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ûL
i

∗

complex conjugate to Fourier transform of large-scale velocity.

uL
i large-scale velocity components, p. 9.

uS
i,lk

small-scale velocity components along line lk, p. 27.

uS
i small-scale velocity components, p. 9.

u′i fluctuating velocity components.

ui velocity components.

(m,n) single mode of two-dimensional perturbation in mixing layer, p. 99.

A(m,n) amplitude of mode (m,n), p. 99.

E(m,n) energy of mode (m,n), p. 99.

E3D energy of three-dimensional modes, p. 99.

Un+1
j corrected value of small-scale velocity vector at tn+1, p. 60.
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Ĥj modified high-order numerical flux, p. 60.

βji, αj, ωj coefficients of Runge-Kutta scheme.

xiv



∆ filter width, p. 3.

δ0
ω initial vorticity thickness.

δij Kronecker delta.

∆Aj surface of computational cell orthogonal to xj coordinate.

∆U velocity difference across the mixing layer.

∆V computational volume cell.

ε3D initial intensity of three-dimensional perturbations.

η Kolmogorov dissipation scale.

λi
k eigenvalues of one-dimensional small-scale system along lk line, p. 60.

ν kinematic viscosity.

Ω flow domain.

ΩL
ij, ΩS

ij large-scale and small-scale rate-of-rotation tensors.

ωL
i , ω

S
i large-scale and small-scale vorticity components.

Ωl family of one-dimensional lines, p. 26.

ψi
∆Aj

surface average of vector field ψi.

ψi
∆V

volume average of vector field ψi.

∂∆V boundary of computational cell.

ψ pressure correction increment, p. 56.

ρ density.

τ ′ij subgrid (subfilter) stress tensor.

τij subgrid stress tensor.

θ momentum thickness, p. 101.

ε dissipation rate.

ϕ(r) flux limiter function, p. 60.

ξi, γi parameters of Runge-Kutta scheme, p. 55.

xv



[ ]lk local line averaging operator, p. 28.

I∆ interpolation grid operator, p. 15.

L∆ large scale grid operator, p. 15.

S∆ local averaging grid operator, p. 15.

Cn space of continuously differentiable functions.

R
3 Euclidean metric space.

FL class of the large-scale fields, p. 15.

FS class of the small-scale fields, p. 16.

i, j, k grid node indexes.

i, j, k coordinate indexes.

AIM approximate inertial manifold.

DML Dynamic multilevel method.

DNS Direct numerical simulation.

LES Large eddy simulation.

LS large scale.

ODT One dimensional turbulence, p. 118.

PDF probability density function.

RDT Rapid distortion theory.

SFS Subfilter stress, p. 2.

SGS Subgrid stress, p. 2.

SS small scale.

TLS Two level simulation.

VMS Variational multiscale method.

xvi



SUMMARY

A novel computational approach, Two Level Simulation (TLS), which is based

on decomposition of turbulent fields into the large-scale and small-scale components

has been developed without invoking the concept of filtering. The derived coupled

system of the large-scale and small-scale governing equations has been applied to

study various cases of high Reynolds number turbulent incompressible flows. The

proposed approach is not based on eddy-viscosity type of assumptions and does not

use any adjustable model constants which is a standard practice in the existing high

Reynolds number approximate methodologies such as Large Eddy Simulation (LES)

or Reynolds-averaged Navier-Stokes equations (RANS). In addition, not resorting to

filtering in derivation of the large-scale governing equation makes the approach easily

extendable to treat geometrically complex non-homogeneous turbulent flows - area

where standard LES approach demonstrates limited capabilities.

The small-scale governing equations have been derived from the underlying Navier-

Stokes equations, and then, simplified for effective numerical treatment on a family

of one-dimensional lines embedded in three-dimensional flow domain. The introduc-

tion of such a lower-dimensional domain allows not only to reduce the computational

cost of the reconstruction of the small-scales but also to retain the three-dimensional

nature of the interaction between turbulent large-scale and small-scale eddies. The

simplification of the three-dimensional small-scale governing equations based on as-

sumptions about nature of the small-scale velocity gradients in transverse directions

to a particular line. It has been shown that a solution of the exact small-scale equation

xvii



in the one-dimensional domain is capable of exact reproducing of the small-scale field.

However, the treatment in domains of the higher dimensions requires modeling of the

transverse small-scale derivatives, and thus, leads to approximate reconstruction of

the small-scale fields.

The relationship between the transverse and longitudinal small-scale velocity deriva-

tives has been studied based on turbulent data sets supplied by Direct Numerical

Simulation (DNS). A simple model for treatment transverse first and second small-

scale derivatives based on known values of the corresponding longitudinal derivatives

has been proposed, and its implication on the solution of the small-scale equation has

been analyzed.

Finally, TLS approach has been tested to simulate standard benchmark cases of

turbulent flows including forced isotropic turbulence, mixing layers and well-developed

channel flow, and showed good capabilities to capture turbulent flow features using

relatively coarse grids.
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CHAPTER I

INTRODUCTION

1.1 Background

Turbulent flows are widespread in nature and play an important role in engineering

and earth science applications. In spite of a century of research efforts by engineers,

physicists and mathematicians, our complete understanding of turbulent “laws” still

remains elusive (Davidson [2004]). On the other hand, engineers and scientists have

been facing growing challenge to fully account for turbulent flow features, owing to

the need for more efficient engineering designs or more accurate physical predictions.

Starting from the pioneering work of Orszag and Patterson [1972], numerical ex-

periments with Navier-Stokes equations, or Direct Numerical Simulation (DNS), have

become a major tool for studying the fundamental structure of turbulence. DNS of

turbulent flows is computationally expensive because of the resolution requirement

needed to accurately represent the whole range dynamically important scales. Even

with the advent of massively parallel computers, DNS is still limited to relatively low

Reynolds number (from engineering perspective) turbulent flows in particular simple

geometries (Kaneda et al. [2003], Abe et al. [2004], Tanahashi et al. [2004]). Over

thirty years, there has been a steady rise, in terms of the attainable Reynolds (Re)

number, in DNS capabilities to simulate turbulent flows, largely as a result of the

growth in computation power. The Reynolds number Reλ , based on the Taylor

microscale (Reλ ∼
√

15Re1/2), has increased from 35 in the work of Orszag and Pat-

terson to 1217 in the simulation of Kaneda et al. [2003]. The latter work, however,
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required the power of the Earth Simulator - a massively parallel 16.4 teraflop com-

puter system, and the resolution of 40963 grid points. Nevertheless, the maximum

value of the Reynolds number which is within the DNS reach, is still significantly

below values (Re ≈ 105 − 108) that typical for engineering applications.

Large eddy simulation (LES) approach, where only large, energy containing scales

are simulated by Navier-Stokes like looking dynamic equations and the effect of the

rest scales are modeled, has been at frontier of high Reynolds (Re) number turbulent

research for long time. In LES the large scales are separated with help of filtering

operation applied to the Navier-Stokes equations and the major effort is concentrated

on modeling of the residual stress in terms of the large-scale (resolved) velocity (see,

for example, recent reviews by Piomelli [1999] and Meneveau and Katz [2000]). The

residual stress is usually referred as the subfilter stress (SFS), or the subgrid stress

(SGS) depending on the meaning of the filtering operation. Proved to be very suc-

cessfully for classical geometrically simple flows, LES has been still waiting to live up

to expectations to be a viable method to simulate high-Re number complex industrial

flows (Speziale [1998]). In addition, traditional subgrid modeling always employs em-

pirical arguments about unresolved velocity field, such as isotropy, and requires an

introduction of arbitrary model parameters. Most subgrid models possess different

shortcomings such as inability to accommodate backscatter of energy, excessive dissi-

pation in the presence of large coherent structures, poor correlation with real stresses,

to name a few (Domaradzki and Saiki [1997]). To further discuss motivation of the

current work, some limitations of LES approach are highlighted first in the following

Section 1.2.
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1.2 Motivation

LES aims to describe the dynamics of the large-scale (filtered) fields which are usually

obtained by applying a filter G(x,∆) to the actual fields to filter out the small-scales

of the flow. For example, the filtered velocity ūi is defined as:

ūi(x) =

∫

Ω

ui(y)G(x− y,∆)dy, x,y ∈ Ω ⊂ R
3, (1)

Here, ∆ is the filter width and Ω is flow domain. However the filtering procedure, be-

ing a convolution integral operation, introduces unclosed terms in the LES equations

which results in a complex task of creating a suitable model for the residual stress. In

addition to unavoidable phenomenology introduced by the residual stress model pa-

rameters, the filtering also creates extra difficulties associated with non-commutation

of the filtering operation with spatial differentiation if the filter width is not uniform

(Ghosal [1999], Fureby and Tabor [1997]). This makes it problematic to derive LES

equations in consistent way without invoking additional assumptions. It is also very

difficult to relate the statistics of the filtered fields to the statistics of the experimental

or direct numerical simulation data (Winckelmans et al. [2002], Pope [2004]). Besides,

majority of practical LES applications do not use explicit filtering in the numerical

integration of the filtered governing equation. It is tacitly assumed that the discrete

grid representation of the flow variables can be viewed as implicitly ‘grid filtered’,

i.e., ũi, where tilde denotes implicit filtering (Rogallo and Moin [1984]). The implicit

filtering operation can not be expressed in closed analytical form and depends on the

underling grid.

Assuming that filtering and differentiation commutes, which is true only for con-

stant width explicit filters in infinite or periodic domains, non-commutation between

filtering and product operations gives rise to the introduction of the residual stress
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τij = uiuj − ūiūj into the LES equations. This stress can be viewed as the commu-

tator between filtering and product operations acting on the total velocity field ui

(Carati et al. [2001], Geurts and Leonard [2002]). This residual stress is assumed to

be computable during numerical simulations and needs to be modeled in terms of

the resolved velocity τij(ūi) in order to close the LES equations. However, as it was

pointed out in a number of recent works of Winckelmans et al. [2002], Lund [2003],

De Stefano and Vasilyev [2004], the replacement of uiuj by ūiūj + τij automatically

leads to a mathematical inconsistency. This is because the convective product term

ūiūj has the spectral support bigger than any other term in the filtered Navier-Stokes

equations. As a result, the high wave number modes generated due to the non-linear

interaction and extended beyond the smallest resolvable LES scale can not be fully

computed by the LES equations. In spectral space, the convective product term ūiūj

is represented by the convolution of spectral velocity with itself, and therefore, has

twice bigger spectral support than the filtered velocity ūi (Egorov and Shubin [1998]).

As a result, in practical computations the high wave-number modes can alias back to

the resolved part of the spectrum producing undesirable effects on the dynamics of

the resolved turbulent scales. To alleviate this inconsistency and to retain the spectral

content of the convective product term an additional explicit filtering is suggested in

the form τ ′ij = uiuj − ūiūj. Additional explicit filtering has clear advantages over the

implicit filtering allowing better control of the numerical error and consistent com-

parison of the LES results with the filtered DNS or experimental data (Lund [2003],

De Stefano and Vasilyev [2004]). However, there are still drawbacks of the explicit

filtering approach. In addition to the higher computational cost, the new represen-

tation of the residual stress τ ′ij is not Galilean invariant unless the imposed filter is

a spectral cut-off filter (Vasilyev et al. [1998], Lund [2003]). This effectively dimin-

ishes the capabilities of the explicit filtered LES to study turbulent flows in complex
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geometries, when finite volume or finite difference schemes are employed.

To accommodate the implicit filtering action of the grid into continuous LES

equation the formal superposition of explicit and implicit filtering is usually considered

which leads to the doubly filtered Navier-Stokes equations for ˜̄ui and ˜̄p (Carati et al.

[2001]). Formally consistent, double filtering produces new types of stresses in the

total residual stress decomposition. Indeed, the total residual stress arising from the

double filtering can be written as a sum of sub-grid large scale stress (SGLS) and the

grid filtered sub-filter stress (GFSFS), i.e., ˜̄τij = ˜̄σij +T̃ ij, where ˜̄σij = ˜̄ujūk− ˜̄̃
uj ˜̄uk and

T̃ ij = ũjuk− ˜̄ujūk (see, for example De Stefano and Vasilyev [2004]). This procedure

requires triple and quadruple filtering application which set additional challenges for

viable modeling of the residual stresses. Furthermore, in practical application of

the explicit filtering, in order to clean the highest wave number contributions, the

explicit filtering is superimposed onto the implicit filtering which requires additional

assumptions that the explicit and implicit filtering commute, i.e. ˜̄ui = ¯̃ui (Carati

et al. [2001]).

There is yet another “non-commutative” feature of the filtering operation, which

has received very little attention in the LES literature. In general, the filtering op-

eration does not commute with differentiation unless the filter width is constant.

Evidently, such filters are not well suited for LES studies of geometrically complex

turbulent flows where high turbulence regions may coexist with weakly turbulent or

laminar regions. Most works in this direction have been focused on two major ap-

proaches: the construction of explicit filters which can commute with differentiation,

at least up to the order of accuracy of the numerical scheme, and the explicit adding

of the non-commutation terms into the filtered Navier-Stokes equation. Ghosal and

Moin [1995] proposed an explicit filtering scheme that results in the additional com-

mutation terms which are of the second order with respect to the filter width. The
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construction of commutative non-uniform filters was further addressed by van der Ven

[1995] and Vasilyev et al. [1998]. The later work uses mapping of the non-uniform grid

in physical domain to the uniform grid in computational domain where the constant-

width filtering can be performed. This approach was further generalized by Marsden

et al. [2002] to construct commutative filters for unstructured grids. The second ap-

proach has received attention in the recent work of Geurts and Leonard [2002] who

proposed the general LES equations with included non-commutative terms. The au-

thors emphasized, contrary to approaches which are based on the commutative filter

construction, that the non-commutative terms do not vanish for any non-uniform

filter and have to be accounted and modeled explicitly. However, the explicit adding

of the non-commutation terms into the filtered Navier-Stokes system not only would

complicate the LES equations but also would require additional modeling of these

new terms analogous to the modeling of the residual stresses. A challenging task of

modeling of the non-commutation terms has been further addressed in the work of

van der Bos and Geurts [2005].

Accounting for these new unclosed terms adds extra challenges to the LES method-

ology when modeling of the near-wall turbulence is required. This area is especially

critical for LES in order to become a viable predictive tool for high-Re number en-

gineering flows. The key difficulties originate in the presence of quasi-streamwise

and hairpin vortices that play a dominant dynamic role in the near-wall turbulence.

To resolve these structures, a fine (comparable to DNS) grid resolution is required

not only in wall normal direction but also in the spanwise and streamwise direction.

Computational complexity of resolving the wall layer (minimal number of the resolved

scales) is Reynolds number dependent, and scales approximately as Re1.8 (Chapman

[1979]). So far, most subgrid models perform poorly in the near-wall region when the

grid resolution allows practically achievable computations.
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Giving the facts that the filtering leads to extra assumptions in the derivation of

the LES equations, as well as difficulties in their implementation at discrete level,

it is therefore, not well suited framework for geometrically complex turbulent flows.

The major objective of this work is to propose a framework which requires the least

modeling efforts and allows treatment of complex geometry without adopting major

assumptions or adding extra terms in the large-scale governing equations. Under

the proposed framework the continuous large-scale equations are formulated without

explicitly resorting to or using the classical LES filtering approach. Some earlier

attempts of applying the current approach to simulate turbulent non-homogeneous

flows, such as mixing layers or a channel flow, were reported elsewhere (Kemenov and

Menon [2002, 2004]).

1.3 Outline

This thesis is organized as follows:

� Chapter 2 provides a brief introduction to the existing decomposition methods

that serve as alternatives to the standard LES or DNS approaches. Some lim-

itations that may prevent these methods to be extended to simulate turbulent

flows in complex geometries are discussed.

� In Chapter 3, the large-scale and small-scale governing equations are formulated

without invoking the concept of filtering. It is shown that if the large-scale field

is defined as the filtered quantity, then the large-scale equations produce the

standard LES equations. Furthermore, to reduce computational complexity,

the 3D small-scale equations are introduced on a family of 1D lines. Such a

representation requires modeling of the transverse small-scale velocity gradients

on the lines. A simple model that is based on a priori analysis of the DNS
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data sets is proposed and its implications are discussed. Finally, numerical

algorithm for the coupled integration of the large-scale and the simplified small-

scale governing equations is presented.

� Chapter 4 gives a background information on the numerical methods employed

for integration of the large-scale and the small-scale governing equations.

� Chapter 5 describes in detail the application of the current methodology to dif-

ferent types of turbulent flows. A particular simple case of the randomly forced

1D Burgers equation is discussed first, with a focus on the small-scale solu-

tion. The Burgers equation remains a popular toy model for testing turbulence

theories of Navier-Stokes equations. Being different in physics, the Burgers

turbulence possesses some general turbulent properties like nonlinear redistri-

bution of energy over range of scales, dissipation of energy at small scales due to

viscosity, and intermittency. The Burgers turbulence provides a case where the

small-scale equation can be studied without any modeling assumptions. Here,

the effects of neglecting various non-linear small-scale terms on the small-scale

solution are discussed also. The current approach is further tested by a simu-

lation of the forced homogeneous and isotropic turbulence. Non-homogeneous

turbulence of the well developed channel flow and the temporal mixing layer

provides other benchmark cases for evaluating capabilities of the current ap-

proach. These cases are discussed in the last two sections of Chapter 5.

� Chapters 6 contains concluding remarks, and Chapter 7 outlines possible direc-

tions for the future research.
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CHAPTER II

DECOMPOSITION METHODS FOR

TURBULENT FLOWS

2.1 Introduction

The current approach, called Two Level Simulation (TLS), does not require explicit

or implicit filtering, and provides more freedom to describe the contribution of the

unresolved (small-scales) scales. It can be related to multiscale decomposition meth-

ods. In these methods the total flow fields (for example velocity) are decomposed

into the large-scale (resolved) uL
i and the small-scale (unresolved) uS

i components:

ui = uL
i + uS

i , (2)

and then the coupled system of the large-scale and small-scale governing equations is

derived.

Multiscale description of turbulent flows have been proposed recently by several

authors including, among others, Hylin and McDonough [1999] as the Additive Tur-

bulent Decomposition approach; Dubois et al. [1998], Dubois and Jauberteau [1998],

Dubois et al. [1999] as the Dynamic Multilevel Method; Hughes et al. [2000], Hughes

et al. [2001a], Hughes et al. [2001b] as the Variational Multiscale Method; Laval et al.

[1999], Laval et al. [2001], Dubrulle et al. [2001] as the Rapid Distortion Theory

model.
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2.2 Overview of Existing Approaches

Most of these multiscale methods, with the exception of the Rapid Distortion Theory

(RDT) model, adopt the weak formulation of the Navier-Stokes equations, which

allows to view the large-scale field as a projection on a subspace spanned by the first

elements of the adopted functional basis, and the small-scale field as a projection on

the compliment subspace. The common feature of these methods is the derivation

of the small-scale governing equation which is needed for explicit computation of the

small scales. As the result, the large-scale equation can be treated as closed, since

the residual stress is directly computable once the small-scale field is known.

The full coupled simulation of the large-scale and the small-scale governing equa-

tions is clearly computationally not viable since it will require DNS-like resolution to

accurately represent the small-scale motions. Therefore, some physical reasoning is

usually invoked to simplify the small-scale governing equation and make it compu-

tationally tractable. For example, in the RDT model the scales are separated using

standard LES filtering, and the small-scale equation is derived by subtraction of the

filtered (large-scale) equation from the full Navier-Stokes equation. The small-scale

equation can be simplified further by retaining only the nonlinear products of the

large-scale and the small-scale velocities, while all other product terms can be mod-

eled using a turbulent viscosity and stochastic forcing, which leads to the linear form

of the small-scale equation and resembles the RDT equation (Laval et al. [1999]). The

approach was applied to study several cases of 2D turbulent flows as well as more

complex case of the 3D decaying, isotropic turbulence, though in spectral representa-

tion. Simultaneous numerical treatment of the coupled large-scale and the small-scale

equations led to an increase in computational time by a factor of 3 (!) over standard

DNS (Laval et al. [2001]). The linear structure of the small-scale RDT equation was
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further exploited by implementing the Lagrangian time integration scheme to the

Gabor transformed form of the small-scale equation (Laval et al. [2004]). Such pro-

cedure resulted in substantial saving in computational time (up to a factor of 100)

for 2D turbulent simulation compared DNS. However, in spite of the simplified linear

structure of the small-scale RDT equation, it still remains to be seen if the model

would be applicable to treat non-homogeneous turbulent flows in complex geometries.

Another class of multiscale numerical strategies referred as the Dynamic Multi-

level Methods (DML) originates from the dynamical systems theory and the utilizes

the mathematical concept of approximate inertial manifold (AIM) that can be intro-

duced to approximate the attractor of Navier-Stokes equations (Foias et al. [1988]).

Qualitatively, it can be thought as a state where the small-scales are slaved to the

large-scales leading to an approximate relation (slaving law) uS
i = Ψ(uL

i ) which defines

the AIM of the Navier-Stokes system in the infinite-dimensional phase space. Sim-

plification of the small-scale equation based on physical grounds (Foias et al. [1991],

Manley et al. [1995]), and obtained by neglecting the non-stationary term, the mixed

large-scale/small-scale term and the mutual small-scale product term, leads to a re-

lation for the AIM providing the closure for the large-scale dynamic equations. The

DML approach has been developed and applied to simulation of 2D and 3D turbulent

flows by Dubois et al. [1998], Dubois and Jauberteau [1998], Dubois et al. [1999],

and resulted in the reduction of computational time up to a factor of 3 compared

to DNS. However, most DML applications have been implemented in spectral space

for homogeneous isotropic flows in periodic domains. Spectral extension of the DML

to treat non-homogeneous direction in turbulent channel flow has been reported by

Bouchon and Jauberteau [2001]). Based on results of this work the authors suggest

that the DML needs to be replaced by the multi-domain decomposition technique to

separate scales in order to treat flow in complex geometries.
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Recognizing high computational cost of the explicit simulation of the small-scale

equation, a different approach was adopted by Hughes et al. [2000] in developing the

Variational Multiscale Method (VMS). Instead of resolving all dynamically relevant

small-scale motions, the small-scale equation is solved on a relatively coarse grid,

while the “unresolved” part of the small-scale residual stress is modeled by using the

Smagorinsky eddy viscosity model. To separate the scales, the large-scale equation

is treated on an even coarser grid, for example twice coarser grid. Thus, in the VMS

approach all modeling is confined to the small-scales equations only, while the large-

scale equations are closed (Hughes et al. [2000]). However, as it was pointed out

by Collis [2001], this is only partially true. Clearly, since the small-scales are repre-

sented by resolved modes, the unresolved portion of the small-scales still affect the

large scales, and therefore corresponding terms requires modeling rather than being

neglected. The spectral VMS method with the Smagorinsky model has been success-

fully applied to simulate 3D decaying isotropic turbulence (Hughes et al. [2001a]) and

low Reynolds number 2D turbulent channel flow (Hughes et al. [2001b]).

The other possible drawbacks of the VMS approach are worth mentioning. First,

adding non-linear viscosity term, in the form of the Smagorinsky model, to the small-

scale equations ensure extra dissipation at the small scales, but suppress a possible

backscattering of energy at the grid cut-off level, i.e., from the unresolved small-

scales to the resolved small-scales. This may be important for complex, wall-bounded

flows, especially taking into account that the small-scale equations is solved on a

relatively coarse grid. Second, it is difficult to decide how coarse the resolution of

the large-scale grid should be relative to that of the small-scale grid which is already

coarse and limited by computational cost. If the large-scale grid is too coarse, the

small-scale equations, which is forced by the large-scales, may lead to unphysical

small-scale solution. Finally, an extension of the VMS method for finite volume
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or finite difference codes implemented in physical, rather than spectral space, is a

very non-trivial task. Being formulated in the weak sense, the VMS method requires

construction of the complete hierarchical functional bases in physical space to separate

scales by projection, which is difficult to reconcile with the finite volume or finite

difference discrete representation.

The present (TLS) approach follows the general logic of multiscale decomposi-

tion methods assuming that flow fields are split into the large-scale and the small-

scale components. However, they are two major distinctions from others multi-scale

methodologies. The TLS governing equations are formulated in the strong sense, i.e.,

without resorting to integral form representation over corresponding trial functional

spaces, and do not use notion of filtering to separate scales. Instead, the large-scale

fields are defined based on an underlying coarse grid. This makes the approach eas-

ily adaptable for the finite volume and finite difference methods on geometrically

complex, non-uniform grids. In order to reduce computational costs the small-scale

equations are solved on a “reduced” 3D domain, rather than the full 3D flow domain.

This domain represents a collection of intersecting lines embedded in the 3D domain.

As a result, the small-scale governing equations along these lines can be treated in a

parallel fashion, making the TLS approach computationally feasible.
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CHAPTER III

MATHEMATICAL FORMULATION

3.1 Decomposition of Governing Equations

Decomposition approach is quite common in derivation of various governing equations

in fluid mechanics ranging from acoustics equations to Reynolds averaged equations

for turbulent flows. Here, we consider a case of the incompressible turbulent flow

with uniform density ρ which can be described by velocity and pressure fields (ui, p)

and governed by Navier-Stokes equations in 3D domain Ω.

∂ui

∂t
+
∂uiuj

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂x2
j

,
∂ui

∂xi
= 0 (3)

To ease further notations, we also drop density in the pressure gradient term assuming

that it is included in the pressure field. When kinematic viscosity ν = µ/ρ, character-

istic length L and velocity U scales of a problem are such that the Reynolds number

Re = UL/ν is sufficiently high then the flow is turbulent. The challenge here is to

demonstrate a computationally feasible method that can be used to simulate high-Re

flows.

In the LES approach, the grid resolution requirement can be substantially low-

ered by considering filtered fields (ūi, p̄). However, the large-scale field can also be

obtained without using filters. A discrete LES approach, which based on sampling

of the total velocity instead of filtering has been proposed by Knaepen et al. [2005]

and alleviates some difficulties of the traditional LES. Very often in practical com-

putations or experiments, flow field is known on the coarse (large-scale) grid and can

be thought of as the approximations to the sampled values of the true flow fields
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(ui, p). Clearly, such an interpretation of the large-scale velocity is more consistent

with probe measurement in experiments than the filtered velocity field.

In order to formulate TLS governing equations without invoking a concept of fil-

tering, a class of the large-scale (LS) functions FL is introduced first. Any LS quantity

which belongs to this class is denoted by superscript L, i.e., uL
i ∈ FL represents the

LS velocity. Before defining the main property of the class FL, we present two ex-

amples of the LS functions which can be viewed as members of FL. The first one is

the filtered LES velocity defined by Eq. (1). The second example can be constructed

based on the underlying LS grid G∆ and the total velocity ui with help of the LS

operator L∆:

uL
i (x) = L∆ui(x) = I∆ ◦ S∆[ui(x)], (4)

S∆ : ui(x) −→ uL
i (xk), I∆ : uL

i (xk) −→ uL
i (x),

xk ∈ G∆ ≡ {x1, . . . ,xN} ⊂ Ω

Here, S∆ is a local averaging operator, I∆ is analogous to interpolation operator and

acts on discrete function uL
i (xk) mapping it to continuous LS velocity uL

i (x). The

local averaging operator S∆ can be quite general and time dependent. It depends on

the LS grid G∆ and the algorithm how the discrete LS value is actually obtained. The

simplest case of S∆ is the sampling operator when the LS velocity values is defined

as the velocity values at the nodes of G∆, i.e., uL
i (xk) = ui(xk). In more complex

cases, the local averaging over some line directions (one or several) or volume can be

applied. The LS quantity given by Eq. (4) is unique when the averaging operator

S∆ and the operator I∆ are fixed. In terms of “degrees of freedom” this construction

is similar to traditional filtering, since the filtered field is also defined uniquely when

two parameters are specified (the functional form of filter G and the filter width ∆).

However, the construction (4) is more versatile since it can allow non-uniform grids
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with different local clustering, thus resolving different range of scales in various parts

of the flow domain.

There are infinite number of possibilities to define L∆, and generally, its exact

structure is not known. Therefore, a class FL is not defined based on operator form

as given by Eq. (4) or (1). In addition, FL may contain some other LS fields which can

not be represented in operator form, whether they are obtained by convolution with a

filter or by means of a composite operator L∆. Instead, we will assume that for a given

LS grid G∆, FL ⊂ Cn
[
Ω×(0,∞)

]
and consist of fields with “approximately” bounded

spectral support. That means that the spectral energy content of the second derivative

of the LS field decays sufficiently fast beyond the maximal grid resolvable mode k∆

such that we can consider the LS field and its derivatives (first and second) to have

the same support. This assumption can be motivated by the fact that differentiation

in physical space is equivalent to multiplication by wavenumber k in a spectral space,

and therefore it does not enlarge the spectral support (as oppose to product operation)

but merely amplify the energy content of the smallest modes.

A class of the LS fields FL gives rise to a class of the the small-scale (SS) fields

FS based on decomposition:

uS
i = ui − uL

i , pS = p− pL (5)

In other words, for any LS field uL
i ∈ FL the difference ui− uL

i ∈ FS is considered to

be the SS field and denoted by superscript S.

In spectral space, the SS field, being the complement to the total field, dominates

dynamically (relative to the LS field) for modes beyond k∆. There also exists a δ-

region around k∆, which corresponds to the smallest LS eddy size, where the SS field
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is energetically comparable with the LS field. Schematically it can be written as:



eL(k)� eS(k), k < k∆ − δ/2,

eL(k) ≈ eS(k), k∆ − δ/2 < k < k∆ + δ/2,

eL(k)� eS(k), k > k∆ + δ/2

where eL and eS are spectral energies of the LS and the SS fields. This is further

illustrated in Fig. 1 for the case of isotropic turbulence. The LS field is explicitly

computed based on 323 uniform grid from a forced isotropic DNS data set given on

1283 grid (Yeung and Zhou [1997]). The operator S∆ is the averaging along three

orthogonal lines parallel to coordinates and intersecting at the LS grid cell. The

operator I∆ is chosen to be the cubic spline interpolation and extend the LS field

onto the DNS grid. Note that this choice of the splitting produces the SS field

such that the SS energy of the modes with k<k∆ (LS modes) is greater then the

SS energy of the modes with k>k∆ which correspond to the SS motions. In case

of non-homogeneous turbulence, when non-uniform grids are used, all considerations

stay the same with the exception that the LS and the SS energies are functions in 3D

spectral space, i.e. eL(k1, k2, k3), e
S(k1, k2, k3) and k∆ is defined as a closed surface

k∆(k1, k2, k3) = 0. It is also clear that the SS field solely depends on the LS field

through decomposition Eq. (5), and can be quite large and even comparable to the

LS field in magnitude. Nevertheless, the notion of “small-scale” is consistently used

to refer to such fields.

Note that in constructing the classes FL and FS the corresponding mathematical

rigor is not pursued. Instead, in this thesis we focus on developing a generic compu-

tational framework which does not depend on filtering to describe the dynamics of

the LS turbulent fields.

Decomposition similar to Eq. 5 can be also applied to a product fields obtained

from ui and p. For example, the nonlinear product of velocities uiuj can be written
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Figure 1: SS energy (solid line), LS energy (dashed line) and total DNS energy (thin
solid line) spectra for the case of isotropic turbulence. Maximal grid resolvable mode
k∆ is shown by dotted vertical line.
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as the sum of the LS and the SS components:

(uiuj)
L + (uiuj)

S = [(uL
i + uS

i )(uL
j + uS

j )]L + [(uL
i + uS

i )(uL
j + uS

j )]S (6)

To substitute the original problem given by Navier-Stokes equation the following

coupled system of the LS and the SS equations is proposed:

Proposition 1 Let the LS and the SS velocity and pressure fields be such that ui =

uL
i + uS

i , p = pL + pS, and uL
i , pL ∈ FL, uS

i , pS ∈ FS. Then a coupled system of the

LS and the SS equations:

∂uL
i

∂t
+

∂

∂xj

[
(uL

i + uS
i )(uL

j + uS
j )

]L

= −∂p
L

∂xi
+ ν

∂2uL
i

∂x2
j

(7)

∂uS
i

∂t
+

∂

∂xj

[
(uL

i + uS
i )(uL

j + uS
j )

]S

= −∂p
S

∂xi
+ ν

∂2uS
i

∂x2
j

(8)

is equivalent to the original Navier-Stokes equation.

To show that Eqs. (7) and (8) can be obtained from the original Navier-Stokes

equations one can substitute Eq. (5) into Eq. (3). Rearranging terms produces the

coupled set of the LS and the SS equations:

∂uL
i

∂t
+

∂

∂xj

(uL
i + uS

i )(uL
j + uS

j ) = −∂p
L

∂xi

+ ν
∂2uL

i

∂x2
j

+ F S
i (uS

i , p
S) (9)

∂uS
i

∂t
+

∂

∂xj
(uL

i + uS
i )(uL

j + uS
j ) = −∂p

S

∂xi
+ ν

∂2uS
i

∂x2
j

+ FL
i (uL

i , p
L) (10)

where the forcing terms F L
i and F S

i are given as:

FL
i (uL

i , p
L) = −∂u

L
i

∂t
− ∂pL

∂xi
+ ν

∂2uL
i

∂x2
j

(11)

F S
i (uS

i , p
S) = −∂u

S
i

∂t
− ∂pS

∂xi

+ ν
∂2uS

i

∂x2
j

(12)

The LS and the SS velocities affect each other through F S
i , FL

i , which both explicitly

depend only on the corresponding LS or SS fields, and the nonlinear product term.
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It is seen that Eqs. (9), (10) represent the same Navier-Stokes equation, and only

written for different velocities uL
i or uS

i . In spite of the similar functional form,

Eqs. (9), (10) would describe different LS and SS evolution problems since they

are subject to different boundary conditions and different forcing given by F L
i and

F S
i respectively. Note that these intermediate LS and SS equations are dictated by

decomposition ui = uL
i + uS

i . This equation can be viewed as a redundant change

of variables from ui to twice bigger set of variables (uL
i , u

S
i ). As a result, one needs

to specify six governing equations to describe the problem. However, introduction of

twice bigger set of variables leads to increase of dimensionality of phase space. We

make use of this redundancy by exploiting properties of the LS and the SS fields to

simplify Eqs. (9), (10).

Explicitly expressing the LS and the SS parts of the nonlinear term in both equa-

tions according to Eq. (6) gives another set of the LS and the SS equations:

∂uL
i

∂t
+

∂

∂xj

[
(uL

i + uS
i )(uL

j + uS
j )

]L

= −∂p
L

∂xi
+ ν

∂2uL
i

∂x2
j

+GS
i (uL

i , u
S
i , p

S) (13)

∂uS
i

∂t
+

∂

∂xj

[
(uL

i + uS
i )(uL

j + uS
j )

]S

= −∂p
S

∂xi

+ ν
∂2uS

i

∂x2
j

+GL
i (uL

i , u
S
i , p

L) (14)

Here, the LS and the SS forcing terms GS
i , GL

i are given by:

GL
i (uL

i , u
S
i , p

L) = FL
i (uL

i , p
L)− ∂

∂xj

[
(uL

i + uS
i )(uL

j + uS
j )

]L

(15)

GS
i (uL

i , u
S
i , p

S) = F S
i (uS

i , p
S)− ∂

∂xj

[
(uL

i + uS
i )(uL

j + uS
j )

]S

, (16)

Both Eqs. (13) and (14) are still equivalent to the original Navier-Stokes Eq. (3)

and can be re-written in a compact form:

GL
i (uL

i , u
S
i , p

L) +GS
i (uL

i , u
S
i , p

S) = 0 (17)

It is seen that, under our assumption, GL
i and GS

i represent the LS and the SS

fields, since all terms in their definitions belong to FL and FS class, respectively.
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In particularly, Eq. (17) holds if both the LS and the SS parts are equal to zero

simultaneously:

GL
i (uL

i , u
S
i , p

L) = 0, GS
i (uL

i , u
S
i , p

S) = 0 (18)

To present some supportive arguments that solution given by Eq. (18) is a good

candidate to be a unique solution of Eq. (17) we use a proof by contradiction. We

assume that Eq. (18) is not true, i.e., GL
i 6= 0. As a result, GL

i , being the LS field, has

substantial non-zero energy in LS modes. Without loss of generality one can assume

that most energy is concentrated at some wavenumber kL < k∆ which is well into

the LS spectral content, as shown schematically in Fig. 2(a). From Eq. (14) it is

seen that GL
i is the forcing term for the SS velocity field uS

i . Therefore, the solution

of the SS equation subject to the LS forcing would cause the SS energy eS not to be

small in comparison with the LS energy eL for the LS mode spectral content (k<k∆),

which contradicts to the definition of the SS velocity field since uS
i /∈ FS.

Thus the LS spectral content of GL
i should be negligible or zero in the neighbor-

hood of kL. If one moves kL towards the cut-off wave number k∆, then it is clear

that the same reasoning can be applied up to the δ-neighborhood of k∆. As a result,

GL
i should be zero function, or a function which is negligible everywhere, except the

δ-neighborhood of k∆, as shown in Fig. 2(b). From Eq. (17), it is seen that GS
i

should be also zero function, or the same function as GL
i (with an opposite sign) and

with the same spectral content negligible everywhere and peaking at k∆. This can be

written schematically as:





eL(k) ≈ eS(k) ≈ ε, k < k∆ − δ/2,

eL(k) ≈ eS(k) ≈ e∆, k∆ − δ/2 < k < k∆ + δ/2,

eL(k) ≈ eS(k) ≈ ε, k > k∆ + δ/2

with ε� e∆.
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(a)

(b)

Figure 2: (a) Sketch of the assumed spectral energy of GL
i forcing term; (b) sketch

of a possible spectral energy of GL
i which would satisfy GL

i +GS
i = 0. Note that GL

i

does not represent neither the LS field nor the SS field. Typical spectral energy of
the LS field is shown by dashed line. Maximal grid resolvable mode k∆ and LS mode
kL are shown by dashed vertical lines.
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It is now seen that being this non-zero function, GL
i and GS

i lose their LS and

SS properties, and do not belong to FL and FS classes anymore. Clearly, GL
i and

GS
i do not have substantial LS or SS energy contents over the corresponding range

of scales, thus GL
i /∈ FL and GS

i /∈ FS. In fact, they become indistinguishable, and

the decomposition loses its meaning. Therefore, Eq. (18) must be hold, since zero

function is the only element which belongs to both FL and FS classes simultaneously.

Substituting Eq. (18) into Eqs. (13, 14) gives the LS equation (7) and the SS equation

(8). Note that the spectral overlap between uL
i and uS

i does not affect these arguments

since they are applied to the forcing terms GL
i and GS

i only.

A proof in the opposite direction follows immediately if one adds Eqs. (7) and

(8). Then, it is seen that the sum of the LS and the SS solutions uL
i + uS

i , pS + pL

satisfies the original Navier-Stokes equation.

Note, that the forcing terms F S
i , FL

i can also be written in alternative form.

Equations (15, 16) give:

FL
i =

∂

∂xj

[
(uL

i + uS
i )(uL

j + uS
j )

]L

, F S
i =

∂

∂xj

[
(uL

i + uS
i )(uL

j + uS
j )

]S

(19)

As a result, the nonlinear convective term in the SS equation represents the SS part

of the total convective term and can be further rewritten in a more convenient form.

Substituting Eq. (19) into Eq. (8) gives the equivalent form of the SS equation:

∂uS
i

∂t
+

∂

∂xj
(uL

i + uS
i )(uL

j + uS
j ) = −∂p

S

∂xi
+ ν

∂2uS
i

∂x2
j

+ FL
i (20)

The LS Eq. (7) is, in fact, the standard LES equation. Rewriting the LS equation

using LES notation, i.e., uL
i → ūi, u

S
i → u′i, p

L → p̄ gives:

∂ūi

∂t
+

∂

∂xj
ūiūj = − ∂p̄

∂xi
+ ν

∂2ūi

∂x2
j

− ∂

∂xj
(uiuj − ūiūj), (21)

where the last term represents the derivative of the residual stress τij = uiuj− ūiūj =

u′iu
′
j + ūiu′j + u′iūj In LES, Eq. (21) is usually derived by filtering of the original
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Navier-Stokes equations and assuming commutativity between filtering and differen-

tiation. Similarly Eq. (7) can be formally obtained by applying L∆ to the original

Navier-Stokes equation, and further assuming its commutativity with differentiation.

However, the formal application of L∆ to derive the LS equation is questionable on

at least two accounts. First, it implicitly assumes that the LS solution should be

sought only in particular form, as defined by specific structure of L∆. This might

effectively narrow the LS class FL. In addition, in general case the structure of L∆

is not known. Second, the intermediate presence of the discrete averaging operator

S∆ might potentially destroy the well-posedness of the LS problem (which should be

desired criterion for mathematically consistent LS models (Guermond et al. [2004]).

For these reasons, in the present formulation the LS equations are not derived based

on formal application of L∆, or filtering.

This can be further illustrated by considering a simple 1D diffusion equation

∂tu = ν∂2
xxu on an infinite domain. Let us further assume that L∆ is a composition

of the interpolation cubic spline operator I∆ and the grid sampling operator S∆. If

one applies L∆ to derive the LS equation analogous to Eq. 7, the following formal

LS equation is produced:

∂tu
L = ν∂2

xxu
L −

(
L∆[∂tu]− ∂tu

L − νL∆[∂2
xxu] + ν∂2

xxu
L
)

(22)

On the other hand, the LS diffusion equation ∂tu
L = ν∂2

xxu
L has a solution given by

the Poisson formula:

uL(x, t) =
1

2
√
πνt

∫ +∞

−∞

exp

[
− (x− y)2

4νt

]
uL

0 (y)dy.

It is seen that even if the LS initial condition is uL
0 = L∆[u0], the LS solution itself can

not be exactly represented in the form uL(x, t) = L∆[u(x, t)], since it is a convolution

integral of the fundamental solution with a cubic spline function uL
0 . It means that
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a class of functions uL which is defined by L∆ (i.e., cubic-spline polynomials) where

we look for solution of the LS equation, is too “narrow” and can not accommodate

the actual solution uL. This results in appearance of extra non-commutative terms

in Eq. (22).

Similar qualitative reasoning which was used to justify Eq. 18 can be also applied

to the continuity constraint, which leads to the LS and SS equations, ∇iu
L
i = r

and ∇iu
S
i = −r. Here, a function r(x) is zero, or has a negligible energy content

everywhere, except a neighborhood of k∆. To satisfy a requirement of being the LS

and SS field simultaneously, one has to choose r(x) = 0 which results in the LS and

the SS continuity equations:

∂uL
i

∂xi
= 0,

∂uS
i

∂xi
= 0 (23)

Physically, such an interpretation of r(x) has also clear meaning by specifying incom-

pressible the LS and the SS velocity fields, as opposed to a case where r(x) 6= 0. By

considering different k∆, it is seen that in latter case r(x) should depend on k∆ which

leads to unclear physical constraints for the LS and the SS velocities.

In summary, the coupled system of Eqs. (7) and (20) along with the constraint (23)

supplied by appropriate initial and boundary conditions completely defines evolution

of the LS and the SS fields in TLS approach.

3.2 Treatment of Small-Scale Equation

Numerical simulation of the 3D SS equation is computationally challenging since it

would require the resolution of the whole range of small scales. On the other hand,

the LS equation is solved on a coarse LS grid with a time step comparable to the

characteristic turnover time of the smallest resolvable LS eddy. As a result, the

complete knowledge of the SS field in space and time is not necessary since one only
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Figure 3: The SS line arrangement within a 3D LS cell. One component of the SS
velocity is shown on each line schematically.

needs to know the SS fields on the LS grid at the LS time scale in order to close

the LS equation. Based on the premise that all SS nonlinear terms are important we

propose to treat the SS equation on a “lower-dimensional” domain.

To reduce computational expenses, while retaining two-way coupling between the

LS and the SS fields, the SS equation (Eq. (20)) is solved on a collection of 1D lines

embedded in domain Ω, rather than in the whole domain Ω. In general, there are no

any restrictions on the position of lines in Ω and their curvature. Here, for simplicity,

we consider a family of lines Ωl= {ljk}, k = 1, 2, 3, j = 1 . . .Nk, where Nk denotes

a number of lines parallel to the corresponding LS coordinates {xk}. This family

consists of
∑

k Nk lines which intersect each other at the LS grid nodes, as shown in
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Fig. 3. The SS velocity fields defined on these lines as:

uS
i (x, t) −→ uS

i,lk
(lk, t), x ∈ lk ⊂ Ω (24)

The SS field uS
i,lk

is viewed as a snapshot of the SS turbulent velocity along the line

lk.

In TLS, the SS field is computed in the domain Ωl only, while the LS field is

simulated in the whole 3D domain Ω. Assuming that one needs N 3
S points to resolve

the smallest dynamically important scales for DNS, and N 3
L points to resolve the large

scale dynamics, as in LES, results in the TLS resolution requirement of N 3
L + 3N2

LNS

points to represent both the LS and the SS fields. Thus, the TLS approach would fall

in a category between DNS and LES. However, it is often the case for LES that N 3
L

has to be quite high (NL → NS) in highly turbulent regions, for example near walls,

to accurately predict the LS dynamics because of the inherent limitations of the SGS

models (Piomelli and Balaras [2002]). In TLS, since the LS and SS are explicitly

coupled, the less severe resolution requirements might be expected. In addition,

simulation of the SS fields on the 1D lines, which requires 3N 2
LNS point resolution,

can be done in parallel, thereby, reducing computational cost substantially.

Treating the SS fields on the reduced domain Ωl is computationally more efficient,

but there is a price to pay. When written on a line, say l1 = {x1, x2 = C2, x3 = C3},

where C2, C3 are constants, the SS Eq. (20) is not closed and requires knowledge

of the first derivatives of the SS velocity and pressure, and the second derivatives

of SS velocity in the directions l2, l3 (which are orthogonal to the line l1). Thus, all

derivatives of the SS fields in transversal directions to a given line have to be modeled,

although, all derivatives along the line can be computed as a part of solution. The

second difficulty arise from the fact that at the LS grid nodes, where the lines lk

intersect, the SS field becomes overdetermined since its values can be found from
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all three intersecting lines, and these values are not necessarily the same. Explicit

requirement to have unique values of the SS fields at the LS grid points would lead

to coupling of SS fields on different lines at those points, and therefore, is not viable

computationally. Instead, we decouple the SS field computations on lines, which

means that the SS fields do not interact each other if they belong to different lines.

At the same time, all realizations (along all three lines) are still used to obtain the

representation of the SS field on the LS grid. Thus, the value of the SS field at

the node {xn} of the LS grid cell ∆Vn is defined as an average over all three lines

belonging to ∆Vn and intersecting at {xn}. For example,

[uS
i ]L(xn, t)←−

[
uS

i,lk
(lk, t)

]
lk
, [uS

i u
L
j ]L(xn, t)←−

[
uS

i,lk
uL

j,lk
(lk, t)

]
lk

(25)

[uS
i u

S
j ]L(xn, t)←−

[
uS

i,lk
uS

j,lk
(lk, t)

]
lk
, {xn} =

3⋂

k=1

lk, lk ∩∆Vn 6= Ø

where the local average over intersecting orthogonal lines lk in the cell ∆Vn is denoted

as [ ]lk . Note that in order to close the LS equations we need know the LS values

of the mutual product of the SS velocities uS
i u

S
j and the mixed products uS

i u
L
j , uL

i u
S
j

rather than the SS velocity itself. Explicit computation of these SGS terms requires

knowledge of the SS velocity on each line.

The following model assumptions provide necessary simplification for the SS equa-

tion (Eq. (20)) and allow to express the unknown (transverse) SS derivatives in terms

of the known (longitudinal) SS derivatives. The model assumptions are justified, in

part, by a priori analysis of DNS data and by a posteriori study of high-Re turbulent

flows, and are following:

(i) For each SS velocity component uS
i , the SS second derivative along the line

lk is equal to the averaged sum of the SS second derivatives along all three
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orthogonal directions:

∂2uS
i

∂x2
k

=
1

3

3∑

j=1

∂2uS
i

∂x2
j

, i, k = 1, 2, 3 (26)

(ii) Changes of the SS part of the convective derivatives of the SS velocity compo-

nents are neglected in directions transverse (j 6= k) to the line lk:

∂

∂xj

[
(uS

j + uL
j )(uS

i + uL
i )

]S

=
∂

∂xj

[
(uS

j (lk) + uL
j )(uS

i (lk) + uL
i )

]S

, (27)

These assumptions lead to the following simplified SS governing equations on each

line lk:

∂uS
i

∂t
+

∂

∂xj

(
uL

j + uS
j (lk)

)(
uL

i + uS
i (lk)

)
= 3ν

∂2uS
i

∂x2
k

+ FL
i (uS

j (lk), u
L
j ), (28)

where

FL
i (uS

j (lk), u
L
j ) =

∂

∂xj

[(
uL

j + uS
j (lk)

)(
uL

i + uS
i (lk)

)]L

(29)

Note, here k is a free index and refers to a line lk which is parallel to the corre-

sponding coordinate xk. Thus, for different lines Eq. (28) produces different equations

for the same SS velocity component. For example, for lines l1, l2 and uS
1 we have:

∂uS
1

∂t
+

∂

∂xj

(
uL

j + uS
j (l1)

)(
uL

1 + uS
1 (l1)

)
= 3ν

∂2uS
1

∂x2
1

+ FL
1 (uS

j (l1), u
L
j ) (30)

∂uS
1

∂t
+

∂

∂xj

(
uL

j + uS
j (l2)

)(
uL

1 + uS
1 (l2)

)
= 3ν

∂2uS
1

∂x2
2

+ FL
1 (uS

j (l2), u
L
j ) (31)

To solve Eq. (28), boundary conditions for the SS velocity field have to be speci-

fied. The SS boundary conditions are prescribed based on the line position and have

to be consistent with the decomposition definition of the SS field according to Eq.

(5).

29



In Eq. (28) the SS pressure gradient ∂pS/∂xi is explicitly excluded. In other

words, we relax the divergence-free requirement for the SS velocity along the line

lk, i.e., ∂uS
j /∂xj 6= 0. In principle, the SS pressure can be included in Eq. (28)

by specifying the LS pressure, and an additional equation for the SS pressure. For

example, taking the divergence of Eq. (9) and using Eq. (23) we have:

∂2pS

∂x2
i

= −∂
2pL

∂x2
i

− ∂(uL
i + uS

i )

∂xj

∂(uL
j + uS

j )

∂xi

(32)

In our case, the non-enforcement of the SS continuity is an artifact of the incompress-

ible fluid model and the adopted numerical approach. The continuity equation is used

for the LS velocity only, and implemented according to the standard fractional step

(projection) method by computing intermediate non-divergent LS velocity field. If the

current approach is adopted for a compressible flow then the continuity requirement

will appear naturally as a separate governing equation for the SS density.

There is a noticeable lack of comprehensive analysis of the SS velocity derivatives

in LES literature. Most studies are concerned with modeling of the SGS stress which

represents the LS quantity and do not require explicit knowledge of the SS fields or

their derivatives. Here, to justify the simplifying model assumptions from the physical

point of view, a priori statistical analysis of high-Re turbulence data sets is conducted

first. The first data set is obtained from the forced isotropic turbulence simulation

of Yeung and Zhou [1997]. Turbulent velocity field corresponds to the Taylor scale

Reynolds number Reλ ≈ 140 and is given on a box of 2563 grid points. The LS

field is computed based on the uniform 323 LS grid using cubic spline interpolation,

and then subtracted from the total velocity to obtain the SS velocity. The second

DNS data set corresponds to the non-homogeneous turbulent case of fully developed

channel flow simulation of Abe et al. [2001]. This DNS study was conducted at
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Reτ = 640 (Re ≈ 24300) on the 512 × 256 × 256 orthogonal grid stretched in wall-

normal direction. The LS field is computed based on the 32×40×32 LS grid, similar

to the isotropic turbulence case.

3.2.1 Assumption (i)

The assumption (i), given by Eq. (26), corresponds to the case when the difference

between the SS second derivative in particular direction lk and the averaged sum of

the SS second derivatives in all three directions is equal to zero, i.e., Sik = 0 where

Sik =
∑3

j=1 ∂
2uS

i /∂x
2
j/3 − ∂2uS

i /∂x
2
k. This is supported by Figures 4(a-c) where

all nine (i, k = 1, 2, 3) normalized probability density functions (PDF) f(Sik) are

shown for both isotropic and non-homogeneous cases, respectively. It is interesting

to note they fit the Tsallis distribution quite well for wide range of probabilities. The

Tsallis distribution was used in the context of turbulence by Beck [2004]. It has a

form PT (ξ)= 1/(Zq[1 + (1/2)β(q − 1)ξ2]1/(q−1)) with parameters q, β. Here, Zq is a

normalization constant and β = 2/(5 − 3q) is chosen to give a unit variance. The

Tsallis distribution reduces to a Gaussian distribution as q → 1. It is also seen that

the higher Re number case of the non-homogeneous turbulence is characterized by

wider PDF tails emphasizing strong near-wall bursting events.

These figures show that the most probable state for the derivative differences Sik

is zero, or in other words, the second derivatives in orthogonal direction are equal

each other with the highest probability. Therefore, the dissipative influence of low

probable and rare events characterized by Sik 6= 0 is excluded from consideration

by adoption of Eq. 26. However, this approximation can still adequately account

for the dissipative influence of high gradient events which dominate turbulent flow

regions. Conceptually, one can divide events where Sik = 0 in two qualitatively

different groups. The first group represents a case when the SS second derivatives are
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small, so the difference Sik is small too. Physically, points with this property would

correspond to weakly turbulent flow regions which are already adequately represented

by the resolved LS motion. The second group corresponds to a case when the SS

second derivatives are not small and approximately equal each other. These flow

regions are characterized by intense turbulence, high dissipation and the strong effect

of the SS on the LS dynamics.

This can be clarified further by considering the joint PDFs of
∑3

j=1 ∂
2uS

i /∂x
2
j/3

and ∂2uS
i /∂x

2
k which are shown in Figs. 5-7.

It is seen that at the origin all PDF exhibits a characteristic spike. Contour

lines for high probabilities are approximately oval in shape and elongated along a

diagonal of I and III quadrants. For lower values of probability the contour lines

resemble parallelograms with smoothed corners. It is also seen that events where

the second derivative ∂2uS
i /∂x

2
k is large in magnitude and has the same sign as the

averaged sum
∑3

j=1 ∂
2uS

i /∂x
2
j/3 are more probable and provide major contribution

to the tail of the joint PDF. From Fig. 6(b), the most prominent elongation of the

PDF shape exhibits the SS second derivative of streamwise velocity in the wall-normal

direction for a case of turbulent channel flow. This is consistent with the qualitative

self-sustaining mechanism of the near-wall turbulence which is characterized by the

bursting process in the wall-normal direction where up to 80% of the Reynolds stress

is generated (see, for example Kline et al. [1967], Panton [2001]). For the forced

isotropic turbulence, Figs. 6(a) and 7(a) show that PDF’s of the SS second derivatives

in different transverse directions are the same which is consistent with isotropy.

Therefore, with high probability, one may expect that in intense turbulent regions

if the second derivative of the SS velocity component is large in magnitude in one

particular direction it should be large and has the same sign in other two orthog-

onal directions. This can be somewhat related to a qualitative geometrical picture
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Figure 4: PDFs of the normalized differences of the second SS derivatives, Sik =∑3
j=1 ∂

2uS
i /∂x

2
j/3 − ∂2uS

i /∂x
2
k, i, k = 1, 2, 3 compared with the Tsallis distribution

(dashed line): forced isotropic turbulence (a), (c) and (b), (d) turbulent channel flow,
in logarithmic and linear scales, respectively.
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Figure 5: Contour plots of the logarithm of the joint PDF of the SS second derivative
of the longitudinal velocity component (i = k, i = 1, k = 1) and the averaged sum of
all SS second derivatives: (a) isotropic turbulence; (b) turbulent channel flow.
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Figure 6: Contour plots of the logarithm of the joint PDF of the SS second derivative
of the transverse velocity component (i 6= k, i = 1, k = 2) and the averaged sum of
all SS second derivatives: (a) isotropic turbulence; (b) turbulent channel flow.
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Figure 7: Contour plots of the logarithm of the joint PDF of the SS second derivative
of the transverse velocity component (i 6= k, i = 1, k = 3) and the averaged sum of
all SS second derivatives: (a) isotropic turbulence; (b) turbulent channel flow.
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of the small-scale turbulence which has been the subject of much numerical and ex-

perimental efforts. It is known that regions of high level vorticity form non-trivial

geometrical pattern which is characterized by elongated vorticity tubes and ribbons

called “worms” (Jimenez et al. [1993], Moisy and Jimenez [2004]), where high level of

energy dissipation is concentrated. A line lk arbitrarily placed in flow field would in-

tersect low dissipation regions, where all SS second derivatives are small and also the

intense small-scale structures - worms, where the SS dissipation is high, and therefore,

the SS second derivatives are expected to be quite large. Note that the intense en-

strophy regions (worms) do not necessarily coincide with the high dissipation regions

since the high values of the SS derivatives do not always result in the high values

of the SS vorticity. However, one can assume that much dissipation is located in

the neighborhood of the SS vortex tubes, at the distance not exceeding the order of

magnitude of the Kolmogorov scale . This is consistent with the DNS results of Kida

[2001] as well as with the results based on the simple Burgers vortex model (Davidson

[2004]).

The bisector of I and III quadrants corresponds to the model assumption (i). It

is seen that events from the first group occur in the neighborhood of the origin and

happen with the highest probability. As one moves along the diagonal from the origin

the magnitude of the SS second derivative increases, probability decreases, suggesting

the presence of highly turbulent regions where the LS resolution becomes inadequate.

Note that model assumption Sik = 0 corresponds to the delta function PDF at the

origin, see Figs. 4(a-d). As a result, all events which correspond to Sik 6= 0 are

formally excluded from the consideration. However, as suggested by Figs. 5-7 the

model assumption is not “blind” to the presence of intense SS turbulent structures.

Large values of the SS second derivatives are still allowed on the diagonal Sik = 0.

Figure 6(b) also suggests that the assumption (i) is more justified for the turbulent
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Figure 8: Point (B) - the most probable value of the averaged sum of the SS second
derivatives given the value of the SS second derivative along the line lk at point (A),
point (C) corresponds to the model assumption.

regions of the higher intensity.

For the further qualitative interpretation of the model assumption Sik = 0 we

consider the joint PDF as shown in Figure 8 for the case of the SS longitudinal

derivative (i = k). Assume that the SS second derivative is sufficiently large and

correspond to the point A suggesting the presence of the highly turbulent region.

A vertical plane through A and orthogonal to the x-axis defines a conditional PDF

f((
∑3

j=1 ∂
2uS

i /∂x
2
j)/3|∂2uS

i /∂x
2
k = a). It is seen that this conditional PDF is posi-

tively skewed giving the the most probable value of the averaged sum (
∑3

j=1 ∂
2uS

i /∂x
2
j )/3

around point B. On the other hand, the line defined by the model assumption Sik = 0

intersects with the conditional plane at point C. Due to the shape of the joint PDF,

point C will always stays higher (or lower) than the maximum point B if ∂2uS
i /∂x

2
k
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is positive (or negative) and sufficiently large in magnitude. Thus, the model as-

sumption Sik = 0 makes the larger value of the sum of the SS second derivative more

probable. This can be viewed as if the value of local viscosity is higher, which means

that the SS vortical structures are more dissipative.

3.2.2 Assumption (ii)

The model assumption (ii) (Eq. 27) allows to represent the SS line equations in the

closed form. Physically it means that the SS effects that are caused by advection

of the SS velocity, in the line orthogonal directions, are small in comparison the SS

effects due to advection of the LS field. To show this it is convenient to rewrite the

assumption (ii) in non-conservative form with a help of the continuity equation:

∂

∂xj

[
(uS

j + uL
j )(uS

i + uL
i )

]S

=
∂

∂xj
(uS

j + uL
j )(uS

i + uL
i )− FL

i (uL
i , u

S
i )

= (uS
j + uL

j )
∂

∂xj
(uS

i + uL
i )− FL

i = (uS
j (lk) + uL

j )
∂

∂xj
(uS

i (lk) + uL
i )− FL

i (33)

= (uS
k (lk) + uL

k )
∂

∂xk

(uS
i (lk) + uL

i ) + (uS
j (lk) + uL

j )
∂uL

i

∂xj︸ ︷︷ ︸
j 6=k

−FL
i

Note that the SS advection term is fully accounted along line lk since derivatives of

the SS velocity are always available.

Contours plots of the joint PDFs of the total SS convective terms and the mod-

eled SS convective terms are exhibited in Figs. 9(a)-11(a) and Figs. 9(b)-11(b) for

the forced isotropic turbulence and the turbulent channel, respectively. Since the

wall-normal direction plays a special role for the turbulent channel the SS convec-

tive derivatives in non-homogeneous direction (j = 2) are considered. Three cases

are shown which correspond to different orientation of velocity components and the

streamwise line l1. It is seen that contour lines have similar oval shapes for high prob-

abilities corresponding to small values of the SS convective terms. As the magnitude
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Figure 9: Contour plots of logarithm of the joint PDF of the total SS advection term
T and the modeled SS advection term M for i = k, j 6= k (i = 1, k = 1, j = 2): (a)
forced isotropic turbulence; (b) turbulent channel flow.
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Figure 10: Contour plots of logarithm of the joint PDF of the total SS advection
term T and the modeled SS advection term M for i 6= j, j 6= k (i = 3, k = 1, j = 2):
(a) forced isotropic turbulence; (b) turbulent channel flow.
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Figure 11: Contour plots of logarithm of the joint PDF of the total SS advection
term T and the modeled SS advection term M for i = j, j 6= k (i = 2, j = 2, k = 1):
(a) forced isotropic turbulence; (b) turbulent channel flow.
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of the SS convective terms grow and probability sharply decreases, the contour plots

start resembling a parallelogram shape which is stretched along the diagonal of the I

and III quadrants. The shape of PDFs is also almost independent on the direction

of the SS convective derivatives, especially for the forced isotropic turbulence. SS

events when both the total and the modeled SS convective terms have the same sign

are more dominant. The SS convective derivatives in other directions (streamwise and

spanwise) exhibit similar qualitative behavior and are not shown for brevity. Because

of this characteristic PDF shape, a similar qualitative reasoning, which has been used

for the SS second derivatives, is applicable here too (see Figure 8). Therefore, the

model assumption (ii) would correspond to a case when the SS convective derivatives

consistently admit values higher in magnitude than the most probable values of the

total SS convective derivatives. Qualitatively, it means that the modeled SS field is

subject to higher distortion by the SS advection than the exact SS field.

The SS Eq. (28) allows reconstruction of the SS velocity on line lk if the LS

velocity is known. Physically, the LS velocity evolves on a slower time scale than

the SS velocity and requires discretization with a bigger time step. To close the LS

equation it is not necessary to resolve the fast SS dynamics at all times, one only

needs to know the SS velocity field at particular instants of the slow LS time tL.

To achieve this, one can integrate Eq. (28) in small neighborhood of tLm treating

the LS velocity as a locally time independent field. In other words, for any LS

time tLm and a small parameter ε � 1, we introduce a local time coordinate tS= εt

according to the transformation: t −→ tLm + tS such that uL(lk, t) −→ uL(lk, t
L
m)

and uS(lk, t) −→ uS(lk, t
L
m + tS). The SS velocity evolves from zero initial state and

depends only on the LS velocity and its derivatives.

Physically, evolution of the SS velocity according to Eq. (28) is interpreted as the

propagation of energy disturbances down into the SS part of the turbulent spectrum
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due to non-linear interaction. Starting from a zero initial state, the SS velocity starts

growing, continuously exciting smaller scales until the viscous dissipation region is

reached. The term [uL
i u

L
j ]S, which is the only non-zero term at tS = 0, acts as a

constant source of energy for the small scales, triggering the forward energy cascade.

Note that even though the LS velocity is kept fixed in time tS, this problem does

not constitute an evolution of the SS velocity in the “frozen” LS environment. The

time tS corresponds to the time needed to “fill up” the SS part of the spectrum.

As a result, the SS velocity at some instant of time tLm does not depend on the SS

solution at previous time tLm−1, i.e., it is memoryless, and is solely defined by the LS

velocity and its derivatives at tLm. The evolution time needed to reconstruct the SS

velocity field is determined by matching the LS and the SS energies at the minimal

scale resolvable by the LS grid. Clearly, this time is unique for different lines and fully

defined by the LS velocity, its derivatives and viscosity. This is further illustrated in

Figs. 18(a,b) and the corresponding discussion in Section 5.2.

3.3 TLS Numerical Algorithm

Numerical implementation of TLS is based on the simulation of the LS equations

coupled with the simplified SS equations which approximate the SS turbulent fields

on lines. The line arrangement constitutes an important part of the SS model. The

optimal line placement and its affect on the reconstructed SS field, due to neglecting

the transverse SS advection, on its own present non-trivial, challenging problem. The

ideal line arrangement is the case when the lines are exact streamlines of the SS

velocity field. Here, the line arrangement depicted in Figure 3 is adopted. Given

the LS grid and the SS line arrangement, there are four steps involved in the TLS

algorithm:
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(i) At the m-th time step tLm, interpolate uL
i and pL onto each line lk, such that:

uL
i (xn, t

L
m) −→ uL

i,lk
(lk, t

L
m), pL(xn, t

L
m) −→ pL

lk
(lk, t

L
m), xn ∈ lk

(ii) Evolve Eq. (28) on each line lk with zero initial condition and corresponding

boundary conditions until the SS energy is matched with the LS energy at the

LS grid minimal resolvable scale to obtain the SS velocity field uS
i,lk

(lk, t
L
m);

(iii) For all LS grid points xn calculate the mutual tensor product of the SS velocity

[uS
i u

S
j ]L as well as the mixed tensor products [uS

i u
L
j ]L and [uL

i u
S
j ]L by averaging

over three lines intersecting at the LS grid point xn belonging to a cell ∆Vn,

according to Eq. (26):

[uS
i u

S
j ]L(xn, t

L
m)←−

[
uS

i,lk
uS

j,lk
(lk, t

L
m)

]
lk
, [uS

i u
L
j ]L(xn, t

L
m)←−

[
uS

i,lk
uL

j,lk
(lk, t

L
m)

]
lk

(iv) Advance the LS fields uL
i (xn, t

L
m), pL(xn, t

L
m) to the next time level tLm+1 =

tLm + ∆tL by integrating the LS equations (Eqs. (7), (23a)).
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CHAPTER IV

NUMERICAL METHOD

4.1 Large-Scale Equation

Incompressible flow constitutes an important model of fluid flow encountered in many

real life situations, ranging from air and water flows in pipes and around low-speed ve-

hicles till fish swimming and the blood flow in living organisms. As a result, extensive

research efforts have been performed for decades to develop numerical algorithms and

computational tools suitable for incompressible flow problems in both basic research

and engineering applications (for reviews, see Gresho and Sani [1998], Hafez [2002]).

In the present study, the incompressible, constant density Navier-Stokes equations

are adopted to describe the LS dynamics of turbulent flows.

Major difficulty in treating the incompressible Navier-Stokes equations numeri-

cally stems from a lack of a natural evolution equation for pressure. Instead, pressure

plays a corrective role for velocity field such that the continuity equation (incompress-

ibility requirement) is satisfied everywhere in the flow field. Physically, it means that

pressure disturbances travel at infinite speed, which leads to stringent requirements

on numerical algorithms. In principle, pressure can be excluded from consideration

by taking the curl of the momentum equation and introducing vorticity. This re-

sults in different sets of the governing equations and leads the vorticity-velocity or

the vorticity-stream function methods (see, for example, Quartapelle [1993], Speziale

[1987]). Giving physically appealing formulation for vortex-dominated flows and be-

ing successful for two-dimensional flows, the vorticity-velocity formulation has not
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gained much popularity for three-dimensional applications compared with traditional

approaches based on primitive variables, i.e., velocity and pressure. One of the draw-

backs of the vorticity-velocity methods is that the number of flow variables increases

from four (ui, p) to six (ωi, ui, i = 1, 2, 3). This makes the governing equations more

expensive to solve numerically, especially in the context of high-Re number turbulent

flows. Another common problem of these methods is the absence of boundary condi-

tions for vorticity in the presence of solid walls. Some recent developments to reduce

computational expenses by decoupling vorticity and velocity integration in space and

time has been reported by Ponta [2005]. There have been very few applications of

the vorticity-velocity formulation to simulate high-Re number turbulent flows and

the corresponding literature remains scarce. LES of spatially evolving 3D turbulent

mixing layer was conducted by Tenaud et al. [2005].

There are two approaches which allow to overcome numerical difficulty to en-

force the incompressibility constraint. The first approach is known as the artificial

compressibility method originally suggested by Chorin [1967]. It uses an artificial

compressibility parameter β = c20ρ0, where c0 is the artificial speed of sound, to cou-

ple the divergence of the velocity to a change of pressure in pseudo-time τ , thus

providing an evolution equation for pressure. Time accurate solution requires sub-

iteration of the equation in pseudo-time until the divergence of velocity is reduced to

the desired accuracy. The key difficulty here lies in constructing an iteration scheme

and optimizing β and the time step ∆τ that provides fast convergence to a stationary

state (Tamamidis et al. [1996]). The time step ∆τ is limited by the inverse of c20

which results in very small time steps when simulating incompressibility c0 → 0. As

a result, the artificial compressibility method can be very costly.

The second, and probably the most popular strategy is based on operator splitting.
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This means that the system of governing equations is split into series of simple stan-

dard equations such as advection equation, diffusion equation, advection-diffusion

equation, Poisson equation, and combined with explicit/implicit updates in time.

Then, it becomes much easier to construct an efficient numerical schemes for each

equation separately than for the original system directly. Methods which belong to

this category appear in literature under different names such as pressure-correction

methods, projection methods, fractional step methods, or sometimes they are gener-

ally referred as the “pressure based” methods. A common feature of operator splitting

methods is that at certain stage the predicted velocity field is computed neglecting

the incompressibility condition. Then, the velocity is corrected by “projection” onto

divergence free fields.

Historically, Harlow and Welch [1965] were the first who suggested an operator

splitting method in mid 60’s. In this method, called MAC (marker-and-cell), the

second order finite difference discretization of the governing equation is implemented

on a staggered grid with explicit treatment of the nonlinear and viscous terms, and

the implicit treatment of the pressure term. Application of the incompressibility con-

straint to the discretized momentum equation results in the discrete Poisson equation

providing the effective decoupling of the computation of the momentum and kinematic

equations. Many shortcomings of the MAC method such as inability to handle regular

grids, low order time discretization, time consuming iterative procedure for pressure

had been successfully addressed in the intervening years.

The widely used SIMPLE (semi-implicit method for pressure linked equations)

method developed by Patankar [1980] employs simplified iterative procedure to es-

timate the pressure correction. This significantly simplifies computation but with a

price of introducing empirical assumptions in the method (Kwak et al. [2005]). In late

60’s Chorin [1968] and Temam [1969] introduced the projection method which allows
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implicit treatment of the viscous term. In the projection method the intermediate ve-

locity field u∗i is computed first using the momentum equation, in which the pressure

gradient is excluded entirely, or computed based on pressure values at the previous

time step. In the second step, the intermediate velocity u∗
i is projected onto the space

of divergence-free vector fields to compute ui by solving a Poisson equation for the

pressure. This procedure is often referred literature as the fractional step method.

However, the time splitting introduces a numerical boundary layer in pressure and

the intermediate velocity fields. It signifies the main difficulty in implementation of

the projection method which is the treatment of boundary conditions for the inter-

mediate velocity and pressure. Structure of the numerical boundary layer is strongly

affected by numerical boundary condition for pressure at the projection step (E and

Liu [1995]).

There are three main ways to decouple pressure and velocity computations to

achieve the second-order accuracy. These result in projection methods based on:

(1) accurate boundary condition for the intermediate velocity field (Kim and Moin

[1985]); (2) accurate boundary condition for pressure (Orszag et al. [1986]); (3) pres-

sure increment formulation (Bell et al. [1989], van Kan [1986]). They are by far the

most popular methods used for practical simulations of high-Re number turbulent

flows since the strength of the numerical boundary layer decreases with the increase

of the Reynolds number.

In the formulation developed by Kim and Moin pressure gradient does not appear

in the momentum equation for the intermediate velocity. Homogeneous Neumann

boundary condition for pressure is used together with an inhomogeneous boundary

condition for u∗i such that ui at the boundary is of O(∆t2) order of accuracy. In

the formulation based on accurate pressure boundary condition, the homogeneous
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Dirichlet boundary condition for the intermediate velocity u∗
i is retained. An inho-

mogeneous Neumann boundary condition for pressure is introduced so that ui at the

boundary is of the second order of accuracy in time. In the incremental pressure

projection methods, the projection step serves to compute an incremental correction

of the pressure gradient. The accuracy of this method near the boundary was ex-

tensively discussed by several authors, including among others, E and Liu [1996] and

Brown et al. [2001].

In the present study, the incremental pressure projection method of van Kan [1986]

is used to solve the LS fields governing equations. In the following paragraphs, spatial

and temporal discretization are briefly described.

4.1.1 Spatial Discretization

3D Cartesian grid with a staggered arrangement is employed for spatial discretization.

The staggered grid arrangement has proven useful for LES and DNS. It naturally

conserves mass, momentum, kinetic energy and avoids oscillatory or checkerboard

pressure solutions encountered on regular grids (Gresho and Sani [1987]). Figure

12(a) shows a staggered computational volume cell ∆V , where the LS pressure pL is

defined at the cell center and LS velocities uL
i are defined at the corresponding cell

faces.

The finite volume (FV) approach is employed for the spatial discretization of

the LS governing equations. Accordingly, the LS continuity and the LS momentum

equations can be rewritten as local conservation laws based on application of the

Ostrogradsky-Gauss theorem to a computational volume cell ∆V . Namely, for a

continuously differentiable vector field ψi one has:

∫∫∫

∆V

∂ψi

∂xi
dv =

∫∫

∂∆V

ψinidσ, (34)

50



(a)

(b)

Figure 12: (a) A staggered grid arrangement in computational cell ∆V ; (b) position
of the orthogonal surfaces ∆Ai in computational cell ∆V
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where ni is a unit normal vector to surface ∂∆V . As a result, the spatially discretized

LS Eq. (7), when it is written for a computational volume cell ∆V , takes the following

form:

∣∣∆V
∣∣ ∂
∂t
uL

i

∆V
=

3∑

j=1

[∣∣∆A+
j

∣∣
(
νDL

ij

∆A+

j −
[
uL

i u
L
j

]L
∆A+

j

−
[
uS

i u
S
j

]L
∆A+

j

−

[
uS

i u
L
j + uL

i u
S
j

]L
∆A+

j
)
−

∣∣∆A−
j

∣∣
(
νDL

ij

∆A−

j −
[
uL

i u
L
j

]L
∆A−

j

−
[
uS

i u
S
j

]L
∆A−

j

−(35)

[
uS

i u
L
j + uL

i u
S
j

]L
∆A−

j
)]
−

(∣∣∆A+
j

∣∣pL
∆A+

j −
∣∣∆A−

j

∣∣pL
∆A−

j

)
.

Similarly, the mass conservation is given by:

3∑

j=1

[∣∣∆A+
j

∣∣uL
j

∆A+

j −
∣∣∆A−

j

∣∣uL
j

∆A−

j

]
= 0 (36)

The diffusion term DL
ij in Eq. (35) is expressed through the LS rate-of-strain tensor

DL
ij = 2SL

ij −
2

3
SL

kkδij, SL
ij =

1

2

(∂uL
i

∂xj

+
∂uL

j

∂xi

)
(37)

In these equations, ∆A+
j and ∆A−

j denote surfaces of the computational volume ∆V

which correspond to positive and negative directions of the flux caused by the j-th

component of the LS velocity. The bar symbols stand for corresponding integral

averages over the specified region of ∆V , for example:

ψi
∆V

=
1∣∣∆V

∣∣
∫∫∫

∆V

ψidv, ψi
∆A+

j =
1∣∣∆A+

j

∣∣
∫∫

∆A+

j

ψidσ (38)

Note that, due to the staggered grid arrangement, the components of the LS velocity

are defined on the corresponding surfaces of the pressure-centered volume cell ∆V .

Therefore, the discrete momentum equation for the specific LS velocity component

is derived based on integration over the corresponding computational volume cell

which is centered around this component, as shown in Fig. 12(a). However, since the

integration is performed over the surfaces as well as the volume of ∆V , the system of
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Eqs. (35), (36) contains more unknowns than equations. A necessary simplification is

achieved by adopting the following approximation for any volume or surface averaged

variable ψi:

ψi = ψi
∆V ≈ ψi

∆Aj ≈ ψi
∆Ai

(39)

For an orthogonal volume cell ∆V and orthogonal surfaces ∆Ai that pass through

the cell center, as shown in Fig. 12(b), such an assumption results in a local error of

order O(∆x2
i ), where ∆xi is the cell size in xi coordinate direction. For example, for

∆V depicted in Fig. 12(b), one has:

ψi
∆V

=
1∣∣∆V

∣∣
∫∫∫

∆V

ψidv =

∣∣∆A1

∣∣
∣∣∆V

∣∣
∫

∆x1

[ 1∣∣∆A1

∣∣
∫∫

∆A1

ψidσ
]
dx1 =

∣∣∆A1

∣∣
∣∣∆V

∣∣
∫

∆x1

ψi
∆A1

dx1 = ψi
∆A1

(ξ), ξ ∈ ∆x1

which gives O(∆x2
i ) error, if ξ is a center point of ∆x1 according to the midpoint

rule of Newton-Cotes quadrature formula. In addition, the averaged LS nonlinear

convective term can be further approximated as

[uL
i u

L
j ]L

∆Aj

=
1∣∣∆Aj

∣∣
∫∫

∆Aj

[
uL

i u
L
j

]L
dσ =

1∣∣∆Aj

∣∣
∫∫

∆Aj

(
uL

i u
L
j −

[
uL

i u
L
j

]S)
dσ =

uL
i u

L
j

∆Aj −
[
uL

i u
L
j

]S
∆Aj

≈ uL
i u

L
j

∆Aj

, (40)

since the Leonard stress [uL
i u

L
j ]S is the SS quantity, and as a result, can not be fully

captured on the LS grid (Winckelmans et al. [2002]).

Denoting all averaged quantities by the bar symbol, the LS system of continuity

and momentum equations takes the following form:

∂

∂t
uL

i =
1∣∣∆V

∣∣
3∑

j=1

[∣∣∆A+
j

∣∣
(
νDL

ij − uL
i u

L
j −

[
uS

i u
S
j

]L −
[
uS

i u
L
j + uL

i u
S
j

]L
)

−
∣∣∆A−

j

∣∣
(
νDL

ij − uL
i u

L
j −

[
uS

i u
S
j

]L −
[
uS

i u
L
j + uL

i u
S
j

]L
)]

(41)

− 1∣∣∆V
∣∣
(∣∣∆A+

j

∣∣pL −
∣∣∆A−

j

∣∣pL
)
,
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3∑

j=1

[∣∣∆A+
j

∣∣uL
j −

∣∣∆A−
j

∣∣uL
j

]
= 0 (42)

The spatially discretized (semi-discretized) form of the LS equations is obtained

from Eqs. (41), (42) when the LS grid variable ψi,j,k, associated with the cell center

xi,j,k of ∆V , is considered to be an approximation to the averaged value ψ. To

complete the discretization, all fluxes at cell surfaces ∆Ai need to be defined based

on values of dependent variables at adjacent cells. The convective and diffusion fluxes

in Eq. (41) may be approximated in different ways. In the present work, all diffusion

terms are computed using second order central differencing. The convective flux

terms are reconstructed using third order polynomial interpolation resulting in the

forth-order accurate central scheme.

4.1.2 Temporal Discretization

The third-order explicit Runge-Kutta scheme is employed in the time integration

algorithm. Subsuming all terms on the right hand side of Eq. (41) in F(uL
i , t), the

three-stage Runge-Kutta scheme to advance Eq. (41) over a step ∆t is given by

uL
i

n+1
= uL

i

n
+

3∑

j=1

wjKj, Kj = ∆tF
(
uL

i

n
+

j−1∑

l=1

βjlKl, tn + αj∆t
)
,

3∑

j=1

wj = 1

(43)

Here, coefficients wj and βjl have to be chosen in such a way that uL
i

n
approximates

the solution to the appropriate order of accuracy. The coefficients αj are given by the

row-sum conditions

αj =

j−1∑

l=1

βjl (44)
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An efficient, low-storage variant of the Runge-Kutta scheme, initially proposed by

Williamson [1980], is defined by the following values of these coefficients

w1 =
1

6
, w2 =

3

10
, w3 =

8

15

β21 =
1

3
, β31 = − 3

16
, β32 =

15

16
(45)

α1 = 0, α2 =
1

3
, α3 =

3

4

In the present thesis, the three-stage Runge-Kutta scheme given by Eqs. (43), (45)

is used to integrate the LS Eq. (41), with an exception of the diffusion terms in

the transverse (wall-normal) direction x3, which are treated implicitly using Crank-

Nicoloson scheme. Equations (43), (45) results in three-step advancements scheme

which is can be written as:

uL
i

(1)
= uL

i

n
+ ∆t

[
γ1N(uL

i

n
) +

1

2
ω1

(
D(uL

i

n
) + D(uL

i

(1)
)
)]
− ω1∆tP,

uL
i

(2)
= uL

i

(1)
+ ∆t

[
γ2N(uL

i

(1)
) + ξ2N(uL

i

n
) +

+
1

2
ω2

(
D(uL

i

(1)
) + D(uL

i

(2)
)
)]
− ω2∆tP, (46)

uL
i

n+1
= uL

i

(2)
+ ∆t

[
γ3N(uL

i

(2)
) + ξ3N(uL

i

(1)
) +

ξ3ξ2
γ2

N(uL
i

n
) +

+
1

2
ω3

(
D(uL

i

(2)
) + D(uL

i

n+1
)
)]
− ω3∆tP

Here, N denotes all convective and diffusion terms in Eq. (41), except the implicitly

treated diffusion terms in x3 direction. D and P stand for the diffusion terms in x3

direction and pressure terms respectively. Also, uL
i

n
, uL

i

n+1
are the LS velocities at the

beginning and end of the time step, and uL
i

(1)
, uL

i

(2)
correspond to the LS velocities

at intermediate substeps. The advancement procedure given by Eqs. (46) represents

time integration with three time substeps ∆t1 = ω1∆t, ∆t2 = ω2∆t, ∆t3 = ω3∆t.

All time advancement parameters ξi, γi and ωi are related to those in Eq. (45)
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(Williamson [1980]), and given by

ω1 = α2 =
1

3
, ω2 = α3 − α2 =

5

12
, ω3 = 1− α3 =

1

4
,

γ1 = β21 =
1

3
, γ2 = β32 =

15

16
, γ3 = w3 =

8

15
, (47)

ξ2 =
β32

w2
(w1 − β21) = −25

48
, ξ3 = w2 − β32 = −51

80

Due to the absence of a transport equation for the LS pressure, the fractional step

method of van Kan [1986] is used to satisfy the continuity constraint (Eq. (42)). The

method is based on introduction of the pressure increment ψ and applied at every

discrete time instant tk determined by the Runge-Kutta time substeps ∆tk (k = 1,2,3),

i.e., tk = tk−1 + ∆tk. Note that in this notation time instants t(3) and t(0) coincide

with tn+1 and tn respectively. The LS pressure during time integration substeps can

be further split into some approximate value pL
0 and the pressure increment ψ

∆tkP =

∫ tk+1

tk

∂pL

∂xi
dt = ∆tk

∂pL
0

∂xi
+ ∆tk

∂ψ

∂xi
(48)

In the present implementation, the value of pressure from the previously computed

time step is chosen as pL
0 , i.e., pL

0 = pL
k
. However, different specifications of the

approximate pressure pL
0 is possible (pL

0 = 0, for example) which lead to slightly

different variations of the fractional step method (Kim and Moin [1985]).

Upon denoting all the convective and diffusion terms in squire brackets of Eq.

(46) by Fk for brevity, and using Eq. (48), Eq. (46) takes the following form for each

discrete instant of time tk:

uL
i

k+1
= uL

i

k
+ ∆tFk −∆tk

∂pL
k

∂xi
−∆tk

∂ψ

∂xi
(49)

Since the pressure correction ψ is not known at this stage, Eq. (49) is integrated in

two steps, which gives rise to the intermediate LS velocity field uL
i

∗
according to

uL
i

∗
= uL

i

k
+ ∆tFk −∆tk

∂pL
k

∂xi
, uL

i

∗|∂Ω = uB
i (50)

56



uL
i

k+1
= uL

i

∗ −∆tk
∂ψ

∂xi
, uL

i

k+1|∂Ω = uB
i , (51)

where uB
i is the corresponding LS velocity specified at the boundary ∂Ω.

Enforcing the continuity constraint for the LS velocity at the next k + 1 time

level, by taking divergence of Eq. (51), results in the Poisson equation for ψ with

homogeneous Neumann boundary condition.

∂2ψ

∂x2
i

=
1

∆tk
∂uL

i

∗

∂xi

,
∂ψ

∂n
|∂Ω = 0. (52)

The prescribed boundary condition for ψ follows from Eq. (50) and the chosen bound-

ary condition for uL
i

∗
. Equation (52) is solved for ψ, at each Runge-Kutta time step.

The “corrected” value of the LS velocity at k+1 time level is then given by Eq. (51),

and the LS pressure is updated as

pL
k+1

= pL
k

+ ψ (53)

While the adopted boundary condition for uL
i

∗
guarantees the second order of accuracy

in time (O(∆t2)) for velocity, the pressure is only of the first order accurate (Brown

et al. [2001]). From taking gradient of Eq. (53) it is seen that the normal component

of the pressure gradient remains the same (∂npL
k+1

= ∂npL
k
), for all k, which is not

true in general. Equation (53) is consequence of the definition of ψ given by Eq. (48).

This equation is essentially the integral mean value theorem for pL
k+1

which gives

O(∆t) accuracy in time. Diminishing accuracy in the pressure manifests itself as a

numerical boundary layer which has been extensively analyzed in literature by E and

Liu [1995], E and Liu [1996] and others. However, a simple modification to Eq. (53)

given by

pL
k+1

= pL
k

+ ψ − ν∆tk

2
∇2ψ (54)

restores the second order accuracy in the pressure (Brown et al. [2001]). Note that
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the effect of the numerical boundary layer is less pronounced for high-Re flows and de-

creases with increasing Reynolds number which explains the popularity of the adopted

approach for high-Re LES studies of incompressible flows.

The pressure increment Poisson Eq. (52) is solved by employing the standard

fast Fourier transform in periodic directions and the tri-diagonal matrix algorithm

for non-homogeneous directions.

4.2 Small-Scale Equation

The SS velocity field is reconstructed on lines by solving numerically the SS equation

(Eq. (28)). While various numerical schemes can be proposed to integrate Eq. (28)

depending on the required computational effectiveness and accuracy, two qualitative

aspects of the SS velocity need to be taken into account in constructing numerical

scheme. First, it is expected that the SS velocity can be highly intermittent, especially

in flow regions with high LS velocity gradients. Thus, it is desirable to use a numerical

scheme which does not introduce possible, spurious oscillations in presence of high

gradients. The total variation diminishing (TVD) schemes, introduced by Harten

[1983] and widely used for hyperbolic conservation laws, have this property of being

oscillation-free across discontinuities. Second, due to expected uniqueness of the SS

field in the decomposition Eq. (5), the SS might reach a stationary state. Therefore,

a numerical scheme employed for numerical integration of Eq. (28) should recognize

stationary solutions. In the present thesis, an explicit, two-step component-wise TVD

scheme of Yu and Liu [2001] is employed to numerically integrate the SS Eq. (28),

and is briefly described in what follows.

With respect to a line lk Eq. (28) can be written on non-homogeneous conservative
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form

∂uS
i

∂t
+

∂

∂xk

Fi(u
S
i , u

S
k ) + Si(u

S
i , u

S
k ) = 3ν

∂2uS
i

∂x2
k

+ FL
i , (55)

where on the LS and SS velocities as follows

Fi =
(
uL

k + uS
k (lk)

)(
uL

i + uS
i (lk)

)
, Si =

∂

∂xj

(
uL

j + uS
j (lk)

)(
uL

i + uS
i (lk)

)
︸ ︷︷ ︸

j 6=k

(56)

In expression for the source term Si summation over j index is assumed, however only

for j 6= k.

The adopted two-step TVD scheme of Yu and Liu [2001] is based on the MacCor-

mack scheme, and is constructed by adding a pure flux limiter to the second order

antidiffusive term in the expression of the numerical fluxes. This TVD scheme has an

advantage of not requiring the characteristic decomposition of usual TVD schemes,

and employs component-wise flux limiting.

To ease notation, it is convenient to represent Eq. (55) in the vector form. Intro-

ducing column vectors: U = (uS
1 , u

S
2 , u

S
3 )>, S = (S1, S2, S3)

>, F = (F1, F2, F3)
> and

FL = (FL
1 , F

L
2 , F

L
3 )> , one can rewrite Eq. (55) as

∂U

∂t
+
∂F

∂xk
+ S = 3ν

∂2U

∂x2
k

+ FL, (57)

where

F1 =
(
uL

k + uS
k

)(
uL

1 + uS
1

)
, S1 =

∑

j 6=k

∂

∂xj

(
uL

j + uS
j

)(
uL

1 + uS
1

)
,

F2 =
(
uL

k + uS
k

)(
uL

2 + uS
2 )

)
, S2 =

∑

j 6=k

∂

∂xj

(
uL

j + uS
j

)(
uL

2 + uS
2

)
, (58)

F3 =
(
uL

k + uS
k

)(
uL

3 + uS
3

)
, S3 =

∑

j 6=k

∂

∂xj

(
uL

j + uS
j

)(
uL

3 + uS
3

)

The predictor step of the second-order TVD scheme then takes the following form

Ũn+1
j − Un

j

∆t
= −

(
F̂j+1/2 − F̂j−1/2

)

lj+1/2 − lj−1/2

− Sj+1/2 + Dj + FL
j (59)
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F̂j+1/2 = F+
j + F−

j+1, F±
j =

1

2

(
F(Uj)± αjUj

)
, (60)

where lj stands for a discrete value of the coordinate xk and Dj is the discretized

diffusion term at lj node. The corrected value of the velocity vector Un+1
j is based on

the predicted value Ũn+1
j and given by

Un+1
j − Un

j

∆t
= −

(
Ĥj+1/2 − Ĥj−1/2

)

lj+1/2 − lj−1/2

− 1

2

(
Sj+1/2 + S̃j−1/2 − Dj − D̃j

)
+ F̃L

j , (61)

where the numerical flux Ĥj is the modified F̂j flux according to

Ĥj+1/2 = F̂j+1/2 +
1

2

[
ϕ
(
r+
j+1/2

)
Ĝ+

j+1/2 − ϕ
(
r−j+1/2

)
Ĝ−

j+1/2

]
, (62)

where the slope ratio is defined by

r+
j+1/2 =

Ĝ+
j−1/2

Ĝ+
j+1/2

, r−j+1/2 =
Ĝ−

j+3/2

Ĝ−
j+1/2

(63)

Ĝ+
j+1/2 = F̃+

j+1 − F+
j , Ĝ−

j+1/2 = F−
j+1 − F̃−

j (64)

Note that in case of ϕ(r)= 1, Eqs. (59), (61) lead to the standard MacCormack

scheme. If a flux limiter ϕ(r) is satisfied to the TVD constraint then the scheme may

be referred as a two-step TVD scheme (Yu and Liu [2001]). A symmetric limiter of

the following form is employed in calculation of the numerical flux Ĥj+1/2:

ϕ(r) =





r if |r| < 1,

1 otherwise
(65)

One of the advantages of the two-step TVD scheme given by Eqs. (59), (61) is

that it does not use the full set of eigenvalues of the Jacobian matrix. However, as it

is seen form Eq. (60) an appropriate flux splitting is required which is chosen to be a

local Lax-Friedrichs splitting. Accordingly, αj in Eq. (60) stands for a local value of

the largest eigenvalue of the Jacobian matrix ∂F/∂U. Note that from Eq. (56) it can

be seen that the eigenvalues λi
k depend on the line lk orientation and are given by

λ1
k = 2(uS

k + uL
k ), λ2

k = uS
k + uL

k , λ3
k = uS

k + uL
k (66)
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The numerical capabilities of the adopted two-step TVD scheme to simulate the

SS field is further tested for the nonlinear case given by randomly forced Burgers

equation which is described in the following Section.
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CHAPTER V

APPLICATION TO TURBULENT FLOWS

5.1 Forced Burgers Turbulence

The purpose of the present section is to study the SS equation in one dimensional do-

main without introducing any modeling assumptions. The randomly forced Burgers

equation which is one dimensional analog of the pressureless Navier-Stokes equation

is considered as an example. The LS random force fL(x, t) acting on the low wave

numbers produces stationary turbulent state of the Burgers turbulence. Typical tur-

bulent velocity profile is characterized by the presence of randomly located shocks

and pre-shocks which define the SS structures. Thus, a solution of the SS equation

is expected to reproduce the shock induced small-scale pattern accurately in order to

provide the correct coupling effect on the LS motion.

Applying the decomposition procedure to the Burgers equation

∂u

∂t
+

1

2

∂uu

∂x
= ν

∂2u

∂x2
+ fL, (67)

gives the following LS and the SS equations:

∂uL

∂t
+

1

2

∂

∂x

[
(uL + uS)(uL + uS)

]L

= ν
∂2uL

∂x2
+ fL, (68)

∂uS

∂t
+

1

2

∂

∂x

[
(uL + uS)(uL + uS)

]S

= ν
∂2uS

∂x2
(69)

In the present section, a numerical solution of the SS Burgers equation is studied

first on the unit periodic domain discretized with NS = 16384 points. The SS velocity

field is reconstructed based on zero initial state uS(x, tLm; tS) = 0 and the fixed LS
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velocity profile uL(x, tLm) according to the procedure outlined at the end of Section

3.2. A two-step, component-wise TVD scheme of Yu and Liu [2001] is employed for

integration as described in the previous Section.

The LS forcing fL(x, t) is explicitly simulated in spectral space and then trans-

formed back to the physical space. At each time step the forcing represent an inde-

pendent Gaussian realization with prescribed spectrum of the form k/kfexp(−k2/k2
f),

as used by Gotoh and Kraichnan [1998]. The mean square value of forcing σ2 defines

a velocity scale U which is chosen together with viscosity ν to have the Reynolds

number Re equal to Re = UL/ν = σ1/2L3/2/ν ≈ 3 · 106. The LS velocity field is

defined based on the coarse uniform grid with resolution of NL = 512 points. Cubic

spline polynomials is used to interpolate the LS field onto the SS grid.

Results of the numerical integration of Eq. (69) are presented in Figs. 13(a,b).

Figure 13(a) shows the SS velocity profiles at two early intermediate times, and the

final stationary solution uS(x, tLm) in a representative portion of the computational

domain. Note, the SS velocity profiles are shifted up-wards to enable comparison.

Figure 13(b) shows the corresponding evolution of the SS energy spectrum. It is

seen that as the solution advances in time tS, the SS spikes start growing at shock

locations and the SS energy is gradually filling up the SS part of the spectrum, finally

recovering the SS spectrum with the correct slope.

The time evolution of the total SS energy is shown in Fig. 14(a) as the lowest

curve (uS
0 = 0 ). It is seen that the total SS energy tends to the limiting value which

corresponds to the exact value of the total SS energy obtained based on the explicit

decomposition of the DNS solution. These plots show that the solution of Eq. (69)

captures the SS pattern in a correct manner. Figure 14(a) also shows the total SS

energy evolution for the different (in l2 norm) SS velocity initial conditions. The SS

part of the random noise with different amplitudes is used to initialize the SS velocity
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Figure 13: Time evolution of the SS velocity at tS = 0.005, 0.025, 1.00: (a) SS
velocity profiles, two upper curves are shifted upwards to ease comparison; (b) The
SS energy spectra. Straight line shows slope of −2.
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field. Four different cases of the random initial conditions are considered, with the

initial SS energy equal to 0.21%, 21%, 190% and 530% of the energy of the exact SS

solution, respectively. This figure shows that the SS energy tends to the limiting value,

recovering the same SS velocity profile regardless the initial conditions, suggesting

that the SS solution of Eq. (69) is insensitive to the choice of initial conditions, and

is fully defined by the LS velocity.

In order to study the simplified versions of the SS equations obtained by neglecting

nonlinear interaction terms, Eq. (69) can be written by expanding the product term

on the left hand side as:

∂uS

∂t
+

1

2
(LS +MS + SS) = ν

∂2uS

∂x2
, (70)

where the SS non-linear interaction terms are defined as follows:

LS =
∂

∂x

[
uLuL

]S

, SS =
∂

∂x

[
uSuS

]S

, MS = 2
∂

∂x

[
uLuS

]S

, (71)

Equation (70) can be simplified by neglecting the interaction terms SS and/or

MS , while retaining the energy suppling term LS. Note that in LES literature LS is

derivative of the Leonard stress
[
uLuL

]S
. If the spectral cutoff filter is used to separate

the scales, the Leonard stress has an identical zero LS part and is associated with

aliasing errors that can be removed easily at the numerical stage (Piomelli [1999]).

In case of other types of filtering, which do not have a property of being projectors

(i.e.,
[
uLuL

]S
= uLuL −

[
uLuL

]L 6= 0, for the LS modes), the Leonard stress is not

zero (albeit small). However, the most of the inter-scale energy exchange due to the

Leonard stress is residing in the SS modes, which clearly can not be parameterized

by the LS velocity, as assumed in constructing of the SGS models (τij = τij(ūi)),

highlighting an ambiguity in the traditional LES formulation.

It is instructive to compare a solution of the full SS equation with solutions of the
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Figure 14: Time evolution of the normalized SS energy for: (a) different values of
initial velocity uS

0 ; (b) different forms of the simplified SS equation. The horizontal
line shows the energy of the exact SS solution.
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Figure 15: The SS velocity for different forms of the SS equations, from bottom to
top: (a) exact SS velocity; Eq. (70); Eq. (73); (b) exact SS velocity; Eq. (74); Eq.
(72). Two upper SS profiles are shifted upwards to enable comparison. Dashed line
shows the LS velocity.
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following simplified SS equations:

∂uS

∂tS
= −1

2
LS + ν

∂2uS

∂x2
, (72)

∂uS

∂tS
= −1

2
(LS +MS) + ν

∂2uS

∂x2
, (73)

∂uS

∂tS
= −1

2
(LS + SS) + ν

∂2uS

∂x2
(74)

These types of the simplified SS equations have been used previously in literature to

model the SS dynamics in the context of 2D and 3D incompressible turbulence. For

example, the stationary form of Eq. (72) was used by Foias et al. [1991], Manley et al.

[1995] to derive the AIM for 2D turbulent flows. Equation (73), where the mutual

SS-SS interaction term SS is neglected, was proposed by Laval et al. [1999, 2001] as

the RDT model to study 2D and 3D isotropic turbulent flows.

The snapshots of the SS velocity for all four cases (Eqs. (70), (72)-(74)) are shown

in Figs. 15 (a,b) together with the exact SS velocity explicitly computed from the full

DNS solution. It is seen that the solution of Eq. (70) provides the best agreement

with the exact SS solution. This is also evident from the time evolution of the total

SS energy shown in Fig. 14(b). The only SS solution which exhibits an asymptotic

convergence to the exact SS solution corresponds to the case when all interaction

terms are retained (Eq. 70). All three approximate forms of the SS equation (Eqs.

(72)-(74)) are characterized by slow growth of the SS energy. The growth is largest

for the case of Eq. (72) when both the interaction terms MS and SS are zero. This is

further supported by the instantaneous energy spectra plots shown in Figs. 16(a-d)

that are computed at the time when the solution of the full SS equation reaches a

stationary state.

This behavior can be understood by considering the role of interaction terms LS,

MS and SS in the SS energy equation. The LS and the SS energy interaction terms
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Figure 16: The LS (light dashed line) and the SS (solid line) energy spectra for: (a)
Eq. (70); (b) Eq. (74); (c) Eq. (73); (d) Eq. (72).
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can be defined in spectral space as:

ÊL
L = −1

2
(L̂LûL∗ + L̂L∗ûL), ÊL

M = −1

2
(M̂LûL∗ + M̂L∗ûL), (75)

ÊL
S = −1

2
(ŜLûL∗ + ŜL∗ûL), ÊS

L = −1

2
(L̂SûS∗ + L̂S∗ûS), (76)

ÊS
M = −1

2
(M̂SûS∗ + M̂S∗ûS), ÊS

S = −1

2
(ŜSûS∗ + ŜS∗ûS), (77)

where ûL and ûS are the Fourier transform of the LS and the SS velocities respectively,

and the star symbol denotes the complex conjugate. These energy interaction terms

represent the source terms in the LS and the SS energy evolution equations. Denoting

the LS and the SS spectral energy as eL(k, t) = ûLûL∗ and eS(k, t) = ûSûS∗, and the

spectral energy term due to the LS forcing by F̂L(k, t), the LS and SS spectral energy

equations can be written as:

∂eL

∂t
= ÊL

L + ÊL
M + ÊL

S − 2νk2eL + F̂L(k, t), (78)

∂eS

∂t
= ÊS

L + ÊS
M + ÊS

S − 2νk2eS. (79)

A sign of the energy interaction terms determines a direction in which energy is

transferred between scales due to an action of the corresponding LS or SS nonlinear

interaction term.

The time averaged spectra of these energy interaction terms are presented in

Figs. 17(a-c). The spectra are computed by averaging of instantaneous spectra

after the stationary turbulent state is reached. It is seen that both MS and SS

redistribute energy in favor of the smaller scales. On the other hand, the derivative of

the Leonard stress LS supplies energy to the small scales at wave-numbers adjacent

to the scale separation wavenumber kL, as shown in Fig. 17(a). The spectral support

of the Leonard stress LS is approximately bounded by 2kL and does not overlap the

dissipation range, since kL ∼ NL/2 is chosen to resolve just the beginning of the
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inertial range. Therefore, when the energy redistributing mechanism (removal due to

the interaction terms MS , SS or dissipation due to the viscous term) is absent, the

energy of the small scales grows steadily, as is evident from Figs. 16(b,d). The SS

interaction term SS plays an important role in stabilizing the SS solution in spite of

the fact that SS is much smaller in spectral magnitude compared with MS and LS.

The counterpart of this term in the SS energy equation, i.e., ÊS
S , is only an order

of magnitude smaller than ÊS
M or ÊS

L, as evident from Figs. 17(a-c). Figure 17(c)

shows that SS redistribute energy similar to its LS counterpart LL by removing the

SS energy from the near-cutoff region and cascading it down to the smaller scales.

Neglecting SS, as it would be suggested in context of the RDT model, leads to an

excessive accumulation of energy in the SS which could have an adverse effect on the

LS velocity.

5.2 Forced Isotropic Turbulence

The forced isotropic turbulence presents the important ideal case to evaluate approxi-

mate turbulence modeling approaches. TLS of the forced isotropic turbulent flow has

been conducted to study the ability of the model to sustain the stationary turbulent

state at the LS and SS levels, and to provide an adequate energy coupling between

the LS and SS.

First of all the stand-alone SS Eq. (28) has been integrated numerically to study

the model capability to reconstruct the SS velocity on lines. Similar to the Burgers

case the SS velocity evolves from zero initial state, and requires the LS velocity and

its derivatives as the only input parameters. The LS velocity field is computed on the

uniform 323 grid and obtained from 2563 DNS data set according to the averaging

procedure given by Eq. (26). Typical results are exhibited in Figs. 18(a,b) where

evolution of the SS spectral energy and the SS velocity profiles are shown for three
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Figure 17: Time averaged spectra of the energy interaction terms: (a) 〈ÊL
M〉 (dashed

line) due to ML and 〈ÊS
L〉 (solid line) due to LS; (b) 〈ÊL

S 〉 (dashed line) due to SL and

〈ÊS
M〉 (solid line) due to MS; (c) 〈ÊL

L〉 (dashed line) due to LL and 〈ÊS
S 〉 (solid line)

due to SS. The spectrum 〈ÊS
S 〉 is multiplied by a factor of 10 to enable comparison.
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consecutive instants of time tS. Due to nonlinear interactions between the LS and the

SS fields, energy starts cascading down to the SS part of spectrum till it is dissipated at

the viscous dissipation range, eventually creating the SS velocity field. It is seen that

at the final stage the SS energy spectrum matches the SS part of DNS spectrum quite

well. The evolution time needed to reconstruct the SS velocity field is determined by

matching the LS and the SS energies at the minimal scale resolvable by the LS grid.

Isotropic velocity field and parallel line arrangements allow us to consider an average

energy along lines which is exhibited in Figure 19. Here, the averaged (along l1 lines)

SS spectrum is shown with the DNS and exact SS energy spectra. The exact SS field

is computed explicitly from the DNS velocity field. It is seen that overall comparison

of the SS spectra is quite satisfactory. However, the averaged SS spectrum exhibits

small deviation the exact SS spectrum by redistributing more SS energy in favor

of smaller scales, closer to dissipation range. This is probably manifestation of the

adopted assumption given by Eq. (27).

The uniform 323 LS grid is used to discretize 2π cubic domain. Two cases for the

Taylor scale Reynolds number Reλ ≈ 65 and 114 are considered. All TLS lines have

uniform resolution of 128 and 256 grid points for the low and high Reynolds number

cases, respectively. A matching DNS for the low Reynolds number case has been also

performed by applying the same forcing on 1283 grid for comparison purposes. For

the chosen LS grid resolution, TLS code requires about one single-processor hour on

IBM SP4 to reach the stationary turbulent state, while it takes almost 17 hours of

CPU time for DNS. Both codes were run in serial mode with the exception of the SS

computation for the TLS model, which is done in parallel using 48 processors.

Both simulations start with zero initial conditions and periodic in space. The

force is concentrated around small wave numbers and gradually drives the flow to the

stationary state. Here, the forcing scheme of Eswaran and Pope [1988] is adopted.
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Figure 18: (a) Instantaneous SS energy spectra (solid line) compared with the DNS
spectrum (thin solid line); (b) corresponding reconstructed SS velocity profiles on a
line for three consecutive time instants. LS grid resolution is shown by dotted vertical
line.

74



1 10 100
k

10-8

10-6

10-4

10-2

100

E(
k)

Figure 19: Average line energy spectra: DNS (thin solid line), exact SS (solid line),
reconstructed SS (circles). The LS grid resolution level is shown by dotted vertical
line.
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The random force of the form f̂i(k, t) = (δij − kikj/k
2)wj(k, t)× [Θ(k)−Θ(k− kF )]

is used, where wj is Uhlenbeck-Ornstein stochastic process, δij is the Kronecker delta

and Θ is the Heaviside function. The process is of diffusion type, has zero mean and

correlated over time with a chosen time scale τ . For a given grid resolution, three

parameters define the intensity of forcing: the amplitude σ, the time-scale τ and the

maximum wave number of the forced modes kF . Here, we have taken the value of

kF , normalized by the lowest wavenumber, to be equal to
√

2. With the time scale

τ = 0.95 and 0.8, and the amplitude σ = 0.04 and 0.007, the forcing scheme produces

the isotropic turbulent fields with Reλ ≈ 65 and 114, respectively. However, as it

was pointed out by Fureby et al. [1997] who used this method to study LES subgrid

models, the same forcing cannot be guaranteed for different grid resolutions even with

the same forcing parameters. As a result, the DNS case only approximately achieves

Reλ ≈ 60 which is less then Reλ ≈ 65 of the TLS case. Nevertheless, for comparison

purposes it does not appear to be a serious issue.

The LS turbulent kinetic energy and the dissipation rate are shown in Figs. 20(a,b)

as functions of time. It is seen that the stationary state is reached at time T ≈ 8 for

both cases. The case with higher Reynolds number is characterized by more intense

fluctuations of the kinetic energy and the dissipation rate in time. Time evolution of

the RMS of the LS velocity components 〈uL
i 〉rms along with the averaged rms-velocity

scale are shown in Fig. 21(a). These figures suggest that TLS is able to sustain the

turbulent stationary state well and the SS coupling does not destroy the isotropy of

the LS flow.

Figure 21(b) shows the TLS and DNS compensated energy spectra versus the

wavenumber normalized by the Kolmogorov dissipation scale η, after a stationary

state is reached. Both TLS energy spectra approximates the DNS spectrum quite
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Figure 20: (a) Time evolution of the turbulent kinetic energy EL(t) of the LS for
Reλ = 65 (lower line) and 114 (upper line); (b) LS dissipation rate εL(t) for Reλ = 65
and 114.
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satisfactorily, although they results in a small build-up of energy near the LS cut-

off wavenumber. It can be related to the fact that the SS velocity field might be

underestimated on some lines, thus providing diminished dissipative effects on scales

at the LS grid cut-off level. In TLS, the SS fields are evolving from zero to the

point when the LS and SS spectra are matched at the minimum resolvable LS scales.

Generally, the SS evolution time, which is required to match LS and SS spectra,

is different for various lines. Matching spectral condition is important to simulate

correct coupling between the LS and the SS velocity fields. If the SS field grows

too much it would produce unphysical effects on the LS field by backscattering extra

energy at the LS grid level, eventually contaminating the LS field. On the other hand,

if the SS field is underpredicted in spectral magnitude at the LS grid cut-off level, it

would not provide enough dissipation to the LS field causing the energy pile-up by

blocking forward cascade.

The SS evolution time is also a function the local Reynolds number and the LS

grid resolution. The more LS are resolved the less time is needed to reconstruct the

SS field and vice versa. On the other hand, the higher the Reynolds number, the

larger is the range of scales that is needed, and longer time is required to fill up the

modeled SS part of the spectrum. Further study is needed to address the SS evolution

time sensitivity to the LS grid resolution and the Reynolds number.

Snapshots of the LS vorticity magnitude isosurfaces at the level of ωL = 6.5 and

ωL = 10.0 are shown in Figs. 22(a) and 23(a) for Reλ ≈ 65 and 114, respectively.

The higher Reynolds number case is characterized by more intense LS vorticity level

and the presence of more LS vortical structures. In spite of the fact that the full

SS vorticity is not available in TLS, because the SS derivatives are known along

lines only, it can be computed at the LS grid level where orthogonal lines intersect

each other. Such a LS “footprint” of the SS vorticity is shown in Figs. 22(b) and
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Figure 21: (a) Time evolution of the LS rms velocities 〈uL
i 〉rms(t) (solid line) and the

LS rms-velocity scale vrms (dashed line) for Reλ = 65 (lower lines) and 114 (upper
lines); (b) Compensated energy spectrum E(k)ε−2/3k5/3 of TLS for Reλ = 65 (circles),
114 (squares) and DNS (solid line).
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23(b). Isosurfaces of the resolved SS vorticity magnitude are computed at the level of

[ωS]L = 0.46 and [ωS]L = 0.70 for Reλ ≈ 65 and 114, respectively. It is seen that the

resolved SS vorticity field responds to the LS vorticity in qualitatively correct way,

by creating more intensive and more dense SS vortical structures.

5.3 Turbulent Channel Flow

A well-developed turbulent channel flow is simulated to assess a capability of TLS

approach to capture essential features of the near-wall turbulence.

A flow domain of 2π×2×π is discretized with the LS orthogonal grid of 32×40×32

cells, with no stretching in the streamwise and the spanwise directions, and only a

nominal stretching in the wall-normal direction, from the wall to the centerline of

the channel. The width of the first near-wall cell is chosen to be about ∆Lx+
3 ≈ 19

in wall units so that the inner layer is not well resolved. The important Reynolds

number Reτ = uτh/ν is based on the friction velocity uτ and the channel half-width

h, and is typically 20-30 times smaller then the centerline velocity based Reynolds

number Re = U0h/ν. For the chosen Reynolds number Reτ=590, this near-wall

resolution is very coarse even for LES. The corresponding DNS resolution would

require 384× 257× 384 grid (Moser et al. [1999]). As a result of the chosen LS grid,

the near-wall turbulent field is not expected to be captured completely by the LS

simulation and the burden of the accurate approximation of the total turbulent field

is on the SS model. A uniform SS grid with 8 grid points per LS cell is employed for

lines in the periodic directions. The wall normal lines use a non-uniform grid with

variable number of grid points per LS cell, ranging from 12 near the wall to 4 in the

centerline region of the channel, which gives the maximal near-wall resolution about

∆Sx+
3 ≈ 1.58. So most near-wall dynamics is expected to be resolved on those lines.

Statistical data are accumulated after the reaching turbulent stationary state.
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Figure 22: Isosurfaces of vorticity magnitude for Reλ = 65: (a) LS vorticity; (b) SS
vorticity.
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Figure 23: Isosurfaces of vorticity magnitude for Reλ = 114: (a) LS vorticity; (b) SS
vorticity.

82



0 10 20 300

2

4

6

8

10

PSfrag replacements

t

E
(t

)

Figure 24: Time evolution of the turbulent kinetic energy for the LS EL(t) (upper
line) and the SS ES(t) (lower line). ES(t) is multiplied by 150 to enable comparison.

The time evolution of the LS and SS turbulent kinetic energies is shown in Fig.

24. After initial transient period both the LS and the SS fields reach the stationary

state at time T ≈ 6. The SS turbulent kinetic energy ES is computed by averaging of

uS
i u

S
i /2 over all SS lines. The values of the SS turbulent kinetic energy is multiplied

by 150 to make visual comparison possible. The SS turbulent kinetic energy follows

the pattern similar to the LS energy, however it is characterized by more intermittent,

high-frequency fluctuations related to high-gradient, non-Gaussian SS events captured

by the SS field.

Some limited qualitative information on the SS model behavior can be drawn

from analysis of the SS velocity field on lines. The streamwise LS and SS velocity

components along three different streamwise and spanwise lines are given in Figs. 25,

27. The lines are chosen in the following manner: near the wall (x+
3 = 9.4), close to
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Figure 25: Typical instantaneous velocity profiles along streamwise lines at x+
3 = 9.4,

x+
3 = 138, x+

3 = 373: (a) LS streamwise velocity uL
1 ; (b) SS streamwise velocity uS

1 .
Two upper profiles of the SS velocity are shifted upwards by 1 and 2 respectively.
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Figure 26: LS and SS line energy spectra for streamwise lines located at x+
3 = 9.4

(thick solid line), x+
3 = 138 (thin solid line), x+

3 = 373 (circles).

the centerline (x+
3 = 373), and in the intermediate (buffer) region between the wall

and the centerline (x+
3 = 138). Note that profiles for the near-center line and the

intermediate line SS velocity are shifted up-wards from zero to enable comparison.

The corresponding line energy spectra are shown in Figs. 26 and 28 respectively.

These plots show that intensity and the spectral content of the SS velocity field is

increasing toward the wall. The SS energy spectra are approximately matched with

the corresponding LS energy spectra showing almost the same energy content at the

smallest resolved LS level. The instantaneous profiles of the LS and SS streamwise

velocities along three wall-normal lines are exhibited in Fig. 29. The SS field is

characterized by strong fluctuations in the near-wall (buffer) region. These figures

indicate that SS model equation (Eq. 28) has an ability to reconstruct the correct

qualitative behavior of the SS velocity field including the near-wall region.
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Figure 27: Typical instantaneous velocity profiles along spanwise lines at x+
3 = 9.4,

x+
3 = 138, x+

3 = 373: (a) LS streamwise velocity uL
1 ; (b) SS streamwise velocity uS

1 .
Two upper profiles of the SS velocity are shifted upwards by 1 and 2 respectively.
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Figure 28: LS and SS line energy spectra for spanwise lines located at x+
3 = 9.4

(thick solid line), x+
3 = 138 (thin solid line), x+

3 = 373 (circles).

The SS velocity field features can be also visualized by considering streamwise

vorticity. In TLS, the SS velocity can be used to compute derivatives at the LS

grid nodes, and therefore, estimate the SS vorticity field. Typical contour lines of

the LS and the SS streamwise vorticity in a cross-sectional x2x3 plane are shown in

Figs. 30(a,b). Streamwise vortices are clearly discernible in both LS and SS fields.

It is seen that the SS streamwise vortical structures have a tendency of clustering

near the most intense LS vortices. This is further illustrated by Figs. 31(a,b) where

isosurfaces of the LS and the SS streamwise vorticity are shown at the lower chan-

nel wall. Despite being reconstructed only at the LS grid level the SS streamwise

vorticity demonstrates qualitatively correct near-wall pattern which is populated by

counter-rotating streamwise vortices. However, visualization of high vorticity regions

sometimes fails to represent vortical structures correctly, especially in regions with a
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Figure 29: Typical instantaneous velocity profiles along different wall-normal lines
l13, l

2
3, l

3
3: (a) LS streamwise velocity uL

1 ; (b) SS streamwise velocity uS
1 . Two upper

profiles of the LS velocity are shifted upwards by 5 and 10, and two upper profiles of
the SS velocity are shifted upwards by 1 and 2 respectively.
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Figure 30: Contours of the streamwise vorticity in x2x3 plane: (a) −120 < ωL
1 < 120

with increment of 12; (b) −30 < ωS
1 < 30 with increment of 4. Solid and dashed lines

indicate positive and negative vorticity respectively.
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(a)

(b)

Figure 31: (a) Isosurfaces of the LS streamwise vorticity ωL
1 = +30 (green), ωL

1 = −30
(blue); (b) Isosurfaces of the SS streamwise vorticity ωS

1 = +6 (green), ωS
1 = −6

(blue). Vortical structures at the lower channel wall are shown.
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strong mean shear like the near-wall flow region, due to sensitivity to sheet-like struc-

tures also. Usually, positive values of the second invariant of the velocity gradient

tensor Q > 0 is employed to indicate the regions of intense enstrophy (rotation) and

weak shear (Zhou et al. [1999]). The LS and the SS second invariants of ∂uL
i /∂xj and

∂uS
i /∂xj are:

QL =
1

2
(ΩL

ijΩ
L
ij − SL

ijS
L
ij), QS =

1

2
(ΩS

ijΩ
S
ij − SS

ijS
S
ij), (80)

ΩL,S
ij =

1

2
(
∂uL,S

i

∂xj
−
∂uL,S

j

∂xi
), SL,S

ij =
1

2
(
∂uL,S

i

∂xj
+
∂uL,S

j

∂xi
),

where ΩL
ij, ΩS

ij and SL
ij, S

S
ij are the rate-of-rotation and rate-of-strain tensors of the

LS and SS fields respectively. Isosurfaces of the positive second invariants QL, QS

are shown in Figs. 32(a,b). They demonstrate numerous tube-like structures in the

near-wall flow region for both LS and SS fields.

The self-sustaining mechanisms of the near-wall turbulence dynamics have been

subject to numerous experimental and numerical studies but still pose significant

challenges as theoretically well as computationally (Panton [2001]). However, some

important structural features such as low-speed streaks, quasi-streamwise vortices

have received much attention in early experimental works by Kline et al. [1967], Corino

and Brodkey [1969]. Later Bogard and Tiederman [1987] identified the bursting

process, where the low-momentum fluid from low-speed streaks that form near the

wall is ejected upwards, as a principal mechanism for production of the turbulent

kinetic energy. Therefore, an ability to reproduce correct qualitative physical behavior

in the near-wall region would be an important attribute to validate the proposed TLS

approach.

To study the LS near-wall dynamics the joint PDF of streamwise and wall normal

LS velocity fluctuations was analyzed at three different locations from the wall, x+
3 =

9.5, 19 and 38.5. The results are shown in Figs. 33(a)-35(a). It is seen that the ejection

91



(a)

(b)

Figure 32: Isosurfaces of the second invariant of the LS and SS velocity gradient
tensors: (a) QL = 200; (b) QS = 20. Vortical structures at the lower channel wall are
shown.
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Figure 33: (a) Contour plot of the joint PDF of the streamwise and wall-normal
velocity fluctuations at x+

3 = 9.5; (b) Contours of streamwise velocity fluctuations
uL

1
′
at x+

3 = 9.5.
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Figure 34: (a) Contour plot of the joint PDF of the streamwise and wall-normal
velocity fluctuations at x+

3 = 19; (b) Contours of streamwise velocity fluctuations uL
1
′

at x+
3 = 19.
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Figure 35: (a) Contour plot of the joint PDF of the streamwise and wall-normal
velocity fluctuations at x+

3 = 38.5; (b) Contours of streamwise velocity fluctuations
uL

1
′
at x+

3 = 38.5.

95



10-2 10-1 100 101 102 1030

5

10

15

20

25

30

PSfrag replacements

x+
3

〈u
1
〉/
u

τ

Figure 36: Comparison of the normalized mean streamwise velocity obtained from
TLS (square symbols) and from DNS (solid line)

events, which are associated with the second quadrant (Q2 : uL
1
′
< 0, uL

3
′
> 0),

and the sweep events, which are associated with the fourth quadrant (Q2 : uL
1
′
>

0, uL
3
′
< 0), provide major contribution to the PDF. The larger extent of PDF in

wall-normal velocity coordinate uL
3
′
at x+

3 = 19 and 38.5 indicates the low-speed streak

lift-up in the bursting event. The contours of the streamwise LS velocity fluctuations

are shown in Figs. 33(b)-35(b) and exhibit a characteristic high-speed and low-speed

streak pattern.

Finally, the statistical properties of TLS results are compared with results of

the DNS of Moser et al. [1999], which employed 384 × 257 × 384 grid. Figure 36

shows the mean profile of the LS streamwise velocity with respect to the wall-normal

coordinate. In general, the TLS profile is very similar to the DNS results especially

in the near-wall viscous sublayer and the core region. However, away from the wall,
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Figure 37: Comparison of the normalized rms velocities 〈u′
i〉rms(x

+
3 )/uτ (a) (in de-

scending order: streamwise, spanwise, wall-normal), and the normalized Reynolds
stress 〈u′1u′3〉(x+

3 )/u2
τ (b) obtained from TLS (square symbols) and from DNS (solid

lines).
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close to the beginning of the buffer layer, the mean streamwise LS velocity is slightly

higher magnitudes. The root-mean-square of the LS velocity components and the LS

Reynolds stress are plotted in Figs. 37(a,b) respectively. The streamwise velocity

rms demonstrates the correct behavior in the near-wall region, though it is a little

overestimated compared to DNS results. The magnitude of the LS Reynolds stress

is a little overestimated also near the wall, but overall, there is a good agreement

with DNS results, taking into account significantly coarser resolution than that of

DNS. The reasonable accuracy in predicting the peak location and the magnitude

of components of the LS Reynolds stress suggests that the TLS approach is able to

reproduce some physically consistent features of a wall bounded turbulent flow.

5.4 Temporary Mixing Layers

Temporally evolving mixing layers are simulated primarily with the goal of evaluating

performance of TLS approach away from the wall in presence of the LS coherent vor-

tical structures. This type of the flow configuration significantly simplifies numerical

implementation since specification of inflow-outflow boundary conditions is avoided,

and substituted by the requirement of spatial periodicity in the streamwise (x1) and

spanwise directions (x2) as well as the free-slip boundary condition in the transverse

direction (x3).

The uniform 323 LS grid is employed to discretize a cubic domain of [0, L] ×

[−L/2, L/2] × [0, L] with L = 4π. All SS lines have uniform resolution of 128 grid

points (4 grid points per LS cell). The initialization of the flow velocity field defined

as a sum of the mean velocity with the perturbations to the mean. The initial mean

velocity is a function of the transverse coordinate only and is given by the hyperbolic

tangent profile:

UL
0 (x3) =

1

2
∆Utanh(x3/δ

0
ω), (81)
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where ∆U is the maximum velocity difference across the mixing layer and δ0
ω is the

initial vorticity thickness.

Two simulations are performed by superimposing different initial perturbations

on the mean velocity profile. In Case 1, the two-dimensional perturbations are im-

posed on the two-dimensional fundamental and subharmonic modes, derived from the

linear Orr-Sommerfeld equation (Michalke [1964]), along with the three dimensional

modes, as used by Metcalfe et al. [1987]. Both amplitudes of the two-dimensional

fundamental A(1,0) and subharmonic (pairing) modes A(1/2,0) are equal to 0.1 to al-

low rapid growth of these modes. In this representation, (m,n) is a single mode

with the amplitude A(m,n), where m and n are the streamwise and spanwise specific

wave-numbers respectively. In the presence of the initial perturbation of the unstable

subharmonic mode (1/2, 0), the fundamental instability mode experiences the roll-

up with successive vortex pairing (Metcalfe et al. [1987]). The initial amplitude of

the three dimensional perturbation A(1,1) is 0.001, and typically chosen to be small

(A(1,1) � A(1,0)) but also large enough to introduce three-dimensionality in the flow

in reasonable time. In Case 2, three-dimensional broadband random perturbations

with intensity ε3D = 0.01 are imposed on the mean velocity profile. For both cases

the initial Reynolds number based on the initial vorticity thickness Reω = ∆Uδ0
ω/ν

is approximately equal to 468.

To study the development of the two-dimensional modes and the three-dimensionality,

one must define corresponding modal energies E(m,n). Energy of the fundamen-

tal (1, 0) and subharmonic (1/2, 0) modes as well as the total energy in the three-

dimensional modes (E3D) are:

E(1,0) =

∫ L/2

−L/2

ûL
i (1, 0, x3)ûL

i

∗

(1, 0, x3)dx3, (82)
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Figure 38: Energy growth of the fundamental modes E(1,0), the subharmonic modes
E(1/2,0) and the 3D disturbances E3D: (a) Case 1; (b) Case 2.
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E(1/2,0) =

∫ L/2

−L/2

ûL
i (1/2, 0, x3)ûL

i

∗

(1/2, 0, x3)dx3, (83)

E3D =
∑

n6=0

∑

m

∫ L/2

−L/2

ûL
i (m,n, x3)û

L
i

∗

(m,n, x3)dx3 (84)

Here, ûL
i (m,n, x3) is the Fourier coefficient of the mode (m,n) in the Fourier series

representation of the LS velocity uL
i with respect to the streamwise (x1) and the span-

wise (x2) directions, and ûL
i

∗

is the complex conjugate. Time evolution of the modal

energy for both cases is exhibited in Fig. 38 (a,b). The fundamental mode grows first

and saturates before the subharmonic modes. In Case 1, the non-dimensional rollup

time (the time needed for the energy E(1,0) to reach its first maximum value) is about

50. The pairing time (the time when the energy of two-dimensional subharmonic

modes reaches the first maximum) is about twice the rollup time. The momentum

thickness θ, which is defined as

θ =

∫ L/2

−L/2

[
1

4
−

( UL

∆U

)2
]
dx3, UL(x3) =

1

L2

∫ L

0

∫ L

0

uL
1 dx1dx2, (85)

also attains its local maximum around the pairing time as shown in Fig. 39. Further

growth of the mixing layer ends with the completion of the vortex pairing process.

These results agree very well with past DNS studies Moser and Rogers [1993], Ling

et al. [1998]. In Case 2, on the contrary, the growth of the momentum thickness is

delayed significantly due to the absence of the two-dimensional perturbations in initial

velocity field. After the long slow-growth transient period the momentum thickness

demonstrates a much higher growth rate when the non-dimensional time T exceeds

value of 300. At that time the energy of the subharmonic modes overcomes the

energy of the three-dimensional modes and starts playing dominant role in growth

of the mixing layer. After the modal energy E(1/2,0) reaches the maximum value

at the time of 450, the growth of the momentum thickness slows down. After this

time, the further growth in the momentum thickness is primarily due to evolution of
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Figure 39: Evolution of the momentum thickness: Case 1 - upper line, Case 2 - lower
line.

the three dimensional modes which become energetically dominant, and as a result,

significantly distort the LS vortical structures as shown in Fig. 41(e).

Some qualitative features of the LS and SS vortical structures is often visualized

by considering the spanwise vorticity component. Because of the adopted coarse 323

resolution of the LS grid, the dynamics of the SS structures can not be correctly cap-

tured based on their LS values only. However, the SS vorticity field can be estimated

based on the reconstructed SS velocity along the SS lines.

Figures 40(a-f) and 41(a-f) show the contours of the spanwise vorticity compo-

nent at three consecutive instants of the non-dimensional time T I = 36, 110, 184 and

T II = 323, 416, 560 for Case 1 and Case 2 respectively. The contours of the LS

spanwise vorticity for Case1 (Figs. 40(a,c,e)) exhibit the rollup, the pairing and the
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post-pairing stages of the mixing layer development. During the pairing, two well-

developed vortices generated by the roll-up of the fundamental mode come together

and merge to form a new bigger vortex core. The contour plots of the SS spanwise

vorticity are shown in Figs 40(b,d,f) and demonstrate clusters of small counterrotating

vortices which exist in high gradient regions of the LS spanwise vorticity. The peak

intensities of the SS spanwise vorticity steadily decrease as the LS two-dimensional

vortical structures develop absorbing energy from the SS field. At T I = 184 the max-

imum (minimum) value of the SS spanwise vorticity is 2.07 (−2.32) respectively, and

is down from the corresponding values of 2.52 (−2.72) at T I = 36. In Case 2, the SS

vortices are still created in regions where the large spatial changes of the LS vorticity

prevail as shown in Figs. 41(b,d,f). However, the peak intensities of the SS spanwise

vorticity constantly grows from max(ωS
2 ) = 1.69 (min(ωS

2 ) = −1.95) at T II = 323 to

max(ωS
2 ) = 4.46 (min(ωS

2 ) = −4.46) at T II = 560, suggesting the forward cascade of

energy from the LS to the SS as the three-dimensional modes prevails and the flow

loses its initial two-dimensional structure and becomes completely turbulent.

The qualitative difference of the LS vortical structures in Case 1 and Case 2 is

further evident if one considers the second invariant of the velocity-gradient tensor

which is often used to identify vortex regions which exhibit significant rotational

motions.

Isosurfaces of the second invariant of the LS and the SS velocity-gradient tensors

for both Cases are exhibited in Figs. 42 and 43, respectively. The positive regions

of the LS invariant QL are shown at two levels equal to 0.12 and 11.0. Figure 42(a)

demonstrates the basic 3D structure in the mixing layers. Pairing of two spanwise

vortices is highlighted by the isosurface of the higher value of QL. In mixing layers,

two dimensional LS structures are subject to three-dimensional instabilities, which is

manifested by existence of counter-rotating streamwise “rib” vortices, and have been
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Figure 40: Contours of the LS and SS spanwise vorticity for Case 1 at T = 36,
110, 184, x2 = 0.75L: (a), (c), (e) −16 < ωL

2 < +8, contour interval is 0.8; (b), (d),
(f) −4.5 < ωS

2 < +4.5, contour interval is 0.45. Positive and negative vorticity is
indicated by dash and solid lines.
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Figure 41: Contours of the LS and SS spanwise vorticity for Case 2 at T = 323,
416, 560, x2 = 0.75L: (a), (c), (e) −16 < ωL

2 < +8, contour interval is 0.8; (b), (d),
(f) −4.5 < ωS

2 < +4.5, contour interval is 0.45. Positive and negative vorticity is
indicated by dash and solid lines.
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studied extensively in the past (Metcalfe et al. [1987]). These vortices are developed in

the braid region and extend from the bottom of one vortex core to the top of the next.

This structure is clearly visualized by lower value of QL. Figure 43(a) shows the LS

vortical structure for the Case 2 at later time T II = 560, when the two dimensional

subharmonic and the counter-rotating streamwise vortices are already significantly

distorted. These LS vortical structures strongly affect the corresponding SS field. In

Case 1 (Fig. 42(b)), the SS invariant exhibits an approximate, quasi-two-dimensional

pattern, while Case 2 is characterized by almost structureless, random SS vorticity

regions as shown in Fig. 43(b). Structural features of the LS and SS streamwise

vorticity components in the cross-sectional plane are shown in Figs. 44 and 45. In

Case 1 the LS streamwise vortical ribs consists of the counter-rotating vortices. It

is interesting to note that the corresponding SS vorticity exhibits repeatable pattern

with a period equals to that of the LS vorticity.

Finally, turbulent statistics is examined to determine whether the development

of the mixing layer reaches the self-similar stage. The well-known property of the

turbulent mixing layer is the self-similar evolution after an initial transient stage,

provided the sufficiently large computational domain and the high Reynolds number.

The notion of the self-similarity of turbulent mixing layers has been widely addressed

in literature by both experimental (Brown and Roshko [1974], Bell and Mehta [1990])

and computational (Rogers and Moser [1994], Vreman et al. [1996]) studies. The self-

similarity regime is usually characterized by the linear growth of the layer momentum

thickness in time and by coinciding profiles of the normalized turbulent intensities

for different times (or downstream locations for spatially evolving mixing layers).

However, the non-dimensional times of the beginning and the end of the self-similar

regime are strongly depend in the initial conditions which makes the meaningful

comparison of experimental and numerical (DNS or LES) results somewhat difficult.
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(a)

(b)

Figure 42: (a) Isosurfaces of the second invariant QL = 0.12 (light, transparent) and
QL = 11 (dark) at T = 147; (b) Isosurfaces of the second invariant QS = 0.12 at
T = 147.
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(a)

(b)

Figure 43: (a) Isosurfaces of the second invariant QL = 0.12 (light, transparent) and
QL = 11 (dark) at T = 560; (b) Isosurfaces of the second invariant QS = 0.12 at
T = 560.
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Figure 44: Contours of the streamwise vorticity for Case 1 at T = 110 and x1 =
0.31L: (a) LS vorticity −1.6 < ωL

1 < +1.6, contour interval is 0.16; (b) SS vorticity
−1.0 < ωS

1 < +1.0, contour interval is 0.1. Positive and negative vorticity is indicated
by dash and solid lines, respectively.
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Figure 45: Contours of the streamwise vorticity for Case 2 at T = 416 and x1 = 0.6L:
(a) LS vorticity −7 < ωL

1 < +7, contour interval is 0.7; (b) SS vorticity −3.5 < ωS
1 <

+3.5, contour interval is 0.5. Positive and negative vorticity is indicated by dash and
solid lines, respectively.
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In addition, the experimental and numerical findings (Dimotakis and Brown [1976],

Balaras et al. [2001]) suggest that the turbulent statistics as well as the flow structure

are strongly affected by the initial conditions and the computational domain size. The

significant differences exist in all stages of the mixing layer development including the

self-similar regime leading to multiple, non-unique self-similar states. As a result, any

validative conclusions drawn on routinely compared data from the different numerical

(DNS or LES) and experimental configurations are based on implicit assumption of

the unique self-similar state and, therefore, should taken with caution.

The purpose of the current simulation is not to study self-similar states of the

turbulent mixing layer (which would require a large domain allowing more successive

vortex pairing) but rather to establish general applicability of the TLS approach to

a turbulent flow with persistent LS coherent structures. Therefore, despite the sig-

nificant difference in the initial conditions, it is instructive to compare qualitatively

the TLS results of Case 2 with DNS results of Rogers and Moser [1994] and experi-

mental results of Bell and Mehta [1990]. A Galerkin spectral method was employed

in the DNS with resolution of 512× 210× 192 modes and the initial vorticity thick-

ness Reynolds number Reω of 1370. Initial velocity field was generated by bringing

together two turbulent boundary layer realizations with their respective free streams

moving in opposite directions. In the experimental work of Bell and Mehta [1990]

a mixing layer originated from two tripped splitter-plate boundary layers with the

momentum thickness Reynolds numbers Reθ equal to 804 and 567 respectively.

Figure 39 shows that the evolution of the momentum thickness is not fully linear

in the turbulent regime, except a small time interval around T II = 500. However, the

exact estimation of the starting point of the self-similarity is difficult. The momentum

thickness is based on integration of the mean LS velocity and therefore, numerical

estimations that are based on the explicit calculation of the momentum thickness
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higher derivatives bear an unavoidable degree of arbitrariness. More transparent

estimation can be obtained by considering evolution of statistical quantities such as

the integrated dissipation or the resolved turbulent kinetic energy EL = 〈uL′
i u

L′
i 〉/2

at x3 = 0, which should not depend on time during the self-similar period (Rogers

and Moser [1994], Vreman et al. [1997]). Here, uL′
i denotes the fluctuating LS velocity

field. Time evolution of the LS and the SS turbulent kinetic energies at x3 = 0 are

shown in Fig. 46. It appears that an approximate self-similar regime is reached for the

non-dimensional times greater then 460. Note that the corresponding SS turbulent

kinetic energy, computed as the total SS energy averaged over the lines belonging to

x3 = 0 plane, also demonstrates the similar trend until about T II = 530. Due to the

finite size of the computational domain the statistics eventually decay.

Space averaged mean velocity profile is shown in Fig. 47 and agrees well with

DNS and experimental results. Figures 48 demonstrates RMS of the LS velocity

fluctuations. Despite very different initial conditions adopted in both DNS and ex-

perimental studies as well as the coarse LS resolution of the TLS case, turbulent

intensities of the LS field shows qualitatively good agreement with DNS and experi-

mental results. Some differences in predicting peak values of the turbulent intensities

may be also attributed to insufficient statistical sample due to the limited and approx-

imate existence of the self-similar stage. Here, the role of the computational domain

is particular important. As reported by Balaras et al. [2001], who recently conducted

the high resolution LES study of the self-similar regimes in turbulent mixing layers,

the combined effect of different initial conditions and domain sizes can result in up to

83% difference in predicting peak values of turbulent intencities, where the spanwise

velocity component is the most affected.

Overall, these results suggest that the SS velocity field generated by the simplified

SS Eq.(28) is capable to capture physically relevant details of turbulent flow pattern
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Figure 46: Evolution of the LS EL(t) (upper line) and the SS ES(t) (lower line)
turbulent kinetic energies at x3 = 0. ES(t) is multiplied by 20 to enable comparison.

in the presence of the LS coherent structures which makes the TLS approach feasible

for extension to treat complex, massively separated flows.
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Figure 47: Space-averaged LS streamwise velocity at T = 510 (open squares) com-
pared with the mean streamwise velocity for the self-similar state obtained in DNS
(line), Rogers and Moser [1994] and experimental studies (circles), Bell and Mehta
[1990].
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Figure 48: Space-averaged LS rms velocities at T = 510 (open squares): streamwise
(a), spanwise (b), normal (c), compared with the rms velocities for the self-similar
state obtained in DNS (line) and experimental studies (symbols).
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CHAPTER VI

CONCLUSION

A novel Two Level Simulation approach, which is alternative to traditional LES,

has been developed based on the explicit simulation of the SS velocity fields. A

coupled system of the LS and the SS governing equations, that is not based on an

eddy-viscosity type of assumptions and requires no adjustable parameters, has been

derived based on the decomposition of flow fields into the LS and the SS components.

To alleviate complexity of numerical simulation, the SS equation has been treated on

a domain with a reduced dimension and representing a collection of 1D lines.

First, the exact SS equation has been studied by simulating randomly forced

Burgers turbulence with primary reason for validating the ability to reconstruct the

SS fields as well as the adopted numerical approach. Reconstruction of the SS field

in 3D requires some modeling since the SS derivatives in the directions transverse

to the line direction are not available. To validate the model assumptions statistical

analysis of the SS derivatives has been performed based on DNS data sets including

both homogeneous and non-homogeneous turbulent cases. It has been shown that the

resulting simplified SS velocity equation is able to reconstruct the SS velocity based

on the LS velocity field only, without invoking the eddy-viscosity hypothesis or using

modeling constants.

Fully coupled implementation of TLS has been demonstrated by simulating sev-

eral benchmarks cases of incompressible turbulent flows, including forced isotropic

turbulence, well-developed turbulent channel flow and temporal mixing layers. The

current approach is readily extendable to treat high-Re number non-homogeneous
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turbulent flows. A priori analysis of the SS derivatives for a high-Re turbulent chan-

nel DNS data shows strong similarity with the SS derivatives of the homogeneous and

isotropic turbulence. This provides a certain level of justification to use the modeled

SS equation for non-homogeneous turbulent flows.

Overall, the presented results suggest that TLS approach has a potential for cap-

turing high-Re number turbulent flow behavior using rather coarse grids by explicitly

simulating the SS fields. More importantly, TLS formulation provides a useful frame-

work for treating complex turbulent flows by not resorting to the concept of the

filtering. It provides a different perspective on turbulence modeling and offers certain

potential advantages over existing LES approach, namely:

• TLS provides consistent computational framework to simulate both the large-

scale and small-scale fields;

• TLS coupled system of large and small-scale equations does not involve any of

eddy-viscosity type of assumptions and requires no adjustable model constants;

• TLS can be readily extended to non-homogeneous flows in complex geome-

tries. Since the filtering is avoided, there is no commutativity restriction which

formally requires adding to LES equations, and modeling extra terms when a

non-homogeneous filter is present;

• The small-scale field reconstruction can be very effective on massively paral-

lel computers making TLS approach computationally feasible for high-Re flow

simulations.
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CHAPTER VII

FUTURE WORK

In this concluding section, it is worth to outline several possible venues of continuation

of the work presented in this thesis.

One notoriously difficult, at same time, practically important area for LES is

modeling of near-wall turbulence without to resorting to DNS-like resolution. The

maximum production of the turbulent kinetic energy occurs well within the buffer

layer at x+
3 ≈ 12 and shows very little variation with Reynolds number Reτ (Panton

[2001]). As a result, very high near-wall resolution is usually needed to accurately pre-

dict turbulent flow features in the inner layer. Apart from the most popular methods

of specifying approximate boundary conditions to model the effect of the wall layer

(Deardorff [1970], Schumann [1975], Piomelli et al. [1989]), more consistent, zonal

approaches were proposed in literature. In zonal approaches one solves a specified

set of governing equations in the inner layer with much finer resolution than that

of usually adopted in the outer layer. In one zonal approach, known as Two-Layer

Model (TML), a simplified set of the boundary layer equations is employed to model

the inner layer motion while LES equations are solved in the rest of the flow do-

main (Balaras et al. [1996]). The second zonal approach is called Detached Eddy

Simulation (DES) and is due to Spalart et al. [1997]. DES is based on the idea of

merging the LES solution with the solution of RANS equations adopted to model

the near-wall region. However, very often zonal approaches fail to represent the cor-

rect near-wall dynamics when the two-way inner/outer layer interaction is present.

Another, somewhat geometrically similar, but conceptually very different approach,
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which is based on explicit accounting of the near-wall velocity fluctuations, was devel-

oped by Schmidt et al. [2003]. The approach employs the stochastic one-dimensional

turbulence (ODT) model of Kerstein [1999] which is modified to represent turbulent

velocity field on wall-normal lines placed in the near-wall region. This near-wall ODT

approach was tested to simulate a well-developed channel flow with Reτ up to 10, 000

and demonstrated good agreement with the previous DNS and experimental results,

especially for the mean velocity and the friction coefficient. However, it remains to be

seen whether the near-wall ODT is capable to treat geometrically complex, separated

flows.

In similar vein, the present TLS approach can be adopted to simulate the near-wall

region only by limiting extension of the wall-normal lines (l3). In such configuration,

LES (or LS) equations are needed to simulate the outer flow region. One of the ad-

vantages of such mixed TLS/LES approach is the higher computational effectiveness

due to significant reduction in number of streamwise and spanwise lines. The other

advantage is no need for interface boundary condition for the LS velocity field. Note

that while all zonal approaches use some form of domain, i.e., geometric, decomposi-

tion, in TLS, the functional decomposition is induced according to Eq. (5). In other

words, the LS field is still defined and computed in the near-wall region, though it can

be less fluctuating than corresponding SS field. Since Eq. (7) has the same functional

form as the standard LES equations, the implementation of TLS/LES approach is

easy to achieve by switching from the explicit SS reconstruction to the corresponding

SGS model in the outer layer. Such functional splitting, however, raises two legitimate

questions which should be addressed. First, since the endpoints of wall-normal lines

are lying inside the flow domain, the SS boundary conditions are not known there. It

is expected that the reconstructed SS velocity field would be rather insensitive to the
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boundary condition at the interior endpoint since it is mostly define by the LS veloc-

ity gradients, however further testing is needed. Second, it is important to estimate

how coarse the LS resolution can be in wall normal direction to sustain the acceptable

level of fluctuations in the SS velocity. In the test case studied in Section 5.3, the

first LS grid point was at x+
3 = 19 at Reτ = 590. Clearly, the coarsening of the LS

grid may diminish the LS gradients which can adversely affect the reconstructed SS

field.

The other area which is worth to explore in the context of TLS approach is how

line placing affect the simulated SS fields. It is clear that “unstructured” line placing

may increase computational effectiveness of the approach due to a possible reduction

of the total number of lines needed to represent the SS velocity field. In principle,

computational efficiency of the mixed TLS/LES approach can be achieved in TLS

also, by clustering lines (for example, randomly) in the near-wall region and using

fewer lines in the channel core. As a result, the physical consequences of the model

assumptions (i) and (ii) have to be studied for a case of the arbitrarily positioned line

lk.

An extension of TLS approach to treat compressible flows as well as turbulent

mixing and related combustion problems requires the introduction of additional field

equations that describe evolution of density, species concentration and internal en-

ergy. Consequently, decomposition similar to Eq. (5) can be introduced to additional

flow variables as well. As a first step of generalization of the proposed approach in this

direction turbulent passively advected scalars can be studied. This, however, would

require some additional model assumption relating the SS scalar dissipation and ad-

vection in directions orthogonal to line lk. In principle, a physical insight of such SS

scalar field behavior can be obtained from a priori analysis of the corresponding DNS

data sets. Such work is currently underway and will be reported in the near-future.
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