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1 Introduction 

This proposal deals with the development of automatic guidance schemes for air combat 
using differential game theory [1]. Previous approaches for analyzing such differential 
games relied on reduced-order modeling [2] or linearized models [3]. Under a grant with 
NASA Ames-Dryden, control laws are being developed based on a previous research on 
the aircraft pursuit-evasion problem [4]. The idea of combining differential games with 
feedback linearization for air combat was first proposed in Reference 4. Nonlinear feedback 
strategies were developed using feedback linearization [5, 6] and performance results were 
given. This approach permits the use of full-order nonlinear aircraft model. Additional 
research has produced a scheme for exact computation of time-to-go [7]. Under a current 
grant with NASA Ames-Dryden, a differential game maneuvering logic has been developed 
using realistic point-mass models of aircraft. This model is capable of handling large angle-
of-attack maneuvers and has been tested to a considerable degree at NASA Dryden Flight 
Research Facility. During this work, several areas requiring further investigation were 
identified. These research items are enumerated in the following. A three year research 
program is envisaged at present, with the following tasks being completed at the end of 
this period. 

1. Guidance law synthesis in the autopilot coordinate system. 

2. Synthesize an approach for selecting the weighting matrices in the differential game 
formulation using the aircraft performance data. 

3. Inclusion of minimum flight time criterion in the performance index. 

4. Inclusion of weapon envelope constraints in the differential game formulation. 

5. Formulation and solution of multiple vehicle differential games. 

6. Formulation of air combat games. 

Each of these research topics will be discussed in further detail in the ensuing. 

2 Guidance Law Synthesis in the Body Coordinate System 

Guidance law derivation in the work given in [4] used a point-mass aircraft model of the 
following form. 

To +T — D  = 	 g sin -y m 
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= V mg 
g f Lcos0  

cos 7} 

s. Lin 
X = 	 mV cos -y 

ip  = V cos7 cos x 

yp  = V cos 7 sin x 

= V sinry 

In these above equations, V is the airspeed, 7 the flight path angle, x the heading angle, To 
the idle thrust, T the controllable part of the thrust, D the vehicle drag, g the acceleration 
due to gravity, L the lift and 4, the bank angle. The position of the aircraft in an earth-fixed, 
inertial frame is given by the down-range x p, cross-range yp, and altitude hp. Typically, 
the down-range is measured along the pursuer-evader line-of-sight at beginning of the 
encounter projected on the horizontal plane. The control variables in this model are the 
lift, bank angle and thrust. The subscript p in the above expressions denotes the pursuer. 
A similar set of first-order nonlinear ordinary differential equations can be defined for the 
evader also. 

The point-mass equations of motion given above incorporate the assumptions of thrust 
along path, zero ambient winds, flat -nonrotating earth and zero angle of sideslip. Most 

restrictive of these is the assumption of thrust along path followed by the zero angle 
of sideslip assumption. Current research under a grant with NASA Dryden relaxes the 
assumption of thrust along path. Future models will permit nonzero angle of sideslip, 
if the guidance law requires it. However, the major limitation of this model is that it is 
written in flight path axis system. As a result, while implementing guidance laws emerging 
out of the present formulation, additional transformations have to be carried out. This is 
currently perceived as a major limitation of the guidance scheme, and needs to be resolved. 
It is proposed to reformulate the problem in terms of body attitudes and throttle setting 
to avoid this difficulty. 

3 Selecting Weighting Parameters from Aircraft Performance Data 

One of the difficulties faced while implementing the differential game proposed in [4] was 
that of determining the weighting matrices in the differential game formulation. Currently, 
there is no direct way of relating aircraft performance data to these weighting matrices. 
Ideally, one should be able to use aircraft data such as the corner velocity locus and 
specific excess power contours to come up with a scheme for constructing the weighting 
matrices. Previous research on air combat problems[2] using reduced-order models indicate 
how the acceleration limits can be synthesized for typical high performance aircraft as a 
function of altitude and Mach number. The main issue is how this information can be 
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used for computing the acceleration weighting matrices. Present research will examine 
this problem in further detail. 

4 Minimum Time Aircraft Pursuit-Evasion 

The differential game discussed in Reference 4 is quite sensitive to the time-to-go estimates. 
As a result, various approaches for estimating time-to-go needs to be examined before 
settling on a suitable candidate. The existing literature on time-to-go calculation is rather 
sparse. Reference 8 provides an outline of previous research and discusses an approximate 
method for time-to-go calculation. However, such approaches for computing this quantity is 
not acceptable for the present pursuit-evasion game. Historically, missile guidance schemes 
have employed the formula 

too = RIIRI  

to estimate time-to-go. In this formula, R is the range-to-go and R is the range rate. 
Several assumptions are implicit in this rather innocuous looking expression. For instance, 
this expression can predict exact time-to-go only if the vehicles are in a tail chase situation. 

This expression has been popular in applications primarily due to its simplicity. More-
over, successful engagements tend to terminate in a tail-chase. In this case, time-to-go 
estimates improve towards the end of the engagement. On the other hand, this expression 
produces grossly inaccurate estimates while executing large amplitude maneuvers. Re-
search reported in [7] uses the fact that since the variational Hamiltonian for this problem 
is autonomous, it is a constant of motion. Invoking this fact at the beginning and the end 
of the differential game, it is possible to come up with a polynomial for time-to-go. In 
general, this polynomial produces multiple solutions. The smallest real positive solution 
yields the time-to-go. If all the solutions turnout to be negative or imaginary, then the 
computational scheme suggests that the assumed terminal conditions are not realizable. 
This device was employed successfully in spacecraft a pursuit-evasion problem [7]. 

The performance index considered previously [4, 7] was a linear combination of a 
quadratic form in vehicle acceleration and terminal miss. However, the performance index 
of interest in long range pursuit-evasion problems appears to be the flight time [9, 10]. 
Recent research has indicated that a slight modification of the problem formulation given 
in Reference 7 can lead to the inclusion of engagement time in the performance index. The 
proposed research will analyze the implications of this extension on the game solution. 
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5 Inclusion of Weapon Envelope Constraints 

The formulation of the pursuit-evasion game given in [2] assumed that the weapon envelope 
is isotropic, i.e., it was assumed to be equally effective in all directions. This is not true 
in practice. In real situations, weapons are most effective in the direction of the vehicle 
velocity vector. A popular weapon envelope geometry used in air combat involving guns 
is the fan shape [11]. However, if missile engagements are considered, then the weapon 
envelope may have an elliptic or cardioid shape [12]. In any case, it is important to include 
an anisotropic weapon envelope in the analysis to adequately model the pursuit-evasion 
game. 

While a straightforward implementation of such an envelope is not difficult, it is 
impossible to obtain realistic solutions without resorting to numerics. Clearly, this is not 
acceptable for real-time implementation. An approach for obtaining real-time solutions is 
to pursue the nonlinear transformation approach. In this case, it is possible to synthesize 
a feedback solution. In fact, this is the approach advocated in the present proposal. 
The geometric properties of the weapon envelope can be used to obtain the equations of 
motion for the pursuit-evasion game. These equations of motion are obtained by repeatedly 
differentiating the weapon envelope geometry. 

The pursuit-evasion game can then be formulated and solved using these equations of 
motion. Since the weapon envelope involves both differential velocity and position, these 
equations of motion will involve jerk terms, the derivative of the acceleration, in the right 
hand sides. In order to obtain a feedback solution, one may have to then impose quadratic 
jerk constraints in the formulation. While this is not of undue concern at the present time, 
eventually, the issue of relating the jerk constraints to the real constraints via the aircraft 
data has to be addressed. 

In the first phase of research, the implementation of the weapon envelope constraint 
will be examined while including the quadratic jerk constraints in the formulation. Sub-
sequently, The connection between these constraints and aircraft performance parameters 
will be examined. 

6 Multiple Vehicle Pursuit-Evasion 

Analysis of a multi-player differential game has received considerable attention in the 
literature. The primary theoretical results for this class of problems exist in the area 
of multicriterion optimization [13, 14]. Most solutions reported in the literature require 
extensive simulations and several adhoc assumptions. The primary difficulty is that once 
one deviates from a linear model, solutions become difficult and sometimes impossible to 
obtain. As a result, most existing literature on mutiple vehicle pursuit-evasion studies 
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employ linear models for analysis. 

This is not acceptable in multiple vehicle combat situations with varying information 
flows and highly nonlinear engagement geometries. The technique of feedback linearization 
appears to be effective in handling this problem. The proposed research directions in this 
problem are the following: 

1. Formulate the multiple vehicle pursuit-evasion game. The performance index will 
consist of minimax terminal miss with weapon envelope constraints and flight time. 

2. If the objective functions and information patterns are given in transformed coordi-
nates, the problem may be feedback linearized and solved. 

3. The resulting guidance law may be transformed back to the original space to obtain 
individual aircraft guidance schemes. 

7 Air Combat Problem Formulation 

It has been long recognized that pursuit-evasion model does not parallel the aerial dog-
fight situation [11, 15]. This is because in real situations, different aircraft have different 
performance capabilities at different points on the flight envelope. Previous approaches to 
model this problem has been to use zero-sum differential game solutions for constructing 
the so called Barrier and Dispersal surfaces delineating various regions of the state space 
into pure strategy regions. The aircraft decides what strategy to employ depending on 
its location in the state space. Thus, in such formulations, role determination becomes 
the central issue. Recent research [11] has pointed another direction wherein the pilot 
orders the priorities and then plays different strategies depending on his location within 
the envelope. The strategies emerging from this analysis will be mixed, in general. 

Solutions of state constrained optimal control and differential game problems are 
required for constructing a composite solution to the air combat problem as in [11]. It is 
proposed to construct these solutions using feedback linearization. 

8 CONCLUSIONS 

A three year research program to examine various differential game models is proposed. 
The central aspect of this research is the use of feedback linearization together with linear 
differential game results for constructing real-time implementable guidance laws for air 
combat. Emphasis is on the synthesis and flight test of optimal guidance schemes for 
combat aircraft capable of high angle of attack maneuvers. 
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It is expected that a doctoral level graduate student will be participate in this research 
with the principal investigator. A budget estimate for this research effort is given at the 
end of this proposal (Appendix-C). 
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A COMPARISON OF TIME-OPTIMAL INTERCEPT 
TRAJECTORIES FOR THE F-8 AND F-15 - FINAL REPORT 

SUMMARY 

This report compares the simulation results of a real time control algorithm for onboard 

computation of time-optimal intercept trajectories for the F-8 and F-15 aircraft. Due to the inherent 

aerodynamic and propulsion differences in the aircraft, there are major differences in their optimal 

trajectories. The significant difference between the two aircraft are their flight envelopes. The F-

8's optimal cruise velocity is thrust limited, while the F-15's optimal cruise velocity is at the 

intersection of the Mach and dynamic pressure constraint boundaries. This inherent difference 

necessitated the development of a proportional thrust controller for use as the F-15 approaches it's 

optimal cruise energy. Another interesting phenomena is that the optimal climb trajectory for the F-

15 is along its dynamic pressure boundary. This necessitated the use of a sub-optimal proportional 

vertical lift controller to track the constraint boundary. 

This report documents the application of singular perturbation theory to the trajectory 

optimization problem, along with a summary of the control algorithms. Numerical results for the 

two aircraft are compared to illustrate the performance of the minimum time algorithm, and to 

compute the resulting flight paths. A major recommendation is that future research be directed at 

the application of singular perturbation methods to problems in flight mechanics where state 

constraints, such as a maximum dynamic pressure limit, play an important role in the analysis. 

This report documents a portion of the total research effort supported under this grant. The 

research related to time optimal aircraft pursuit evasion can be found in [4]. 
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SECTION 1 
INTRODUCTION 

There has been active research into optimizing flight path trajectories using multiple time 
scale separation techniques. In [1] Calise and Meorder showed that by using singular perturbation 
theory to separate the dynamics into fast and slow modes and then applying the optimality 
conditions from calculus of variations, one could obtain a closed form solution to the min-time 
intercept problem. What soon followed was a 3-D real-time piloted simulation and which used 
aerodynamic and propulsion data from the F-8 [2]. The algorithm was eventually flight tested on 
the NASA F-8 test aircraft at NASA Ames/Dryden Flight Research Facility [3]. The objective of 
this research was to modify the existing algorithm for use on an F-15 aircraft. 

This report documents the results of modifying the min-time intercept algorithm from the F-
8 to F-15, which represents a portion of the activity supported under this research grant. A portion 
of this work was conducted at NASA Ames/Dryden Flight Research Facility during the summer 
1989. This report will contain four sections. The problem formulation is given in Section 2. A 
summary of the control algorithm is given in Section 3, which highlights the application of singular 
perturbation theory along with the optimality conditions derived from calculus of variations. This 
development could have been explained in full detail, however, in the interest of brevity only the 
first two boundary layer approximations will be discussed. This also coincides with the fact that a 
sub-optimal proportion lift controller was used on the F-15 due to the fact that the optimal 
trajectory rides the dynamic pressure constraint. Section 4 presents numerical results comparing 
the F-8 and F-15. Section 5 gives the conclusions for this work and identifies future work which 
needs to be accomplished prior to a flight test. 
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SECTION 2 
PROBLEM FORMULATION 

The point mass equations of motion are referenced to a horizontal, target centered, inertial 
coordinate frame illustrated in Fig. 1 

= Vcos y cos 3 	 (1) 
3,  = Vcos y sin 13 - VTcos yr 	 (2) 

eE=(T-D)V/W 	 (3) 
e2 3  = Lsin p. / mVcos y 	 (4) 
e3  h = V sin y 	 (5) 
e4  = (Lcos - Wcos y) / mV 	 (6) 

These equations are valid for constant weight, thrust aligned with the flight path, and flat earth 
approximations. E = h + V2  / 2g is the total aircraft energy per unit weight, 13 is the heading angle, 
h the altitude, Y  the flight path angle, and 1.1 the bank angle. Drag is assumed to have conventional 

parabolic form 

D = qSCD0 KL2  / qS, q= pV2  / 2 
	

(7) 

where q is the dynamic pressure, p the air density and 

K = / CLa 	 (8) 

Lift is defined by 

L = qSCLaa 	 (9) 

where a is the angle of attack. The control variables are L, p., and thrust T. The objective is to 
find the controls L, p, T that minimize the time to intercept a constant velocity target 

J = dt 
o 
	 (10) 

The minimization is subject to the following state and control variable constraints: 
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L NV Gmax (11) 

L 	qS CLaamax (12) 

Tinin(h,V) 	Tmax(h,V) (13) 
q < qmax, V 	Vrnax (14) 

where Gmax  is the maximum load factor, a max  the maximum angle of attack, Timm and Tmax  the 

thrust level limits that are functions of aircraft altitude and velocity. The boundary conditions are 
such that the initial aircraft state is fully specified and require 

x(tf) = Y(tO = 0, 	= hT(tf) 	 (15) 

for intercept, where hT(tf) is taken as the projected target motion in altitude 

	

hT(tf) = hT(0) + (Vrsinyr)tf 	 (16) 

The parameter E designates multiple time scaling used to order the dynamics [1] The approach 
here is to find a solution for e = 1 by an power series expansion around £ = 0. The boundary 
layers are separated by rescaling time as ti = t / = 1,...,4, respectively, then setting e = 0 in the 

resulting equations. A justification for this specific ordering of the dynamic equations is given in 
[1]. 
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SECTION 3 
SUMMARY OF CONTROL ALGORITHM 

3.1 Outer Solution 

In the outer solution, the controlled aircraft is assumed to be traveling on a fixed course at a 
constant speed, as can be seen by letting e--)0 in Eqs. (3-6). This addresses only the x and y 
dynamics, and the states 13, h, and E take on the role of control like variables. In order to satisfy 

the intercept requirements, we have the following constraint 

Vsin (I3-2,) = VT cos yr cos X 	 (17) 

This means that there is no relative motion allowed perpendicular to the horizontal line-of-sight 
axis. The optimal controls h0 and E0 are determined from minimizing the reduced Hamiltonian 

H0 (E,hi) = XxO Vcos [3 + Xy0 (V sin [3 - VT cos yr) + 1 = 0 	 (18) 

and it is shown in [1] that this reduces to 

ho, Eo = arg max (V) 	 (19) 
h,E 

where the maximization takes place subject to the constraints in Eqs. (11-14) and subject to the 
following conditions that result from setting e3in (3-6) 

T = Do, µ0=0, Yo = 	LO=W 
	

(20) 

The term D0 in (20) is drag for L = W 

D0 = qoSCD0 + KW2  / q0S 
	

(21) 

where 

c10 = P(ho)V02  / 2, V0 = 12g(E0-110) 	 (22) 

The subscript 0 denotes the zeroth or outer solution. The maximization in (19) is equivalent to 
finding the maximum velocity cruise point. 

The cruise point solution from Eq. (19) for the F-8 and F-15 aircraft are displayed in Figs. 
2 and 3, superimposed upon their flight envelopes. Note that since the F-8 is thrust limited, its 



cruise point lies on the T max=D contour. The F-15 is q and Mach limited, and its cruise point lies 
at the intersection of these constraint boundaries. Thus T does not equal T max  in the outer solution 
for the F-15. 

The optimal cruise heading 130 is computed using (17) 

	

00 = sin-1  (VT cos 7T cos X/V0) + 	 (23) 

The costates Xxo and Xyo, associated with the horizontal position dynamics in the outer control 

solution are needed in subsequent boundary layer solutions. These take the form 

	

Axo = -cos PO / (V0 - VT cos yr cos 	13o) 
	

(24) 

A.yo = -sin 00 / (V0 - VT cos yr cos IV 
	

(25) 

These are determined from the optimality conditions alio /4313 = 0 and the condition H0 = 0. It 

should be noted that the cruise solution for h0 and E0 is independent of target motion and intercept 
geometry. This allows these quantities to be calculated off line and stored. The only outer solution 
calculations performed on-line are Eqs. (23), (24), and (25). 

3.2 First Boundary Layer Solution 

The first boundary layer addresses only the energy dynamics. The constraints 

= 0, y1=0,  Li = W 
	

(26) 

arise from Eqs. (4-6) when the time transformation ti = t / c is introduced and we let E—>0. The 
control like variables are T, h and 13. The optimal 13 is the same as in the outer solution. Since T 
appears linearly in the Hamiltonian, 

	

T1 = Tmax  (h,V), when XE,i < 0 	 (27) 

	

T1 = Trnin (h,V), when AEI > 0 	 (28) 

This corresponds roughly to an energy climb and energy descent, respectively. Optimization with 
respect to h yields for climb 
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arg max  { (Tmax- Do)V  
3 E = Ecurrent Tmax > D 

h 	V-Vo 

and descent 

141. arg 	{ (Trnin- Do)V  

h 	V-Vo 	E = Ecurrent Tmax < Do 

The climb path to cruise for the F-8 and F-15 are superimposed on the aircraft flight 
envelopes in Figs. 2 and 3. The optimal descent path for both aircraft is along the q max  boundary. 
The expression for the first boundary layer costate is 

kEi = -WHO (E,hi) / Vi (T1-D0) 	 (31) 

where Ho is the outer solution Hamiltonian evaluated at the first boundary layer conditions. Since 
the solutions for hie and hid are independent of target motion, they can be precomputed and stored 
as a function of E. Only the energy costate variable in (31) is computed on-line. 

3.3 Second Boundary Layer Solution 

The second Boundary layer solution determines the optimal heading angle dynamics. 
Introducing the time stretching transformation ti = t / e2  and letting e-->0 while holding the slow 
dynamics x, y and E fixed, yields the constraints 

y2  = 0, L2 = L222 + vsf2 
	

(32) 

where L is the total lift and L22 = Lsin p, the horizontal component of lift. The control variables 
are T, h and L22. Assuming that all turning takes place near the initial time where A.E1 < 0, the 

optimal thrust is 

T2 = Tmax  (h2,V2) 
	

(33) 

where h2 is the optimal commanded altitude determined by 

	

h2  = arg min {-p / KV H 1  (E, h, 	E=Ecurrent, r3={3current 
	 (34) 

h 

In Eq. (34) H1(E, h, (3) is the Hamiltonian in the first boundary layer evaluated at the current 

(29) 

(30) 
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values of E, h and 13. It is expressed as 

H1(E, h, 13) = Xxo Vcos +Xyo (Vsin f  - VT cos yr) + XE1 [Cr - DoW / 	+ 1 = 0 	(35) 

The solution for the horizontal lift component L22 is 

L22= V-qSWHi(E,1-1,13)/(VIOTrsign(130-13) 	 (36) 

3.4 Proportional Vertical Lift Control 

An option was included in the algorithm for stopping the singular perturbation analysis 
after the second boundary layer, and employing a sub-optimal vertical lift solution. It was 
necessary in this study to use this option due to the fact that zero order singular perturbation 
analysis results in a steady state error when following ramp like altitude commands. Although this 
steady error is not a critical factor for the F-8 study in [1], it is essential to accurately track the 
altitude command for the F-15 since the optimal climb path lies essentially along the dynamic 

pressure constraint (Fig. 3). The derivation of the control logic proceeds as follows. From Eq. 

(5) 

1.1 = Vsin Y 	 (37) 

We would like the altitude rate to track the altitude error according to proportional feedback control 

tihh = h2-h. 	 (38) 

where th is the time constant associated with the decay in altitude error. Since h2 is not a constant 
command signal, but more like a ramp command, a term must be included to account for the steady 
state error that would otherwise result. The rate of change in h2 can be estimated using 

C12 	= 	vi sin yi aE 	 (39) 

where ah OE is the slope associated with altitude with respect to E along the dynamic pressure 
boundary (Fig. 3). In (39) we have used the fact that h2(E) = h1(E) when the heading error is near 
zero. The desired flight path angle yd is formed by summing y from (37) and (38) with y l , from 
(39). Using small angle approximation for sing we have 
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E ah (h211) 
Yd 
	aE Thy (40) 

With Id defined we can calculate the vertical lift component. Using Eq. (6) 

	

= (Li - Wcos 	mV = (Yd - 'Y) 	 (41) 

where Sy is the time constant associated with the decay in flight path angle error. As an alternative, 
Ty and 'Eh can be related to a desired natural frequency and damping ratio [1]. Solving for Li 

yields 

L1 = mVsy  (yd - + Wcos y 	 (42) 

The relationship between the vertical and horizontal lift components along with the bank angle are 
given by 

	

11-='arctan 	L = 
(43) 

where L2 is the horizontal component of lift. 

3.5 Proportional Cruise Thrust Control 

Since the flight envelope for the F-8 has as its Vmax  cruise point at a T=D point the throttle 
setting was set at full throttle. This means that the F-8 will asymptotically reach its optimal cruise 
energy. In other words it never theoretically attains the desired optimal cruise energy. The F-15 
flight envelope has as its Vmax  cruise point at the intersection of the q max  limit and Mmax  limit. 
With the cruise point at this location the F-15 reaches its optimal cruise energy in finite time. By 
virtue of its high T/W ratio the F-15 can gain energy at a much higher rate compared to that of the 
F-8. Therefore in the case of the F-15 it is necessary to throttle back as the cruise energy is 
approached. This throttling was incorporated into the algorithm by use of a proportional 
controller, the derivation of which is described as follows. Since it is desired that the energy rate 
track the error in energy, which is constant during cruise, we have from Eq. (3) 

E = (T-D) V / W = (Ec-E)/TE 	 (44) 

Solving for T gives 
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T = W (F-c-E) / TEV +D 	 (45) 

where 'LE is the controller time constant set to give the desired rate of decay in the energy error. 

The procedure for throttle control during descent was the same as that used in the F-8 study 
described in [1] 
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SECTION 4 
NUMERICAL RESULTS 

Figures 4 and 5 show the ground tracks for Cases 1-3. Both simulations have the same 
initial geometry. The target flies at a constant altitude, velocity and heading but with differing 
downrange initial distances. These differing initial distances demonstrate the algorithms range-
matching calculation of an optimal pseudo-cruise point [1]. Notice the rapid closure rate of the F-
15 as compared to the F-8. Figures 6 and 7 show the altitude and optimal commanded altitude (h2) 
time histories. The time constants xi, and 'C y  were set to correspond to a damping ratio and natural 
frequency of 1.0 and 0.1 respectively. Case 1 is a long range intercept which is comprised of three 
phases; an initial climb along the optimal climb path followed by a cruise leg at the aircraft's 
optimal cruise energy (E*, h*), then a descent portion along the dynamic pressure boundary to 
intercept the target. Cases 2-3 being shorter intercepts never obtain their optimal cruise energies 
due to their proximity to their targets. These cases obtain pseudo-cruise energies instead [1]. In 
these cases the aircraft climbs to a pseudo-cruise energy and immediately initiates descent. Notice 
in each of the F-8 simulations the optimal commanded altitude has peaks between 150 and 175 

seconds for each case. These demonstrate the characteristic dive in the transonic region. In 
contrast, the F-15 has enough thrust to simply ride the dynamic pressure boundary. Another 
interesting feature can be seen in comparing the Case 2 time histories. The F-8 never reaches its 
optimal cruise energy. Instead it approaches a lower pseudo-cruise energy. The F-15 has 
sufficient energy rate capacity to reach its optimal cruise energy at this shorter intercept range. The 
Case 2 optimal climb paths are compared in Figs. 8 and 9. In the F-8 simulation notice the near 
constant velocity energy climb followed by the characteristic transonic dive. The F-15 climb 
profile is along the dynamic pressure boundary. There exists a slight dynamic pressure boundary 
violation in the figure, however, this can be improved by tuning the gains th, by and tE 

Figure 10 is a comparison of optimizing the h and y dynamics [1] versus using the sub-
optimal proportional lift controller. Notice the underdamped response of the optimized boundary 
layers results in severe dynamic pressure constraint boundary violations. This is due to separating 
the h and y dynamics into separate boundary layers which has to be done in order to obtain a closed 
form solution. The suboptimal proportional lift controller allows the designer to pick the gains so 
as to avoid a qmax  violation. Figures 11 and 12 show the flight path angle and desired flight path 
angle time histories. In both simulations, descent initiation is clearly evident by the sudden 
decrease in the desired flight path angle. Also notice that the flight path angle never exceeds 0.2 
rad during climb, which validates the y = 0 approximation in the first and second boundary layer 
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analysis. It can also be seen that the F-15 completes the intercept in nearly half the time it takes the 
F-8. The lift and bank angle profiles are shown in Figs. 13 and 14. Note that both aircraft bank 
180 degrees in order to initiate descent. In the F-15 simulation, the sudden decrease in lift at 115 
seconds is due to the approaching optimal cruise velocity, where the throttle control in (45) is 
initiated. This changes the energy rate term in (40), and consequently the vertical lift calculated in 
(42). In Figs. 15 and 16 the thrust histories for each aircraft are given. The time constant TE here 

was set to 6 seconds. Descent initiation is evident by the sharp decrease in thrust at 150 and 350 
seconds for the F-15 and F-8 respectively. In the F-15 simulation, at 115 seconds the proportional 
thrust controller throttles back the engines just prior to the aircraft obtaining its pseudo-cruise 
energy level. 

The ground tracks for Case 4 are given in Figs. 17 and 18. This case is a close in intercept 
which has the target moving at constant altitude, velocity and heading 180 degrees in the opposite 
direction. This case illustrates a combined initial hard turn and climb (yo-yo maneuver) followed 
by a descent under near tail chase conditions. The pursuer's initial altitude is identical to that of the 
target and the velocity is above the corner velocity for that altitude. Note that the downrange 

intercept distance is considerably less for the F-15 aircraft. Figures 19 and 20 give the altitude and 
commanded altitude time histories. Both aircraft perform a high speed yo-yo maneuver in order to 
trade speed for increased turning performance. It is interesting to note that the time to complete the 
hard turn is nearly identical for both aircraft, 10 seconds. The reason for the large altitude 
command is due to the large initial heading errors. The jump in commanded altitude is at the 
completion of the hard turn so as to get on the optimal climb path. Between 10 and 20 seconds the 
F-8 dives to trade potential energy for kinetic energy, while the F-15 just accelerates to intercept. 
Figures 21 and 22 show altitude versus velocity plots for Case 4 where the high speed yo-yo 
maneuvers are more evident. Both simulations show the aircraft moving initially toward the corner 
velocity to trade speed for increased turning performance. Once the turn is completed both aircraft 
move to get on the optimal climb path which is followed by a descent along the dynamic pressure 
boundary. Figures 23 and 24 show the lift and bank angle profiles. Both aircraft initiate 
maximum G turns at 0-10 seconds to reduce the heading error. This is followed by a climb phase 
followed by cruise then descent at 40 and 90 seconds for the F-15 and F-8 respectively. In the F-
15 simulation it is evident that throttling is taking place at 28 seconds due to the decrease in lift. 
Also note the large lift at interception, this indicates that the F-15 is tending to miss the target. This 
is due to the higher degree of coupling in the dynamics for the F-15, which requires further 
investigation. 
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SECTION 5 
CONCLUSIONS AND FUTURE RESEARCH 

The differences in the numerical results between the F-8 and F-15 trajectories lie mainly in 
each aircraft's ability to gain energy. The F-8 is an aircraft which never encounters any state 
constraint boundaries during its climb phase. The F-15's higher thrust to weight ratio allows the 
aircraft to gain energy at a much higher rate. Since the F-15's flight trajectory lies on the dynamic 
pressure boundary, the methodology for optimizing the altitude and flight path angle dynamics in 
[1] does not apply. This was circumvented by the application of the sub-optimal proportional lift 
and thrust controllers which provided an adequate sub-optimal solution. It was noticed that setting 
the time constants 'Cg, by and 'LE  to achieve the best performance for long range intercepts gave poor 
close-in intercept performance. This problem would imply that these gains are maneuver 
dependent, which it not satisfactory for real time implementation. A solution to this problem is to 
attempt to optimize the altitude and flight path angle dynamics, subject to the dynamic pressure 
constraint. 

The major recommendation for future research is that the singular perturbation 
methodology in [1] be extended to address the issue of state constrained optimization problems. 
This would avoid the gain scheduling issue described above. Another interesting point worth 
investigating is the assumption of thrust aligned along the velocity vector. Thrust is actually 
aligned with the body axis. This reduces the thrust component due to the angle of attack 
dependence that would appear in the energy rate equation. 

12 
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Abstract 

Optimal pursuit-evasion problem between two aircraft including a realistic weapon envelope is analyzed 

using differential game theory. This study employs sixth order nonlinear point mass vehicle models 
and allows the inclusion of an arbitrary weapon envelope geometry. The performance index is a linear 
combination of flight time and the square of the vehicle acceleration. Closed form Solution to this high-
order differential game is then obtained using feedback linearization. The solution is in the form of a 
feedback guidance law together with a quartic polynomial for time-to-go. Due to its modest computational 
requirements, this nonlinear guidance law useful for on-board real-time implementation. 

Introduction 

The objective of this paper is to develop an optimal nonlinear guidance scheme for aircraft pursuit-
evasion using differential game theory [1] and the theory of feedback linearization [2,3]. This work extends 
previous research [4] to include time-of-flight in the performance index together with a realistic weapon 
envelope for the pursuing aircraft. Six state nonlinear point mass models of aircraft with lift, bank angle 
and throttle controls are employed in this work. The weapon envelope considered is an arbitrary three 
dimensional manifold with its origin at the vehicle center of gravity. This manifold may be specified as 
a function of the angle between the line-of-sight vector and the vehicle velocity vector, see Figure 1 for 
details. The distance between the two aircraft is then redefined as the difference between the relative 
position vector and components of the weapon effectiveness range measured from the pursuer's center of 
gravity. The pursuer attempts to drive this distance to zero while the evader attempts to make it as large 
as possible. The pursuit-evasion game terminates the first time instant this distance vector becomes zero. 
Both vehicles seek to accomplish their objectives in a time-optimal fashion while satisfying the limits on 
permissible acceleration levels. It is assumed in the present research that the evader has no offensive 
capabilities. As a result, this analysis includes only the pursuer's weapon envelope. Note that alternate 
approaches [5-8] may be required in the case where both vehicles have offensive capabilities. Additionally, 
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unlike Reference 5, it is assumed here that the weapon envelope cannot be oriented independent of the 
pursuer's velocity vector. 

In the past, differential games of this nature could only be handled by linearizing the vehicle dynamics 
[9, 10] or by the use of simplified models [7, 12]. Differential game solutions obtained using linearized 
vehicle dynamics is of dubious value since it is not reasonable to define a nominal trajectory. Use of 
simplified vehicle models, on the other hand, can result in optimistic or pessimistic results depending on 
the region of validity of these models. 

In practical applications, these factors have led to the formulation of such guidance problems as 
one-sided optimization problems, accurate only for dealing with nonmaneuvering targets. In order to 
handle actively maneuvering targets, it is necessary to formulate them as differential games. In this case, 
however, the numerical complexities preclude real-time implementation. Alternate approaches to these 
problems consist of off-line construction and storage of a field of extremals with real-time interpolation 

[12]. 
In Reference 4, it was shown that feedback solutions are feasible for a class of nonlinear differential 

games arising in aircraft pursuit-evasion. In that work, the performance index was required to be a 
quadratic form in the distance between two vehicles and the square of the magnitude of their acceleration. 
In [4], the nonlinear aircraft models were first transformed into a linear time-invariant form. A differential 
game was then formulated in transformed coordinates and solved. The resulting guidance law was 
transformed back to the original space to obtain the nonlinear pursuit-evasion guidance law. This research 
has been subsequently extended to study spacecraft pursuit-evasion and rendezvous problems [13, 14]. 
Solution to the differential game in this form requires the knowledge of time-to-go. In vehicle models 
without actuator saturation, this quantity can be computed exactly as outlined in Reference 13. Recently, 
the solution given in Reference 4 has been evaluated on a realistic simulation of high performance aircraft 
[15]. 

The objective of the present research is to extend this methodology to include time-of-flight in the 
performance index and a realistic weapon envelope in the model for the pursuing aircraft. Note that 
the results presented here may be adapted to one-sided guidance problems such as those discussed in 
References 16 and 17. 

Nonlinear Models for the Pursuer and the Evader 

The point-mass equations of motion for an aircraft are given by 

T (h, M,  7) — D(h,M,L) 	. 
g miry 	 (1) 

L sin q5  
X 	 (2) 

mV cos 7 

g L cos 
= 17 ( w 	cos ry) 	 (3) 

=_V cos cos x 	 (4) 

= V cos -y sin x 	 (5) 

= 	sin.7 	 (6) 
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The salient assumptions in this model are a flat non-rotating earth, thrust along the path and a quiescent 
atmosphere. In the equations (1)-(6), V is the airspeed, ^f the flight path angle, x heading angle, T the 

vehicle thrust, D vehicle drag, L the lift, g acceleration due to gravity, M the Mach number, and m is 
the vehicle mass. Position of the aircraft in an earth-fixed, inertial frame is given by the down-range x, 
cross-range y, and altitude h. The control variables in this model are the vehicle lift L, bank angle 0, 
and the throttle setting n. Note that the vehicle thrust is specified as a nonlinear function of altitude, 
Mach number and the throttle setting. 

The aerodynamic drag is calculated using the drag coefficient CD, the airspeed V, the atmosphere 
density p and the reference areas as 

	

D = C DspV 2  12 	 ( 7) 

In (7), the drag coefficient CD is a nonlinear function of the Mach number M and the lift L. 
The equations of motion for the evader is in the same form as that of the pursuer. However, the 

thrust and drag characteristics may be different. 

The Pursuer's Weapon Envelope 

The present analysis will include a weapon envelope only for the pursuer. The evader is not assumed to 
have any offensive capabilities. A more complex formulation will be essential if one assumes the existence 
of offensive capabilities for the evader. In such a differential game, each participant may attempt to 
maximize the distance between itself and the other vehicle's weapon envelope, while attempting to drive 
the adversary into its own weapon envelope. Such a formulation may lead to the study of combat games 
or two-target games[5-8]. The present research will not address these issues. In all that follows, it will 
be assumed that the roles of each participant in the game is fixed and remains unchanged for the entire 
duration of the engagement. 

As indicated in the foregoing, the evader is not assumed to have any offensive capabilities. As a 
result, if the pursuer is successful in bringing the evader within its weapon effectiveness range, then 
capture is said to have occurred. In the present research, pursuer's weapon envelope is assumed to 
be a three dimensional manifold with its origin located at the vehicle center of gravity. The weapon 
effectiveness range is defined as the distance between the vehicle center of gravity and the intersection of 
the three dimensional manifold defining the weapon envelope with the line-of-sight vector. Details are 
shown in Figure 1. The weapon effectiveness range is assumed to be a function of the angle between the 
vehicle velocity vector and the line-of-sight vector. Note that this modeling is consistent with the weapon 
usage envelope in currently operational fixed wing fighter aircraft. 

It is assumed here that the weapon envelope cannot be oriented independent of the vehicle velocity 
vector. In flight vehicles such as combat helicopters and fighter aircraft with precision fuselage pointing 
capabilities, an alternate assumption might be more appropriate. Clearly, such capabilities provide 
additional degrees of freedom in controlling the outcome of the differential game. 

In a chosen inertial frame, if the pursuer's velocity vector and the differential position vector between 
the pursuer and the evader are [x p  Up  iip] T and [Ax Ay Ah]T respectively, then the angle between the 
pursuer's velocity vector and the line-of-sight vector may be computed using the expression: 

XpAx 	1„,6iy itp Ah 
cos 8 = 	  

	

A z 2 A y2 Ah2 	+ 4  + ii; 

In the expression (8), A h = he  — h p, Ax = x e  — x p, Ay = ye  — yp . The angle 8 is sometimes termed 
as the line-of-sight angle. The weapon effectiveness range R„.,, can then be specified as a function of the 
line-of-sight angle as 

3 
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Rw  = F(5) 
	

(9 ) 

For example, if the weapon effectiveness envelope were a cone centered at the vehicle center of gravity, 
the weapon range may be described as follows: 

= r, if VI < 	 (10) 

= 0, otherwise 	 (11) 

The quantity r is a specified constant. A prolate spheroid with its major axis oriented along the vehicle 
velocity vector appears to be a more realistic weapon envelope shape. Note that in this case, the weapons 
will be effective to a certain degree in the tail aspect also. This is consistent with the existing tactical 
weapon effectiveness envelopes in operational fighter aircraft. Such a weapon envelope is illustrated in 
Figure 1. In this case, it is possible to write an explicit expression weapon effectiveness range as 

A  
12 ( 

Rw = 1 + B cos 8 	
) 

 
In this expression, A and B are two constants specifying the size and shape of the prolate spheroid. 
These constants may be related to the minimum and maximum weapon ranges Rmin ,  Rmax  as: 

A — 
2 Rynin Rmax 

 

Rmin B = 	 (14) 
Rmax 

Note that the present specification of the weapon envelope can include a kill probability distribution given 
as a function of the weapon range. Further, any alternate shape for the weapon effectiveness envelope 
can be included in the ensuing analysis. If the orientation of the line-of-sight vector in the given inertial 
frame is defined using two angles 9 andµ such that 

9 = tan -1 	Ah 	 (15) ✓ilz2 + Dy2 

= tan -1  —AY 	 (16) 
A x 

the components of the weapon effectiveness range can be resolved into three components in the earth 
fixed frame as 

hw  = B, sin 0 (17) 

xw  = Rw  cos 9 cos (18) 

yw  = R,, cos 0 sin p (19) 

Next, these quantities may be used to redefine the three components of the relative position between 
the pursuer and evader as : 

Z1 = Zp eZw Ze 
	 (20) 
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z2  = yp EY10 — lie 
	 (21) 

4 = hp  + 	— he 	 (22) 

The variable 6 multiplying the weapon envelope components is included in the foregoing to enable the 
adjustment of the relative weighting between the weapon envelope and the distance between the two 
vehicles. Such a trade-off is useful while considering the use of different weapon systems in a given 
pursuit-evasion scenario. From equations (20)-(22), it may be observed that the distance between the 
two vehicles can be altered either by changing the distance between the vehicle center of gravities or 
by orienting the weapon envelope. Both these quantities are directly influenced by the vehicle relative 
position, velocity, and acceleration components. Note that if the weapon envelope was independently 
orientable, then this relative distance will depend additionally on the orientation parameters. However, 
in all that follows, it will be assumed that the weapon envelope cannot be oriented independent of the 
vehicle velocity vector. 

Next assume that the quantities o w , y,,,, h,„ and their various time derivatives are available from 
on-board measurements. Examining the geometric relations (19)-(21), it may be observed that these 
quantities can be computed if the angles 8, 0, it and their various time derivatives are available. The 
assumption that these quantities are available from measurements is crucial for including an arbitrary 
shaped weapon envelope in the derivation of the present guidance law. If these quantities are not available 
from on-board measurements, then only a spherical weapon envelope shape can be employed in the 
analysis. This is because of the fact that the second derivative of the line-of-sight angle depends on 
jerk. The presence of this term introduces difficulties in transforming the vehicle model into linear, 
time-invariant form as will be apparent in the next section. 

An interesting extension of the formulation discussed in this section is the inclusion of a sensor 
effectiveness envelope in the analysis. In such a pursuit-evasion game, the maneuvers will not only be 
influenced by weapon envelope considerations, but also by information trade-offs. A familiar example of 
the control-information mini-maximization is the timed maximum lateral acceleration maneuver employed 
by fighter aircraft for missile evasion. The objective here is to take advantage of the fact that missile 
seeker tracking rate as well as the missile maneuvering capabilities are limited. Following the proposed 
methodology for the inclusion of the weapon envelope, it is possible to include a sensor effectiveness 
envelope in the present formulation. Additional situations where such constraints as these arise include 
the guidance of robots in the presence of workspace envelope and actuator constraints. These issues will 
not be pursued any further in the present paper. 

Feedback linearization 

The chief difficulty in obtaining solutions to differential games using realistic flight vehicle models 
is that these models are highly nonlinear. Moreover, classical linearization approach using Taylor series 
expansion is invalid in a differential game setting [7], primarily due to the difficulty in defusing a nominal 
trajectory. However, it can be shown[4] that if the differential game between the two vehicles is formu-
lated in terms of the position state variables and their various derivatives, then feedback linearization 
approach can be used to obtain a nonlinear feedback solution. The primary thrust of the present re-
search is to extend the work in Reference 4 to include the time-of-flight in the performance index and 
a weapon envelope in the vehicle model. Feedback linearization is then used to transform the vehicle 
dynamic models into a linear, time-invariant form. The pursuit-evasion game is formulated in terms of 



the transformed states and solved to obtain the guidance law. Inverse transformation of this guidance 
law to the original coordinates produces an implementable nonlinear guidance scheme. 

As in Reference 4, feedback linearization is accomplished by differentiating the equations (20)-(22) 
twice with respect to time and substituting for 1 .7,1,i from expressions (1)-(3). interpreting the right 
hand sides of the resulting expressions as the new control variables in the problem, one has : 

zl = Z1, 4 = Ul  + eVi - Wl 	 (23) 

= Z2, 4 = U2 + €V2 - W2 
	 (24) 

13 = Z3, Z3 = U3 + €V3 - W3 
	 (25) 

where 

U1 
(Tp  — Dp)

rnp= 	COS 'fp COS Xp 
-Lp 	orp  cos xp  cos Op + sin xp  sin Op) 	 (26) 

U2 = 
(T 

 P 	
Mp 

 p) 	1,  COS /, sin xp 	(cos xp  sin Op Sill 7p sin xp  cos Op) 	 (27)mp
(Tp 

rn 

— Dp ) 	Lp  

	

U3 — 	Sin "yp  — COS 7/3  COS cp — g 	 (28) 
 Mp 

= 	V2 = Pw, V3 = Itto 	 (29) 

Le  W1 = 
(Te — D

e
) 

cos ye  cos Xe  — 
L` (sin cos xe  cos be  + sin xe  sin Ibe ) 	 (30) 

	

Me 	 Me  

	

(Te  — De ) 	L e  
1472 — 	cos 7e  sin xe  + —(cos xe  sin 0, - sin 7, sin xe  cos Oe  ) 	 (31) 

	

Me 	 me 

	

W3 = 
(Te - De) 

sin ye  -1- —
Le 

cos -ye  cos Oe  - g 	 (32) 
Me 	 Me  

Note that the new control variables Ui, Wi , i = 1, 2,3 depend on the system states and the original control 
variables. If the parameter e is set to zero, the model (23)-(25) will turn out to be identical to that given 
in Reference 4. It is assumed here that the various derivatives of the weapon envelope components 
z w , yt„, hte  are available from on-board measurements. In the general case, these derivatives will depend 
on the vehicle position, velocity, acceleration, jerk and various time derivatives of jerk. As a result, if 
these quantities are not available as measurements, the feedback linearization implied by the expressions 
(23)-(25) will not be feasible. In that case, the ensuing analysis will permit only the use of a spherical 
weapon envelope. 

With the interpretation of U1 + eVi., U2 + EV2 U3 + EV3 , W1,  W2 W3 as the new control variables, the 
equations (23)-(25) describe a linear time-invariant system. Given the pseudo-control variables, the real 
control variables in the system can be computed using the relations [4]: 

fpp 	
U2 cos Xp — Ui sin Xp 

	

= tan -1  	 (33) [ cos 7p(U3  + g) - sin 7p(U1  cos xp  + U2 sin xp)1 



mp [cos 7p (U3 g) - sin 7 (Ui  cos xp + U2 sin X p )1  
cos  

(34) 

Tp  = [sin 7p(U3  + g) + cos 7p(Ui cos xp  + U2 sin xp )] mp  + Dp 	 (35) 

The corresponding expressions for the evader's control variables can be obtained by replacing U1, U2, U3 
by W1, W2, W3 and changing the state variable subscripts as follows 

cos 7e (W3 + g) - sin 7e (Wi  cos Xe  + W2 sin X e  95e = tan-1  [ 	
W2 COS Xe  — Wi sin Xe 	 (36) 

L.  _ 	[cos  rye  ( W3 + g) - sin 7e ( Wi  cos Xe  + W2 sin  xe  )]  
cos Oe  

Te  = [sin rye (W3 + 9) + cos 7e(Wi Cos Xe + W2 sin Xe  )] me + De 

Physically, the pseudo-control variables 	i = 1, 2,3 are the acceleration components of the vehicle 
in the chosen inertial frame. Since the magnitude of a vector is invariant under coordinate transformation, 
the magnitudes of U, W are also the pursuer-evader acceleration magnitudes in the flight path .axis system. 

The attitude dynamics of the pursuer and the evader were not included in the foregoing analysis. 
Note that these may be included at the expense of increased model complexity. The primary reason for 
indudffig these in a differential game would be to study the various information trade-offs involved in a 
typical pursuit-evasion scenario. For instance, if the pursuer's weapons employed an active radar seeker, 
then its maneuvers would be influenced by the fact that the maximum target area must be visible at all 
times. The evader, on the other hand, would employ an opposite strategy. Several interesting variations 
of this differential game can be studied in the present setting. 

Guidance Law for Aircraft Pursuit-Evasion 

The previous section dealt with an approach for making the nonlinear aircraft models amenable 
to analysis. In this section, the pursuit-evasion differential game will be formulated in the transformed 
coordinates and solved. Inverse transformation of this solution to the original coordinates yields the 
nonlinear feedback guidance law. In the following development it will be assumed that all the state 
variables required for computing the feedback law are known perfectly. Once the differential game is 
solved with perfect information, the effects of incomplete or imperfect information can be investigated 
using this solution. 

The first issue in differential games is that of role definition. There is a controversy on this issue 
currently. But if the roles are assigned at the outset, the resulting differential game is amenable to 
analysis via Isaac's theory [1]. Assuming that the roles have been defined, the objective of the pursuer is 
to minimize the specified performance index which the evader tries to maximize. The performance index 
employed in the present research is: 

( u+ev 	
, 

	

min
) W 	

{‘ + (1 
2 

C)  [alkyl -r EVi)
2  + (U2 + EV2)2  + (U3 + €V3)2 ] ma.x 

t  

-b[Wi 2  + W2 2  + W32]] }dt 	 (39) 

(37) 

(38) 



The final time tf is unspecified. This performance index is to be optimized by the two participants 
subject to the differential constraints (23)-(25). In (39), C defines the relative weighting between flight 
time and acceleration magnitude, while the positive quantities a and b serve to constrain the acceleration 
magnitudes of the pursuer and the evader. For reasons that will be made clear in the ensuing, it is 
assumed that 

b > a, 0 < C < 1 	 (40) 

The negative sign in front of the evader's acceleration term explicitly identifies this player as the 
maximizer Initial values on all the state variables are assumed known. The pursuit-evasion maneuvers 
are terminated the first time instant the evader makes contact with the pursuer's weapon envelope, viz. 

zlf, z2f, z31 = 0 
	

(41) 

where 

Zif = Zi(tf), z21 == z2 ( t f) ,  z31 == Z3(tf) 

The final value of the relative velocities Zi, Z2, Z3 are assumed to be free. Next, define the variational 
Hamiltonian as: 

= C + 2(1 — C){a[(Ui + €V1) 2  + (U2 + eVi) -1- (U3 + € 14) 2] — b[Wi 2  + W2 2  + W3 2]} 

-1-A1 + A2 Z2 + A3Z3 A4(U1 EV1 — W1) As(U2 €V2 — W2) + A6(U3 + EV3 — W3) (42) 

As in Reference 4, the objective of the present research is obtain a saddle-point solution to the 
differential game. The conditions under which such a solution may exist are well known [18]. The central 
requirement here is the separability of the variational Hamiltonian with respect to the pursuer and the 
evader state and control variables. In the present case, inspection of the variational Hamiltonian defined 
in (38) will reveal that such a separability exists. The saddle point solution can be found by proceeding 
formally as follows. 

The costate equations [10] for this problem can be obtained as 

ai = A2 = A3 = 0 	 (43) 

A4 = 	A5 = — A25 as = — A3 

The optimality conditions yield : 

Ui -1- EV2 = a(1 — C) 

U2 + EV2 = 	—A5  a(1 — C) 

U3 + €173 = a(-1 A-6 	 

8 

— A4 

(44) 

(45) 

(46) 

(47) 



(48) 

(49) 

= 
b(1— C. ) 

—A5  

W3 = 	 (50) 
b(1 — () 

Since the final values of Z1, Z2, Z3 are free, the costates A4, Ag, Ag are zero at the final time. This 
fact, together with equations (45)-(50) imply that the pseudo control variables are all zero at the final 
time. Integrating the costate equations (44) and using the boundary conditions on A4, Ag Ag yields 

W2 = 	 b(1 — 

—A6  

A4 = Ai(tf — t) 
	

(51) 

Ag  = A2 (tf — t) 
	

(52) 

As = A3(tf — t) 	 (53) 

Using the expressions (51) - (53) to eliminate the costates on the right hand side of the optimality 
conditions (45) - (50) one has : 

21  — (1
A i 	

al(ti  — t) 	 (54) 

2 	1 	1 

	

= (1 — C) [ b 	a](tf t) 	 (55) 

• 	 1 	1 
Z3 = (1 A3 C ) [ b a ](tf — t) 	 (56) 

Expressions (54)-(56) may next be integrated to obtain Z i , Z2, Z3. Due to the symmetry of the solution 
to this problem, only one component of the solution will be fully illustrated in the ensuing. Thus : 

Zi 	
Ai 

 C) ' 	a 	2 
1 1 

= Zi(0) 
(1 	

f b 	](tft — t2 
—) 	 (57) 

Integrating the expression (57) yields 

	

1 	1 1(  t2 	t3  
zi (t) = .4(0) + Zi (0)t +  

(1 A1  C) r I  b aitf-i — W) 	
(58) 

Using the game termination condition (41) in the expression (58) yields 

Al  = 
3(1 — ))ab [MO) + Zi (0)tfl 	 (59) 
(a — b)tf 3  

This may next be substituted in the optimality conditions to obtain the optimal control for the 
pursuer as 

eVi  = (a 
	3  [Zi(0) Z1(0)til (t1 — t) 	 (60) — 

3 

b

b 
)tf 

9 



The optimal control for the evader is given by 

a
)t1 3  = (a 	[zi (0) + (0)td (t1 — t) 	 (61) 

— 
3

b  

The remaining control variables in the problem can be similarly computed. The solution is incomplete 
at this stage since the final time tf is unknown. This quantity may be computed by invoking a constant 
of motion in this problem. Since the final time is open and the variational Hamiltonian is autonomous, 
one has that 

H(t) = 0 	 (62) 

Substituting for the optimal controls in terms of costates in the constant of motion (62) at the initial 
time results in 

0 = C 
1 

 ) b 	c 
[ 1 	1 11A42 4. A52 4. A62} 

2(1 - C rl  

+AiZi(0)+ A2Z2(0) + A3Z3(0) 

Next, substituting for A4, Ag, Ag from expressions (51) - (53) yields 

0 = S +  2(1 1 1{ Ai 	A2 2 + A3 2} t/ 2 
1

r
b 	

4. 
 

+A1Z1(0) + A2Z2(0) + A3Z3(0) 

Finally, substituting for A 1 , A2, A3 in terms of initial states from expression (59) yields a quartic polynomial 
of the form 

where 

tf  4 + otf  2 + 	+ go  = 0 

2 	2C 	1 	11 = [Z(0) 2  + Z2(0) + Z3(0) 1 /3(1 — C) [b 
a J 

ql = 4[Zi(0)zi(0) + Z2(0)z2(0) + Z3( 0 )z3(0 )]/ 3(12f C ) 	 a] 

	

1 	1 1 

	

qo = 3[.31(0) 2  z2(0)2  z3(0) 2]/3(1 2C 
	[ 

b  _ 

(65) 

(66) 

(67) 

(68) 

The smallest positive value of the final time emerging from the polynomial (65) should be used in 
subsequent calculations. Note that the parameter C should satisfy the in equality (40) to ensure that 
these polynomial coefficients remain finite. Additionally, the polynomial coefficients qo and q2 will be 
negative if b > a. Since the coefficient corresponding to tf 3  is zero and the coefficients g o , q2  are 
negative, the Hurwitz criterion [19] in the theory of polynomials implies that this polynomial has roots 
with positive real parts. Next, forming the Routh array [19], the first column turns out to be 

[1,  Pt, -11 /PC, ql, OF 
	

(69) 

Here, n is a small positive parameter and the superscript T denotes the transpose. If q i  is less than 
zero, this array suggests that one root of the polynomial (65) will have a positive real part. On the other 
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(63) 

(64) 



hand, if qi  > 0, three roots of this polynomial will have positive real parts. Since complex roots always 
occur in conjugate pairs, the foregoing observations imply that the polynomial (65) will produce at least 
one usable value of tf. Note that the final time tf has to be iteratively determined However, since 
the objective is to determine the smallest positive real root of this polynomial, a one dimensional search 
scheme is adequate. 

An interesting special case occurs if o were zero. Note that the numerator of the coefficient q i  is 
simply the inner product of relative position and velocity vectors at the initial time If these two vectors 
are orthogonal, the coefficient q i  will be zero. This condition can be seen to be satisfied in various 
commonly encountered engagement scenarios, one of them being the case of pursuer and evader being 
instantaneously located at the same down-range-cross-range positions while in level flight at different 
altitudes and airspeeds. In these cases, the quartic (65) can be solved for in closed form. All the roots of 
(65) may be computed using the expression 

2 — q2 ± 1/42 2  —  
iv°  = 	 (70) 

2 
Both Q2 and qo will be negative if b> a. In this case, the right hand side of (70) will be strictly real. 

Finally, in order to convert the control laws (56), (57) to explicit feedback form, assume that that 
the current time t is the initial time. In this case, the quantities (t1 — t), tf may both be replaced 
by time-to-go tgo. Additionally, as discussed elsewhere in this paper, the weapon envelope components 
V1 , V2 , V3 are assumed to be available from measurements. Using these, one has 

U1= 

u2 

[z 	
Zi tge  

z2 	Z2t go  [ 

[z3+Z3t od— 
Zitool 

	

— EV1 	 (71) 

	

— EV2 	 (72) 

	

eV3 	 (73) 

(74) 

(75) 

(76) 

(a — b

3
)tgo2  

3b  = (a — b)t go 2  

3b 
U 3  = (a — b)t go 2   

3a 
= Wi (a — b)t go   2 

[zi 

3a 
W2 	 Z2tgo] — (a — b)tgo

2 [Z2 

3a 
W3 	 Z3tgd = (a — b)t g„ 2  [z3  

This completes the solution of the differential game in the feedback linearized coordinates. However, 
this solution is usable only after transformation to the original coordinates. This transformation may 
be achieved by substituting the expressions (71)-(76) in the expressions (33)-(38) given in the previous 
section. However, in order to conserve space, this step will not be carried out here. 

The guidance laws resulting from the foregoing algebraic manipulations are highly nonlinear and 
coupled. They use full state feedback along with vehicle performance related quantities such as thrust, 
drag, and mass for generating the minimax optimal feedback control settings for the pursuer and the 
evader. It is not difficult to show that these solutions satisfy the Strengthened Legendre-Clebsch necessary 
condition if a > 0, b > 0. Investigation of additional second-order necessary conditions and a detailed 
examination of the saddle point properties of this solution will be of future interest. 
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Numerical Evaluation 

The nonlinear guidance law developed in this paper was implemented on a point-mass simulation 
of two aircraft. The vehicle data used for both aircraft is similar that of a high performance aircraft 
used in previous aircraft pursuit-evasion studies [4,15]. The equations of motion were integrated using a 
fourth-order Runge-Kutta method and the aerodynamic coefficients and the thrust limits were linearly 
interpolated from a stored table. The time-to-go quartic (65) was solved using the Newton's method with 
zero as the initial guess. The derivatives of the weapon envelope components required in the guidance 
law computations were obtained using a second-order linear observer of the form 

zwo = co2 (zto  — zw.) — 2vcoi toc, (77) 

ywo = w2 (yw - v.) - 2 vw0.0 (78) 

7„,, = (.0 2  ( h,, - h„,„,) - 2vceit„,,, (79) 

In (77)-(79), w, v are the observer natural frequency and the damping ratio, respectively. The values used 
in the present numerical study are w = 10, v = 1. This observer uses the weapon envelope components 
zw , yv,,16, as the inputs to form the derivative estimates i,,,„„ O., kw, zwo, gwo, Lo. These estimates are 
then used in computing the controls for the pursuer and the evader. 

Although several rims have been made, results from one engagement scenario will only be presented 
in the ensuing. In this study, a highly eccentric prolate spheroid weapon envelope with its major axis 
aligned along the pursuer's velocity vector was considered. This weapon envelope had a minimum range 
of 10 m and a maximum range of 500 m. The two vehicles are initially separated by 2000 m in down 
range and 5000 m in cross range, with the pursuer behind the evader. The pursuer's velocity vector is 
initially aligned along the down range direction, while the evader's velocity vector points along the cross 
range direction at the initial time. The pursuer has an initial velocity is 160 m/s while flying level at 16 
km altitude. The evader has an initial velocity of 110 m/s at an altitude of 10 km, with zero flight path 
angle. The present study employed a weighting factor of a = 0.01 for the pursuer and b = 0.03 for the 
evader. The weight on the flight time was C = 0.5. The engagement time corresponding to these initial 
conditions and the given weights computed from the quartic (65) turns out to be 50.79 seconds. The 
weapon envelope weighting factor e = 1 was used in this analysis. 

Figure 2 illustrates the trajectories of both the pursuer and the evader in the cross-range down-range 
plot. Triangular markers are provided every 5 seconds to give an idea about the relative position of the 
two vehicles. To further aid in interpreting these trajectories, the flight time is indicated at 10 second 
intervals along the pursuer-evader trajectories. The turn-dash behavior of both the pursuer and the evader 
noted in previous studies [4, 12, 15] is apparent from this figure. The altitude histories corresponding 
to this engagement are given in Figure 3. Both the pursuer and the evader have negative flight path 
angles at the time of capture. The heading angle histories for both vehicles are given in Figure 4. From 
this figure, it is clear that the pursuer is attempting to continuously avoid a heading angle match. The 
airspeed histories for the two vehicles given in Figure 5 shows the pursuer slowing down during the initial 
portion of the turn followed by an acceleration. The evader, on the other hand, is accelerating through 
most of the engagement. The load factor, throttle setting and the bank angle for both the pursuer and 
the evader are shown in Figures 6, 7, 8. From these figures, it may be observed that both the pursuer and 
the evader are executing a descending turn. In order to illustrate the influence of the weapon envelope on 
the engagement, a plot of the acceleration history along the altitude direction is given in Figure 9. If the 
weapon envelope were spherical, the acceleration history would have been a straight line, as is the case 
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for the evader. However, the presence of the prolate spheroid envelope introduces strong nonlinearities 
in the acceleration history. The performance of the pursuit-evasion guidance law is apparent from these 
plots. Evaluation of these guidance laws in a more complex vehicle simulation is currently under way. 

Conclusions 

This paper presented the development of feedback guidance laws for aircraft pursuit-evasion. The 
analysis employed nonlinear point-mass models of aircraft. A realistic weapon effectiveness envelope was 
included in the analysis. Assuming that the weapon envelope components may be computed from given 
measurements, the vehicle model was transformed to a linear, time invariant form. The pursuit-evasion 
differential game was formulated using this model and the solution obtained. The performance index 
employed consisted of a linear combination of flight time and the square of the vehicle acceleration. 
Inverse transformation of this solution produces a nonlinear guidance law together with a quartic for 
the computation of the free final time. This guidance law is in closed-loop state feedback form and uses 
the vehicle performance data. Modifications of the present guidance law to include a sensor effectiveness 
envelope were sketched. 

Numerical results using high performance aircraft data were given. Since the computational re-
quirements for the guidance law are modest, it appears that this solution is implementable on-board 
aircraft. 
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