
PERSONAL WEBMELODY:

CUSTOMIZED SONIFICATION OF WEB SERVERS

Maria Barra Tania Cillo Antonio De Santis

Umberto Ferraro Petrillo

Alberto Negro Vittorio Scarano

Teenie Matlock

Paul P. Maglio

Dipartimento di Informatica ed Applicazioni IBM Almaden Research Center
Università di Salerno

Baronissi (Salerno), 84081 Italy
650 Harry Rd., NWE-B2
San Jose, CA 95120 USA

{marbar,umbfer,alberto,vitsca}@unisa.it {tmatlock, pmaglio}@almaden.ibm.com

ABSTRACT

This paper presents Personal WebMelody, a sonified web
server that informs its administrator of both normal and
abnormal operation through background music. It allows
customization and full integration of system-generated music
representing web server activity with external music sources
(audio CD, MP3, etc) selected by the administrator.
Our sonification technique works by associating MIDI or WAV
sound tracks with web server events. In an attempt to enable
the webmaster to listen to such system-generated music for a
long period without becoming fatigued, we introduce the
opportunity of mixing an external music source with system-
generated music. In this way, the administrator can hear the
status of the web server while listening to his or her preferred
music.
We present an empirical study that shows how our web server
sonification can convey useful information efficiently.

1. INTRODUCTION

World Wide Web servers are growing in size, complexity and
workload. For popular servers, millions of requests are often
served everyday. These requests are logged to files so that they
can later be analyzed to find information for tuning and
malfunctioning. Although web servers usually offer the
capability to choose the kind of information that is logged,
given the workload, these logs can be enormous. Analysis is
greatly helped (and in some cases even made possible) by
programs that perform statistics on massive amounts of log
data. It is common, therefore, to monitor a web server off-line,
either on a regular basis or when prompted by evident
malfunctioning. But for web servers that are used as a
company asset, for instance, to showcase products and to
support web-based commerce, timely monitoring of server
behavior and access patterns is critical, as it could very well
mean the difference between making money and losing money.
Thus, it is important to have an effective and efficient way to
monitor in real-time the behavior of the server so that prompt
action can be taken to fix a malfunctioning server or to fine-
tune the system.
In this paper, we present Personal WebMelody, a sonified Web
server that allows customization and full integration of system-
generated music with external music sources (audio CD, MP3,
etc.). As will be discussed, experiments conducted with the

previous version of WebMelody [2] suggest that music can
convey peripheral information [19] efficiently. Though it
remains to be shown that such system-generated music can
indeed be listened to for a long period without inducing mental
fatigue in the listener, Personal WebMelody is meant to
minimize such potential limitations by integrating system-
generated music with personal musical selections. To convey
server information, our system indicates server state by
changing the volume of the personal music source and by
mixing in additional sounds represented by MIDI tracks.
We believe Personal WebMelody offers an effective and
efficient way for real-time monitoring of the server. By real-
time monitoring, we mean that the system provides feedback to
the webmaster of a web server event within a short, fixed time
interval, δ. Note that ordinary log analyzers cannot achieve
such real-time monitoring as they generally rely on log-file
information that is aggregated and assembled in a variety of
ways. Even using log-analyzers periodically (e.g., every hour)
still has the drawback that information must be explicitly
requested1 by the webmaster. Our system solves this problem
by pushing to the administrator a constant flow of information
about the status of the web server. Though on the one hand,
real-time monitoring ought to be useful and effective because it
enables constant awareness of the server’s state, on the other,
it can only be effective if the user interface is not too intrusive,
constantly interrupting the webmaster. Because Personal
WebMelody relies on sounds --- music in particular --- to
convey information to the webmaster, we believe it is critical
to offer the user a choice of musical representations of server
behavior. Thus, our system is fully configurable, using
customizable sounds to represent server behavior and
integrating personal external audio sources.
This paper is organized in four parts. First, we provide an
overview of the Personal WebMelody system including its
motivations and related approaches. Second, we detail the
architecture and implementation of the system, including the
features that make Personal WebMelody an extension of our
previous system [2] and specific technical problems we faced.
Third, we describe results of empirical studies on users that
suggest that the sorts of sonified web servers we describe are

1 A possible exception is the capability to send alarm messages via
messages on cellular phones (via SMS) or faxes but they are used only to
inform of evident and severe malfunctioning (server and/or connection
down).

Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29-August 1, 2001

ICAD01-1

not too distracting yet can convey useful and timely
information. Finally, we conclude with lessons learned and
directions for future work..

2. MONITORING WEB SERVERS THROUGH
SONIFICATION

Personal WebMelody is meant to convey peripheral
information efficiently through sound, by associating web
server events with specific musical events. In this section, we
describe related approaches to sonification, and the state of the
art in web server monitoring tools.

2.1.1. Music as peripheral information

Because web server administration has the general character of
a background task, our objective was to build a system that
informs in the periphery. In this case, peripheral information
(i.e., information not critical to primary task performance but
potentially helpful or useful nevertheless [19]) is delivered
through sound, as sound does not take up precious screen space
yet it can effectively convey certain kinds of status [4],[7],[8].
There were several reasons for choosing to use musical sound
over non-musical sound. First, our intention was to provide
auditory indications of both working and non-working states.
Using sound to signal that the system is operating normally (in
addition to using sound to indicate that the system is operating
abnormally) requires a fairly constant auditory stream. Because
periodic background sounds can be distracting (e.g., [19]), we
decided to try background music instead, as it can be less
distracting (e.g., [22]). Second, music has been found to be
more aesthetically pleasing than other types of background
noises (such as synthetic voices or computerized beeps) and
even preferable to a totally quiet office [26]. Moreover,
musical cues can be easily tailored or customized to individual
tastes. In addition, our intention was to provide background
information that would be easily distinguished from ordinary
office and computer alerts, such as the ringing of phones and
beeps of computers.
Finally, our system allows to use also external sound sources to
convey information as well. Our guess is that by manipulating
such sources, for example, changing the audio output volume2

or mixing a source with expressive sound cues, it is possible to
push information to the user while at the same time allowing
the user to listen to preferred music. In this way, the user can
effectively receive information describing the status of the
server for a long period of time.
Research on auditory icons and “earcons” focuses on how to
add sounds to computer interfaces so as to simplify or
otherwise facilitate interaction [5],[11]. In such cases, sounds
presented with visual icons and physical actions have been
shown to speed responses and decrease errors [11]. This sort of
sonification tends to use individual sounds rather than music—
and then only when the sounds are in coordination with visual
cues. Along similar lines, others have created musical
sonifications to help users understand complicated data sets,
but again only when in coordination with visual information
(e.g., [16]).
By contrast, Cohen’s ShareMon system [8] is a clear
antecedent of our sonified Web server, as it conveys status

2 Note that care is required in the choice of adequate background music as
specified later in paragraph 3.1.1.

information in the background using subtle sounds. Cohen
developed a repertoire of reasonable metaphorical mappings
between file server events and sounds, such as a login on the
server mapped to a knocking sound. Though conceptually
appealing and anecdotally judged to be useful, because the
evaluation of the ShareMon was done in a qualitative rather
than controlled and quantitative way, very little can be learned
about the effectiveness of this kind of peripheral display.

2.1.2. Techniques for monitoring Web servers

As mentioned, web servers are usually monitored by analyzing
log files that contain information about each HTTP request, its
consequent response, and any errors that arise. According to
the Common Log File Format [18] each row in the file has the
following format: remotehost remotelogname authuser
[date] "request" status bytes.

Many servers allow log data to be stored in a proprietary
format. For example, an Apache module, mod_log_config ,
allows the Webmaster to configure the information to be
logged. Recently, Extended Log File Format was proposed
[13], which allows capturing a wider range of information that
might be useful for detailed demographic analyses.
Because of the high workload of popular web servers, log files
often grow to hundred of megabytes. This makes analysis
possible only with tools (known as Log Analyzers) whose goal
is to present data aggregated and assembled so that they
effectively represent a snapshot of the behavior and functioning
of the server over a given time interval. There are several
popular Log Analyzers, as Analog
(http://www.statslab.cam.ac.uk/~sret1/analog/), Wusage
(http://www.boutell.com/wusage) and Access Watch
(http://accesswatch.com/). These can be used to discover many
parameters and statistics that can be visualized through
graphical interfaces. For example, a typical log analyzer output
might show which pages on a web site are the most popular,
which countries (i.e., domains) most accesses are coming from,
which pages outside the site contain broken links to pages on
the website, and so on. Among the most versatile Log
Analyzers is WebTrends (http://www.webtrends.com), which
allows the creation of filters to monitor several parameters
together. Nevertheless, these filters are limited to either
“Include all the following condition” or “Exclude all the
following conditions” without regular expression matching.
The desire to integrate several views of the log file has
motivated some to add a third dimension to the graphical
displays: 3Dstats (http://www.netstore.de/Supply/3Dstats/)
analyzes log files to generate three-dimensional VRML models
of the server's load by month, by day, and by hour. With a
VRML browser, the webmaster can "walk" through the scene
to examine the bar chart from different points of view. The
Avatar Visualization System [23] combines 3D visualization
with real-time monitoring by providing a projection of the
dynamic behavior of the web servers. In particular, the system
represents the real-time performance data for a NCSA's web
servers [14], displaying and analyzing time varying data with
the Avatar virtual environment.
Regardless of aggregation method or display format, real-time
monitoring represents an important advantage in observing the
behavior of a web server. Some products do provide (to some
extent) real-time features through graphical displays and alarm
mechanisms. But real-time monitoring is generally limited to
severe errors (e.g., connection down, server down), and to

Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29-August 1, 2001

ICAD01-2

http://www.statslab.cam.ac.uk/~sret1/analog/
http://www.boutell.com/wusage
http://accesswatch.com/
http://www.webtrends.com
http://www.netstore.de/Supply/3Dstats/

consequent messages sent through e-mail, pagers or faxes. For
instance, AlertSite (http://www.alertsite.com) checks the
server up to 12 times per hour and sends an alert message (via
e-mail or pager) when the system does not work correctly
(including slow connections). Systems such as @Watch
(http://www.atwatch.com) simulate a browser that visits the
site to check links. Another external tool, WatchWise
(http://www.watchwise.com), requires that each page to be
monitored include a tag that forces the browser to send
information to the WatchWise server.

2.1.3. Comparison with Personal WebMelody

• Personal WebMelody is meant to be non-intrusive yet
informative. Using sounds to represent events in the
server and allowing their integration with external audio
sources (whose volume follows the workload of the
server), our system can usefully supplement information
provided by log analyzers without unnecessarily averting
the webmaster’s focus on daily activities.

• Personal WebMelody offers true real-time monitoring.
The system does not rely on the analysis of log files and,
therefore, it is able to push to the clients a stream of
information that renders the server status within a small,
fixed time interval, and without an explicit request from
the webmaster (server push).

• Personal WebMelody is complete. Because it does not
rely on log files, it can monitor all the HTTP headers that
are exchanged between client and server, not only those
that are sent to the log files.

• Personal WebMelody is versatile. It can be completely
configured by the webmaster: boolean operators and
regular expressions can be used to build arbitrarily
complex patterns to monitor. Moreover, the webmaster
can choose an external sound source to monitor the web
server behavior.

• Personal WebMelody combines true monitoring and
alarms. Rather than pushing information to the webmaster
only in case of severe errors (as some products do) the
system can push a stream of information that can be used
not only for alarms but also for “keeping an eye” on
arbitrarily complex access patterns.

3. PERSONAL WEBMELODY

Our sonified web server was implemented using a three-level
distributed architecture. Events that can be monitored include
load, throughput, and almost any attribute of individual
requests and responses. Our system is flexible because it can
be configured to associate individual or group web server
events with specific musical tracks, allowing an administrator
to customize and monitor the web server’s state. There are
real-life situations in which such a real-time tool can help a
web administrator. For example, by monitoring web server
behavior via sonification the administrator is able to
• Detect “denial of service” attacks, in which the server is

bombarded by too many requests to handle all at once. In
this case, music can easily indicate that the load or
throughput has increased and reached the maximum for a
long period.

• Determine that the server has gone down by silence, as
there would be no activity to generate music.

• Discern different types of requests; for example,
determine where requests come from (by matching the
top-level-domain of the client), or discriminating accesses
by different browsers. If two different conditions are to be
monitored on the same HTTP header, it might be useful to
associate two opposite tracks (same notes but by different
instruments, for example) with the monitored events so
that the administrator can pick out which is the most
frequent.

• Monitor access to restricted (e.g., by user authentication)
directories. In addition, by cross-monitoring (with a
complex event) unsuccessful authentications, the
administrator can also know if many users are providing
bad credentials.

• Recognize the different error types and the HTTP method
of the request. For example, it is possible to monitor
“many” broken links in a newly created section of the web
server by creating a complex event with HTTP error 404
(“File not found”) with pathnames in a given directory
and an internal HTTP-Referer (i.e., links followed by a
page from the same server).

• Associate load peaks with other monitored events. In fact,
by musically recognizing the co-occurrence of several
tracks at once, the administrator might be able to
associate a heavy load period with accesses to a particular
directory, providing some possible explanation in real-
time of unusual load peaks.

Easy configuration and control over the musical tracks allow
for efficient personalization of the musical representation of
web server behavior according to personal taste, cultural
heritage, workplace (physical environment, noisiness,
hardware limitation), and so forth. Of course, our sonification
technique is not meant to substitute for off-line analysis.
Rather, it is meant to complement log analyzers by giving
administrators immediate access to what is going on. Prompt
recognition of server activity is obtained through the human
ability to focus attention on a particular background sound
when needed. At the same time, we hope to leverage on the
human ability to recognize composite musical patterns [9].

3.1. Architecture

We have developed Personal WebMelody to satisfy a number
of architectural requirements. First, the system must be easily
configurable since it is well recognized that personal
characteristics of users influence how they hear and feel about
the information represented by sounds. To this end, the system
should also allow the mixing of the sounds generated by the
sonification of the server with an external sound source chosen
by the user (e.g. MP3 files, audio CD). Second, the
architecture must be distributed, as a popular web server is
probably not a simple workstation located in the webmaster’s
office, but more likely a cluster of machines physically located
in a computer room-. Because audio devices are cheaply
available for PCs or workstations, it is natural to think of the
output as being played by a workstation different from the
server. A distributed architecture offers the possibility to re-
distribute the musical information to different personal
workstations so that different people can be monitoring the
same server. Third, the system must be portable and, therefore,
the “player component” should be able to run easily on several
different platforms.

Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29-August 1, 2001

ICAD01-3

http://www.alertsite.com
http://www.atwatch.com
http://www.watchwise.com

3.1.1. Representing Web Server Behavior

How much server information can be effectively conveyed
through music? We believe that there are a small number of
different coordinates that can be merged into music: the limit
depends on the musical ability of the webmaster and the
degree of attention that he or she is willing to devote to the
sound.
We distinguish three categories of web server events that can
be effectively associated with sounds:
1. Information describing the workload of the server. It is

important to recognize workload peaks during certain
periods of the day and be able to sense that the system is
running. A normal arrival rate of requests should be
heard as a (non-disturbing) background sound and the
absence of it can really be very expressive, indicating that
the server is off, or that the connection with the rest of the
Internet is down. On the other side, if we want the users
to keep their favorite background music while monitoring
the behavior of the server, we can convey information
through the manipulation of the audio output volume by
associating high workload to louder volumes. Note that in
choosing the musical track to represent load, the user
should choose something that would be appropriate as
background music. For instance, something that is rather
smooth in volume and that sounds good when played at
low-volume would make reasonable background music
and thus could effectively be used by Personal
Webmalody to represent load information.
It is important to note that log analyzers offer statistics
based on the throughput, that is, number of served HTTP
requests within a time slice, as log files maintain
information about the time of completion of requests. Our
real-time monitoring system can receive more precise
information about current load expressed in terms of
pending requests. The webmaster can choose to monitor
either throughput or load during configuration. In some
cases, it can be significant to monitor the load rather than
the throughput, for example, for heavily accessed servers
with large data files or complex cgi-bin scripts that may
require additional access to other servers (e.g. DBMSs).
High load might indicate, for example, bandwidth
limitations (resulting in slow connections toward clients)
or other malfunctioning.

2. Information reporting "severe errors" in web server
activity should be immediately recognizable (alarm
sounds). In case we are using an external sound source,
such errors should be represented through easily
distinguishable sound cues played with a louder volume.
In this category, we find, for example, server errors (i.e.,
HTTP responses with status code 5xx) and client errors
(i.e., HTTP responses with status code 4xx) when there
are more than a predetermined threshold. Of course, a
severe error is that the server is reported to be not
accessible, which can be due to either the server being
actually down or network problems.

3. Information denoting the normal behavior of the web
server. In this category, we find most of the situations to
be monitored. In this case, we associate each event with a
single audio track, such as the main part of a musical
theme. If we are playing a background sound track, we
can report this information using sounds having a musical
structure that is neutral with respect to the usual and
conventional musical themes. Using this approach, the

way the user perceives the original sound source is not
affected by the mixed sound cues. For example, one
would like to monitor requests from certain domains, or
requests for files in a certain directory, or redirections
(HTTP status code 3xx), or combinations thereof.

3.1.2. Components

The architecture of our prototype consists of three components:
the sonification Apache module mod_musical_log, the
Collector server, and the WebPlayer application (see Figure 1):
• The sonification module is run inside the Apache server,

it intercepts each HTTP request and response received by
the web server. First, it sends the Collector information
about the arrival of a request. When the request is served,
relevant it sends additional information to the Collector
according to the rules for filtering request and response
parameters.

• The Collector is the middle level component of our
architecture. It acts as the conductor of the sonification
process. The Collector buffers events provided by the
server, parses them and then instructs the remote
WebPlayer about the sounds to be played. It is in the
position to monitor load and throughput of the server, as
well as analyze the events that must be played only if a
threshold is passed. Finally, a command string specifying
the sounds to be played is produced and sent to the
WebPlayer.

• The WebPlayer produces audio output. At startup, the
WebPlayer downloads several sets of sound files from the
network using the information provided by the
mod_musical_log through the Collector. The loaded
sound files are then played according to the command
strings periodically received from the Collector.
Optionally, the user can choose to mix the sounds used as
representation of server’s behavior with an external audio
source.

3.1.3. Apache module mod_musical_log

Apache, currently the most popular WWW server (see
http://www.netcraft.com/survey), allows for modules to be
added, enabling functionality to be plugged in by local web
administrators. We have developed the mod_musical_log
module, which is hooked into request processing to intercept
all information available at the beginning and at the end of
processing (i.e., during post_read_request and logging phases
of processing).
These data are gathered from the server according to a set of
sonification patterns specified by Channel descriptions. These
include a set of rules describing which information is to be
monitored and how this information is to be translated into
sounds. When an HTTP request or response matches one of the
patterns, a new remote event is generated and then sent to the
Collector. More precisely, channels are defined using our new
<MusicalLog> container directive in the httpd.conf file.
A Channel definition includes a description (or name), the
location of sound tracks (MIDI or WAV), and sonification
directives that associate web server events with musical
events. In addition to using the Channel definitions itself, the
mod_musical_log module also sends this information to the
Collector, which needs to know how to map events to sounds.

Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29-August 1, 2001

ICAD01-4

http://www.netcraft.com/survey

Figure 1 The sonified web server is composed of three
components, an Apache module that sends events to an
event Collector, which in turn can provide aggregated
events to the WebPlayer application that also gets the
input of an external audio source.

Our current implementation of the sonification module
supports three types of events:
1. Simple events, generated by mod_musical_log when an

HTTP request or response exactly matches one of:
• HTTP status codes;
• HTTP headers, divided in RequestHeaders (that

include general-headers, request-headers, and
entity-headers) and ResponseHeaders (that include
general-headers, response-headers, and entity-
headers);

• HTTP methods of a request;
• HTTP version of a request;
• Request-URI of a request;
• Remote host (or client IP address).

2. Complex events, generated by composing simple events
with logical AND and NOT.

3. Workload events, generated based on responses served or
requests pending. Using these events, the Collector can
know the exact number of requests currently being
processed by the server, which is a measure of load. Each
time the server receives a new request, during the
post_read_request phase, mod_musical_log sends a
“debit” event to the Collector. When a request is served,
it sends a “credit” event to the Collector that can correctly
evaluate both throughput and load.

We briefly comment now this example of configuration.

<MusicalLog>
 MusicalPlayer "neverland.dia.unisa.it"
 MusicalPlayer "localhost"
 EventsCollector wonderland.dia.unisa.it:7000
 StatisticsFrequency 30
 <Channel>
 ChannelName "demo"
 ChannelDescription "Example"
 SampleType Midi
 SampleSet "http://isis.dia.unisa.it/son.mid"
 TracksNumber 16
 Throughput [1-6] 5 10 1
 RequestHeader User-Agent "MSIE" 7
 RequestUri "/~vitsca/" 8
 StatusCode "404" 9
 StatusCode "5.." 10
 <ComplexEvent>
 RequestHeader User-Agent "Mozilla"
 RequestHeader User-Agent ! "MSIE"
 RemoteHost "(\.it)$"

 Track 11
 </ComplexEvent>
 <ComplexEvent>
 RequestHeader Authorization ".+"
 StatusCode "401"
 Track 12 10 5
 </ComplexEvent>
 </Channel>
 </MusicalLog>

After information about location of distributed components (in
order to be able to authorize accesses), a channel called
“demo” is defined. A musical log configuration directive can
include several channels and the Webmaster can select (by the
WebPlayer) the channel he/she is more interested to.
Throughput is monitored by tracks 1 to 6: a new track is played
if the throughput grows by 5 units per time interval (set to 10)
where the sliding temporal window is moved each second to
the right.
Then we define several simple events and associate them to
tracks. Track 7 is used to monitor accessed by Internet
Explorer, track 8 for accesses to home directory of user
vitsca , and track 9 and 10 monitor several kind of HTTP
error codes, respectively, 404 and any server error, i.e. 5xx by
using the regular expression “5..”.
Then we define two complex events. Track 11 monitors
accesses by Netscape3 coming from italian geographic top-
level-domain. The three conditions are connected by a logical
AND and also boolean NOT is used as “!” in the second
condition. Then, frequent (i.e. more than 10 in 5 seconds)
failed authentication (with wrong credentials) are monitored by
track 13 by using the request header used for authentication
and the failed authentication response.

3.1.4. Collector

In our architecture, the Collector lies between the web server
and the WebPlayer application. In this way, the Apache
module can simply provide statistics on the workload and
analysis of events within some threshold based on the output of
all the children processes of the Apache server. Moreover, by
introducing a middle layer, it is easy to (a) manage multiple
players, (b) use the Collector to receive data from other sources
(servers of any type), and (c) have the player work on different
Channels coming from different servers. The Collector
processes batches of events according to thresholds specified in
the configuration file. In particular, it collects events for the
interval StatisticsFrequency, which means that an event that
happened on the server at time t is sent at most
StatisticsFrequency seconds later to the WebPlayer.
The Collector deals both with the sonification modules and the
WebPlayer applications. The communication protocol between
the sonification module mod_musical_log and the Collector
operates in two main phases:
1. Connection initialization and configuration: At startup, the

Collector waits for a connection request from a remote
sonification module. Upon successfully establishing a
connection, the Collector receives information describing
the Channels.

2. Simple/Complex/Load Events Transmission: The
Collector receives event notifications from the
mod_musical_log module For each received event, the

3 Because of the way IE presents itself to the server in the User-Agent field
by using also the string “Mozilla ”, we must exclude the string “MSIE” to
succesfully select Netscape.

Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29-August 1, 2001

ICAD01-5

Collector checks if the event has a threshold. If there
exists a threshold for the event, the Collector checks if in
the current timeslice (sliding temporal window) the
counter associated with the event has reached the
threshold. In such a case, the related sound request is
generated. If the event has no threshold, the sound request
is also generated. The load is evaluated by the Collector
by adding or subtracting a load counter each time a
“debit” or “credit”message is received. In case of
seriously malformed requests (e.g., URI too long), no
“debit” is sent to the Collector because the core process of
the server directly invokes the standard module
mod_log_config and then our mod_musical_log.
Therefore, we must be sure that the Collector decreases
the load counter only for requests whose “debit” message
was received.

The protocol used to talk with the WebPlayers is simpler than
the one used with the sonification module. After a successful
connection, the Collector uploads to the WebPlayer the
description of the available Channels and the information
about what sound set is to be downloaded. The WebPlayer
receives sound requests about the selected Channel from the
Collector. If the user chooses a different Channel, then the
WebPlayer asks to the Collector to receive data about the
selected Channel.
The Collector provides data to the WebPlayer on the form of a
batch of requests coded as bit strings. The size of the batch
depends on the duration of the time slice used by the Collector.
For each second in the time slice, the Collector batches as
many bit strings as the number of available Channels. Because
the WebPlayer supports up to 16 distinct audio-channels, each
bit string holds exactly 16 bits. The string related to a Channel
indicates what audio-channel must be played for that Channel.
Inside a string, each bit indicates whether the corresponding
track should play.

3.1.5. WebPlayer

When the Collector knows exactly how the next time slice of
events is to be musically represented, it can then instruct the
WebPlayer. The WebPlayer is coded in Java as an application
and uses the Java Sound and Java Media Framework API to
pilot a required audio device. WebPlayer functionality has
been extended (with respect to [2]) to allow users to integrate
an external audio source with sounds used to represent server
behavior. The main idea is to mix the “server event music”
with the user's preferred music, and to use volume and sound
cues to inform the webmaster of the status of the web server.
At startup, the WebPlayer downloads several sets of sound
files from the network using the information provided by the
mod_musical_log through the Collector, and permits the user
to create a playlist with audio files (also with different audio
format) to be used as background music. Volume changes and
sound cues are then played according to the command strings
periodically received from the Collector.
In fact, the WebPlayer can run in two different modes:
“Standard” and “Personal”. The first mode offers the same
functionalities provided by original WebPlayer (i.e., playing
sets of sound files according to the information obtained from
the Collector). The second mode includes “Standard” features,
and adds the capability for the user to choose an existing
playlist or to create a new one to set as background music,

which will be played and dynamically modified according to
the Collector information.
Several sound cues can be simultaneously played using a
multiple audio channel4 sound architecture. When the player
module is run, a set of audio tracks is loaded from a remote
web server into memory, and each track reserves for itself a
unique audio channel. At any time, the user can create a new
playlist choosing which audio files include in it. At the
moment, WebPlayer can load and play MP3 or WAV files
stored in the local file system as a background sound track.
While running, the WebPlayer determines what audio channels
are to be played according to the information received from the
Collector. If the WebPlayer is running in "Personal" mode,
audio channels associated with workload events will be muted
and workload information will be translated into changes of
background music volume. Higher gain level will denote a
higher server load. Moreover, all the audio channels will play
with a louder volume than the one used to play the background
sound track.
The WebPlayer uses a multi-threaded architecture to allow to
playback audio without being affected by I/O activities such as
the ones required to deal with the remote Collector. The first
thread manages the remote connection with the Collector. The
second thread provides the user a graphical command console
to switch between different Channels and handle playlists.
The third thread plays the background sound tracks according
to the content of the current playlist (if selected). The final
thread plays the required sounds cues and modifies the volume
of the audio output depending on the information received from
the Collector. The interactions among these threads are
assured by the use of synchronized methods. The WebPlayer
uses an internal buffer of StatisticsFrequency seconds to
allow for network delays. In this way, an event occurred at the
Web server at time t is played at the WebPlayer side
StatisticsFrequency seconds later.
In summary, we have described the Personal WebMelody
architecture and implementation. The Apache module passes
information to the Collector based on Channel definitions that
specify what sort of web server events are interesting. The
Collector aggregates these events and eventually maps them to
specific sounds and music according to the Channel
definitions. In the end, the Collector instructs the WebPlayer
application to mix specific musical events with the personal
music the web administrator has selected.

4. SONIFICATION STUDY

There are two potential problems with providing an
administrator with sonic indicators of web server status: (a)
sound, especially music, might be so distracting that the
administrator’s overall productivity drops; (b) specific sounds
that indicate specific web server events might be difficult to
pick out and attend to, especially if the administrator is
engaged in other ongoing tasks. We set out to investigate
whether either of these might in fact be problems in practice.
We view our sonified web server as providing information that
is usually not critical to an administrator, who distribute
attention among a host of tasks. More precisely, following
Maglio and Campbell [19], we define peripheral information

4 We use the term audio channel to denote the channels used by the audio
device to play sounds, whereas we use the term Channel to mean the
information channel that is provided (through the Collector) to the
WebPlayer.

Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29-August 1, 2001

ICAD01-6

as information that is not central to a user’s current task, but
provides the user the opportunity to learn more, to do a better
job, or to keep track of less important tasks. We view
peripheral informing as imposing extra-task demands on a
user’s cognitive resources. In the context of the sonified web
server, this means an administrator attends to a primary task,
such as reading an online document or editing text, but
occasionally something else, such as a flurry of activity on the
server or a network outage, becomes important and is attended
to.
The goal of our study was to explore the effectiveness of our
sonified web server in a controlled setting. To determine
whether the music played by the sonified server is distracting,
whether it is informative, and whether there are tradeoffs
between the two, we used a dual-task paradigm in which
participants performed a primary text-editing task while at the
same time monitoring music that simulated the sonified web
server (roughly following the method described in [19]). We
measured the degree to which music distracted performance in
an editing task, and we measured memorability of musical
events in a post-experiment test.

4.1. Methods

4.1.1. Participants

Twenty-eight science undergraduate students at the University
of Salerno volunteered to participate. All were native Italian
speakers and only one was a trained musician.

4.1.2. Design

We used a 3 (editing task/listening task/dual task) x 2
(presentation order) design. Presentation order varied between
participants, and task varied within participants. Each
participant edited text in two conditions, once with instructions
to listen to the background music (Emphasis Music), and once
with instructions not to listen to the music (Background
Music). In addition, each participant also listened to music
without editing (Music Only).

4.1.3. Materials

The materials consisted of three passages for text editing, three
sound tracks (one for training, one for the Emphasis condition,
and one for the Background condition), a music questionnaire
(for testing the informativeness of sound tracks), and a final
questionnaire.
Texts. For text editing, we chose three movie reviews of films
by Massimo Troisi, a popular Italian director and actor. The
texts were of similar length and of easy reading level. We
introduced 51 errors into each, including triple letters instead
of double letters, Italian gender agreement of articles problems,
and subject-verb agreement problems.
Soundtracks. Our goal was to provide sounds that go beyond
simple alarms. These were designed as a compromise between
providing information and being distracting, while at the same
time creating pleasant background music. All three
soundtracks used improvisational jazz styles to insure that in
all cases no melodic sequence would be familiar to the
participants. In addition, jazz style is largely unpredictable,
lending itself to representing the spontaneous and

unpredictable nature of web server activity. Jazz-like chords
have been used effectively to represent several coordinates to
be monitored for parallel programs [10].
The rhythmic base of the piece served to represent increasing
and decreasing load. A discrete drum beat represented
minimum (i.e., zero) load and a heavy “Slap Bass”
represented maximum load. Accordingly, intermediate levels
were achieved by adding bass and drum tracks. Two solos were
featured, one with “Electric Guitar” and the other with
“Trumpet”. These represented two opposed events, namely
access by one of the most popular browsers, Netscape and
Internet Explorer. Hand claps and piano chords represented
severe errors and warning errors, respectively.
Music Questionnaire. The music questionnaire consisted of
eleven multiple-choice questions, followed by a table
summarizing the associations of sounds with events. For load,
participants were asked to indicate the frequency (for example,
how many times the load reached the maximum/minimum), the
duration (i.e., number of short/long periods of
maximum/minimum load), and the frequency of
contemporaneous occurrences of maximum load and “severe
errors”. For opposite events, participants were asked about the
dominance of one of the opposed events with respect to the
other, and the frequency of alternation during the first or
second half. For warning and severe errors, participants were
asked to identify a range of occurrences and the frequency in
the first and second half.
Final Questionnaire. To obtain information about reading and
musical skills, we asked the participants to fill out an final
questionnaire, rating their own reading skills and indicate the
high school attended and the final grade obtained. To
determine a musical profile of the participants, we also asked
whether they usually studied or worked with music in the
background, and whether they were musicians, what
instruments they played, and so forth.

4.1.4. Procedure

One key manipulation was the instructions in the Emphasis
condition versus the instructions in the Background condition.
That is, these two conditions differed only in that in the
Emphasis condition, participants were told that they had to pay
attention to both the editing task and the musical events, as
there would be a test on the musical events at the end, whereas
in the Background condition, participants were told not to pay
attention to the music. In both cases, participants were
instructed to do as much the text editing as possible.
For the Music Only condition, participants were told to listen
carefully to the music, as there would be a test on musical
events at the end. Prior to the Music Only Condition,
participants were given brief training (20 minutes) on the
identification of musical events. During this training, they
learned to associate sounds to proper names (e.g., “severe
error”) and also to recognize maximum and minimum load.
Before the Music Only and Emphasis conditions, participants
read the music questionnaire for one minute. During Music
Only and Emphasis conditions, students were given a time
mark in the middle of the period so that they could distinguish
between the first and the second half.
Participants were split into two groups (A and B) of equal size
to balance order of presentation. Each participant first
practiced text editing for ten minutes without any music
playing in the background. Participants in Group A then

Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29-August 1, 2001

ICAD01-7

performed text editing with Background Music for ten minutes,
followed by Music Only for ten minutes and the music test,
followed by text editing in the Emphasized Music condition for
ten minutes and the final music test..
After editing practice, Group B listened to the Music Only
condition for ten minutes followed by the music test, then text
editing in the Emphasis Music condition ten minutes and the
music test, followed finally by text editing in the Background
Music condition for ten minutes. The dependent measures
were number of correct edits on the text-editing task and
number of correct responses on the music tests.

4.2. Results

Unusable data resulting from technical problems or because a
participant did not follow directions were discarded5. In the
end, we were left with data for 18 participants, 8 in Group A
and 10 in Group B.
Data were analyzed as follows. First, we performed a 2 x 2
analysis of variance (ANOVA) on the editing data, with the
within participants factor Background vs. Emphasis and the
between participants factor presentation order. No effect was
obtained for either factor on editing performance; for
Background vs. Emphasis, F(1, 16) < 1, and for Group, F(1,
16) = 1.35, p = 0.26. Overall, the mean number of edits in ten
minutes was 26.1.
Second, we performed a 2 x 2 ANOVA on the results of the
music test, with the within participants factor Music Only vs.
Emphasis and the between participants factor presentation
order. There was no effect of order, F(1, 16) = 2.09, p = 0.17,
but there was main effect of experimental condition, F(1, 16) =
5.79, p < 0.05. The mean number of correct answers in the
Music Only condition was 6.56, and in the Emphasis
condition, 4.72. There was no interaction effect, F(1, 16) < 1.
Finally, comparison of the information from the questionnaire
and the results did not reveal any notable variation in terms of
reading or musical skill. For instance, the one skilled musician
appeared to perform equally as well as the other participants.

4.3. Discussion

Overall, the results suggest that background music does not
distract users from their primary task, and at the same time can
effectively convey information. In particular, we found no
decrease in amount of text editing (primary task) when
participants were explicitly instructed to pay attention to the
music compared to when participants were explicitly instructed
not to pay attention to the music. Nevertheless, we also found
a small (28%) decrease in the amount of information our
participants extracted from the music in the dual-task as
compared to the single-task conditions. Of course, it is not
surprising to find that performance suffers when people
performed two tasks compared to when they performed only
one task. It is a little surprising, however, to find that the
primary task (text editing) did not suffer at all, and that the
secondary task (server event identification) suffered only a
little.
Though we followed the same basic paradigm as Maglio and
Campbell [19], our results differ dramatically from theirs.
Using text-editing along with a visual information monitoring
task, Maglio and Campbell found a decrease in text-editing
performance under dual-task as opposed to single-task

5 In those cases, the participants did not save the modified questionnaires
on the computer and therefore we did not find usable data.

conditions, and at the same time, found no effect on
memorability (or informativeness) of visually monitored
information. The present study obtained the opposite results:
namely, no decrease in text-editing performance under dual-
task as opposed to single-task conditions, but a decrease in
memorability of auditorially monitored information. One
major difference, of course, between the methods used in the
two studies is that ours employed two different modalities
(visual plus auditory) whereas theirs employed a single
modality for the two tasks (visual). In addition, Maglio and
Campbell’s “peripheral” task was a reading task, a skill that
all participants have presumably mastered. In the present
study, the peripheral task was musical event identification,
which is not likely to be a skill that any of our participants
have mastered. (Recall that only one participant in the current
study reported being a musician.)
Other studies have found evidence that intermodal task-sharing
(i.e., tasks that mix different modes of interaction, such as
visual and audio information) is more successful than
intramodal ones (i.e., when only vision is involved) [6]. In
fact, a multiple resource theory of attention (see, for instance,
[24]) explains why this might be the case. Because different
modalities share fewer common operations and
representations, it is reasonable to suppose that processing in
different modalities can occur simultaneously without
interfering with one another.

5. CONCLUSION AND FUTURE WORK

We described Personal WebMelody, a system for the real-time
monitoring of a web server by sonification.
Our sonification technique works by associating MIDI or WAV
sound tracks to events describing the behavior of the web
server. The experiments we have conducted have shown that
this system allows an efficient and non obtrusive monitoring.
For these reasons, it can be considered an ideal complement to
standard, off-line techniques of monitoring and tuning of web
servers. In order to face the problems that can arise while using
such a system for a long period of time like, for example, a
mental fatigue in the user, we have proposed a solution that
allows a user to listen a preferred music in background while
using our system. In this way, we convey information to the
user changing the volume of the personal music source and by
mixing in additional sounds.
It remains to be proved that our sonification technique is still
effective for a long period of time, even if used with a personal
background musical source. In this sense, we are planning
further experiments to investigate the behavior of our system
when used for a long time.
Besides the possible use of this system as a monitoring tool,
the technique we have used can have interesting applications
with respect to the accessibility issue: the sonification allows
sight-impaired persons to effectively be informed of the
behavior of the server or any other computer program.
From a technical point of view, the system we have developed
is able to deliver the sonification of an Apache web server
through the use of portable Java applications. Multiple users
can be connected at the same time while hearing different
representations of a same web server. In order to improve the
accessibility of our system, we are considering the possibility
to encode as standard sound streams the output of the
sonification and then publishing them using the HTTP
protocol. In this way, a user can access the sonification of a

Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29-August 1, 2001

ICAD01-8

web server by just pointing its browser to the URL published
by our system. Moreover, we plan to extend our architecture to
support multiple sources of sonification events. This features
can be useful when monitoring the activity of multiple
instances of a same service (e.g. cooperative web servers) or
when monitoring different services (FTP servers, large
DMBSs) as well as networks. Finally, we are studying an
extension of audio monitoring with graphical output based on
abstract shapes and colors whose variations over the time
provide synthetic information about the web server.

Acknowledgments. We thank our participants for their enthusiastic help
in completing the study. We also thank Chris Campbell, Andreas
Dieberger, and Shumin Zhai for helpful comments on a draft of this paper.

6. REFERENCES

[1] Apache Software Foundation (2000). Apache Web
Server. Available at http://www.apache.org.

[2] Barra, M, et al. (2000) “WebMelody: Sonification of Web
servers.” In Poster Proceedings of the Ninth Annual
World Wide Web Conference (WWW9). Amsterdam
(Holland).

[3] Barra, M, et al. (2000) “MMM: Multi-Modal Monitoring
of Web Servers”. Submitted for publication.

[4] Blattner M., Greenberg, R.M., and Kamegai, M., (1992),
“Listening to turbulence: An example of scientific
audiolisation,” in Multimedia Interface Design, (Blattner,
M., & Dannenberg, R.M., eds.) , Chapter 6, pp. 87 - 102,
Wokingham: ACM Press

[5] Blattner, M. M., Sumikawa, D. A., & Greenberg, R. M.
(1989). “Earcons and icons: Their structure and common
design principles”. Human-Computer Interaction, 4, 11-
44.

[6] Brown, M.L., Newsome, S.L. and Glinert, E.P. (1989).
“An experiment into the use of auditory cues to reduce
visual workload.” In CHI ’89 Proceedings, pp. 339-346.
New York, NY, USA: ACM.

[7] Buxton, B. (1989). Introduction to this special issue on
nonspeech audio. Human-Computer Interaction, 4, 1-9.

[8] Cohen, J. (1994). “Monitoring background activities.” In
G. Kramer (Ed.), Auditory display: Sonification,
audification, and auditory interfaces. Reading, MA:
Addison-Wesley.

[9] Deutsch, D. (1986). “Auditory pattern recognition.” In K.
R. Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of
human perception and performance (Vol II, pp. 32.1 –
32.49). New York: Wiley.

[10] Francioni, J. F., L. Albright, and J. A. Jackson. (1991)
“Debugging parallel programs Using sound”, in
Proceedings of the ACM/ONR Workshop on Parallel and
Distributed Debugging, 68--73. Reading, MA: ACM
Press/Addison-Wesley, 1991.

[11] Gaver, W. (1986). “Auditory icons: Using sounds in
computer interfaces.” Human-Computer Interaction, 2,
167-177.

[12] Bill Gaver (1991). “Effective Sounds in Complex
Systems: The ARKola Simulation”, In CHI ’91
Proceedings ACM.

[13] Hallam-Baker P.,Behlendorf B.. “Extended Log File
Format.” World Wide Web Consortium Working Draft
960323. http://www.w3.org/pub/WWW/TR/WD-
logfile.html.

[14] Katz, E. D., Butler, M., and McGrath, R. (May 1994). “A
Scalable HTTP Server: The NCSA Prototype”, in
Proceedings of the First International WWW Conference.

[15] Lemmens, P. M. C., Bussemakers, M. P., & de Haan, A.
(2000). “The effect of earcons on reaction times and
error-rates in a dual-task vs. single-task experiment.” In
Proceedings of International Conference on Auditory
Displays 2000.

[16] Lohda, S. K., Whitmore, D., Hansen, M, & Charp, E.
(2000). “Analysis and user evaluation of a musical-visual
system: Does music make any difference?” in
Proceedings of International Conference on Auditory
Displays 2000.

[17] LoevstrandL. (1991). “Being selectively aware with the
Khronika System”. In Proc. of 2nd European Conf. on
Computer-Supported Cooperative Work (ECSCW’91)
Sept. 24-27 Amsterdam, NL. Kluwer Academic
Publishers, pp.265-278.

[18] Luotonen A. “The Common Log file Format.”
http://www.w3.org/pub/WWW/Daemon/User/Config/Logg
ing.html.

[19] Maglio, P. P. & Campbell, C. S. (2000) “Tradeoffs in the
display of peripheral information”, in Proceedings of the
Conference on Human Factors in Computing Systems
(CHI 2000).

[20] McCrickard, D. S. (2000). “Maintaining information
awareness in a dynamic environment: Assessing
animation as a communication mechanism”. Doctoral
dissertation. Georgia Institute of Technology.

[21] Netcraft (August, 2000). Netcraft web server survey.
Available as http://www.netcraft.com/survey.

[22] Pool, M. M., van der Voort, T.H.A., Beentjes, J. W. J.,
Koolstra, C. M. (2000). “Background television as an
inhibitor of performance on easy and difficult homework
assignments.” Communication Research, 27, 293-326.

[23] Scullin Will H., Kwan Thomas T., & Reed Daniel A.
(1995). “Real-time Visualization of World Wide Web
Traffic,” in Proceedings of Symposium on Visualizing
Time-Varying Data.

[24] Vickers P., Alty, J.L.. “Musical Program Auralisation:
Empirical Studies”. In Proc. of 6th International Conf. on
auditory Display.P.R. Cook, Ed. Atlanta GA:
International Community for Auditory Display, April
2000, pp.157-166. ISBN 0-9670904-1-5.

[25] Wickens, C. D. (1992). “Engineering psychology and
human performance “(2nd Edition). New York, NY:
Harper Collins.

[26] Young, H.H., & Berry, G. L. (1979) “The impact of
environment on the productivity attitudes of intellectually
challenged office workers.” Human Factors, 21, 399-407

Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29-August 1, 2001

ICAD01-9

http://www.apache.org
http://www.w3.org/pub/WWW/TR/WD-logfile.html
http://www.w3.org/pub/WWW/Daemon/User/Config/Logging.html
http://www.netcraft.com/survey

	1. INTRODUCTION
	2. MONITORING WEB SERVERS THROUGH SONIFICATION
	2.1.1. Music as peripheral information
	2.1.2. Techniques for monitoring Web servers
	2.1.3. Comparison with Personal WebMelody

	3. PERSONAL WEBMELODY
	3.1. Architecture
	3.1.1. Representing Web Server Behavior
	3.1.2. Components
	3.1.3. Apache module mod_musical_log
	3.1.4. Collector
	3.1.5. WebPlayer

	4. SONIFICATION STUDY
	4.1. Methods
	4.1.1. Participants
	4.1.2. Design
	4.1.3. Materials
	4.1.4. Procedure

	4.2. Results
	4.3. Discussion

	5. CONCLUSION AND FUTURE WORK
	6. REFERENCES

