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SUMMARY

The object of investment analysis is to sélect, from the set of
available proposals, a feasible package to be undertaken, which is
preferred above all others. Most of the work done in the area of
"Capital Budgeting’ assumes linearity, independency of projects, and
deterministic cashflows. A quadratic objective function is justified
in the following cases to build realism into the models developed:

1. WwWhere the objective is to maximize the utility and the

utility function is quadratic instead of linear.

2. Where the interrelationship between projects are considered

explicitly in the models.

3. Where risk factor is taken into consideration in project

selectien.

The objective of this research is to analyze capital budgeting
problem as a mixed-zero one integer quadratic programming problem by
relaxing the independency assumption and linear utility assumption in
the models developed by Weingartner, Bermhard and Baumol and Quandt.
The duality concepts developed by Balas for the quadratic case,are
used to analyze the:properties of optimal solutions to the models.
Solution techniques for a class of capital budgeting problems are
also discussed. Specifically, the problem involves the allocation
of limited amounts of capital among a specified set of investment
opportunities in such a way as to maximize the utility of a discounted

sum of cash distributions made to the firm's shareholders.



CHAPTER 1
INTRODUCTION

The area of capital budgeting is vast and diversified. Discussions
on the proper criterion to use to evaluate investment proposals and dis-
cussions on the proper horizon, proper interest rates, the problem of
optimal dividends, optimal renewal, etc., have been dealt with in the
literature from variocus peints of view. A variety of formal techniques
have been used in these areas. In principle, the object of the invest-
ment analysis is to select from the set of available proposals a feasible
package to be undertaken, which i§ preferred above all others.

Analysis for investment decisions by firms has become more
sophisticated largely through use of mathematical models and computers
to solve them. A major contribution for the theoretical formulation
and treatment of constrained capital budgeting problems through the use
of mathematical programming was made in 1962 by Weingartner (23). Since
that time, several additional contributions by that author, Baumol and
Quandt (5), Naslund (18), Byrne et al. (8) and others have discussed
further the use of programming techniques, especially the choice of
suitable objective function and the development of methods for handling
uncertainty.

Most of the work done in this area assume linearity of objective
function, independency of projects, and deterministic cash flows. The'=
desirability of one prospective investment is not always a question that

can be answered independently of others. It is common practice to



reduce all problems to the case of independent proposals by amalgamating
those projects among which interdependencies seem strong, and ignoring
any remalning interdependencies. The extent to which this practice
leads to good decisions has been obscured by lack of a technique of
analysis capable of finding good decisions in specific instances.
The interrelationships between projects may take on many forms.
Some investments may be competitive, such as develeping new products,
which would in part compete for the same market. Some investments may
be complementary, such as developing and installing new production
systems, which would share common facilities or which would mutually
benefit from common research and development work. These factors may
be internal to the firm or they may be exogoneous to the firm, such as
the general state of the economy, or relevant technological factors.
This research has been directed towards relaxing the linearity
assumptions made in the capital budgeting models. A quadratic objective
function is justified in the following cases:
i) Where the objective is to maximize the utility and the
utility function is quadratic instead of linear.
ii) Where the interrelationships between the projects under
consideration are explicitly considered in the model.
iii)Where risk factor is taken into consideration in project
selection. If we could calculate the risk associated with
an alternative or a set of alternatives, in terms of the
variance of returns, or that alternative, and the covariance
between alternatives, then the problem of allocating a

limited amount of capital to a group of interrelated



investment alternatives under risk can be formulated as
a quadratic binary programming problem.

Balas (4) has studied a pair of problems, in which the min-max
{(max-min) 6f a nonlinear function is to be found over a domain defined
by linear inequalities, and the variables are constrained to belong to
arbitrary sets of real numbers, i.e. some or all of the wvariagbles may
be discrete. Mixed-integer and all integer quadratic problems are
special cases of these problems, and the duality construction is symme-
tric, i. e. the dual of the dual is primal.

The objective of this research is to amalyze capital budgeting,
as a mixed-zero one integer quadratic programming problem, by relaxing
the independency assumption and linear utility assumption in the models
developed by Weingartner, Bernhard and Baumol and Quandt. The duality
concepts developed by Balas (4), for the nonlinear discrete case, in
particular the quadratic case, are used to analyze the properties of
optimal solutions to the models formulated.

In Chapter II, the duality concepts of Balas for discrete pro-
gramming are discussed. Particular emphasis has been placed on the
quadratic discrete programming problem as they have direct bearings
on the models to be formulated in Chapter III.

In Chapter III, three quadratic mixed zero-one integer programming
models are formulated and analyzed. The results derived from an analysis
of optimal solutions to the primal and dual models are stated as lemmas.

Chapter IV deals with discussions on the solution techmniques for
a class of capital budgeting problems. Specifically; the problem we

will be concerned with involves the allocation of limited amounts of



capital among a specified set of investment opportunities in such a way
as to maximize the utility of a discounted sum of cash distributions

made to the firm's shareholders.



CHAPTER 1T

BALAS' CONCEPTS OF DUALITY IN DISCRETE PROGRAMMING

Introduction

Duality theory plays a crucial role in the theory and computa-~
tional algorithms of linear programming. The inception of duality
theory in linear programming may be traced to the classical "min-max"
theorem of Von Neuman, and was first explicitly given by Gale, Kuhn
and Tucker (13). The main result of linear programming duality theory
is that the primal has a finite optimal solution if an only if the
dual has one, in which case the values of both the objective functions
are equal at optimality.

The duality theory of quadratic programming has been studied by
Dennis (11) and principally by Doxn (12). Wolfe (25) has specialized
his results in nonlinear programming to the case of quadratic programming.
In nonlinear programming, in order to establish a symmetric duality,
conditions have to be imposed on the problem, but under less stringent
conditions, duality can be established. Under certain conditions, a
solution to the primal problem provides solution to the dual problem
and vice-versa.

Balas (2) has studied a pair of dual problems in which the
min-max (max-min) of a linear function is to be found over a domain,
defined by linear inequalities, and some of the variables are to be
constrained to belong to arbitrary sets of real numbers. For example,

some of all of the variables may be discrete. Balas shows mixed-



integer and all-integer programming problems are special cases of these
symmetric dual problems. Balas extends the results of linear cases to
the case of quadratic objective function. In this, a quadratic objective
function is to be optimized subject to linear constraints. A pair of
symmetric dual quadratic programs is studied, where some or all of the
variables belong to arbitrary set of real numbers. Quadratic all-integer
and quadratic mixed-integer programs are shown to be special cases of
the general problem. Further, Balas extends the results of linear and
quadratic case to mixed-integer and pure integer nonlinear programs,
with convex objective functions and constraints (4).

The duality concepts studied by Balas is symmetric, i. e. the
dual is the primal. Subject to qualification, the primal problem has
an optimal solution if and only if the dual has one, and in this case,
the values of their respective objective functions are equal.

In this chapter, the duality concepts developed by Balas are
discussed and analyzed for the quadratic case. A brief summary of
the results of the linear case is given before considering the quadra-

. ticicase.

Duality in Linear Programming

Consider a pair of dual linear programs:

Primal: Max cx Dual: Min ub
s.t. A&x ty=b UA - v T ¢

X,V % 0 u,v,'% 0
where,

A= (aij) is an 'm x n' matrix i = (1,2,. . . . .m) and

j = (1,2, « « « on)



c,x = 'n' dimensional vectors
u,v,b = 'm" dimensional vectors.
The duality theorem states that if the primal problem has an

optimal solution, then the dual has also an optimal solution, and indeed
Max c¢x = Min ub

If (;, §) and (u, E) are the two optimal solutions to the primal

and the dual respectively, we have

cx = ub and

uy = wvx = 0
These relations play a central role in linear programming.

Duality in Discrete Programming--Linear Case

Consider a mixed-integer linear programming problem:

Given
c = c,
( J)
A = (aij) je N~ (1,2 . . . . .m)
b == (bi) ieM=(1,2. ... .n)

Find wvectors,

x = (xj), y = (yi) ieM, jeN
and Max cx
s.t. Ax ty = b - (T)
X,V g 0

xj integer i€ N1CN



The above problem is different from the linear programming pro-
blem discussed earlier, since in this case some or all of the wvariables
are constrained to belong to an arbitrary set, for instance the set of
integers.

The basic feature of Balas' duality concept for linear discrete
programming can be summarized as follows. Whenever a primal variable
'xj' is constrained to be integer, or arbitrarily constrained, the
associated dual constraint is relaxed by the introduction of an uncon-
strained slack wvariable 'vj'. By this, the 'j'th constraint disappears
from the dual set, but its slack appears in the objective function,
multiplied by its complementary primal wvariable 'xj'.

Essentially, in a linear programming problem, we are looking
for a feasible solution to the primal and dual to solve the problem.
In the discrete case, we are looking for a feasible solution to the
primal with the property that the associated solution to the dual
satisfies all the dual constraints, corresponding to the continuous
primal variables, and comes "as close as possible,” to satisfying the
dual constraints corresponding to the integer constrained primal
variables. This "coming as close as possible! is to be interpreted
in the sense that the "gap” the amount * -(vj)-l by which each dual
constraint corresponding to an integer const;ained primal wvariable

'xj' is potentially (i.e. if Vs < 0) violated, is weighted with

rij and the weighted sum of these "gaps" is being minimized with

respect to 'v' at the same time as the objective function is maximized
with respect to "x' (1).

Consider the following problem (P} in which,
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Find x = (xj), y = (yi) ieM=(1,2,. « « . .m),

jeN=(,2,. . . . .0).
= 1 ' . 1 ...
Let x = ( X" ;), where x, is a component of x  if j ¢ Ni
(,.2)
( )

and a component of x2, if je N - Nl'

. . . — 1
Further, let us introduce the wvariables Uy ie M, and let u = (u” , u2),

. 1 ... .
where u; is a component of u , if i € M, & M, and a component of u2, if

1

ie M- M,.

1 1 1
1 9 (y ) (b")
Accordingly, let ¢ = (¢, ¢ )y vy = (_.2), b= (,2), and
v b
( ) ¢ )
( A11 A12 )
A= (.21 22 ).
A
( )
Consider now the problem:
Min Max cx + u1 yl + u1 All xl
u1 X
S.T. Ax ty  =b
X, u1 2 0 ' (®)

Xj integer, j ¢ N1

u, integer, i e
i geL, Ml

unconstrained, i e Ml
i

=0 ieM- M1

Problem 'I' is a special case of 'P' where M = 4.

-
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Balas defines the dual (D) to the problem (P) as finding,

u = (ui) ieM

v=(vj) jeN;v=(v1,v2),vleN1

xl = (xj) je N1 that

Max Min ub - v1 xl + u1 All xl
1
X u
S.T. uA - v = ¢ (D)
us = integer i € Ml
xj = integer j € Nl
unconstrained je N1
v,

] Z0 jc—:N~-N1

The above pair of dual problems have certain complementary
properties between the primal variable 'xj' and the dual slack 'vj',

and between the primal slack 'yi' and the dual variable 'ui'. The

relationships are

X, integer - - vj unconstrained

]
: 2

X, continuous wg— g v, - 0

] ]
b unconstrained w—a» us integer

bd 0 1

.= , continuo

¥s -t —» U, C uous

Duality in Quadratic Proeramming

A quadratic programming problem is a nonlinear programming problem,
having linear constraints, and an objective function which is the sum of

linear and a quadratic formsw The general quadratic programming problem



11

can be stated as follows:

Mzg f = ecx Tt x 'Cx
S.Ts Ax = b - ..(Qp)
X 2 0

Where,
.0 = 1 ] M
A is a mx n matrix
Fnt = 1 1 .
€ is a n xn matrix
1 ] + I 1
b is a 'm component vector
Pt tt ) '
¢, and 'x are n component wvectors.
The matrix 'C' can be taken to be symmetric matrix without loss of

generality by letting,

Cc = (cij) = (cji) ='%(c£j + Cii)

The set of feasible solutions to the constraints is a convex set. If
the objective function is a concave function, then any relative maximum
is a global maximum. The objective function 'f' is the sum of a linear
form (which is concave) and a quadratic form. Since the sum of two
concave functions is concave, the objective function will be concave if
'x'¢cx' is a concave function.

Hadley (14) shows that a dual problem to the quadratic programming

problem can be stated as

Min F = u'b - %x'Cx

S.T. Au - Cx c! . «(QD)

v

If the problem (QP) has an optimal solution, then so does the problem

(QD), its dual, and furthermore,



max £ = min F.
In fact, an optimal solution 'x*' to primal forms an optimal solution

to the dual.

Duality in Discrete Programming--Quadratic Case

The symmetric dual nonlinear programs studied by Dantzig,
Eisenberg and Cottle (10), as well as tﬁe dual nonlinear programs
formulated by Wolfe (25), Mangasarian (16), and Huard (15), are
generalized by Balas (4), by allowing some of the variables to be
constrained to belong to arbitrary sets of real numbers, and
dropping the requirement that the objective function and the
constraints be concave (convex) in these variables.

Consider the following symmetric dual nonlinear programs with

arbitrary constraints:

Let,
X € Rp, u e R" (rous or columns, according to context)
{1,. - . . «n} =N, (l,. . . .m) =M
s < <
(1’0 . s e .nl) = Nl c N’ L., 0= nl - n
= : < <
1,. . . . .ml) M1 M i.e. O m m
1 2 _ 1 2
x = (x7, x), u = (u, u)
= . 2 = .
X (x1 RS Y, X (xn Fproe o .xn)
1 1
u = (u u ) u2 = (u . ou )
1 1I - - » - m , ml + 1, - . - :n

, 2 .
Consider a function K (x,u) differentiable in x2 and u~, and denoting

‘;’ X2 K (x,u) ) E & K (x,u) o & K (x,u) ;
(8 o, +1 8 *n )

1

12
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K (x,u) (5 K (x,u) § K (x,u) )
AV

u = (E_;:___T“_ Ce e sy )

( ny + 1 n )

V , K (xu) (8 K (x,u) & K (x,u) )

u = ( R )

( my +1 m )

Let 'P' be the problem of finding x ¢ R and u € R and

(Primal) min max K (x,u) - P2 K (x,u)
ut x,u’
Subject to V2 K&z
Xl € Xl, u € U1
x2, u2 z 0

1 1 .
where, x ¢ Rpl and U1 € RP are arbitrary sets

Balas defines the dual of (Primal) as the problem of finding

X Rp, u € R and

{Dual) Max min K (x,u) - x2 \v 9 K (x,u)
1 2 x
X x7,u
Subject to

x K (x,u) =0
xl € Xl, u1 € U1
=
xz, u2 = 0

If we set, in the nonlinear programming problem,
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K (x,u) = cx tub - uax + % (xCx - uEu) *+ u1 All x1

we have a quadratic programming problem, where some or all of the
variables are constrained to belong to arbitrary set of real numbers.

Then the objective function of primal and dual become,

min max cx % xCx % uEu + ul yl + u1 all b and
1 2
u X, U
, 11 1,11 1
max min ub - % xCx - % uEu - v x Tu A x
1 2
X X, u
1=t Tt . . . ¥ 22] 1 22| .
where E and 'C are symmetric matrices with C and E negative
semidefinite; yl, vl are the slack and surplus variables.
Consider now the problem (P) in which,
. Al 1ot . , R 1224 122,
i) 'C' and 'E' are symmetric matrices with 'C and 'E

negative semidefinite
. 1 1 i
ii) X and U~ are arbitrary sets of 'nl' vectors and 'ml'
. 1, . 2
vectors respectively such that X 1is independent of x°,

. , 1 1. \ .
u; i.e. neither X nor U 1is defined in terms of other

variables of the problem.

Find,
x = (x.)
J
y - (Yi) ] € N
u = (u.) ieM
min max f~=cxt% xcx +% uEu + u1 yl + u1 All xl
1 2
u X,u
subject to
Ax T Eu t ¥y = b
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X, ¥y 0 ... (P

A solution to 'P' will be written as (x,u) as the vector 'y’

is uniquely determined by 'x' and 'u'. This solution will be called

a feasible solution if it satisfies the constraint set.

The dual problem to (P) as defined by Balas is as (D) of finding,

u = (ui)
x = b: i e M
(J)
v = v, i € N
(J) ]
Max Min g = ub - % uEu - ¥ xCx - vl xl + u1 All xl
1 2
x x , u
Subject to udA - xC - v = c
u1 € U1 xl € Xl
>
v2, u2 2 0 | (D)
1 2

v, X unconstrained

If we write the dual (D) in the form (P), we obtain by changing

the signs of the objective function and in the equation set

- min max u (-b) *53 u (E) u t% x (g) x *+ vl x1 + ul(-All)x1
1 2
X X ,u
Subject to u (*FAY txctv = (-e)
ul € U1 xl € Xl
>
u2, v2 =0
2 1

X, v unconstrained
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It can be observed that the dual of the above problem is the

Primal, thus proving.that the dual is involutory.

Properties of Primal and Dual

Let 'Z' and '"W' denote the constraint set of (P) and (D)

respectively, and let

z = min max f (x,u) ¢ Z}
1 2

u X,u
w = max min g (x,u) e W } if it exists.
1
x x",u

Definition

1 2 , .. R .
Let s, 8 « s o & .s” be elements of arbitrary finite dimensional

vector spaces.

A vector function G (sl, sz, « « « .« «sP) is called separable

. 1, . . . 1 .
with respect to 's ' if there exist vector functions H (s”) (independent

of sz, e e e .sp) and K (52. . e . .sp) (independent of sl), such that

G (sy, v v e e us?) 2 OH (M) FR (8L, . .. . .sP)

1

G (s  + « .+ o .s") is called Componentwise separable with respect to

sl, if each component, 8; of G can be written either as g (sl), or
as g (sz. e . . .sp).
Lemma 1
Let r, s, t, be elements.of arbitrary vector spaces. Let f
(r, s, t) be a scalar function and G (r, s, t) be a vector function.
If f (r, s, t) is separable and G (r, s, t) is componentwise

separable with respect to 'r' and 's', then
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< )
Inf Supr {f (r, s, t) I G (r, s, t) = 0}

s r, t

<
= Bupr inf sup {f (r, s, t) ' G (r, s, t) = 6}

r s t

In this lemma, it can be noted that the definitions infimum and
supremum were used instead of minimum and maximum to enable us to consider
open sets of feasible solutions, which do not contain the boundary points
or some of the boundary points.

Theorem 1
21 _ 2 . , .
Assume E = 0 and v© is componentwise separable with respect to
12 _ 2 . . .
u (or C =0 and y~ is componentwise separable with respect to

1 - -
'x"'). Then if (P) has an optimal solution, (x, u), there exists u

- A 1 A
such that (x, u} where, u = (ul, u2) is an optimal solution to (P)
- A
and (D) with Eu = E u,
min max il (x, u) ¢ 2 } = max min g l(x, u) € W}
1 2 ! 1 2
u X, U x X ,u

and the funetion
F(x,u) =cxtixCxtu -%5uEBEu-uaxt u1 All xl
has a saddle-point at (x, u):

F (x,ﬁ) ES F (o, = F (x, u)

for all x e X (u, ;2) and all u ¢ U (x, ;2), where §2, and ;2 are

- A
defined by (%, u).
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Corollary 1-A

If (x, u) is an optimal solution to (P) and (D}, then

-2 2 21 -1 21 -1 22 =2

u® (" - A" x  -E"" u - ETu) - (c2 - Gl A12 + §1 12 4 §2 22) ;2 =

C C

Consider the problem (D'),

Max Min g' =ub - % uBu - 5 xCx - vl s T ul All 8
s X,u
Subject to uA - xC = v = ¢ (")
1 € U1 5 € Xl
b
u2, v2 ==0

1 .
X, V unconstrained.

where 's' is an 'nl' vector and all the other symbols have the same
meaning as in (D). Let 'W' and "W'" dencte the constraint sets of
(D) and (D').
Theorem 2
If the matrix '€' is negative semidefinite, (D') is equivalent

to (D)
(a) If (x, u) solves (D), then (;, ;, u) where s = ;1 solves (D').
(b) 1If (g, §, G) solves (D'), there exists §2 such that (g, X, ﬁ),

where x = (s, §2) also solves (D'), and (x, G) solves (D).
In both cases,

max min {g' , (s, %, u) € W'} = max min {g l (x, u) ¢ W}
u xl x2

5 X, u
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Special Case

Consider the following mixed-integer programming problem:

Max fF=cext% xCx

Ax S b G

= 1 . 1 . .
where x = (x7, xz) is an 'n' vector, X is the set of all non-negative

<
'nl' vectors (n; = n) with integer components.

The problem (L) can be written as

"

Max £f = ¢ x + " x" +% (xl, x2)

»

N N N N

NN
N

e N N N

subject to
<
21 1 22 2 < 2

The problem (I) is a special case of the general problem (P)

where, we have

E=0and M = g.

The dual of (I) can be written as (D)

max min g = u2 b2 - % xCcx - v1 xl
1 2
X x7, u
Subject to
u2 A21 - (xl Cll + x2 C21) - V1 = cl



%]
[\
AV

2 1 .
X", v unconstrained.

For this special case, Theorem 1 of Balas reduces to

Max {f l (xl, xz, uz) € Z} = Max  min {g | (x,-'
1 2 2 1 2 u2

X s X ,u X X

and the function

F (xl, x2 uz) =(c1 <L+ etk el o+ ¥xCcx+ u? b2

H)

1 -2

has a saddle point: (x, x°, Gz):

- - - - < - -
F (xl, xz u2 F (xl, xz, uz) =F (xl, xz, u2)

A

Eu) elﬁ}

_ 22t L

and the corollary to theorem 1 for this special case reads as,

-2 =2

u y =0
vz =0
and
22 2 - a2l Fly L2 el el? 132 622 32 = g
where (;1, ;2, Gz) is an optimal solution to (P) and (D).

20
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CHAPTER IIT

QUADRATIC DISCRETE MODELS

Introduction

The capital budgeting models developed by Weingartner (23),
Baumol and Quandt (5), and Bernhard (7) invariably assume independence
of projects. However, the desirability of one prospective investment
is not always a question that can be answered independently of others,
since their performances often would be interrelated. These inter-
relations may take many different forms. Some of the investments may
be competitive, such as the development of new products, which would
in part compete for the same market. Some investments may be comple-
mentary, such as developing and installing a new production system
which would share common facilities or which would mutually benefit
from common research and development work. The amount of income
resulting from each of a group of investments may be correlated because
these incomes are affected by common factors. These common factors may
be internal to the firm or external factors such as the general state
of economy or relevant technological factors. S$o, in general, the
independency assumption does not hold.

In this chapter, we will consider the interrelationships
between projects explicitly in the model. Relakation of any assump-
tion of independency give rise to a quadratic objective function.
Quadratic discrete programming models are discussed as an extension

to the cases of the following models:
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i) Weingartner's Linear Programming Model

ii) Weingartner's Basic Horizon Model

iii)Bernhard's general model

The duality concepts of Balas (3) for the quadratic discrete
case are applied to the quadratic models developed, and the optimal

solution to primal and dual are analyzed, to obtain certain results.

Interrelationships Between Projects

We are concerned here discrete indivisible projects. The

decision variable '

xj' j =1, 2, . . . . .n, is a binary vector with
values either '0' or 'l'. This makes the decision of undertaking
the project fully or rejected fully depending upon the value of xj.
TIf the 'j' the project is accepted, x4 =1, and X, = 0, otherwise.
When the projects are interrelated, these interrelations must
be taken into consideration in the mathematical programming models.
Weingartner discusses interrelationships 1ike mutually exclusive
projects, contingent projects, and compound projects, and suggests
methods to take care of them as part of the constraint set. A
mixture of independent and mutually exclusive projects presents
neither conceptual nor computational difficulties in the formulation.
To make an extension, it is only nécessary to add_one inequality for

the set of mutually exclusive alternatives. These interrelations

are therefore handled in the linear models discussed by Weingartner (23),

Quadratic Objective Function

We are concerned here with investment decisions which are not

independent and also are such that the interdependencies cannot be
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handled by a set of constraints. Consider a set of investment proposals
that are not mutually independent. That is the pay off, whether
measured in profit, revenue, cost productivity or the like to any one
project may depend upeon the other projects undertaken with it. For
instance, if among the available projects there are

i) that of building a concrete road in a certain distant

and inaccessible part of the world and

ii) that of building a cement plant in the same region.

The cost of the road might depend upon whether the cement plant
were or were not built, due to an assumed difference in the cost of
transporting cement under the two conditions, while the return to the
cement plant might depend on whether or not the road were built,
because of assumed absence of other demand for cement in that region.
Problems of this kind are to be found confronting a single firm in its
investment planning as well as an entire economy.

If we assume that it is sﬁfficient to consider pairwise inter-
reactions between the projects, it is possible to represent the inter-
dependencies by means of a quadratic term in the objective function.
Reiter (21) developed a model to include all pairwise second order
effects, i. e. involving interreaction terms between pairs of projects.
Nemhauser and Ullmann (19) solves such a quadratic model by a dynamic
programming algorithm.

Suppose a decision maker is confronted with 'n' investment
projects. The performance of any project may be measured in various
ways, e. g. total discounted net profitability over the estimated

life~time of the project. A triangular pay-off matrix
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§r. -
b11 b12 .« s e e s b1n
B = 0 b22 o e e e s b2n
0 0. .. ... b3n
0 o e e e . ber
0 e+t e e s s e s
0 0 0 ... b
nn

is defined for the set of 'n' investment alternatives such that the
pay-off (e. g. net present value) from the acceptance of project 'r'

-alone is 'brr' and the additional pay-off from the acceptance of both

the project 'r' and 's' is 'brs" in addition to the pay-off from the

acceptance of project 'r', 'brr' and project 's', 'bss'.

The problem of interrelationships can therefore be handled as

a-quadratic term

n n
XBX' = X X b..x, x.
j=1 i=1 1] 1 ]

X= (xl, Xps o 0 o e .xn)

X' = Transpose of 'X'

* %
The pay-off is realized only if X, =1; Xj = 1. Otherwise the product,

* %
x, = 0. Since the 'x;'s are restricted to zero and unity, it

b.. X,

iy %1%

\ . . . 2 "
is unnecessary to distinguish between 'xi' and 'xi '. Therefore, if the

objective is to maximize the present worth, it is possible to formulate

the objective function as
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separating the interraction terms as quadratic term. Without loss of
generality, the matrix (bij) can be made to an equicalent symmetric
matrix, with the diogonal elements zeros.

Extension of Weingartner's Basic Model
to the Quadratic Case

Introduction

The basic model of Weingartner involves the allocation of limited
amounts of capital among a specified set of 'n' investment opportunities
with the goal of selecting those projects whose total present value is
maximum, but whose total outlay in each period falls within the budget
limitation.

Consider, a planning horizon 'T' divided into a finite number of
perlods, and during this period, the exogenous and internal conditions
remain constant. The model considered is deterministic, i.e., all infor-
mation about cash flows and budget limitations up to the planning hori-
zon is assumed to be known with certainty. The discount rates are
assumed to be known for the purpose of obtaining the present values.
The projects are not independent and the interractions between them are

taken into consideration explicitly in the model.

The Model
Let,
C, = the budget ceiling in time 'e!
Sty = the cost of project 'j' in time period 't'
bj = the present value of all cash flows {(revenues and costs)
(%bij)= the Matrix containing the present value of all cash-flows

due to interraction of projects only.
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X = the decision variable to be either "go" or "no-go”
i.e. X takes on values '0' or 'L'.

The model can be stated as,

Maximize
n n n
2. . b, x, vy _. 2. _ .. x
il "1 73 i=1 731 i3 "1 7]
Subject to
n
<
Z%=1 ctj xJ Ct

xj integer.

This is a pure 0-1 integer programming problem. The above
model differs from Weingartner's Basic Model (13) by having a quadratic
function in the objective function to explicitly take care of the
project interractions. This model i1s a special case of the general
model (P) discussed in Chapter II, where E = 0 and M1 = @, with
Xl a set of all real 'n' vectors with values either '0' or 'l'.

The problems (P} and (D) read in Balas notation for the

quadratic case as

11, 101 ]

Max c (x )!

S. T.



xl € Xl (either '0' or "1'")

y =0,
and the dual to (P') as,
Max Min u2 b2 - % xl C11 xl - v1 x1
1 u2

5. T. u A -x C -v ¢

Xl (either '0' or '1")

¥
@

)
v

1 ,
v unconstrained.

Using the notational correspondence, between (P') and (D'), it

could be stated as:

Weingartner Balas
(Xl’ Xy o o v e .xn) x1
(cl, Cp oo v v s .CT) b2
(ul, U, e . .uT) u2
(s By« + v+ b)) ot

(bij) Cll
(Ctj) A21

G =1,2, ....0)

(t

]
=
[ o]

w
-*
.
H
~
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.The Dual Problem

Based on the above notational correspondence, the dual problem

to the model developed can be formulated as

T n n n
: - L -
Max Min 2t=1 u, Ct 3 Ei=1 Ej=1 bij X Xj Ej=l vj Xj
X, u
j £
n n
S.T. Z%=1 u, Ctj - Z£=1 x, bij - vj = bj
(J = 1, 2, L .n)
Xj = 19" or "1' G =1, 2, « « « « .n)
uf g 0 (t = ]., 2, . & % @ -T)

v__.I unconstrained.

The dual is a (max-min) type optimization of a quadratic mixed integer
programming problem. The dual variables 'ut' and the surplus variables
'vj' for all 't' and 'j' are continuous, the variables 'vj' being
unconstrained in sign, as they correspond to the integer constrained

primal variables 'xj' (partial relaxation of constraints).

Properties of Solution to Primal and Dual

From the theorems and lemmas stated in Chapter II, the properties
of the primal and dual are derived.

Since the wvector of primal slack wvariable (yl, Yoo « v o .yT)
is componentwise separable with respect to the primal decision wvector
(xl, Xg o 0 e .xn), the saddle point theorem states the "if (P) has

an optimal solutiom (il, X . . .%n), there exists a set of dual

2

variables (61, ﬁ

Uy e e e .uT) such that (xl, K. o s o o «X 3 Uje o o .uT)

2 n 1
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is an optimal solution to the dual.

Further we have

n n n
Max 24, b, x, +52i . 2i_. b,  x, x,
b I N i=1 7571

ij "1 7]
n Z)1:1 Z>r1 (3.1
= Max Min Z%=l u Ct - %‘Z%=1 =1 bij X, Xj " Hymy vj Xj
X. u
] t
From the dual constraint set we have
n Z?
Zt=1"ut ctj "L Xy bij - bj = vj (3.2)
G =1, 2, « « « « .n)
Substituing (3.2 in (3.1)
n n n Z‘,T
+ 1 = Mi
Max Ej“'l bj Xj 2 oy Ej"l bij X, xj Max in & o Uy Ct
X, u
j t
(3.3)

n n n

T 5|
- 1 - - -
5 Ei=1 Ej-‘-l bij X, xj Ej"'l (Et=1 Up Cpy Ei=1 Xy bij bj) Xj

If (gj, Gt) is an optimal sclution to both primal and dual,

then we have

Z? _ n 251 _ T Z? n
b, x, +324.., 24 X, = a - % X
il 3 XJ : Z%*l i=1 le A3 Xj Z%=1 Ye Ct 2 =1 Z%=1 le %
n Z}T . _ n n o _ _ n (3.4
- + + X
ZG=1 =1 "t tj 7j Z%=l i=1 i bl] XJ Z%=1 bJ XJ

which reduces to

53 S T a e i
e=1 "t Ot T 51 Tem1 Ve ey ¥y (3.5)

The relation (3.5) relates the optimal dual and primal variables with
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the corresponding budget and cash flows.

According to the Theorem 1 of Chapter II, the function

F (x, u) =cx t3% xCx + ub - % uFu - uAx + + ul All xl

has a saddle point at (%, G); for the quadratic model under considera-

tion, we have

F (x,u) = cl x! +3% xl C11 x1 +u? p? - o A21 xl or
n n n T
= + . +
F (Xj’ ut) Z%=1 bj %, % Z%=1 Z%=1 bij xX; %, Z%zl u Ct
-ZJJ_I Zf=1 Uy Cpj %
F (xj,ut) has a saddle point at (xl, coe e e X5 Uy e e ut) and
- S - - g -
F (xj, ut) =F (xj, ut) =7 (xj, ut) (3.7)

for all Xj e X (u ) and, allu e U (Qj, ;j)’ where §t, and ;j are

£’ Tt
defined by (Qj, Gt).

From the corollary stated in Chapter I1I, we have for the

quadratic model under consideration

Py F=o0 ¥F=o0

- _ (3.8)
2 @2 - a2l gl

e & o U_; xl, X

9 T . e e X )

if (xl, . e xn) and (ul, u 9 0

are the optimal solutions to (P) and (D) respective, then

T

Z%=l u ¥y, 0 (3.9)
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Since u, E: 0 for all t and Ve z 0 for all t,
=0 for all 't', (3.10)

Further, from (3.8), we have

T _ n T . _
2 u C = Z%=1 Z%=1 U ey X (3.11)

which is the same result as obtained in (4.5). These complementary
slack conditions differ from those in linear programming in that,
optimality is a sufficient, but not a necessary condition for them to
hold.

Extension of Weingartner's Terminal Wealth
Model to the Quadratic Case

Introduction
In some respects, capital budgeting represents the central

problem of the firm. Most of the projects have considerable periocd
of duration time. Any set of decision taken today has consequences
at later times, during the period of execution of project. Similarly,
the opportunities available at later dates are related to the decisions
being implemented today. To quote from Weingartner,

While the only decisions that meed to be made today are those

which require action today. Specifically, the decision to

utilize resources for the acquisition of assets which yield

streams of revenue, but which cannot be turned back inte
cash or ligquid assets without some cost call for careful analysis.(23)

The objective of Weingartner's Terminal Wealth Model is to
maximize the sum of all discounted values due to flows subsequent to

the horizon 'T' plus the difference between the lending and borrowing

at the horizon, subject to the condition that the outflows of money
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in each period must not be larger than the inflows. Furthermore, the
investment, borrowing and lending must be non-negative and one cannot
invest in more than one complete project of each kind.
The model to be developed here differs from Weingartner's
terminal wealth model in two distinct respects.
i) Here the projects' interactions are considered explicitly,
by having a quadratic term in the objective function, and
ii) The firm is not operating in a "perfect capital market.”
This means that the borrowing and lending rates are not
equal; further, they are different from different time
perioeds.
The above assumptions bring the model under consideration closer to
the real world situation, where we often have dependent projects and
imperfect capital markets.
The Model
Consider a firm operating in an imperfect capital mérket. Let
the horizon time be 'T', divided into a finite number of periods. It
is assumed that the information about cash flows and budget limitationé
up to and beyond the horizon time is assumed to be known with certainty.
The discount rates are known for the purpose of calculating the present
values. The projects are pot independent and the interactions between
them are taken into consideration explicitly in the model. The

financial transactions are introduced into the model by lending and

for
t

borrowing without limit, at some stated rate of interest 'l
lending and 'bt' for borrowing; where, t =1, 2, . . . . .T. Both

lending and borrowing are accomplished by means of renewable one year
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contract, where by convention, all interests are payable at the end

of the year.

Letting,

Dt = the amount of money generated by outside sources.

24 = the flow of money associated with project 'j' in period 't'.
Negative signs are used to associate with out-flows and
positive signs with inflows.

A = the amount lent in period 't' to (t*l1), at the lending rate
llt!.

W, = the amount borrowed in period 't' to (t*l) at the rate 'bt'.

1, = (l+rlt) where, 'rlt' is the lending rate of interest from
time 't' to 'tH'.

'bt = (1+Tbt), where, 'rbt' is the borrowing rate of interest
from 'r' to "tH1'.

X = the decision variable associated with prospect 'j'

3j = the horizon value of all flows subsequent to the horizon,
associated with project 'j'.

(%Sij) = the 'horizon value' matrix of all flows subsequent to the
horizon, due to pairwise interactions of projects under
consideration.

Maximize,

T n n
A R N A R
Subject to
- <
) Ej=1 85 %5 T heey Veer TV T Pe Ve TV T D
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[[TAN

Xj integer.
(j = 1, 2, « 2 & w .1‘1)

The 'T' cash balance restrictions in this model can be interpreted as
"the net cash outflow from time 't' loans plus the cash outflow for time
(t-1) borrowing minus the cash inflow from time 't' borrowing must be
less than or equal to the cash available from outside sources at time
't'. The objective function contains basically two components:
i} the net amount of financial assets accumulated at the
horizon (VT - WT); and
ii) the post-horizon cash flows along with flows due to
interaction of projects discounted back to the horizon time.
Without loss of generality, the matrix (%pij) can be converted into a
A
symmetric matrix (%Pij)'
The above model is a mixed-zero-one integer quadratic
programming problem. This is the special case of Bala's general
model (P), discussed in Chapter II, where, E = O, Mi =@ and
Xj € X, a set of all vectors with "0' or 'l' as values; Vs Wes € X2.

The general problem (P) reduces to this special case as

Max £ = (cl xl + c2 xz) +% xl C11 xl
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Subject to

<
21 1, 22 25,2 @"

X € X; where xl is the set of all binary variables for all 'j'

b
1\
o

The dual of (P') can be stated as ('),

Max  Min g = u2 b2 - % xl

1 2 2
X X ,u

S N R

S.T. u A -~ x G -yv Foc
(")
u2 A22 - v2 - c2
xl [ Xl
2 z 0
u
v2 A

1 .
v~ unconstrained

The problems (P') and (D') are compared with the quadratic model under

discussion, and using the notational correspondence, we have

Weingartoner Balas
1
(xl, Koz o 0 v o .xn) x
(v,, v e e s WV Woa W e e v WW ) x2
1?2 T "1* "2 T
(ul, uy e .uT) u2
2
(Dl, D2 .« e e DT) b
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Weingartner Balas
A A [ 1
(al, dys o v e .an) c
(0,0, . . .0,1: 0,0,. « . .0,-1) 2
A 11
(pij) ¢
21
- A
( atj)

1 o 0 . . 0 <10 0 000 . . O
-11 1 0 . . 0 bl -10 0 0 0 ., . O
- .. - s . 22
0 12 1 0O 0 b2 10 O 0 A
0 00 0 01t-110 0 0 0 0 0 0 bt-il
iz1, 2, . . . n)
(=1, 2, . . 1)
(t =1, 2, . T)
The Dual

Based on the gbove notational correspondence, the dual
problem to the model under consideration can be formulated as (D).
This dual is a (max-min) type optimization of quadratic mixed-integer

programming problem.

T n n A n
i - % -
Max Mln. Zt=1 u, Dt 3 Z:i.=1 Zj=1 Xy pij xj Zj=l kj X, (3.12)
Xj u,
Subject to
T n A ~
) Z%=1 Yt at] ) Z%=1 1 pi] ) k] - a]
(3.13)
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T\

up T lpu S0
(3.14)
(t =1,2, . + « « T-1)
=
- + 2
(D) (3.15)
(t =1, 2, « « « .T-1)
>
qT =1 (3.16)
- uy 2. (3.17)
2 Vo
u, - 0 for all 't (3.18)
x, = '0' or "1'.
J

kj unconstrained.

? 1

The dual variable u, and the surplus variable 'kj'

are continuous,
'kj' being unconstrained in sign, since they correspond to the integer
constrained primal variables 'xj',(partial relaxation of constraints).
The surplus variables in constraints (4.14) to (4.18) are greater than
or equal to zero. In the next section, the optimal solution to the
primal and dual are analyzed tb derive certain relationships.

Analysis of Primal and Dual Problems

Based on the theorems and lemma stated in Chapter II,
various properties of the primal and dual problems formulated in the
precious section can be derived. As in the case of the basic model,
the vector of primal slack variables (yl, Yy o or .yT) is component-
wise separable with respect to the vector of primal variables (xl,

Xy oo e .xn) and thus the Theorem 1 becomes, "If (P) has an
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K, Vs V e e Vo W, W e s W)
' n’> '1°

optimal solution (il’ x 2° T "1 "2 T

23
then there exists a set of dual variables: (ﬁl, 52, . . .GT) such
that (Gl, u

- e Ugl X, X

. . X i optimal solution to
X T xn) is an op

2,
the dual with

n A n n r.s
Y + 1/ kS + - -
Max Zﬁ=1 aj xJ ] Z%=l Zﬁ=1 X Pij x Vi wT
T n n A n (3.19)
. - L -
I}llax illn zt"l u, Dt 5 21=1 2_1:1 X, pi:| xj E_]:l k_] XJ
h t
and, at optimality,
n ~ _ I 44 _ r. _ - _
/. + 2 + - =
Z%=1 aj Xj 2 Z%zl Z%=1 Xl pij xj Vo WT
T Zjl 251 A Zfl (3.20)
-1 - < - - -
Ziay U Dy T E Ly Zhoy Xy Py X h=1 K5 %
Substituting the value of 'kj' from (3.13), we have
T n T
b a, D - 2 Goa K = (- :
Z%=l u Dt =1 Z%zl u, atj xj (VT wT) {(3.21)

The relation (3.21) relates the optimal dual and primal variables with
the corresponding cash-flows and the net amount of financial assets

accunulated at horizon (v, - w.).

T T

Further, the function
1 1
F (x, u) "ecx t% xCx +ub - uEu - uax * u Al xl

has a2 saddle point at (g, G):

Fo(x, u) E F (x, u) ES F (x, u)
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for all x ¢ X (u, §2) and all ue U (%, ;2) where §2 and ;2 are defined
by (x, u).

For the model under consideration, the above inequalities become

F(xj,vt,wt;ut) = c}x} + c?x% + % X}Cllxl + u2 b2 - u2A21x1 - u2A22x2
(3.22)
or
n s} s}
= + 4 - + L
F (x., v, wt,ut) Z=1 a, x Vg T Wy ] Zi=1 Zj=1 Xy pi_’l X_]
T n T T
+ hY _ Y +
Ef:=1 up By =) Dh=p Uy ey %5 Z'1:“1 up v T Ly v W,
T-1 -1 (3.23)
L=y Lo Ve Ve T Zhm by Uy Ve
has a saddle point at:
) SE (R v, w3 U) SF (X, v, w;u)  (3.24)
F (Xj’ Vs Wi oug xj, Ves W3 ou xj, Vo, Wi Uy .

From the corollary to the theorem 1, in Chapter 11, we have the

following relationships:

T - -
Zt=1 u ¥ =9
-2 ;2 =0
and Zpt -t A2y

Lemma 1. Under the explicit and implicit assumptions,made,

i. e., 1t‘bt > 0, the following relationships hold:
(a) u, >0 for all 't'

b)) u. =1



solution.

{(d) Y =0 for all 't'

Prosf: We have from (3.16) and (3.17),

< <
1= Un =1
Therefore,
U =1
and also
GT = 1.
From (3.14)
>
up T L ()
we find
( T-1 )
o« )
u. ._:.i)( 1 )
t . r
(= )
( )
But we have shown,
U =1

Therefore,

. T-1 for a feasible dual

40
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=
u 2 ETT; 1
¢ 7%

By assumption, 1r > 0 for all 't', and so u, > 0 for all 't'.

From (3.14) and (3.15),

[\

1A%

WA

We have from the above inequalities,

<
1t = bt for all 't'=1,2, . . . . .T-1

necessarily follows for a feasible dual solution.

From the complementary slackness conditions, we have

. 2 z
Since u, 0 and Ve 0
- I = [ |
u, Y, 0 for all 't'.

and since it has been shown that u, > 0 for all 't', it is necessary
that ';t' = 0, which proves part (d) of lemma 1.
Lenma 2. Lf (ij, ;t’ at, Gt) is an optimal solution to the model

then, the following equalities hold:
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(a) (ut - 1t ut+1) v, = 0

-+ 5 o =
(®) (ug Fbou ) v,

. T
(e) Zl=1 Gt Dt - Z%zl 2oy u, a X, =V, - w

Proof: from (3.14), we have

=K'

-1
he t Yt t

t

where K; is the surplus variable for the constraint set. At optimality,

-_1_
u tu

=K
t

1
tHl t

From the complementary slackness eonditions, we have

- =
R, v, 0
Therefore,
(ut - 1t ut+1) v, =0 Q.E.D.
(b) From (4.14), we have
- + A = [ ]
(- u Th, ut'__'fl} K¢

where K;' is the surplus wvariable for the constraint set. - At

optimality, we have

=K'’

-+ o
ug Thouigy £

From complementary slackness conditions, we have
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which gives the equality

-uw *+ a w =
( u bt ut+1) v, 0 G.E.D.

(c) Please see (3.21) for proof.

Lemma 3. If lending rate at any period of time 't' is strictly

less than the borrowing rate, then for optimal conditions

v. w. =0
Ve Ve

Proof:

Let us assume Gt # 0. From part (a) of lemma 2,

(ut - 1t ut+1) v, T 0 and
therefore,
Up Tl Yk
or
-
—£— =1
" t
Ve
But from part (b) of lemma 2
-1 + - o=
( U, bt ut+1) W, 0

Consider the case that ﬁt # 0

‘then
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-ut+b u

The above relationship contradicts the assumption.that the lending

rate is strictly less than the borrowing rate. Therefore, if ;t >0,
then Gt must be equal to zero. Similarly, it could be shown that if we
assume &t > 0 ‘then ;t must be equal to zero. This proves that the

product
v. w_ =0 Q.E.D.

The above result has an important interpretation. According to this
lemma, it will never be optimal to borrow and lend during the same
time period, i.e. 1if 1t < bt’ the optimal policy would be only to
borrow or lend, not both.

Extension of Bernhard's Model to
the Quadratic Integer Case

Introduction

In the capital budgeting literature, an appropriate objective in
thepplanning of preductive investment and financing policy is the maxi-
mization of some function, usually a discounted sum of all anticipated
dividend payments to the owner$:of the firm's present shares. If the
function's argument, the stream of dividend is truncated at some finite
horizon 'T', as required in a programming formulation, then it seems
reasonable to include also in the argument, the time 'T' terminal

wealth, 'G' as a proxy for the post 'T' stream of dividends (7).
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The approach taken by Weingartner is to maximize the net
value of assets, financial and physical as of the horizon, where the
former are expressed in terms of the funds available for 'lending'
at that time and the latter are represented by the discounted streams
of net revenues past the horizon.

A different approach teo that taken in the basic horizon model
is to introduce a utility function that places preferences over
alternative dividend streams and terminal wealth wvaluations. Baumol
and Quandt (5) formilate a model of this type which is linear in
dividend payments (meaning that the constant marginal utility weights
serve as discount factors).

Bernhard (7) combines the objective goals of Weingartner and
Baumol and Quandt, and assumes a general cobjective function to be
maximized, a finite stream of dividend payments Wl, W2 e s e e n WT

and the terminal wealth 'G'. This objective could therefore be

stated as

Maximize £ (Wl, Wz, W . e e WT; G)

32
In this section, we will consider a special version of this
objective function. Following the paths of Baumol and Quandt, a
linear utility function is assumed and the project interactions are
considered explicitly in the model.
The Model
Consider a firm having a decision problem of choosing projects
among 'n' interrelated proposals. The firm is operating in a capital

market, where it can lend and borrow money at a pre-determined discount



rate.

The firm's objective is to maximize the discounted streams of

dividend payments (which are assumed to be linear), and the terminal

wealth of the company as of the horizon.

Letting

atj

H]

the amount of money generated by other activities of the
firm, than the investment projects, we are considering.

the flow of money associated with project 'j' in period .

LI |

t Negative signs are associated with outflows and

positive signs are for inflows, as a rule.

the amount lent in period (t) to (t*l), at the lending

te "1 ',
ra c

the amount borrowed in period 't' to 't*l" at the

borrowing rate 'b_'.
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t
(1+r1t), where 'rlt' is the lending rate of interest from
time 't' to 'tHl'.
(1+rbt), where 'rbt' is the borrowing rate of interest from
time 't' to 'tH'.

the decision variable either '0' or '1' as values.

the horizon value of all flows subsequent to the
horizon associated with project 'j'.

Ehe horizon value matrix of all flows subsequent to the

horizon due to pair-wise interaction of projects.

the dividend to be paild to the shargholders at time 't'.
the rate at which dividend paid in the 't'th period are

discounted.

£
1

0 by assumption.



47

Maximize
n A n n P ZF

+ = + - +
Zj=l o T 2o Zj=1 Pij ¥ %5 " Vo T ¥ =1 Pe ¥y
Subject to

n

- +y 4+ iy ty =
v Zj=1 e 517 Ye-1 Ve-1 T Ve T Pee1 Yee1 T Ve T Ve T D

The 'T' cash balance restrictions in the model can be inter-
preted as "the net cash outflow from time 't' loans plus cash outflow
from 't-1' borrowing plus the dividends payment minus the cash inflow

from time 't' borrowing must be less than or equal to the cash avail-

able from outside sources at time 't
The objective function contains basically three components.

(1) The net amount of financial assets accumulated at the horizon,

(VT - WTI,{g) the post horizon cash outflows along with flows due to

interaction of projects, discounted back to the horizon time, and

(3) the discounted sum of dividend payments up to the horizom.
Without loss of generality, the matrix (%g;j) can be taken

into a symmetric matrix (n x n). The above model is a mixed-zero-one

integer quadratic programming model, and is a special case of Balas'

general model (P), for the quadratic case, where



E = 0

Ml = @ and

xjexl, a set of all vectors with values either '0'

or '1'.

wt, Ve Wt € X2
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For this special case, the primal and dual problem of Balas general

model reduces to (p') and (D') respectively.

Max £ 5 cl xl + c2 x2 +% xl C11 xl

Subject to
A21 xl + A22 x2 <,2

b

X, € X; (either (0) or (1))

[p*]
3%

and the dual to (P') can be stated as (D')

max min g = u2 b2 - % xl c11 x1 - vl xl

1 2
X X ,u

s.T.

[p*]
(%]
1\%)

1 .
V" unconstrained

("


http://-_ll.2
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The following notational correspondence are observed in the case of

the model under consideration and the special case given above.

The Model Balas
1
(xl, Koy oo e .xn) x
(Vay Vs « o o o oWy Was Wo = = oWod Wo, W, o JW.) x2
1* "2? T "1* T2 T "1° "2 T
2
(ul, Uy ooeoe e .uT) u
’ 2
(Dl, D2 .« e e .DT) b__
r A N 1
(al, ay -+ 0 e .an) c
2
(0, 0 .. .1; 0,0, « « . =13 Pys Py - - .pT) c
n 11
(pij) c
L 21
( atj) A
i o0 00 ., + O-1 0 O 0 1 0.5 0
-11 1 0 0 . . O b1 -1 0 0 01 . O
22

(1=1,2, v« .« .n)

(t=1, 2,--.--T)

The Dual Problem

Based on the notational correspondence, the dual problem

(D)} to the model can be formulated as

_ T n n A n
i -k -
Max  Min Et=1 u D -3 Zi=1 Zj=1 X, Pij Xj Ej=1 kj Xj (3.25)

X, u
] t
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S.T.
2 S % .
- =1 U atj - =y ¥y pij - kj = aj (3.26)
i =1, 2, + « ¢ o om.
- - T =
ut 1t U kt 0 {(3.27)
t =1, 2, « « « &« JT-1
uT2 1 (3.28)
- + _ ottt = .
a, b ou gy - ki' =0 (3.29)
>
= UT = - 1 (3030)
2 1ot
u P for all 't (3.31)
t t
and
2
ut 0

kj unrestricted.

It could be observed that the dual problem contains binary variable

] 2 . 1 . . .
"v.' and continuous variables Iut ; the surplus variable 'k' is unconstrained

]
in sign.as it corresponds to the integer constrained primal variable 'xj'

(partial relaxation of constraints). All other surplus variables, kt',

k;' corresponding to the primal variables v, , and w,_ are non-negative.

Analysis of Primal and Dual Problems

.Y.). Since this

Let the primal slack vector be (Yl, Yoo o o o T

vector is componentwise separable with respect to the decision vector

(xl, Kgs v o o = .xn), according to the theorem stated in Chapter II,
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we have

1" s . - = .
If (P) has an optimal solution (xl, Xgs o 0 v 00X 5 Vg Vo,

© e e e eVgE Wi, Woy e e WS Wi, ﬁz, . e e .ﬁT), then there

exists a set of dual variables, (ﬁl, 62, e e e e GT) such that

(ul, s e MURE Xy e e e e X5V e VS Wy e e e W3

ﬁl e e e .ﬁT) is an optimal solution to the dual, and the following

equality holds:

oA n n F T W
Max Z%=1 a; X + 3% Z&=1 Z%=1 X; Pyy X + Vo T ¥ + 2=1 Pc "¢
T n n A n (3.32)
= Max Min Z%zl Uy Dt - % Z%zl z%=1 Xg Pij Xj - 2%21 kj Xj
Xj Ut

But from (3.26) we have

\T n A
Zt=1 U Ay Ei=1 X Py T8y T kj (3.33)

Substituting this in (3.32), and at optimality

_ n T - - - _ T -
+ , = - +
£=1 Eut Dt Ej=1 Zt=1 u atj xj Vo T ¥p Etzl P, Wt (3.34)

According to the thecorem 1 of Chapter II, we have
= 1
F (x, u) =cx *+% xCx +ub - 5 uEu - uax + u1 A 1 xl
has a saddle point (x u):
2

F(x, 0) SF (%, 2) S F (%, u)

for all xcX (G, ;2) and fér all uel (x, ;2) where ;2 and ;2 are defined
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by (%, u ).

For the model now under consideration,

S_P A ZT
: = 3 +y -w +
F (xj, Vi Wes Wt, ut) Lﬁ=1 aj Xj Vp < Wo =1 Pye Wt
n Z? A T n T
% + 3 + Y , - .
g Z%=1 =1 X; Pij Xj Z%=1 u, Dt Zﬁ=1 Z%=1 u atj X (3.35)
ZT T ET T-1 T-1
+ - + - b
=1 "t 't Et=1 e Ve v=1 Y Ve Zt=l Lo v ¥ Z‘1:=1 t YeH

The function (3.35) has a saddle point, (il’ C e X3V

Wi oeoe eWS Wl, . . .WT; Upjs - o+ U ):

H

- - <_ - - - - .
W3 ut) F(Xj,vt,wt,wt,ut) (3.36)

- §_ - - -
F (xj, Vs W W ut) F (xj, Vs W W

The complementary slackness conditions follow from corollary to

theorem 1,

ut ‘}t =0 t = 1’ 2, « « o7 (3-37)
(ut 1t ut+1) B =0 t=1, 2, « + .T-1 (3.38)
- +5 g o=
( u, bt ut+1) Ve 0
(3.39)
t = 1, 2, . o oT = 1
(w, - p.) W =0
(3.40)
t=1, 2, . « . T
T n T T

L= v - w, T 2 p, W, (3.41)
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Lemma 4., Under optimality, the following relations hold:
i) u >0 for all 't

4 A - =1
ii) up

iii)f§t =0 for all 't'

- : .
iv) bt = 1t t=1, 2,3, + « « T -1, for a feasible solution.

Proof.
i)} From (3.28) and (3.30)

s = -
1= up = 1 Therefore U 1 and U 1.

ii) From (3.27), we have

1\Y)

Ue Ly Yeny
(T-1) )
2( l)ut
(r=e > )
(1-1)
2 () 1
€ r=t )

But 1> 0, by assumption, therefore u, > 0 for all 't'.

iii)From complementary slackness (3.37)

=0 V.1
U, Yt for all 't

Since it has been shown Gt_> 0, Y = 0 for all e
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iv) From equations (3.27) and (3.29)

Z
Ye £ YtH
up T by Uy
1 u
+ = =
t ttl u bt Uip

which proves

<
1t = bt for all £t =1, 2, 3, . . .T.

If this condition is not satisfied at optimality, then the primal
constraint set can be violated, which would mean that we can borrow
without limits and lend it at a lower rate to satisfy the constraints.
For optimality, the lending rate must be less than or equal to the
borrowing rate.

Lemma 5. If lending rate at any time period 't' is strictly
less than the borrowing rate, then, at any time period 't', the firm

either borrows or lends and not both, for optimality.

Proof: From (3.38) and (3.39) we have

(ut - 1t ut+1) v, =0

-q +b u v =
( u, t b utfi) w =0

Let us assume that Gt # 0 then

CHE e
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If we take that W # 0, then

which means the lt = b, . This contradicts the assumption made that

t
the lending rate is strictly less than the borrowing rate. Therefore,
if ;t # 0, then "@t must be equal to zero. Similarly, by the same

argument, it can be shown that if Gt # 0, then ;t must be equal to

zero, i. e.

According to this lemma, it will never be optimal to borrow or lend

money during § the same time period. If the lending rate is strictly

1.1

less than the borrowing rate for a particular time period "t°, then
the optimal policy would be to lend or borrow, not both.

Lemma 6. For an optimal strategy, dividends are declared in any
time period only when the dual evaluator for the period is equal to the

rate at which the dividend paid, in the 't'th period, are discounted.

Proof: From complementary slackness conditions (3.40)

If ﬁt > 0, then

uo TP T 0 i.e., u. = p

which proves the lemma.
In the section above entitled "The Model", it has been assumed

that the interaction among projects are only at post horizon, which



may not be realistic.
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To obviate this, the model is considered, where

the interactions among projects are taken into consideration for all

periods, by modifying the constraint set as follows:

Maximize
n A n n F.y
+ % i +
ZG=1 a:| Xj % Z%=1 Z%=l Pij X, X, v
Subject to
n n Z?
Wt'z%ﬂ.tj%"aﬁl =1 1 Beig ¥
<
+ - =
Pial Ye-1 T Y T Dy
£ =1, 2, « « « T
>
Wt, W Ve 0
x. = '0" or '1"

T

Lt=1 Pe Wy
+

1 V-1 Ve

(3.42)

where the term (gtij) represents the pay-off due to the interaction

t

among projects 'i' and

j

at the time period

are the same as in the above model.

I'tl

All other symbols

The 'T' cash balance restrictions in the model can be inter-

preted as '"the net cash ouwctflow from time 't' loans plus cash outflow

from 't-1' borrowing plus the dividend payment minus the cashflow from

ltl

outside sources at time

t

borrowings must be less than or equal to the cash available from

In Balas' notation, the model can be stated as:
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Maximize

f = c1 xl + c2 x2 + % xl C

S.T.

1.1 ¥ 2R BG
bl o o o0 o x!
0o ¢ 0 0 0 X

e e o . + 420 b 422 2 €42
o 0 0 0 gF xlj

and

G = (g,...)

tij
For any given Xl, the model is a linear programming model in X?.

If we solve the linear programming model for all possible Xl, the

optimal solution to the model,will be the one set of Xl, which maximizes

the objective function of the linear programming problem. ' The linear

programming problem can be stated as follows:

For the optimal Xl = ;j

Maximize
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+ _
r=1 Pe " T Vp T Yp

- Fv + cw +y =
We = 1) Vel TV TBiag Ve T Ve TV
n _ n n _ (3.43)
x = + i +
b = (o, Ej=1 3%i %5 Loy iy Xy By Xg)
t =1, 2, « « .T.
Wt, vt, wt =0
The dual of the above model can be stated as:
Minimize
T
*
Et=1 up DF
S.T.
2
2
-u +b £ (3.46)
Yt t Y+ _ .
=
un 1 (3.47)
=
- g 1 (3.48)

From complementary slackness conditions of the linear programming

problem,we have

£
1
i
g1
1
]
<
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It could be seen that the results (3.37) to (3.40) follow from
complementary slackness conditions. At optimality, the results of
lemmas stated in section entitled, 'Analysis of Primal and Dual
Problems,' hold even if we were to consider the interaction of

projects during all time periods.
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CHAPTER IV

SOLUTION TECHNIQUES

Introduction

If under capital rationing, external interest rates are irrelevant,
and if one cannot insist on a present walue formulation of the objective
function, the relevant discount rates cannot be determined internally
by the problem. To resolve this dilemma, one approach is to introduce
a utility function that places preferences over alternative dividend
streams and terminal wealth valuations. Charnes, Cooper and Miller (9)
and Baumol and Quandt (5) have considered this problem via analysis
of the dual. The objective function of Baumol and Quandt is to
maximize a function of the dividend payments, and their main model

ig-a linear function.

Max f (W e dW)YE 2 u W

12 Mpo
where u, for t =1, 2, . . «T is a set of *T' constants with u, Z 0.

Unger (22) developed special sclution techniques based om
Bala's zero-one algorithm and Bender's (6) partitioning procedure for
a mixed zero-one integer programming model, which explicitly considers
the firm's dividend policy. This is similar to the utility function
formilation of Baumel and Quandt, and Mamme (17).

In this chapter, it is assumed that the ﬁtility function is
quadratic to take care of any risk averse behavior of the shareholders,

and a quadratic mixed zero-one integer programming model is developed.



Based on the duality concepts developed by Balas for the quadratic
integer programming case, special solution techniques for the model

are discussed.

Quadratic Utility Function

In this chapter, the objective function to be optimized is a

utility function. The capital budgeting problem is therefore treated

as a part of the general theory of choice, where utility is to be
maximized subject to the opportunities and constraints. The utility
function, to be considered, can be construed as the management's
perception of the utility to the owners of consumption alternatives,

avallable in different periods. One cannot rule ocut the possibility
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that in ascertaining the owner's time preferences, management may err,

consciously or unconsciously. However, based on past performances,
and by taking into consideration the relevant factors of the firm,
it is assumed that a proper utility function which represents the
firm's behavior in the market can be derived.

Let Ve for t =1, 2, . . .T be the sums available for the
period 't' for withdrawal from the firm, as dividend to its owners

(shareholders). The utility function to be maximized is
U ST (95 ¥p5 + + e¥p)e

If we assume that the shareholders are risgsk averse, then a linear
function of utility does not hold. Therefore, it is necessary to
consider non-linear utility functions.

The requirement of positive marginal utility can be met by a
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linear function, but the risk aversion axiom requires at least a secpnd
degree. K. J. Arrow (1). and J. W. Pratt (20). show that the axiom of
decreasing risk aversion cannot be represented by a second degree and
it requires at least a third degree polynomial.

The following assumptidns are made for the model under considera-

tion:

i) The marginal rate of substitution between dollars in any
two pericds is not a constant.

ii) The shareholders are risk averse; the utility function is
a continuous, monotonically increasing.

iii)The firm is operating in an imperfect market condition.

In the presence of imperfect market, the discount rates
cannot be determined ex-ante. Therefore, the objective
function chosen, to be maxim zed is a utility function,
instead of maximizing the present wvalue.

iv) The effect of decreasing risk aversion of the shareholders
is ignored and it 1is assumed that its effect on the utility
function is constant.

Under these assumptions, the utility function can be represented

by a second degree polynomial, i.e. a quadratic function as shown below:

T T
- . . = r + .
U (ys ¥ys V) Et=1 Py ¥¢ Zt=l 2:L=1 Ve Cei Vi

A concave utility function will take care of the risk averse behavior
of the owners. The above function will be concawve if the term,

T T
2

r=1 Ei=l Ve Cei Vg
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is concave, which implies that the matrix ¢ = (cti), must be negative
semi-definite or negative definite. We assume here that the matrix

C is negative semi-definite.
The Model

Consider a firm which has under consideration 'n' different
indivisible investment projects. The firm operates without recourse
to outside financing, but it may reinvest the returns from any adopted
project as well as the returns invested in prior to the first period

under consideration. Further, any funds not used in one period may be

carried over to the next period. The firms' objective is to maximize

the discounted flow of dividends paid teo its shareholders.

T T T
e . = +% . V.
U Gy vy P % Lpmy P Ve TE Sy Dy Ve o Yy
Letting,
atj =  the net cash flow received from the 'j' the project in the
(t)th period.
Et = the net cash flow in the 't'th period from all projects
adopted prior to the first period.
Y. =  the dividend paid to the shareholders at time period 't'.
¢ =  the amount of cash carried over from the 't'th to the
(ttl)st period; and assuming a planning horizon of 'T'
years, the mathematical statement of the problem is
Maximize

T T T
\ + A}
Lioy P Ve TE Zt=1 Ei=1 e %ei 73



Subject to

£t =1, 2, « « T ' (P)
s =0
Q
x. = lol or llf
i

Y

where xj = 1 if the project 'j' is accepted, and xj =0 if the 'j'th
project is rejected.

The model is a mixed-zero one quadratic programming model. 1If
we assume that Pe > 0, for all 't', the coefficient of Y, in the
objective function will be greater than zero. Thus, we may treat the
constraints as equality constraints, since any slack would clearly
be paid out as a dividend. If, however, one were to impose the
restriction that funds could not be carried over from one period to

the next, i.e., S¢ = 0 for all "t', then

n
= + *
Ve Et Zﬁ“l atj Xj

t=1, 2,---T

and the model can be reformulated as

64
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Maximize
ZF 1l
+ +
=1 Pr (B Z;j=1 B4 Xj)
T T n n
L + +
P limy S B T Lo agx) ey (Bt g oa x)
subject to
n
\ g
(E 2., a . x)=%0

which is a pure zero-one integer quadratic programming model.
The model under consideration is a special case of general

quadratic model (P) discussed in Chapter II, wherein we have

The primal problem in Balas notatiom reads as (P')

Max c2 x2 + % x2 022 x2

SIT.
21 1 4,22 2

A
(]

A b ®)

z2 =

Il
]

xl € Xl x2, b

022 is negative semi-definite.

The dual D' of (P') can be stated as
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Max Min g=u b

Subject to

B
[
w

1 \
v uncenstrained

The following are the notational correspondence between the model

under consideration and Balas' general model for the quadratic case.

The Model Balas
'(xl, Xy 0. .xn) xl
(Fqs Fas = » oVl S.5 8. « o o =5_) x?
1’ 72° T 1’ 72 T
2
(ul, u2 L T .uT) u
2
(El’ E2 . .ET) b
(Pys Py -+ + =Py ¢
22
(cti) C
21
( atj) _ A
1 0 0 0O 1 0 0 0 0 . 0
0 1 0 . 0-1 1 0 0 0 . 0
- - - - - - - - L] A22
0 0 s 1 O 0 0 0 0-1 1
p




Using the notational correspondence, the dual of the model can

be stated below.

The Dual
T ZT Z}T n
:ax Min Z%=1 ut Et - % =1 =1 yt cti vy - Z%=1 Vj xj
j yt’ut
subject to
T
Z%=l u, tj - vJ =0
(D)

ij<1,2, « . +n

T
- , - ! =
Ye T Y 2:\i=1 Cei T Ve T Pg

2
u, y, = 0 for all 't'

vj unconstrained

67
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The dual problem is a max-min type optimization of the quadratic

mixed integer programming problem. The dual variables ut' for all '

t',

and the surplus variables 'vj' for all 'j' are continuous; 'vj' is

unconstrained in sign, as the vector corresponding to the integer

constrained primal wvariable 'xj' (partial relaxation of constraints).

Based on the theorems and lemmas stated in Chapter IT, various
properties of the primal and dual problems formulated can be derived.
Let the vector of slack variables of Primal Problem (P) be

(Kl, KZ’ . . KT). Since this vector is componentwise separable

with respect to the vector (xl, X . e . xn), we have the following

2’
results:

'"If (P) has an optimal solution (§1, §2, . e §T’ ;l’ 8

PEER

Sqps Eps Xy o oo xn), then there exists a set of dual variables

«1U

(Gl, 52’ - . 'GT) such that (51, 62’ - ) El’ §2’ SRR S

Y2 Ygo ¢ 0 ¢ Vi Sqs Sgs 0 e e sT) is an optimal solution to the

dual with
T T T T
Max oy P ¥ FE Ly Doy yoe vy TMax o Min Thm U By
Xj ut,yt
T T n
"% Lo L Ve Y- Z’j=1 Vi %

and at optimality, we have

Z}T ) T T
+ X - -
t=1 Pe Y 2 Z1:=1 Zi=1 Ve Cei Y3
Zﬁr _ ZﬁT T B _ n o
=1 Y B T8 Hmp Thog Yo o Y C Zj=1 Vi %

From the dual constraint set
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- T -
Vj - - th___l ut atj
Substituting, we have
T _ T _ T T _ -
Zt-‘-l e By m Zim P Ve T By Lim Ve S Vi
n T )
+ 2i_. 2 x, =0

The above relation relates the optimal dual and primal variables
with the corresponding cash-flows and dividend payments.

Further, the function

1 11 1
F (x, u) cx t% xCx Tub - % uFu - uax tu A x

has a saddle point at (x, u):
- < - - < -
F (x, u) =F (%, u) =F (x, u)

for all x ¢ X (u, ;2), and for all u ¢ U (x, 52), where §2, 52 are
defined by (x, u).

For the model under consideration

F (x, u) = c2 x2 +% x2 C22 x2 + u2 b2 - u2 A21 xl - u2 A22 x2

or
T ET T T
- = +
F (g Yo 8580 % 2o pe v T E L Zin voe vyt 4o u E
n T zjr T-1
+ -
Ej=1 Zt=1 R S t=1 Yt S¢ Et=1 Uit S

has a saddle point at
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-3 S = - = . =NE =T =,
F (xj, Yoo 8.5 ut) F (xj, Yoo 8. ut) F (xj, Yps S5 ut)

Further, from corollary to the theorem 1, of Chapter II, the following

relationships hold:

T - -
Zi=p U K T 0
or
ut - =0
I
£t=1,2, . .. 1T
W, = upy) s, =0
£ =1, 2, . ..T1 11
uT S =0
T n T ) T T T
+ -5 o - - =
Zimy W By TUio Doy up 2y Xt oy BV T Doy Lhay Ve 6y Yy T O
111

The complementary property of result (III) is the same as we have shown

earlier.

It could be seen from result (II) that if at optimality, Gt #

U 40 then ;t must be equal to zero and vice-versa. Similarly, at the

"T'th period, for optimal conditions, if u,, is strictly greater than

T

zero, then S must be equal to zero and vice-versa.

Partitioninge the Problem

The model (P) under consideration can be stated in matrix notation

as
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Maximize P' Y+ 3 Y'CY

Subject to

IY+DS

1
b=
b

It
=

(4.1)

N\

Y, S
X="'0"or "1'

where P, Y, S and E are 'T' component column vectors with elements Pp>
yt, St’ and Et respectively; 'X'" an: 'n' component binary column vector;

A, a 'T' by 'n' matrix with elements 'atj'; I, a Tby T identity matrix;

'D' a '"T' by 'T' matrix with ones on the diagonal, minus ones immediately

below the diagonal and zeros elsewhere; 'c' a negative semi~definite

matrix with elements as 'cti'.

. t , ..
Letting A represent the 't'th row of the matrix, A, and defining

s, " 0, the 't'th constraint may be written as

LI |

Adding the first 't constraints, we obtain

1 t
...y *s =E + +.,..E *
vy yt st E1 A X Et A X

P .
and since Ser Ve 0 for all 't' obtain

Et+AtX. . .+E1+A1X=0.

Since this holds for any t = 1, 2, . . . T, any feasible solution to

the model must satisfy the constraint set,
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t
k =
+ =
Zﬂ=1 (B, #A" X =0
t=1, 2, « « « T
Conversely, any feasible solution to the preceding constraint set, we

can obtain a feasible solution to the model. One such solutién will be

t

k

= + L} 1

S, Z%=1 (Ek AT X) for all 't
v, = '0' for all 't'.

Now consider the problem:

Maximize z0

Subject to
z u (E+TAX) -%Y CY U, v €K

t . 4.2)

where 'K' is a set of feasible solutions to the convex polyhedral set:

O -O0) ¢

'u' a 'T’ component column vector with elements 'ut' and '8' a 'T'

1\

component null vector.

Theorem 1

% % %k
If (zo, X, Y ) is an optimal solution to (4.2), there exists a

*

* * %
vector (S ) such that (¥ , S, X ) is an optimal solution to (&.1)



73

with wvalue

Proof: Consider the following pair of quadratic programming
problems:

+
For any given vector 'X' say X we obtain from (4.1)

Maximize
PY+iy' cy
Subject to
+ .
IY+Dps=E+tAX
7 4.3)
>
Y, §=0
with dual
Minimize
L} + [}
' E+tAX)-3Y' ¢y
Subject to
>
IU-CY*=P
=
DU=0 (4.4)
>
Y, 8=90

'U' unrestricted

From quadratic programming duality theory



[} + i ) >
Uk (E+Ax)—%z‘fk CYk=P'Y

for all Uk € K, where 'RK' is the set of dual feasible solutions.

+
Now for X

(4.3). Further, for Py ~ Ppyq > 0 for all 't', one may verify that

*
= X , we have a feasible solution to (4.1) and hence to
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U=DP", Y=0is a feasible solution to (4.4). Therefore, since (4.3)

and = (4.4) have feasible solutions, they must have finite optimum

solutions.

% % . + %
Let Y, §, be the optimal solution to (4.3); for X = X,

then we must have
T

k' k

+* 3 *
P'Y +5Y7CY =min U° (E+AX) -3Y C¥Y

and for problem (4.2) we have

* *
z, = min U (E+AX)-3Y CY

and hence

b3
;(.
;{.
*

o * % + *
Since Y , § 1s a feasible solution to (4.3), for X = X,

x k%
(Y , 85, X) is a feasible solution to (4.1). To show that it is

* * *
optimal to (4.1), assume the contrary, i.e., assume (zo, X, YY)

is optimal to (4.2), but there exists a solution to (4.1), say

R Rk Rk N 3 Yk *
(X Y ,S DwithP'y +%v cCYy > z Clearly, for



+ sk wot
X = X , we obtain ¥ , an optimal solution to (4.3) for, if not,

Kk + %
Y could not be optimal to (4.1). Thus for X = X , we obtain

Kk s *k ! *k *k Kk
PPy +%Y CY = min Uk (E+AX )-%Y ¢C¢Y

ok
Now since, X , is a feasible 'X' vector for (4.1), it is also

feasible for (4.2) and thus we obtain a solution to (4.2) with

o
value =z
o]

woke ! Sk !
z = min gk (E+AX )-% ol

A& *
P'Y +%y'  C YR > Z

This contradicts our assumption that (z:, X*, Y*) is the optimal
solution to (4.2), and thus given an optimal solution to (4.2),
there exists an optimal solution to (4.1} with value z:.

The problem (4.1) can be solved by solving first the problem
(4.2) and then given Xﬁ, the optimal (X) vector, for (4.2), set

+ *
X = X, and solve the quadratic programming problem (4.3) for

Y*, S*. (X*, Y*, S*) will be the optimal solution to (4.1). A
direct solution of problem (4.2) would require the enumeration of
all feasible solution to the set 'R'. This, of course, is not
possible, since the set is infinite. One may therefore use a
procedure identical to the one developed by Unger (22), which is

based on the partitioning algorithm developed by Benders (6). The

salient features of the solution procedure are discussed in the
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next section.

A Solution Procedure

Benders (6) suggests the following iterative procedure to solve
the mixed integer progéamming problem.

Step 1: Start with some subset K' and K and solve the integer

programming problem.

Step 2: Given X%, the optimal integer solution for the subset,

solve the quadratic programming problem. Check whether

z: = U*' (EtA X*) - % yk. cy ' c yk; if 'yet' stop.
If not, we have found a U*, contained in K, but not in
K'; add U*, Y* to K' and go to step 1.

Application of the above procedure may require the solution of
many integer programming problems. Using Balas' concept of implicit
enumeration, we may avoid this by solving more quadratic programming
problems.

The solution procedure is essentially similar to the procedure

developed by Unger (22) for the linear case for solving problem (4.2).
Max z
o

Subject to

4.5)
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Letting
K =ET &
4 t=1 %t Ptj
T T T
K _ s ko K K
b =2 o u B m B Doy Y Sy Yy

We may restate the problem (4.5) as

Maximize z,

subject to

n
< \
z =bk+z1._ cl.(x
o 3171 71 7]
k=1, 2, « « . m
(4.6)
>
F+BX=0
x, = '0" or "1'
]
j =1, 2, «. «. «n
‘where F is the T component column vector with elements 'ft', B. the
' ,' and 'm' the number of feasible

'T' by 'n' matrix with components y

solutions in the set K'.

If K' = K, we shall refer to (4.6) as the complete problem.

Otherwise, we shall refer to (4.6) as the restricted problem.

Any binary vector 'X' will be called a solution to (4.6).



A solution satisfying the constraint set F + B X < 0 will be called
a feasible solution, and a feasible solution that maximizes zZ
over all feasible solutions for the complete problem will be called
an optimal feasible solution. We shall refer to constraints of
the form
n

z, S Bk +Ej=l c? X
as objective function constraints since they limit the maximum value
of P but do not affect feasibility. A partial solution S'will:be
an assignment of binary values to a subject of the 'n' binary
variables. The variables not assigned wvalues by S5 can take on
either the value '0' or 'l' and are called free. We define a
completion of a partial solution S as the binary vector x° deter-

mined by § and an assignment of binary values to the free variables.
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As a bookkeeping procedure, we adopt the convention that symbol

+
"' denotes xjjl and the symbol '-j' denotes xjéo. z will denote

the current best feasible solution. We employ the backtracking scheme

discussed by Geofficn, and, given any partial solution 5, we shall
attempt to fathem;. that solution by either of the following:
1. Finding the feasible completion of § that maximizes z,
k .
for all U ¢ K;
2. Showing that there exists no feasible completion of §
with wvalue greater than the current best feasible
. +
solution z .
To accomplish this fathoming, we use the simple computational

algorithm developed by Unger (22). Steps (1) through (10) of the



79

algorithm are the same except step (9), where in the present case,
having obtained the optimal solution (z:, X%), a quadratic programming
problem has to be solved instead of a linear programming problem.

For the given wvector XS, the solution of quadrating programming
problem defined by Primal (4.3) and dual (4.4) consists of finding a

feasible solution to the following constraint sets:

jnl
k k k s
- - + = +
Ve T Se-1 7S¢ TR T E Z>j=1 B3 ¥ 3
(4.7)
t=1,2, ...T
T 1
Kk k k _
e T Y zi=1 ti T Vi Pe
t = 1’ 2’ - - L] T
S O %.8)
; t £+l t
t =1, 2, « « T-1
k llk _
uT vT 0
lk Ilk >
yt, St’ ut, Kt’ vt » vt =0
k _k
=0
ue K¢
¥ 'k
=0
e Ve
k llk _
5. Vi 0 4.9)

t = l’ 2’ - . L] L] T

+
To show that the above procedure is finite for a given X , we

get the solution for the quadratic programming problem. If the



solution is not optimal, a constraint is generated. Since there are
only finite number of X+ s, we can only generate finite number of
constraints. If we have considered all possible constraints, any
further constraint that will be generated will be the one that
has already been considered. The stopping rule has to be met. The
procedure therefore is finite.

To show that the solution is optimal consider that given .’
'€ k, x* is the best possible solution for that subset. Given X*,
and if we solve the quadratic programming problem and the stopping

rule is met at this stage, then the constraint generated by the

problem has already been satisfied by X*. That is, we have found

*
X such that

% ! * !
z, = min Uk (E+tAaX)-% Yk C Yk and
Uke:k
*1! * '
2y = U (E"‘AX)—%kayk
all Uk,!e‘ K

Therefore adding any additional constraint will not result in an
increase in z - Therefore the solution is optimal.

We start the algorithm with § =@ Y = @ and as the initial
set X', we may use U = P, since this is a feasible solution to the
set 'R', under the assumption pt*> Pt > 0. Further under the
assumption Eé Z 0 for all 't', X = @ is a feasible solution to the
complete problem, and thus we may use the initial best solution

T
+
z = Z%“l P, Et. After termination, we calculate the optimal Y,
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and §, by solving the problem (4.3) with X+ = X*, the optimal
integer solution.

The above solution procedure is illustrated by solving a
numerical example, a two period three projects case, in the

following section.

An Example

To illustrate the solution procedure discussed in (22), consider

the following problem:

Maximize
0.9y, + 0.8 y. - y.,2
y]. y2 y]_
<
.T. + g, + + + =
S.T Y1 sq 100 X, 100 X, 100 Xq 200
¥ <
-5, ts, - +300 x, + =
Yo 59 8, 100 Xy 30 X, 100 Xy 300
x, = '0'" or "1
J
j=1,2,3
>
yt, St 0
t=1, 2

In Balas' notation, we have

¢t = (0, 0, 0)

z _

¢© = (0.9, 0.8, 0, 0)
1 _

x = (xl, %y x3)

X = (y13 YZJ SlJ 52)
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ul .
ctl=p c2=9p Pl=9¢ c**-= -2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
b -
A21 = -100 -100 -100
100 -300 -100
1 0 1 0
222 =
0 1 -1 1
200
p2 =
300

start

s=¢ K' = (U') whereU' = (0.9, 0.8)

2

z =z%=1 P, Et = 420

and the best known solution is X = 0.

Given K' = (U') the integer programming problem may be formulated
as
Max z
o
S.T 2 420 - 10 330 170
els y ZD Xl X2 X3

=
200 - 100 Xy - 100 X, = 100 Xy 0

2
500 - O X T 400 X, - 200 Xq 0

- Nt 14t
X, 3 xz, x3 0" or '1



Steps of the Algorithm

= 0
z1 42
Z =z xf =
| - 1 =
Z 1 z1 thus =z z

¥° = (200, 500)

and is feasible. BSo as per step 9, the

to be solved is
+s. tK =
V1T 5 TR

- +s +
Yo T8 TSy 7K

yls st 513 52J uls u2: Vls V2: V3:
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(1

(2)

(4)

(5)

quadratic programming problem
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The optimal solution is

* = 199.95 X = 0.05 K =0
51 . | v . 1

¥ = 499.9 2 * =0
s - 93 ¥y K,

* L o.g T I

ul . Vl Vz V3

* = 0.8 * =08

u2 . V4 .

The new objective function constraint is
7 <
z = 400.0025 + 20 x, - 320 x, - 160 x
o} 1 2 3
The integer programming problem te be solved is
Max =z
o]
<
z =420 - 10 x, - 330 x_ - 170 x

1 2 3

<
] + - -
o 400.0025 2D Xy 320 X, 160 Xq

N
]

2
200 - 100 Xy - 100 X, - 100 X, 0

>
500 - 0 xy - 400 XZ - 200 x3 0

X Xy Xg = 10" or "1,

w4
L]

(_ls -2, '3)
X° =, -2, -3) )
zq = 420

Zy = 400.0025



The solution is feasible.

one obtained earlier.

is the optimal sclution to

z = z1
T
zy = 420
z' =
z' <
Y® = (200,

X = (1, -2, -3)

%
z, = 400.00625

vy = 0.05
*—
y, = 499.95
*
99,95 u1 =
0 u*=

500) 2 0

0-8

0.8

the problem and we
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(2)

(4)

(5)

Since X = (-1, -2, -3) is the same as the

Therefore, backtracking

have values as:

=0
=0
* * * 0
Vo vz, Vs
* = 0.8
v, .8.
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7

10.
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