the collapse loadj W1 is the load satisfying all equi

librium conditions and the fully plastic moment of no member is exceeded$ 

and Wf • is the load corresponding to any configuration of hinges which 

reduces the frame to a mechanism. 

The method of L. L. Dines will be used to solve for the minimum, 
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ultimate load, P . Pertinent definitions, theorems, corollaries, and 

general information from Dines1 paper (5>) will be presented as needed 

in this chapter. This paper will attempt to show that the solution to 

the system of linear inequalities is a legitimate application of Dines1 

procedure, 

Form the matrix 01 coefficients for the system of linear inequa

lities representing the mechanism illustrated in figure 3. 

M 

*U ^2 ^3 alU 

• 

a21 a22 a23 a2h 

|a31 a32 a33 a3U 

2 l - i 
J J 
2 
J 

0 -

2 
3 

2 

0 

0 

The following definition, as well as all subsequent information 

of this type in this chapter, will be quoted directly from Dines' 

paper (£) • 

A matrix will be said to be I-positive (or I-negative) with respect 
to a given one of its columns if all elements of that column are 
positive (or negative). In either case the matrix will said to be 
I-definite with respect to that column. A matrix will be said to be 
I-positive (or I-negative, or I-definite) if it possesses a column 
to which it is I-positive (or I-negative, or I-definite). 

On the basis of this definition it is apparent that matrix M 

is I-negative, I-definite with respect to column 3 • Matrix M is not 

I-definite with respect to columns 1 , 2 , and h . 

Consider any column r , such as column 1 of matrix M . The 

elements of this column can be divided into three classes, viz., 



those which are positive: 

those which are negative: 

those which are zero: 

air as all 

aJr • a21 

akr = a31 

2 
J 
2 
J 
0 

the number of elements in the respective classes being represented by 

P , N , and Z . In matrix M , column 1 , P = N = Z = 1 

(l) (r) 
Form matrix Mj_ (or % ), derived from matrix M as 

follows: 

To each pair of elements, a2> 9 a.ji* i ( a n , a. 21 ) ; the 
first positive and the second negative, corresponds one row of the 
derived matrix, the elements of which are second order determinants, 

a z > aii 3 - T * » 9"ji a i r a i 2 air a zV-l air ai r+1 a-xp ^-in 
9 9 • • • 9 9 9 • 

a j f a j i a j r a j 2 a j »• a j »*-i aj»- a j r > i a j r ajn, 

To each zero element SLMh corresponds one row of t h e der ived m a t r i x , 

Ki XI • > ^Kf-l 9a H HI a kn 

The matrix Y%y°' will then consist of the rows so formed, their 
number being P(N) +• Z • 

**L (1), 

a n ai2 

a21 a22 

a32 

all a13 

a21 a23 

a33 

1 ? 1 2 2 2 III a n aiU| J J J -1 J 9 
a22 a2U| 

1 — 

2 P 0 2 
"J 

2 
" J 

2 
'J 0 

a3U h | 
1 

" J 0 j 

(1) Further simplification of matrix M^-1-' may be made through the 

medium of conventional determinant analysis, 

|| alla22 ' a21a12j | alla23 * a21a131 | alla2U - a21alij. 

a 3 2 | |a 3 3 I U3h 

M L & ) . 



Ik 

** a l l = ~ a 2 1 » 

mm 'i-wn W'Mi 

M L ( 1 ) -

a l l(a22 +a12^f | a l l ( a23+ a13)| |allCa2U + aUJ)| 
a32J | a 3 3 | |a3lJ 

0 

I 

2 
3" 

1 
"J 

)Ni| l(t)M-f)l| |(!fr#l 
_i| 
3| 

o 

The I-rank of a matrix (basis of solution) is not altered if 
(1) any two rows or any two columns are interchanged; 
(2) all elements of any row or any column are multiplied by the 
same positive constant. 

Multiplying combined rows 1 and 2 by _JL_ 5 
all 

a 

i -£ 
* & > -

a22 + a12 a23 + a13 a2U + aHj. 

(12). 

a32 a33 aft 

Similarly, from M^'1' , form matrix M2 

M2
 ( 1 2)= I a23 + a13 + a33 a ^ 4-a^ + aft j = 

3 
1 
3 

3 
1 

J 

2 I 
0 

-2 + 
7 

The matrix M^1"' (or !§£>*? ) will be called the I-complement of 
the r^h column/of M • ,_i , N 

(D u (2) w (n) The matrices M]_' Mi • J Ml will be called the 
I-minors of n 1 columns of the matrix M 

A matrix will be said to be of I-rank k if it possesses at least 
one I-minor of k columns which is I-definite, but does not possess 
any I-minor of k 1 columns which is I-definite. 
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Derived matrices may be formed until there is no column which is 

not I-definite. Successive I-complements may be formed by considering 

each derived matrix operationally as the original matrix; this was done 

in deriving K2 from M-^' • Matrix M ^ ' has two columns 

which are I-definite and no columns which are not I-definite, Therefore 

matrix M is of I-rank 2 . 

Theorem I: A necessary and sufficient condition for the existence 
of a solution to the system (1) is that the I-rank of the matrix M 
be greater than zero. 

Theorem II: If the I-rank of the matrix is k (>0), then the 
system (l) possesses a solution in which k-1 of the unknowns may 
be assigned values at pleasure. 

Theorems I and II dictate that either of the columns in matrix 

(12) M2V } may be assigned values at pleasure if the sum of both columns 

always exceeds zero. The two principles of Plastic Design dictate that 

values assigned must just satisfy the inequalities. Therefore the sum of 

the two columns may be equated to zero, and the minimum load P deter

mined. 

- 2 t ^ + =• PL = 0 
9 

P - 9 ! i 
L 

The central feature of Dines' method for systems of linear 

inequalities is a concept analogous to the rank of a matrix, which he 

calls the inequality-rank or I-rank of the matrix. The application of 

plastic analysis to this method involves merely the formation of a 



sequence of I-minors of the matrix of coefficients, each I-minor being 

the I-complement of a column of its predecessor, the process to be 

continued until an I-definite matrix is obtained. The successive I-minors 

are the matrices of the successive systems of inequalities occurring in 

the elimination, 



CHAPTER III 

COMBINING INEQUALITY SYSTEMS OF ELEMENTARY MECHANISMS 

The combination of inequality systems for elementary mechanisms 

is readily accomplished by considering all systems as one system and 

reducing by Dines1 method. The resulting reduction -will give the miniinum 

load for all systems, provided no section where a plastic hinge may be 

possibly eliminated is used in forming an equilibrium inequality. Con

sider frame ABCDEF (see fig. £) having possible mechanisms as beam 

mechanism BDE , beam mechanism BCE , and panel mechanism ABEF . 

The inequality system representing a typical mechanism BCE may 

be derived by first developing the statical equilibrium equation,2 then 

*See the appendix for a brief explanation as to the derivation of 
statical equilibrium equations. 
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forming the equilibrium inequality at some hinge section in the mechanism, 

and finally -writing in the remaining section inequalities. The equilibrium 

equation may be easily derived by consideration of the moment diagram 

(see fig. 6). 

B 

M§-M, ~f-M0 
Mt-M, 

M* - % • Mm +>$M9 

Fig. 6 MOMENT DIAGRAMS FDR MECHANISM BCB 

Equilibrium Equation: MQ = 0,67 % + 0.33 ME •#• 0.33 PL 

Section Inequality @C : MQ - K> z> 0 

Equilibrium Inequality <§C : 0.6? % •* 0.33 M E - 1.00 AL + 0.33 PL ̂  0 

Section Inequality @ B : -0.67 Hg -0.67 Mp ^ 0 

Section Inequality @E : -0.33 M E -0.33 % &• 0 

% > ^C 9 anc^ ^b are seIec"ked as redundant moments because 

there is no possibility that a plastic hinge could be eliminated at 

sections A , C , or D , A similar operation is done to derive other 

mechanism inequalities. All systems may be written together as one 

system. 

Coltiran Number 1 2 
ME 

3 
MA 

k $ 
PL 

Row 
Beam Mechanism 0.67 0.33 0 - 1 . 0 0 0.33 (1) 
BCE -0 .67 0 0 - 0 . 6 7 0 (2) 

0 - 0 . 3 3 0 - 0 . 3 3 0 (3) 



Beam Mechanism 
BDE 

0.33 
0.33 
0 

"oTSf 
o 

0.67 Panel Mechanism 
ABW 

T7o5" 
1.00 

o 
o 

"05T 
o 

-1.00 
o 

TToCT 
o 
o 

1.00 

1.00 
0.33 
0.67 

•1.00 
1.00 
1.00 

0.33 
0 
0 

"OT 
o 
o 
0 
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W 
(5) 
(6) 
T77 
(8) 
(9) 
(10) 

Row operation so that column 1 may be eliminated: 

^m -2.^9— _2._ _-Jki?9_ J?.i_?9 
a.oo o o -l.oo o 
|_o_ _zi.op* q ,̂_ -i*QQ p__ 
1.00 2.00 0 - 3 . 0 0 1.00 

HL.oo_ ^ o ^uop g_ 
0 ^1.00 _0 - l iQO 0__ 

HUOO 1.00 -1 .00 -1 .00 0.67 
1.00 0 0 -1 .00 0 

0 - 1 . 0 0 0 - 1 . 0 0 0 
_ 0 0 1.00 - 1 . 0 0 0 _ 

(1) 
T2l Omit because 
i l ) _ ^—duplic^tiori^j 
(U) 

h 15*21 
(6) duplication 1 

(7) 
(8) 
(9,3,6) 
(10) 

Reduce column 1 , considering a l l poss ib le row combinationss 

(1) + (5,2) 
(1)+ (7) 
(U) + (5,2) 

(h) + (7) 
(5,2)+(8) 

(7) + (8) 
(9,3,6) 
(10) 

Row operation so that column 2 may be eliminated: 

0 o.5o 0 - 2 . ^ 0 o.5o 
0 i*5o - 1 . 0 0 -2.5b 1.17 
0 2.00 0 -luOO 1.00 
0 3.00 - 1 . 0 0 -U.oo 1.67 
0 0 0 - 2 . 0 0 0 
0 1.00 - 1 . 0 0 -2 .00 0.67 
0 - 1 . 0 0 0 - 1 . 0 0 0 
0 0 1.00 - 1 . 0 0 0 

0 1.00 0 -5.oo 1.00 ( D + (5,2) 
0 1.00 - 0 . 6 7 -1.67 0.78 (1) + (7) 
0 1.00 0 - 2 . 0 0 o*5o (W + (5,2) 
0 1.00 -0.33 -1.33 0.56 (W + (7) 
0 0 0 - 2 . 0 0 0 (5,2)4 (8) 
0 1.00 - 1 . 0 0 - 2 . 0 0 0.67 ( 7 ) + (8) 
0 - 1 . 0 0 0 - 1 . 0 0 0 (9,3,6) 
0 0 1.00 - 1 . 0 0 0 (10) 

Jt 

Section inequalities may be converted to - 1 immediately since 
they may be changed at pleasure to facilitate reduction. 
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Red uce column 2 , cons ide r ing a l l p o s s i b l e row combinat ions: 

r— 
0 0 0 - 6 . 0 0 1.00 (1)+ (5.2) + (9,3,6) 

(D+(7) + (9,3,6) 0 0 - 0 . 6 7 - 2 . 6 7 0.78 
(1)+ (5.2) + (9,3,6) 
(D+(7) + (9,3,6) 

0 0 0 - 3 . 0 0 0.50 00 + (5,2) +(9,3,6) 
0 0 

0 
- 0 . 3 3 -2.33 0.56 0 0 + ( 7 ) + (9,3,6) 

0 
0 
0 - 1 . 0 0 - 3 . 0 0 0.67 (7) + (8)+(9,3,6) 

0 0 1.00 - 1 . 0 0 0 (10) 
0 0 0 - 2 . 0 0 0 (5,2)+(8) 

Row operation so tha t column 3 may be eliminated: 

0 

0 0 - 6 . 0 0 1.00 
0 - 1 . 0 0 - l w 00 1.17 
0 0 - 3 . 0 0 o.5o 
0 - 1 . 0 0 - 7 . 0 0 1.67 
0 - 1 . 0 0 - 3 . 0 0 0.67 
0 1.00 - 1 . 0 0 0 
0 0 - 2 . 0 0 0 

(1)+(5,2)+(9,3,6) 
(l) + (7) + (9,3,6) 
(M + (5,2)+-(9,3,6) 
00+(7)+(9,3,6) 
(7) t (8)+ (9,3,6) 
(10) 
(5,2)f (8) 

Reduce column 3, considering all possible row combinations: 

0 
0 
0 
0 

0 
___ 

0 -5.oo 1.17 
0 - 8 . 0 0 1.67 
0 -U.00 0.67 
0 - 6 . 0 0 1.00 
0 - 3 . 0 0 o.5o 
0 - 2 . 0 0 0 

(1) +(7)+(9,3,6)+ (10) 
00 + (7)+ (9,3,6)^(10) 
(7)+(8)+ (10) 
(l)+(5,2) +(9,3,6) 
(10+- (5,2)+ (9,3,6) 
(5,2)+(8) 

The reduction has been completed and the remaining expressions 

should be equated to zero and solved for the minimum load. 

Mechanism BCE - Mechanism ABEF = (l) f (7) + (9,3,6) + (10) 

Mechanism BDE - Mechanism ABEF «- (10 + (7) + (9,3,6) + (10) 

Mechanism ABEF 

Mechanism BCE 

Mechanism BDE 

Mechanism does not exist 

= (7) +• (8) + (10) 

= (1) + (5,2) + (9,3,6) 

= (1*) + (5,2) + (9,3,6) 

- (5,2) + (8) 
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' 

BCE + ABEF 

BDE -4- ABEF 

ABEF 

BCE 

BDE 

No Mechanism 

-5.00 Mp + 1.17 PL - 0 | P - U.29 Sp. 

-8.00 IL * 1.6? PL = 0 j P = U.80 Si 

-U.00 Mp •+• 0.67 PL = 0 

-6.00 }L + 1.00 PL = 0 

-3.00 Mp + 0.50 PL = 0 5 P m 6.00 &. 

-2.00 Mp + 0 PL = 0 

P - 6.00 ^a 
L 

P - 6.00 Jfe. 
L 

P •* 

Since BCE + ABEF gives the smallest minimum load, BCE + ABEF 

is the correct collapse mode (see fig. 7). 

Because each plastic moment term in the equilibrium inequality can 

be matched by its complement in the section inequality by utilizing the 

appropriate row operation, the reduction may be done by simultaneously 

adding the equilibrium inequality and the complemented section inequa

lities. 

Consider the system of inequalities for the mechanism BCE • 

1.00 Mp + 0.33 PL > 0 
0.67 Mp > 0 
0.33 Up & 0 

row 1 
row 2 
row 3 

0.67 MB -H 0.33 M E 
-0.67 MB 

- 0.33 M E 

Add rows 1 

Solve for 

•A*3 : 

minimum load: 

- 2.00 Mp + 0.33 PL *> 0 

P = 6.00 Up, 
IT 
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Let (Mp)^ and (Mp)E represent the relative plastic stiffness 

at sections B and E respectively. The reduction may be done as follows 

using only the equilibrium inequality. 

Equilibrium Inequality: 0.67 MB + °*33 ME - 1.00 Mp + 0.33 PL ̂  0 

Reduction: |£Jo.67 (Mp)B|)
+Ho.33 (Mp)E |)*f ̂ m *p)\ * °*33 P L ^ ° 

- 2.00 VL 4- 0.33 PL * 0 
V 

P * 6.00 & 

This method may also be applied to any combination of equilibrium 

inequalities. Consider the combination of mechanisms BCE and ABEF . 

BCE 0.67 % + 0.33 ME -1.00 Mp +• 0.33 PL ^ 0 
ABEF - 1.00 J% "+- LOO ME - 1.00 Mp -1.00 }£ + 0.67 PL ^ 0 

Utilize appropriate row operation on the equilibrium inequality represent

ing BCE so that addition of inequalities will result in the elimination 

of the plastic hinge at section B in the resulting equilibrium inequa

lity. 

BCE 1.00 MB + 0.£0 ME - 1.50 Mp + 0.$0 PL ^ 0 

551F - 1.00 % **" 1- 0 0 ME ~ i*00 % ~ 1* 0 0 ̂ p + °*°7 PL » 0 

BCE ABEF 0 + l.£0 ME - 1.00 Mp - 2.$0 ̂  + 1.17 PL ^ 0 

Reduction: l(-|l.$) (Mp)E|)+(-|l.OO (l^)F|)+f-2.3> (MpM +1.17 PL ̂  0 

-5.00 Mp + 1.17 PL ^ 0 5 P - li.29 So. 

A method has been demonstrated for the direct combination of 

elementary mechanisms and the computation of the minimum load for the 

new combined mechanism. 
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Difficulty may be encountered in setting up basic statical 

equilibrium equations and in selecting section to form equilibrium 

inequality. Care must be exercised so that section forming equilibrium 

inequality does not correspond to a section -where a plastic hinge may 

possibly be eliminated by combination with other possible mechanisms. 

The reduction process may be described by means of a reduction 

formula (see f i g . 8 ) . 

m w ufl f& 
X 

S u :'* i 

n^r^rx, *C4) m) --W ^ 
for a mechanism, elementary or combined: 

= It *(M.) \ +(-B(M.) ) + + (-
f(l) 

0ti I # 

P 

\A(%)\ 

frM 

m 

=• Minimum Load 

Absolute Value of the Relative Plastic Stiffness 
@ any section, say A , 

Total Effective Value of Plastic Stiffness for 
Section forming Equilibrium Inequality. 

a function of Length 

a function of Loading 

Fig. 8 REDUCTION FORMULA FOR MECHANISMS 
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CHAPTER IV 

POSITIVE AND NEGATIVE ELEMMTAK2" MECHANISMS 

Oftentimes it is difficult to predict the direction in -which a 

combination mechanism will operate. Therefore it may be necessary to try 

combinations of elementary mechanisms considering some elementary mecha

nisms to operate in two directions. A mechanism operating in the 

direction of mechanism loading will be called a "positive mechanism", 

while a mechanism acting in a direction opposing mechanism loading will 

be called a "negative mechanism". For example, frame ABODE (see fig. 9) 

may be converted into a positive mechanism ABDE (see fig. 10) or a 

negative mechanism ABDfe . The negative mechanism (see fig. 11) will 

produce a negative ultimate load. 



2S 

^ 

7 /> MA 

T 
AY*' 

~&*/> 

V 45 ™£ 
^^ Afo/n*/?f D/ogr&m 

F i g . 10 POSITIVE MECHANISM ABDE & MOMENT DIAGRAM 

Equilibrium Equation: MA = Mg - MD - 0.11 PL 

Section Inequali ty © A: - MA - M ^ 0 

Equilibrium Inequality @ A: - M g - f M p - Mp + 0 . 1 1 PL 

Solved for Minimum P : P = k$ «p. 

0 

*»1 

/ ^ / 

rrrt^. 

H ^^mm^ 
F- -45f? A ^ 

Moment D/ogrom 
F i g . 1 1 NEGATIVE MECHANISM ABDE k MOMENT DIAGRAM 

3M/> 

Equilibrium Equation: - MA = - Kg + Mp + 0.11 PL 

Section Inequality @ A: M^ - JL ^ 0 

Equilibrium Equation ©A: Mg - Mp - IL - 0.11 PL ^ 0 

Solved for Minimum P : P •* - h5 Si 

An example illustrating the occurrence of a negative mechanism 

follows by considering frame ABODE (see fig. 12) with possible 

mechanisms ABDE y ABDE , and BCD , 

_ 



Mechanism BCD : 0.331% + 0.671% -3H-, +• 1.00(PL) ? 0 ; P * 5.33& 
L 

Mechanism ABDE : -1.001% +1.001% - }L + O.ll(PL) >0 ; P ^ kg&L 

Mechanism ABDE : 1.00MB -1.001% - KL -O.ll(PL) ^ 0 ; P = -li^fe. 

Combine mechanisms BCD and ABDE (see f i g . 13) , eliminating 

the p l a s t i c hinge a t section B . 

ea^Afp^ 

P-6//^ 
Nor. Sheor >Z03^; fQut/tbrium vio/oted 

F i g . 13 MECHANISM BCD - ABDE (DOES NOT EXIST) 

0.33 MB + 0.67 MD - 3.00 Mp + 1.00 PL 

0.33 MB +- 0.33 MD - 0.33 Mp + O.Oi; PL 

(0) MB -f 1#00 Wb - 3.33 yip -Hl.Oli PL 0 ; P = 6.1lJ*n 
JLi 
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Combine mechanisms BCD and ABDE (see fig. Hi), eliminating 

the plastic hinge at section D . 

Mfi 

r^ îijjp^ 
\ 3MP 

ZMp 

J*P 
/> = S.O*£*£ 

F i g . 1 4 MECHANISM BSR - ABDE k MOMENT DIAGRAM 

0.33 MB -+-0.67 % - 3.oo ̂  +- i.oo PL ^ O 

0.67 MB - 0.67 Mb' - 0.67 Mp - 0.07 PL ^ 0 

1.00 1% - (0) 1%) - 3.67 Mp +• 0.93 PL ^ 0 ; P = g.Qii Si. 

Therefore the correct collapse mode is due to the combination of 

mechanism BOS -with negative mechanism ABDE • 

The determination of the correct collapse mode requires testing 

all possible mechanisms for all possible plastic hinge eliminations. A 

method -will be given in a subsequent section for testing all possible 

hinge eliminations. The determination of the number of elementary 

mechanisms possible, considering positive and negative mechanisms, is 

given by the modified rule (6) -which follows. 

Rule J N - number of possible plastic hinges 
X = redundancies 

2 (N - X) = number of elementary mechanisms 

Any possible combination of these mechanisms should be investigated to 

determine the smallest possible load OE ultimate load. 



CHAPTER V 

FORMING EQUILIBRIUM INEQUALITIES 

Equilibrium inequalities are formed from equilibrium equations 

using sections "where there is no possibility that a plastic hinge may 

be eliminated -when combining with other possible mechanisms. If no 

section meets this requirement it will be necessary to form sufficient 

equilibrium inequalities that all possible hinge eliminations may be 

considered. One section may be satisfactory for a positive mechanism 

and be completely unsatisfactory for a negative mechanism. Consider a 

frame ABCDE (see fig* lf>) with mechanisms ACDE and ABC . 

- % + Mc 

Mechanism ACDE : 

Equilibrium Equation: 

Equilibrium Inequality @A : - MQ +• Mp 

Equilibrium Inequality @E : + M^ - MQ 

- MD + ME - 1| PL - 0 

- ME - Mp 4- 1| PL * 0 

+ ^ -Mp * 1| .'Mi & 0 

Using Reduction Formula, Chapter III ; P • 2.67 ^n 

tr 
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Mechanism ABC : 

Equilibrium Equation: - \ MA + M B - | Mc - \ PL - 0 

Equilibrium Inequality @B : + J MA -4- J Mc - JL +• | PL ^ 0 

Using Reduction Formula, Chapter III ; P •• I+.00 «!p. 

Combine mechanism ABC with mechanism ACDE using the equilibrium 

inequality for ACDE in either form. 

Mechanism AB£ : •*• MA + 1 ^ " 2 Mp + PL -** 0 

Mechanism ACDE : - MQ + MQ - ME - M_ + if PL •?* 0 

ABC ACDE : + MA + H) - ME - 3 Mp f 2-|- PL ^ 0 

P - 2. »£ 
Mechanism ABC : +MA •¥ MQ - 2 M + - P L ^ 0 

Mechanism ACDE : 4 MA - MQ + Mp - M + 1-| PL ^ 0 

ABC ACDE :+2 MA * MQ - 3 1L + 2| PL ^ 0 

P - 2.U0 & 
L 

Sections A , D , or E would be satisfactory for forming equi

librium inequalities because there is no possibility of eliminating a 

plastic hinge at these sections, A plastic hinge can be eliminated at 

section C and therefore section C is unsatisfactory in this particular 

application* Section A may be made unsatisfactory by reversing the load 

at section C (see fig. 16). 
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k 

21 

I 

\B\ 
Mp - | 

/ / / . 
ki 
77/ k V77? 

F i g . 16 FRAME ABCDE WITH LOADING AT B k C 
(OPPOSITE DIRECTION) 

Mechanism ACDE : 

Equilibrium Equation: 

Equilibrium Inequality 

Equilibrium Inequali ty 

+ % - M C + M D - M E - I PL = 0 

+ Mc - Ifo + ME -Mp + i P L » 0 

- M A + M C - M D - ^ P + J P L ^ O 

P = 8.00 &L 
L 

Combine mechanism ABC with mechanism ACDE using the correct 

equilibrium inequal i ty formed a t section E . 

Mechanism ABC : + MA + Mc " 2 M p "»" PL ^ 0 

Mechanism ACDE : - MA •#• M̂  - MQ - M_ + J PL -^ 0 

ABC 4-ACDE : + 2 MQ - % - 3 Mp + lJPL ^ 0 

( MA eliminated) P « ii.OoJJi 

*$%& AfP^Afp 

F i g . 17 CORRECT COLLAPSE MECHANISM BCDE k MOMENT DIAGRAM 
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Actually the combined mechanism failure (see fig* 17) occurs 

simultaneously -with the local failure on column AC (see fig. 18) 

because both collapse modes have the same minimum value for P # 

77777 

MP
J ^MP Mp'^Mp 

Fig. Id CORRECT COLLAPSE MECHANISM ABC & MOMENT DIAGRAM 

Combine mechanism ABC with mechanism A CPE using the incorrect 

equilibrium inequality formed at section A . 

Mechanism ABC : + MA -»- M(j - 2 Mp -f- PL 5? 0 

Mechanism ACDE : -J-MQ - % -f-^; -ML +|.PL ^ 0 

ABC *- ACDE : + MA+ 2 Mc - M Q + ME - 3 Mp - H | PL ^ 0 

( MA not eliminated) P * £.33 *2p. 

MA can be eliminated in the combination of ABC with ACDE . 

Therefore, the equilibrium inequality at section A is not satisfactory. 

Unsatisfactory sections for forming equilibrium inequalities can usually 

be determined by inspection. When in doubt, it may be necessary to try 

several equilibrium inequalities formed at different sections. 

"When combining elementary mechanisms, derive as many equilibrium 

inequalities as possible from the same given section inequality so that 



this section may be effectively eliminated from the analysis, thus 

simplifying the computation. Before forming the equilibrium inequalities, 

no substitution of terms should be made from the equilibrium equation 

of one mechanism to that of another; an exception may be made in the 

case of a "joint mechanism" 'which has a load term of zero. 
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CHAPTER VI 

COMBINING EQUILIBRIUM INEQUALITIES FOR A MINIMUM LOADING CONDITION 

All possible equilibrium inequalities for a structural system may 

be considered as a collection of definite or separate objects which may 

be called the "aggregate of the system equilibrium inequalities'1. In 

turn, each equilibrium inequality will be the aggregate of the individual 

plastic moment terms, etc., operative in the respective mechanism. There

fore, the aggregate of the system equilibrium inequalities represented 

by K will be composed of partial aggregates K]_ , K2 , K3 , ... , Kn , 

each partial aggregate being equal to the respective equilibrium inequa

lity aggregate, with n being equal to the total number of mechanisms 

available for combination in the structural system. Let k-̂  , k2 , ko , 

... , k^ represent the aggregates formed by abstracting respectively 

% , K2 , K3 , ... , Kn from aggregate K . The aggregate k^ will 

will represent a finite cardinal number of aggregate K . Similarly, k?, 

^3 } ••• > ^n "will represent different finite cardinal numbers of 

aggregate K . 

The aggregate systems previously defined are conformable to the 

following basic mathematical theorems. 

(1) If K is any aggregate of different finite cardinal numbers, 

there is one, k^ , amongst them which is smaller than the 

rest, and therefore the smallest of all. 



(2) Each aggregate K * f k | of different finite cardinal numbers 
can be brought into the form of a series 

K = ( ^i > ^ * ko , ••• , 1^ ) 

such that 

kx < k2 < k3 ... < 1^ 

All aggregates which have been considered may be assigned values 

according to a definite mathematical formulation. The value of aggregate 

K will be the minimum load determined for the equilibrium inequality 

resulting from adding all component equilibrium inequalities together. 

The value of aggregate k^ , etc., will be the minimum load determined 

for the equilibrium inequality resulting from adding all component 

equilibrium inequalities together and subtracting the equilibrium 

inequality composing the abstracted K^ -type aggregate such as K]_ . 

Upon determination of the aggregate such as k^ , k£ , k3 , 

.., , or kn having the smaller positive minimum load, this aggregate 

may now be considered as aggregate K and the process repeated with the 

exception that previously eliminated aggregates will not be eliminated 

again. "ttfien all k -type aggregates have been formed, their values will 

be compared with the value of the current aggregate K . If the value of 

the current aggregate K is less than the value of the smallest k -type 

aggregate formed, then the operation will cease and the current aggregate 

K represents the equilibrium inequality for the correct collapse mode. 

For purposes of comparison a negative minimum load may be considered as 

nonexistant. 



Consider frame ABODE (see f i g . 19) having possible mechanisms 

BCD , gUJE , ABDE , and BCD . 

F i g . 19 FRAME ABODE WITH LOADING AT B k C 

Equilibrium Equations: 

Mechanism A M , ABDE : ± MA % MB ± MQ + ME ± PL * 0 

Mechanism BCJE , BCD : ± §Mg + M̂  ± J-MQ ± PL - 0 

Equilibrium Inequa l i t i e s : 

Mechanism ffTO , ABDE : ± MB + MQ ± ME -M_ ^ PL ^ 0 

Mechanism BC3) , BCD : +. JMB +: JMQ - 2Mp + PL £5 0 

Row operations on equilibrium inequal i t ies t o f a c i l i t a t e hinge 
el imination: 

Mechanism AH)E , ABDE : ± MB + MQ ± ME - M_ T PL ^ 0 

Mechanism BSE[ 5 BCD : + MB + %, - IjMp + 2PL -^ 0 

K = 

K 1 " [" MT, - M lB D - * * p - 2PL 0 

K 2 - |+ MB " MD 4 ME - Mp - PL ^ 0 

K- - M B + M D - M E - Mp + PL 0 

[3> [-4 M B f M D -l|Mp + 2PL ^ d] 

(BCD) 

(3SPE ) 

(ABDE) 

(BCD) 

Eva lua t e K 0 + 0 + 0 - 1 0 M- - 0 PL £ ' 0 
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k-

K 2 = [ + % - M D +ME -Mp - P L * 0| 

K 3 = [-MB +MD -ME -Mp +PL * 0] 

[ x u - | + M B + M D - l ^ p + 2PL °] 

Evaluate k^ : + MB + MD 

k2 = 

- 6Mp + 2PL ^ 0 

* & * 

Kl - f % - MD - iiMp - 2PL ^ §1 

K3 = f MB + MD -ME - Mp f PL ^ 6| 

[K^ - ]+ MB +MD • - ^ + 2PL ^ g|| 

Evaluate k 2 : - M B + MD -ME -9M- + PL ^ 0 

P ' - 12 S L 
? 

K l = [~MB ~MD " ^ p " 2 P L ^ § 

K 2 = [+ M B _MD + M E ^ _ P L ^ q| 

K^ - [+MB +MD -l|Mp +2PL » o|J 

k3 

• 

Evaluate k 3 : + MB -MD 4-ME -?Mp -PL 3* 0 

P —12 *k 

ku 

K i = [-MB -MD - t o p -2PL 3> Oj 

K 2 = [+MB -MD +M E -Mp -PL * o] 

[K3 = [-MB +MD -ME -Mp +PL ^ 0]| 

Evaluate k^ :-MB -MB -6Mp -2PL^0 

. 
P =-u j> 

c-j_ < k2 < K 5 ko , kr nonexistant; let k-, = K» 
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K3 ~ - M B
 + MD 

- M E - Mp + PL p oi 

H* 7 M B + MD -!;Mp+2PL »oil 
•=* 

k 21 -

Evaluate % « : *2MD - ME - 5Mp + 3PL 

P - 2.67 M 

V = 
K 2 « PMB - M D + ME - M P - P L * °] 

p M B + MD - U M p - •2PL m oi 

p. 

Evaluate k3* :2MB 

k ^ t [K2 - pMs - MD *• ME - Mp 

1 

+ ME - £Mp +- PL ^ 0 

P = 8 

- P L » 0 

fr-

3 - [-MB * MD " M E - Mp + PL =s OJJ 

Evaluate k^f : -2MD-(0)PL ^ . 0 

k2» -c k3« -^ k^« -* K ; l e t kg' ~ K» 

k3» , ! K U * [±MB + MD - 1*Mp+ 2PL * ° 

Evaluate ko" : 4 MB +• MD i|Mp4 2PL ^ 0 

P - 3 

kk" * ?3 * FMB + MD - ME - Mp 4 PL i " oil 

^ 

Evaluate k^" : -MB + MD - ME - ML + PL -» 0 

P = k frr 



K" •< ko" , K" •< k^" ; Therefore K" represents the 
equilibrium inequalities for the elementary mechanisms composing 
the correct collapse mode (see fig, 20)• 

Fig. 20 CORRECT COLLAPSE MECHANISM ACDE 

This method is absolute -when all mechanisms, both positive and 

negative, are considered. Hoxfever, because all mechanisms may not be 

recognized and consequently considered, it is extremely advisable to 

draw the moment diagram to ascertain that the correct collapse mode has 

been determined. This method has an extreme disadvantage inasmuch as 

row operations, which are necessary to facilitate hinge elimination, 

must be done prior to combining all mechanism equilibrium inequalities. 

The necessity for prior row operation may cause an inequality to appear 

several times in different forms in the aggregate of inequalities. 

Computation can be shortened by not considering mechanisms which obviously 

could not be a component mechanism of the final collapse mode. Again, it 

is advisable to draw the moment diagram to ascertain that the correct 

collapse mode has been determined. 

Dispite some inherent disadvantages in the method outlined, it is 

superior in most instances to a system dependent upon trial of all 

combinations which may result in plastic hinge eliminations, the number 
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of trials being roughly proportional to the factorial of the number of 

possible hinge eliminations, 

A number of examples have been worked and are included in the 

appendix of this paper* These examples will demonstrate how to handle 

several problems of different types as well as to show simplifications 

through the use of tabular format and procedure. 

-
» 

. 
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CHAPTER VII 

COMPUTER PROGRAM FOR DETERMINING MINIMUM LOADING CONDITIONS FOR 

A STRUCTURAL STSTEM 

One of the chief disadvantages of any method of plastic analysis 

is the necessity for repeating the entire analysis of a structural system 

for a variation in loading conditions or a variation in member size. The 

amount of work required can become prohibitive for more than a few such 

variations. Design by the plastic methods could be greatly facilitated 

by the development of design charts for a great many common types of 

structures. The computative work required for such design charts could 

be greatly reduced by the use of high-speed digital computing equipment. 

For the most satisfactory results, design methods used with such 

equipment should involve a procedure which can be reduced to a systematic, 

arithmetic operation. The method of analysis described in Chapter VI of 

this paper satisfies the requirement for a systematic, arithmetic 

operation or procedure. A program for this method has been written for 

the Remington Rand 1101 Digital Computer in accordance with programming 

manual PX 77000-A. 

The method for arranging data, the data required, and the location 

or address where this data will be stored in the computer memory will be 

described in this section. The program, together with operational data, 

is included in the appendix of this paper. 
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A typical equilibrium inequality may be divided into three types 

of parts - section plastic moment terms, the plastic stiffness term, and 

the load term. An aggregate composed of a number of equilibrium inequa

lities may be arranged in format so as to have columns corresponding to 

each plastic moment term at each section, a column corresponding to the 

plastic stiffness term, and a column corresponding to the load term. To 

adapt this aggregate to the computer program it is necessary to multiply 

the entire aggregate by -1 . 

Consider frame 1-2-3-U-S (see fig. 21) having possible mechanisms 

1-2-U-5 , 1-2-U-g , 7=5% , and 2-3-U • 

Equilibrium Inequalities: 

Mechanism 1-2-U-5 : + MJ2 - Ify + M£ -it, - PL ^ 0 

Mechanism 1-2-U-5 : - • £ * % . - % -Ife + PL ^ 0 

Mechanism 2-3-U : - M2 - % 4flfc - 2PL ^ 0 

Mechanism 2-3-U : + M2 -f M^ 4jMp + 2PL ^ 0 

Multiply the aggregate of equilibrium inequalities by -1 « 

Mechanism 1-2-U-b : - M2 + M^ - M$ + 1L + PL ^ 0 

Mechanism 1-2-U-g : + M2 - Ify + M£ + It, - P L ^ O 
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Mechanism 2-3-h : M2 +• \ 

Mechanism 2-3-U s - M2 "~ % 

•f-liMp + 2PL ? 0 

4-ljMp - 2PL ^ 0 

Table 1 represents the described column arrangement for the 

mechanisms in frame l-2-3-U-£ • 

Table 1 . Arrangement of Terms for Gomputer Program 

9 

Load 
Column 

-PL 

0 

Plastic 
Stiffness 
Column 
-Mp 

1 

1 

k 

k 

10 

Section Plastic 
Moment Columns 

-M2 

1 

1 

1 

1 

- % 

1 

1 

1 

1 

-Mg 

1 

1 

0 

0 

0 

•G 

Mechanism 

(Mp)2 %)k &PH 
1 1 1 

1-2-k-S 

1-2-U-g 

EH 
2-3-1; 

Summation of all 
mechanisms. 

Section Plastic 
Stiffness 

In table 1 the constant 9 represents the number of inequalities 

composing the aggregate. The constant G represents the total number of 

section plastic moment columns plus one. 

The memory of the 1101 computer is a magnetic drum having 2-^ 

or I6,381j. locations (addresses) where numerical information may be 

stored in the form of a twenty-four binary digit number or word at each 



address used. The computer wi l l in te rp re t some of these words as 

ins t ruc t ions , but wi l l use others as operands. The addresses allocated 

for the operands in the P las t i c Design Routine are shown in the Storage 

Diagram (see f i g . 22) . 

The values shown in t ab le 1 may be assigned addresses in accordance 

with the Storage Diagram, Table 2 gives t ab le 1 values with t he i r respec

t i v e address assignments. 

Table 2. Address Assignment of Terms 

-PL -M2 - % -M£ Mechanism 

ULJL . 
(20201) 

CLT. 
(20301) 

(20lt01) 

(205OL) 

_ 1 
(20202) 

(20302) 
__2___ 
(20U02) 

_JT_2__ 

(205027 

_ i _ 
r20203) 

JL 
(20303) 

IM63T 
u 

(205037 

(202017" 

"(203oSy 
_ i 

C20U0U) 
- 1 

T2o5o5) 

_ i _ 
"(2020^7 

z l _ 
r20305T 

"(20U0?)' 
- 1 

T26S05T 

zJL_ 
(202067 

JL 
1203057 
(2atogy 

0 
"(20^71 

LP 0 10 0 0 0 J 
|(20001) (20002) (20003)• (2000U) (20005) (20006)] 

T. C. (%)* (%)J| (%)J 
|faigfe, no, 

(20101) 
L 1 
["(20101+) 

1 
(20105) 

1 3 
(20106")| 

I ^ F F Kx 

l-2-l*-5 K2 

553T K3 

2-3-1; % 

K 

Section P las t i c 
Stiffness 

• 

It is necessary to multiply the values listed in table 1 and 

table 2 by appropriate scale factors in order to get the answer to a 

suitable number of decimal places. The scale factor may be expressed as 



GROUP INDEX 
1 2 3 77 

P 
20001*1 

* ( - P L l * ( - l U 
20002 2 

*(-M}J 
2000S 20005 

*<-Bb) -*(-Mfco) 
20006 - 20077 

T. C. 
1 20101 20H 

Oth (Voh 0*oh -
IDlil 20105 I 201t> 

3 - <V*> 
6 - 20177 

9 
20201 

9 
20301 

G 
20li01 

G 
20^01 

[content 
[address 

-PL 
20202 
-PL 

20302 
-PL 

20JJ.02 
-PL 

20502 
-PL 

20602 
•yfLi 
2QJo£ 
-PL 

21002 
-PL 

121102-
37002 

20203 

13B: 20303 

W: 20km 

205fo3 

% 20603 

207^3 

* 21003 

21103-
37003 

2020U 
-ML 

2030U 
-A 

20U0I1 

1 > 205ok 
- % 

2060U 
-M* 

2070h 
-ML 

2100U 

2110U-
3700U 

-M2 
20205 

-M2 
20305 
-M2 

20li05 
-M2 

20505 
-M2 

20605 
-M2 

20705 
-M2 

21005 
-M2 

21105-
37005 

- f t - - % ) 
20206 - 20277 
-M3 

20306 
- % ) 

20377 
-M3 - -M50 

20L.06 - 20k77 
- - % ) 

20^)6 - 20577 
-M3 - -M^o 

20606 - 20677 
-M3 - -M60 

20706 - 20777 
-M3 - - % ) 

21006 - 21077 
-M3 - -M£o 

21106-21177 -
37006-37077 

I 

K 

ORBIT 
INDEX 

2000 

% 2020 

K2 2030 

K3 20itO 

% 2050 

K 5 2060 

K6 2070 

K7 2100 

K8- 2110-
K118 3700 

P = Minimum Load 
PL a Load Term 

= Plastic Stiffness Term 
« Section Plastic Moment Term 

(Mp)i = Section Plastic Stiffness Term 
9 = Total Number of Inequalities 
G m Total Number of Plastic Moment Terms + 1 
Kj_ = Equilibrium Inequality for ELementary Mechanism 
K = Summation of Equilibrium Inequalities 
T. C.= Test Constant 

Fig. 22 STORAGE DIAGRAM 

^Addresses are expressed in octal notation, ie. radix is eight. 
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US 

power of ten. Suitable scale factors may be readily determined by an 

operation generalized somewhat as follows: 

(P)(10x) -
(̂ )(1QP)| j- (Mi)(10

r)X(^)j (10S)| 

(PL)(10n) 

10P must equal 10 rs . 

Therefore, 10x is equal to 10P"n • 

p, r, s, n, & x = exponents of 10« 
P = Minimum Load, 
PL= Load Term. 
Mp= Plastic Stiffness Term, 
% — any Section Plastic Moment Term. 
(Mp)i=Plastic Stiffness Term at section i 

Appropriate selection of scale factors so that x is equal to 

three has been found satisfactory in most cases and allows the program 

to converge properly, 

The minimum load P equal to infinity for the initial problem 

setup may be satisfactorily handled by letting P equal the computer !s 

maximum positive value which is octal 37777777 $ similarly, the test 

quantity C. T, will normally be assigned this maximum positive value. 

The output from the computer will be printed in decimal form. The 

answer will consist of the minimum load P for the equilibrium inequality 

representing the mechanisms composing the collapse mode, an entry of one 

line consisting of ones and zero's to signify plastic hinge locations, 

and an entry of two lines consisting of two's and zero's to signify 

• 
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component equilibrium inequalities. In the lines signifying plastic 

hinge locations and component equilibrium inequalities, zero represents 

the absence of a hinge or an inequality. A one signifies the location 

of a plastic hinge and a two signifies the presence of an equilibrium 

inequality. The order and arrangement of these terms matches the original 

order and arrangement of terms. 

Arranging scale factors so that the answer has a scale factor of 

10x 103 , the answer to the example problem would appear as illustrated 

in figure 23. 

H"S *vr/* 

[020) 

i2__r 

!jQ0002666_4 iP)ilO_?)_ J 

V rrTonl 

Hinges % Hfc,H£ 

0 

M2 

1 1 

Last 2 number of no significance. 

Component Equilibrium Inequalities 
are for Mechanism l-2-i;-5> and 2-3-U 

1 

0 1-2-U-5 

1-2-U-5 

2^T 

2-3-U 

Fig. 23 ARRANGEMENT OF ANSWER. 
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APPENDIX "A" 

COMPUTER PROGRAM 



1*8 

TITLE: Plastic Design Routine # 1 START: 37777 

8 7 6 
INTERLACE: C SKIPS: b 1 ?, 2 ; b l 6, 2 ; b ^ , 2 STOP: 31*373 

ADDRESS CONTENTS ADDRESS CONTENTS ADDRESS CONTENTS 

37777 11100077 

00077 00000001 01*077 35620301 10077 350371*15 
00177 35020103 01*177 11000677 16177 11110277 
00277 11100377 01*277 35603177 10277 00000060 
00377 00000100 01*377 27003277 10377 350371*16 
001*77 3S>37l(D2 01*1*77 110201*01 101*77 11110577 
00577 11100677 01*577 12101*677 10577 00000033 
00677 00020200 OU677 00000002 10677 350371*17 
00777 350371*00 01*777 350371*01* 10777 56000000 

01077 11101177 05077 35037U05 11077 110(20000) 
01177 00020202 05177 11105277 11177 356(37500) 
01277 35037U01 05277 00000037 11277 71011077 
01377 111011*77 05377 356371*06 11377 27011077 
011*77 37777777 051*77 11105577 111*77 71011177 
01577 35037301 05577 00000052 11577 27011177 
01677 11101777 05677 350371*07 11677 110371*05 
01777 OOOOOOOO 05777 11106077 11777 1*7212077 

02077 35020000 06077 00000071* 12077 350371*05 
02177 35020102 06177 350371*10 12177 1*5611077 
02277 35037300 06277 11106377 12277 110371*01* 
02377 35037U03 06377 00000070 12377 350371*05 
021*77 11020301 061*77 350371*11 121*77 11112577 
02577 1*7002777 06577 11106677 12577 00020000 
02677 1*5603777 06677 00000061* 12677 27011077 
02777 35020301 06777 350371*12 12777 11113077 

03077 11103177 07077 11107177 13077 00037500 
03177 (00020200) 07177 00000062 13177 27011177 
03277 356(20200) 07277 356371*13 13277 56000000 
03377 120371*02 07377 111071*77 13377 11020301 
031*77 35003177 071*77 00000066 131*77 1*7013677 
03577 27003277 07577 350371*11* 13577 1*5013071* 
03677 1*560 21*77 07677 13107777 13677 35020301 
03777 11020201 07777 00000072 13777 12020103 



1*9 

1 

ADDRESS CONTENTS ADDRESS CONTENTS ADDRESS CONTENTS 

11*077 11*020201 01071* 270171*77 06071* U5013377 

mzi 1*7011*377 01171* 11020501 
11*277 1*5015277 01271* 1*7201371* 
11*377 110371*02 01371* 35020501 
HAW 120371*03 011*71* 1*5016777 061*71* lllOOOOOO 
11*577 350371*03 01571* 110201*01 06571* 11*020001 
11*677 120371*00 01671* 35020501 06671* U6007271* 
11*777 27015377 01771* 11102071* 06771* 1*7207071* 

15077 27015677 02071* 00020002 07071* 56000000 
15177 27015777 02171* 27016777 07171* 1*5013377 
15277 11020000 02271* 11102371* 07271* 11037101 
15377 11^0(20200) 02371* 00037102 07371* 11*037301 
151*77 1*7015777 021*71* 27017177 071*71* 1*6010071* 
15577 11020102 02571* 11102671* 07571* 1*7207671* 
15677 350(20200) 02671* 00020102 07671* 56000000 
15777 110(20200) 0277U 27017377 07771* 1*5013377 

16077 1*7016377 03071* 11103171* 10071* 56000000 
16177 56000000 03171* 00037202 10171* 110371*00 
16277 1*5013377 03271* 270171*77 10271* 120371*03 
16377 110371*01 03371*. 56000000 1037U 35137100 
161*77 120371*03 031*71* 37000000 101*71* 110(37100) 
16577 56000000 03571* 220(37202) 10571* 350(37300) 
16677 27017077 03671* 1*3000000 10671* 71010l*.7l* 
16777 110(20002) 03771* 71003571* 10771* 270101*71* 

17077 11*0(20202) 01*071* 27003571* 11071* 71010571* 
17177 350(37102) 01*171* 11020501 11171* 27010571* 
17277 1*3000000 01*271* 1*7301*371* 11271* 110371*05 
17377 610(20102) 01*371* 35020501 11371* 1*72111*71* 
17>*77 350(37202) QlAYh 1*1000000 111*71* 35037U05 
17577 71016777 01*571* 1*5003571* 11571* l£010l*7l* 
17677 1*5000071* 01*671* 36037201 11671* 110371*01* 

Ol*77l* 110201*01 11771* 350371*05 

00071* 27016777 05071* 350205&L 12071* 11112171* 
0017U 71017077 05171* 11105271* 12171* 00037100 
00271* 27017077 05271* 00037202 12271* 270101*71* 
00371* 71017177 05371* 27003571* 12371* 111121*71* 
00U7U 27017177 051*71* 56000000 121*71* 00037300 
00571; 71017377 05571* 11037102 12571* 27010571* 
00671* 27017377 05671* 1*6015073 12671* 56000000 
00771* 710171*77 05771* 56000000 12771* 1*5013377 



so 

ADDRESS 

13074 

CONTENTS 

11020201 

ADDRESS 

00073 

CONTENTS 

71017574 

ADDRESS CONTENTS ADDRESS 

13074 

CONTENTS 

11020201 

ADDRESS 

00073 

CONTENTS 

71017574 05073 11020501 
1317li 35020301 00173 27017574 05173 47205273 
1327U 11020102 00273 14100373 05273 35020501 
13374 35037403 00373 35037430 05373 45003473 
13474 11037400 00473 46200573 05473 11020401 
13574 27015377 00573 41000000 05573 35020501 
1367k 27015677 00673 45017374 05673 53002773 
13774 27015777 00773 11101073 05773 56000000 

14074 11114174 01073 00037420 06073 11020301 
14174 00020202 01173 27017574 06173 63004677 
14274 27017077 01273 11101373 06273 36037430 
3l|.37U 11037300 01373 00037406 06373 11020301 
H4i7U 14020000 01473 120(37427) 06473 47006673 
14574 47015074 01573 27001673 06573 45010673 
14674 56000000 01673 53037406 . 06673 35020301 
14774 45017274 01773 11001473 06773 110(20200) 

I5b7it 110(37300) 02073 14L02173 07073 47107173 
lSL7k 350(20000) 02173 12000001 07173 53137410 
15274 71015074 02273 27001473 07273 53037406 
15374 270i5b74 02373 14102473 07373 11037406 
15474 71015174 02473 00037417 07473 47007773 
15574 27015174 02573 47001273 07573 53002773 
15671; 11037405 02673 53102773 07673 11020201 
15774 47216074 02773 00000045 07773 35037430 

16074 35037405 03073 56000000 10073 11037402 
16174 45015074 03173 11103273 10173 12037403 
16274 11037404 03273 00037427 10273 35037400 
16374 35037405 03373 27001473 10373 12037400 
16474 11012577 03473 11020101 10473 27006773 
16574 27015174 03573 240(20004) 10573 45006373 
16674 11116774 03673 47004273 10673 11020201 
16774 00037300 03773 110(20004) 10773 35020301 

17074 27015074 04073 47204173 11073 110203JD2 
17174 45013377 04173 53337407 11173 35637403 
17274 11020001 04273 46004473 11273 11037400 
17374 63117474 04373 53137406 11373 27006773 
17474 00000012 04473 53037417 10JU73 56000000 
17574 350(37420) 04573 71003573 11573 110(37500) 
17674 45000073 04673 27003573 11673 35b(20000) 

04773 27003773 11773 71011573 



ADDRESS CONTENTS 

12073 27011573 
12173 71011673 
12273 27011673 
12373 11037U05 
12U73 U7212573 
12573 35037U05 
12673 1*5011573 
12773 11037l*Oi* 

13073 3503?2*o5 
13173 11012577 
13273 27011673 
13373 11013077 
13U73 27011573 
13573 53002773 
13673 53002773 
13773 l l l l i |073 

12*073 00020001* 
11*173 27003573 
1U273 27003773 
H373 55000000 

15073 15115173 
15173 77777777 
15273 35037200 
15373 11037201 
151*73 63037200 
15573 36037101 
15673 I*50061i7l* 
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APPEMDIX »B» 

FORMING STATICAL EQUILIBRIUM EQUATIONS 



STATICAL EQUILIBRIUM EQUATION FOR A TTPICAL BEAM MECHANISM 

*L-

3' 

y 

•*L- y 

Ml G>-
% 
V 

-7*0: _2^Lzy^2 2 
V 

0^ 
-Mj_ + H , - V(iL) 

P-V 

+ M2 - Mj - (P-V) (|L) 

|| * 2 Mg - Mj « P(|L) 

STATICAL EQUILIBRIUM EQUATION FOR A TYPICAL PANEL MECHANISM 

r 

M2 

w 

GV 
P r*\ H 

I"* 

, 

% 

^ T 

3) 
V 

If: 

H 

"13 fi) 

A XP-S) H 

cr 
-Mj^ -i-Mg (P-H)L Mg - M3 * VL -M3 •*- M^ 

- ^L + M2 - M3 + »L - PL 

~ HL 



A 

APPENDIX "C" 

EXAMPLES 
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EXAMPLE I : TABULAR ARRANGEMENT FOR EXAMPLE PROBLEM OF CHAPTER VI 

MB *t> ME * PL | » 

1 
2 
3 
k 

- 1 
1 

- 1 
1 

- 1 
- 1 

1 
1 

0 
l 

- i 
0 

-1* 
- 1 
- 1 

-u 

-2 
- 1 

1 
2 

0 0 0 -10 0 O 0 

^ . - 2 

4-3 

1 
- 1 

1 
- 1 

1 
1 

- 1 
- 1 

0 
-1 
1 
0 

-6 
-9 
-9 
-6 

2 
1 

- 1 
-2 

U.00 
12.00 

-12.00 
-U.oo 

4-i 1 1 0 -6 2 Lw 00 

* ' - 2 

^ 4 

0 
2 
0 

2 
0 
0 

-1 
1 
0 

-5 
-5 
-2 

3 
1 
0 

2.67 
8.00 

oO 

4'H? 0 2 - 1 -5 3 2.67 

&"-3 
*L" -k 

1 
- 1 

1 
1 

0 
- 1 

-1* 
- 1 

2 
1 

3,00 
U.oo 

3 + U 0 2 - 1 - 5 3 2.67 

gg 
ABDE 

ABDE 
BCD 

• 
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EXAMPLE II: MECHANISM FAILURE WITH JOINT ROTATION 

V—-

K -y— -
(^ 

777 If 

INEQUALITIES: 

Joint Mechanism 1-2-3 : 

Beam Mechanism 3-U-f? : 

% - M3 - Mp ^ 0 

% f M3 - ^ ^ 0 

M3 -J- M£ - 8 Mp + PL ^ 0 

% Ufa tiMp Relative P las t i c 
Sti, 'fness 

ML M3 M£ % PL 9-
1 - 1 0 - 1 0 0 0 1-2-3 

- 1 1 0 - 1 0 o d 1-2-3 
0 1 1 -8 1 16 3-W 

0 1 1 -10 1 18 

- 1 2 1 -9 1 22 
1 0 1 -9 1 It s 0 0 0 -2 0 06 ) 

1 0 1 -9 1 IV / 

0 1 1 -8 1 16 
1 - 1 0 - 1 0 

FINAL COLLAPSE MECHANISM: 
y-J^y 

7777? 
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