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CHAPTER I 

INTRODUCTION 

The theory of spline functions has undergone rapid development in 

the 1960 ?s. They have been shown to have wide applicability to eigen

value and eigenvector problems, initial value problems, optimal quadra

ture formula, approximation theory and stochastic processes. For exten

sive bibliographies of papers in spline theory and its applications, 

see [20], [32], and [33]. 

One particularly effective application of spline functions has 

been to the approximation of the solutions to linear and mildly non

linear boundary value problems using the Galerkin method. Ciarlet, 

Schultz, and Varga [7], Perrin, Price, and Varga [23], Schultz [32], and 

Lucas [20] h a v e studied the theoretical rates of convergence for the 

Galerkin m e t h o d with splines, while Herbold [11] and Herbold, Schultz, 

and Varga [12] have investigated the associated computational aspects of 

the method. 

The Galerkin method can be viewed as a specific projection tech

nique in the sense, for example, of Kantorovich and Akilov [13]. See 

also Vainikko [40], Krasnosel1skii [17], Petryshyn [25], Pol'skii [26], 

and deBoor [3]. Let be a sequence of finite dimensional subspaces of 

a normed linear space X and T be a mapping from X to a normed linear 

space Y. Let P^ be a sequence of projections on Y. A projection method 

defines an approximation to the solution of the equation Tu=f to be a 



2 

solution of the equation 

P Tu = P f (1.1) n n n 

with u^ in X^. The questions of existence, uniqueness, and convergence 

of the approximations of course now follow. Projection methods other 

than the Galerkin method have been used to approximate the solution to 

linear and nonlinear boundary value problems, see [3], [10], [13], and 

[38]. Although the use of such methods over subspaces of spline func

tions apparently offers significant computational advantages, such tech

niques do not seem to have been as well investigated. 

As an example of the equation Tu=f, consider the two-point bound

ary value problem 

u"(x) + a1(x)u'(x) + aQ(x)u(x) = f(x), 0<x<l, (1.2) 

with boundary conditions 

u(0) = u(l) = 0. 

2 
Suppose a Q, a^ and f are continuous. Defining X = {ueC [0,l]:u(0)= 

u(l) = 0} and Y = C[0,1], then Tu = u" + a^' + a Qu defines a mapping T 

from X into Y. Moreover, (1.2) with the boundary conditions may now be 

written as Tu=f. Let ^ w £ ^ - ^ be n linearly independent vectors in X and 

let X^ be their linear span. Let P n be projections mapping Y onto 
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subspaces Y of Y with dimension n. The projections P can then be v n v J n 
represented by n linear functionals i«e« ^ n^ = s ^ only if 

A*?f = Â s , i=l,...,n and seY . 
1 1 ' . n 

Then the equation p
n

T u
n
 = p

n
f f o r (1.2) becomes equivalent to the n 

algebraic equations 

A^(u^(x)+a1(x)u^(x)+a0un(x)) = A*f(x), i=l,...,n, 

where u
n(x) is defined by 

n 
u (x) = 7 ouw.(x) n . L. i i i=l 

From a computational standpoint the selection of the basis {w?} for 

and the linear functionals {A?} to represent P n becomes very important. 

This will be illustrated in Chapters II and III when some specific pro

jections are studied in detail. Selection of norms will also be dis

cussed in Chapter II. 

Using the setting of problem (1.2), we now give several examples 

of projection operators that have been used extensively in the past. 

For the moment, the approximations u n can be thought of as being poly

nomials of degree n+1 that satisfy u (0) = u (1) = 0. Let {w?}? . be a 
n n I i=l 

basis for this space of polynomials. The linear functionals associated 

with the Galerkin method are 
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1 
A.f = f f(x)w.(x)dx, i=l,...,n, 

1 0 

that is, orthogonality is required (for Tu -f) with respect to the sub-
space of functions X . The Galerkin method is closely related to the 
^ n J 

method of Ritz [14] provided the method of Ritz can be applied to the 

problem. The Ritz or variational approach was one of the earliest tech

niques used to establish convergence for the Galerkin method and boundary 

value problems using splines, see [6]. 

For the collocation method [10], the take the form 
l 

A?f = f(x?), i=l,...,n 
l l • 

with 0 < x" < x^ < ... < x^ < 1. Applying this scheme to (1.2), the 

approximation equations become 

u"(xn) + a-(x?)uf(x?) + a (xn)u (xn) = f(x?), i=l n. 
n i 1 i n l 0 i n l l 

The method of least squares requires orthogonality with respect 

to the space of functions T[X ]. Thus the linear functionals defining r n 
this projection are 

1 
A.f = / f(x)(TwT?)(x)dx, i=l,...,n. 

1 0 

For some recent work using spline functions and the method of least 

squares, see [2]. 
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Another scheme that has been used is the partition method, see 

[10]. This technique is also known in the literature as the sub-domain 

method. The linear functionals associated with it are 

n 
Xi 

A?f = f(x)dx, i=l,...,n, 
1 J n 

xi-i 
. . n n n . with 0 = x- < x. < ... < x = 1 . 0 1 n 

The last example considered is the method of moments [13], which 

generalizes both the method of Galerkin and the method of least squares. 

In this case, a linearly independent set of functions ^y^^-^ ^ s c n o s e n 

and orthogonality is required with respect to each of the y?, i.e. 

1 
A.f = j f(x)y.(x)dx, i=l,...,n. 

1 0 1 

Theoretically, one can generate approximation schemes simply by 

choosing linear functionals and bases elements. Of course, existence 

and convergence of the scheme would then need to be shown. The objec

tive of this thesis is threefold. The first is to develop new projec

tion schemes that are easier to apply than the Galerkin method and are 

applicable to a wider class of problems. The second is to study the 

Galerkin method itself and extend the class of problems to which it can 

be applied. And the third is to establish general criteria for the 

development of new projection schemes with splines and to illustrate 

several approaches to showing convergence and convergence rates. 

Emphasis will be on nonlinear problems. 
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In Chapter II high order methods are developed for general 

second order boundary value problems of the form 

o 

D u = f(x,u,u'), 0 < x < 1, 

with boundary conditions 

u(0) = u(l) = 0. 

Convergence is established for three methods different from the Galerkin 

method that achieve the same rate of convergence as the Galerkin method. 

One method uses cubic splines (see Definition 1.1) and requires ortho

gonality with respect to linear splines. Apparently this method has 

been studied in the literature for second order linear problems only. 

Moreover, convergence there is only third order if the solution is in 

C [a,.b], whereas here it is shown to actually be fourth order, see [3]. 

A new weighted sub-domain is developed. Also, the Galerkin method is 

studied and the class of problems to which it can be applied are 

extended. Results of numerical experiments are reported for some of 

these methods. The results developed in this chapter and Chapter III 

are based on some developments in the general theory of approximation 

methods by G. M. Vainikko [40]. For some important work on projection 

methods applied to second order linear problems, see deBoor [3]. 

In Chapter III, several new projections of collocation type are 

introduced. Moreover, the problems studied are generalized to equations 

of the form 



7 

D u = f(x,u,...,u m-1 ), a<x<b , 

with boundary conditions 

m-1 
D(b)] = 0, 1=1,...,m. 

A general result, Theorem 3.2,is proved and it provides criteria 

for testing if a proposed projection scheme is convergent. Chapter III 

emphasizes along with the theoretical development the application of 

these schemes. Several theorems are given describing classes of prob

lems to which the methods of Chapters II and III can be applied. More

over, numerical implementation of these methods on an electronic com

puter and the results of numerical experiments are discussed. 

In Chapter IV, attention is focused on nonlinear boundary value 

problems of the form 

0<x<l, 0<j<m, m>l 

with boundary conditions 

u k(0) = uk(l) = 0, 0<k<m-l; 

and 
(-l)mD 2m-1 u + f(x,u,... ,u ?) = 0, (1.3) 0<x<l, 0<j<m, m>2 

with boundary conditions 
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u^O) = uk(l) = 0, 0<i<m-l, l<k<m-l (1.4) 

and the Galerkin method. In contrast to the previous chapters, monotone 

operator theory is used to establish convergence. A specific regularity 

hypothesis on f is made and the result is obtained that the rate of con

vergence is dependent on the order of the highest derivative that appears 

as an argument in f. This result is applied in Chapter IV to improve the 

known convergence rate for the Galerkin method applied to a specific 

third order problem of the form 

3 

-D u = f(x,u,ur), 0<x<l, 

with boundary conditions 

u(0) = Du(0) = Du(l) = 0, 

see [7]. 

We conclude this section by recalling some results in the theory 

of spline functions. The splines used in this thesis are simply piece-

wise polynomial functions , which is the early characterization of 

splines. Many generalizations of the notion of spline function have 

appeared, some involving explicit approaches, others implicit approaches 

based on some of the extremal properties of splines, see [20] and [33]. 

Definition 1.1. Let TT : a = x. < x.. < x_ < . . . < x = b b e a partition n 0 1 2 n ^ 
of the interval [a,b]. A real-valued function s(x) satisfying 
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(1) seC^[a,b] for some integer q>0, and 

(2) s is a polynomial of degree less than or equal to p, 

p>q+l, on each subinterval [x^ j x£ + 1^ °f ̂  is called a polynomial spline 

(or simply spline) of degree p. The set of all such functions for some 

partition t t ^ will be denoted by Sp(tt^ ,p ,q) „ 

Note that Sp(TT n,p,q) is a linear subspace of C^[a,b] of dimension 

n(p-q) + q + 1. 

Generalizations of these spline functions include allowing the 

continuity to vary from one partition point to another. Also, the 

splines can be chosen to be piecewise functions in the null space of an 
a m . a 

operator L L, where Lu = £ a.(x)u^(x) and L denotes the formal adjoint 
j=0 D 

of L. Such functions are called L-splines and include the case of poly

nomial splines of degree 2m-1 when L=D m, see [33]. These more general 

splines can be used in many of the methods given in this thesis; how

ever, there appears to be no advantage in doing so. The simpler the 

spline space used and the less its dimension, the easier it is to set up 

the algebraic equations defining the approximation and the smaller will 

be the size of the system. Moreover, convergence depends essentially on 

the degree of the splines and the number of partition points. Thus, in 

general, it is advantageous to work with polynomial splines with q = 

p-1, i.e. maximum continuity. In this case the spline space will be 

denoted simply by Sp ( T T n,p). 

Let llfll = sup |f(x)|, t t = max(x. -x.), and t t = min(x. ,-x.). 
oo * i i n . i+l i —n l+l l 
L a<x<b l 

A sequence of partitions {tt^} of [a,b] satisfying (7T
n/jLn) - a f° r some 

constant a>0 is said to be quasi-uniform. These sequences do not have 

to be sequences of refinements. 
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Theorem 1.1. Let f be in C^[a,b] and } be a quasi-uniform sequence 

of partitions of [a,b]. Let Sp(TT̂  ,p ,q) be associated spaces of splines 

of degree p>t. Then there exist constants K_.>0 and independent of f and 

n so that 

Inf ||D:'(f-s)|| < K.TT* ^(f^TT ) , 
seSpCir ,p ,q) L j n n 

where (̂ (f̂ jiT ) denotes the modulus of continuity of f"*" with respect to 
— i t t i 0 0 

TT , i.e. sup |f (x)-f (y) | , and the L norm is interpreted over 
I x-y I <7T n i [a,b] less the partition points if D s is not continuous. Moreover, 

this result is unchanged if f(a) = f(b) = 0 and the infimum is taken 

over functions in Sp(7Tn,p,q) that satisfy the same conditions. 

For a proof of this theorem, see [4] and [30], It is shown in 

[4] that for the case j=0, the mesh restriction can be removed. Unless 

results follow for arbitrary partitions without the need to develop 

additional approximation theory, results are given in this thesis for 

quasi-uniform partitions (if possible) since from a computational 

standpoint such partitions represent more than adequate generality. 

This is particularly true in Chapter II. 

Definition 1.2. Given a function feC^[a,b], let its SP(TT ,3)-

interpolate be defined by Q f=s, seSp(77^,3), where 

f(x.) = s(x.) for all X.GTT 
I I I N 

and 
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f'(a) = s f(a), f (b) = s f(b). 

It is known that is well defined, n>l, see Schultz and Varga 

[33]. Moreover, it is also known that given a quasi-uniform sequence of 

partitions of [a,b], if feC^[a,b], j=l,2,3, or 4, then for some constant 

K independent of n 

||f-Q fll < KTT3. 
II ^ n H oo n 

J_l 

Many authors have studied error bounds for cubic spline interpo

lation, see [1], [5], and [34]. In particular, deBoor [3] has shown 

that in the Banach space C"L[a,b] with norm 

||f|| = |f(a)| + ||f || o o, 
L 

that || Q || ̂  < M for a constant M independent of n. For completeness we 

develop a special error bound that will be used repeatedly in Chapter 

II. 

Theorem 1.2. Let } be a quasi-uniform family of partitions of [a,b]. 

Then there exists a constant K>0 and independent of n so that for any 

feC1[a,b] , 

|| Q f-f|| < KTTO>(f' ). 
11 n II ̂oo n n 
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Proof. Let f be in C^~[a,b]. There exists ay in [a,b] so that 

L 

Let x_̂  be the closest partition point to y. Then 

|| Q f-f|| = |/Y((Q f)(x) - f(x))'dx| < i J (Q f-f)J . ( 1 . 5 ) 
L x. L 

l 

Also, 

| ( Q n f - f ) . | = | | Q n M | x 

(l+M)||f-s n"X 

< (l+M){|f(a)-s (a)| + llf'-s'H } i n i ii n" 0° 
L 

for any s eSp(7r ,3). Let s be a spline satisfying the conclusion of J n n' n r 

Theorem 1 . 1 . Then 

II (Q f-f)'|| < (1+M){K.TT o)(f'97r ) + K0oo(f',; )}. ( 1 . 6 ) 11 n 11 oo I n n 2 n 
Li 

The result follows by combining ( 1 . 5 ) with ( 1 . 6 ) . 
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CHAPTER II 

SOME PROJECTION METHODS FOR SECOND ORDER PROBLEMS 

It is convenient theoretically to study projection methods as 

applied to equations of the form v=Tv with T mapping a normed linear 

space X into itself rather than Tu=f with T mapping X into some other 

normed linear space Y as introduced in Chapter I. For boundary value 

problems, the setting of a single space can be accomplished through a 

change of variables to be introduced later. Given a normed linear space 

X, a sequence of projections P^ on X with P^X] = X^, and an operator T 

(nonlinear) on X, then approximations to the solution of v=Tv can the

oretically be found by solving v = P Tv with v eX . The next theorem 
J J n n n n n 

describes conditions for existence and convergence for the approximations 

generated by such a scheme. This theorem is a direct consequence of 

Theorem 3 in [40]. We note that the requirement that X be a Banach 

space in Theorem 3 is not necessary if approximations to v=Tv are found 
from v = P Tv and each P has finite dimensional range. We will assume n n n n to 

this is the case and that X is simply a normed linear space. 

Theorem 2.1. Let X be a normed linear space with T and P T continuous 

over an open set V<=x. Let the equation v=Tv have a solution v q £ v s
 a n d 

let the following conditions be satisfied: 

(1) II (I-P ) v J -> 0 as n - H » ; 

(2) The operator T is continuously Fre*chet differentiable at 
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the point v Q and the linear operator I - T'(vQ) is continuously 

invertible; 

(3) The operator P̂ T is Frechet differentiate at the point v Q 

while ( P

N

T ) R ( V

0 ) = P

N

T ' ^ V 0 ^ a n d f o r e a c ^ £ > 0 o n e c a n fi Rd a n integer N 
and a number 6 > 0 such that 

(I-P )T'(v) < £ n 

when n^N and | V - V Q | | < 6 . 

Then there exists an integer and a constant 6̂ >0 so that v Q is unique 

in the sphere II v-v J | < 6 N , and whenever n>Nn , the equation v = P Tv 
R 11 0" 1' 1' ^ n n n 

has a unique solution in this same sphere. Moreover, there exists a 

constant K>0 so that 

• V o l s K H ( I - V v o l l -

Boundary Value Problems 

The problems 

D 2u = f(x,u) + e(x)u'(x) = f(x,u,ur), 0<x<l, (2.1) 

and 

D 2u = f(x,u,u'), 0<x<l, (2.2) 

with boundary conditions 
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u(0) = u(l) = 0 (2.3) 

are considered. The two uses of the notation for the function f in 

(2.1) has been made so that (2.1) and (2.2) may be referred to later on 

using the same general notation. A distinction is made here, however, 

regarding the linearity or nonlinearity of f in u'. The first approxi

mation scheme for these.problems seeks approximate solutions over sub-

spaces of cubic splines, Sp(tt ,3). The projections considered map 
2 2 C[0,1] into D Sp(TT n,3) and are defined by the space D Sp(TT n,3) and the 

following n+1 linear functionals: 

A f = / f(x)(x -x) dx, 
0 o 1 + 

A.f = / f(x)g.(x)dx 
1 0 

with 

(x) = <̂  

(x rx ) 

(x. . -x) 
1+1 + 

( x - x . ) 
1+1 1 

X < X . 
1 

X > X . 
1 

» i=l9...,n-l 

and 

A nf = / f(x)(x-xn_1)+dx, 

where 
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(x) 
x x>0 

0 x<0 

Approximations to the solution of either (2.1) or (2.2) with boundary 

conditions (2.3) are found by solving 

A.(u^(x)) = A.[f(x,un,u^)), i=0,l,...,n, 

with u eSp(TT ,3) and u (0) = u (l) = 0. We write this as n c n n n 

P u" = P f(x,u 9u T) and u eSp_(ir ,3). n n n n n n r 0 n 9 

2 

Let G denote the inverse of D with respect to the boundary con

ditions (2.3), and let G(x,s) be the associated Green's function, that 

is 

'x(s-l) x<s 
G(x,s) = ' 

s(x-l) s<x 

2 with 0 < x,s ^ 1. Let Q = GP D . Clearly Q is a projection from 9 n n J n r J 

C 2[0,1] onto Spiff ,3). If GP D 2f = GP D 2s, then P f" = P s", and so Q 5 ^0 n n n 9 n n 5 n 
is defined by the linear functionals A^f = A^f" and the subspace 

Sp Q ( 7 T n , 3 ) . The linear functionals A Q,...,A n chosen to represent P^ are 

computationally attractive because the integrals to be evaluated span at 

most two subintervals. Theoretically, however, the linear functionals 

could be defined by 
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and 

1 
X f = / (l-x)f(x)dx, 

0 

1 
X^f = / G(x^,x)f(x)dx, i=l,...,n-l, 

1 
X f = / xf(x)dx 

n 0 

since it can be shown that the functions 1-x, x and G.(x.,x), i=l,... 
i i 

2 
n-l, form a basis for D SDCTT ,3) as do the functions (x.-x) , 

r n I + (x-x n ) and g.(x), i=l,...,n-l. It follows then that the Q 's are n-l + & i ' ' ' n 

represented by the linear functionals giving ordinary cubic spline 

interpolation, i.e. Q f = seSp(7Tn,3) with 

s(x^) = f(x^), i=0 ,... ,n 

and 

s'(0) = f»(0), s'(l) = f»(l) 

In order to establish existence of approximate solutions, con

vergence, and convergence rates for this method, Theorem 2.1 is applied. 

Thus equations (2.1), (2.2), and (2.3) must be put in the form v=Tv and 
2 

the normed space X identified. Let v(x) = D u(x). Then u = Gv and 
1 

u' = G,v, where G v = / G (x,s)v(s)ds. Substituting into (2.1) or 
2 0 X 

(2.2) we have D u = f(x,u,uT) together with (2.3) becomes 
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v = f(x,Gv,G v) = Tv. 

Let X = C[0,1] and define ||v|| = || Gv|| . Considering first (2.1) 
X L» 

with (2.3), we have the following theorem. 

Theorem 2.2. Let } be a quasi-uniform sequence of partitions of 

[0,1] satisfying TT̂  -> 0. Suppose u^ is a solution to (2.1) with bound

ary conditions (2.3), where f and f are continuous on N = {0<x<l, 
u 

i l l 2 
|u(x)-uQ(x)| < 6, 6>0} and eeC [0,1]. If the equation D u - fu(x,uQ)u -

e(x)u' = 0 with boundary conditions (2.3) has only the zero solution, 

then the hypotheses of Theorem 2.1 are satisfied for the projections 

and the associated equation v = Tv in the space X = C[0,1] with norm 

llGvll . 
II II oo 

L 
2 

Proof. Let X = {ueC [0,1]: u(0 )=u(l)=0} with norm ||u|L = || u|| oq. Note 
2 L 

that G is an isometry between X^ and X. Let v^ = D u^ and let = 
{veX:||v-v || <5} be an open set containing v n in X. Defining Sv = 

u x u 
f(x,Gv) and M u = eu' , then Tv = Sv + M^Gv. It will be shown that S and 

M nG, hence T are continuous. Let v ->v in V . Defining u =Gv and u=Gv, 1 9 n 0 ° n n 
it follows that II u -ull 0. As 

II N II OO 

L 
1 

|| Sv -Sv|| = sup |/ G(s,x)(f(x,u ) - f(x,u))dx| 
n X 0<s<l 0 n 

< ||G(s,x)|| ^ sup |f(x,u ) - f(x,u)|, 
L 0<x<l 

then the continuity of f implies Sv ->Sv and so S is continuous on V_. 
J ^ n 0 
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Writing e(x)u'(x) = (e(x)u(x)) ' - e'(x)u(x), let a^(x) = e(x) 

and a (x) = -e'(x). Then M u = (a (x)u(x)) ' + a Q(x)u(x), and 

1 r 

GM u = / G(s,x) (a1(x)u(x)} ' + aQ(x)u(x) 
0 ^ 

dx 

1 
/ (-a (x)G (s,x) + a (x)G(s ,x))u(x)dx 
o 1 * 0 

after an integration by parts. Thus, 

M l U|| x < | | a 1(x ) G x ( s,x) + a 0(x)G(s,x)|| J u || ^ 
L L 

and therefore is a continuous map from X^ to X. It follows then that 

M^G is continuous on X and hence T is continuous. 

We next establish P T is continuous. Note that as Q involves 
n n 

linear functionals with derivative evaluations, Q and P will not be 
n n 

continuous. Let v, ->v in V . Then k 0 

P Tv -P TvIL, = ||GD2Q GTv -GD 2Q GTv |L c n n n 11X 11 n k n 11L 

1 
= [ Q / G(s,x) (f(x9u, )-f(x,u)+e(x)(u'-u?))dx|| n Q k k 

1 
Let h R(s) = / G(s ,x) (f(x,uk)-f(x,u)+e(x)(u]^-u'))dx. Then 

1 
h£(s) = / G s(s ,x) (f(x,uk)-f(x,u)+e(x)(u]^-u'))dx, 

and 



2 0 

|h£(s)| < ||Gs(s,X)|| J | F ( X , U K ) - F ( X 9 U ) | | „ 
L L 

1 1 
+ |D / G ( s , X ) [ e ( X ) ( U K - U ) ] ' D X | + |D / G(s ,X)e ' ( X ) ( U - U K ) D X | 

* |Gs(s,x)|| Jf(x,u)-f(x,u)|| ^ + 2||e(x)|| Jk-u|| c 
L L L L 

+ || G (s,x)|| J|e'(x)|| J|Vu|| c 

L L L 

Using the continuity of f and the fact that || u, -u|| -MD , it follows that 
k L » 

h^(s) converges uniformly to zero. Note that in a similar fashion, it 

follows that h^(s) also converges uniformly to zero. Finally, using 

Theorem 1.2, one has 

»QnVs)H - S l|Qnys)-Vs)U . + |hk(s)|| „ 
L L L 

< KTT ||h'(s)|| + ||h, (s)|| . n" k 11 °° 11 k 11 °° 
LI L 

Thus HQ h_ (s)|| ->0 as v.->v, and so P T is continuous " n k 11 0 0 k 5 n L 
Note that 

||(I-Pn)v0||x = ||G(I-D2QnG)v0|| = ||Gv0-QnGv0|| 
LI LI 

2 
As v Q is in C [ 0 , 1 ] , then Gv Q is in C [ 0 , 1 ] , and using Theorem 1 . 2 it 

follows that || Gv_-Q GvJ ->0 . 
11 0 n 0" °° 

LI 
If T is Fre"chet dif f erentiable at v^, the Frechet derivative will 



21 

equal the weak derivative, T'(vn) = f (x,Gvn)G + MnG. In order for this ^ l u l l 
to be the Frechet derivative at v , it must be shown that given e>0 there 

is a 6>0 so that whenever Av = v -v satisfies || Au|| < 6, then || T(v +Av)-
-L X J. 

T(v )-T'(v )Av|| < e||Av|| . Choose v in V . Then using the mean value 1 1 X X -L 0 
theorem it follows that 

||T(v1+Av)-T(v1)-T'(v1)Av||x = 

1 
sup |/ G(s,x){f(x,G(v +Av)J+e(x)G (v +Av)-f(x,Gv ) 
0<s<l 0 1 

-e(x)G1v1-fu(x,Gv1)GAv-e(x)G1Av} dx| 

< ||G(s,x)|| m sup {|f (x,6GAv+Gv )-f (x,Gv ) | • | GAv | } 
L°° 0<x<l U U 

with 0<6<1. If p>0 and AvL <p, then I GAvl , 6GAv <p. Since f is 
r ii ii y ^ » ii ii o o ' ii ii oo ^ i i 

L L 
continuous on V Q and if v 1 is sufficiently close to D 2u 0=v Q, it follows 
that given £>0 there is a p>0 so that || Avll <p implies 

x 

T(v1+Av)-T(v1)-T'(v1)Av||x < e || Av|| x» 

and so T is Frechet differentiable. In the same manner, it can be shown 

that IITT (v)-T1 (v )|| < € if v is chosen sufficiently close to v , and so 
O X 0 

T is continuously Frechet differentiable at v^. 
2 

The existence of only the zero solution to D u-fu(x,uQ)u-e(x)u' = 0 

and the boundary conditions implies the same result for (l-T'(v ))v = 0. 
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Let M 2u = -fu(x,u0)u, M 2 = M ^ M ^ and M = D 2+M 2 > Then (l-T'(v )) 1 and 

M ^ both exist. We will show M ^ is continuous as a mapping from X to 

X^ and that this implies the continuity of (i-T'(Vq)J ^ on X. If there 
II ~ h u n -1 2 exists a number a>0 so that || M u|| < a||Mu| , then with u=M v, GD u = 

Z X. X 
G(Mu-M0u), so ||M"1v|L = ||Mu-M0u||v, and finally II M^vIL < (l+a)||v||v, 

Z X. z X X n X 
2 ~ 

i.e. M has a continuous inverse. As D = M-M2, after multiplying by the 

appropriate operators one has 

GM2 = GM2M XM = GM2GM - GM2M "ŜGM, 

and 

| |gm 2 | | x < | |gm 2 -gm 2 m _ 1 m 2 | | x | |gm|| x 

provided a = IIGM0-GM M || satisfies a<°°. As G and M0 are continuous, Z Z Z X.. Z 

-1~ 

the result follows if M M2 can be shown to be continuous. Let H(s,x) 

be the Green's function for M and (2.3). Let b (x) = -f (x,uQ)+e'(x) 

and bĵ (x) = -e(x). Then 

l~ 1 

||M M u|| = sup |/ H(s,x){ (b (x)u(x)) ' + b (x)u(x)}dx| 
1 0<s<l 0 

1 
= sup |/ (-bn(x)H (s,x)+bn(x)H(s,x))u(x)dx| 
0<s<l 0 1 X 

after an integration by parts. Thus M is continuous on X^ and a<°° 
-1 2 implies M is continuous. Now choose v in X. Then v-T'(v )v = D u+M2u 

2 
where D u-v. Hence for some positive constant k, 
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;i-T'(v0))v||x = ||D2u+M2u||x > k||u||x 

1 

and Condition 2 of Theorem 2.1 is verified. 

We next establish P T is Frechet differentiable and (P T)'(x) = 
n n 

P T'(x). Consider n 

Pn(T(v1+Av)-T(v1)-T'(v1)Av)||x = || Q̂ G (f(x,u^+Au)-f(x,u^)-f^(x,u^)Auj || 
L 

Using the mean value theorem, we have 

1 
h(s) = / G(s,x)ff(x,u,+Au)-f(x,un)-f (x,u,)Auldx J K 1 1 u 1 J 

1 
= / G(s,x)(fu(x,u +6Au)-f (x,u ))Audx, 0<6<1. 

For functions g in C"^[0,l] their projection under satisfies by The

orem 1.2 

g-Q g < Kir Dg 
L L 

where K is independent of n,g. Suppose n is large enough so that KTT̂  < 1. 

Let e>0 be given. Using the continuity of f , there exists a 6>0 so that 

II Aull < 6 implies with Kn = max{|| G(s ,x) || , ||G (S,X)| } that 
II II oo * 1 II ' II oo ' I' y ' I I 00 

L L L 

sup If (x,u 1+6Au)-f ( x , u n ) | < 7r^r-, 0<6<1. 
0<x<l U 1 U 1 2 K 1 
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Proceeding as before, it follows that 

and 

|h(s)|| ro < f ||Au| 
L 

h'(s)|| m < |||Au|| c 

L L 

Thus 

IIQ nil < || Q h-h|| + llhll < KTT ||Dh|| + llhll < e||Au|| 
ii n 1 1 oo ii n " oo i 1 ii oo n 1 ! " oo " n oo n n c 

L L L L L L 

and so P T is Frechet differentiable and (P T)'(v) = P T'(v). n n n 
Now let v in X satisfy || vj ̂  < 1 9 and suppose is in V . Then 

with u^=Gv^} u=Gv} 

I-Pn)T'(v1)v||x - ||G(I-D2QnG)(fu(x5u1)u+e(x)u')|| c 

L 

1 
I-Q )/ G(s,x)(f (x9uju+e(x)uf(x))dx|| . 

n J ^ u 1 > ii oo 0 L 

As v L < 1, then u < 1 and 
II II X 1 1 1 1 oo 

Li 
1 

s u p I / G ( s , x ) f ( X j U ) u d x | < K||G ( s j x ) | | , 

0 < s < l 0 

where K = sup{|f^(s 9y) | :0<s<l9ly-u^Cs)|<6} . Also since 

1 1 1 
/ G (s9x)e(x)uf(x)dx = / G (s,x)(e(x)u(x))'dx - / G (s,x)e1(x)u(x)dx, 
o s o s o s 
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then 

1 
00 • e 

L 
00 

Thus the set of elements veX satisfying |[v|| < 1 gets mapped under 
x 

DGT'(v^) into a set bounded in the uniform norm. Then again using The

orem 1.2 we have that for some constant K>0, 

and thus Condition 3 of Theorem 2.1 is verified and the proof of Theorem 

2.2 is complete. 

The following corollary gives convergence rates for the approxi

mations to the solution. Convergence rates for the derivatives and 

second derivatives will be given in Corollary 2.3. 

Corollary 2.1. If in addition to the hypotheses of Theorem 2.2 the solu

tion u is in C^[0,1], j=2,3, or 4, then 

(I-P )Tf(v.) n 1 < KTT (2.4) 

n "0"T«> n 

Proof. Note that 

< K||(I-Pn)v0H 

implies 

sup |/ G (s,x)e(x)uf(x)dx| < 2*||e|| ro + ||G (s,x)|| 
0<s<l 0 S L°° S l ' 
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||u -uj| < K|| (I-Q )uj| . n 0"T°° 0 T°° Li LI 

Additional statements can be made concerning the rate of con-
2 

vergence if u Q is in C [0,1] and something is known about ujj. For 

example, suppose u" is in Lip 3. Then using an error bound of [34], 

u -uJ| < K||Q u.-u-l n 0' 00 n 0 011 * 
Li LI 

< K ' 7 T 2 W ( U ' ' , T T ) 

n 0 n 

< K % 2 + g . 
n 

Suppose U Q " is essentially bounded and û ' is absolutely continuous. 

Then 

W ( U J J 9 T N ) = sup _|u^(x)-ujj(y) 
| x-y | <7T^ 

Thus , 

x 
sup I / u'" (t)dt| < TT -K, ,- J 0 n 

X - Y L ^ % Y 

| | U - U J L < K ' T T 3 . n 0' 00 n 
Li 

3 
A similar set of bounds can be derived if u^eC [0,1] and something is 
known about u!" . The result needed to do this is ||Q u -u l| < 

0 n 0 0" 00 -3 -
KTT C O ( U ' M ,TT ). This error bound could not be found in the literature and n 0 n 
so we give a proof. 
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3 

QnU0-Uo" = 0 ( ^ u 0 'V '̂ 

Proof. Let X = {ueC2[0,l]:u(0)=u(l)=0}. Let |u[ = ||uM|| aj. Then X is 
L°° 

a Banach space. Using [34], it is known that if ueX, then ||(Q u-u)"|| ^ 
n L°° 

Ka)(u",Tr n). Thus the Qn's are continuous and converge pointwise to the 

identity on X, and so by the Banach-Steinhaus theorem, the Qn's are uni

formly bounded in norm on X. Choose any linear spline r^. Let s^ be 
in Sp(-rr ,3) with s ( 0 ) = s ( l ) = 0 and s" = r . Then for some constant n n n n n 

(Q u -un)"|| < (l+M)||u"-s"|| . n 0 0 0 0 " 0 n ° ° L L 

Since ŝ J is any linear spline, Theorem 1.1 implies 

(Q u < Ktt 0)(u"',Tr ) . n O O 0 0 n O n 
L 

Arguing as in the proof of Theorem 1.2, the result follows immediately. 

We next consider applying the same approximation scheme to the 
o 

problem (2.2) with (2.3), i.e. D u = f(x,u,u'), 0<x<l, with u(0) = 
u(l) = 0 and f nonlinear in u'. In order to apply Theorem 2.1, we again 

2 

write the problem in the form v = f(x,Gv,G-Lv) = Tv with v = D u. Defin

ing the spaces X^ and X as before, let their norms be also as before, 

that is ||v|L, = || Gv|| and || u|L, = ||u|| . One of the conditions of 
II y " " oo 1 Y " oo 

L 1 L 

Lemma 2.1. Let uQeC [0,1] satisfy uQ(0) = uQ(l) = 0. Let {n } be a 

quasi-uniform sequence of partitions of [0,1] satisfying n ~K). Then 
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Theorem 2.1 is continuity of T in this setting. Consider the function 
2 2 f(x,u,u') = (uf) . The associated operator T is defined by Tv = (G-̂ v) 

If T is continuous , then if v -»-v_, it must be shown that 
' n 0 

1 9 9 sup |/ G(x,s)((u')-(u'r)ds| + 0. (2.5) 
0<x<l 0 

S in T1TT s Consider the sequence u (s) = and u^(s) = 0. Let x = 1/2 for n /— 0 /n 
example. Then direct evaluation of (2.5) shows that IITu | L ,

 00. Thus 
Jr II N N X 

in general, if f is nonlinear in u 1, the norms cannot be chosen as 
before. In order to establish continuity of T, convergence to zero of 

|| u -uj| and ||u'-u'| when ||v -v II 0 would be sufficient. This can n 0 0 0 n 0 0 0 n O X 
L I J-I 

be achieved by defining l|v|| = || DGv|| oq. For G to remain an isometry 
L°° 

between the spaces X^ and X (defined as before), the norm an X^ is chosen 

to be I u|| = flu'|| . In this setting the details of verifying Theorem 
1 L°° 

2.1 for the problems treated in the next theorem are analogous to the 

case already done and are omitted. 

Theorem 2.3. Let } be a quasi-uniform sequence of partitions of 

[0,1] satisfying T T ^ 0. Suppose (2.1) with (2.3) has a solution u^ 

with f,f and f , continuous on N = {0<x<l, |u"L-u^|<6, 6>0}. If the u u 1 1 01 

2 equation D u - f (x,u^,u')u - f ,(x,u^,u')ur = 0 with boundary conditions u O O u 0 0 
u(0) = u(l) = 0 has only the zero solution, then the hypotheses of The

orem 2.1 are satisfied for the projections and the associated equa

tion v=Tv in the space X=C[0,1] with norm ||DGv|| oq. 
L°° 

Classes of problems meeting the hypotheses of Theorems 2.2 and 
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2.3 are developed in Chapter III when higher order equations are 

studied. 

Corollary 2.2. If in addition to the hypotheses of Theorem 2.3 the 

solution u Q is in ^[0,1], j=29 3 , or 4, then 

uk-u*| = 0(trj 1 ) 9 k=0,l. n 0" 0 0 n 
Li 

Note that since the problems described in Theorem 2.3 contain 

those in Theorem 2.2, then Corollary 2.2 applies in both cases and rates 

of convergence for the derivatives have been obtained. Moreover, an 

analogous theorem can be obtained using the || u|| norm on X and the norm 
L°° 

||u"|| on X . The spaces X and X are Banach in this case. Using spline 
L°° 

interpolation bounds [34], if f is in C [0,1] then 

(Q f-f)" < Ko)(fM
97f ), n " 0 0 n ' 

Li 

where K is a constant independent of f and n. Thus we can show the P n' s 

are uniformly bounded on X as in the proof of Lemma 2.1. We delay until 

Chapter III the proof of a result, Theorem 3.2, enabling us to deduce 

directly convergence in this setting and hence for the second deriva

tives. It is possible to proceed also in a manner similar to the pre

ceding. These results are summarized in the next corollary. 

Corollary 2.3. If in addition to the hypotheses of Theorem 2.2 the 

solution U Q is in C^[0,1], j=2,3, or 4, then 
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L 

If in addition to the hypotheses of Theorem 2.3 the solution u^ is in 

^[0,1], j=2,3, or 4, then the conclusions of Corollary 2.2 hold and 

uM-u"|| = 0(7T]* 2 ) . n 0"<» n 

Other Projection Methods 

The details of the proof of Theorem 2.2 remain essentially the 

same (actually easier) for any sequence of projections P^ with = 
o 

GP^D and the range of P n equal to Spt^ ,k-2) , k>3, provided the Q^'s 
00 

are uniformly bounded in the L norm over X^, i.e. there exists a con

stant M independent of n so that ||Q f|| m < M|| f|| m for all feX . For 
n L°° L°° 

example, choose any feX^. Then 

Qnf-fl| = ||Qn(f-sn)-(f-Sn)|| 
J_l J_l 

< (l+M)||f-sn|| a 

L 

for any s
n
e^PQ^ 7 T

ns^)» a n <^ s o Q n achieves the same asymptotic rate of 

convergence as the best approximation given in Theorem 1.1. Thus Condi

tion 1 of Theorem 2.1 can be verified. Note that if is uniformly 

bounded, then P n is also uniformly bounded in the setting of Theorem 2.2 

where G is an isometry. With P and T continuous, then P T will be con-
J n 5 n 

tinuous. Also, if T is Frechet differentiate, then P T will be Fre*chet 5 ' n 
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differentiable and (P^T)' = P

N

T ' J
 s e e [17]. Likewise, using Theorem 

1.1, (2.4) will hold. Moreover, similar remarks are true for Theorem 

2.3. The next two lemmas enable us to deduce that the conclusions of 

Theorem 2.2 and 2.3 are also true for a sequence of projections uniformly-

bounded over with the sup norm. 

Lemma 2.2. Let be a quasi-uniform sequence of partitions of [0,1]. 

Let Sp^ ( T T ^ ,k), k>3, be the associated spaces of spline functions of 

degree k. Let {Q^} be a sequence of projections from onto Sp Q ( 7 T n,k) 

satisfying | | Q N L L ^ - M for some constant M independent of n. Then there 
L 

exists a constant M., so that ||(Q f)'|| < M l|fr|| for any feX. and all 

1 n "T°° 1'1 11 * J 1 
Li L I 

n. 
Proof. If f is in X^, then using the best approximation properties of 

SpQ(TT^,k)-splines, it follows that there exists a constant K independent 

of n so that 

f-Qf|| < KTT w(f' , T T ) . (2.6) n OO n n L 

There exists some Sp^(TT^ ,k)- spline s^ for each n and constants K^9K^ 
independent of n so that 

« F - 8 N L - S

 K l V ( F ' ' V ( 2 - 7 ) 

L 

L 

and 
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Using the Markov inequality [18], (2.6), and (2.7), there exist constants 

K and K' independent of n such that 

|| Cs -Q f) ' 1 < — ||s -Q f|| (2.9) " n xn " _ 0 0 TT n xn 11 » L -n L 

< -± (||s -f|| +||f-Q f|| } 
—n L L 

< Kia)(f ,TT ) . 3 n 

Then using the triangle inequality with (2.8) and (2.9) one has 

f-Q f)' | < K, w(f' ,TT ) . vn 11 «> 4 ' n Li 

Finally 

II ( Q f ) ' | | < II ( Q f - f ) ' | | + l l f l l 
II II oo II I I oo II II c 

L L L 

i+ > N ' II n c 

JJ 

5" 11 0 0' 
JJ 

where K,. is a constant independent of n. This completes the proof. 

The next lemma follows in a manner similar to Lemma 2.2. 

Lemma 2.3. Let {TT} be a quasi-uniform sequence of partitions of [0,1] 

Let be a sequence of projections from X^ onto Sp^Ti^jk), k^3, 
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satisfying (Q f)' < M f'| for some constant M and all n. Then 
1 1 N 1 1 OO II ii OO 

L L there exists a constant M, so that II (Q f)"| < Mj|f"|| for all feX.. 1 " n 11 0 0 1" ' 0 0 1 J_i Li 
and all n. 

For a sequence of projection operators satisfying the conclusion 

of Lemma 2.3, Theorem 3.2 of Chapter III can be applied to deduce con

vergence of the approximation method for the problems treated in The

orems 2.2 and 2.3. 

Corollary 2.4. If Q is continuous with respect to || u|| (||u'|| ) f° r 

n L°° L°° 
some index n, then it is continuous with respect to u' (l|u" ) for 

II II CO II II 0 0 

L L 

that same index. 

We next introduce several projections that can be used to approx

imate solutions to (2.1) or (2.2) with (2.3). 

Let t t ^ be a partition of [0,1], Let t t ^ be the partition obtained 
from 7T by removing xn and x n 9 i.e. t t :0=X < X _ . . .<x <x =1. Given a n J 1 n-l n 0 2 n-2 n 
function f in C[0,l], define the projection operator mapping C into 

Sp(TT nj3) by R
n f - S with s(x^)=f(x^), i = 09...9n. DeBoor [3] has shown the 

following result, see also Schultz [30], 

Theorem 2.4. R is a well-defined projection of C[0,1] onto S P ( t t ,3) n , * n 
II II 5 - 2 

and R < 1 + — ( t t / t t ) . 11 n" 0 0 2 n —n 
L I 

Again letting G(x,s) represent the Green's function associated 
2 

with D and the boundary conditions, the approximation u^ in Sp^n^S) to 
2 

the solution of D u=f(x,u,u'), u(0)=u(l)=0, is defined as the solution to 
1 

u (x.) = / G(x.,s)ffs,u (s),u'(s))ds, i=0,...,n. (2.10) 
n i 1 l ^ n n J 
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This approximation scheme will be called a weighted sub-domain method. 
2 

Letting = D R̂ G and writing the boundary value problem in the form 
v=Tv as before, then v = P Tv is equivalent to u = R Gf(s,u ,u') 

n n n u n n n n 
which is in turn equivalent to (2.10). 

In order to apply the approximation scheme (2.10) as defined, it 

would be necessary to calculate integrals over the entire interval 

[0,1]. It is possible to avoid this by applying other linear function-
2 

als m the span of those that generate D In particular, the linear 

functionals 

X.f = / g.(x)f(x)dx, i=l,...,n+l, 
1 0 1 

where 

xsx. 
x. - x. n 1 

1 .1-1 

(x. -x) 
1+1 + x>x. 

X . _, - X . 1 i+1 

can be applied to both sides of (2.1). The integrals required by each 

of these linear functionals span only two subintervals in the partition 

TT . 

n 
Using Theorem 2.4 and Lemmas 2.2 and 2.3, it follows that the 

projections P are uniformly bounded in the norms || Gv|| , ||DGv|| , and 
n L°° L°° 

|| v|| m on X=C[0,1]. Thus the analysis in the previous section will go 
L°° 

over for this projection. 
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We digress for a moment to take advantage of the uniform bounded-

ness of the projections (2.10) to demonstrate a different technique for 

verifying Condition 3 of Theorem 2.1 in this case. Suppose X and X^ are 

defined as before with || v|L, = llGvll and || u|L, = ||u|| . Let v be in X 0 0 X 0 0 

L Al 2 L 
some neighborhood ||v-v || < 6 of the point v = D u , and suppose for 

U X u u 

any z in X the following inequality is satisfied: 

Y = inf{ Tf(x)z-s v:s eP X} < r zl (2.11) 1 n X n n n 1 X 

with r P I +0 as n-*». Then following Vainikko [40], n n1 X 

(I-Fn)T'(x)z| S ||I-P X- Y 

< (1+1 P v)r I z v 1 n X n1 X. 

and so ||(I-P )T'(x) -K) which is Condition 3 of Theorem 2.1. Note that 11 n 11X 
we have actually only required the P fs to be continuous and r IIP |L.-K), J n n" n MX 
not that |P L , be uniformly bounded, for the verification of (2.11). 

However as they are uniformly bounded for the projection (2.10), then 

only r -K) need be shown. If f(x,u,uf) = f(x.u) + e(x)u'(x), then as J n 
before, 

T'(vn) = f (x,u,)G + e(x)DG 1 u 1 

and 

Tf(v1)z = fu(x,u1)u + e(x)uf 
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where u = Gz. Let T'(v) = S'(v) + e(x)DG. Condition (2.11) will be 

applied to S'(v) and Condition 3 of Theorem 2.1 will be shown directly 

for e(x)DG. Note that 

Y = infill S'(vW-s || isePrx]} 
J - n A n n 

= inf{||GS'(v. )v-u || :u eSp ( T r ,3)}. 1 n 0 0 n O n 
L I 

Since GS'(v )veC [0,1], Theorem 1.1 implies that for some constant K>0 

and independent of v , v, and n, 

Y < KTT2||f (x9Gv. )|| ||Gv|| . 
L L 

As f is continuous, then if vn is sufficiently close to v., there u 1 J 0 
exists a constant KT>0 so that 

-2 I 

1 n 1 x 

Thus (2.11) is verified for S ,(v 1). 

Let eDGv = euf = Su with u = Gv. Following [3], write 

s t 
GSu = / / I(e(x)u(x)] f-e'(x)u(x) 

0 0 
dxdt 

1 tf ^ s / / (e(x)u(x)] '-e'(x)u(x) 
0 0 ̂  

dxdt. 

Then 
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(GSu)' = e(s)u(s) - / e'(x)u(x)dx - / e(x)u(x)dx 
0 0 

1 t r 
j j (e(x)u(x)) »-e'(x)u(x) 
0 0 ^ 

dxdt. 

Thus 

(GSu)' < k| ull 
II oo II II c 

L L 
(2.12) 

for some constant k . Letting V = {GSuiueX and ||u|| <l}, it follows 
L°° 

from (2.12) that 

O)(V,TT ) < kTT s all IT > 0, veV. n n n 

2 
This implies the set V is totally bounded m and since D is an 

isometry from X^ to X, then S is a totally bounded operator, see [16, 

p.70]. Since the Pn's are uniformly bounded in norm and thus converge 

pointwise to the identity on X, the fact that for an equi-continuous 

family of linear maps from one topological vector space to another the 

topologies of pointwise and uniform convergence coincide on totally 

bounded sets (see [16]) may be used to deduce P̂ S converges uniformly to 

S. This implies Condition 3 of Theorem 2.1. An application of the 

triangle inequality shows that the condition also holds for T'. 

Results for the method (2.10) as applied to the problem (2.1) 

with (2.3) are summarized in the next theorem. 

Theorem 2.5. Let (IT } be a quasi-uniform sequence of partitions of 

[0,1] satisfying TT -K). Suppose u n is a solution to (2.1) with boundary 
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conditions (2.3) with f and continuous on N = {0<x<l, |u(x)-u^(x)|<6, 
1 2 <5>0} and eeC [0,1]. If the equation D u - fu(x,uQ)u - e(x)u' = 0 with 

boundary conditions u(0) = u(l) = 0 has only the zero solution, then 

the hypotheses of Theorem 2.1 are satisfied for the projections defined 

by (2.10) and the associated equation v=Tv in the space X=C[0,1] with 

norm II Gvl| . Moreover, 
1 CO ' 

L 
I IV\ I I -

 = °(in«t|uk-u |̂| ^ :uk
eDkSp0(Trn,3)}) , k=0.1,2. 

L L 

where Sp (IT ,3) represents those functions in Sp(7i"n,3) satisfying the 

boundary conditions (2.3). 

We next investigate a projection method with quintic splines. 

Let Tf :0 = x <x <x <. . . <x <x _ :x , = 1 be a partition of [0,1] with n 0 1 2 n+2 n+3 n+4 F ' 
x. = lAn, x_ = l/2n, x _ = l-l/2n, x _ = 1-1 An , and x. = (i-2)/n, ± z n+2 n+o I 

i=3,...,n+l. Let TT be the partition obtained from TT by deleting xn , 
n n J 1 

x^ , x ^, and x .̂ Let Sp(iT ,5) be the associated space of quintic 2' n+2 n+3 n ^ ^ 
splines. Define the projection from C[0,1] into Sp(frn,5) by U f = s 

where 

s(xi) = f(x i), i=0,...,n+4. (2.13) 

Theorem 2.6. U n is a well-defined projection of C[0,1] onto Sp( 71^,5) for 

n>2. Moreover, ||U || are uniformly bounded. 
n L°° 

II "H 2 
Proof. Define a basis for Sp(77^,5) using the ̂ s^^-_2 defined by (3.26) 

~5 
after dividing by 7r . It is known (or may be seen by direct 
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computation) that £s..(x) = 120 for x in [0,1], therefore 

n+2 I a
n-s,-W|l oo - 1 2 0 max|a | . 

i=-2 L 
(2.14) 

If f is in C[0,1], then U nf = s = which from (2.13) gives (to 

three places) the matrix system 

a_2 + 26a_1 + 66aQ + 26a1 + a 2 = f(x ), 

237a +14.989a + 62.357a + 39.369a + 3.046a +.001a =f(x ) 
z_ J_ U J_ z_ O J_ 

031a + 7.406a + 52.56 3a + 52.563a + 7.406a + .031a = f(x ) 
Z> J_ vj J_ zi O zi 

a. _ + 26a. . + 66a. + 26a. . + a. _ = f(x.), 3<i<n+l, 1-2 l-l l l+l i+2 l ' 9 

031a . + 7.406a + 52.563a i n + 52.563a 
n-l n n+1 n+2 

+ 7.406a _ + .031a , = f(x _) n+3 n+4 n+2 

.001a n + 3.046a + 39.369a . + 62.357a . n-l n n+1 n+2 

+ 14.989a _ + .237a . = f(x _) n+3 n+4 n+3 

a + 26a ̂  + 66a . + 26a - + a . = f(x .) n n+1 n+2 n+3 n+4 n+4 

> (2.15) 

Note that except for the first three and last three rows, the system 

(2.15) is strictly diagonally dominant. If suitable linear combinations 

of the first (last) few rows are used to replace the first (last) three 

rows of (2.15), the entire system can be made diagonally dominant. For 
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example, row one may be multiplied by .5740, row two by -1.0, and row 

three by .46472 and the sum used to replace row two. Row one requires 

use of a linear combination of the next seven rows. This argument shows 

that the system (2.15) after the indicated modifications is strictly 

diagonally dominant and hence invertible, so U^ is well defined for 

n>4. Let la.l = maxla.l. If 3<i<n+l, then from (2.15) one has 
D 

||f|| ̂  > 66 | ct. | - (1+26+26+1) |a. | 
L°° 1 1 

= 12 leu | . 

A similar computation for the first and last three rows shows existence 

of a constant K>0 so that let. I ̂  K|| f || for n>4. A similar result fol-
I -i l " II CO 

L 
lows for n=2,3 by direct use of (2.15). Combining this result with 

(2.14) gives 

|| U f|| < 120K||f|| , 
1 1 -n 1 1 co co 

L L 

concluding the proof. 

Using Lemmas 2.2 and 2.3, the projections U n are also uniformly 

bounded in the norms ||u'|| and ||u"|| on the space of functions in 
II II CO I I I I CO c 

2 L L 

C [0,1] satisfying the boundary conditions (2.3), i.e. X^. Defining 
2 2 = D U^G, approximations to the solution of D u = f(x,u,u'), u(0) = 

u(l) = 0, can be found by solving 

1 
U u = U / G(s,x)f(x,u ,u')dx (2.16) n n n i n' n 
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with in Sp( 71^,5) and u
n(°) = u^ 1) = °* T n e s P a n o f ^ e integrals in 

(2.16) can be reduced by applying to the original differential equation 

the linear functionals 

1 
A.f = / f(x)gi(x)dx, i=l,...,n+3, 

1 0 1 

with 

x.-x. n 

1 1-1 
( xi+rx )

+ x. -x. 
1+1 1 

x<x. 
1 

x>x. 
1 

We summarize results for this method applied to the problem 

(2.1) with (2.3). 

Theorem 2.7. Suppose u Q is a solution to (2.1) with boundary conditions 

(2.3) with f and f̂  continuous on N - {0<x<l, |u (x)-u(x)|<69 6>0} and 
1 2 eeC [0,1]. Let the equation D u - fu(x,uQ)u - e(x)u? = 0 with boundary 

conditions (2.3) have only the zero solution. If the projection scheme 

is defined by (2.16) and the associated sequence of partitions {f^} 

satisfies rr^O, then the hypotheses of Theorem 2.1 are satisfied for 

this method and the associated equation v=Tv in the space X=C[0,1] with 

norm ||Gv| . Moreover, 
L 

L L 
k k. 

k Jz, 
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where Sp 0 ( i T n,5) represents those functions in Sp ( iT n,5) satisfying the 

boundary conditions (2.3). 

Note that as the space of splines used in this method is quintic 

as opposed to the cubic splines of the previous two methods, better 

rates of convergence can be achieved if the solution possesses additional 

regularity. For example, if u^eC , then 

||u -u II = 0(ff5). 11 0 n" « n L 

DeBoor has shown in [3] that the Galerkin projection is uniformly 

bounded in the norm || Gv|| on X=C[0,1] provided the partitions {TT } 
L°° n 

are uniform, i.e. ^ 7 r
n/l n^ = 1» 3 1 1 ( 1 cubic splines are used. Thus an iden

tical theorem to Theorem 2.5 holds for this method. 

We complete this chapter by describing results from numerical 

experiments using the projections described in Theorem 2.2 and Theorem 

2.5 as applied to two problems. Results of some other numerical experi-
2 

ments are contained in Chapter III. Consider first the problem D u(x) = 

4u(x) + 4coshl, 0<x<l, with boundary conditions u(0) = u(l) = 0 . It can 

be verified that uQ(x) = cosh(2x-l) - coshl is the unique solution to 

this problem and that the hypotheses of Theorems 2.2 and 2.5 are satis

fied. Using first the method of Theorem 2.2, we have the following 

results. 
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Table 1. Application of Theorem 2.2 

TT lu -u I | (u -u_)'| II (u -u V'|| n 11 n 0" 0 0 11 n 0 11 °° 11 u 0 11 0 0 

JJ L L 

1 
5 .906«10_i+ .145*10" 2 ,764*10~1 

1 
7 .245»10_i+ .541*10" 

CO
 .39 8-10"1 

1 
10 .606-10"5 .188*10" 

CO
 .198*10'-1 

Then using Theorem 2.5 we have the next table. 

Table 2. Application of Theorem 2.5 

TT lu - u j (u - u - ) ' (u - U - ) M 

n 11 n 0" 0 0 11 n 0 11 0 0 11 n 0 11 c 

JJ J-I J_I 

.632-10 5 .396-1.0 3 .335-10 1 

. 1 2 4 - 1 0 7 . 3 2 3 - 1 0 5 . 1 3 8 - 1 0 2 

5 0 

As the solution is in C [0,1], then convergence for (u -u„) is 
" n 0 " 00 

- 4-i 
0(77^ ), j=0,l,2, which can be verified for the results in the previous 

tables. Both of these methods give essentially give five diagonal matrices 

defining the approximations and these matrix problems were solved using 

Gaussian elimination. The two methods are similar computationally. 

The second proble7n considered is D 2u = e U, 0<x<l, with boundary 

conditions u(0) = u(l) = 0. This problem has a unique solution 



uQ(x) = £n2 + 2£n[c sec(c(x-.5)/2]], where c = 1.3360556949. This 

problem meets the hypotheses of Theorem 2.2 and 2.5, see Theorem 3.4 

Using first the method of Theorem 2.2, we have the following results 

Table 3. A Second Application of Theorem 2.2 

Tr || u -u J ||(u -u.)'|| || (u -uV'H n 11 n 0" 00 11 n 0 " 00 11 n 0 11 00 

Li Li L 

i .448-10 5 .148*10 3 .628-10 2 

j .125-10 5 .555-10 4 .329-10 2 

|- .485-10 5 .265-10 4 .202-10 2 

Then using Theorem 2.5, we have the next table. 

Table 4. A Second Application of Theorem 2.5 

77 II U - l l j || ( U - » ) f | | || ( U - U n ) " | | 

n 11 n 0" 0 0 11 n 0 11 00 11 n 0 11 00 

J i J i J i 

j .462-10 5 .700-10"4 .374-10 2 

j .124-10""5 .261-10 4 .195-10 2 

i .461-10 6 .124-10 ^ .120-10"2 
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Newton's method was used to solve the nonlinear systems defining 

the approximations with a relative error check of 10 1 1 . Convergence 

was obtained in four iterations in all cases. An initial guess of zero 

was made. The integrals required by the linear functionals of these 

methods were calculated using the four-point Gaussian quadrature 

formula over each subinterval. 
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CHAPTER III 

GENERAL PROJECTION METHODS FOR HIGH ORDER PROBLEMS 

The next theorem is a direct consequence of Theorem 5 in [42]. 

It concerns approximation methods that can be applied to the equation 

v=Tv where T is a mapping (nonlinear) from a Banach space X into itself. 

In this setting, projection methods that can be applied to very general 

differential equations are developed. 

Theorem 3.1. Let X be a Banach space, {P, } a sequence of continuous — — — — — — — x 
projections converging pointwise to the identity operator on X, and T an 

operator (nonlinear) on X. Let v Q be a solution to the equation v=Tv 

with T completely continuous on an open set containing v^, T continu

ously Frechet differentiable at v 3 and the equation v-T'(v )v = 0 

having only the trivial solution in X. Then v Q is unique in some sphere 

{veX: || v-v || <6 , 6>0} , and there exists an integer N so that for k>N the 

equation v=P Tv has a unique solution v in the same sphere. Moreover, 

there exists a constant K>0 and independent of k so that 

v —v < K P v -v 
v0 k11 " 11 k 0 011 

Corollary 3.1. There exists a constant M>0 so that 

v0-v kH < M inf{||v0-v|| :veXk>. 
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Proof. This follows directly from the Banach-Steinhaus Theorem and the 

fact that for any v e ^ , 

p v -v II = IIP (v -v)-(v -v)ll < Ill-P II I Iv — v 11. k 0 o" 11 k̂  0 J 0 Jn

 11 k" 11
 0 11 

The next lemma gives a criterion for establishing that the P, rs 
k 

converge pointwise to the identity. 

Lemma 3.1. If (P^K k^l, are uniformly bounded in norm on X and 

£im{inf||x-xk|| :x̂ eP [X]} = 0 
k-*» 

for all x in X, then pointwise on X. 

Boundary Value Problems 

The class of problems to be considered in this chapter are gen

eral nonlinear boundary value problems of the form 

r-/ m - l v n f r\ -i \ 

D u = f(x,u,...,u ), a<x<b, (3.1) 

with boundary conditions 

m-1 
J [a. .u3(a)+b. .u3(b)] = 0, l<i<m, (3.2) 

j=0 1 3 1 3 

with the a.., b.. real constants. 
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Assume the only solution to Dmu=0 with boundary conditions (3.2) is the 

trivial solution. We may then let G(x,s) denote the Green's function 

associated with D™ and (3.2), i.e. if D mu=v, then 

b 
u(x) = / G(x,s)v(s)ds E G Q[v(x)]. 

a 

Approximations to the solution of (3.1)-(3.2) are sought in the space 

G Sp(Tr ,p,q) = S, . This is the space of polynomial splines in 
U K K 

Sp(Tr ,p+m,q+m) that satisfy the boundary conditions (3.2). Let P, 
k K 

project C[a,b] onto Sp(Trk,p,q). An approximation u^ to the solution of 

(3.1)-(3.2) is defined by (1.1), i.e. the function in satisfying the 

projection equation 

D mu k(x) = P kf(x,u k(x),...,u^" 1(x)). (3.3) 

Theorem 3.2. Let {TT } be a sequence of partitions of I so that TT -K) and 

let {P,} be a sequence of uniformly bounded projections from C(I) onto 
K 

Sp(-rr ,p,q). Let u n be a solution to (3.1)-(3.2). Let f = f(x,x 

x^_^) and suppose f, 9f/3x_^, 0<i<m-l, are defined and continuous on 

S = {a<x<b, | x̂ -uj!j(x) | <6 , 0<i<m-l, 6>0}, a neighborhood of u Q . Finally, 

assume both D mu=0 and 

m-1 . 
Dmu(x) - I JE- (x,u0,...,u^1)u:](x) = 0 (3.4) 

j 

with boundary conditions (3.2) have only the trivial solution. Then a 



49 

constant p>0 can be found so that u Q is unique in the sphere {ueCm[a,b]: 

Iu^1(x)-um(x)|| ^ p ) . Moreover, there exists an integer N so that for k>N 
L°° 

equations (3.3) have a solution u^ in which is unique in the same 

sphere and there exists a positive constant K, independent of k, such 

that for k>N 

u£(x)-ujj(x)| n < KEk(u-), 0<j<m, 
L 

where E, (u™) represents the error of the best approximation to u™(x) in k u 0 
SpUk,p,q) • 

Proof. Rewrite (3.1)-(3.2) as v = f(x,G v,...,G v) = Tv where Dmu=v 

and 

G.v = ̂  ^ G ( x ' s ) v(s)ds, 0<j<m-l. 
D a 9xD 

Note that each G. is a continuous mapping from C[a,bJ to C[a,b] and 
-j ] 

that d G x?.s.-l i s uniformly bounded on [a,b] x [a,b] for j=0,...,m-l, 
9x: 

[9]. It is a consequence of the Arzela-Ascoli theorem that the Ĝ  are 

completely continuous mappings in the setting. As f is continuous, then 

it follows that T is completely continuous relative to the uniform norm 

on a sufficiently small neighborhood of v^ = * Viewing v=Tv as an 

equation in C[a,b], conditions (3.3) may be written as v = P Tv , an 
k k k 

equation in C[a,b] or more specifically in Sp(irk,p,q). 

The continuity of the partials of f imply the continuous Frechet 

differentiability of the operator T about v . The existence of only the 
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trivial solution to (3.4)-(3.2) implies the same result for v-T'(vQ)v = 

0. Finally, Lemma 3.1 implies the pointwise convergence of the Pn's to 

the identity on C[a,b]. Hence the hypotheses of Theorem 3.1 are satis

fied. Thus the solution u^ is unique in some sphere. There exists an 

integer N so that for all k>N, u^ exists and is unique in the same 

sphere. Moreover, using Corollary 3.1, there exists a constant K>0 and 

independent of k so that with v^ = , 

V V o l l - * K i n f * I I V V l c o : v e S P < V P » q ) } - (3.5) 
L L 

This and (3.5) complete the proof. 

The next corollary follows by applying Theorem 1.1 to (3.5) and 

using some of the arguments presented in Chapter II. 

Corollary 3.2. If in addition to the hypotheses of Theorem 3.2 the 

solution U q satisfies for m+p^r>m 

(i) uq c ( ~ C a s b ] , then 

r r (ii) u q e C [a»b] and U q E L I p ^ B , then 

L 

or 
r r r-f-1 (iii) u q £ C [a,b], u^ absolutely continuous, and u^ essentially 

bounded, then 
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I u ^ | | „ = 0 ( ^ - m + 1 ) , 0 S j S m . 
L 

We next give several theorems describing classes of problems that 

meet the hypotheses of Theorem 3.2 (and also Theorems 2.2 and 2.3). The 

most difficult hypothesis to verify in all of these theorems is that the 

equation (3.4) with boundary conditions (3.2) has only the zero solution. 

The linear case is treated first. 

m-1 
Theorem 3.3. For the problem D mu + £ a.(x)u~](x) = f(x) with boundary 

j=0 ] 

conditions (3.2), assume a_.(x), 0<j<m-l, and f(x) are continuous, a 

unique solution exists to the problem, and that the equation Dmu=0 with 

boundary conditions (3.2) has only the trivial solution. Then the 

hypotheses of Theorem 3.2 concerning the differential equation are 

satisfied. 

Proof. It only needs to be shown that equation (3.4) with (3.2) has 

only the zero solution. But if it had a non-zero solution, the unique

ness of the solution to the original problem would be contradicted. 

This completes the proof. 

The next theorem essentially contains the mildly nonlinear problem 

treated by Ciarlet, Schultz, and Varga [6], Schultz [32], and Lucas [20] 

using the Galerkin method. 

Theorem 3.4. Consider the problem 

L[u(x)] = I (-l)jDj(a..(x)D1u(x)) = f (x,u(x)) , a<x<b, (3.6) 
0<i,j<m 1 3 

subject to the homogeneous boundary conditions 
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Dku(a) = Dku(b) = 0, 0<k<m-l, 

where a
m m ( x ) - w>0; a^eC"^[a,b], 0<i, j^m; f(x,u) and f^(x,u) are con

tinuous functions on [a,b] x R; 

b 2 / u(x)L[u(x)]dx > clul (3.8) 
a 

2m 2 b m i 2 for some c>0, all ueC^ [a,b], where llullm

 = / 1 ED u(x)] dx and 
2m 2m a 1 = 0 

C Q [a,b] the subspace of C [a,b] satisfying (3.7); and 

f (x,u) < Y<CC, (3.9) u 1 

for all (x,u)e[a,b]xR where 

C l = inf{||u||2// [u(x)]2dx:ueC2m[a,b]}. (3.10) 1 11 "m J 0 a 

2TTI 
If u Q ^ C Q [a,b] is a solution to (3.6)-(3.7), then the hypotheses of 
Theorem 3.2 concerning the differential equation (after dividing 

through by a (x)] are satisfied, mm J 

Proof. Suppose u is a solution to 

L[u(x)] - f fx,u_(x))u(x) = 0 (3.11) u k 0 J 

subject to the boundary conditions (3.7). Then by (3.8), (3.9), (3.10) 

and (3.11) 



2 b 2 0 > c||u|| - y / [u(x)] dx 
a 

B 9 
> ( C C i - y ) / [u(x)rdx 

a 
and since 

cc^ - y
 > °s u(x) = 0. 

This completes the proof as the other verifications are immediate. 

2 
Theorem 3.5. For the problem -D u=f(x,u), 0<x<l, u(0)=u(l)=0, suppose 

3f a classical solution urt exists and f,-r— are continuous on a neighborhood 0 ' 3u 
T J J - ^ - 2 2 . 3f" , , , 2 2 . of u_. In addition, suppose n TT < C, S -— < c_ < ln+1) TT for con-0 » rr 1 3u 2 

stants c^, ĉ  and some positive integer n on a neighborhood of u^. Then 

the hypotheses of Theorem 3.2 concerning the differential equation are 

satisfied. 

Proof. It is a direct consequence of the Sturm comparison theorem [ 9 , 

p. 208] that the only solution to -D 2u = ̂ - (x,u_)u, u(0) = u(l) = 0, is 
o U U 

the trivial solution. This and the other assumptions above imply the 

hypotheses of Theorem 3.2 are satisfied. 

Note that this problem also meets the hypotheses of Theorem 2.2. 

Thus the Galerkin method as described in Chapter II can be applied and 

best order convergence obtained. This class of problem is not contained 

in those of Ciarlet, Schultz, Varga [7]. 

The next theorem concerns a class of problems that will be 

treated in more detail in Chapter IV. 
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Theorem 3.6. For the problem (-l^D^u = f(x,u,...,um) with boundary-

conditions u-'(O) = u-'(l) = 0, 0<j<m-l, suppose a classical solution u 

exists and f, 3f 

8u 
, 0<i<m, are continuous on a neighborhood of u n . In 

J 0 
3f addition, suppose -— < a . 

u , and 

3f 

3u-
< a. for l<j<m, on a neighborhood of 

fmax(+aQ,0) m 
2m + l a . / i r 2 m - j 

< 1, 

Then the hypotheses of Theorem 3.2 concerning the differential equation 

are satisfied. 

Proof. First note that it follows from the Rayleigh-Ritz [6] and 

Cauchy-Schwarz inequalities that 

1 . 1 
/ |DI]u(x)u(x)|dx < ~ ~ f (V\i(x)rdx. 
i 1 1 2m-n 1 ^ ; 

0 TT J 0 
(3.12) 

Now let u be a solution to 

( - l ) V m u = I (x,u ...,u"')uJ(x) 
J=0 3uJ 

m 3f (3.13) 

and the boundary conditions. Taking the L inner product of both sides 

of (3.13) with u and integrating by parts on the left, it follows that 

m 
(DUIu,Drau) = I 

j=0 
3 f 

3u 
j(x,u 0, ,uQ)uJ,u (3.14) 



55 

Then using the bounds on r and the Rayleigh-Ritz and Cauchy-Schwarz 
3u ] 

inequalities as in (3.12) on the right-hand side of (3.14), one finds 

(Dmu,Dmu) < e(Dmu,Dmu) and so u(x) = 0. This and the other assumptions 

imply the hypotheses of Theorem 3.2 are satisfied. 

Before introducing several specific projections, we make several 

remarks. A result analogous to Theorem 3.6 can be established for prob

lems of the type 

t _ *m+l_2m-l , ITK (-1) D u = f(x,u,. . . ,u ) 

with boundary conditions 

u]'(0) = uk(l) = 0, 0<j<m-l, l<k<m-l. 

This problem is studied in detail in Chapter IV. A slight improvement 

can be achieved in the denominator of â^ in Theorem 3.6 (one TT can be 

replaced by a four) using Opial's inequality [22]. This is also dis

cussed in Chapter IV. These problems are related to some specific 

problems considered in [7, Section 7]. 

As a final remark, we note that if the hypotheses of any of The

orems 3.2, 3.3, 3.4, 3.5, 3.6 hold on all of [a,b>Rx...xRs then approx

imations will exist and be unique in any given neighborhood of the sol

ution provided k is taken sufficiently large. For the linear case, 

Theorem 3.3, global uniqueness of the approximation for k large follows 

directly from [38]. 
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Collocation Methods 

This section is begun by recalling an important result by Swartz 

and Varga [37]. 

Theorem 3.7. For any n>l, k>2n-l, let 7 T k : ( x ^a + C b - a H / k : 0<i<k} be the 

uniform partition of [a,b] containing k intervals. For any f in the 

Banach space C[a,b], let s be the unique element in Sp(-rrk,2n-l) such 

that 

s(x.) = f(x.), 0<i<k, 

Djs(a) = D J(L 2 n_ 1 Qf)(a), l<j<n-l (3.15) 

Djs(b) = D j(L 2 n_ 1 xf)(b), l<j<n-l 

where L n f^ Lo , f) is the Lagrange polynomial interpolation of f 

at the knots xQ ,x^,. . . » x
2 n_ 1^\-2n-l , Xk-2n 9' * ' 9 Xk^' T n e n "there exists 

a constant K independent of k such that 

||f-s. II < Ku)(f 9 7 T . ) . 
ii k1'00 9 k 

Li 

Corollary 3.3. The projections P^ from C[a,b] onto Sp(7Tk,2n-l) defined 

by (3.15) converge pointwise to the identity. Thus the || P || ̂  are uni-
k L « 

formly bounded, k>2n-l. 

The next two theorems may be deduced from results of Swartz and 

Varga [37] (Theorems 4.1 and 6.6) and provide a means of modifying the 

above projection. 

file:///-2n-l
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Theorem 3.8. Given feĈ Ea,!)] , t>0 , and given a quasi-uniform family of 

partitions of [a,b] containing at least n+1 mesh points, let L .f, n>l 
n , 1 

fixed, denote the Lagrange polynomial interpolation of f at the points 

x. ,x. x. where 0<i<N-n, i.e., l l+l 9 l+n J J 

(L .f)(x.) = f(x.), i<j<i+n. 

Then for r = min(t,n) 

K I T R : O ) ( D R F , T T ) > < ! 

DJ(f-L .f] n,i L [x.,x ] 
I l+n 

|DJ(L ,f)|| 
n j l L [x.,x. ] 

I l+n 

0<j<r 

The next theorem is a stability result. 

Theorem 3.9. Given f e C ^ E A J B ] with 0<t<2m and given a uniform partition 

of [a,b], let s be the unique element in Sp(IT,2m-l) such that 

s(x.) = a. _, 0<l<n l l ,0 

D:s(a) = a. D:s(b) = a.T if l<j<m-l, 

where it is assumed that a function F^(f ,T T) exists such that 
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K7T tF.(f ,Tr) > |f(x.)-a. |, 0<i<k 
1 1 1 5 (J 

K t t 1 ] ' f (f,Tr) > |D]'f(a)-a . |, if 1< j<min(t ,m-l) 

if min(t,m-l)<j<m-lj 

> (3.16) 

with similar inequalities holding at x=b. Then, with 

Fll = maxlF.(f.TT) 
II oo I j . 

i 

K i t rrk j (co(Dkf,tt) + ||F||J > < 

D](f-s)|| w , 0<j<k 
L [a,b] 

L [a,b] 
, if k<j<2m-l. 

(3.17) 

In particular, if the partition has at least 2m knots and if s and its 

first (m-1) derivatives are defined by 

D^s(a) - D*(L f)(a) 

2m~1 
in terms of Lagrange polynomial interpolation of (a. n } . _ n where the 
a. satisfy the first inequality of (3.16), then the bounds of (3.17) 

1 , u 
are valid. 

The following extension of Theorem 3.7 is a straightforward 

application of Theorems 3.8 and 3.9. 
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Theorem 3.10. Let TT be the uniform partition of [a,b] used in Theorem 

3.7. Define the projection from C[a,b] onto Sp(Trk,2n-l) by (3.15) 

where L^n ^ is redefined to be the Lagrange polynomial interpolation 

of f at the 2n uniformly spaced points x. = a + (TI^A 2n-l)) j , 0<j<2n-l 

between x^ and xn , and L^ n n is redefined in a similar manner to 0 1 2n-l,l 
interpolate at points between 3 X 1 ( 1 Then there exists a constant 

K independent of k such that 

f - Q k f | | m < K a K f , ^ ) 
L 

for any k>l. Hence the projection Q, converges pointwise to the 
K 

identity and the || Q || ̂  are uniformly bounded. 
L 

Theorem 3.11. Suppose the boundary value problem (3.1)-(3.2) and a 

solution u Q ( x ) satisfy the hypotheses of Theorem 3.2. Then for any 

n>l, a6>0 can be found such that u^ is unique in the sphere {ueCm[a,b]: 
||u™(x)-um(x)| ^^5), and there exists an integer N such that for k>n, 

L°° 
and uniform partitions {TT }, the equations 

sĵ (x) = P Rf (x9sk(x) . . ,s™ 1(x)) 

and (3.18) 

^ v ( s ) = Q v f ( x> s
v
( x ) »• • • »^ _ 1(x)) 

each have a unique solution in Sp^rr^ ,2n+m-l) and the above sphere for 

all k>N, where SpQ is the subspace of Spdr^ ,2n+m-l) satisfying the 

boundary conditions (3.2). Moreover 
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uJ-sJ\\ < K inf{||u™-s|| :seSp(Tr. ,2n-l ,2n-2)} , 0<j<m. O k " 0 0 II 0 11 0 0 ^ k 
LI LI 

and a similar bound holds for s. 

Corollary 3.4. Under the hypotheses of Theorem 3.11 both s^ and s^ con

verge to u^ in the uniform norm for 0<j<m, as TT -K). If in addition the 
U K 

solution U Q satisfies for some r, m<r<m+2n-l 
r 

(i) uQeC [a,b], then 

U0"SkH - = °(\"m w (V\ })' °̂ m̂, (3.19) 
L 

10 DP 

(ii) U
0

£ C Ce,b] and uQeLip^3 5 then 

ll̂ -̂ ll - = 0 ( ^ - m + S ) , O S J S M , (3.20) 
L 

r r r-t-1 (iii) U
0

£ C [a,b], u Q absolutely continuous, and u Q essentially 
bounded, then 

\\ul-sl\\ = 0 ( ^ " m + 1 ) , 0<j<m. (3.21) 
II 0 k1' °° k 

LI 

or 

A similar set of bounds hold for s. 

As an example of Theorem 3.11, suppose equations (3.1)-(3.2) give 
9f the second order problem -u" = f(x,u,uf), u(0) = u(l) = 0, where f, — , 
a U 

9f 9f -—: are continuous in [a,b] * R x R , with -r— (x,0,,0_) < a„, 9uT 9u 1 2 0 
9 f 

< a± for all (x,61,02)e[a,b] x R x R 5 and 2 
(max(+aQ ,0)/TT +

 < !• W e shall also assume that there exists a 

solution to this problem. Then by Theorem 3.6 and one of the remarks 
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following it, all of the hypotheses of Theorem 3.2 concerning the dif

ferential equations are satisfied. Now consider the application of the 

projections (3.15) to approximating the solution u^ of problem. If in 

Theorem 3.16 n is chosen to be one, both P, and 0. coincide and the 
K K 

conditions (3.15) become ordinary collocation on the uniform partition 

tt of [0,1] over the space Sp (tt ,3) of cubic polynomial splines satis-
K U K 
fying the boundary conditions. This gives the equations 

s"(x.) = ffx.,s(x.),s'(x.)l, 0<i<k, (3.22) l ^ i i i J 

s(0) = s(l) = 0, (3.23) 

over Sp(iT ,3), which will require solving a (nonlinear) tridiagonal 
K 

matrix system. By the preceding corollary if uneC [0,1], 

L 

If n is taken to be two, P^ and will be slightly different 

projections into the space of quintic splines over the uniform partition 

Tr k,Sp 0 (Tr k,5), given by (3.22), (3.23), and 

s T " ( a ) = _ 1 _ { _ n f ( [ x ] ) + 18f([ X l2])- 9f([x2]) + 2f([x3])}, (3.24) 
6TT, 
k 

s"'(b) = -i- {llf([b]) - 18f([xk_1]) + 9f([xk_2]) - 2f([xk_3])} (3.25) 
6TT, 
k 
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for P,_ and 

{-llf([a]) + 18f([a+rrk/3]) (3.24)' 

- 9f([a+2irk/3]) + 2f([x1])}, 

s n t ( b ) = _JL_ { n f ( [ b ] ) - 18f([b-Tr, /3]) (3.25)' 
18^ K 

k 

+ 9f([b-2i?k/3]) - 2f([xk_1])} 

for Q k where the notation "f([x])M means "f(x,s(x),s'(x))". By Corol

lary 3.4, if u0eC6[0,l]), Hu^-s^l ^ = O ( ^ ) , 0<j<2. 
L 

There are computational advantages to both of the above methods. 

For either method suppose a basis for Sp(ir, ,5) with minimum span is used 

and the first and last equation are given by the boundary conditions 

(3.23). Then the contribution of equations (3.22) will be of the form 

of a five-diagonal band matrix. With P k, equations (3.24)-(3.25) will 

introduce an extra set of four elements in the second and next to last 

rows of the matrix outside the band structure which will thus require 

special treatment. On the other hand, equations (3.24) and (3.25) can 

be transformed through use of (3.22) into two identities involving 

relationships among the basis elements alone, and these can be coded for 

a computer program independently of the problem. If Q k is used, only 

one additional element is introduced outside the band structure in the 

same two rows, and this continues to be the case for n>2, unlike P, , 

s"'(a) = 
18TT, 
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where the number of additional elements continue to increase along with 

the difficulty of computing the earlier mentioned identity. Further 

details and a convenient basis for quintic splines will be given in the 

last section in this chapter. 

The next theorem will lead to a third projection method for the 

general mth order problem. This method preserves the advantages of the 

Q projection in giving a band matrix of width m+3 (except in two rows K 
where there is one additional element) for splines of degree m+3, and 

allowing for rates of convergence up to (TT, ) . Moreover, the mesh 
K 

requirement is weakened to be quasi-uniform. 

Let TT̂ : a = XQ < X ^ < . . . ^ Q_<x]<c = b be a partition of [a,b] with 

k>3, and TT̂  : a = XQ<X2<...X^ 2 < xk ~ ̂  b e ^ e a s s o c^- a t e c* partition formed 

by omitting the points x^ and x^ ̂  from TT .̂ Let R̂ . be the projection 

from C[a,b] onto Sp(ITk,3) given by 

R, f (x.) = f (x. ) , 0<i<k, k 1 1 

that is, interpolation is required at all partition points of the space 

of cubic splines over TT̂. and in addition at x^ and x^ ̂ . Then from 

Theorem 2.4, we have the next result. 

Theorem 3.12. The projection R̂  is a well-defined linear mapping of 

C[a,b] onto Sp(TT ,3). If {TT, } is a quasi-uniform sequence of partitions k k 
of [a,b], then the R^'s are uniformly bounded in norm. 

The following theorem is an immediate consequence of Theorems 

3.2 and 3.12. 
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Theorem 3.13. Suppose the boundary value problem (3.1)-(3.2) and a 

solution U Q satisfy the hypotheses of Theorem 3.2. Then letting S^ = 

SpQ(7Tk,m+3) be the subspace of Sp(7Tk,m+3) satisfying (3.2), and i^-^ a 

quasi-uniform set of partitions with TT -̂>0 , a 6 > 0 can be found such that 

U Q is unique in the sphere {ueCm[a,b]: ||uQ(x)-um(x)|| m < 6 } and there 
L 

exists an integer N such that for k>N the equations 

s^m)(x.) = f(x.,sv(x.),...,sf1"1(x.)], 0<i<k k l ^ l k l k l ; 

have a unique solution in S^ and the above sphere. Moreover 

uo" Sk' - * K inf{|lvsll m - SESp(T}k,3)}, 0<j<m. 

Corollary 3.5. Under the hypotheses of Theorem 3.11, s^ converges to u^ 

in the uniform norm for 0<j<m. If in addition the solution u_ satisfies 
0 

for some r, m<r<m+3 

(i) u
0

e C [a»b], then 

u o - s k " - = ° ( \ " m u ) ( u o ' \ ^ 0 £ j S m > 

r r (ii) u Q £ C [a,b] and UgeLip $, then 

or 
(iii) u~eC [a,b], u^ absolutely continuous and u n essentially 

0 0 0 

bounded, then 
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4-4 » = °Cm+1>> 
L 

Next let TT :̂ 0 = x Q<x 1<. . . <x^__j_2<x^_)_3<x +̂J+ = 1 be a partition of 

[0,1] with x± = l/4k, x 2 = l/2k, x ^ = 1 - l/2k, x k + 3 = 1 - l/4k, and 

x. = (i-2)/k, i=3,...,k+l. Let TT be the partition obtained from TT 
I k k 

by deleting X ^ J X ^ J X ^ ^ ^ J A N C ^ ^ J ^ * L e t Sp(TTk,5) be the space of quintic 

splines over TT, . It was shown in Theorem 2.6 that the projections U, k k 
defined by U^f = s where 

s(xi) = f(x i), i=0,...,n+4 

are well defined projections for k̂ 2 and uniformly bounded in the L 

norm. 

Theorem 3.14. Suppose the boundary value problem (3.1) with (3.2) and 

a solution uQ(x) satisfy the hypotheses of Theorem 3.2. Then letting 

S = Sp (TT ,m+5) be the subspace of Sp(-n\ ,m+5) satisfying (3.2) and {TT } k 0 k k k 
be a sequence of partitions defined as above and satisfying TT ->0, a con-

k 
stant 6>0 can be found such that u Q is unique in the sphere {ueCm[a,b]: 

I U ^ - U Q I ^< 6} and there exists an integer N such that for k̂ N the equa

tions 

s^xj = f (xi,sk(xi),...,s^ 1(x i)) , i=0,...,k+4, 

have a unique solution in S^ and the above sphere. 
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Moreover, 

u^-s.J|| < K inf{||u -s : s is in Spdr, ,5)}, 0<j<m. O k " 0 0 II 0 11 0 0 ^ k Li Li 

Corollary 3.6. Under the hypotheses of Theorem 3.14, s^ converges to 

u_ in the uniform norm for 0<i<m. If in addition the solution u_ satis-0 0 
fies for some r, m<r<m+5. 

(i) u Q £ C [a,b], then 

u0- skl co = 0 (T f r" ma)(u^^ k)) 9 0<j<m, 
L 

r r (ii) u^eC [a,b] and u_eLip.,$, then 0 0 ^M 

L 

or 
r r r+1 

( I I I ) u , .CC [ A , B ] , U ^ A B S O L U T E L Y C O N T I N U O U S ARID U „ E S S E N T I A L L Y 0 0 0 
bounded, then 

u^-s_J = 0(TT1 ) , 0<]<m. O k " 0 0 k J 

Li 

Numerical Results 

In this section, a convenient basis for quintic splines and 

numerical results for some of the methods presented in this chapter are 

given. Equations simplifying the use of (3.24) and (3.25) are also 

given. For a convenient basis for cubic splines, see [ 6 , p.418], 
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For the actual application of Theorems 3.11, 3.13 and 3.14 to 

mth order problems over Sp̂ CiT̂  ,2n+m-l) one can keep the band width of 

the resulting matrix at a minimum by choosing splines having a minimum 

span. Thus for second order problems with n=2 or fourth order problems 

with n=l such a basis is required for quintic splines. For uniform 

partitions, i.e. (TT /̂TT^) = 1 , with h = TT̂  such a basis is given by 

s.(x) 
1 

( x - x ) i+3 

h 5 + 5h 4(x i + 2-x) + 10h 3(x i + 2-x) 2 

+ 10h 2(x i + 2-x) 3 + 5h(x - x ) 4 

" 5 ( x i + 2 " x ) 

26h5 + 50h4(x. -x) + 20h3(x. - x ) 2 

l+l l+l 

-20h2(x. - x ) 3 - 20h(x. - x ) 4 

l+l l+l 

+ 10(x. -x) l+l 

si(2xi-x) 

x in [x i + 2,x. + 3] 

x in Cx. + 1,x i + 2] 

x in [x.,x. ] 
I I + I 

(3.26) 

x in [x. o s * - ] 

1 O 1 

x not in [x. _,x ] 
i-3 i+3 

k+2 
where x^ = a+hi, and -2<i<k+2, with the elements {s_̂ } being restricted 
by the boundary conditions. For computational purposes, it is convenient 
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5 

-7a + 40a - 93a + 110a - 65a + 12a + 5a - 2ar = 0, (3.27) 
*" J- U J_ z_ O H O 

-2a, c + 5a, , + 12a, _ - 65a, n + 110a, , - 9 3a, + 40a, , - 7a, _ = 0 k-5 k-4 k-3 k-2 k-1 k k+1 k+2 

If instead of the P^, the projections or are used, only the 

equations in the second and next to last row will be changed. For , 

since evaluations one-third and two-thirds of the way between the node 

points of the basis functions s^(x) are required along with evaluations 

at X Q , x^, x^ and x^, only a partial simplification of the form 

(3.27) is possible. If instead is used, evaluations of the basis 

functions at the midpoints is required. Note that for both and R^ 

the second and next to the last row will involve relations among only 

to divide s^(x) as defined in (3.26) by h and then calculate the 

values of any one of the basis functions and its first few derivatives 

once and for all at the collocation points which are affected by it. 

For second order problems and the projections P., this would be the 
k 

points x. . , x. n , x. , x. n , and x. for s.. In this case, if ^ i-2 l-l l i+l i+2 , ^ l k+2 
s satisfies (3.2) and is given by £ a.s.(x), and if the first and 

i=-2 1 1 

last equations are given by the boundary conditions, the second and 

next to last by (3.24) and (3.25) and the rest by (3.22), the resulting 

matrix will be five-diagonal except for the first and last rows. More

over, if (3.24) and (3.25) are combined with (3.22), the following new 

equations, which can be coded in the second and next to last rows inde

pendently of the problem, result: 
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six bases elements instead of eight as in (3.27), coming close to the 

five diagonal form of the equations in between. Thus for any of these 

three projection schemes, after a few initial evaluations of the basis 

functions are made, no further explicit use of (3.26) is required except 

if desired when writing the solution. 

If the original problem (3.1)-(3.2) is linear, Gaussian elimina

tion is an effective way to solve the resulting matrix system. The 

matrices developed are with the exception of a few rows diagonally 

dominant and so Gaussian elimination is generally stable with respect 

to round-off error. If the problem (3.1)-(3.2) is nonlinear, we have 

found that Newton's method has been successful in all of the problems 

which have been used for numerical experiments. A starting value of 

zero was used and convergence obtained within four to five iterations 

in all cases. Each iteration essentially involves going through the 

preceding linear loop once, and thus relatively little coding is required 

to modify a computer program that handles the linear case to treat the 

nonlinear case. 

Some specific examples of (3.1)-(3.2) are discussed next. First, 

consider the linear problem 

D2u(x) = 4u(x) + 4coshl, (3.28) 

with boundary conditions u(0)=u(l)=0. It is easy to verify that 

uQ(x) = cosh(2x-l) - coshl is the unique solution to (3.28) so by The

orem 3.4 the hypotheses of Theorem 3.2 concerning (3.28) are satisfied. 
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Table 5 lists some numerical results of applying the projections over 

subspaces of quintic splines. Since u^ is analytic, in particular it is 

in C [0,1] and. so convergence of the approximates and the first two 

derivatives will be fourth order. 

Table 5. Three Collocation Methods Over Sp (TT ,5) 
U K 

H=L/K DIM̂ P̂ D̂  ,5)1 |SF-U_|| I Ŝ -U II LLSF-UJL ^ r0 K ; 11 K 0" °° 11 K 0" 0 0 11 K 0" 00 

L L L 

1/7 10 3.35-10"6 3.42-10~b 3.35-10~6 

1/9 12 8.01-10"7 1.27-10"6 1.25-10"6 

1/11 14 4.28-10~7 5.71-10"7 5.66-10"7 

For comparison, the results of two other fourth order methods, 

the method of Galerkin over cubic splines and the collocation method of 

[29] are given in Tables 6 and 7. 

Table 6. Galerkin Method Over Sp 0 (Tr k,3) 

H=L/K DIM SPo(irk,3) IIVU
0I -L 

1/5 6 3.98-10"5 

1/7 8 1.12-10"5 

1/9 10 4.36-10"6 
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We note that the Galerkin method yields seven diagonal matrices for 

this problem. 

Table 7. Collocation Over Sp (TT ,5,2) 

h=l/k dim SpQ(Trk,5,2) l s

k " u

0 l l 

1/5 16 1.49 «1(3 

1/7 22 3.90-10 

1/9 28 1.43-10 

As a second example, consider the nonlinear problem 

D2u(x) = e U ( x ) , 0<x<l, (3.29) 

with u(0) = u(l) = 0. The unique solution to (3.29) is u (x) = 

Zn2 + 2£n[c sec(c(x-.5)/2)], where c = 1.3360556949. Letting a ^ a ^ O , 

Theorem 3.4 applies since -exp(u(x)j<0 and so the hypotheses of Theorem 

3.2 regarding (3.29) are satisfied. Convergence will be fourth order. 

Table 8 contains the results of applying P, , Q, , R, to this problem. 
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Table 8 . A Second Application of Three 
Collocation Methods Over SP_(TT, , 5 ) 

^0 k 

^ i / v ii p ii ii Q II II R II 
h=l/k s,-uJ s.,-uJ sn -uJ 

i-i L h 

1 / 7 1 . 7 8 ' 1 0 - 7 2 . 0 9 ' 1 0 ~ 7 2 . 0 2 « 1 0 ~ 7 

1 / 9 4 . 2 3 ' 1 0 ~ 8 7 . 7 9 ' 1 0 ~ 8 7 . 6 5 « 1 0 ~ 8 

1 / 1 1 2 . 4 1 ' 1 0 ~ 8 3 . 5 3 ' 1 0 ~ 8 3 . 4 9 ' 1 0 " 8 

The error bounds for the first and second derivatives are summarized in 

Table 9 on the following page. For comparison, we list results for the 

Galerkin method over cubic splines, which will also be a fourth order 

method for this problem. The Galerkin method yields a seven diagonal 

matrix. 

Table 1 0 . A Second Application of Galerkin 
Method Over Sp„(7T. , 3 ) 0 k 

h=l/k ||sk-u0| 
L 
- 6 

1 / 5 2 . 3 9 * 1 0 

1 / 7 6 . 4 4 « 1 0 ~ 7 

1 / 9 2 . 5 0 « 1 0 ~ 7 

As a final example, consider the nonlinear problem 

xu" = u' - (u') 3, l<x<2, ( 3 . 3 0 ) 



Table 9. Results for First and Second Derivatives 

h=l/k :VV 'I <sk-V (VV" S

K

Q - U O ) N L k 0 " 0 0 

LI 

1/7 

1/9 

1/11 

4.06 10 -6 8.26 10 -7 7.18 10 -7 

1.21 10 

4.47 10 

- R 3.19 10 7 

1.48 10 -7 
2.88 10 ' 

1.37 10" 7 

6.9 3 10 
2.75 10 

-5 

-5 

1.30 10 -5 

4.46 10 

1.84 10 

8.95 10 

-6 

-6 

-7 

5.27 10 

2.14 10 

1.03 10 

-6 

-6 

-6 
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with nonhomogeneous boundary conditions 

u(l) = /2 and u(2) = /5~. 

One solution to (3.30) is U
Q ( X ) = A+x 2 . In order to apply the tech

niques of this chapter to (3.30), the problem must be modified to the 

form (3.1)-(3.2). This is in general easy to do, and in this case we 

have 

u" = f(x,u,u') = [ur + /5 - J2 - (u' + /5-v^F)3]/x, Kx<2, (3.31) 

with u(l) = u(2) = 0, where uQ(x) = u(x) + /2 + (/5~-/2) (x-1). Since 

u'(x) = (x//l+x2) - ^ + ^ , f. = 0, and f~, = [1 - 3(u' + /5~-v/2~)2]/x, 

then equation (3.4) becomes 

3x 
1+x' 

u' = 0, Kx<2, (3.32) 

with 

u(l) = u(2) = 0. (3.33) 

2 -1/2 
Integrating (3.32) it follows that u(x) = c^l+x ) + c 2 and then 

evaluating the boundary conditions shows c^=c^=0, and so (3.32) has only 
the trivial solution. Thus it follows that the hypotheses of Theorem 

3.2 are satisfied. Since u Q is in C6[l,2], convergence achieved by 

applying the projections P^, Q^, and will be fourth order. Tables 
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11 and 12 contain results of applying the projections , , and to 

the modified problem (3.31) with (3.33). 

Table 11. A Third Application of Three 
Collocation Methods Over 

S p Q ( V 5 ) 

h = l / k l i s , - u j l | | s , - u j | l i s , - u II 
1 1 k 0" °° 1 1 k 011

 °° 1 1 k 01' 
Jj JJ Jj 

1/7 5.40-10 5.78-10 5.87-10" 

1/9 1.94-10 2.05-10 2.07-10 

1/11 9.06-10"9 9.03-10"9 9.11-10"9 

The error bounds for the derivatives and second derivatives are sum

marized in Table 12 on the following page. 



Table 12. Results for Derivatives 

h=l/k ( v V T (sk-VT (VV"I (sk-V" <VV"I 
1/7 

1/9 

1/11 

3.74-10 

2.38-10 

1.27-10 

-7 

-7 

1.98-10 

6. 31-10" 

2. 85-10' 

-7 2.11-10 

6.78-10 

2.91-10 

-7 5.51-10 

4.07-10 

2.48-10 

-6 

-6 

-6 

1.23-10 -6 1.22-10 

4.80-10 

2.22-10 

-7 

-7 
4.81-10 

2.24-10 

-7 

-7 



77 

CHAPTER IV 

HIGH ORDER PROBLEMS AND THE GALERKIN METHOD 

In an important series of papers, Ciarlet, Schultz, and Varga 

[6], [7], Perrin, Price, and Varga [23], Schultz [31], [32], and Lucas 

[20] among others have made a systematic study of the application of the 

Galerkin method using spline functions to approximate the solution of a 

class of linear and mildly nonlinear boundary value problems. In this 

chapter, some of the results of these papers are extended to problems 

with more general nonlinearities. The proofs will use monotone operator 

theory [7] and provide a contrast to the methods of Chapters II, III. 

In particular, a result that the rate of convergence depends on the 

order of the second highest derivative in the equation will be obtained 

simply by algebraic manipulations. This phenomenon occurred in Chapter 

II for second order problems, nonlinear in the derivative term, due to 

the selection of a particular norm. 

The following nonlinear boundary value problems are considered: 

(-l) 1 1^ 2^ + f(x,u,. . . ,u3 ) = 0, 0<x<l, 0<j<m, m>l (4.1) 

with boundary conditions 

uk(0) = uk(l) = 0, 0<k<m-l; (4.2) 



78 

(-l)mD2m 1u + f(x,u,...}u3) = 0, 0<x<l, 0<j<m, m>2 (4.3) 

with boundary conditions 

u^O) = uk(l) = 0, 0<i<m-l, l<k<m-l, (4.4) 

The even order problem is considered first. The Galerkin form 

[7] associated with (4.1)-(4.2) is 

1 1 
a(u,v) = / D uD vdx + / f (x,u,. . . jU- 1 )vdx. 

0 0 

Generalized solutions and approximations to (4.1)-(4.2) with respect to 
m 2 

a(u,v) are sought over the space of functions 5 [0,1], i.e. those that 
m 2 

are in the Sobolev space [42] W 5 [0,1] and satisfy the boundary condi-
m tions (4.2). The usual Sobolev norm, { £ k„2 ,1/2 
k=l 

} , will be denoted as 
m 2 llull . A generalized solution to (4.1)-(4.2) is a function u^eW^ ' [0,1] " " m 0 0 

satisfying a(uQ,v) = 0 for all veW™52[0,l]. 

Let f (x,u,. . . ) and —r- be continuous on [0,1] x R x ... x R 
9uk 

for 0<k<j . This set of functions will be denoted by C [A_.]. Let 

9 f ^ 
8f < a k for l<k<j, 

and 

a. = 
fmax(-aQ,0) 

2m 4TT 
2m-2 L 

k=2 
aK/Tr 

2m-k < 1, (4.5) 
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Condition (4.5) is needed to develop a higher-order convergence result. 

Other regularity conditions assuring convergence of the Galerkin method 

are possible, see [7] and [31], but convergence will be of a lower order 

than the rate developed here. Moreover, in the event only low order 

convergence can be achieved, application of a collocation technique as 

in Chapter III may be preferred. 

The cases j=m and j<m in (4.1) are markedly different due to the 

fact that using the boundary conditions (4.2), it follows that bounds on 

||u||n yield uniform bounds for D-'u, 0<j<m-l, but not for Dmu. Uniform 

bounds on the arguments of f are needed in the proofs to follow. For 

the case j=m, a classical solution u to (4.1)-(4.2) is assumed to exist, 

a priori bounds for D^u, 0<j<m, are obtained, and f is modified to obtain 

an equivalent problem with sufficient regularity to permit application of 

the Galerkin method. If j^m-1, it will be shown that the Galerkin 

method can be applied to the problem directly. 

If u is a generalized solution to (4.1)-(4.2) with j=m, then 

it follows using the mean value theorem that 

/ (Dmu)2dx = - / f(x,u ,. .. , D u)udx (4.6) 
0 0 

7\ "F m 0 
= - / f(x,0,. .. ,0)udx - / (x,0u,. . . ,0D u)u dx 

0 0 
1 

-...-/ (x,6u,...,0D u)D uudx 
0 

where O<0(x)<l. The Cauchy-Schwarz and Rayleigh-Ritz inequalities imply 
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1 , 1 
/ |D uu|dx < -^-r- / (Dmurdx. (4.7) 2m-k n 0 TT 0 

Applying (4.7) to (4.6), it follows then that 

/ 1(D mu) 2dx S 4|D mu|| 2 + aJ|Dmu||2
2 (4.8) 

0 TT L L 

where A = sup |f(x,0,0,...,0)|. Note that the Opial inequality [22] 
0<x<l 

was also used in finding a , i.e. ifu(0) = u(l) = 0 and u is in 
m 

W 1 , 2[0,1], then 

1 1 9 

/ |Duu|dx < 1/4 / (Du) dx. 
0 0 

From (4.8) one has 

A. 
Dmu|| . < 1 

2 m, 1 L TT (1-a ) m 

Using the boundary conditions it is easy to see that ||D^U|| w < ||D^ +^"U|| „ 
L°° L 

for 0<j<m-l, and so [D^U! ̂  < B for 0<j<m-l. 
L°° 

Now assuming u is a classical solution to (4.1)-(4.2), the 

boundary conditions and Rolle's theorem can be used repeatedly to write 

x m-1 1 
Dmu(x) = Dmu(y) + / / ... / D u(t)dtdt....dt . 

J J J J 1 m-1 

y c i ci 
J m-1 1 where 0<c.<l and D 2 m~ 1u(c.) = 0, l<i<m-l, 0<x,y<l. Then l l J 
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Dmu(x)r < 2|Dmu(y)r + 2( /|f(t,u,...,Dmu)|dt) 
0 

< 2|Dmu(y)|2 + 2(/ |f(t,u,...,Dm ±u,0)|dt 
0 

1 .m-1 

1 
+ / |-^- (t,u,...,Dm--Lu,8Dinu)Dinu|dt) m-1 _m w m i ,. 2 
0 3Dmu 

(4.9) 

< 2|Dmu(y)|2 + 2A2 + 4A0a B. + 2a 2B 2 
1 J 1 2 2 m l m l 

m-1 where - sup{|f(x,u,...,D u,0)|: |DJu| < B 9 0<j<m-l, 0<x<l}. 

Integrating both sides of (4.9) with respect to y over [0,1], the fol

lowing uniform bound for Dmu(x) is obtained: 

Dmu(x) 2 < 2B 2 + 2A2 + 4A0a B, + 2a 2B 2 = B 2 

1 2 2 m l m l 2 

The problem (4.1)-(4.2) can be transformed as follows. Using 

the real-valued continuously differentiable function defined for all 

real u by 

y u) = <i 
Mtl-exp(M-u) M<u 

u |u|<M 

(-M-l-exp(M+u) u<-M, 

consider the problem 

(_ 1 }m D2m u + f ( X 9 U 9 > _ j D

m

u ) = o, 0<x<l, (4.10) 
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with boundary conditions 

D3u(0) = D3u(l) = 0, 0<j<m-l, (4.11) 

where f (x,u,. . . ,Dmu) = f(x,hD (u),...,]^ (Dm 1 u ) , h D (Dmu)] . Noting 
Bl Bl B2 

that 0<hjjj(u) < 1, the bounds established for the solution to (4.1)-

(4.2) with j=m are valid for (4.10)-(4.11). Consequently, from the 

definition of f, a classical solution to (4.1)-(4.2) is a classical 

solution to (4.10)-(4.11) and conversely. Note that f satisfies the 

same regularity hypotheses as f, but in addition, f as well as its par-

tials with respect to D 3u, 0<j<m, are uniformly bounded. That is, in 

addition to (4.5) there exist constants B^, so that 

f(x,u,...,Dmu)| <B 3, f£< B 4. (4.12) 

We now state a result from the theory of monotone operators which 

can be found in Ciarlet, Schultz, and Varga [7]. 

Lemma 4.1. Let X be a real Hilbert space, and T be an operator (non

linear) mapping X into X. If T is strongly monotone, i.e. there exists 

an a>0 such that (Tu-Tv, u-v) > a|| u-v|| for all u,v in X; and T is 
X X 

Lipschitz continuous for bounded arguments, i.e. given K>0 there exists 

a constant C(K) so that ||Tu-Tv|| < C(K)||u-v|| for all u,v in X with 
X X 

llullv» IMIv - K» then the problem of determining a u in X such that 
X A 

(Tu,v)v = 0 for all v in X 
X 
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and for any finite dimensional subspace of S of X, the problem of 

determining a in such that 

(Tu k,v) x = 0 for all v in S k, 

each have a unique solution. Moreover, there exists a constant K' such 

that the following error bound is valid: 

u -u < K? inf{ w-u : weS }. 
k X X k 

Theorem 4.1. Let feĈ EA,. ] satisfy (4.5). If j=m, suppose in addition 

(4.12) is satisfied. Then the problem (4.1)-(4.2) has a unique gener-
m 2 

alized solution over ' [0,1]. If S is any finite dimensional subspace 
m 2 

of WQ ' [0,1], then there exists a unique Galerkin approximation u<-,eS. 

Furthermore, there exists a constant K independent of S such that 
u-u„ < K inf{ w-u : weS}. 

S M ™ 

Proof. Suppose first that j=m. Applying Lemma 4.1, the result will 

follow once the Galerkin form a(u,v) is shown to be Lipschitz continu

ous in u and strongly monotone. It follows from the definition of 

a(u,v) that for fixed u it will be a continuous linear functional in v 
m 2 

over WQ 5 [0,1]. Hence by the Riesz representation theorem, there exists 
m 2 an operator T from W 5 [a,b] into itself such that (Tu,v) = a(u,v). r 0 m 

In what follows, Lemma 4.1 is applied to T, but only as it is defined 

through a(u,v). Lipschitz continuity is established first. 



84 

Using the triangle inequality and the mean value theorem, one 

1 1 
a(n-u 9,v)| < / |Dm(u -u )Dmv|dx + |/ (f (x,u ,. . . , d V ) -

0 0 

f(x,u9,...,Dmu )} vdx 

1 1 _ 
< / |D m(u ru 2)D mv|dx + |/ |1 (u ru 2)vdx + 

+ / 1-i^D m(u 1-u 2)vdx|, 
0 3D u 

where the partials are evaluated at 6(x,u^,. . . ,Dmu^) + (1-6) (x,u2 ,. . . , 

D mu 2), 0<6(x)<l, and u , u 2, and v are in W™'2[a,b]. Using the bounds 

on the partials of f and the Cauchy-Schwarz and Rayleigh-Ritz inequali

ties on the right-hand side of (4.14), then it follows that there exists 

a constant K>0 so that 

a(u -u 2,v)| < K||u -u |Jv| . 

This implies Lipschitz continuity. 

The mean value theorem and the bounds on the partials of f imply 

(4.15) 
1 1 

a(u-v,u-v) = / (Dm(u-v))^dx + / (f (x,u,. . . ,D m
U) - f (x,v,. . . ,Dmv)) (u-v)dx 

0 0 

= H A u - v ^ d x + / || (u-v)2dx + ... 
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u-v)(u-v)dx 
0 3Dmu 

> / (Dm(u-v)) 2dx - max(-a ,0)/ (u-v)2dx - ... - a / | Dm(u-v) (u-v) | dx. 
0 0 m 0 

Applying (4.5) and (4.7) to (4.15), then 

1 9 

a(u-v,u-v) > (1-a ) / fD (u-v)) dx. (4.16) 
m 0 

Finally, applying the Rayleigh-Ritz inequality repeatedly to the right-

hand side of (4.16) and adding the resulting inequalities, we find 

a(u-v,u-v) ̂  
1-a 

m 
1 
||u-v||2. ii ii m 

This completes the proof for the case j=m. If j<m, the only change 

required in the above proof is in establishing Lipschitz continuity. If 

||u|| < K, it follows that ||1| < K for 0<j<m-l. Using this fact and 
m L°° 

the continuity of the paî tials of f, Lipschitz continuity can be 

established as in (4.14). 

We can now immediately apply known error bounds for various 

classes of splines and deduce convergence rates. We choose to state a 

generalization to Theorem 7.10 of [7] using polynomial splines. 

Corollary 4.1. Let (7T
n} he any sequence of partitions satisfying "tf ~K). 

Let be those functions in Spdr ,2k-l)9 2k-l>2m, that satisfy the 
boundary conditions (4.2). Then there exists a unique Galerkin approx
imation u over S , and if the generalized solution u is of class 

n n 5 to 
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W t , 2[a,b], k<t<2k, then 

(u-u )3|| w = 0 ( ^ - m ) , 0<j<m-l. n " 00 ^ n L 

We note that many results stating error bounds are possible here 

as the error depends on the best approximation properties of splines. 

For the odd order problem (4.3)-(4.4), the theory of K-positive 

definite operators [24, p.128] and [7] is used with K=D. Let A = 

(-l)mD2m 1 and let the domain of A be. those functions in C 2 m ^[0,1] 

satisfying the boundary conditions (4.4). Then it follows from [24] 

that the Galerkin form associated with this problem is 

1 1 
a(u,v) = / DmuDmvdx - / f(x u,...,D]u)Dvdx (4.17) 

0 0 

for u,v in the domain of A. Denoting as the completion of the 

domain of A with respect to 

Am .2, ii 1.2 J (D u) dx = ||u|| , 
0 D 

generalized solutions to (4.3)-(4.4) are sought over relative to 

(4.17). A description of this procedure for the third order case is 

contained in [7]. Conditions can now be put on f analogous to the even 

order case to deduce a(u,v) is Lipschitz continuous and strongly mono

tone over H 9 and thus the Galerkin method converges. If f depends on 

D mu, then before applying the Galerkin method, it will be necessary to 
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establish bounds for the solution and its derivatives up to order m and 

then modify the odd order problem in the manner as the even order case. 

We simply state here the analogous to Theorem 4.1 and Corollary 4.1 

Theorem 4.2. Let feC1[A_.]. If j=m, assume 
3 f 

3f 
3D]u 

< a., for j=0,2,..., 

1 ~ 3Du 

m 
2a 0 
2n-l 

m a x ( a l ' Q ) ? , 2n-j-l 
2n-2 + I ^ 

TT ]=3 J 

< 1, 

If ]<m, assume •—— < a , 
o D U 1 

3f 
3Dku 

< for k=0,2,...,j, and 3.<1, Then 

the problem (4.3)-(4.4) has a unique generalized solution relative to 

(4.17) over . If S is any finite dimensional subspace of , then 

there exists a unique Galerkin approximate u^ over S and a constant K>0 

and independent of S so that 

u-uJL < K inf{||u-w|L : weS}. 
S HD HD 

Corollary 4.2. Let {tt^} be any sequence of partitions of [0,1] satis
fying t t ->0. Let S be those functions in S P ( t t ,2k-l) , 2k-l > 2m, 

n n r n' ' 
satisfying (4.4). Then there exists a unique Galerkin approximation u 

t 2 
over S , and if the generalized solution u is of class W 9 [a,b], 

k<t<2k, then 

n 

(u-ujj|| a = 0 ( ^ " m ) , 
L°° n n 0<j<m-l, 
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The previous convergence rates can be improved. We treat the 

odd order problem in detail. Let S be those polynomial splines in 

Sp(TT,2m-l) satisfying (4.4). Here 2m-l is the order of the equation 

(4.3). Let f satisfy the hypotheses of Theorem 4.2 with j<m. If j=m, 

convergence is given by Corollary 4.2. Let u be the unique generalized 

solution to (4.3)-(4.4), u^ the Galerkin approximation over S, and w 

the S-interpolate of u defined by w(x^) = u(x^) for X^£TT, and w-'(O) = 

u 3(0), w3(l) =u 3(l), for i<j<m-l. A comparison of u^ and w will be made 

extending a technique used for mildly nonlinear problems in [23]. 

The orthogonality relation of odd-order polynomial spline inter

polation [33] implies 

0 

1 
/ Dm(w-u)Dm(w-us)dx = 0. 

The definitions of u and u q imply 

1 

0 
,...,D]u)D(w-us)] dx = 0, (4.19) 

and 

1 
. ..,DJus)D(w-us))dx = 0. (4.20) 

0 

Now define 

1 
K = /(DmuDm(w-us) - f(x,w 

0 
(4.21) 
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Subtracting (4.19) from (4.21) and using (4.18), one has 

1 
K = -/ (f(x,w,...,DDw) - f(x,u,.. . ,D D U)]D(W-U )dx. (4.22) 

0 b 

Subtracting (4.20) from (4.21), then 

1 
K = / [(Dm(w-us))2 - (f(x,us,...,D3us) (4.23) 

- f(x,w,. . . ,DI1w)jD(w-us))dx 

From the proof of Theorem 4.2 as in the proof of Theorem 4.1, a(u,v) is 

strongly monotone and so (4.23) implies that for some constant K>0, 

K > K / (D (W-U )) dx. (4.24) 
0 b 

Note that as w is the S-interpolate of u, ||D3u-D-'wl ^ can be bounded for 
L°° 

0<j<m-l independently of w and S using L-spline convergence theorems. 
For example, Theorem 6 of [33] implies || D3'u-D3'w|| m = oGm~^ ~1^2\\ Dmu|| ). 

L°° L 
Thus having uniform bounds for D 3u, 0<j<m-l, one can obtain through the 

triangle inequality uniform bounds for D3w, 0<j<m-l. Furthermore, using 

the boundary conditions (4.4), it follows that 

DDu|| < Il) : ] + 1u| < llulL for 0<j<m-l. (4.25) 
II oo I II oo II II f-f J 

L L D 

The above remarks can be used to bound the arguments of f in (4.22). 
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Then using the mean value theorem and the Rayleigh-Ritz inequality, 

there will be a constant K >0 so that 

K < K || D J (u-w)|| ||D(w-uQ)|| . (4.26) 
1 L L 

Applying the Rayleigh-Ritz inequality to the right-hand sides of (4.24), 

(4.26) and combining the two, it follows that 

Dk(w-us)|| 2 < K2||Dj(u-w)|| 2 , l<k<m. (4.27) 
L L 

Now from the triangle inequality, (4.25), and (4.27), it follows 

finally that 

D^u-u )|| W < Hd^U-W)!! m + llD^w-u )|| c 

L L L 

< ||D1(u-w)|| M + K || D 3 (w-u )|| 
L L 

for 0<i<m-l. Combining (4.28) with known error bounds for splines gives 

the next theorem. 

Theorem 4.3. Let the hypotheses of Theorem 4.2 hold. Let } be a 

sequence of partitions of [0,1] satisfying 7r
n">0 • Let be those splines 

in Sp(7Tn,2m-l) satisfying (4.4). Let u^ represent the Galerkin approxi

mation over S , and let u, the generalized solution to (4.3)-(4.4), be 
2m 2 

of class W 9 [0,1]. Then if j is the highest derivative that f depends 

on where l<j<m, then 
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and 

Dk(u-un)|| a = 0(ri 2 m- j) 9 0<k<j-l, 
L 

r^/ \\\ ~,-2m-k-l/2N ^ _ D (u-u ) = 0(TT ), n<k<m-l, 
Li 

If j=o, 

Dk(u-u )|| = 0(Tr 2 m- j- 1 / 2) 9 0<j<m-l n " oo n J_i 

Theorem 3 can be used to improve a result of Ciarlet, Schultz, 
3 

Varga [Theorem 7 .5, 7] for the specific problem -D u = f(x,u,Du), 

0<x<l, with u(0) = Du(0) = Du(l) = 0; and where f is measurable in x, 

Lipschitz continuous in u, and satisfies 

v2 > a s f(x.e,») - f(x,8',»') ( 4 _ 2 9 ) 

for all 0<x<l, -°°<0 ,<f)se' ,<f> T<°°. Using ( 4 .29 ) , it is established in [7 ] 

that the associated Galerkin form is strongly monotone. Using this 

fact and the Lipschitz continuity of f in u,Du, inequality (4.28) fol

lows as before, although the constant cannot be determined a priori. 
4 2 

Assuming the generalized solution is in W ' [0 ,1 ] and using cubic 

splines, Theorem 4.3 implies convergence of order 3 in the uniform norm, 

whereas the result of [7] for the same conditions states convergence of 

order 2 for general spline subspaces. Suppose in addition to the above 
2 

hypotheses, f(x,0,0) is in L [ 0 , 1 ] . If u is the generalized solution, 
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then proceeding as before and using (4.29), 

1 9 9 1 

/ (D u) dx = / f(x,u,Du)Dudx (4.30) 
0 0 

1 1 
= / f(x,0,0)Dudx + / (f(x,u,Du) - f(x,0,0))Dudx 
0 0 

< ||f(x,0,0)|| || Du|| + a|| Du|| 2 

L L L 

II 2 n 
Then using the Rayleigh-Ritz inequality and solving (4.30) for || D u|| ~ 

L 
it follows that 

||f(x,0,0)|| 
||B2u| 2 S ^ - L . . 

L 'TT (l-a/TT ) 

Using this a priori uniform bound for u,Du, the constant can be 

specified. 

Note from (4.22) that if f is a function of x alone then K=0. 

This implies w=ug on [0,1]. This result extends a theorem of Rose [27] 

to the class of odd order problems (4.3)-(4.4). Proceeding in a manner 

analogous to the proof of Theorem 4.3, a similar theorem can be estab

lished for problems (4.l)-(4.2). 

Theorem 4.4. Let f satisfy the hypotheses of Theorem 4.1, {TT } be a 

sequence of partitions of [0,1] satisfying TT̂ +0 , and be those func

tions in Sp(TTn,2m-l) satisfying (4.2). Let u^ be the Galerkin approxi

mation over S n and suppose u, the generalized solution to (4.3)-(4.4) 
2m 2 

is in W 9 [0,1]. Then the conclusion to Theorem 4.3 holds. 
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It is possible to extend the preceding results to establish 

higher-order convergence if the solution possesses additional smoothness. 

The technique necessary to do this is known and is described for example 

in [23]. We close with several observations. Note that monotone oper

ator theory enabled us to relax the mesh restriction and consider prob

lems of general order. The results in Chapter II depended on special 

spline error bounds, the arguments for which appear difficult to gener

alize except for special cases. Monotone operator theory also allowed 

the introduction of the idea of a generalized solution and hence permits 

application when a classical solution might not necessarily exist. 

However, monotone operator theory requires rather strong hypotheses on 

the equation and for special problems it seems that application of the 

techniques in either Chapters II or III are best to develop an appro

priate approximation scheme. 
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