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SUMMARY 

 

Transformers are present in almost every electric power system involving different 

voltage levels and not only do they occur in a wide variety of sizes but also they are used 

to transfer energy from one circuit to another at almost all the different kV levels of the 

power supply system. The largest transformers have prices ranging into the millions of 

dollars but their health affect the reliability of the power system as a whole. 

 

In the advent of disturbances, transformers must be protected not only to ensure that they 

are not destroyed, but also to avoid the spread of the disturbance to adjacent electrical 

systems that may inherently lead to the entire system collapsing as has been the case in 

numerous of events.  

 

Transformer protection schemes must primarily be able to detect internal faults in the 

transformer with a high degree of sensitivity, such that the transformer is subsequently 

de-energized to avoid damage to both the transformer itself and neighboring devices, 

while still being immune to faults external to the transformer such as through faults. 

Sensitive detection and de-energization enables the mitigation of the propagation of the 

fault to adjacent electrical systems and hence necessary repairs are reduced which is vital 

considering the lead time for repair and/or replacement of large transformers and their 

peripheral systems is costly.   

 



 xi 

In addition to providing appropriate protection, protection schemes should be highly 

insensitive to events such as inrush currents occurring during the energization of 

transformers which are not actual faults but have been found to cause false tripping of the 

traditional differential protection schemes on the transformer. This added complexity due 

to the different operation modes of the transformer leads to complex protection schemes 

to be implemented by protection engineers. 

 

For this reason, we introduce a new protection scheme based on improvements in 

technology such as the availability of GPS synchronized measurements to provide 

settingless protection on the transformer. The method is based on the availability of 

measurements and their exact models on both sides of the transformer such that a state 

estimation procedure is implemented to determine the health of the transformer. Based on 

the estimate a statistical verification such as the chi square test is used and in real time 

measurements either fit the model and the transformer allowed to operate or not and the 

transformer is tripped.  

 

The foundation upon which our protection scheme is built is the modeling of the single 

phase transformer system of equations. The transformer equations are composed of 

polynomial and differential equations and this system of equations involving the 

transformer’s electrical quantities are modeled into a system of equations such that 

highest degree of each of the system’s equations is quadratic―in a process named 

Quadratization. Then, the quadratized system of equations is integrated numerically into 

an algebraic companion form where the remaining dynamics/differential equations still 
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present in the quadratized model is integrated numerically using a technique called 

Quadratic Integration to a set of algebraic equations involving previous and future states 

of the transformer.   

 

The contributions of this research are: 

1. Development of a quadratized model for describing single phase transformers. 

2. Development of  a quadratic integration procedure for converting differential 

equations to an algebraic system of companion equations-Algebraic Companion 

Form   for single phase transformers 

3. State Estimation procedure was applied to the Algebraic Companion Form of the 

single phase transformer and novel protection function for single phase 

transformers. 

4. The scheme was tested on abnormal operating conditions of the transformer and 

the scheme performed well on determining whether the conditions warranted 

tripping or not.



 

1 

CHAPTER 1: INTRODUCTION 

 

Transformers are vital and expensive components of the power systems industry and due to 

the fact that they require long lead times for repair or replacement, their protection from 

damage is a priority. 

 

During abnormal operating conditions, not only is the health of the transformer at risk but also 

a big portion of the system equipment might as well be damaged which is just a small 

consequence especially if you consider the fact that interruption of service will occur for 

customers. Since the lead time for repair and replacement of transformers is very long, 

limiting the damage of these precious pieces of equipment is vital to the proper operation of 

electrical systems. 

 

The protection of the transformer requires that we protect it not only from electrical anomalies 

but also from mechanical abnormal conditions. In this thesis though, we will focus more on 

the protection against anomalous internal electrical phenomena and more specifically we will 

give motivation for the necessity for new transformer protection schemes using state 

estimation and modeling of the transformer. Internal transformer failures such as winding 

phase faults, inter-turn faults, core insulation faults and tank faults can all be dealt with 

differential protection schemes, making differential protection the most popular and effective 

transformer protection scheme(at least as far as internal faults are concerned) hence our 

interest in enhancing this technique. 
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1.1  Problem Statement 

 

The reliability of electrical systems is greatly dependent on the reliability of its components. 

In today’s vastly interconnected electric grid, a failure at one point can cause widespread 

devastating effects to other points on the grid, hence the importance of protection on devices 

such as transformers which are very common throughout power systems. Transformer failures 

occur on a frequent basis mainly due to strategies such as increased equipment utilization, 

deferred capital expenditures and reduced maintenance expenses on behalf of transformer 

owners. To make matters worse, world power consumption is increasing, and the load on 

transformers continues to grow.   

 

It is also worth noting that the complex operation modes of the transformer also cause a fair 

share of disruption in the operation of power systems. This generally occurs as a result of false 

trips such as those caused by inrush currents associated with energization. These events are 

not actual faults but come as a result of the change in impedance of the magnetizing branch of 

the transformer. These currents trip the transformer and cause outages, and though the outages 

might be momentary they still cause economic stress on the consumer connected through that 

transformer. 

 

1.2  Research Objectives 

 

The problems associated with transformer protection that is described above will be addressed 

by the implementation of a protection scheme that has the following desirable features: 

1. High degree of sensitivity to transformer internal faults. 



 3 

2. Low sensitivity to inrush current that are not caused by internal faults or come as a 

result of normal operation of the transformer e.g. energization events. 

3. Low sensitivity to external faults on the transformer. 
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CHAPTER 2: LITERATURE REVIEW 

 

Initially we will provide a general overview of transformer protection as a whole to serve as 

foundation for further discussions. 

 

The type of protection used on a transformer depends on the application and importance of the 

transformer. In general transformers are protected by fuses, over-current relays, differential 

relays and pressure relays. Which of the above devices will be used in any given situation will 

depend upon several factors discussed below. 

 

Transformers that have ratings below 2500kVA are usually protected with fuses [1]. In 

transformers between 2500 and 5000kVA could be used but instantaneous and time-delay 

over-current relays are more desirable from the standpoint of sensitivity and coordination with 

protective relays on the high and low side of the transformer. Between 5000 – 10000kVA an 

induction disc over-current relay connected in a differential configuration is usually applied. 

Above 10MVA harmonic restraint differential protection is the most commonly used and 

recommended mode of action [2]. Pressure and temperature relays might also be applied with 

this transformer size as well. 

 

Apart from the size of the transformer the location of the transformer within the overall 

network also plays a role in the type of protection scheme to be employed. If the transformer 

is an integral part of the bulk power system, it will probably require the more sophisticated 
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relays in terms of design and redundancy. If it is say a distribution station step-down 

transformer, a single differential relay and an over-current backup relay might be enough. 

 

The transformer voltage rating greatly affects the type of protection used, due to the fact that 

there is a direct relationship between the cost and the voltage rating, hence the rule of thumb: 

the larger the voltage rating of the transformer, the greater the sophistication of the protection 

scheme that will be used. 

 

The issues described above depict a relatively straight forward way to choose the type of 

protection to be employed by transformers. This description is not complete without actually 

looking at how transformer abnormal behavior occurs and what types of protection will be 

used in this case so that we fully understand the issue of transformer protection. Transformer 

failures include: 

 Winding faults due to short-circuits (turn to turn faults, phase-phase faults, phase-

ground, open winding)). 

 Core faults which include core insulation failure and shorted laminations. 

 Terminal failures which include open leads, loose connections, short circuits. 

 On load tap changer failures. 

 Abnormal operating conditions such as overfluxing, overvoltage, overloading. 

 External Faults. 

These different failures can be faced using different strategies and the protection philosophy 

associated with each failure is summarized in the following table. 
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Table 2.1: Typical transformer failures and protection schemes 

CONDITIONS PROTECTION PHILOSOPHY 

INTERNAL 

Winding Phase-Phase, Phase- Ground 

Faults 

Differential(87T),Overcurrent(51,51N), 

Restricted Ground Fault Protection 

(87RGF) 

Winding Inter-turn Faults Differential(87T), Buchholz relay 

Core Insulation Failure, Shorted 

laminations 

Differential protection(87T), Buchholz 

relay, sudden pressure relay 

Tank faults Differential(87T), Buchholz relay, tank-

ground protection 

Overfluxing Volts/Hz(24) 

EXTERNAL 

 

Overloads Thermal(49) 

Overvoltage Overvoltage(59) 

Overfluxing Volts/Hz 

External system short circuits Time Overcurrent(51,51G),Instantaneous 

Overcurrent(50, 50G) 
 

 

 

 

 

2.1 Overview Of Transformer Differential Protection 

 

 

As can be seen from Table 2.1 differential protection is the primary protection scheme that is 

used to ensure the protection of transformers against internal damage. Differential protection 

is based on the notion that, under normal operating conditions the ratio of the primary and 

secondary currents is constant and approximately inverse to the transformer turns’ ratio. 

Hence, assuming for simplicity that we have a single phase transformer the quantity I0=I1N1-

I2N2 will remain nearly equal to zero (where I1, I2 represent the primary and secondary current 

and N1, N2 the primary and secondary turns’ ratios) is approximately equal to zero unless an 
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internal fault occurs. This fairly straightforward principle is very effective and with the 

improvements in numerical relays, protection functions can be implemented fairly easily. The 

factors affecting differential protection are [3]: 

 Magnetizing inrush currents, over-excitation and Current Transformer (CT) saturation 

are conditions that can cause imbalance in the currents that are measured in the relay 

hence affecting the protection scheme. 

 Differential Voltage levels affect differential protection since they lead to different 

current levels in the CTs. 

 Transformer configuration affects differential protection due to phase shifts in wye and 

delta connected transformers. 

 Tap changes in transformers also affect differential protection. 

Despite its efficiency, differential protection is greatly challenged by the presence of inrush 

currents especially during the energization of the transformer causing the relay to trip despite 

the absence of an internal fault. As a matter of fact, any electrical phenomenon that has the 

property of lowering the magnetizing impedance of the transformer will create inrush currents 

and lead to non-proportional primary to secondary currents causing erroneous tripping of the 

numerical relay.  Furthermore the use of digital relays has enhanced this problem even more 

due to the presence of CT used for instrumentation purposes. These CTs may saturate as well 

and cause false tripping just as the actual transformer they are monitoring.  
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2.2 Inrush Currents 

 

Magnetizing inrush currents are generally responsible for the “fake-false” trips of transformer 

protection relays. The presence of inrush currents especially during the energization of the 

transformer causes the relay to trip despite the absence of an internal fault. As a matter of fact, 

any electrical phenomenon that has the property of lowering the magnetizing impedance of 

the transformer will create inrush currents several times the full load current [4] and lead to 

non-proportional primary to secondary currents causing erroneous tripping of the differential 

relay.  Examples of such phenomena causing inrush currents [5] include and are not limited 

to: 

 Occurrence of external faults 

 Voltage recovery after clearing an external fault 

 Change of the character of  a fault (e.g. when a phase to ground fault evolves into a 

phase to phase to ground fault) 

 Out of phase synchronizing of a connected generator 

 Furthermore, the use of digital relays inherently enhances this problem due to the presence of 

Current Transformers used for instrumentation purposes. These CTs may saturate under 

certain conditions and cause false tripping just as the actual transformer they are monitoring 

during energization. Inrush currents may be classified according to the following types [1]: 

 

 Initial: Currents occurring during energization after a long period of de-energization 

which usually creates high value currents. 

 Recover: They occur during return to normal of momentary dip in voltage. Such a 

phenomenon occurs when for example, a sold 3 phase fault occurs near a transformer 
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bank. When the fault is cleared such an inrush may occur, even though the current may 

not be as high as that in the case of initial inrush current. 

 Sympathetic inrush current: Occurs in energized transformer when a nearby 

transformer is being energized e.g. paralleling a second transformer in a bank with one 

transformer already in operation which may saturate. 

 

   

2.2.1 Factors Affecting Inrush Currents 

 

Let us examine the factors affecting the inrush currents so as to provide some insight as to 

how this phenomenon can be handled [3]. 

 The size of the transformer 

 The nature of the power system source 

 Type of iron used in the fabrication of the transformer 

 The previous history of the transformer― remnant flux especially 

 L/R ratio of the transformer and system 

 

 

2.3 Prevention Methods against False-Tripping 

 

Due to the fact that false tripping of transformer relays is a common phenomenon, utilities and 

scientists have developed strategies to prevent this phenomenon from occurring. 
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Rectifier relays were initially used to avoid false tripping due to inrush currents. This method 

takes advantage of the fact that magnetizing inrush currents are in fact half frequency waves. 

This relays are hence designed using rectifiers such that they have two current sensing 

elements: one monitors the positive currents and the other monitoring the negative currents. 

Both elements must operate in order for a trip signal to be issued. On inrush though, only one 

element is activated and hence no trip occurs. Internal faults though cause sinusoidal current 

waves hence they are picked up by the relay [6]. A variation of the above method is a 

technique which measures the time (dwell time) the current waveform stays close to zero 

which indicates a full dc-offset [7]. This in turn is used to determine the inrush condition. The 

relays operating on this scheme typically expect dwell times of about     cycle and will 

restrain tripping if this occurs. 

 

Another unique method to prevent false tripping is the method whereby the flux- current 

relationship in the inductive element of the transformer is used [8]. In this method future 

states of the flux are calculated using previous known states and a restrain strategy is 

developed depending on the magnetizing characteristic profile. 

 

Harmonic current restraint is by far the most used technique in dealing with magnetizing 

inrush currents. This technique has been extensively researched and has been implemented in 

a lot of different ways and all implementations are based on the fact that the magnetizing 

inrush current waveform is not a pure fundamental harmonic but instead consists of a high 

second harmonic content [9] usually of the order of 15-35% [10] and relatively low third 

harmonic [11].  Restrain schemes that take advantage of the presence of this harmonics to 
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refrain tripping when a certain level of second harmonic is present. We will examine the two 

basic second harmonic restraint mechanisms which are: Simple 2
nd

 harmonic restraint and 

shared 2
nd

 harmonic restraint. 

 

Despite these improvements, electrical engineers are faced with the difference in transformer 

design and magnetic core properties that lead to the presence of different 2
nd

 harmonic content 

in different transformers. In addition, certain transformer inter-connections may attenuate 2
nd

 

harmonic inrush currents. This problem is made even worse by the fact that, recent advances 

in transformer design technology has led to significant drop in 2
nd

 harmonic content to as 

much as 7%  making the detection of inrush currents with this mechanism even more 

industrious. In addition, the presence of lower 2
nd

 harmonic currents means lower current 

restraint levels which affects the performance of the differential protection. 

 

Nowadays, with the advent of more powerful computers more and more transformer 

protection schemes take advantage of digital signal processing techniques. Historically, the 

first appearance of such techniques is the use of neural networks o identify internal faults [12, 

13]. These techniques are based on training different architectures of artificial neural networks 

to identify and classify events such as inrush currents, internal faults, overexcitation with the 

second harmonic content as input. The disadvantage of this technique is mainly the large 

amount of time required to train the network for classifying the events. A variation of this 

method is that using fuzzy logic [14] where new rules involving harmonic content, flux-

current relationships and other transformer parameters are used to create new rules in the 

process of “fuzzification” to identify internal faults. Still, this process though effective is 



 12 

made industrious by the need for creative criteria for defining events which must still be 

universal and be applicable to different types of  transformers. Another such methods is using 

the Wavelet Transform [15]. In this technique, voltage and current signal are decomposed into 

different frequency bands in both the frequency and time domain so as to identify inrushes or 

other transformer events by classifying the events using artificial neural networks.  

 

A different spin using signal processing is the application of Wavelet Packet Transforms [16].  

This technique involves the use of digital filters that filter the current samples to detect second 

harmonic currents. These filers are cascaded and make sure that only signal with the 

characteristics of the inrush currents are detected.  

 

Another innovative method is the time difference method [17]. It is implemented by detecting 

the time difference of the appearance of the abnormal state and differential current to 

distinguish between internal fault and non-internal fault conditions, that is, when the time 

difference is less than the threshold, an internal fault is detected and then the differential 

protection will operate, otherwise a non-internal fault is detected and the differential 

protection will not respond. 
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CHAPTER 3: PROPOSED METHOD 

 

The shortcomings of the exiting methods can be overcome by the emergence of a new 

technique which takes advantage of the availability of modeling techniques, state estimation 

and the presence of redundant synchronized measurements to constantly monitor the “health” 

of the transformer. In traditional protection schemes measurements obtained from devices 

such as ammeters, voltmeters and digital relays are used directly as basis for protection logic, 

in our approach though we do not use the actual measurements (due to the fact that these 

measurements might not be reliable due to certain factors which have nothing to do with the 

transformer) but the state estimate to develop a protection scheme for our transformer. The 

difference between our approach and the traditional protection schemes is summarized in the 

below schematic. 

 

MEASUREMENTS STATE ESTIMATION PROTECTION SCHEME

MEASUREMENTS PROTECTION SCHEME

Traditional Protection Scheme

Proposed Protection Scheme
 

Figure 3.1: Comparison of traditional and the proposed protection scheme 

 

The advantage of adding the State Estimation block is two-fold. Primarily, the measurements 

are used to set up a system of equations of degree at most quadratic such that each 

measurement can be described in terms of transformer state variables (this procedure will be 

described in detail in the following sections). Once this is done a State Estimation procedure 
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is used such that the state of the transformer is determined and a statistical method applied to 

determine whether or not the measurements fit the model and hence the health of the 

transformer is determined depending on the goodness of fit of the statistical procedure. The 

second advantage of using the State Estimation block is that instead of using the 

measurements in traditional relaying functions we use the state estimate which is more 

accurate since the measurements might be flawed by the inaccuracy of the measuring devices. 

A legitimate question can be raised about the reliability/robustness of our additional State 

Estimation block, but this is entirely taken care of by the fact that our final transformer 

/measurement model is quadratic and due to the fact that we use the Newton iterative method 

convergence is guaranteed especially considering the fact that our initial point is the actual 

measurement. 

 

In actual fact, though the idea behind this novel technique is rather simple, it entails a number 

of different steps. One of the backbones of our strategy is based on the fact that systems of 

differential equations can be changed from continuous time to discrete time systems using 

Quadratic Component Modeling and Quadratic Integration [18]. This technique can be 

illustrated using the following equations: 

 

 

( )
( ), ( ),

0 ( ), ( ),

dx t
f x t y t t

dt

g x t y t t



                     (1)

 

Where x and y are the dynamic and algebraic states of the system respectively. Our goal is to 

approximate the above dynamic equations into algebraic equations at discrete time steps. 

Upon a process known as quadratization where the degree of all equations is reduced to no 
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more than quadratic with the insertion of additional states, the model is modified into the 

following standard form. 

 

1 2 3

( )
( ) ( ) ( )

0 ( ), ( ), ( )

dx t
A x t A y t A z t C

dt

q x t y t z t

   

       (2)

 

Where   

x(t): the dynamical states of the model 

y(t): the algebraic states of the model 

z(t): the additional algebraic states introduced for the quadratization of the model 

 It must be noted that there are no non-linearities in the dynamic part of the model. Any non-

linearities are dealt with by introducing additional states in the algebraic states. It must also be 

notes that we have equations of degree no higher than two in the algebraic part of the 

equation.  

 

Once this process is complete we can now assume that between consecutive time steps our 

functions vary quadratically, hence integrating on the interval [t-h t], the above dynamic 

model is described by the following algebraic equations. 
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With the above formulation the differential equations are modified to algebraic equations 

where the only unknowns are the present states of the device being modeled (transformer in 

our case). In the following sections we will show how this technique will be employed on the 

transformer and in the future this technique will be expanded to three phase transformers. All 

the other parts in these equations are either constants from the model being studied or are 

values from the previous states of the transformer which are known.  

 

The goal of this thesis will be to develop a new relay that will take advantage of the presence 

of redundant synchronized measurements to monitor the health of any transformer. This will 

be done with using the dynamic model of the transformer and quadratic integration to be able 

to generate future operating states of the transformer from known past history such that we 

create a pr0ofile of the health. At this point a comparison will be made between the incoming 

measured sample and the mathematically generated state to determine whether or not the 

transformer should be tripped.  

 

3.1  Proposed Methodology  

 

The simple transformer network shown below will be used as an example on how this novel 

technique can be implemented. This example shows a ∆-Y transformer connected to a power 

source and a load. For simplicity we have only shown a few measurement devices but this is 

just for the sake of space. In actual fact measurement devices in an actual system are scattered 

all around even in the case of simplistic design as the one show in the example. The 
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measurement devices include voltmeters, ammeters, watt meters and measurement from the 

digital relays placed to monitor the different devices. 

  

●

●
●

SYNCHRONIZED 

MEASUREMENTS

A

V

a

b

c

A

B

C

A

V

Δ Y

●
●

●

●

Primary connected to 

power source

Secondary 

connected to load

 

Figure 3.2: Three-phase Transformer connected to grid and load 

 

On this diagram we have also shown a voltmeter and an ammeter that will be used to obtain 

voltage and current measurements on both the primary and secondary windings of the 

transformer. The voltmeters and ammeters provide the synchronized measurements to 

guarantee that when they will be used in the state estimation procedure the state of the 

transformer exactly represents the transformer’s state at the specific time the measurements 

are made. It must be noted that voltmeters and ammeters are not the only measuring devices 

that can be used but are the only devices here that will be used for this example’s sake. 
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Voltage and current samples will be taken at periodic time intervals such that the samples for 

the current time steps will be used to decide on whether or not to initiate the tripping 

mechanism before the next set of measurements are obtained. This example will be used just 

to understand qualitatively the process involved for our strategy. The first thing that has to be 

noted is that we will have a total of four equations that will describe the four measurements 

the transformer. In addition to these equations, we will have all the internal equations as well 

that are involved in the transformer model. The system that will result will result will be such 

that we can determine the state of the transformer. 

 

In the demonstration of this principle on a single phase transformer we will see all the 

equations involved and kind of quantitatively examine what happens in the procedure 

described above.  

 

 

3.2  Concept Demonstration on a Single Phase Transformer 

 

To demonstrate our protection idea we will carry out the procedure on a single phase saturable 

core transformer. The equivalent circuit of the transformer is shown in the figure below. Our 

goal is to formulate the state estimation process for this relatively simple transformer and then 

later expand this concept to three phase transformers. 
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Figure 3.3: Single phase equivalent of saturable core transformer 

 

The above equivalent circuit can be described in the following general form 

1

1

( ) ( )

( ) ( )

[0]

( ) ( )

T

T

m

dx
i t A x t B

dt

x t Q x t

x t Q x t

   

  
 

  
   

                                    (4)

 

Where,  

 1 1 2 3 4( ) ( ) ( ) ( ) ( ) 0 0
T

i t i t i t i t i t 
 

 1 2 3 4 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T

L L m mx t v t v t v t v t i t i t e t t i t y t y t y t
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The dimension of A is 9 by (9+m) where 1 2m m m  ,   1 2int logm n , 

 2 # of 1' in binary representation of 1m s n   and n is obtained from the equation

 0
0

( )
( ) ( )

n

m

t
i t i sign t





   giving the relationship between the magnetizing current and the flux.  
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0 0 0 0 0 0 0 0 0
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The dimension of B is 9 by (9+m) just as that of A1. The second part represents the quadratic 

part of the model such that:

 

 1 , , 0kQ k m i j    

The variables used in modeling the transformer are:- 
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1
i   : is the terminal 1 current 

2i   : is the terminal 2 current 

3i   : is the terminal 3 current 

4i   : is the terminal 4 current 

1
v   : is the terminal 1 voltage 

2
v  : is the terminal 2 voltage 

3
v   : is the terminal 3 voltage 

4
v  : is the terminal 4 voltage 

1L
i  : is the current through inductance L1 

2L
i  : is the current through inductance L2 

  : is the nonlinear inductor flux 

m
i  : is the magnetizing current 

e  : is the emf across the inductor 

t  : is the transformation ratio 

The size of the matrices A, B and Feq is dependent on n the exponent in the magnetizing 

current equation and we can give general formulae for the above matrices for 2 different cases 

which are when n is odd and when n is even. The details of these differences are shown in 

Appendix A and here will just use the expressions derived from the appendix. 

 

Performing Quadratic Integration and appending both parts of equation 4 we obtain an 

algebraic companion form for the single phase transformer of the form 
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(5) 

Where, 

   1 1 2 3 4 1 1 2 3 4
( ) ( ) ( ) ( ) ( ) 0 0 ( ) ( ) ( ) ( ) ( ) 0 0

T T

m m m m m
i t i t i t i t i t i t i t i t i t i t
 

 

 1 2 3 4 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T
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Using the algebraic companion form in equation 5 we are able express the measurements on 

the transformer as a function of their states. The following categories of measurements can be 

created. Initially though for simplicity of symbolism we will assume that after appending both 

parts of equation we obtain: 

 

 
1

1
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m
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Where 
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x tE F b
Y B F x t x t

Q x t
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Actual Measurements: The measurements we have about the transformer at every time 

instant are: 

ip: primary side current 

is: secondary side current 

vp: primary side voltage 

vs: secondary side voltage 

Then the measurement model can hence be described using the following matrix   

               
T

p s p s p m s m p m s mZ i t i t v t v t i t i t v t v t                         (7)
 

Then the relationship between the measurements and variables at time instant T can be 

described using the following relationships. 

       

           

1 1 3 3

1 2 2 1 3 4 2 2

, ,
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p N s N
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10 12

1 2 2 5 3 4 2 6
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p m m s m m

p m m m N s m m m N
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v t v t v t v t v t v t

 

  

   

     
 

The RHS of the current equations shown above are then developed into their respective 

functions of the states obtained from equation (6). (See Appendix on how these equations 

were obtained):   
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           1 2 2 1 3 4 2 2( ), ( )p N s Nv t v t v t t v t v t v t t       
 

           1 2 2 5 3 4 2 6( ), ( )p m m m N m s m m m N mv t v t v t t v t v tt v t t       
 

We can also assume that we have the measurements at intermediate time steps tm, so we could 

as well write the current measurement equations for these time step similar to the ones above.  

 

Virtual measurements: Since we have zeroes in the current matrix we can assume that these 

correspond to some virtual measurement that can be expressed as a function of the states as 

shown in the following equations. 
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Pseudo Measurements: These measurements represent quantities that are normally not 

measured such as voltages in the neutral. These equations for the transformer are as follows 

       3 2 3 4 2 4( ) ( )G N g Nv t v t t v t v t t       

       3 2 7 4 2 8( ) ( )G m m N m g m m N mv t v t t v t v t t       

Derived Measurements: These are measurements that are derived from other measurements 

such as the currents in the grounded branch in the transformer. 

   

   

   

   

2 2

4 4

2 11

2 13

p

s

p m m

s m m

i t i t

i t i t

i t i t

i t i t









  

  

  

  

 

The above system of equations set up an over-determined system with a total of 2N+8 

equations with 2N unknowns, hence the state estimation procedure to determine the state of 

the transformer. To illustrate the above concept, let us assume for simplicity of notation that 

(1)
1,1 1,2 1

(2 )
2 ,1 2 ,2 2

, ,

eqN

eq eq eq

N
N N N N eq

FA A B

Y B F

A A B F

    
    
    
      
    
    
         

 

The Yeq and Beq shown above come from equation 5 basically model both the actual current 

and virtual measurements. In addition we can append the voltage measurements such that the 

state estimation can be performed. In the equations below we show the general structure of 
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                                                                                                                          (8) 

 Z h x
                              (8*) 

A state estimation procedure can now be set using the Newton iterative method such that a 

state estimate is obtained according to the following algorithm. It must be noted that h(x) is 

not linear but also contains a quadratic component hence the need for the iterative method. 

   
1

1 ( )T TX X H WH H W h X Z  
                         (9) 

In equation 8 above 

X  : is the state matrix 

H  : is the Jacobian of the RHS of equation 7 
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W  : is a diagonal weight matrix with the standard devitions of the measur 

Z  : is the matrix of measurements or simply the LHS of equation 43 

Analytically, the Jacobian H for the case transformer is of the from 

1,1 1,2 1,3 1,4 1, 1 1, 2 1, 3 1, 4 1,2
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The iterative process will hence give us the state of the transformer at each time step.  Once 

the state estimation procedure has converged we now have to perform the chi-square test to 

determine whether or not the state estimate fits the model or not. The following actions will be 

performed for the last iteration

 

 

 

1

TI H WH

diag I
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From the above matrix the standard deviations of the states are obtained by retrieving the 

diagonal elements of the above Iσ matrix which is also known as the information matrix. Now 

that we have the standard deviation we can now calculate the confidence level of our state 

estimate as shown below 

2 2

1

( )
N

i i

i
i

h x b





 
  

   

We then use the confidence level and the degrees of freedom ν=μ-ρ=8 where m is the number 

of equations (2N+8) and the number of unknowns is 2N.  

 2Pr 1 ,P           

 The whole process described above is summarized in the following block diagram. 

Retrieve primary and 

secondary measurements 

from meters sensing 

transformer

State estimation using  

Newton Iterative method

Transformer model 

Algebraic Companion 

Form with Quadratic 

Integration

Statistical procedures e.g. chi 

square test to determine whether 

or not measurements fit the model

TRIP 

TRANSFORMER

If measurements do not 

fit model

If measurements satisfy 

model do nothing

 

Figure 3.4: Transformer Protection proposed Algorithm 
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Our approach in this part has just been to describe the overall procedure on how to proceed to 

perform our state estimation process. It must be noted that the matrices involved are relatively 

sparse and hence a lot of our computations are really simplified. 

 

 

 

 

3.3  Protection of Proposed Scheme 

 

In the previous section we have shown how our novel technique works. In the present section 

we are going to examine the different types of protection that could be implemented with our 

approach. 

 

Volts/Hz protection (24): It is very important to ensure that saturation is monitored on a power 

transformer. This comes as a result of the fact that, large electric currents are needed to 

maintain the flux in the magnetic core of the transformer. As a result of the large currents, 

overheating occurs, leading to improper functioning or even complete damage of the 

transformer. The way we can control the effects of saturation is based on Faraday’s law.  

( )
d

v t
dt




 

In terms of phasors this equation could be rewritten as  

~ ~

V j 
 

This equation shows us that the magnitude of the flux linkage is proportional to the ratio of 

the voltage divided by the frequency.  
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02
V

f
   

This shows that saturation occurs as soon as this ratio exceeds a certain threshold.  

In our approach the voltage on both sides of the transformer can be computed very easily by 

the following equations. 

1 2 3 4( ) ( ) ( ) ( )p sv t v t V v t v t V   

 

These values are components of the state vector obtained from our state estimation. The 

frequency can be calculated at every time instant by the following procedure where x(i) is the 

voltage sample. Then the following two sums can be generated. 
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1 0
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Y k x i Ti

Y k x i Ti





 



 









  

Where, 

 x(i):  Voltage sample 

 ω0:     Power base angular frequency (2 π f0) 

 T:      Sampling period 

 N:      Number of samples in one period (1/ f0T) 

At every time instant the phasor angle ϕ is computed as follows 

1 2

1

( )
( ) tan

( )

Y k
k

Y k
   

  
   

And the frequency can be calculated by 

0
2

kf f
T
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Where 

( ) ( 1)k k k       

Once the frequency is computed then we can examine whether the ratios of the primary and 

secondary voltages are within our limits and based on this we issue a trip on the transformer 

or not. 

min max, where constant
p S

V V
k k k

f f
 

 
     

 
 

 

Undervoltage protection (27): The undervoltage protection unit is set such that a trip signal is 

issued when the voltage on the primary or secondary is below the normal minimum system 

load voltage. 

 

Instantaneous Overcurrent protection (50): This is a quick intervention relay which trips the 

transformer whenever the current goes above a certain pickup value. Our state estimate at 

each instant is used to compute the currents through the primary and/or secondary side of the 

transformer which is then compared to this pickup value and based on whether the currents 

are above or below the pickup a trip signal is issued.  
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x t
i t row Y row B row F

x t

 
             

 

 
pickup pickup( ) , ( )p si t i i t i   
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It should be noted that the pickup is set at a value greater than the inrush currents and greater 

than the short circuit currents. 

 

Phase Time Overcurrent protection (51): This function could be implemented using our 

protection by calculating the current estimate at each time instant and using it in estimating 

the time to trip using IEEE standard inverse time characteristics. 

 Moderately Inverse:  TD

I

I

TD
t

pu






 114.0

1)(
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02.0

 

 Very Inverse: TD

I

I
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t

pu






 491.0

1)(

61.19

2

 

 Extremely Inverse: TD

I

I

TD
t

pu






 1217.0

1)(

2.28

2

 

 

Where 

 t (i): trip time as a function of input current  

 I:  Input Current 

 Ipu: Pickup Current 

TD:  Time Dial 

 

Overvoltage protection (59): Overvoltage can be implemented fairly easily by comparing the 

voltage components of our state estimate with a predefined threshold. Once this voltage is 

surpassed then a trip signal is issued.  
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Differential protection (87): In this case our differential protection scheme is again based on 

the current estimates from our state estimate. His method is even more convenient than the 

traditional method due to the fact that we do not need to take into account any CT ratio. The 

currents are directly computed from our state estimate and can be used directly as follows. 

0 1 1 2 2

1 2R

I N I N I

I I I

   

 
 

Where, 

N1: number of turns in primary of transformer 

 N2: number of turns in secondary of transformer 

 I1: current estimate in primary winding of transformer at particular instant 

 I2: current in secondary winding of transformer at particular time instant 

 K: constant varying between 0.1-0.6 

And a trip signal will be issued if 

0

R

I
K

I
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CHAPTER 4: NUMERICAL EXPERIMENTS 

 

4.1  Experimental Procedure 

 

In this section numerical experiments will be performed using the proposed protection 

function according to the procedure outlined below. 

1) Different events describing the operation of the transformer will be simulated using 

the WINIGS program and recorded in COMTRADE format. The different events that 

will be captured include: 

a) An energization event 

b) Normal operation for a certain amount of time followed by a through fault which is 

successfully cleared. 

c) An internal fault on a transformer. 

2) For each event, the operation of the relay will be simulated by reading the data in the 

COMTRADE file at a particular instant of time and performing our algorithm to 

determine whether or not the operation of the transformer is normal. Once this 

procedure is over for this time instant the algorithm is repeated for the next time 

instances. 

3) Our results will be documented by comparing estimated and measures voltage and 

current waveforms. In addition chi-square test will be performed to measure the 

goodness of fit of our model at each instant of time upon which our protection scheme 

will either decide trip or not our transformer. 
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4.2  Measurement Analysis 

 

The experiments’ measurements are stored in a COMTRADE file. This file is composed of 

two parts namely: the configuration and the data file. The configuration file contains the 

multiplication coefficient and the offset used with the time stamped sample to obtain the 

actual measurement.  

Initially the COMTRADE data file is checked whether it is in binary or ASCII format. In case 

it is stored in ASCII no conversion is needed, otherwise it is converted to its ASCII format 

using the XFM program. Once it is converted to ASCII format, the data file can be read as a 

matrix where each sample is converted to an actual measurement using the formula 

i i i iZ m z c 
 

Where Zi represents the i
th

 channel’s measurement, zi the measurement sample, mi is the 

multiplication coefficient and ci the offset. For each line of the matrix ―which correspond to 

measurements with same time stamp― the actual measurement is computed using the above 

simple formula. 

 

In order to test our protection scheme, our algorithm reads data for a particular time and 

generates a measurement matrix for that particular time instant. Once this has been done the 

parameters of the transformer such as the winding resistances, leakage inductances, core loss 

resistance, turns ratio, and the time step are used either to create the Yeq, Beq and Feq matrices 

described in  equation5. Using these parameters the Jacobian of the measurement equations is 

obtained and the state estimation process is carried out such that the sate estimate is obtained 

and the chi-square test carried out to determine the health of the transformer. If the chi square 



 36 

testis performed and the probability found is close enough to unity we do not trip the 

transformer. The procedure followed to carry out the state estimation is summarized in the 

following algorithm flow block diagram. 

Read one line of matrix and 

create measurement matrix Z 

Chi Square 

Test

TRIP 

TRANSFORMER

If measurements do not 

fit model

If measurements satisfy 

model do nothing

Store COMTRADE file into 

matrix

Update Beq Matrix

Update Jacobian Matrix

Newton Iterative method

Update Initial State 

 

Figure 4.1: Algorithm Flow Diagram 

 

The measurements used in these experiments can be put into the following categories. 

1. Actual Measurements: These measurements include 2 currents (Phase A primary and 

secondary currents), 2 voltages (phase A to neutral primary and secondary voltages). 

For the above measurements the standard deviation was   taken to be 0.01p.u. The 

model for the above measurements is as follows. Suppose that that  
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( 1)AI T    : is the primary side current measurement at time t 

( 1)aI T    : is the secondary side current measurement at time t 

( 1)AV T    : is the primary side voltage measurement at time t 

( 1)aV T    : is the secondary side voltage measurement at time t 

( )
A

I T             : is the primary side current measurement at time tm 

( )aI T           : is the secondary side current measurement at time tm 

( )AV T           : is the primary side voltage measurement at time tm 

( )aV T           : is the secondary side voltage measurement at time tm 

Then the measurement models for the respective above measurements is  
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1 2( 1) ( ) ( )AV T v t v t         3 4( !) ( ) ( )aV T v t v t           
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1 2( ) ( ) ( )A m mV T v t v t        3 4( ) ( ) ( )a m mV T v t v t   

 

The above equations represent the model for the measurements, but we need to have 

the contributions of the above equations to the Jacobian in the iterative method. 

1 1 1 1
1 1 1

4 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

g L g L
g g g

h h

 
   

 
 

2 2 2 2
2 2 2

4 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

g L g L
g g t g

h h

 
    

 
 

1 1 1 1
1 1

2
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

2

g L g L
g g g

h h

 
    

 
 

2 2 2 2
2 2 2

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2

g L g L
g g t g

h h

 
     

 
 

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0    

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0    

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0    

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0    

 

2. Virtual Measurements: These measurements are the zero entries of the left-hand side 

of equation 8 which are actually the internal state equations of our transformer model. 

These entries are 20 in number, 10 at time instant t and 10 at the intermediate time 

step. For these measurements, the standard deviation was taken to be 0.001p.u. 

 

1 1 1 1 1
1 2 1 1 1 1 1 1 2 1

1 1 1 1
1 2 1 1 1 1 1

2 2 2
0 ( ) ( ) ( ) ( ) ( ) ( ) ( )

6 6 6 6 3 3 3

2
( ) ( ) ( ) ( ) ( )

3 6 6 6 6

L m m L m

m L

g h g h h g h g h g h h
v t v t g L G L i t e t v t v t i t

g h g h g h h g h
e t v t h v t h g L G L i t h e t h
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2 2 2 2 2
3 4 2 2 2 2 2 3 4

2 2 2 2
2 3 4 2 2 2 2 2

2 2
0 ( ) ( ) ( ) ( ) ( ) ( )

6 6 6 6 3 3

2 2
( ) ( ) ( ) ( ) ( ) ( )

3 3 6 6 6 6

L m m

L m m L

g h g h h t g h g h g h
v t v t g L G L i t e t v t v t

h t g h g h g h h t g h
i t e t v t h v t h g L G L i t h e t h

 
         

 

  
             

 

 

 

 

21 1 2 2

1 2 3 4 1 1 1 2 2 2 1 2

21 1 2 2

1 2 3 4 1 2

1 1

1 2

0 ( ) ( ) ( ) ( ) ( ) ( ) ( )
6 6 6 6 6

2 2 2 2 2 2
( ) ( ) ( ) ( ) ( ) ( ) ( )

6 3 3 3 3 3 3

( ) ( )
6 6

L L c

m m m m m c m m m

g h g h t g h t g h h
v t v t v t v t g Li t t g L i t g g t g e t

h g h g h t g h t g h h h
i t v t v t v t v t g g t g e t i t

g h g h
v t h v t h

 
          

 
        

   

 

2 2

3 4 1 1 1 2 2 2

2

1 2

( ) ( ) ( ) ( )
6 6

( ) ( )
6 6

L L

c m

t g h t g h
v t v t g Li t h t g L i t h

h h
g g t g e t h i t h

 
      

     

 

 

2
0 ( ) ( ) ( ) ( ) ( )

6 3 6
m

h h h
e t t e t e t h t h        

 

 

0 0 0
5 5 5

2 2
0 ( ) ( ) ( ) ( ) ( ) ( )

6 6 3 3 6 6
m m m m m

h i h h i h h i h
i t y t i t y t i t h y t h       

 

1 1 1 1 1
1 2 1 1 2 1 1 1 1 1

1 1 1 1
1 2 1 1 1 1 1

0 ( ) ( ) ( ) ( ) ( ) ( ) ( )
24 24 24 24 3 3 3

( ) ( ) ( ) ( ) ( )
3 6 6 6 6

L m m L m

m L

g h g h h g h g h g h h
v t v t i t e t v t v t g L G L i t

g h g h g h h g h
e t v t h v t h g L G L i t h e t h

 
         

 

 
           

   

 

2 2 2 2 2
3 4 2 3 4 2 2 2 2 2

2 2 2 2
3 4 2 2 2 2 2

0 ( ) ( ) ( ) ( ) ( ) ( ) ( )
24 24 24 24 3 3 3

( ) ( ) ( ) ( ) ( )
3 6 6 6 6

L m m L m

m L

g h g h h t g h g h g h h
v t v t i t e t v t v t g L G L i t

t g h g h g h h t g h
e t v t h v t h g L G L i t h e t h

  
         

 

  
           

   

 



 40 

 

 

21 1 2 2 1

1 2 3 4 1 2 1

21 2 2

2 3 4 1 1 1 2 2 2 1 2

1 1

1 2

0 ( ) ( ) ( ) ( ) ( ) ( ) ( )
24 24 24 24 24 24 3

( ) ( ) ( ) ( ) ( ) ( )
3 3 3 3

( ) ( )
3 6 6

c m m

m m m L m L m c m

m m

g h g h t g h t g h h h g h
v t v t v t v t g g t g e t i t v t

g h t g h t g h h
v t v t v t g Li t t g L i t g g t g e t

h g h g h
i t v t h v

   
        

   
        

   

 

2 2

3 4 1 1 1 2 2 2

2

1 2

( ) ( ) ( ) ( ) ( )
6 6

( ) ( )
6 6

L L

c m

t g h t g h
t h v t v t g Li t h t g L i t h

h h
g g t g e t h i t h

   
       

     

 

 

0 ( ) ( ) ( ) ( ) ( )
24 3 6

m

h h h
e t e t t e t h t h       

 

0 0 0
5 5 50 ( ) ( ) ( ) ( ) ( ) ( )

24 24 3 3 6 6
m m m m m

h i h h i h h i h
i t y t i t y t i t h y t h        

 

1 2

0

1
0 ( ) ( ) ( )y t t t 



 
     

 
 

 2 1 10 ( ) ( ) 1 ( )y t y t y t    
 

 3 2 20 ( ) ( ) 1 ( )y t y t y t    
 

 4 1 30 ( ) ( ) 1 ( )y t y t y t    
 

5 4

0

1
0 ( ) ( ) ( )y t t y t



 
     

 
 

1 2

0

1
0 ( ) ( ) ( )m m my t t t 



 
     

 
 

 2 1 10 ( ) ( ) 1 ( )m m my t y t y t    
 

 3 2 20 ( ) ( ) 1 ( )m m my t y t y t    
 

 4 1 30 ( ) ( ) 1 ( )m m my t y t y t    
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5 4

0

1
0 ( ) ( ) ( )m m my t t y t



 
     

   

The contributions of each of the above equations to the Jacobian are as follows 

1 1 1 1 1 1
1 1 1 1

2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 6 6 6 3 3 3 3

g h g h h g h g h g h h g h
g L G L

 
    
   

2 2 2 2 2 2
2 2 2 2

2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 6 6 6 3 3 3 3

g h g h h t g h g h g h h t g h
g L G L

  
    

 

 

2 21 1 2 2 1 1 2 2
1 1 2 2 1 2 1 2

2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 6 6 6 6 3 3 3 3 3
c c

g h g h t g h t g h h g h g h t g h t g h h
g L t g L g g t g g g t g

    
         
 

 

2
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 3

h h 
  

 
 

0 02 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 6 3 3

h i h h i h 
  

   

1 1 1 1 1 1
1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 24 24 24 3 3 3 3

g h g h h g h g h g h h g h
g L G L

 
      

   

2 2 2 2 2 2
2 2 2 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 24 24 24 3 3 3 3

g h g h h t g h g h g h h t g h
g L G L

  
      

   

   2 21 1 2 2 1 1 2 2
1 2 1 1 2 2 2 1 20 0 0 0 0 0 0 0 0 0 0 0 0 0

24 24 24 24 24 24 3 3 3 3 3 3
c L c

g h g h t g h t g h h h g h g h t g h t g h h h
g g t g g L t g L i g g t g

        
          

 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
24 3

h h 
 

   

0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 24 3 3

i h i hh h 
  

   

2
0

2 ( )
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t



 
 

   

 10 0 0 0 0 0 0 0 0 2 ( ) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0y t
 

 20 0 0 0 0 0 0 0 0 0 2 ( ) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0y t
 

 3 10 0 0 0 0 0 0 0 0 ( ) 0 ( ) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0y t y t 
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5
0

( )
0 0 0 0 0 0 0 ( ) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t
y t





 
  

   

2
0

2 ( )
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

t



 
 

   

 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 ( ) 1 0 0 0y t
 

 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 ( ) 1 0 0y t
 

 3 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ( ) 0 ( ) 1 0y t y t 
 

5
0

( )
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ( ) 0 0 0 0 0 1

t
y t





 
  

   

 

3. Pseudo Measurements: These measurements represent quantities that are normally 

not measured such as voltages in the neutral. In this experiment the voltage of the 

neutral with respect to the ground on both sides of the transformer is taken to be zero 

(0). The standard deviation in this case was taken to be the same as that of voltage 

measurements i.e. 0.1p.u. 

20 ( )v t               40 ( )v t            20 ( )mv t       40 ( )mv t  

We can now determine the contributions of each of the above equations to the 

Jacobian matrix. 

 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 

 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
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 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

 

4. Derived Measurements; These are measurements that are derived from other 

measurements such as the currents in the grounded branch in the transformer. 

1 1 1 1
1 1 1 2 1 1 1 1 1

1 1
1 2 1 1 1

4 8
( 1) ( ) ( ) ( ) ( ) ( ) ( )

4
( ) ( ) ( ) ( )

A L L m

L

g L g L
I T g v t g v t i t g e t i t g v t h

h h

g L
g v t h i t h g e t h i t h

h

         

       
 

2 2 2 2
2 3 2 4 2 2 1 2 3

2 2
2 4 2 2 2

4 8
( 1) ( ) ( ) ( ) ( ) ( ) ( )

4
( ) ( ) ( ) ( )

a L L m

L

g L g L
I T g v t g v t i t t g e t i t g v t h

h h

g L
g v t h i t h t g e t h i t h

h

          

        
 

1 1 1 1 1 1
1 1 1 1 2 1 1 1

1 1 1 1 1 1
2 1 1

2 5
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 12

5 5 5 1
( ) ( ) ( ) ( )

12 2 12 2

A L m m L m m

L

g L g L g L
I T i t g v t g v t i t g e t v t h

h h

g L g L g L
v t h i t h e t h i t h

h

        

       
 

2 2 2 2 2 2
2 2 3 2 4 2 2 3

2 2 2 2 2 2
2 2 3

2 5
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 12

5 5 5 1
( ) ( ) ( ) ( )

12 2 12 2

a L m m L m m

L

g L g L g L
I T i t g v t g v t i t t g e t v t h

h h

g L g L t g L
v t h i t h e t h i t h

h

        

 
       

 

 

 The contributions of each of the above equations to the Jacobian are as  follows 

1 1 1 1
1 1 1

4 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

g L g L
g g g

h h

 
  
 

 

2 2 2 2
2 2 2

4 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

g L g L
g g t g

h h

 
   

 
 

1 1 1 1
1 1

2
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

2

g L g L
g g g

h h

 
 

 
 

2 2 2 2
2 2 2

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2

g L g L
g g t g

h h

 
  

   

We can summarize the above with the following table 
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Table 4.1: Summary of Transformer Measurement Models by type  

Measurement 

Type 

Measurement Model Standard 

Deviation 

Measurement 

Actual 
1 1 1 1

1 1 1 2 1 1 1 1 1 1 2

1 1
1 1 1

4 8
( ) ( ) ( ) ( ) ( ) ( ) ( )

4
( ) ( ) ( )

L L m

L

g L g L
g v t g v t i t g e t i t g v t h g v t h

h h

g L
i t h g e t h i t h

h

       

     

 

0.01pu ( 1)AI T   

Derived 
1 1 1 1

1 1 1 2 1 1 1 1 1

1 1
1 2 1 1 1

4 8
( ) ( ) ( ) ( ) ( ) ( )

4
( ) ( ) ( ) ( )

L L m

L

g L g L
g v t g v t i t g e t i t g v t h

h h

g L
g v t h i t h g e t h i t h

h

      

       

 

0.01pu ( 1)AI T   

Actual 
2 2 2 2

2 3 2 4 2 2 2 2 3 2 4

2 2
2 2 2

4 8
( ) ( ) ( ) ( ) ( ) ( ) ( )

4
( ) ( ) ( )

L L m

L

g L g L
g v t g v t i t t g e t i t g v t h g v t h

h h

g L
i t h t g e t h i t h

h

        

      

 

0.01pu ( 1)aI T   

Derived 
2 2 2 2

2 3 2 4 2 2 1 2 3

2 2
2 4 2 2 2

4 8
( ) ( ) ( ) ( ) ( ) ( )

4
( ) ( ) ( ) ( )

L L m

L

g L g L
g v t g v t i t t g e t i t g v t h

h h

g L
g v t h i t h t g e t h i t h

h

       

        

 

0.01pu ( 1)aI T   

Virtual 
1 1 1 1 1

1 2 1 1 1 1 1 1 2 1

1 1 1 1
1 2 1 1 1 1 1

2 2 2
( ) ( ) ( ) ( ) ( ) ( ) ( )

6 6 6 6 3 3 3

2
( ) ( ) ( ) ( ) ( )

3 6 6 6 6

L m m L m

m L

g h g h g h g h g hh h
v t v t g L G L i t e t v t v t i t

g h g h g h g hh
e t v t h v t h g L G L i t h e t h

 
         

 

 
            

 

 

0.001pu 0  

Virtual 
2 2 2 2 2

3 4 2 2 2 2 2 3 4

2 2 2 2
2 3 4 2 2 2 2 2

2 2
( ) ( ) ( ) ( ) ( ) ( )

6 6 6 6 3 3

22
( ) ( ) ( ) ( ) ( ) ( )

3 3 6 6 6 6

L m m

L m m L

g h g h t g h g h g hh
v t v t g L G L i t e t v t v t

t g h g h g h t g hh h
i t e t v t h v t h g L G L i t h e t h

 
        

 

  
             

 

 

0.001pu 0  

Virtual 
 

 

21 1 2 2

1 2 3 4 1 1 1 2 2 2 1 2

21 1 2 2

1 2 3 4 1 2

1 1

1 2

( ) ( ) ( ) ( ) ( ) ( ) ( )
6 6 6 6 6

2 2 2 2 2 2
( ) ( ) ( ) ( ) ( ) ( ) ( )

6 3 3 3 3 3 3

( ) ( )
6 6

L L c

m m m m m c m m m

g h g h t g h t g h h
v t v t v t v t g L i t t g L i t g g t g e t

g h g h t g h t g hh h h
i t v t v t v t v t g g t g e t i t

g h g h t
v t h v t h

 
         

 
        

    

 

2 2

3 4 1 1 1 2 2 2

2

1 2

( ) ( ) ( ) ( )
6 6

( ) ( )
6 6

L L

c m

g h t g h
v t v t g L i t h t g L i t h

h h
g g t g e t h i t h

 
     

     

 

0.001pu 0  

Virtual 2
( ) ( ) ( ) ( ) ( )

6 3 6
m

h h h
e t t e t e t h t h         

0.001pu 0  

Virtual 
0 0 0

5 5 5

22
( ) ( ) ( ) ( ) ( ) ( )

6 6 3 3 6 6
m m m m m

i h i h i hh h h
i t y t i t y t i t h y t h        

0.001pu 0  

Actual 
1 1 1 1 1 1

1 1 1 1 2 1 1 1

1 1 1 1 1 1
2 1 1

2 5
( ) ( ) ( ) ( ) ( ) ( )

2 12

5 5 5 1
( ) ( ) ( ) ( )

12 2 12 2

L m m L m m

L

g L g L g L
i t g v t g v t i t g e t v t h

h h

g L g L g L
v t h i t h e t h i t h

h

      

       

 

0.01pu ( )AI T  

Derived 
1 1 1 1 1 1

1 1 1 1 2 1 1 1

1 1 1 1 1 1
2 1 1

2 5
( ) ( ) ( ) ( ) ( ) ( )

2 12

5 5 5 1
( ) ( ) ( ) ( )

12 2 12 2

L m m L m m

L

g L g L g L
i t g v t g v t i t g e t v t h

h h

g L g L g L
v t h i t h e t h i t h

h

     

       

 

0.01pu ( )AI T  

Actual 
2 2 2 2 2 2

2 2 3 2 4 2 2 3

2 2 2 2 2 2
2 2 3

2 5
( ) ( ) ( ) ( ) ( ) ( )

2 12

5 5 5 1
( ) ( ) ( ) ( )

12 2 12 2

L m m L m m

L

g L g L g L
i t g v t g v t i t t g e t v t h

h h

g L g L t g L
v t h i t h e t h i t h

h

       

 
       

 

0.01pu ( )aI T  
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Table 4.1 (continued): Summary of Transformer Measurement Models by type  

Derived 
2 2 2 2 2 2

2 2 3 2 4 2 2 3

2 2 2 2 2 2
2 2 3

2 5
( ) ( ) ( ) ( ) ( ) ( )

2 12

5 5 5 1
( ) ( ) ( ) ( )

12 2 12 2

L m m L m m

L

g L g L g L
i t g v t g v t i t t g e t v t h

h h

g L g L t g L
v t h i t h e t h i t h

h

      

 
       

 

0.01pu ( )aI T  

Virtual 
1 1 1 1 1

1 2 1 1 2 1 1 1 1 1

1 1 1 1
1 2 1 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )
24 24 24 24 3 3 3

( ) ( ) ( ) ( ) ( )
3 6 6 6 6

L m m L m

m L

g h g h g h g h g hh h
v t v t i t e t v t v t g L G L i t

g h g h g h g hh
e t v t h v t h g L G L i t h e t h

 
        

 

 
           

 

 

0.001pu 0  

Virtual 
2 2 2 2 2

3 4 2 3 4 2 2 2 2 2

2 2 2 2
3 4 2 2 2 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( )
24 24 24 24 3 3 3

( ) ( ) ( ) ( ) ( )
3 6 6 6 6

L m m L m

m L

g h g h t g h g h g hh h
v t v t i t e t v t v t g L G L i t

t g h g h g h t g hh
e t v t h v t h g L G L i t h e t h

  
        

 

  
           

 

 

0.001pu 0  

Virtual 
 

 

21 1 2 2 1
1 2 3 4 1 2 1

21 2 2
2 3 4 1 1 1 2 2 2 1 2

1 1
1 2

( ) ( ) ( ) ( ) ( ) ( ) ( )
24 24 24 24 24 24 3

( ) ( ) ( ) ( ) ( ) ( )
3 3 3 3

( ) ( ) (
3 6 6

c m m

m m m L m L m c m

m m

g h g h t g h t g h g hh h
v t v t v t v t g g t g e t i t v t

g h t g h t g h h
v t v t v t g L i t t g L i t g g t g e t

g h g hh
i t v t h v t

   
       

   
        

   

 

2 2
3 4 1 1 1 2 2 2

2
1 2

) ( ) ( ) ( ) ( )
6 6

( ) ( )
6 6

L L

c m

t g h t g h
h v t v t g L i t h t g L i t h

h h
g g t g e t h i t h

   
       

     

 

0.001pu 0  

Virtual 
( ) ( ) ( ) ( ) ( )

24 3 6
m

h h h
e t e t t e t h t h        

0.01pu 
AI  

Derived 
0 0 0

5 5 5( ) ( ) ( ) ( ) ( ) ( )
24 24 3 3 6 6

m m m m m

i h i h i hh h h
i t y t i t y t i t h y t h         

0.01pu 
AI  

Actual 

1 2
0

1
( ) ( ) ( )y t t t 



 
    

 

 

0.01pu 
aI  

Derived  2 1 1( ) ( ) 1 ( )y t y t y t     
0.01pu 

aI  

Virtual  3 2 2( ) ( ) 1 ( )y t y t y t   

 

0.001pu 0  

Virtual  4 1 3( ) ( ) 1 ( )y t y t y t     
0.001pu 0  

Virtual 

5 4
0

1
( ) ( ) ( )y t t y t



 
    

 
 

0.001pu 0  

Virtual 

1 2
0

1
( ) ( ) ( )m m my t t t 



 
    

 

 

0.001pu 0  

Virtual  2 1 1( ) ( ) 1 ( )m m my t y t y t     
0.001pu 0  

Virtual  3 2 2( ) ( ) 1 ( )m m my t y t y t     
0.001pu 0  

Virtual  4 1 3( ) ( ) 1 ( )m m my t y t y t     
0.001pu 0  

Virtual 

5 4
0

1
( ) ( ) ( )m m my t t y t



 
    

 
 

0.001pu 0  

Actual 
1 2( ) ( )v t v t  0.001pu ( 1)AV T   

Actual 
3 4( ) ( )v t v t  0.001pu ( 1)aV T   

Pseudo 
2( )v t

 
0.1pu 0  

Pseudo 
4( )v t  0.1pu 0  
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Table 4.1 (continued): Summary of Transformer Measurement Models by type  

Actual 
1 2( ) ( )m mv t v t

 
0.01pu ( )AV T  

Actual 
3 4( ) ( )m mv t v t

 
0.01pu ( )aV T  

Pseudo 
2( )mv t  0.1 pu 0 

Pseudo 
4( )mv t  0.01pu 0

 

 

 

 

 

4.3  Definition of Events 

 

For the numerical experiments, a number of typical transformer events have been generated. 

These events will normally exercise the typical protection functions of a transformer i.e.  24, 27, 

50, 51, 87.The objective of these numerical experiments is to determine whether the proposed 

algorithm will identify the condition and for any of the events that warrant tripping. 

 

Event 1-An energization event: In this event we will examine the performance of our algorithm 

on one of the most common causes of fake trips in transformers, energization. We will simply 

run a simulation with a three phase Y-Y connected transformer for a few seconds and the 

COMTRADE file generated from this event will be tested for faults using our algorithm. Our 

test system is shown in Appendix B of this document. 

 

Event 2 –External Fault on a transformer: This event represents a typical scenario that could 

lead to tripping of a transformer. In this scenario we have a normal operation of the transformer 

for a certain amount of time followed by an external fault which is cleared after some time and 

normal operation resumes. Three phase fault logic is added to our existing three phase Y-Y 
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connected transformer from the previous experiment and measurements rendered on both sides 

of our transformer. 

 

Event 3-An internal fault: In this scenario, we will have normal operation of a transformer 

followed by a typical internal fault that will last for a 500 mss and then we will return to normal 

operation.  

 

The following section will show the performance f our algorithm. It must be noted that a low 

probability or goodness of fit of our algorithm will be interpreted as a trip signal for our digital 

relay. 

 

 

4.4  Results 

 

The above events were simulated and we will show the performance of our algorithm by 

plotting the goodness of fit, from the chi square test as a function of time. In addition, we will 

also show voltage and current estimates from our state estimation and compare them to the 

actual measured values. 

 

Enegization Event: The probability curve for the entire event shows according to our algorithm 

does not indicate any internal failure on our transformer as indicated by the goodness of fit 

which remains at a 100% all throughout the entire event.  
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Figure 4.1: Goodness of fit of State Estimation for Energization Event 

 

In Figure 4.1 we observe the goodness of fit of our state estimation during the first second of the 

energization. We clearly see that no trip signal will be issued during this event since our 

probability never falls below 99%. As a matter of fact, the probability always remains close to a 

100% clearly indicating that the measurements match the normal operating transformer model 

to perfection. For the sake of clarity we have just shown only the very first second of the event 

but as we can observe, the chi square test continues to show a perfect fit between the 

measurements  
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Figure 4.2: Comparison between Actual and Estimated Primary Voltages during Energization Event 

 

 

In Figure 4.2 we see that both the estimated voltage and the measured voltage match perfectly 

during the energization event. These curves are interesting because it gives us an indication on 

the primary voltage indicating that no over-voltage or under-voltage is occurring but really is 

just one more component in the overall protection scheme because as we will see in future 

cases that the estimated and measured primary voltages might match but still we  have an 

abnormal operating condition requiring a trip . 
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Figure 4.3: Comparison between Actual and Estimated Primary Current during Energization Event 

 

Figure 4.3 may be the single most important representation of the success of our protection 

scheme during the energization event. Our methodology clearly matches the primary estimated 

and measured currents. The infamous inrush currents known for causing most, if not all of trips 

on traditional protection schemes is clearly identified and does not result in any trip by our 

protection scheme. The inrush currents are the main cause of the imbalance between the primary 

and the secondary currents which causes the trip in traditional differential protection schemes. 

Our protection scheme performed fine during excitation which is the Achilles heel of traditional 

transformer protection scheme due to the ability to capture and reproduce inrush currents.   
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Figure 4.4: Comparison between Actual and Estimated Secondary Voltages during Energization Event 

 

Figure 4.4 shows the estimated and measured secondary voltages matching perfectly, again 

which is no surprise considering the fact that the goodness of fit is near to a 100% during the 

duration of the energization event. The secondary voltage is perfectly sinusoidal as is the 

primary and in the exact ratio as the turns ratio. 
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Figure 4.5: Comparison between Actual and Estimated Secondary Currents during Energization Even 

 

The secondary estimated and measured currents shown in Figure 4.5 above are no exception to 

the curves shown in the previous figures. There is a perfect match between the estimated and 

measured currents. The primary and secondary currents do not match and is the reason for the 

tripping of traditional differential protection schemes. Our algorithm will not operate as the 

most advanced differential protection scheme. In addition the only parameters needed are the 

electrical parameters of our transformer and just our usual Kirchhoff equations. Another 

interesting part of our algorithm is that the estimates tend to follow even transient phenomena 

which is so important as far as not only initial inrushes but also sympathetic and recovery 

inrushes. 
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Figure 4.6: Goodness of Fit, Primary Voltage and Primary Current during Energization Event 

 

 

Figure 4.7: Goodness of Fit, Secondary Voltage and Secondary Current during Energization Event 
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protection scheme issues a trip signal. In this case our relay does not trip hence the un-

fluctuating 100% match through our event. 

 

External fault event: In this event our test system was simulated with a fault logic that activated 

after 1500 ms of normal operation. The external fault then lasted for 500 ms and then the fault 

was cleared and the transformer returned to normal operation for 300ms.  

 

Figure 4.8: Goodness of fit of State Estimation for External Fault Event 

 

Figure 4.8 shows the goodness of fit of the entire event and clearly shows that our protection 

scheme does not trip. We see a 100% goodness of fit for the whole event indicating that no 

internal fault occurred on the transformer. 
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Figure 4.9: Comparison between Actual and Estimated Primary Voltages during External Fault Event 

 

Shown in Figure 4.9 is a comparison between the estimated and measured primary voltage on 

the transformer, and as expected we have a perfect match between the two. The voltages match 

and even the time instant at which the fault takes place our protection scheme does not falter 

and still the probability remains unwavering at 100%. Even the transients, are picked up by the 

state estimation and no trip signal is rightfully issued.  
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Figure 4.11: Comparison between Actual and Estimated Primary Currents during External Fault Event 

 

External faults on a transformer may cause fake trips on transformer protection due to the fact 

that we have large instantaneous over-currents at the instant of the fault as can be seen in Figure 

4.11. Regardless of this fact, the transformer might experience an instantaneous over-current 

which is not a result of an internal fault but rather caused by an external fault which our 

protection scheme detects with perfection as we observe that the estimated and measured 

currents match to perfection with no fault.  
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Figure 4.12: Comparison between Actual and Estimated Secondary Voltages during External Fault Event 

 

In Figure 4.12 we compare the secondary measured and estimated voltages. As expected there is 

a perfect match between both curves which is expected considering the fact that our goodness of 

fit curve showing how closely our measurements match our model. An interesting thing in these 

curves is that even the minor transients at the instant of the fault are simulated with our state 

estimation procedure giving a lot of potential to our technique for other devices with even larger 

transients. 
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Figure 4.13: Comparison between Actual and Estimated Secondary Currents during External Fault Event 

 

Figure 4.13 shows a comparison between the estimated and measured current on the secondary 

side of the transformer. Again this is consistent with our goodness of fit curve since the 

measurements match the model and at no point do we drop even below a 100%. 

 

Figure 4.14: Goodness of Fit, Primary Voltage and Primary Current during External Fault Event 
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Figure 4.15: Goodness of Fit, Secondary Voltage and Secondary Current during External Fault Event 

 

In our cumulative summary curves shown in Figures 4.14 and 4.15, we show our estimated 

primary and secondary voltage with the goodness of fit simultaneously and show that at no 

point does our protection scheme detect s an internal fault on the transformer during the 

course of our event. 

  

Internal Fault Event: The internal fault event is very similar to the prior external fault scenario. 

The total event depicted is 3s in duration and starts with normal operation of the transformer 

and after 1500ms fault logic is activated internally in our simulation in Appendix B. After 

500ms of operation, the logic is cleared and the transformer returns to normal operation.  
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Figure 4.16: Goodness of fit of State Estimation for Internal Fault Event 

 

In Figure 4.16 we observe the goodness of fit between our measurements and state estimates 

and we observe a series of drops not only at the instant the fault occurs but also during the 

entire fault until the fault is cleared after which the goodness of fit returns to a 100%. In this 

case drop in the goodness of fit clearly indicates the occurrence of an internal fault on the 

transformer. 
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Figure 4.17: Comparison between Actual and Estimated Primary Voltages during Internal Fault Event 

 

Figure 4.17 depicts the estimated and measured primary voltages, which match. It is clear that 

the voltage measured and estimated voltages match and this does not show us or explain the trip 

in our protection scheme.   

 

Figure 4.18: Comparison between Actual and Estimated Primary Currents during Internal Fault Event 
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Figure 4.18 shows a comparison between the estimated and measured primary current and still 

we observe a perfect match between the two during the entire duration of the event. As far as 

only this curve is concerned we cannot explain the fluctuation in the goodness of fit because 

both curves seem to perfectly fit one another. 

 

Figure 4.19: Comparison between Actual and Estimated Secondary Voltages during Internal Fault Event 

 

Figure 4.19 shows the measured and estimated secondary voltages, these curves match to 
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goodness of fit. But still this behavior is perfectly explainable by the fact that the measured and 

estimated voltages match but this might not be true for the other measurement models. 
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Figure 4.20: Comparison between Actual and Estimated Secondary Currents during Internal Fault Event 

 

Figure 4.20 shows the estimated and measured secondary currents for our event. For the first 

time we observe a clear mismatch in the 2 curves from 1.5s to 2s. Our Current estimate is 

much higher than the measurement during this period of time which is definitely a 

contributing factor in the poor goodness of fit during this time period as we will later seen in 

the summary figures shown below. 
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Figure 4.21: Goodness of Fit, Primary Voltage and Primary Current during Internal Fault Event 

 

 

Figure 4.22: Goodness of Fit, Secondary Voltage and Secondary Current during Internal Fault Event 
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our algorithm detects a fault between the 1500ms and 2000mswhich is consistent with our 

experimental. 
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CONCLUSION AND FUTURE WORK 

 

The research performed in this thesis focused on developing and implementing a transformer 

protection algorithm that is able to differentiate between normal operating and internal fault 

conditions. The algorithm was successfully implemented and was tested using different 

scenarios that usually occur during transformer operation. 

 

The algorithm performed very well as far as the non-detection of any faults during events such 

as external faults on the transformer and energization. These events usually cause a lot of 

trouble for transformer protection schemes and our implementation is straightforward and 

does not need any training as would contemporary techniques.   

 

During internal faults though, our algorithm detects the occurrence of faults but we have a lot 

of numerical oscillations causing the goodness of fit and the currents tend to oscillate which 

might be as a result of computational errors during programming which will be resolved 

during the commercial version of our software. 

 

Despite our positive preliminary results, there is room for improving the accuracy of our some 

results in the future namely: 

 Improving the software to remove any numerical oscillations 

 Including the more equations such as mechanical equations to our model and take 

advantage of state components such as the flux, and magnetic core voltage and 

magnetizing currents for better and more complete protection. 



 67 

  Expand the protection scheme not only to three phase transformer but also to other 

devices.  
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APPENDIX A: SINGLE PHASE TRANSFORMER MODEL 
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Figure A1: Single Phase Saturable Core Transformer Equivalent Circuit 

 

The following equations describe the saturable core transformer model shown in the above 

circuit 
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i t i sign t





                                                                            (9) 

Where the variables used in these equations are, 

1
i   : is the terminal 1 current 

2i   : is the terminal 2 current 

3i   : is the terminal 3 current 

4i   : is the terminal 4 current 

1
v   : is the terminal 1 voltage 

2
v   : is the terminal 2 voltage 

3
v   : is the terminal 3 voltage 

4
v   : is the terminal 4 voltage 

1L
i  : is the current through inductance L1 

2L
i  : is the current through inductance L2 

  : is the nonlinear inductor flux 

m
i  : is the magnetizing current 

e  : is the emf across the inductor 

t  : is the transformation ratio 
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Model Quadratization: Equation 9 is the general equation representing the magnetizing 

current of the single phase transformer with the exponent n taking integer values between 7 

and 11. For these different cases of n, it should be recognized that the degree of equation (9) is 

greater than 2 hence it must be substituted with extra equations with rank not greater than 2. 

This process is referred to as quadratization and can be done by substituting equation by the 

following equations. 

0 ( ) ( )
m m

i t y t                                                                                     (10) 

2

0

1

)(
)(0 














 t
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2
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1 3

1
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0 ( ) ( ) ( ) ( ) , if n odd

m m j

m m

y t y t y t sign t

y t y t t sign t



 





   

   
                    (12+m1+m2) 

Based on the above formulation, the number of additional internal states and equations 1m  

is computed as follows: 

  21 mmm   
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Where, 

  
))(int(log21 nm   

  
2m (# of ones in the binary representation of n) – 1 

The sets of indices i and j in the last set of equations (13+m1+1 to 13+m) are provided by 

positions of ones in the binary representation of n. The values of these indices are equal to the 

values of the power of 2 corresponding to that position, meaning that the right most positions 

is indexed 0 and the left most indexed ))(int(log2 n .  

After this substitution the model will be: 
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1 12 1 20 ( ) ( ) ( )m m jy t y t y t                                                      ((9+m1+2)*)                                           

                      








 

 

1 3

1

0 ( ) ( ) ( ) ( ) , if n even  

0 ( ) ( ) ( ) ( ) , if n odd

m m j

m m

y t y t y t sign t

y t y t t sign t



 





   

   
                          ((9+m)*)                                 

We can now rewrite equations 1* - (9+m)* in the following matrix (compact) form 

1

1

( )
( ) ( )

( ) ( )

[0]

( ) ( )

T

T
m

dx t
i t A x t B

dt

x t Q x t

x t Q x t

   

  
 

  
 

  
                                                               (13)                                                                                 

 

Where, 

 

 
1 1 2 3 4

1

( ) ( ) ( ) ( ) ( ) 0 0

dim ( ) 9 1

T
i t i t i t i t i t

i t







 
 

 

 

1 2 3 4 1 3 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

dim ( ) (9 ) 1 1

T

L L m mx t v t v t v t v t i t i t e t t i t y t y t y t

x t m N
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1 1 1

1 1 1

2 2 2

2 2 2

1 1 1

2 2 2

2
1 1 2 2 1 2

0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

dim( ) 9 (9 )

c

g g g

g g g

g g t g

g g t g

g g gA

g g t g

g g t g t g g g t g

i

A m

  
 
 
   
 

  
 
 

  
      
 

 
 

 

  

  

 

 

1 1

1 1

2 2

2 2

1 1 1

2 2 2

1 1 2 2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0

dim( ) 9 (9 )

g L

g L

g L

g L

B G g L

G g L

g L g L

B m

 
 
 
 
 
 
  
 

 
 
 
 
 
 

  

 
 1 , , 0

9

kQ k m i j

N m

  

 
       

   

   

   

1 12 2
0 0

0

n even  n odd  

1 1
1,8,8 1,8,8

1 1 , , 1 1 1 , , 1

1
, , 1 1 ,8, 1

k k

k k

Q Q

Q k m i j Q k m i j

Q m i N Q m N

 



   

         

     

 

 

Numerical Integration of the Single Phase Transformer Model 

Now that all the equations are in the quadratized form, we can now perform quadratic 

integration on the equations such that we obtain an algebraic companion form of the single 

phase transformer composed of two appended parts. 
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The first is shown below and is obtained by Quadratic Integration of equations 1*-9* which is 

shown below 

 

 

 

1

1

1

2 3 1

( ) ( )

( ) ( )

( ) ( )

eq

m m

eq

i t x t
E F b

i t x t

b E F x t h E F i t h







   
     

  

       
                              (14) 

Where 

   

1 2 3

1 2 3

4 8
0 0 0

62

0 0 0 0 06 3 6
, , ,

1 2 5 5
0 0 0

2 24 3 24 24

0 00 0 0

dim( ) 18 18 , dim( ) 18 2 9 , dim( ) 18 9 , dim( ) 18 9

h
I I I

h h h h h
A B A B A

I
E F F F

h h h h
I I A A B B A

h h

I

E F m F m F

   
   

                      
        

        
     

           m

 

 The second part consists of the compact form is the quadratic part (10*-(9+m)*) of the above 

system which can be written as 

           
( ) ( ) ( ) ( )

0 0 0 , 0 0 0
( ) ( ) ( ) ( )

dim( ) (9 ) , dim( )

m m m m

x t f t x t f t
D I D I

x t f t x t f t

D m m I m m

       
          

       

    
 (15)                                               

 

Where, 

1 1 2 3 4( ) ( ) ( ) ( ) ( ) 0 0
T

i t i t i t i t i t       

1 1 2 3 4( ) ( ) ( ) ( ) ( ) 0 0
T

m m m m mi t i t i t i t i t      
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1 2 3 4 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )) ( ) ( ) ( ) ( )
T

L L m mx t v t v t v t v t i t i t e t t i t y t y t y t   

 

1 2 3 4 1 2 1 2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T

m m m m m L m L m m m m m m m m m
x t v t v t v t v t i t i t e t t i t y t y t y t   

 

 

1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0

0 1

0
0 0 0 0 0 0 0 0 0 0 0 1

0 0 1

dim( ) 9 , dim( )

D I

D m m I m m

 
   
    
   
    

 

    

 

1 1

2

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

T T

m m m

m

T T

m m m m

x t Q x t x t Q x t

f t f t

x t Q x t x t Q x t


      
   
   
    
   
   
         

 

 

Proof: Equations 14 and 15 above are derived from the compact form in equation 13 by 

recognizing the fact that the matrices A, B and the quadratic matrix can be partitioned into 

two different row categories which when integrated using Quadratic Integration result in 

equations 14 and 15 which is the Algebraic Companion Form for the transformer model. The 

following paragraph describes the mathematical procedure leading to equations 14 and 15. 

 

The matrices involved in equation 15 can be partitioned into 2 categories depending on the 

type of variables involved namely: Differential equations and non-linear or quadratic 

equations.
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1) Differential Equations: Rows 9-11 of equation 18 (Equations 9*-11*) can be expressed 

in the following differential form. 

1

( )
( ) ( )

dx t
i t A x t B

dt
   

 

When Quadratic Integration is performed on the above equations we obtain 

 1

1

2
0 0 0

6 3 62
( ) ( )0 0 0 0 ( )0 06 3 6

( )
( ) ( ) 05 5

0 0 0
24 3 24 3 24 24

0 00 0 0 0

m m

h h h
I I I

h h h
A B A B A

i t x t i t h
x t h

i t x th h h h h h
I I A A B B A





   
   

                  
              
             
        

     

 

 

1

1

1

2 3 1

( ) ( )

( ) ( )

( ) ( )

eq

m m

eq

i t x t
E F b

i t x t

b E F x t h E F i t h







   
      

  

       
 

Where 

1 2 3

4 8
0 0 0

62

0 0 0 0 06 3 6
, , ,

1 2 5 5
0 0 0

2 24 3 24 24

0 00 0 0

h
I I I

h h h h h
A B A B A

I
E F F F

h h h h
I I A A B B A

h h

I

   
   

                      
        

        
     

 

 

2) Non-linear (Quadratic) equations: Equations 10*-(9+m)* are the non-linear and after 

performing Quadratic Integration can be written in the form: 
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( ) ( )

0 0 0
( ) ( )m m

x t f t
D I

x t f t

   
    

   
 

     
( ) ( )

0 0 0
( ) ( )m m

x t f t
D I

x t f t

   
    

     

Where, 

1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0

0 1

0
0 0 0 0 0 0 0 0 0 0 0 1

0 0 1

D I

 
   
    
   
    

 

 

1 1

2

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

T T

m m m

m

T T

m m m m

x t Q x t x t Q x t

f t f t

x t Q x t x t Q x t


      
   
   
    
   
   
         

 

   

   

 

 

 

 

1 12 2
0 0

2

2

0 0

1 1
1,8,8 1,8 ,8

1 1, , 1 1 2 1, , 1

, , 1 1, 2 , ,2 1 1,

1 1
,8, 1 , 2 ,8 ,2 1 ,

k k

m m

m m

Q Q m N N

Q k m i j Q m k m i j

Q m i N n even Q m i N n even

Q m N n odd Q m N N n odd

 

 

      

          

      
 
 

       
 

 

Appending the 2 categories above gives us the algebraic companion form  described in the 

form below. 
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1

1

1

1

2

( )

( )

( )
0 ( ) ( )

( )

eq

m m

T T

m

m

m

i t x t
E F b

i t x t

Q
x t

x t x t
x t

Q





   
     

  

 
        
 

  

 

Where, 

1 2 3 4 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T

L L m mx t v t v t v t v t i t i t e t t i t y t y t y t     

1 2 3 4 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T

m m m m L m L m m m m m m m m mx t v t v t v t v t i t i t e t t i t y t y t y t     

 1 1 2 3 4( ) ( ) ( ) ( ) ( ) 0 0
T

i t i t i t i t i t 
 

 1 1 2 3 4( ) ( ) ( ) ( ) ( ) 0 0
T

m m m m mi t i t i t i t i t 

 

 

Example: We can now illustrate the above procedures on an example where the value of n the 

exponent of the magnetizing current is 11.  The equations that would quadratize the model are 

  1
1 1 1 2 1 1 1

( )
( ) ( ) ( ) ( ) Ldi t

i t g v t v t g e t g L
dt

                                                                                 

  1
2 1 1 2 1 1 1

( )
( ) ( ) ( ) ( ) Ldi t

i t g v t v t g e t g L
dt

                                                                                                  

  2
3 2 3 4 2 2 2

( )
( ) ( ) ( ) ( ) Ldi t

i t g v t v t tg e t g L
dt

                                                                      

  2
4 2 3 4 2 2 2

( )
( ) ( ) ( ) ( ) Ldi t

i t g v t v t tg e t g L
dt

                                                                                    

    1
1 1 2 1 1 1 1 1

( )
0 ( ) ( ) ( ) ( ) ( )L

L

di t
g v t v t g e t G g L t i t

dt
                                                                                

    2
2 3 4 2 2 2 2 2

( )
0 ( ) ( ) ( ) ( )L

L

di t
g v t v t g te t G g L i t

dt
                                                                          

     21 2
1 1 2 2 3 4 1 1 2 2 1 2

( ) ( )
0 ( ) ( ) ( ) ( ) ( ) ( )L L

m c

di t di t
g v t v t t g v t v t g L t g L i t g g t g e t

dt dt
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   00 m mi t i y t 
                                                                                                                                   

 

( )
0 ( )

d t
e t

dt


       

   2

1 2

0

1
0 y t t


    

2

2 10 ( ) ( )y t y t    

   2

3 20 y t y t 
 

   4 1 30 ( )y t y t y t   

     5 4

0

1
0 y t t y t


 

        
 

These equations can be written in the compact form: 

1

1

5

( ) ( )

( ) ( )

[0]

( ) ( )

T

T

dx
i t A x t B

dt

x t Q x t

x t Q x t

   

  
 

  
   

 

Where, 

 1 1 2 3 4( ) ( ) ( ) ( ) ( ) 0 0 0 0 0i t i t i t i t i t 

 1 2 3 4 1 2 1 2 3 4 5( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )L L mx t v t v t v t v t i t i t e t t i t y t y t y t y t y t
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1 1 1

1 1

2 2 2

2 2 2

1 1 1

2 2 2

2

1 1 2 2 1 2

0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

c

g g g

g g

g g t g

g g t g

A g g g

g g t g

g g t g t g g g t g

i

  
 
 

   


 
 


 
     



  











  

 

 

1 1

1 1

2 2

2 2

1 1 1

2 2 2

1 1 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

g L

g L

g L

g L

B G g L

G g L

g L g L

 
 
 

 
 
 
  
 

 
 
 
 
 
 

 
The quadratic part of the equations can be written as 

   

 

   

   

1 2

0

2 3

4 5

0

1
1,8,8

2,10,10 1 , 3,11,11 1

1
4,10,12 1 , 5,8,13

Q

Q Q

Q Q





 

   

   

 

Upon Quadratic Integration of the differential part of the above equations we obtain 

 

1

1

1

2 3 1

( ) ( )

( ) ( )

( ) ( )

eq

m m

eq

i t x t
E F b

i t x t

b E F x t h E F i t h
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Where, 

1 2 3

1 2 3

4 8
0 0 0

62

0 0 0 0 06 3 6
, , ,

1 2 5 5
0 0 0

2 24 3 24 24

0 00 0 0

dim( ) 18 18 , dim( ) 18 28 , dim( ) 18 14 , dim( ) 18 14

h
I I I

h h h h h
A B A B A

I
E F F F

h h h h
I I A A B B A

h h

I

E F F F

   
   

                      
        

        
     

       

 

The quadratic or non-linear part of the when quadratic integration is performed gives us  

           
( ) ( ) ( ) ( )

0 0 0 , 0 0 0
( ) ( ) ( ) ( )

dim( ) 5 14 , dim( ) 5 5

m m m m

x t f t x t f t
D I D I

x t f t x t f t

D I

       
          

       

   
 

Where, 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

D I

   
   
   

    
   
   
      

 

1 6

5 10

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

T T

m m

m

T T

m m

x t Q x t x t Q x t

f t f t

x t Q x t x t Q x t
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APPENDIX B: SIMULATED SYSTEM 

 

The system that is used as our algorithm is simulated using the program WINIGS is shown 

below. The system is composed of a 138 KV three phase equivalent source, a 138kV overhead 

transmission line which is connected to our 138kV:13.8kV Y-Y connected transformer, a 13.8 

kV overhead transmission line and finally a load. The other devices in the simulation are the 

meters used to measure the primary/secondary voltages and currents and the relative ground. 

 

 

Figure B1: Simulated three phase transformer system for energization event 

 

The three phase transformer has the following parameters. 
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Figure B2: Parameters of Transformer used in Simulation 

 

 

 

 

 

 

Figure B3: Simulated three phase transformer system for external fault event 
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