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SUMMARY

Machine Learning and Data Analytics have become key tools in the advancement of modern

society, with a vast variety of applications exhibiting exponential growth in breadth and depth

during the past few years. Moreover, the advancement of data-gathering technologies enables the

availability of massive amounts of data, which fuels the opportunity for the application and devel-

opment of new analytics tools to obtain insights and discover patterns, relationships or structures

that otherwise wouldn’t be possible to identify, thus making an effective and efficient use of it.

This dissertation aims to contribute to the scientific existing methodologies in this context, with

focus in the non-parametric statistical domain due to its robustness to prior modeling assumptions

and flexibility of application in many different contexts.

In light of this objective, four non-parametric techniques based on wavelets are introduced

and analyzed. Applications such as survival density estimation, non-linear additive regression and

multiscale correlation analysis are covered, and each topic is studied from both a theoretical and

pragmatic perspectives. In fact, a theoretical foundation for each proposed method is developed,

and then its applicability is illustrated using simulations studies and real data sets.

This Thesis is structured in six Chapters, each containing the following topics:

In Chapter 1, the motivation for the use of wavelets is provided, and general definitions and

results involving their use in statistics are introduced. This aims to the construction of a brief

theoretical foundation over which the methodologies introduced in the subsequent Chapters are

built upon.

In Chapter 2, the density estimation problem is studied. A non-parametric estimator for proba-

bility densities in the presence of randomly censored data is introduced, and their statistical prop-

erties are analyzed. In particular, a linear density estimator using empirical wavelet coefficients

that are fully data-driven is proposed. This estimator is shown to be asymptotically unbiased, with

global mean square consistency. In addition, it performance is evaluated using different exemplary
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distributions, with different sample sizes and censoring schemes. On top of that, some imple-

mentation recommendations and remarks are provided, providing guidance to future practitioners

interested in applying the proposed technique.

In Chapter 3 the problem of non-parametric regression for additive models is investigated,

introducing a novel approach using orthogonal projections onto linear functional subspaces. These

regression models are useful in the analysis of responses determined by non-linear relationships

with multivariate predictors, which provides more flexibility and generality that the traditional

multi-dimensional linear regression model. For this purpose, a mean-square consistent estimator

based on an orthogonal projection onto a multiresolution space using empirical wavelet coefficients

is proposed, and its convergence rates are analyzed when the set of unknown functions can be

characterized by a known smoothness index. These results are obtained without the assumption

of an equispaced design, a condition that is typically assumed in most wavelet-based procedures.

In addition, some qualitative comparison with existing methodologies is provided, illustrating the

potential estimation capabilities of the proposed methodology.

In Chapter 4, a the additive regression problem is analyzed from a different viewpoint: the

classic least squares solutions using an orthogonal wavelet basis is proposed and its theoretical

properties are analyzed. This estimation methodology is based on periodic orthogonal wavelets

on the interval [0,1]. A strongly consistent estimator (with respect to the L2 norm) is introduced,

leading to optimal convergence rates up to a logarithmic factor, independent of the dimensional-

ity of the problem. Similarly as in the previous Chapter, these results are obtained without the

assumption of an equispaced design for the predictors, which shows the flexibility of wavelets

for statistical applications and the power of the least squares approach. This theoretical study is

further complemented with a simulation experiment and the application of the method on a real-

life data set, enabling the comparison of the proposed methodology with several machine learning

algorithms in a real-life scenario.

In Chapter 5, an alternative approach for the non-linear additive regression problem using

xxix



Bayesian hierarchical Normal-Inverse-Gamma (NIG) structures is introduced. First, a robust

and simple approach that reduces to an l2−regularized regression model is proposed and imple-

mented. The theoretical derivations of the estimator and predictive distribution are provided, and

the hyper-parameter selection is discussed. Furthermore, an implementation algorithm based on

a backfitting approach is proposed and its performance is studied via simulation. Secondly, this

model is extended to a mixture of NIG in the expansion coefficients, improving the capacity of

the model to adapt to different degrees of smoothness of the unknown functions. Closed form

solutions for the Bayes estimator are derived and its structure is discussed. Next, a special case of

the previous model is analyzed: a point-mass contaminated NIG model. This modeling structure

aims to enforce a more sparse estimation of the functions in the model, thus providing a more adap-

tive methodology for irregular functions. Finally, the applicability of these methods is illustrated

via a simulation study, and its performance is compared to the least squares approach, the simple

NIG model initially introduced and a method denominated AMlet, introduced by Sardy and Tseng

(2004)[1]. The obtained results suggest that the Bayesian approach based on NIG models tends

to outperform most of previously existing methods, and is very flexible to implement.

In Chapter 6, the correlation analysis problem is studied from a multiscale perspective via the

application of Discrete Wavelet transformations (DWT). A systematic methodology that uses the

linearity and orthogonality of the DWT is used to decompose a sample correlation into a weighted

sum of scale-wise correlations that have a special additive structure and enable the extraction of

information about possible linear relationships at different scale resolutions that are otherwise

hidden. In addition, some of its theoretical properties are analyzed, and a non-parametric test is

proposed for the assessment of the statistical significance of the scale-wise correlations. This is

further complemented by simulation-based performance study and an application use case that

analyzes monthly average temperatures between the cities of Atlanta and Athens, GA.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

1.1 Why the use of Wavelets?

Wavelets are mathematical tools that have interpretation and application in many scientific fields,

such as non-parametric function estimation, signal processing and data compression. In the early

1990s, a seminal research by Donoho and Johnstone[2] and their coauthors made the connection

between Wavelets and statistical models, showing that wavelets are appropriate tools to tackle

problems such as denoising, regression, and density estimation.

Due to its mathematical properties, Wavelets provide a rich source of useful tools for appli-

cations in “time-scale” types of problems. In particular, the wavelet representations enable to

represent a time-domain evolution in terms of scale components. In this context, it is possible to

find many similarities between wavelet transformations and Fourier transformations. Fourier trans-

formation extract details from the signal frequency, however, the location of a particular frequency

within the signal is not captured. This can be obtained by windowing the signal, and then by taking

its Fourier transform. The problem with this approach is that the portions of the processed signal

are of a fixed length (determined by the window size), which may lead to a local under- or over-

fitting. This results from the fact that windows of the same length are used to resolve both high and

low frequency components, which in the case of non-stationary signals is particularly inadequate.

For these reasons, statistical multiscale modeling based on wavelets has become a popular area

in both theoretical and applied statistics. Wavelet based methods have been under development in

areas such as regression, density and function estimation, factor analysis, modeling and forecasting
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in time series analysis, and spatial statistics.

In addition, wavelets provide alternative orthonormal bases in a variety statistical problems.

Even in the cases in which the traditional orthogonal series are simply replaced by Wavelet bases,

the literature has shown that Wavelets often offer better localization and parsimony, leading to bet-

ter estimation results.

In the next sections, some important definitions and results generated by wavelets are provided

with the aim of providing a foundation for the wavelet-based tools that are applied in the subsequent

chapters of this Thesis. For a more complete and detailed treatment of the wavelets in statistics, the

reader could refer to the book by Vidakovic (1999) [3], the monograph by Antoniadis (1997) [4],

and the work by Daubechies (1992)[5]. Most of the material presented in the following sections

was obtained from [3], and was used with permission from the authors.

1.1.1 Some Wavelet Preliminaries

The first theoretical results in wavelets are connected with continuous wavelet decompositions of

L2 functions and go back to the early 1980s. Papers of Morlet et al. (1982)[6] and Grossmann and

Morlet (1985)[7] were among the first on this subject.

Let ψa,b(x), a ∈ R\{0}, b ∈ R be a family of functions defined as translations and re-scales of

a single function ψ(x) ∈ L2(R), as follows:

ψa,b(x) =
1√
|a|
ψ

(
x− b
a

)
. (1.1)

The normalization by 1√
|a|

ensures that ||ψa,b(x)||L2 is independent of a and b. The function ψ
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(called the wavelet function or the mother wavelet) is assumed to satisfy the admissibility condition,

Cψ =

∫
R

|Ψ(ω)|2

|ω|
dω <∞, (1.2)

where Ψ(ω) =
∫
R
ψ(x)e−ixωdx is the Fourier transformation of ψ(x). The admissibility condition

(1.2) implies:

0 = Ψ(0) =

∫
ψ(x)dx.

Also, if
∫
ψ(x)dx = 0 and

∫
(1 + |x|α)|ψ(x)|dx <∞ for some α > 0, then Cψ <∞.

Wavelet functions are usually normalized to “have unit energy”, i.e., ||ψa,b(x)|| = 1.

For any L2 function f(x), the continuous wavelet transformation is defined as a function of

two variables:

CWT f (a, b) = 〈f, ψa,b〉 =

∫
f(x)ψa,b(x)dx. (1.3)

Here, the dilation and translation parameters, a and b, respectively, vary continuously over R\{0}×

R.

Resolution of Identity. When the admissibility condition is satisfied, i.e., Cψ < ∞, it is possible

to find the inverse continuous transformation via the relation known as resolution of identity or

Calderón’s reproducing identity, which is given by:

f(x) =
1

Cψ

∫
R2

CWT f (a, b)ψa,b(x)
da db

a2
.

If a is restricted to R+, which is natural since a can be interpreted as a reciprocal of frequency,
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(1.2) becomes:

Cψ =

∫ ∞
0

|Ψ(ω)|2

ω
dω <∞, (1.4)

and the resolution of identity relation takes the form

f(x) =
1

Cψ

∫ ∞
−∞

∫ ∞
0

CWT f (a, b)ψa,b(x)
1

a2
da db. (1.5)

Next, we list a few important properties of continuous wavelet transformations.

Shifting Property. If f(x) has a continuous wavelet transformation

CWT f (a, b), then g(x) = f(x − β) has the continuous wavelet transformation CWT g(a, b) =

CWT f (a, b− β).

Scaling Property. If f(x) has a continuous wavelet transformation

CWT f (a, b), then g(x) = 1√
s
f
(
x
s

)
has the continuous wavelet transformation CWT g(a, b) =

CWT f
(
a
s
, b
s

)
.

Note that both the shifting property and the scaling property result from changing variables

under the integral sign in Eq. (1.3).

Energy Conservation. From (1.5),

∫ ∞
−∞
|f(x)|2dx =

1

Cψ

∫ ∞
−∞

∫ ∞
0

|CWT f (a, b)|2
1

a2
da db.
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Localization. Let f(x) = δ(x− x0) be the Dirac pulse at the point x0. Then,

CWT f (a, b) =
1√
a
ψ

(
x0 − b
a

)
.

Reproducing Kernel Property. Define K(u, v; a, b) = 〈ψu,v, ψa,b〉L2 . Then, if F (u, v) is a contin-

uous wavelet transformation of f(x),

F (u, v) =
1

Cψ

∫ ∞
−∞

∫ ∞
0

K(u, v; a, b)F (a, b)
1

a2
da db,

i.e., K is a reproducing kernel. The corresponding reproducing kernel Hilbert space (RKHS) is

defined as a CWT image of L2(R) – the space of all complex-valued functions F on R2 for which

1
Cψ

∫∞
−∞

∫∞
0
|F (a, b)|2 da db

a2
is finite.

Characterization of Regularity. Let
∫

(1 + |x|) |ψ(x)| dx <∞ and let Ψ(0) = 0.

If f ∈ Cα (Hölder space with exponent α), then, it follows:

|CWT f (a, b)| ≤ C|a|α+1/2. (1.6)

Conversely, if a continuous and bounded function f satisfies (1.6), then f ∈ Cα. Examples of

wavelets having a compact support and an arbitrarily great regularity r have been constructed by

Daubechies (See Daubechies 1988[8])..

Discretization of the Wavelet Transformation. The continuous wavelet transformation of a func-

tion of one variable results in a function of two variables a, b. Since the transformation is redundant,

it is possible to select discrete values of a and b and still have a transformation that is invertible.

However, sampling that preserves all information about the decomposed function cannot be coarser

than the critical sampling.
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The critical sampling (see Fig. 1.1) is defined by:

a = 2−j, b = k2−j, j, k ∈ Z. (1.7)

This choice of parameters, will result in a minimal basis. Any coarser sampling will not give a

unique inverse transformation, meaning that the original function will not be uniquely recoverable.

Moreover, under mild conditions on the wavelet function ψ, these sampling scheme generates an

orthogonal basis:

{ψjk(x) = 2j/2ψ(2jx− k), j, k ∈ Z}.

Nonetheless, it is possible to select different discretization alternatives. For example, selecting

a = 2−j, b = k will lead to non-decimated (or stationary) wavelets. A more general sampling, is

given by:

a = a−j0 , b = k b0 a
−j
0 , j, k ∈ Z, a0 > 1, b0 > 0. (1.8)

Here, numerically stable reconstructions are possible if the system {ψjk, j, k ∈ Z} constitutes a

frame. Here:

ψjk(x) = a
j/2
0 ψ

(
x− k b0 a

−j
0

a−j0

)
= a

j/2
0 ψ(aj0x− k b0),

corresponds to (1.1) evaluated at (1.8).

In the next section, we consider wavelet transformations (wavelet series expansions) for val-

ues of a and b given by (1.7). An elegant theoretical framework for critically sampled wavelet

transformation is Mallat’s Multiresolution Analysis (Mallat, 87; 89a, 89b, 98).

6



rrr rrrrr r r rr r r r r r rrrrrrr
r r r r r r r r r r r r rrrrrrrrrrrrr

r r r r r r r r r r r r r r r r rr r r r r r r r rrrrrrrrrrrrrrrrrrrrrrrrrr

-
b0

6a

Figure 1.1: Critical Sampling in R× R+ half-plane (a = 2−j and b = k 2−j).

1.1.2 Multiresolution Analysis

A multiresolution analysis (MRA) is a sequence of closed subspaces Vn, n ∈ Z in L2(R) such that

they lie in a containment hierarchy, as follows:

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · . (1.9)

The nested spaces have an intersection that contains the zero function only and a union that is

dense in L(R), therefore:

∩nVj = {0}, ∪jVj = L2(R),

where A denoting the closure of a set A. The hierarchy (1.9) is constructed such that:

(i) The V -spaces are self-similar, meaning:

f(2jx) ∈ Vj iff f(x) ∈ V0. (1.10)
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(ii) There exists a scaling function φ ∈ V0 whose integer-translates span the space V0, as follows:

V0 =

{
f ∈ L2(R)| f(x) =

∑
k

ckφ(x− k)

}
,

and for which the set {φ(• − k), k ∈ Z} is an orthonormal basis.1

Note that mild conditions on φ are necessary to move forward in the developments. In this

context, it can be assumed that
∫
φ(x)dx ≥ 0. Later, we will show that this integral is in fact

equal to 1.

Since V0 ⊂ V1, the function φ(x) ∈ V0 can be represented as a linear combination of functions

from V1, which implies:

φ(x) =
∑
k∈Z

hk
√

2φ(2x− k), (1.11)

for some coefficients hk, k ∈ Z. This equation is denominated as the scaling equation and it

is fundamental in constructing, exploring, and utilizing wavelets.

As an important remark, the coefficients hn in (1.11) are important in connecting the MRA to

the theory of signal processing. The (possibly infinite) vector h = {hn, n ∈ Z}will be called

a wavelet filter. It is a low-pass (averaging) filter as will become clear later by considerations

in the Fourier domain.

Theorem 1.1.1. For the scaling function it holds:

∫
R
φ(x)dx = 1,

1 It is possible to relax the orthogonality requirement. It is sufficient to assume that the system of functions
{φ(• − k), k ∈ Z} constitutes a Riesz basis for V0.
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or, equivalently,

Φ(0) = 1,

where Φ(ω) is the Fourier transformation of φ, given by Φ(ω) =
∫
R φ(x)e−iωxdx.

To further explore the properties of multiresolution analysis subspaces and their bases, it is

useful to work in the Fourier domain. Define the function m0 as follows:

m0(ω) =
1√
2

∑
k∈Z

hke
−ikω =

1√
2
H(ω). (1.12)

This function (1.12) describes the behavior of the associated filter h in the Fourier domain,

and is sometimes called the transfer function. Moreover, note m0 is periodic with the period

2π and that the filter taps {hn, n ∈ Z} are the Fourier coefficients of the function H(ω) =
√

2 m0(ω).

Now, taking the Fourier transformation of (1.11), it follows:

Φ(ω) =

∫ ∞
−∞

φ(x)e−iωxdx

=
∑
k

√
2 hk

∫ ∞
−∞

φ(2x− k)e−iωxdx

=
∑
k

hk√
2
e−ikω/2

∫ ∞
−∞

φ(2x− k)e−i(2x−k)ω/2d(2x− k)

=
∑
k

hk√
2
e−ikω/2 Φ

(ω
2

)
= m0

(ω
2

)
Φ
(ω

2

)
.

Therefore, the relation becomes:

Φ(ω) = m0

(ω
2

)
Φ
(ω

2

)
, (1.13)

9



where Φ(ω) is the Fourier transformation of φ(x).

By iterating (1.13), it is possible to obtain:

Φ(ω) =
∞∏
n=1

m0

( ω
2n

)
, (1.14)

which is convergent under very mild conditions on rates of decay of the scaling function φ.

There are several sufficient conditions for convergence of the product in (1.14). For instance,

the uniform convergence on compact sets is assured if the following holds:

(i) m0(ω) = 1

(ii) |m0(ω)− 1| < C|ω|ε, for some positive C and ε.

Next, we show two important properties of wavelet filters in the context of an orthogonal

multiresolution analysis, normalization and orthogonality.

Normalization. For a wavelet filter it follows:

∑
k∈Z

hk =
√

2. (1.15)

Proof:

∫
φ(x)dx =

√
2
∑
k

hk

∫
φ(2x− k)dx

=
√

2
∑
k

hk
1

2

∫
φ(2x− k)d(2x− k)

=

√
2

2

∑
k

hk

∫
φ(x)dx.

Since
∫
φ(x)dx 6= 0 by assumption, (1.15) holds. This result can also be obtained from
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Figure 1.2: (a) φ and (b) ψ for a given filter h.

m0(0) = 1.

Orthogonality. For any l ∈ Z,

∑
k

hkhk−2l = δl. (1.16)

Proof: First observe that from the scaling equation (1.11), it follows that:

φ(x)φ(x− l) =
√

2
∑
k

hkφ(2x− k)φ(x− l) (1.17)

=
√

2
∑
k

hkφ(2x− k)
√

2
∑
m

hmφ(2(x− l)−m).
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Now, integrating the both sides in (1.17) leads to:

δl = 2
∑
k

hk

[∑
m

hm
1

2

∫
φ(2x− k)φ(2x− 2l −m) d(2x)

]
=

∑
k

∑
m

hkhmδk,2l+m

=
∑
k

hkhk−2l,

where the last follows from taking k = 2l +m.

Note that in the case where l = 0, (1.16) becomes:

∑
k

h2
k = 1. (1.18)

Another important result from the orthogonality condition (1.16) is that the convolution of

the filter h with itself, i.e. f = h ? h, is an à trous.2

In addition, the fact that {φ(• − k), k ∈ Z} constitutes an orthonormal basis for V0 can be

expressed in the Fourier domain in terms of either Φ(ω) or m0(ω), as follows:

(a) In terms of Φ(ω):

∞∑
l=−∞

|Φ(ω + 2πl)|2 = 1. (1.19)

Indeed, from the periodicity of the Fourier transformation and the 2π-periodicity of eiωk, it is

2 The attribute à trous (Fr.) ( ≡ with holes) comes from the property f2n = δn, i.e., each tap on even position in f
is 0, except the tap f0. Such filters are also called half-band filters.
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possible to obtain:

δk =

∫
R
φ(x)φ(x− k)dx

=
1

2π

∫
R

Φ(ω)Φ(ω)eiωkdω

=
1

2π

∫ 2π

0

∞∑
l=−∞

|Φ(ω + 2πl)|2eiωkdω. (1.20)

Here, the last line in (1.20) corresponds to the Fourier coefficient ak in the Fourier series

decomposition of the function f(ω) defined as:

f(ω) =
∞∑

l=−∞

|Φ(ω + 2πl)|2.

Since the Fourier representation is unique, it follows that f(ω) = 1. As additional results, it

is possible to observe that Φ(2πn) = 0, n 6= 0, and
∑

n φ(x−n) = 1. The last result follows

from inspection of coefficients ck in the Fourier decomposition of
∑

n φ(x − n), the series∑
k cke

2πikx. Since this function is 1-periodic, it implies:

ck =

∫ 1

0

(∑
n

φ(x− n)

)
e−2πikxdx =

∫ ∞
−∞

φ(x)e−2πikxdx = Φ(2πk) = δ0,k.

Remark 1.1.1. The identity (1.19) shows that, any set of linearly independent functions

spanning V0, {φ(x − k), k ∈ Z}, can be orthogonalized in the Fourier domain. Thus, it is

possible to obtain an orthonormal basis, which is generated by integer-shifts of the function:

F−1

 Φ(ω)√∑∞
l=−∞ |Φ(ω + 2πl)|2

 . (1.21)

This normalization in the Fourier domain is used in constructing of some wavelet bases.
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(b) In terms of m0 :

|m0(ω)|2 + |m0(ω + π)|2 = 1. (1.22)

Since
∑∞

l=−∞ |Φ(2ω + 2lπ)|2 = 1, then using (1.13) implies:

∞∑
l=−∞

|m0(ω + lπ)|2|Φ(ω + lπ)|2 = 1. (1.23)

It is possible to split the sum in (1.23) into two sums – one with odd and the other with even

indices. Therefore:

1 =
∞∑

k=−∞

|m0(ω + 2kπ)|2|Φ(ω + 2kπ)|2 +

∞∑
k=−∞

|m0(ω + (2k + 1)π)|2|Φ(ω + (2k + 1)π)|2.

Using relation (1.19) and the 2π-periodicity of m0(ω), it follows that:

1 = |m0(ω)|2
∞∑

k=−∞

|Φ(ω + 2kπ)|2 + |m0(ω + π)|2
∞∑

k=−∞

|Φ((ω + π) + 2kπ)|2

= |m0(ω)|2 + |m0(ω + π)|2.

1.1.3 Generation of Local Bases via Wavelets

Classical orthonormal bases (Fourier, Hermite, Legendre, etc.) have been widely used in

applied mathematics. However, there is a significant limitation shared by many of these clas-
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sical bases, which is non-locality. We can say that a basis is non-local when many basis

functions are significantly contributing at any value of a decomposition. Moreover, local

bases are desirable since they are more adaptive and parsimonious, which leads to in gen-

eral, better convergence properties and a better flexibility to achieve good approximations for

rapidly varying functions with a reasonably small number of expansion coefficients.

When a sequence of subspaces satisfies MRA properties, there exists (though not unique) an

orthonormal basis for L2(R) given by:

{ψjk(x) = 2j/2ψ(2jx− k), j, k ∈ Z} (1.24)

such that {ψjk(x), j-fixed, k ∈ Z} is an orthonormal basis of the “difference space”:

Wj = Vj+1 	 Vj.

Here, the function ψ(x) = ψ00(x) is called a wavelet function or informally, the mother

wavelet.

Now, it is possible to obtain the wavelet function from the scaling function φ(x). Since

ψ(x) ∈ V1 (due to the containment W0 ⊂ V1), it can be represented as:

ψ(x) =
∑
k∈Z

gk
√

2φ(2x− k), (1.25)

for some coefficients gk, k ∈ Z. Define:

m1(ω) =
1√
2

∑
k

gke
−ikω. (1.26)
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By repeating what was done with m0, it is possible to obtain the Fourier equivalent of (1.25).

Indeed:

Ψ(ω) = m1(
ω

2
)Φ(

ω

2
). (1.27)

Note that the spaces W0 and V0 are orthogonal by construction. Therefore, it follows that:

0 =

∫
ψ(x)φ(x− k)dx =

1

2π

∫
Ψ(ω)Φ(ω)eiωkdω

=
1

2π

∫ 2π

0

∞∑
l=−∞

Ψ(ω + 2lπ)Φ(ω + 2lπ)eiωkdω.

Using the Fourier series argument, as in (1.19), it is possible to conclude:

∞∑
l=−∞

Ψ(ω + 2lπ)Φ(ω + 2lπ) = 0.

Now, taking into account the definitions of m0 and m1, and by observing the derivation

process of (1.22), we arrive at:

m1(ω)m0(ω) +m1(ω + π)m0(ω + π) = 0. (1.28)

From (1.28), we can argue that there exists a function λ(ω) such that:

 m1(ω)

m1(ω + π)

 = λ(ω)

m0(ω + π)

−m0(ω)

 . (1.29)

By substituting ξ = ω + π and by using the 2π-periodicity of m0 and m1, it follows from
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(1.29):

λ(ω) = −λ(ω + π), and (1.30)

λ(ω) is 2π-periodic.

Therefore, any function λ(ω) of the form e±iωS(2ω), where S is an L2([0, 2π]), 2π-periodic

function, will satisfy (1.28); however, only the functions for which |λ(ω)| = 1 will define an

orthogonal basis ψjk of L2(R).

To summarize the construction of orthonormal systems from a scaling function φ(x), we need

to choose λ(ω) such that is satisfies:

(i) λ(ω) is 2π-periodic,

(ii) λ(ω) = −λ(ω + π), and

(iii) |λ(ω)|2 = 1.

Standard choices for λ(ω) are −e−iω, e−iω, and eiω; however, any other function satisfying

(i)-(iii) will generate a valid m1. Note that defining m1(ω) as:

m1(ω) = −e−iωm0(ω + π). (1.31)

will generate a convenient and standard connection between the filters h and g that will be

presented next. In fact, this form ofm1 and the equation (1.19) imply that {ψ(•−k), k ∈ Z}

is an orthonormal basis for W0.

Since |m1(ω)| = |m0(ω + π)| (from (1.29 ), since |λ(ω)| = 1), the orthogonality condition

(1.22) can be expressed as follows:

|m0(ω)|2 + |m1(ω)|2 = 1. (1.32)
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Note that we can relate gn and hn by comparing the definition of m1 in (1.26) with the

following:

m1(ω) = −e−iω 1√
2

∑
k

hke
i(ω+π)k

=
1√
2

∑
k

(−1)1−khke
−iω(1−k)

=
1√
2

∑
n

(−1)nh1−ne
−iωn,

thus, the relation between gn and hn is given by:

gn = (−1)n h1−n. (1.33)

In the signal processing literature, the relation defined by (1.33) is known as the quadrature

mirror relation and the filters h and g are referred to as quadrature mirror filters.

As was seen from the previous derivations, locality of wavelet bases comes from their con-

struction. In general, most of the wavelets that are used in statistics now are either compactly

supported or decay exponentially. An exception are Meyer-type wavelets (with a polynomial

decay) used in deconvolution problems.

1.1.4 Regularity of Wavelets

There are many different wavelet bases. An interesting and powerful feature of wavelets is di-

versity in their properties, since it is possible to construct wavelets with different smoothness,

symmetry, oscillatory, support, etc. properties. However, sometimes the desired require-

ments can be conflicting since some of the properties are exclusive. For example, there is no

symmetric real-valued wavelet with a compact support. Similarly, there is no C∞-wavelet
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function with an exponential decay, among others.

Scaling functions and wavelets can be constructed with a desired degree of smoothness. This

regularity (smoothness) of wavelets is connected with the rate of decay of scaling functions,

and ultimately with the number of vanishing moments of scaling and wavelet functions. For

example, the Haar wavelet has only the “zeroth” vanishing moment (as a consequence of the

admissibility condition) resulting in a discontinuous wavelet function.

Theorem 1.1.2 (presented next) shows the important connection between the regularity of

wavelets, the number of vanishing moments, and the form of the transfer function m0(ω).

Its proof follows from the Taylor series argument and the scaling properties of wavelet func-

tions. For details, see Daubechies (1992)[5], pp 153–155.

Now, before introducing Theorem 1.1.2, define:

Mk =

∫
xkφ(x)dx and Nk =

∫
xkψ(x)dx,

be the kth moments of the scaling and wavelet functions, respectively.

Theorem 1.1.2. Let ψjk(x) = 2j/2ψ(2jx − k), j, k ∈ Z be an orthonormal system of func-

tions in L2(R), such that for and arbitrary N ∈ N, ψ(x) satisfies:

(i) For some constant C1 > 0, and α > N :

|ψ(x)| ≤ C1

(1 + |x|)α
.

(ii) ψ ∈ CN−1(R).

(iii) The derivatives ψ(k)(x) are bounded for k ≤ N − 1.

Then, ψ has N vanishing moments, Nk = 0, 0 ≤ k ≤ N − 1.
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If, in addition, for some constant C2 > 0 and α > N , the scaling function φ(x) satisfies:

|φ(x)| ≤ C2

(1 + |x|)α
, α > N

then, the associated function m0(ω) is necessarily of the form

m0(ω) =

(
1 + e−iω

2

)N
· L(ω), (1.34)

where L is a 2π-periodic, CN−1-function.

The following definition of regularity is often used in the literature:

Definition 1.1.1. The multiresolution analysis (or, the scaling function) is said to be r-regular

if, for any α ∈ Z, and a some positive constant C, the scaling function has r + 1 bounded

derivatives in the form:

|φ(k)(x)| ≤ C

(1 + |x|)α
,

for k = 0, 1, . . . , r.

Similarly, it is possible to express the requirement that ψ possesses N vanishing moments in

terms of Ψ, m0, or equivalently, in terms of the filter h.

Assume that a wavelet function ψ(x) has N vanishing moments, i.e.,

Nk = 0, k = 0, 1, . . . , N − 1. (1.35)
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This condition (1.35) can be translated into the Fourier domain as follows:

dkΨ(ω)

dωk

∣∣∣∣
ω=0

= 0, k = 0, 1, . . . , N − 1,

which implies:

m
(k)
1 (ω) |ω=0 = m

(k)
1 (0) = 0, k = 0, 1, . . . , N − 1. (1.36)

It is possible to verify that in terms of m0, the relation (1.36) takes the form:

m
(k)
0 (ω) |ω=π = m

(k)
0 (π) = 0, k = 0, 1, . . . , N − 1. (1.37)

This follows from an inductive argument. In fact, the case k = 0 follows from Ψ(0) =

m1(0)Φ(0) [(1.27) evaluated at ω = 0] and the fact that Φ(0) = 1. Since Ψ′(0) = 1
2
m′1(0)Ψ(0)+

1
2
m1(0)Ψ′(0) it follows that m′1(0) = 0, as well. Then, m(N−1)

1 (0) = 0 follows by induction.

Note that the condition m(k)
1 (0) = 0, k = 0, 1, . . . , N − 1 imposes the following constraint

on the wavelet-filter coefficients:

∑
n∈Z

nkgn =
∑
n∈Z

(−1)nnkhn = 0, k = 0, 1, . . . , N − 1. (1.38)

Now we can ask the question, how smooth are the wavelets from a given family? For ex-

ample, as shown by Daubechies, there is an apparent trade-off between the length of support

and the regularity index of scaling functions.

In the case of Daubechies family of wavelets, let φ be the DAUBN scaling function. The reg-

ularity of φ can be measured by two popular ways: Sobolev and Hölder regularity exponents.
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Let α∗N be defined as:

α∗N = arg sup
β

∫
(1 + |ω|)β|Φ(ω)|dω

s.t.
∫

(1 + |ω|)β|Φ(ω)|dω <∞,

and let αN be the exponent of the Hölder space CαN to which the scaling function φ belongs.

Daubechies (1988) and Daubechies and Lagarias (1991, 1992), obtained regularity exponents

for wavelets in the Daubechies family, which are summarized in Table 1.1.

Table 1.1: Sobolev α∗
N and Hölder αN regularity exponents of Daubechies’ scaling functions.

N 1 2 3 4 5 6 7 8 9 10
α∗N 0.5 1 1.415 1.775 2.096 2.388 2.658 2.914 3.161 3.402
αN 0.550 0.915 1.275 1.596 1.888 2.158 2.415 2.661 2.902

From Table 1.1, we see that DAUB4 is the first differentiable wavelet, since α > 1. More

precise bounds on αN yield that φ from the DAUB3 family is, in fact, the first differentiable

scaling function (α3 = 1.0878), even though it seams to have a peak at 1. See also Daubechies

(1992), page 239, for the discussion.

1.1.5 Approximations and Characterizations of Functional Spaces using Wavelets

Note that any function f ∈ L2(R) can be represented by the orthonormal expansion:

f(x) =
∑
j,k

djkψjk(x).
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From the MRA, this unique representation corresponds to a multiresolution decomposition

fo the form:

L2(R) =
∞⊕

j=−∞

Wj.

Also, for any fixed j0 the decomposition L2(R) = Vj0⊕
⊕∞

j=j0
Wj corresponds to the expan-

sion:

f(x) =
∑
k

cj0,kφj0,k(x) +
∑
j≥j0

∑
k

djkψj,k(x). (1.39)

Note that the first sum in (1.39) corresponds to the orthogonal projection Pj0 of f onto Vj0 , de-

noted as fj0(x) = Pj0f(x). In fact, by the orthogonality principle cj0,k = 〈f(x), φj0,k(x)〉L2 .

In general, if the regularities of functions f and φ are known, then it is possible to bound

||Pj0f − f || = ||(II − Pj0)f ||. In fact, when f has N -continuous derivatives, and φ is such

that satisfies:

(i) The reproducing kernel generated by φ(x), for a fixed j0, i.e. Kj0(x, u) =
∑

k φj0,k(x)φj0,k(u)

is absolutely bounded by a function F (x) ∈ L2, that satisfies
∫
|x|NF (x)dx <∞, and

(ii)
∫
Kj0(x, u)(u− x)l = δ0,l for l = 0, . . . , N .

The, there exists a constant C > 0 such that:

||f(x)− Pj0f(x)||L2 ≤
2−Nj0

(N − 1)!
o(2−j0) as j0 →∞.

This result follows from the application of a Taylor expansion, and it can be generalized to

other functional spaces, as discussed in [5]. The complete proof can be found in Lemma 8.3

[9].

As it was mentioned before, due to it characteristics Wavelets allow for the characterizations
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of different functional spaces. For example, a function f belongs to the Hölder space Cs if

and only if there is a constant C > 0 such that in an r-regular MRA (r > s) the wavelet

coefficients satisfy the following two conditions:

(i) |cj0,k| ≤ C,

(ii) |dj,k| ≤ C · 2−j(s+
1
2

), j ≥ j0, k ∈ Z . (1.40)

Similarly, a function f belongs to the Sobolev Ws
2(R) space if and only if the wavelet coeffi-

cients satisfy:

∑
j,k

|djk|2 · (1 + 22js) <∞.

Even the general (non-homogeneous) Besov spaces, can be characterized by moduli of the

wavelet coefficients of its elements. For a given r-regular MRA with r > max{σ, 1}, the

following result holds: (see Meyer 1992, page 200)

Theorem 1.1.3. Let Ij be a set of indices so that {ψi, i ∈ Ij} constitutes an o.n. basis of

the detail space Wj . There exist two constants C ′ ≥ C > 0 such that, for every exponent

p ∈ [1,∞], for each j ∈ Z and for every element f(x) =
∑

i∈Ij diψi(x) in Wj ,

C||f ||p ≤ 2j/22−j/p

∑
i∈Ij

|di|p
1/p

≤ C ′||f ||p.

This result enables the following characterization of Besov Bσp,q spaces. If the MRA has

regularity r > s, then wavelet bases are Riesz bases for all 1 ≤ p, q ≤ ∞, 0 < σ < r.

The function f =
∑

k cj0kφj0k(x) +
∑

j≥j0
∑

k djkψjk(x) belongs to Bσp,q space if its wavelet

coefficients satisfy the following conditions:
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(i) The lp norm of the scaling coefficients {cj0,k, k ∈ Z} is bounded. Thus:

(∑
k

|cj0,k|p
)1/p

<∞, and

(ii) The sequence of detail coefficients given by:


∑
i∈Ij

2j(σ+1/2−1/p)|di|p
1/p

, j ≥ j0


is an `q sequence, i.e,

[∑
j≥j0

(
2j(σ+1/2−1/p)(

∑
k |dj,k|p)1/p

)q]1/q

<∞.

The aforementioned results concern with global regularity of functions via Wavelets. On

the other hand, it is possible to study the the local regularity of functions by inspecting the

magnitudes of their wavelet coefficients. For more details, the the work of Jaffard (1991)[10]

and Jaffard and Laurencot (1992)[11] are useful references.

1.1.6 Daubechies-Lagarias Algorithm

It this Thesis, Chapters 2, 3 and 4 propose statistical modeling methodologies that require the

evaluation of wavelet and scaling functions at arbitrary points. For this purpose, we describe

an algorithm for fast numerical calculation of these quantities, based on the Daubechies-

Lagarias (Daubechies and Lagarias, 1991, 1992)[12] local pyramidal algorithm.

For example, in Daubechies’ families the scaling and wavelet function have no explicit rep-

resentations (except for the Haar wavelet). As was mentioned before, for applications such

as density estimation, and non-linear regression, etc., it necessary to find values of DAUB

functions at arbitrary points.

The Daubechies-Lagarias algorithm enables these evaluations of φ and ψ at a any point in the
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support with arbitrary precision. We illustrate the algorithm on wavelets from the Daubechies

family; however, the algorithm works for all orthogonal wavelet filters.

Let φ be the scaling function of the DAUBN wavelet (i.e. a wavelet from Daubechies family

that has N vanishing moments). In this case, the support of φ is [0, 2N − 1]. Let x ∈ (0, 1),

and let dyad(x) = {d1, d2, . . . dn, . . . } be the set of 0-1 digits in the dyadic representation of

x (x =
∑∞

j=1 dj2
−j). By dyad(x, n), we denote the subset of the first n digits from dyad(x),

i.e., dyad(x, n) = {d1, d2, . . . dn}.

Let h = (h0, h1, . . . , h2N−1) be the wavelet filter coefficients. We build two (2N − 1) ×

(2N − 1) matrices as:

T0 = (
√

2 · h2i−j−1)1≤i,j≤2N−1 and T1 = (
√

2 · h2i−j)1≤i,j≤2N−1. (1.41)

Then the local pyramidal algorithm can be constructed based on Theorems 1.1.4 and 1.1.5,

taken from [3].

Theorem 1.1.4. Daubechies-Lagarias, [3]

lim
n→∞

Td1 · Td2 · · · · · Tdn (1.42)

=



φ(x) φ(x) . . . φ(x)

φ(x+ 1) φ(x+ 1) . . . φ(x+ 1)

...

φ(x+ 2N − 2) φ(x+ 2N − 2) . . . φ(x+ 2N − 2)


.

As mentioned in [3], the convergence of ||Td1 · Td2 · · · · · Tdn − Td1 · Td2 · · · · · Tdn+m|| to

zero, for fixed m, is exponential and constructive, therefore, effective decreasing bounds on

the error can be established.

26



Example 1.1.1. Consider the DAUB2 scaling function (N = 2). The corresponding filter is

given by h =
(

1+
√

3
4
√

2
, 3+

√
3

4
√

2
, 3−

√
3

4
√

2
, 1−

√
3

4
√

2

)
. Using (1.41), the matrices T0 and T1 are structured

as follows:

T0 =


1+
√

3
4

0 0

3−
√

3
4

3+
√

3
4

1+
√

3
4

0 1−
√

3
4

3−
√

3
4

 and T1 =


3+
√

3
4

1+
√

3
4

0

1−
√

3
4

3−
√

3
4

3+
√

3
4

0 0 1−
√

3
4

 .

Now, we will evaluate the scaling function at an arbitrary point, say x = 0.45. Twenty

“decimals” in the dyadic representation of 0.45 are dyad(0.45, 20) = { 0, 1, 1, 1, 0, 0, 1, 1,

0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1 }. In addition to the value at 0.45, the algorithm delivers the

values at 1.45 and 2.45 (the values 0.45, 1.45, and 2.45 are contained in the support of φ, the

interval [0,3]). The values φ(0.45), φ(1.45), and φ(2.45) may be approximated as averages

of the first, second, and third row, respectively in the matrix

∏
i∈dyad(0.45,20)

Ti =


0.86480582 0.86480459 0.86480336

0.08641418 0.08641568 0.08641719

0.04878000 0.04877973 0.04877945

 .

Using Daubechies-Lagarias algorithm, it is only possible to obtain the values of the scaling

function. In many applications, most of the evaluation require the wavelet function as well.

For this purpose, it turns out that it is possible to use the same algorithm, due to the following

result, taken from [3].

Theorem 1.1.5. Vidakovic (1999)[3] Let x be an arbitrary real number, let the wavelet be
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given by its filter coefficients, and let u with 2N − 1 be a vector defined as:

u(x) = {(−1)1−b2xchi+1−b2xc, i = 0, . . . , 2N − 2}.

If for some i the index i+ 1−b2xc is negative or larger than 2N −1, then the corresponding

component of u is equal to 0.

Let the vector v be defined as follows:

v(x, n) =
1

2N − 1
1′

∏
i∈dyad({2x},n)

Ti,

where 1′ = (1, 1, . . . , 1) is the row-vector of ones. Then,

ψ(x) = lim
n→∞

u(x)′v(x, n),

and the limit is constructive.

As noted in [3], the proof of this theorem is a straightforward but somewhat tedious re-

expression of (1.25).

1.1.7 Wavelets “Disbalance” Energy in Data

By the use of orthogonal wavelets transformations3, it is possible to detect the uneven distri-

bution of energy within a signal. This feature of signals is very useful in applications such

as data compression, since a signal can be well described by only a few energetic compo-

nents. Similarly, since Wavelet transformations map a signal into a two dimensional space

(i.e. scale and location), this energetic disbalance can be translated into scale-wise energy

contributions. In particular, this application will be studied in Chapter 6, where we propose
3Here, we emphasize the orthogonal nature of the transformation, since it is crucial for the energy conservation

after the mapping into the wavelet domain. This follows from Parseval’s theorem.
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a systematic way to express usual time series correlation into a weighted sum of scale-level

correlations between wavelet expansion coefficient.

1.1.8 Discrete Wavelet Transformations

Discrete wavelet transformations (DWT) enable the mapping of data from the time domain

(the original or input data, signal vector’s original domain) to the wavelet domain. These

transformations are linear and they can be defined by matrices of dimension n × n if they

are applied to inputs of size n. Indeed, when the decimated type transformation is used,

the resulting vector has the same size of the original signal. Depending on the boundary

conditions, the transformation matrices can be either orthogonal or “close” to orthogonal.

In the former case, when the utilized matrix is orthogonal, the transformation corresponds

simply to a rotation in Rn, where the signal vectors can be interpreted as coordinates of a

single point. The coordinates of the point in the new, rotated space correspond to the discrete

wavelet transformation of the original coordinates.

In 1989, Mallat (1989a,b)[13] formally defined the link between wavelets, multiresolution

analyses and cascade algorithms, producing a constructive and efficient procedure for imple-

menting the discrete wavelet transformation. His results relate the expansion wavelet coeffi-

cients from different multiresolution levels in the transformation by filtering the signal with

two filters h and g.

This direct relation between the original signal and the expansion coefficients from the space

VJ , for some multiresolution index J is very convenient. Indeed, it is exact for wavelets such

as Haar, Shannon, some biorthogonal and halfband-filter wavelets (interpolating wavelets)

and close to exact for other kinds of wavelets, for example coiflets. Then, coarser smooth

and complementing detail spaces are (VJ−1,WJ−1), (VJ−2,WJ−2), etc. Note that decreasing

the index in V -spaces is equivalent to coarsening or smoothing the approximation to the
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original data.

Along this line, by a simple substitution of indices in the scaling equations (1.11) and (1.25),

it is possible to obtain:

φj−1,l(x) =
∑
k∈Z

hk−2lφjk(x) and ψj−1,l(x) =
∑
k∈Z

gk−2lφjk(x). (1.43)

These relations in (1.43) are fundamental in developing the cascade algorithm, as it will be

shown next.

Suppose a multiresolution analysis · · · ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ . . . . Since Vj = Vj−1 ⊕

Wj−1, any function vj ∈ Vj can be uniquely represented as vj(x) = vj−1(x) + wj−1(x),

where vj−1 ∈ Vj−1 and wj−1 ∈ Wj−1. It is a common practice in the literature to denote the

coefficients associated with φjk(x) and ψjk(x) by cjk and djk, respectively.

Under these definitions it follows,

vj(x) =
∑
k

cj,kφj,k(x)

=
∑
l

cj−1,lφj−1,l(x) +
∑
l

dj−1,lψj−1,l(x)

= vj−1(x) + wj−1(x). (1.44)

By using the general scaling equations (1.43), orthogonality of wj−1(x) and φj−1,l(x) for any
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j and l, and additivity of inner products, it is possible to obtain:

cj−1,l = 〈vj, φj−1,l〉

= 〈vj,
∑
k

hk−2lφj,k〉

=
∑
k

hk−2l〈vj, φj,k〉 (1.45)

=
∑
k

hk−2lcj,k.

Using the same argument, it follows that dj−1,l =
∑

k gk−2lcj,k.

Note that the cascade algorithm also works in reverse direction. In fact, expansion coefficients

in the next finer scale corresponding to Vj can be obtained from the coefficients corresponding

to Vj−1 and Wj−1. The relation given by:

cj,k = 〈vj, φj,k〉

=
∑
l

cj−1,l〈φj−1,l, φj,k〉+
∑
l

dj−1,l〈ψj−1,l, φj,k〉 (1.46)

=
∑
l

cj−1,lhk−2l +
∑
l

dj−1,lgk−2l,

describes a single step in the reconstruction algorithm.

Note that from Eq.(1.44) each each function vj(x) can be expressed via a change of basis.

For example, the change of basis in V1 from B1 = {φ1k(x), k ∈ Z} to B2 = {φ0k, k ∈

Z} ∪ {ψ0k, k ∈ Z} can be obtained through a matrix multiplication. Since this can be

applied to any arbitrary multiresolution index j, then it is possible to define the DWT via

matrix multiplication.
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Discrete Wavelet Transformations as Matrix Transformations

Suppose the length of the input signal is 2J , and let h = {hs, s ∈ Z} be the wavelet filter

and N > 0 to be an appropriately chosen constant.

Denote by Hk a matrix of size (2J−k × 2J−k+1), k = 1, . . . with entries given by:

hs, s = (N − 1) + (i− 1)− 2(j − 1) modulo 2J−k+1, (1.47)

at the position (i, j).

Observe that Hk is a circulant matrix, its ith row is 1st row circularly shifted to the right by

2(i− 1) units. This circularity results from using the modulo operator in (1.47).

By analogy, it is possible to define a matrix Gk by using the filter g. A version of Gk cor-

responding to the already defined Hk can be obtained by changing hi by (−1)ihN+1−i. The

constant N is a shift parameter and affects the position of the wavelet on the time scale.

For filters from the Daubechies family, a standard choice for N is the number of vanishing

moments.

Note that the matrix

 Hk

Gk

 is a basis-change matrix in 2J−k+1 dimensional space; conse-

quently, it is unitary.

Therefore,

I2J−k = [H ′k G
′
k]

 Hk

Gk

 = H ′k ·Hk +G′k ·Gk.

and

I =

 Hk

Gk

 · [H ′k G′k] =

 Hk ·H ′k Hk ·G′k

Gk ·H ′k Gk ·G′k

 .
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That implies,

Hk ·H ′k = I, Gk ·G′k = I, Gk ·H ′k = Hk ·G′k = 0, and H ′k ·Hk +G′k ·Gk = I.

Now, for a given sequence y, the J-step wavelet transformation denoted as d is given by

d = WJ · y, where

W1 =

 H1

G1

 , W2 =


 H2

G2

 ·H1

G1

 ,

W3 =




 H3

G3

 ·H2

G2

 ·H1

G1


, . . .

Note that the obtained vector d = Wk · yi has the following structure:

d = [cJ−k; dJ−k; dJ−k+1; ...; dJ−2; dJ−1] (1.48)

In the last expression k corresponds to the number of steps in the DWT (usually, k = J).

Also, it is important to mention that due to the decimated nature of the chosen DWT (in this

case), the size of the vector d is also N (as in the original data vector yi). In (1.48), cJ−k

corresponds to the smooth coefficients at scale level J − k; similarly, dJ−k corresponds to

the set of detail coefficients at the scale level J − k.

In the next Chapter, a methodology for the robust estimation of survival probability densities

in the presence of randomly censored data based on the use of wavelet approximations is

introduced and analyzed.
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CHAPTER 2

AN EMPIRICAL APPROACH TO SURVIVAL DENSITY ESTIMATION FOR

RANDOMLY-CENSORED DATA USING WAVELETS

Density estimation is a classical problem in statistics and has received considerable attention

when both the data has been fully observed and in the case of partially observed (censored)

samples. In survival analysis or clinical trials, a typical problem encountered in the data

collection stage is that the samples may be censored from the right. The variable of interest

could be observed partially due to the presence of a set of events that occur at random and

potentially censor the data. Consequently, developing a methodology that enables robust

estimation of the lifetimes in such setting is of high interest for researchers.

In this Chapter, we propose a non-parametric linear density estimator using empirical wavelet

coefficients that are fully data driven. We derive an asymptotically unbiased estimator con-

structed from the complete sample based on an inductive bias correction procedure. Also, we

provide upper bounds for the bias and analyze the large sample behavior of the expected L2

estimation error based on the approach used by Stute (1995)[14], showing that the estimates

are asymptotically normal and possess global mean square consistency.

In addition, we evaluate the proposed approach via a theoretical simulation study using dif-

ferent exemplary baseline distributions with different sample sizes. In this study, we choose

a censoring scheme that produces a censoring proportion of 40% on average. Finally, we ap-

ply the proposed estimator to real data-sets previously published, showing that the proposed

wavelet estimator provides a robust and useful tool for the non-parametric estimation of the

survival time density function.

34



2.1 Introduction

Density estimation is a classical problem in statistics and has received considerable attention

when both the data has been fully observed and also in the case of partially observed (cen-

sored) samples. See [15, 16, 17] for thorough discussions about this topic. In areas such as

survival analysis, the estimate of the lifetime density function is of a major importance. In

fact, the knowledge of how the lifetimes behave in medical follow-up research or reliability

analysis is paramount to get insights, draw conclusions, derive results, make comparisons

and/or characterize the underlying death/failure process.

In general, the density estimation problem can be approached from either a parametric or

non-parametric perspective. In the first case, an assumption is made about the particular

distribution or family of distributions to which the density of interest belongs. As can imme-

diately be observed, that approach causes the estimated function to be completely dependant

on the such assumption which may prove of high benefit in the case when it is correct or

close-to correct. However, if the elicited family for the target density is not correct, the

parametric approach may lead to unsatisfactory results.

Because of the uncertainty about parametric family, the non-parametric approach for density

estimation has become a popular topic of research in statistics. In particular, popular methods

for density estimation include kernel and nearest neighbors methods [18]. Another approach

for the aforementioned problem consists of the use of orthogonal series (see [19, 20]). In this

approach, wavelets can be utilized since they can generate orthonormal bases for functions

belonging to different functional spaces such as L2(R), Sobolev, Besov, etc.

One of the first uses of wavelets in density estimation could be traced back to papers by

Doukhan and Leon (1990)[21], Antoniadis and Carmona (1991)[22], Kerkyacharian and Pi-

card (1992)[23] and Walter (1992)[24]. Moreover, due to their locality in both time and fre-

35



quency and their exceptional approximation properties, wavelets provide a good choice for

density estimation. See e.g. Meyer (1992)[25], Daubechies (1992)[5], Donoho and Johnstone

(1994, 1995, 1998)[26, 27, 28] for detailed discussions about the properties of wavelets in

this context. Also, in Vidakovic (1999)[3] an extensive and thorough discussion of wavelets

and their application in statistical modeling can be found.

Even though wavelets offer major advantages for curve estimation, there is a potential prob-

lem associated with their use in density estimation: there is no guarantee that the estimates

are positive or integrate to 1 when using general scaling functions φ. As described in [18],

the negative values may appear often in the tails of the target distribution. Nonetheless, that

can be addressed; a possible remedial approach is the estimation of the square root of the

density which allows then to square back to get a non-negative estimate integrating to 1 (as

can be see in Pinheiro and Vidakovic (1997) [29]).

In survival analysis or clinical trials, a typical problem encountered in the data collection

stage is that the samples may be censored from the right. The variable of interest may be

prevented to be fully observed due to the presence of random events (typically assumed to be

independent of the variable of interest) and potentially censor the data. A common example

of right censoring in clinical trials is the situation in which a patient leaves the study before

its termination or was still alive by the end of the observation period. In these cases, only a

subset of the observations are fully observed lifetimes; the others are partially observed and it

is only known that the actual lifetime was greater than equal to the time at which the subject

ceased to be observed (i.e. the censored time).

Let X1, ..., XN be i.i.d. survival times with a common unknown density function f . Also,

let T1, ..., TN be i.i.d. censoring times with a common unknown density g. Typically (and in

the sequel) it is assumed that for i = 1, ..., N Xi ⊥ Ti (here, ⊥ stands for statistical inde-

pendence). In the context of partially observed data, instead of fully observing X1, ..., XN ,
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we observed an i.i.d. sequence {Yi , δi}Ni=1, where Yi = min (Xi , Ti) and δi = 1(Xi≤Ti). The

function 1(·) stands for the indicator function.

In this Chapter, we propose a linear estimator based on an orthogonal projection onto a de-

fined multiresolution space VJ using empirical wavelet coefficients that are fully data driven.

We derive an asymptotically unbiased estimator constructed from the complete sample based

on a an inductive bias correction. Also, we provide estimates for the bias and large sample

behavior of the expected L2 error based on the approach used by Stute (1995)[14]. In ad-

dition, we evaluate the performance of the proposed estimator via a simulation study using

different exemplary unimodal and multimodal baseline distributions under different sample

sizes. For this purpose, we chose an exponential censoring scheme that produces a censoring

proportion of 40% on average. Finally, we apply the proposed estimator to real data-sets

previously used in other published results in the field of non-parametric density estimation.

Our results are based on wavelets periodic on the interval [0, 1] and are derived under the

assumption that both densities f and g are continuous and the survival function of the cen-

soring random variable T is bounded from below by an exponentially decaying function.

Also, we assume that the scaling function φ is absolutely integrable and the multiresolu-

tion space index J used for the projection is chosen as a function of the sample size N as

J = blog2(N)− log2(log(N))c. The only assumption that we impose on the target density f

is that it belongs to the s-sobolev space Hs.

2.1.1 Overview of previous and current work in the area

In the context of wavelets applied to density estimation with complete data, Donoho, et al.

(1992) [28] proposed a wavelet estimator based on thresholded empirical wavelet coefficients

and investigate the minimax rates of convergence over a wide range of Besov function classes

Bσpq. They choose the resolution of projection spaces such that the estimator achieves the
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proper convergence rates. As it can be seen in recent literature, their work is fundamental for

subsequent research in the field.

A work by Vanucci (1998) [30] provides overview of different wavelet-based density esti-

mators, emphasizing their properties and comparison with classical estimators. In her paper,

the author provides a general description of an orthonormal wavelet basis, focusing on the

properties that are essential for the construction of wavelet density estimators. Also, a de-

scription of linear and thresholded density estimators is provided. This works constitutes a

comprehensive reference for density estimation in the context of complete data.

Following the available results in the context of complete-data density estimation (i.e. no

censoring), Pinheiro and Vidakovic (1997) [29] propose estimators of the square root of a

density based on compactly supported wavelets. Their estimator is a bona-fide density with

L1 norm equal to 1, taking care of possible negative values resulting from the usual estimation

of the density f .

Now in the context of density estimation with censored data, Antoniadis et al. (1999) [20]

proposed a wavelet method based on dividing the time axis into a dyadic number of intervals

and counting the number of occurrences within each one. Then, they use wavelets smoothers

based on wavelets on the interval (see [5]) to get the survival function of the observations.

Also, they obtain the best possible asymptotic mean integrated square error (MISE) conver-

gence rate under the assumption that the target density f is r−times continuously differen-

tiable and the censoring density g is continuous.

Later on, Li (2003)[31] provides a non-linear wavelet-based density estimator under random

censorship that uses a thresholded series expansion of the sub-density f1(x) = f(x)1{x≤T}

where T < τH and τH = inf {x : FY (x) = 1}. This approach is based on compactly sup-

ported φ and ψ (father and mother wavelet, respectively) and detail coefficients djk are thresh-
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olded according to d̃jk = d̂jk1{|d̂jk|>δ} for a suitable defined threshold δ and parameter j = q

for the wavelet expansion. In his work, Li provides and asymptotic expansion for the MISE

and calculate the convergence rates under smoothness and regularity assumptions on the tar-

get density f . This work is then further extended in Li (2007) [32], where the minimax

optimality of the thresholded wavelet-based estimator is investigated over a large range of

Besov function classes.

One of the most recent works in the context of censored data was developed by Zou and

Liang (2017) [33]. They define a non-linear wavelet estimator for the right censoring model

in the case when the censoring indicator δ is missing at random. They develop an asymptotic

expression for the MISE which is robust under the presence of discontinuities in f . Their

estimator reduces to the one proposed by Li (2003) when the censoring indicator missing at

random does not happen and a bandwidth in non-parametric estimation is close to zero.

2.1.2 About Periodic Wavelets

For the implementation of the functional estimator, we choose periodic wavelets as an or-

thonormal basis. Even though this kind of wavelets exhibit poor behaviour near the bound-

aries (when the analyzed function is not periodic, high amplitude wavelet coefficients are

generated in the neighborhood of the boundaries) they are typically used due to the relatively

simple numerical implementation and compact support. Also, as was suggested by Donoho

and Johnstone (1994)[34], this simplification affects only a small number of wavelet coeffi-

cients at each resolution level.

Periodic wavelets in [0, 1] are defined by a modification of the standard scaling and wavelet
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functions:

φperj,k (x) =
∑

l∈Z φj,k(x− l) , (2.1)

ψperj,k (x) =
∑

l∈Z ψj,k(x− l) . (2.2)

It is possible to show, as in [35], that
{
φper0,0 (x), ψperj,k (x), 0 ≤ k ≤ 2j − 1, j ≥ 0

}
consti-

tutes an orthonormal basis for L2[0, 1]. Consequently, due to the hierarchical containment

of the spaces, it follows that ∪∞j=0V
per
j = L2[0, 1], where V per

j is the space spanned by{
φperj,k (x), 0 ≤ k ≤ 2j − 1

}
. This allows to represent a function f with support in [0, 1] as:

f(x) = 〈f(x), φper0,0 (x)〉φper0,0 (x) +
∑
j≥0

2j−1∑
k=0

〈f(x), ψperj,k (x)〉ψperj,k (x) . (2.3)

Also, for a fixed j = J , we can obtain an orthogonal projection of f(x) onto VJ denoted as

PJ(f(x)) given by:

PJ(f(x)) =
2J−1∑
k=0

〈f(x), φperJ,k (x)〉φperJ,k (x) (2.4)

Since periodized wavelets provide a basis for L2([0, 1]), we have that ‖ f(x)−PJ(f(x)) ‖2→

0 as J → ∞. Also, it can be shown that ‖ f(x) − PJ(f(x)) ‖∞→ 0 as J → ∞. Therefore,

we can see that PJ(f(x)) uniformly converges to f as J → ∞. Similarly, as discussed in

[5] it is possible to assess the approximation error for a certain density of interest f using a

truncated projection (i.e. for a certain chosen detail space J). For example, using the s-th

Sobolev norm of a function defined as:

‖ f(x) ‖Hs=

√∫
(1 + |x|2)s|f(x)|2dx , (2.5)

one defines the Hs sobolev space, as the space that consists of all functions f whose s-
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Sobolev norm exists and is finite. As it is shown in [5]:

‖ f(x)− PJ(f(x)) ‖2≤ 2−J ·s· ‖ f ‖Hs[0,1] . (2.6)

From (2.6), for a pre-specified ε > 0 one can choose J such that ‖ f(x) − PJ(f(x)) ‖2≤ ε.

In fact, a possible choice of J could be:

J ≥ −d1
s

log2(
ε

‖ f ‖Hs[0,1]

)e . (2.7)

Therefore, it is possible to approximate a desired function to arbitrary precision using the

MRA generated by a wavelet basis.

As a final comment to this brief introductory section about periodic wavelets, it is important

to point out the relation between discrete wavelets coefficients (i.e. those obtained through

DWT1) and the continuous wavelet coefficients (i.e. those obtained through the CWT2):

As shown by Antoniadis and Bigot (2001)[36], we have that because of the difference in

orthonormality conditions between the continuous and discrete case, we have that:

cj0k ≈
√
nαj0k

djk ≈
√
nβjk

where cj0k and djk correspond to the discrete wavelet coefficients, n is the sample size and

αj0k, βjk are the coefficients corresponding to the CWT.

1Discrete wavelet transformation
2Continuous wavelet transformation
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2.2 Survival Density Estimation for right-censored data using Periodized Wavelets

2.2.1 Problem statement, assumptions and derivation of the estimator for a density f(x).

Consider a sample of iid lifetimes (non-negative) of the form X̃1, ..., X̃N drawn from a

random variable X̃ ∼ f̃(·), with unknown density f̃ ∈ L2(R). Furthermore, let τX̃ =

inf
{
x̃ : F̃X̃(x̃) = 1

}
, where F̃X̃(x̃) corresponds to the cumulative density function (cdf) of

the random variable X̃ .

Define the target density (i.e. the density to be estimated) as f̃c(x̃) = f̃(x̃)1{x̃≤τX̃}, which

corresponds to f̃(·) constrained to the interval [0, τX̃ ]. This definition implies that f̃c(x̃) =

f̃(x̃), for x̃ ≤ τX̃ .

From the observed sample X̃1, ..., X̃N , and a pre-specified τ > 0, define the normalized

random variable X = 1
τ
X̃ . Then, it follows:

fX(x) = τ fX̃(τx)1{x≤ τX̃τ } , (2.8)

for the domain-restricted density f̃c(x̃).

Remarks

(i) If τ = τX̃ the normalized random variable X has support in [0,1] with density given by

f(x) = fX(x).

(ii) In practice, since f̃ is not known, it is possible to select τ = max
{
X̃1, ..., X̃N

}
; this,

since in general X̃(N)
P→ τX̃ where the operator P→ denotes convergence in probability.

(iii) Note that the definition f̃c(x̃) = f̃(x̃)1{x̃≤τX̃} corresponds exactly to the conditional

density f̃X̃|X̃≤τX̃ (x̃).
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In the sequel, it will be assumed that the random variable X was obtained presented above,

with a probability density of the form (2.8).

Representing f(x) using Wavelets

Using a multiresolution analysis (MRA) based on periodized wavelets in [0, 1], the density

f(·) can be expressed as:

f(x) =
∑
j∈Z

∑
k≥0

djk · ψperjk (x) . (2.9)

Using the hierarchical structure of the MRA, for a pre-specified multiresolution scale J = J0,

(2.9) can be expressed as:

f(x) =
∑
k∈Z

cJ0,k · φ
per
J0,k

(x) +
∑
j≥J0

∑
k∈Z

djk · ψperjk (x) , (2.10)

for φperjk (x) = 2
j
2φper(2jx− k), and ψperjk (x) = 2

j
2ψper(2jx− k) for j, k ∈ Z.

Because periodic extensions of wavelets in [0, 1] are used, the support of the scaling function

φperjk (x) and the wavelet function ψperjk (x) is [k · 2−j, (k + 1) · 2−j] where k = 0, ..., 2j−1, and

by the Strang-fix condition j ≥ 0.

From (2.10), the summation over the MRA scale index j goes from J0 to ∞. This implies

that it is possible to approximate f(·) by truncating the summation up to scale index J∗.

Therefore, it follows:

f̂J∗(x) =
∑

k∈K(J0)

cJ0,k · φ
per
J0,k

(x) +
J∗∑
j≥J0

∑
k∈K(j)

djk · ψperjk (x) , (2.11)

where K(J0) =
{
k ∈ N | 0 ≤ k ≤ 2J0−1

}
and K(j) = {k ∈ N | 0 ≤ k ≤ 2j−1}. In the se-

quel, the value of J∗ will be assumed to be selected as a function of the sample size N .
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In the wavelet series approximation of f(·) defined by (2.11), the coefficients cJ0,k and djk are

given by the orthogonal projection of f(·) onto each subspace V per
J0

and W per
j in the MRA3.

Here, V per
J0

andW per
j correspond to the functional spaces spanned by

{
φperJ0,k , 0 ≤ k ≤ 2J0 − 1

}
,

and
{
ψperj,k , 0 ≤ k ≤ 2j − 1 , J0 ≤ j ≤ J∗

}
respectively. Using this definitions, it follows:

cJ0,k =

∫ 1

0

f(x) · φperJ0,k(x)dx = 〈f(x), φperJ0,k(x)〉 , (2.12)

djk =

∫ 1

0

f(x) · ψperj,k (x)dx = 〈f(x), ψperj,k (x)〉 . (2.13)

Clearly, since f is a probability density, (2.12) and (2.13) can be represented as:

cJ0,k = Ef [φperJ0,k(X)] , (2.14)

djk = Ef [ψperj,k (X)] . (2.15)

Substituting (2.14) and (2.15) in (2.11), f̂J∗(x) takes the form:

f̂J∗(x) =
∑

k∈K(J0)

Ef [φperJ0,k(X)] · φperJ0,k(x) +
J∗∑
j≥J0

∑
k∈K(j)

Ef [ψperj,k (X)] · ψperjk (x) . (2.16)

Using (2.16) and assuming X1, ..., XN ∼ f(·) are iid, for f(·) unknown, it is possible to

estimate the coefficients cJ0,k and djk from the sample as follows:

c̃J0,k =
1

N

N∑
i=1

φperJ0,k(Xi) , (2.17)

d̃j,k =
1

N

N∑
i=1

ψperj,k (Xi) . (2.18)

3In fact, from the MRA approach we have that V per
J∗ = V per

J0
⊕ ∪J∗

j=J0
W per

j .
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Therefore, the data-driven estimated density f̂J∗(x) can be expressed as:

f̂J∗(x) =
∑

k∈K(J0)

(
1

N

N∑
i=1

φperJ0,k(Xi)

)
· φperJ0,k(x) +

J∗∑
j≥J0

∑
k∈K(j)

(
1

N

N∑
i=1

ψperj,k (Xi)

)
· ψperjk (x) .

(2.19)

From (2.19), it follows that f̂J∗(x) was constructed based on fully observed realizations of

the lifetime random variableX . Therefore, a natural extension is the modification of (2.19) to

allow the introduction of partially observed (censored) samples; in particular, we will focus

on the case of right-censored data.

2.2.2 Estimating f̂J∗(x) in the case of partially observed data.

Consider a random variableX that is distributed with an unknown density f(x). Furthermore,

suppose an observed sample {Yi, δi}Ni=1 that is composed on both fully, and partially observed

realizations of X . In the sample, Yi is defined as:

Yi = min (Xi, Ti) i = 1, ..., N , (2.20)

for T1, ..., TN being iid random variables from an unknown distribution T ∼ g(t), which is

the right-censoring sequence that causes some realizations from X to be partially observed,

and is assumed to be independent of X . Also δi, representing the censoring indicator, is

defined as:

δi = 1(Xi≤Ti) i = 1, ..., N , (2.21)

where 1(Xi≤Ti) = 1 if and only if (Xi ≤ Ti) and 0 otherwise. Therefore, δi = 0 represents

a life-time Xi that was observed only up to time Ti, for which we can only conclude that

Xi > Ti.

Since the observed data is {Yi, δi}Ni=1, from (2.20) and (2.21), the joint distribution of the pair

45



(Y, δ) can be obtained as follows:

P(Y ≤ y, δ = 1) = P (min(X,T ) ≤ y,X ≤ T )

=

∫ y

−∞
P (T ≥ x) f(x)dx

=

∫ y

−∞
(1−G(x)) f(x)dx , (2.22)

where G(x) = P (T ≤ x). Similarly, for P(Y ≤ y, δ = 0) and a fixed y, it follows:

P(Y ≤ y, δ = 0) = P (min(X,T ) ≤ y,X > T )

=

∫ +∞

−∞
P (T ≤ min(x, y)) f(x)dx

=

∫ y

−∞
P (T ≤ x) f(x)dx+

∫ +∞

y

P (T ≤ y) f(x)dx

=

∫ y

−∞
G(x)f(x)dx+G(y)

∫ +∞

y

f(x)dx

=

∫ y

−∞
G(x)f(x)dx+G(y)(1− F (y)) . (2.23)

From (2.22) and (2.23) it follows:

fY,δ(y, δ) = f(y)δ(1−G(y))δg(y)1−δ(1− F (y))1−δ . (2.24)

Similarly, from (2.24), the marginal density of the complete-data sample Y can be expressed

as:

fY (y) = fX(y)(1−GT (y)) + gT (y)(1− FX(y)) , (2.25)

where the subscripts X and T are placed to emphasize the relation between each density

function and its corresponding random variable.
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Assuming 0 < GT (y) < 1, f(x), from (2.25) it follows that f(x) can be expressed as:

fX(y) =
fY (y)

1−GT (y)
− (1− FX(y))gT (y)

1−GT (y)
. (2.26)

As was mentioned in 2.2.1, the next sections assume that the observed data has been normal-

ized according to τ = max {Y1, ..., YN}, to restrict the support of the random variable X to

the interval [0, 1].

Complete Data Estimator

From (2.17) and (2.18), (2.25) and (2.26), the wavelet coefficients cJ0,k in the orthogonal

wavelet expansion can be expressed as:

cJ0,k =

∫ 1

0

f(x) · φperJ0,k(x)dx

=

∫ 1

0

(
fY (y)

1−GT (y)
− (1− FX(y))gT (y)

1−GT (y)

)
· φperJ0,k(x)dx .

Therefore:

cJ0,k = EY
[

φperJ0,k(Y )

(1−G(Y ))

]
− ET

[
(1− F (Y ))φperJ0,k(Y )

(1−G(Y ))

]
. (2.27)

Similarly, for the coefficients dj,k, it follows:

dj,k = EY
[

ψperj,k (Y )

(1−G(Y ))

]
− ET

[
(1− F (Y ))ψperj,k (Y )

(1−G(Y ))

]
. (2.28)

Remarks:

(i) Expressions (2.27) and (2.28) are valid assuming 0 < G(y) < 1 for y ∈ [0, 1].
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(ii) In the case of non-censored data, G = δ∞ (i.e. Dirac at∞) and, for i = 1, ..., N δi = 1.

Therefore, fY,δ = f(x). Thus, (2.27) and (2.28) collapse into 1
N

∑N
i=1 φ

per
Jk (Yi) and

1
N

∑N
i=1 ψ

per
Jk (Yi) respectively, which is the usual orthogonal-series density estimator

scheme.

Using an empirical approach as in (2.17) and (2.18), it follows:

c̃J0,k =
1

N

N∑
i=1

φperJ0,k(Yi)

1−G(Yi)
− 1

N

N∑
i=1

1(δi=0)(1− F (Yi))φ
per
J0,k

(Yi)

(1−G(Yi))
, (2.29)

provided 0 < G(Yi) < 1, for i = 1, ..., N .

Finally, the data-driven estimated density f̂J∗(x) can be expressed as:

f̂J∗(x) =
∑

k∈K(J0)

(
1

N

N∑
i=1

αφi · φ
per
J0,k

(Yi)

)
·φperJ0,k(x)+

J∗∑
j≥J0

∑
k∈K(j)

(
1

N

N∑
i=1

αψi · ψ
per
j,k (Yi)

)
·ψperjk (x) ,

(2.30)

where:

αφi = αψi =
1

1−G(Yi)
−

1(δi=0)(1− F (Yi))

1−G(Yi)
, (2.31)

for i = 1, ..., N .

As can be seen from (2.30) and (2.31), the computation of (2.30) implies addressing the

following issues:

(i) Estimation of G(Yi) and F (Yi) for i = 1, ..., N .

(ii) Computation of αφi , for i = 1, ..., N .

(iii) Computation of φperJ0,k(Yi) and ψperj,k (Yi) for i = 1, ..., N , j = J0, ..., J
∗ and 0 ≤ k ≤

2j−1.
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Naturally, G(Yi) and F (Yi) can be obtained using the Kaplan-Meier estimator, which is well

known for its robustness in the presence of censored data. Similarly, φperJ0,k(Yi) and ψperj,k (Yi)

we can computed using Daubechies-Lagarias algorithm.

Denote
{

(Y(i), δ̃(i))
}N
i=1

as the ranked sample {(Yi, δi)}Ni=1 with respect to Yi, where δ̃(i) =

1− δ(i). Using Kaplan-Meier, it follows:

ĜN(Y(i)) = Ĝ(Y(i)) =
i∑

k=1

(
δ̃(k)

N − k + 1

k−1∏
j=1

(1−
δ̃(j)

N − j + 1
)

)
, (2.32)

F̂N(Y(i)) = F̂ (Y(i)) =
i∑

k=1

(
δ(k)

N − k + 1

k−1∏
j=1

(1−
δ(j)

N − j + 1
)

)
, (2.33)

for i = 1, ..., N . Thus, the estimated density f̂J∗(x) can be expressed as:

f̂J∗(x) =
∑

k∈K(J0)

(
1

N

N∑
i=1

αφ(i) · φ
per
J0,k

(Y(i))

)
· φperJ0,k(x)

+
J∗∑
j≥J0

∑
k∈K(j)

(
1

N

N∑
i=1

αψ(i) · ψ
per
j,k (Y(i))

)
· ψperjk (x) , (2.34)

where:

αφ(i) = αψ(i) =
1

1− Ĝ(Y(i))
−

1(δi=0)(1− F̂ (Y(i)))

1− Ĝ(Y(i))
, (2.35)

for 0 < Ĝ(Y(i)) < 1, i ∈⊂ {1, ..., N}, K(J0) =
{

0, 1, ..., 2J0 − 1
}

, and

K(j) = {0, 1, ..., 2j − 1; j ≥ J0}.

From section 2.1.2, for a properly chosen multiresolution index J , the estimated density

f̂J(x) can be approximated by a truncated projection PJ(f(x)) onto a multiresolution space

VJ spanned by the functions
{
φperJk , 0 ≤ k ≤ 2J − 1

}
. Under this setting, f̂J∗(x) takes the
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form:

f̂J(x) =
2J−1∑
k=0

˜cJk · φperJ,k (x) , (2.36)

where:

˜cJk =
1

N

N∑
i=1

αφ(i) · φ
per
J,k (Y(i)) . (2.37)

Note here that in the expansion, we only use the scaling functions φperJ,k (·) evaluated at the

sample points. This representation is equivalent to (2.11), where the detail coefficients

dj,k, k = 0, ..., J−1 can be obtained from
{
cJ,k, k = 0, ..., 2J − 1

}
using Mallat’s algorithm.

Partial-Data Estimator assuming G(y) is known.

From definition (2.36), using an iterative bias-correction procedure it is possible to obtain an

unbiased estimator for (2.36), which is given by:

f̂PD(x) =
2J−1∑
k=0

c̃Jk · φperJ,k (x) , (2.38)

where:

c̃Jk =
1

N

N∑
i=1

1(δi=1)

1− Ĝ(Yi)
φperJk (Yi), and (2.39)

E [c̃Jk] = cJk . (2.40)

The corresponding derivation can be found in section A.1 of the appendix.

Remark From (2.39), it is possible to observe that the ”partial data” definition comes from

the fact that the estimator uses only the samples corresponding to actual observations of the

survival time X , as opposed to (2.36) which uses the complete sample Y1, ..., YN . A similar

estimator is proposed by Efromovich in [19] using a fourier basis instead of wavelets. For
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the rest of the sequel, we will focus our theoretical Analysis in this type of estimator.

2.2.3 Statistical properties of the Partial Data Estimator assuming G(y) is known .

Mean Square Consistency.

Now we investigate the mean-square convergence of the estimator f̂PD(x).

Lemma 2.2.1. Define:

µJ(x) = E
[
f̂PD(x)

]
= fJ(x) , (2.41)

σ2
J(x) = V ar

[
f̂PD(x)

]
. (2.42)

Assume the following conditions are satisfied:

(i) The scaling function φ that generates the orthonormal set
{
φperJk , 0 ≤ k ≤ 2J − 1

}
has

compact support and satisfies ||θφ(x)||∞ = C <∞, for θφ(x) :=
∑

r∈Z |φ(x− r)|.

(ii) ∃ F ∈ L2(R) such that |K(x, y)| ≤ F (x− y), for all x, y ∈ R, where

K(x, y) =
∑
k∈Z

φ(x− k)φ(y − k).

(iii) For s = m+ 1, m ≥ 1, integer,
∫
|x|sF (x)dx <∞.

(iv)
∫

(y − x)lK(x, y)dy = δ0,l for l = 0, ..., s.

(v) The density f belongs to the s-sobolev space W s
2 ([0, 1], A), A > 0 defined as:

W s
2 ([0, 1], A) =

{
f | f ∈ L2([0, 1]), ∃ f (1), ..., f (s) s.t. f (l) ∈ L2([0, 1]), l = 1, ..., s, ||f ||∞ ≤ A

}
.
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Then, it follows:

sup
f∈W s

2 ([0,1],A)

E
[
||f̂PD(x)− f(x)||22

]
≤ C1

2J

N
+ C22−2sJ , and (2.43)

for J = blog2(N)− log2(log(N))c:

σ2
J(x) = O(log(N)−1) , (2.44)

E
[
‖ f(x)− f̂PD(x) ‖2

2

]
≤ O(N−s log(N)s) (2.45)

for C1 > 0 , C2 > 0 independent of J and N , provided ∃ α1 | 0 < α1 <∞, CT ∈ (0, 1) such

that (1−G(y)) ≥ CT e
−α1y for y ∈ [0, 1), and 0 ≤ F (y) ≤ 1 ∀y ∈ [0, 1].

The proof can be found in section A.2 of the appendix.

Based on (2.44), it is possible to observe that σ2
J(x) → 0 as N → ∞, which implies that

f̂PD(x) is consistent for f(x), for all x ∈ [0, 1] and f ∈ W s
2 ([0, 1], A).

Remarks

Note that from (2.45), it is possible to choose the multiresolution level J such that the upper

bound for the L2 risk is minimized. In this context, it is possible to show that J∗(N) =

1
2s+1

log2

(
2sC2

C1

)
+ 1

2s+1
log2(N) achieves that result. Moreover, under this choice of J , it

follows:

sup
f∈W s

2 ([0,1],A)

E
[
||f̂PD(x)− f(x)||22

]
≤ C̃N−

2s
2s+1 ,

for a constant C̃ > 0, independent of N and s.
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2.2.4 Statistical properties for Partial Data Estimator assuming G(y) unknown.

In the previous section, we showed that fPD(x) is unbiased for fJ(x) and mean square con-

sistent for f(x) ∈ W s
2 ([0, 1], A), assuming G known and the multiresolution index J for the

orthogonal projection onto the space VJ was chosen as J = blog2(N)− log2(log(N))c.

Naturally, assuming G is known may be questionable because of both the nature of the non-

parametric density estimation approach, and its practical application. In most of real life cases

neither the target density f , nor the censoring density g are known, so making assumptions

about them could undermine the robustness and quality of the estimated functions.

In this section we approach the problem of deriving the partial-data estimator using the data

driven wavelet coefficients proposed in (2.39). In particular, we investigate the statistical

properties of the partial data estimator through the application the methodology proposed by

Stute (1995) [14] that approximates Kaplan-Meier integrals by the average of i.i.d. random

variables plus a remainder that decays to zero at a certain rate.

Asymptotic Unbiasedness.

As was proposed in (2.39), c̃Jk = 1
N

∑N
i=1

1(δ(i)=1)

1−Ĝ(Yi)
φperJk (Yi). Using the methodology and

results proposed by Stute in [14], and assumptions defined in B.3.1, it follows:

N∑
i=1

W(i)φ
per
Jk (Y(i)) =

1

N

N∑
i=1

δiφ
per
Jk (Yi)γ0(Yi) +

1

N

N∑
i=1

Ui +RN , (2.46)

where W(i) = dF̂N(x) is the Kaplan-Meier probability mass function of the random variable

X based on the sample, γ0(Yi) = 1
1−GT (Yi)

and Ui = (1− δi)γ1(Yi)− γ2(Yi) for i = 1, ..., N .

Similarly, γ1(x) = γ1,Jk(x) and γ2(x) = γ2,Jk(x) are given by the following expressions:
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γ1,Jk(x) =
1

1− FY (x)

∫ τH

x

φperJk (u)fX(u)du ,

γ2,Jk(x) =

∫ τH

−∞
C(min {x, u})φperJk (u)fX(u)du ,where

C(x) =

∫ x−

−∞

gT (u)du

(1− FY (u))(1−GT (u))
.

In addition, assume the following conditions are satisfied (from Stute [14]):

∫
φ2(x)γ2

0(x)fY,δ=1(x)dx < ∞ , (2.47)∫
|φ(x)|

√
C(x)fX(x)dx < ∞ . (2.48)

Condition (2.47) corresponds to the requirement of finite second moment (modified) on the

scaling function φ(x), while condition (2.48) incorporates a modification on the first moment

of φ(x) with respect to fX that allows to control de bias in
∫
φperJk (u)f̂N(u)du. For further

details, see [14] and [37].

From the definitions above, it follows:

E [φperJk (Y )δγ0(Y )] = cJk , (2.49)

assuming x < τH for τH = inf {x : FY (x) = 1}.

Also, from (2.32) and (2.33), it follows that dF̂N(x) = f̂N(x); indeed:

dF̂N(x) =


0 if x /∈

{
Y(1), ..., Y(N)

}
δ(i)

N−i+1

∏i−1
j=1

(
1− δ(j)

n−j+1

)
if x = Y(i) , i = 1, ..., N
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After some algebra, it follows:

dF̂N(x) =
δ(i)

N − i+ 1

i−1∏
j=1

(
n− j

n− j + 1

)δ(j)
. (2.50)

Moreover, 1

1−ĜN (Y(i))
can be expressed as:

1

1− ĜN(Y(i))
=

N

N − i+ 1

i−1∏
j=1

(
n− j

n− j + 1

)δ(j)
. (2.51)

Therefore, putting together (2.50) and (2.51), it follows:

δ(i)

N(1− ĜN(Y(i)))
=

δ(i)

N − i+ 1

i−1∏
j=1

(
n− j

n− j + 1

)δ(j)
= dF̂N(x) . (2.52)

These results altogether imply:

∫
φperJk (u)f̂N(u)du = c̃Jk . (2.53)

From Stute (1995), results (2.47)-(2.53) imply that (2.46) can be expressed as:

∫
φperJk (u)f̂N(u)du =

1

N

N∑
i=1

δiφ
per
Jk (Yi)γ0(Yi) +

1

N

N∑
i=1

Ui +RN , (2.54)

whereUi i.i.d. for i = 1, ..., N with E[U1] = 0 , E[U2
1 ] = σ2 <∞ and |RN | = O(N−1 log(N)).

Therefore:

E
[∫

φperJk (u)f̂N(u)du

]
= E

[
1

N

N∑
i=1

δiφ
per
Jk (Yi)γ0(Yi)

]
+ E

[
1

N

N∑
i=1

Ui

]
+O(N−1 log(N)) ,

= cJk +O(N−1 log(N)) . (2.55)
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Thus, bias(c̃Jk) = O(N−1 log(N)), which implies that the partial data approach is asymp-

totically unbiased. The exact bias can be obtained by following the details presented in [14].

L2 Risk Analysis.

Following the same methodology and assumptions used in the previous section, we investi-

gate the estimation error for the partial data approach, in the case where G is unknown.

Lemma 2.2.2. Under the assumptions and definitions stated in B.3.1 and 2.2.4, by choosing

J = blog2(N)− log2(log(N))c, it follows:

sup
f∈W s

2 ([0,1],A)

E
[
‖ f(x)− f̂PD(x) ‖2

2

]
= O(N−s log(N)s) . (2.56)

(2.57)

The corresponding proofs can be found in section A.3 of the appendix.

Remarks

(i) Observe that by following the same methodology as in A.2, it is possible to obtain:

sup
f∈W s

2 ([0,1],A)

E
[
||f̂PD(x)− f(x)||22

]
≤ C1

2J

N
+ C22−2sJ ,

for C1 =
||F ||22e2γ
C2 and C2 > 0, independent of N and J , provided that ∃ γ > 0, and

CT ∈ (0, 1) such that (1− ĜN(y)) ≥ CT e
−γy for y ∈ [0, 1).

(ii) The last result implies that by choosing J∗(N) = 1
2s+1

log2

(
2sC2

C1

)
+ 1

2s+1
log2(N), the

L2 risk of the estimator f̂PD(x) (when G is unknown) is also mean square consistent,

and achieves a convergence rate of the order ∼ N−
2s

2s+1 . This implies that as long

as the empirical survival function of the censoring random variable obtained from the
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Kaplan-Meier estimator is bounded from below by an exponentially decaying function,

the knowledge of the its cdf does not affects the statistical properties of the estimator.

Limiting Distribution.

In this section, we investigate the limiting distribution of the partial data estimator f̂PD(x).

Similarly as in sections 2.2.4 and 2.2.4, we will use results proposed in [14] as framework

for our analysis.

As seen in (2.54), (2.55), Theorem 1.1 of [14] and the SLLN (Strong Law of Large Numbers),

the following results hold:

1

N

N∑
i=1

δiφ
per
Jk (Yi)

1−G(Yi)

P→ cJk , (2.58)

RN
P→ 0 , (2.59)

where (2.58) follows from the SLLN (assuming the expectation is finite), and (2.59) from the

fact that |RN | = OP( 1√
N

), as shown in [14]. Using Slutzky’s theorem (see [38]), it follows:

c̃Jk −
1

N

N∑
i=1

δiφ
per
Jk (Yi)

1−G(Yi)
−RN

D
=

1

N

N∑
i=1

Ui , (2.60)

where Ui = (1 − δi)γ1(Yi) − γ2(Yi), i = 1, ..., N are i.i.d. zero-mean and finite variance

random variables with E [U2
1 ] = σ2. Also, from the definitions of γ1(x) and γ2(x), it follows

that σ2 = σ2
Jk since it depends on the scaling function φperJk (x). Now, by the CLT (Central

Limit Theorem) it follows:

1√
N

N∑
i=1

Ui
D→N(0, σ2

Jk) . (2.61)
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Combining results (2.60), (2.61), Slutzky’s theorem implies:

√
N(c̃Jk − cJk)

D→N(0, σ2
Jk) . (2.62)

Similarly, it follows:

√
N
(
f̂PD(x)− f(x)

)
=

2J−1∑
k=0

√
N(c̃Jk − cJk)φperJk (x) . (2.63)

Lemma 2.2.3. For c > 0, β > 1 and x in a neighborhood of 1, assume the following

conditions hold:

(i) (1− FX) ∼ c(1−GT )β

(ii) C(x) ≤ 1
(1−FX(x))(1−GT (x))

Then, it follows:

√
N
(
f̂PD(x)− f(x)

)
D→N

0 ,
2J−1∑
k=0

σ2
Jk(φ

per
Jk (x))2 + 2

∑
k<l

σJ,klφ
per
Jk (x)φperJl (x)

 ,

(2.64)

for k, l = 0, ..., 2J − 1,

σ2
Jk = E

[
((1− δ)γ1,Jk(Y )− γ2,Jk(Y ))2] ,

and

σJ,kl = E
[
δ2φperJk (Y )φperJl (Y )

(1−G(Y ))2
− cJkcJl

]
,

provided assumptions detailed in B.3.1, (2.47), (2.48) are satisfied and J = blog2(N) −

log2(log(N))c.
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The corresponding proof can be found in section A.4 of the appendix.

Remarks

(a) Note that condition (iiii) indicates that there is enough information about the tails of the

target density f ; also, the larger the values of β, the heavier the tails of the censoring

distribution, compared to the tails of the survival time distribution.

(b) As described in [37] and [14], the condition of β > 1 is required so that the bias of

c̃Jk − cJk achieves a convergence rate better that aN−
1
2 for some non-vanishing a which

may cause that (2.46) is no longer valid.

(c) As it can be seen in (A.67), the fact that f̂PD(x) presents asymptotic normality brings

to discussion the possibility that the estimates may be negative, as was previously men-

tioned in 2.2.4 and discussed in [18].

2.3 Simulation Study

In this section, we investigate the estimation performance of f̂PD(x) and evaluate it with

respect to the AMSE (Average Mean Squared Error) via a simulation study. For this pur-

pose, we choose a set of exemplary baseline functions that resemble important features that

continuous survival times that can be encountered in practice could posses. To simplify the

simulations, we chose functions that are supported in an interval close to [0,1]. A brief de-

scription of each chosen function follows:

(a) Delta. This corresponds to a R.V. X ∼ N(0.5 , 0.022). The idea is to have an ex-

treme spatially heterogeneous curve that has support over a small region. The goal is to

represent situations when a short but abrupt deviation from a process may happen.
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(b) Normal. This corresponds to the usual Normal distribution with parameters µ = 0.5

and σ = 0.15.

(c) Bimodal. This corresponds to a mixture of 2 Normal distributions and has the form

f(x) = 0.5X1 + 0.5X2 where X1 ∼ N(0.4 , 0.122) and X2 ∼ N(0.7 , 0.082).

(d) Strata. This corresponds to a mixture of 2 Normal distributions and has the form

f(x) = 0.5X1 + 0.5X2 where X1 ∼ N(0.2 , 0.062) and X2 ∼ N(0.7 , 0.082). The

idea is to represent a function that is supported over 2 separate subintervals.

(e) Multimodal. This functions corresponds to a mixture of 3 Normal distributions and has

the form f(x) = 1
3
X1 + 1

3
X2 + 1

3
X3 where X1 ∼ N(0.2 , 0.062), X2 ∼ N(0.5 , 0.052)

and X3 ∼ N(0.7 , 0.052). The idea of this function is to represent multimodal survival

times which are expected to occur in heterogeneous populations.

An advantage of using simulated data in the case of censored data is that the values for both

X and T are known for all samples; also, the controlled-environment approach allows the in-

vestigation of the estimator’s performance for different sample sizes and censoring schemes.

For testing purposes, we choose a censoring random variable T ∼ Exp(λ) with λ = 0.8,

which produces approximately 45% censored samples at each generated datasets. Also, we

use samples sizes N = 100, 200, 500, 1000 and measure the global error given by:

ˆMSE =
1

B

B∑
b=1

1

N

N∑
i=1

(
f(xi)− f̂N,b(xi)

)2

, (2.65)

whereB is the number of replications of the experiment andN is the number of samples. For

all experiments we choose B = 1000 and the wavelet filter Symmlet5. To implement simula-

tions, we generate 2 independent random samples {Xi}Ni=1 and {Ti}Ni=1. Xi random variables

were drawn from each one of the aforementioned distributions, while Ti
i.i.d.∼ Exp(λ). Also,

we included in the simulation study the complete data estimator as we found of interest to
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observe its performance and compare it to the partial data approach.

2.3.1 Simulation Results.

In this section, we summarize the results obtained for each baseline distribution. In particular,

the following results are provided:

(a) Tables 2.1 to 2.5 present details for AMSE results obtained for each baseline distribution

used in the study.

(b) In figures 2.1 - 2.5, dashed lines (red and blue) correspond to the average estimates for

f̂PD(x), computed at each data point x from allB = 1000 replications. The black line in-

dicates the actual density function and the light blue and blue continuous lines represents

the best estimates among all replications (i.e. the one with the smallest AMSE).

(c) In figures 2.6 - 2.10, dashed lines (red and green) correspond to the empirical 95% quan-

tiles computed at each data point x from allB = 1000 replications, for f̂ b(x) and f̂PD(x)

respectively. The blue and magenta lines show the average density estimates for the com-

plete and partial data approach, respectively. The black line indicates the actual density

function.

(d) Figure 2.11a shows the AMSE vs. sample size plot.

(e) Figure 2.11b exemplifies the asymptotic normality behavior of the density estimates, as

proposed in 2.2.4.

2.3.2 Remarks and comments.

(i) From the resulting figures, it is possible to observe that the proposed estimator is able

to accurately estimate the underlying density in the presence of right-censored observa-
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Table 2.1: AMSE results for Delta distribution with Partial data estimator.

PD Estimator N = 100 N = 200 N = 500 N = 1000

Mean AMSE 2.5954 0.3674 0.1856 0.2216
St.Dev. AMSE 0.0986 0.1680 0.1301 0.1009

Min AMSE 2.5149 0.2010 0.0112 0.0216
Max AMSE 3.5061 1.3967 0.8243 0.6893

Table 2.2: AMSE results for Normal distribution with Partial data estimator.

PD Estimator N = 100 N = 200 N = 500 N = 1000

Mean AMSE 0.1219 0.0821 0.0385 0.0214
St.Dev. AMSE 0.0858 0.0524 0.0230 0.0129

Min AMSE 0.0036 0.0086 0.0037 0.0031
Max AMSE 0.5426 0.5058 0.1764 0.0872

Table 2.3: AMSE results for Bimodal distribution with Partial data estimator.

PD Estimator N = 100 N = 200 N = 500 N = 1000

Mean AMSE 0.1764 0.1041 0.0494 0.0296
St.Dev. AMSE 0.1110 0.0620 0.0275 0.0175

Min AMSE 0.0175 0.0123 0.0041 0.0030
Max AMSE 0.9177 0.4933 0.1850 0.1323

Table 2.4: AMSE results for Strata distribution with Partial data estimator.

PD Estimator N = 100 N = 200 N = 500 N = 1000

Mean AMSE 0.2468 0.1422 0.0731 0.0491
St.Dev. AMSE 0.1485 0.0854 0.0420 0.0243

Min AMSE 0.0225 0.0130 0.0078 0.0102
Max AMSE 1.0432 0.6857 0.3657 0.1783

Table 2.5: AMSE results for Multimodal distribution with Partial data estimator.

PD Estimator N = 100 N = 200 N = 500 N = 1000

Mean AMSE 0.3838 0.2183 0.1321 0.2216
St.Dev. AMSE 0.1595 0.1108 0.0652 0.2193

Min AMSE 0.0619 0.0289 0.0171 0.2193
Max AMSE 1.0382 0.5863 0.4589 0.2193

tions. Also, the observed values for the estimates (Best and Mean) with respect to the

sample size, suggests a bias effect in the vicinity of the underlying distribution modes.

(ii) In terms of the sensibility of the estimator’s performance to the kind of scaling func-

tions used to span the projection subspace, we observed during our experiments that

results obtained using Symmlets, Coiflets and Daubechies wavelets are similar. The

main difference relates to the computational efficiency of the algorithm, which is pri-

marily affected by the length of the corresponding filter.
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(a) (b)

(c) (d)

Figure 2.1: Estimate results for Delta distribution, N = 100, 200, 500, 1000 using Symmlet5.

(iii) From the quantiles plots, the empirical quantiles of the estimated densities contain the

actual values of the target density in most of its support. Moreover, for all baseline

distributions except for the Multimodal, this is the case. On the contrary, the regions

where the 95% empirical quantiles do not contain the true density value are observed

to occur in the vicinities of the distribution modes. This could be caused by the choice

of the multiresolution index J , the post-processing smoothing procedure and/or by the

censoring effect.

(iv) As the sample size increases, it was observed that the interval |f̂N 0.975(x) − f̂N 0.025|

monotonically decreases in coherence with the theoretical convergence results shown
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(a) (b)

(c) (d)

Figure 2.2: Estimate results for Normal distribution, N = 100, 200, 500, 1000 using Symmlet5.

in section 2.2.4.

(v) From the AMSE plot (2.11a), it is possible to observe that all baseline distributions

present a similar error decay behavior. Moreover, results contained in tables 2.1 to 2.5,

imply that asN grows, the standard deviation and range of AMSE decays in accordance

with the convergence rates proposed for both estimators.

(vi) Figure 2.11b, suggest normality of the estimated density values, which is coherent with

results presented in section 2.2.4. This property of the estimators allows the construc-

tion of confidence intervals and the application of standard statistical inference tools

that could be useful in practical situations. However, to make this applicable, the Vari-
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(a) (b)

(c) (d)

Figure 2.3: Estimate results for Bimodal distribution, N = 100, 200, 500, 1000 using Symmlet5.

ance of f̂PD(x) in accordance with (A.67) needs to be estimated.

(vii) In most of presented figures it is possible to observe that at the extremes of the support

sometimes the estimated density values are slightly negative. This effect is consistent

with the boundary effect noted in [18] by Antoniadis. As was mentioned in the intro-

duction, a possible remedial measure could be application the approach proposed by

[29]. Another possibility is using f̂+(x) = max
{

0, f̂PD(x)
}

, as proposed in [20].
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(a) (b)

(c) (d)

Figure 2.4: Estimate results for Strata distribution, N = 100, 200, 500, 1000 using Symmlet5.
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(a) (b)

(c) (d)

Figure 2.5: Estimate results for Multimodal distribution, N = 100, 200, 500, 1000 using Symmlet5.
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(a) (b)

(c) (d)

Figure 2.6: Results for 95% empirical quantiles and average estimate for Delta distribution using Symmlet5.(a)-(d)
correspond to the partial data approach (for N = 100, 200, 500, 1000, respectively).
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(a) (b)

(c) (d)

Figure 2.7: Results for 95% empirical quantiles and average estimate for Normal distribution using Symmlet5.(a)-(d)
correspond to the partial data approach (for N = 100, 200, 500, 1000, respectively).

69



(a) (b)

(c) (d)

Figure 2.8: Results for 95% empirical quantiles and average estimate for Bimodal distribution using Symmlet5.(a)-(d)
correspond to the partial data approach (for N = 100, 200, 500, 1000, respectively).
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(a) (b)

(c) (d)

Figure 2.9: Results for 95% empirical quantiles and average estimate for Strata distribution using Symmlet5.(a)-(d)
correspond to the partial data approach (for N = 100, 200, 500, 1000, respectively).
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(a) (b)

(c) (d)

Figure 2.10: Results for 95% empirical quantiles and average estimate for Multimodal distribution using
Symmlet5.(a)-(d) correspond to the partial data approach (for N = 100, 200, 500, 1000, respectively).

(a) (b)

Figure 2.11: (a) AMSE for baseline distributions. (b) Q-Q Plot for the density estimates for Bimodal Distribution,
N = 1000, x = 0.7.
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2.4 Real Data application and comparison with other Estimators.

In this section we consider the implementation of the proposed estimator on the datasets

utilized by Antoniadis et al. in [20]. To compare our approach with other popular estimators,

we will also use the non-parametric Kernel density estimator with optimal bandwidth and the

smoothed histogram using local polynomials based on the actual samples.

The first application considers the data studied by Haupt and Mansmann (1995)4. In their

research, they analized the survival times for patients with liver metastases from a colorectal

tumour without other distant metastases. In their data, they have a total of 622 patients from

which 43.64% of the samples are censored. The obtained results are given in Fig.2.12 (a).

Our next practical application, considers the study of marriage dissolution based on a longi-

tudinal survey conducted in the U.S.5 The unit of observation is the couple and the event of

interest is the time from marriage to divorce. Interviewed and widowhood are considered as

censoring events. Couples with different educational levels and ethnicity were considered.

The original data considered 3371 couples with 30.61% of samples being censored. The

obtained results are given in Fig.2.12 (b).

From figure 2.12 (a), it can be observed that the complete data estimator (in red) shows

boundary effects, since after 45 months, according to the data there are almost no patients

alive. However, both complete data and partial data estimators are able to catch the indi-

vidual modes shown by the histogram without over smoothing as compared to the smoothed

histogram (in green). Also, the estimators are able to keep the proportions between the his-

togram modes as compared to the Kernel density estimator with universal bandwidth (in

4The data set is available at CART for Survival Data. Statlib Archive http://lib.stat.cmu.edu/S/
survcart.

5Data set available at http://data.princeton.edu/wws509/datasets and was adapted from an ex-
ample in the software aML (See Lillard and Panis (2000), aML Multilevel Multiprocess Statistical Software, Release
1.0, EconWare, LA, California.)
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black).

From figure 2.12 (b), it is possible to observe the fairly exponential behavior of the density

estimates. Both the complete data and the partial data are able to follow the rate of decay of

the Histogram envelope and do not overestimate the density values in the right tails, which

is consistent with the data (from data, it is highly unlikely that a certain couple would last

married longer than 45 years); both local polynomial and kernel density estimator fail to

account for that fact, while assigning significant density to times above 40 years.
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(a)

(b)

Figure 2.12: Results for the application of the data driven estimators in real datasets. (a) corresponds to Liver metas-
tases data and (b) to marriage duration in the U.S.
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2.5 Conclusions and Discussion.

This Chapter introduced an empirical wavelet-based method to estimate the density in the

case of randomly censored data. We proposed estimators based on use of the partial and

complete sample, showing statistical properties of bias, consistency and limiting distribution.

Also, we derived convergence rates for the expected L2 error, proposing the optimal choice

for the multiresolution index J that is used for the approximation space.

Both estimators were implemented and tested using different baseline distributions via a theo-

retical simulation study, showing good performance in the presence of significantly censored

data. The obtained results show that in theory, the estimator attains the large sample behavior

that was proposed: it is asymptotically unbiased and mean-square consistent, which provides

certain performance guarantees that makes the estimator suitable for practical applications.

Regarding the effect of censoring in the estimates, we observed that the introduced method

is robust enough to handle censoring proportions of nearly 50% while achieving acceptable

estimation results. Moreover, in the case of no censoring, the estimates converge to the usual

orthogonal wavelet-series estimator (See remarks in section 2.2.4).

From a real data application viewpoint, the proposed method was capable to detect modes

in the data that other smoothing methods typically fail to account, avoiding the problem of

modes over-smoothing. Also, the estimators were capable of capturing the exponential rates

of decay of the underlying densities, preventing the overestimation of likelihood values in

regions of the support with near-zero empirical mass.

Finally, some of the drawbacks that were observed throughout this Chapter were the possibil-

ity of obtaining negative values for the density estimates (highly likely at the tails) and also

boundary problems resulting from the periodic wavelet extension approach. Also, another
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important remark worth noting is the fact that it is possible that the estimated density does no

integrate to 1. Nonetheless, for most of these problems there are possible solutions such as

the ones proposed in [18] and [29].
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CHAPTER 3

EMPIRICAL WAVELET-BASED ESTIMATION FOR NON-LINEAR ADDITIVE

REGRESSION MODELS.

Additive regression models are actively researched in the statistical field because of their use-

fulness in the analysis of responses determined by non-linear relationships with multivariate

predictors. In this kind of statistical models, the response depends linearly on unknown func-

tions of predictor variables and typically, the goal of the analysis is to make inference about

these functions.

In this Chapter, we consider the problem of Additive Regression with random designs from a

novel viewpoint: we propose an estimator based on an orthogonal projection onto a multires-

olution space using empirical wavelet coefficients that are fully data driven. In this setting, we

derive a mean-square consistent estimator based on periodic wavelets on the interval [0, 1].

For construction of the estimator, we assume that the joint distribution of predictors is non-

zero and bounded on its support; We also assume that the functions belong to a Sobolev space

and integrate to zero over the [0,1] interval, which guarantees model identifiability and con-

vergence of the proposed method. Moreover, we provide the L2 risk analysis of the estimator

and derive its convergence rate.

Theoretically, we show that this approach achieves good convergence rates when the dimen-

sionality of the problem is relatively low and the set of unknown functions is sufficiently

smooth. In this approach, the results are obtained without the assumption of an equispaced

design, a condition that is typically assumed in most wavelet-based procedures.

Finally, we show practical results obtained from simulated data, demonstrating the poten-
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tial applicability of our method in the problem of additive regression models with random

designs.

3.1 Introduction

Additive regression models are popular in the statistical field because of their usefulness

in the analysis of responses determined by non-linear relationships involving multivariate

predictors. In this kind of statistical models, the response depends linearly on unknown

functions of the predictors and typically, the goal of the analysis is to make inferences about

these functions. This model has been extensively studied through the application of piece-

wise polynomial approximations, splines, marginal integration, as well as back-fitting or

functional principal components. Chapter 15 of [39], Chapter 22 of [9] and [40], [41] and

[42] feature thorough discussions of the issues related to fitting such models and provide a

comprehensive overview and analysis of various estimation techniques for this problem.

In general, the additive regression model relates a univariate response Y to predictor variables

X ∈ Rp , p ≥ 1, via a set of unknown non-linear functions {fl | fl : R→ R , l = 1, ..., p}.

The functions fl may be assumed to have a specified parametric form (e.g. polynomial) or

may be specified non-parametrically, simply as ”smooth functions” that satisfy a set of con-

straints (e.g. belong to a certain functional space such as a Besov or Sobolev, Lipschitz con-

tinuity, spaces of functions with bounded derivatives, etc.). Though the parametric estimates

may seem more attractive from the modeling perspective, they can have a major drawback: a

parametric model automatically restricts the space of functions that is used to approximate the

unknown regression function, regardless of the available data. As a result, when the elicited

parametric family is not ”close” to the assumed functional form the results obtained through

the parametric approach can be misleading. For this reason, the non-parametric approach has

gained more popularity in statistical research, providing a more general, flexible and robust
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approach in tasks of functional inference.

In this Chapter we propose a linear functional estimator based on an orthogonal projection

onto a specified multiresolution space VJ using empirical wavelet coefficients that are fully

data driven. Here, VJ stands for the space spanned by the set of scaling functions of the form{
φperJk , 0 ≤ k ≤ 2J − 1

}
, generated by a specified wavelet filter. Since we assume predictors

X ∈ Rp , p ≥ 1 are random with an unknown distribution, we introduce a kernel density

estimator in the model to estimate its density. In this setting, we propose a mean-square

consistent estimator for the constant term and the wavelet coefficients in the orthogonal series

representation of the model. Our results are based on wavelets periodic on the interval [0, 1]

and are derived under a set of assumptions that guarantee identifiability and convergence of

the proposed estimator. Moreover, we derive convergence rates for the L2 risk and propose

a practical choice for the multiresolution index J to be used in the wavelet expansion. In

this approach, we obtain stated results without the assumption of an equispaced design, a

condition that is typically assumed in most wavelet-based procedures.

Our choice of wavelets as an orthonormal basis is motivated by the fact that wavelets are well

localized in both time and scale (frequency), and possess superb approximation properties for

signals with rapid local changes such as discontinuities, cusps, sharp spikes, etc.. Moreover,

the representation of these signals in the form of wavelet decompositions can be accurately

done using only a few wavelet coefficients, enabling sparsity and dimensionality reduction.

This adaptivity does not, in general, hold for other standard orthonormal bases (e.g. Fourier

basis) which may require many compensating coefficients to describe signal discontinuities

or local bursts.

We also illustrate practical results for the proposed estimator using different exemplary func-

tions and random designs, under different sample sizes, demonstrating the suitability of the

proposed methodology.
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As it was mentioned, additive regression models have been studied by many authors using

a wide variety of approaches. The approaches include marginal integration, back-fitting,

least squares (including penalized least squares), orthogonal series approximations, and local

polynomials. Short descriptions of the most commonly used techniques are provided next:

(i) Marginal Integration. This method was proposed by Tjostheim and Auestad (1994)[43]

and Linton and Nielsen (1995)[44] and later generalized by Chen et al. (1996)[45]. The

marginal integration idea is based on the estimation of the effects of each function in the

model using sample averages of kernel functions by keeping a variable of interest fixed

at each observed sample point, while changing the remaining ones. This method has

been shown to produce good results in simulation studies (Sperlich et al., 1999)[46].

However, the marginal integration performance over finite samples tends to be inad-

equate when the dimension of the predictors is large. In particular, the bias-variance

trade-off of the estimator in this case is challenging: for a given bandwidth there may

be too few data points xi for any given x, which inflates the estimator variance and re-

duces its numerical stability. On the other hand, choosing larger bandwidth may reduce

the variability but also enlarge the bias.

(ii) Back-fitting. This approach was first introduced by Buja et al. (1989)[47] and further

developed by Hastie and Tibshirani (1990)[48]. This technique uses nonparametric

regression to estimate each additive component, and then updates the preliminary es-

timates. This process continues in an iterative fashion until convergence. One of the

drawbacks of this method is that it has been proven to be theoretically challenging to

analize. In this context, Opsomer and Ruppert (1997)[49] investigated the properties of

a version of back-fitting, and found that the estimator was not oracle efficient1. Later

on, Mammen et al. (1999)[50] and Mammen and Park (2006)[51] proposed ways to

1An oracle efficient estimator is such that each component of the model can be estimated with the same convergence
rate as if the rest of the model components were known.
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modify the backfitting approach to produce estimators with better statistical properties

such as oracle efficiency and asymptotic normality, and also free of the curse of dimen-

sionality. Even though this is a popular method, it has been shown that its efficiency

decreases when the unknown functions are observed at nonequispaced locations.

(iii) Series based methods using wavelets. One important benefit of wavelets is that they

are able to adapt to unknown smoothness of functions (Donoho et al. (1995)[27]). Most

of the work using wavelets is based on the requirement of equally spaced measurements

(e.g. at equal time intervals or a certain response observed on a regularly spaced grid).

Antoniadis et al. (1997)[4] propose a method using interpolations and averaging; based

on the observed sample, the function is approximated at equally spaced dyadic points.

In this context, most of the methods that use this kind of approach lead to wavelet co-

efficients that can be computed via a matrix transformation of the original data and are

formulated in terms of a continuous wavelet transformation applied to a constant piece-

wise interpolation of the observed samples. Pensky and Vidakovic (2001)[52] propose

a method that uses a probabilistic model on the design of the independent variables

and can be applied to non-equally spaced designs (NESD). Their approach is based

on a linear wavelet-based estimator that is similar to the wavelet modification of the

Nadaraja-Watson estimator (Antoniadis et al. (1994)[53]). In the same context, Amato

and Antoniadis (2001)[54] propose a wavelet series estimator based on tensor wavelet

series and a regularization rule that guarantees an adaptive solution to the estimation

problem in the presence of NESD.

(iv) Other methods based on wavelets. Different approaches from the previously de-

scribed that are wavelet-based have been also investigated. Donoho et al. (1992)[55]

proposed an estimator that is the solution of a penalized Least squares optimization

problem preventing the problem of ill-conditioned design matrices. Zhang and Wong

(2003)[56] proposed a two-stage wavelet thresholding procedure using local polyno-
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mial fitting and marginal integration for the estimation of the additive components.

Their method is adaptive to different degrees of smoothness of the components and has

good asymptotic properties. Later on Sardy and Tseng (2004)[1] proposed a non-linear

smoother and non-linear back-fitting algorithm that is based on WaveShrink, model-

ing each function in the model as a parsimonious expansion on a wavelet basis that is

further subjected to variable selection (i.e. which wavelets to use in the expansion) via

non-linear shrinkage.

As was discussed before in the context of the application of wavelets to the problem of addi-

tive models in NESD, another possibility is just simply ignore the nonequispaced condition

on the predictors and apply the wavelet methods directly to the observed sample. Even though

this might seem a somewhat crude approach, we will show that it is possible to implement

this procedure via a relatively simple algorithm, obtaining good statistical properties and

estimation results.

3.2 Wavelet-based Estimation in Additive Regression Models

Suppose that instead of the typical linear regression model y =
∑p

j=1 βjxj + β0 + ε which

assumes linearity in the predictors x = (x1, ..., xp), we have the following:

f(x) = β0 + fA(x) + σ · ε

= β0 +

p∑
j=1

fj(xj) + σ · ε (3.1)

where ε, independent of x, E[ε] = 0, E[ε2] = 1, σ > 0, σ < ∞. Similarly, xi
iid∼h(x),

an unknown design density of observations and {f1(·), ..., fp(·)} are unknown real-valued

functions fl : R→ R to be estimated.
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3.2.1 Problem statement and derivation of the Estimator

Suppose that we are able to observe a sample {yi = f(xi), xi}ni=1 where x1, ..., xn
iid∼ h(x).

We are interested in estimating β0 and {f1(·), ..., fp(·)}. For simplicity (without loss of gen-

erality) and identifiability, we assume:

(A1) The density h(x) is of the continuous type and has support in [0, 1]p. Also, we assume

∃εh > 0 s.t. h(x) ≥ εh ∀x ∈ [0, 1]p.

(A2) For k = 1, ..., p,
∫ 1

0
fk(x)dxk = 0.

(A3) For k = 1, ..., p, sup
x∈[0,1]

|fk(x)| ≤ Mk < ∞ and inf
x∈[0,1]

{fk(x)} ≥ mk > −∞. This

implies that for k = 1, ..., p, fk ∈ L2([0, 1]).

(A4) The design density h() belongs to a generalized Holder class of functions of the form:

H(β, L) = {h : |∂αh(x)−∂αh(y)| ≤ L ‖ x−y ‖β−|α|1 , ∀α ∈ Np, s.t. |α| = bβc, ∀ x, y ∈ [0, 1]p}

(3.2)

where ∂αf := ∂α1
1 · ... · ∂

αp
p f = ∂|α|f

∂x
α1
1 ·...·∂x

αp
p

, and |α| :=
∑p

j=1 αj . Also, suppose that

|∂αh| ≤Mh, for all x ∈ [0, 1]p and |α| ≤ bβc.

(A5) The density h(x) is uniformly bounded in [0, 1]p, that is, ∀x ∈ [0, 1]p, |h(x)| ≤ M ,

M <∞.

Furthermore, since
{
φperJ,k (x), 0 ≤ k ≤ 2J

}
as J →∞ spans L2([0, 1]), each of the functions

in 4.1 can be represented as:

fl(x) = lim
j→∞

2j−1∑
k=0

c
(l)
jk · φ

per
jk (x), l = 1, ..., p , (3.3)

where c(l)
jk denotes the j, k−th wavelet coefficient of the l−th function in the model. Similarly,
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for some fixed J that fl,J(x), l = 1, ..., p is the orthogonal projection of fl(x), onto the

multiresolution space VJ . Therefore, fl,J(x) can be expressed as:

fl,J(x) =
2J−1∑
k=0

c
(l)
Jk · φ

per
Jk (x), l = 1, ..., p , (3.4)

where:

c
(l)
Jk = 〈fl(x), φperJk (x)〉 =

∫ 1

0

fl(x)φperJk (x)dx, l = 1, ..., p . (3.5)

Based on the model (4.1) and (4.3), it is possible to approximate f(x) by an orthogonal

projection fJ(x) onto the multiresolution space spanned by the set of scaling functions:

{
φperJ,k (x), 0 ≤ k ≤ 2J − 1

}
,

by approximating each of the functions fl() as described above. Therefore, fJ(x) can be

expressed as:

fJ(x) = β0 +

p∑
l=1

2J−1∑
k=0

c
(l)
Jkφ

per
Jk (x) (3.6)

Now, the goal is for a pre-specified multiresolution index J , to use the observed samples to

estimate the unknown constant β0 and the orthogonal projections of the functions fl,J(x), l =

1, ..., p.

Remarks

(i) Note that the scaling function φ(x) for the wavelet basis
{
φperJ,k (x), 0 ≤ k ≤ 2J − 1]

}
is

absolutely integrable in R. Therefore,
∫
R |φ(x)|dx = Cφ <∞.

(ii) Also, from the above conditions, the variance of the response y(x) is bounded for every

x ∈ Rp.
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(iii) The assumption that the support of the random vector X is [0, 1]p can be always satisfied

by carrying out appropriate monotone increasing transformations of each dimensional

component, even in the case when the support before transformation is unbounded. In

practice, it would be sufficient to transform the empirical support to [0, 1]p.

Derivation of the estimator for β0

From the model definition presented in (4.1), and assumption (A2) we have that:

∫
[0,1]p

(β0 +

p∑
l=1

fl(xl))dx = β0 +

p∑
l=1

∫ 1

0

fl(xl)dxl

= β0 (3.7)

Therefore, under assumptions (A1) and the last result, it is possible to obtain β0 as:

β0 = EX,ε

[
f(X)

h(X)

]
. (3.8)

Indeed,

EX,ε

[
f(X)

h(X)

]
= EX,ε

[
β0 +

∑p
j=1 fj(Xj) + σ · ε
h(X)

]

= β0 + EX

[∑p
j=1 fj(Xj)

h(X)

]
= β0 .
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As a result of (3.8), a natural data-driven estimator of β0 is

β̂0 =
1

n

n∑
i=1

yi

ĥn(xi)
, (3.9)

where ĥn(·) is a suitable non-parametric density estimator of h(), e.g. a kernel density esti-

mator.

Derivation of the estimator for the wavelet coefficients c(l)
Jk

Based on the multiresolution space spanned by the orthonormal functions
{
φperJ,k (x)

}
, (4.4)

and assumption (A2), the wavelet coefficients for each functional can be represented as:

c
(l)
Jk =

∫ 1

0

fl(xl)φ
per
Jk (xl)dxl . (3.10)

Expanding the right-hand-side (rhs) of the last equation, we get:

∫ 1

0

fl(xl)φ
per
Jk (xl)dxl =

∫ 1

0

fl(xl)
(
φperJk (xl)− 2−

J
2

)
dxl

=

∫ 1

0

(
β0 +

p∑
j=1

fj(xj)

)(
φperJk (xl)− 2−

J
2

)
dxl

=

∫
[0,1]p−1

∫ 1

0

(
β0 +

p∑
j=1

fj(xj)

)(
φperJk (xl)− 2−

J
2

)
dxldx(−l) ,

where x(−l) corresponds to the random vector x without the l−th entry. It is easy to see that

(3.10) holds because of assumption (A2) and the fact that
∫ 1

0
φperJk (x)dx = 2−

J
2 . The proof

for this last claim can be found in B.1.
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Now, if we consider (A1), we can see that an alternative way to express (3.10) could be:

c
(l)
Jk = EX,ε

[
f(X)(φperJk (xl)− 2−

J
2 )

h(X)

]
. (3.11)

Indeed,

EX,ε

[
f(X)(φperJk (xl)− 2−

J
2 )

h(X)

]
= EX,ε

[
(β0 +

∑p
j=1 fj(Xj) + σ · ε)(φperJk (xl)− 2−

J
2 )

h(X)

]

=

∫
[0,1]p

(
β0 +

p∑
j=1

fj(xj)

)(
φperJk (xl)− 2−

J
2

)
dx

= c
(l)
Jk .

From (3.11), similarly as for β0, we obtain a natural data-driven estimator of c(l)
Jk as:

.ĉ
(l)
Jk =

1

n

n∑
i=1

yi

(
φperJk (xil)− 2−

J
2

)
ĥn(xi)

(3.12)

3.2.2 Asymptotic Properties of the Estimator

In this section, we study the asymptotic properties of the estimates proposed in (3.9) and

(3.12) and propose necessary and sufficient conditions for the pointwise mean squared con-

sistency of the estimator, under assumptions (A1)-(A5).

Unbiasedness and Consistency of β̂0

Next, we analyze the asymptotic behavior of the estimator β̂0 assuming assumptions (Ak1)-

(Ak4) stated in B.3 hold.
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Asymptotic Behavior of E(β̂0)

From (B.10) and the hierarchy of convergence for random variables, it follows that for a

fixed x, ĥn(x)
D→h(x). Let’s consider now a function g : [εh,M ] → [0, Bh], for εh > 0,

Bh <∞, defined as g(ĥn(x)) = 1

ĥn(x)
. Since ĥn(x) satisfies (A5)-(A6), g(h) is bounded and

continuous, which implies:

E

[
1

ĥn(x)

]
→
n→∞

1

h(x)
. (3.13)

In fact, since g(ĥn(x)) = 1

ĥn(x)
is continuous in (0,∞) and admits infinitely many derivatives

, by using a Taylor series expansion around h(x) and results (B.12) and (B.15), it is possible

to obtain:

∣∣∣∣∣∣EX1,...,Xn

( 1

ĥn(x)

)k

−
(

1

h(x)

)k∣∣∣∣∣∣ ≤ 1

εk+2
h

{
|Bias(ĥn(x))|+ V ar(ĥn(x)) +Bias(ĥn(x))2

}
≤ C

{
δβ +

1

nδp
+ δ2β

}
, (3.14)

for k ≥ 1 and a sufficiently large C > 0 (independent of n, δ).

Therefore, under the choice δ ∼ n−
1

2β+p , E
[(

1

ĥn(x)

)k]
converges to

(
1

h(x)

)k
at a rate ∼

n−
β

2β+p for k ≥ 1. Here the expectation is taken with respect to the joint density of the iid

sample.

Similarly, the last result leads to:

EX1,...,Xn

( 1

ĥn(x)
− 1

h(x)

)2
 −→ 0 , (3.15)
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as n→∞ at a rate ∼ n−
2β

2β+p .

Now, letting x to be random, using conditional expectation it is possible to obtain:

E

[
1

ĥn(X)

]
= EX

[
EX1,...,Xn|X

(
1

ĥn(x)
|X

)]
. (3.16)

From (3.13) and the last result, the dominated convergence theorem implies:

E

[
1

ĥn(x)

]
−→
n→∞

1 (3.17)

Using the definition of β̂0 and the model (4.1), we obtain:

E
[
β̂0

]
= β0 + E

[∑p
l=1 fl(Xl)

ĥn(X)

]

= β0 + EX

[
EX1,...,Xn|X

(∑p
l=1 fl(Xl)

ĥn(X)
|X

)]

= β0 + EX

[
p∑
l=1

fl(Xl) · EX1,...,Xn|X

(
1

ĥn(X)
|X

)]
. (3.18)

Therefore, from (3.13)-(3.17) and under (A2),(A3), the dominated convergence leads to:

E
[
β̂0

]
−→
n→∞

β0 , (3.19)

which shows that β̂0 is asymptotically unbiased for β0.

Asymptotic Behavior of Var(β̂0)

From the definition of β̂0 and (4.1), we can see that:
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V ar(β̂0) =
1

n
V ar

(
Y

ĥn(X)

)

≤ 1

n
E

[
Y 2

ĥn(X)2

]

≤ 1

n
EX

[
EX1,...,Xn|X=x

(
Y 2

ĥn(X)2
|X = x

)]
. (3.20)

Now, if n→∞, from conditions (A2) and (A3), and the dominated convergence theorem, it

follows:

EX

[
EX1,...,Xn|X=x

(
Y 2

ĥn(X)2
|X = x

)]
→

n−→∞
E
[
Y 2

h(X)2

]
. (3.21)

Thus,

V ar(β̂0) −→
n→∞

0 , (3.22)

provided E
[

Y 2

h(X)2

]
<∞.

Finally, putting together (3.19) and (3.22) we obtain that β̂0 is consistent for β0.

Unbiasedness and Consistency of the ĉ(l)
Jk

In this section, we study the asymptotic behavior of the wavelet coefficient estimators ĉ(l)
Jk for

a fixed J , assuming that conditions (A1)-(A5) and (Ak1)-(Ak4) hold.
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Asymptotic Behavior of E(ĉ
(l)
Jk)

For a fixed J , l = 1, ..., p, and k = 0, ..., 2J − 1,we have that ĉ(l)
Jk = 1

n

∑n
i=1

yi

(
φperJk (xil)−2−

J
2

)
ĥn(xi)

.

Therefore,

E
[
ĉ

(l)
Jk

]
= E

[
Y φperJk (Xl)

ĥn(X)

]
− 2−

J
2E
[
β̂0

]
. (3.23)

Following the same argument as in the case of the asymptotic behavior of β̂0, we find that the

first term of (3.23) can be represented as:

E

[
Y φperJk (Xl)

ĥn(X)

]
= EX

[
EX1,...,Xn|X

(
Y φperJk (Xl)

ĥn(X)
|X

)]

= EX

[
Y φperJk (Xl) · EX1,...,Xn|X

(
1

ĥn(X)
|X

)]
.

Since J is assumed fixed and (A3) holds, by the dominated convergence theorem, it follows

that:

EX

[
Y φperJk (Xl) · EX1,...,Xn|X

(
1

ĥn(X)
|X

)]
−→
n→∞

E
[
Y φperJk (Xl)

h(X)

]
. (3.24)

Furthermore, by (A3) and (B.1):

E
[
Y φperJk (Xl)

h(X)

]
=

∫
[0,1]p

(
β0 +

p∑
j=1

fj(xj)

)
φperJk (xl)dx

=

∫ 1

0

fl(xl)φ
per
Jk (xl)dxl + 2−

J
2 β0

= c
(l)
Jk + 2−

J
2 β0 . (3.25)
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Finally, putting together the last result and (3.19), it follows:

E
[
ĉ

(l)
Jk

]
−→
n→∞

c
(l)
Jk , (3.26)

which shows that the wavelet coefficient estimators ĉ(l)
Jk are asymptotically unbiased, for J

fixed, l = 1, ..., p, and k = 0, ..., 2J − 1.

Asymptotic Behavior of Var(ĉ(l)
Jk)

For a fixed J , l = 1, ..., p and k = 0, ..., 2J − 1, ĉ(l)
Jk = 1

n

∑n
i=1

Yi

(
φperJk (Xil)−2−

J
2

)
ĥn(xi)

, the variance

of ĉ(l)
Jk is given by:

V ar
(
ĉ

(l)
Jk

)
= V ar

(
1

n

n∑
i=1

Yiφ
per
Jk (Xil)

ĥn(Xi)
− 2−

J
2 β̂0

)

=
1

n
V ar

(
Y φperJk (Xl)

ĥn(X)

)
+ 2−JV ar

(
β̂0

)
− 2Cov

(
1

n

n∑
i=1

Yiφ
per
Jk (Xil)

ĥn(Xi)
, 2−

J
2 β̂0

)
=

1

n
Vc1 + 2−JVc2 + 2Vc3 .

By using the model defined in (4.1) we find that for Vc1 = 1
n
V ar

(
Y φperJk (Xl)

ĥn(X)

)
it follows:

Vc1 = V arX

(
EX1,...,Xn|X

[
Y φperJk (Xl)

ĥn(X)
|X
])

+ EX

[
V arX1,...,Xn|X

(
Y φperJk (Xl)

ĥn(X)
|X
)]

,

= V arX

(
Y φperJk (Xl) · EX1,...,Xn|X

[
1

ĥn(X)
|X
])

+ EX

[
(Y φperJk (Xl))

2 · V arX1,...,Xn|X

(
1

ĥn(X)
|X
)]
.

(3.27)
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By the dominated convergence theorem, it follows:

V ar

(
Y φperJk (Xl)

ĥn(X)

)
−→
n→∞

V ar

(
Y φperJk (Xl)

h(X)

)
(3.28)

where the last result holds since:

EX1,...,Xn|X=x

[
1

ĥn(X)
|X = x

]
−→
n→∞

1

h(x)
, and

V arX1,...,Xn|X=x

(
1

ĥn(X)
|X = x

)
−→
n→∞

0 .

This implies,

1

n
V ar

(
Y φperJk (Xl)

ĥn(X)

)
−→
n→∞

0 . (3.29)

Lemma 3.2.1. Let us suppose that conditions (A1)-(A5) and (Ak1)-(Ak4) hold. Then:

E

[(
Y φperJk (Xl)

h(X)

)2
]
≤ C(β0, p, σ

2,Mf ) ·

{
1

εh

(
dlog2(

1

εh
)e − 1

)
+

1

dlog2( 1
εh

)e

}
, (3.30)

where C(β0, p, σ
2,Mf ) = (p ·Mf + |β0|)2 + σ2. This result shows that V ar

(
Y φperJk (Xl)

h(X)

)
is

bounded from above, provided p < ∞, σ2 < ∞ and conditions (A1)-(A5) and (Ak1)-(Ak4)

hold. Therefore,

V ar

(
Y φperJk (Xl)

ĥn(X)

)
→
n→∞

V ar

(
Y φperJk (Xl)

h(X)

)
<∞ .

The proof can be found in Appendix B.4.
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Similarly, as for Vc1, let’s consider the behavior of Vc3 = Cov
(

1
n

∑n
i=1

Yiφ
per
Jk (Xil)

ĥn(Xi)
, 2−

J
2 β̂0

)
.

Using the covariance definition and the iid assumption for the sample {yi = f(xi), xi}ni=1, it

follows that:

Vc3 =
2−

J
2

n2


n∑
i=1

Cov

(
Yiφ

per
Jk (Xil)

ĥn(Xi)
,

Yi

ĥn(Xi)

)
+

n∑
i=1

n∑
j=1

i 6=j

Cov

(
Yiφ

per
Jk (Xil)

ĥn(Xi)
,

Yj

ĥn(Xj)

) .

(3.31)

Lemma 3.2.2. Let us suppose assumptions (A1)-(A5) and (Ak1)-(Ak4) are satisfied. The

following results hold:

Cov

(
1

n

n∑
i=1

Yiφ
per
Jk (Xil)

ĥn(Xi)
, 2−

J
2 β̂0

)
−→
n→∞

0 , (3.32)

which further implies that for any fixed J , l = 1, ..., p, and k = 0, ..., 2J − 1,

Cov
(
β̂0 , ĉ

(l)
Jk

)
−→
n→∞

0 . (3.33)

The corresponding proofs can be found in Appendix B.5.

Putting together (3.22), (3.29) and (3.32) it follows that for a fixed J , l = 1, ..., p, and k =

0, ..., 2J − 1:

V ar
(
ĉ

(l)
Jk

)
−→
n→∞

0 . (3.34)

Finally, from (3.26) and (3.34) we get that for a fixed J , l = 1, ..., p, and k = 0, ..., 2J − 1,

ĉ
(l)
Jk is consistent for c(l)

Jk.
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Unbiasedness and Consistency of f̂J(x)

From (4.5), we have that fJ(x) = β0 +
∑p

l=1

∑2J−1
k=0 c

(l)
Jkφ

per
Jk (xl). If results (3.9) and (3.12)

are substituted in the expression for fJ(x), the data-driven estimator can be expressed as:

f̂J(x) = β̂0 +

p∑
l=1

2J−1∑
k=0

ĉ
(l)
Jkφ

per
Jk (xl) .

Since both β̂0 and ĉ(l)
Jk are asymptotically unbiased, it follows:

E
[
f̂J(x)

]
→
n→∞

fJ(x) , and (3.35)

V ar
(
f̂J(x)

)
= V ar

(
β̂0

)
+V ar

 p∑
l=1

2J−1∑
k=0

ĉ
(l)
Jkφ

per
Jk (xl)

+2Cov

β̂0 ,

p∑
l=1

2J−1∑
k=0

ĉ
(l)
Jkφ

per
Jk (xl)

 .

(3.36)

In order to show that V ar
(
f̂J(x)

)
→
n→∞

0, we just need to prove that the second term of the

expression (3.36) goes to zero as n→∞. This can be seen from (3.22) and (3.33).

Lemma 3.2.3. For any s 6= k, s, k = 0, ..., 2J − 1 and fixed J , under the stated assumptions:

Cov
(
ĉ

(l)
Jk , ĉ

(l)
Js

)
−→
n→∞

0 . (3.37)

The proof can be found in Appendix B.6.

From (3.37) it follows:

V ar

 p∑
l=1

2J−1∑
k=0

ĉ
(l)
Jkφ

per
Jk (xl)

 −→
n→∞

0 . (3.38)
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Finally, from (3.22), (3.33) and (3.38), it is clear that V ar
(
f̂J(x)

)
→
n→∞

0. This result to-

gether with (3.35) implies that:

f̂J(x)
P−→ fJ(x) . (3.39)

Therefore, the estimator f̂J(x) is consistent for fJ(x).

Remarks

(i) The results and derivations presented in lemmas 3.2.1-3.2.3, indicate that the estima-

tor f̂J(x) suffers from the course of dimensionality. In fact, the dependence from the

dimension p of the random covariates x influence in both the convergence rate of the

density estimator ĥn(x) and the constant C(β0, p, σ
2,Mf ).

(ii) As can be observed from this section results, one of the key assumptions used to show

consistency of the estimates f̂J(x), ĉ(l)
Jk and β̂0, is that the multiresolution index J is

kept fixed. This ensures that |φperJk (x)| < ∞, which enables the use of the dominated

convergence theorem. Nonetheless, as it will be shown in the next section, it is possible

to relax such assumption, enabling that J = J(n) and furthermore, J(n) → ∞ as

n→∞.

3.2.3 L2 Risk Analysis of the Estimator f̂J(x)

In the last section, we showed that the estimates f̂J(x), ĉ(l)
Jk and β̂0 are unbiased and consistent

for fJ(x), c(l)
Jk and β0 respectively. In this section we provide a brief L2 risk analysis for the

model estimate fJ(x) and we show that R(f̂J , f) = E
[
||f̂J(x)− f(x)||22

]
converges to zero

as n→∞.
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As it will be demonstrated next, the rate of convergence of f̂J(x) is influenced by the con-

vergence properties of the kernel density estimator ĥn(x) and the smoothness properties of

the set
{
φperJ,k (x), 0 ≤ k ≤ 2J − 1

}
generated by the scaling function φ(x), together with the

functions {fl(x)}pl=1 that define the additive model.

From the definition of f̂J(x) and Cauchy-Schwartz inequality, it follows:

E
[
||f̂J(x)− f(x)||22

]
≤ 2

(
E
[
||f̂J(x)− E[f̂J(x)]||22

]
+ ||E[f̂J(x)]− f(x)||22

)
(3.40)

Note that the first term on the rhs of (3.40) corresponds to the variance of the estimate f̂J(x),

while the second represents the square of the bias(f̂J(x)).

Lemma 3.2.4. Assume conditions (A1)-(A5) and (Ak1)-(Ak4) are satisfied. Then for J =

J(n) it follows:

E
[
||f̂J(x)− E[f̂J(x)]||22

]
= O

(
2J(n)n−1

)
. (3.41)

The corresponding proof can be found in Appendix B.7.

Lemma 3.2.5. In addition to conditions (A1)-(A5) and (Ak1)-(Ak4), assume conditions 1-7

described in B.8 hold. Then:

||E[f̂J(x)]− f(x)||22 = O
(

22J(n)n−
2β

2β+p + 2−2J(n)(N+1) + n−
β

2β+p2−J(n)(N+1)
)
. (3.42)

The corresponding proof can be found in Appendix B.8.

Lemma 3.2.6. Define:

F =
{
f | fl ∈ L2([0, 1]), fl ∈ WN+1

2 ([0, 1]), −∞ < ml ≤ fl ≤Ml <∞
}
,

where f(x) = β0 +
∑p

l=1 fl(xl), and WN+1
2 ([0, 1]) represents the space of functions that
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are N + 1-differentiable with f (k)
l ∈ L2([0, 1]), k = 1, ..., N + 1. Suppose assumptions for

lemmas 3.2.4 and 3.2.5 hold, and conditions (A1)-(A5) and (Ak1)-(Ak4) are satisfied. Then,

it follows:

sup
f∈F

(
E
[
||f̂J(x)− f(x)||22

])
≤ C̃n−( 2β

2β+p)(
N+1
N+3) , (3.43)

provided (3.41) and (3.42), and J = J(n) such that 2J(n) ' n
2β

(2β+p)(N+3) .

Also, it is possible to show that:

E
[
||f̂J(x)− E[f̂J(x)]||22

]
= O

(
n−(N+2

N+3)n−( p
2β+p)

)
, and (3.44)

||E[f̂J(x)]− f(x)||22 = O
(
n−( 2β

2β+p)(
N+1
N+3)

)
. (3.45)

The corresponding proofs can be found in B.9.

Remarks and comments

(i) The additional assumptions described in B.8 are needed to use the wavelet approxima-

tion results presented in chapters 8-9 (Corollary 8.2) of [57].

(ii) As proposed in [57], the simplest way to obtain the wavelet approximation property

utilized in the derivation of (3.42) is by selecting a bounded and compactly supported

scaling function φ to generate
{
φperJ,k (x), 0 ≤ k ≤ 2J − 1

}
.

(iii) In the derivations for the convergence rate for the estimator f̂J(x), the smoothness as-

sumptions for the unknown functions fl and the wavelet scaling function φ play a key

role. In this sense, the index N corresponds to the minimum smoothness index among

the unknown functions {f1, ..., fp} and the scaling function φ.

99



(iv) From (3.44) and (3.45), it holds that the variance term of the estimator f̂J(x), for large

dimensions p is influenced primarily by the smoothness properties of the functional

space that contains {fl(x) , l = 1, ..., p} and the wavelet basis
{
φperJ,k (x), k = 0, ..., 2J − 1

}
.

Also, for n sufficiently large, the bias term dominates in the risk decomposition of

f̂J(x).

(v) As a result of the introduction of the density estimator ĥn(x) in the model, f̂J(x) suffers

from the curse of dimensionality. In particular, it is interesting to note that this effect

affects only the bias term, since as p → ∞, E
[
||f̂J(x)− E[f̂J(x)]||22

]
→ O(n−

7
4 ), for

N ≥ 1.

(vi) An alternative way to show the mean square consistency of the estimator f̂J(x) is via

Stone’s theorem (details can be found in Theorem 4.1 [9]), by assuming a model with

no intercept (i.e. β0 = 0), and expressing the estimator as:

f̂J(x) =
n∑
i=1

Wn,i(x) · yi ,

where Wn,i(x) =
∑p

l=1

∑2J−1
k=0

(
φperJk (Xil)−2−

J
2

n·ĥn(Xi)

)
φperJk (xl). Then, the estimator is mean-

square consistent provided the following conditions are satisfied:

i. For any n, ∃ c ∈ R such that for every non-negative measurable function f satisfy-

ing Ef(X) <∞, E {
∑n

i=1 |Wn,i(x)f(Xi)|} ≤ cEf(X).

ii. For all n, ∃D ≥ 1 such that P {
∑n

i=1 |Wn,i(x)| ≤ D} = 1.

iii. For all a > 0, lim
n→∞

E
{∑n

i=1 |Wn,i(x)|1{||Xi−x||>a}
}

= 0.

iv.
∑n

i=1Wn,i(x)
P→

n→∞
1.

v. lim
n→∞

E {
∑n

i=1Wn,i(x)2} = 0.

(vii) Indeed, for the estimator f̂J(x) conditions (a)-(e) are satisfied, provided assumptions

(A1)-(A5) and (Ak1)-(Ak4) hold, and for all x ∈ [0, 1]p, lim
n→∞

∣∣∣1− h(x)

ĥn(x)

∣∣∣ = 0.
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3.2.4 Implementation illustration and considerations and comparison to other estimators.

Implementation Illustration

In this section, we illustrate the application of the proposed method in a controlled experi-

ment, comparing the proposed estimator results with previously existing methodologies AM-

let [1] and Back-fitting [42]. For this purpose, we choose the following functions for the

construction of model (4.1):

f1(x) =
1√

2 sin (2π x)

f2(x) = 1− 4 |x− 1

2
|

f3(x) = − cos (4π x+ 1)

f4(x) = 8

(
x− 1

2

)2

− 2

3

f5(x) =
1√
2

cos (2π x)

f6(x) =
1√
2

cos (4π x)

f7(x) = −0.5275 + 4 e−500(x−0.23)2 + 2 e−2000(x−0.33)2

+4 e−8000(x−0.47)2 + 3 e−16000(x−0.69)2 + e−32000(x−0.83)2

f8(x) = 0.2 cos (4π x+ 1) + 0.1 cos (24π x+ 1)

f9(x) = −0.1744 + 2 x3 1(0.5<x≤0.8) + 2 (x− 1)3 1(0.8<x≤1)

The estimator f̂J(x) was obtained using a box-type kernel with a bandwidth given by δ(n) =

Kn−
1

4+p , with K found via grid search. For the multiresolution space index J , we chose

J(n) = 5 + b0.3 log2(n)c. The selection of the wavelet filter was Daubechies with 6 vanish-

ing moments and the sample sizes used for this illustration were n = 2048, 4096 and 8192.

Similarly, the noise in the model was defined to be gaussian with zero mean and variance
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Figure 3.1: Graphic representation of the testing functions for the Additive Model.

given by σ2 = 0.15. Finally, the joint distribution for the predictors X1, ...,Xn was generated

by independent U(0, 1) and a Beta(3, 3) random variables along each dimension. For the

evaluation of the scaling functions φperJk we used Daubechies-Lagarias’s algorithm.

The comparative results for the simulation study are shown in Figs. 3.2, 3.3, 3.4. Box plots

with results for each function recovery RMSE are shown in Fig. 3.5. Average simulation

times for the described setting are shown in Table 3.1.

Remarks and comments

(i) Choice of bandwidth for the density estimator ĥn(x): During the implementation, we

observed that results were highly sensitive to the choice of the bandwidth δ(n). We

chose different values for a constant K in a bandwidth of the form δ(n) = K n−
1

2+p .
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.2: Functions estimation for U(0, 1) designs, for n = 2048 samples. In red, the estimated function values at
each sample point using AMlet; In black-dashed lines, the actual function shape; In blue lines, the smoothed version
of the function values using lowess smoother and the wavelet-based method. In green, the estimated functions via
backfitting.

Figures 3.2-3.4 show results obtained using K found via grid-search.

(ii) Sample size effect: As can be observed in 3.2-3.3, both the bias and the variance of the

estimated functions show a decreasing behavior as n increases, which is consistent with

theoretical results (3.43), (3.44) and (3.45).

(iii) Shadowing effect of the constant β0: In some experiments, when the constant β0 was

too large with respect to the function effects, we observed that the method recovered

the marginal densities of each predictor instead of the unknown functions. This ef-

fect can be explained from the expressions for the calculation of the empirical wavelet

coefficients ĉ(l)
Jk. For this reason, we recommend standardizing the response from the

observed sample before fitting the model.

(iv) Sensitivity of the model to different random designs: In the case of design distributions
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.3: Functions estimation for U(0, 1) designs, for n = 4096 samples. In red, the estimated function values at
each sample point using AMlet; In black-dashed lines, the actual function shape; In blue lines, the smoothed version
of the function values using lowess smoother and the wavelet-based estimator. In green, the estimated functions via
backfitting.

that have fast decaying tails, problems were observed when there was no sufficient in-

formation for the estimation of the empirical coefficients in regions with low concentra-

tion of samples. Indeed, extremely large empirical wavelet coefficients were obtained

in those cases, inflating the bias in the estimation.

(v) A possible remedial action for situation could be the use of the approach proposed in

[52], by thresholding the density estimates according to some probabilistic rule, avoid-

ing those samples for which ĥn(x) is smaller than a suitably defined λn > 0.

(vi) Avoiding the curse of dimensionality: As noted in the previous sections, the proposed

estimator suffers from the ”curse of dimensionality”. In particular, this effect arises as

a result of the introduction of the non-parametric density estimator ĥn(x) of the true

density h(x) of observed features xi ∈ Rp, i = 1, ..., n. If instead, we assume that
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.4: Functions estimation for Beta(3, 3) design, n = 4096 samples. In red, the estimated function values at
each sample point via AMlet; In black-dashed lines, the actual function shape; In blue lines, the smoothed version of
the function values using lowess smoother. In green, the estimated functions via back-fitting.

h(x) =
∏p

l=1 hl(xl), the resulting estimator converges at a rate ∼ n
β

2β+1 , which enables

f̂J(x) to achieve the rates shown in Proposition 7, with p = 1.

(vii) Computational run time: As observed in the implementation and simulation study, the

proposed method is relatively fast for small sample sizes, however, since it is based

on the evaluation of the scaling functions φperJk (x), 0 ≤ k ≤ 2J − 1 at every observed

feature xil, i = 1, ..., n; l = 1, ..., p this process can be computationally intense for
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(a)

(b)

Figure 3.5: Box plots for function recovery RMSE for (a) n = 2048 samples, and (b) n = 4096 samples using U(0, 1)
design. 100 replications were used in the experiment.
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large n and/or p. Using a 4-AMD cores, 16Gb RAM laptop, average computational

times are the following: As it can be observed in Table 3.1, for large sample sizes the

Table 3.1: Average computational times

N p Filter Time (sec.)
256 9 Daub6 5.6

2048 9 Daub6 67.7
8192 9 Daub6 419.9

computational cost of the algorithm is significant. This cost is mainly driven by the

evaluations of the scaling functions at each sample point, for each dimension and shift.

Once this data is available, the cost of the algorithm is significantly reduced.

3.2.5 Conclusions and Discussion

This Chapter introduced a wavelet-based method for the non-parametric estimation and pre-

diction of non-linear additive regression models. Our estimator is based on data-driven

wavelet coefficients computed using a locally weighted average of the observed samples,

with weights defined by scaling functions obtained from an orthonormal periodic wavelet

basis and a non-parametric density estimator ĥn. For this estimator, we showed mean-square

consistency and illustrated practical results using theoretical simulations. In addition, we

provided convergence rates and optimal choices for the tuning parameters for the algorithm

implementation.

As was presented in this Chapter, the proposed estimator is completely data driven with

only a few parameters of choice by the user (i.e. bandwidth δ(n), multiresolution index

J(n) and wavelet filter). Indeed, the nature of the estimator allows a block-matrix based

implementation that introduces computational speed and makes the estimator suitable for

real-life applications. In our implementation, Daubechies-Lagarias’s algorithm was used to
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evaluate the scaling functions φperJk at the observed sample points Xij . From a computational

viewpoint, this key component represents most of the computational cost of this algorithm.

Furthermore, we tested our method using different exemplary baseline functions and two

random designs via a simulation study. In our experiments, the proposed method showed

good performance identifying the unknown functions in the model, as compared to popular

methods as back-fitting and AMlet, even though it suffers from the ”curse of dimensionality”;

Also, we observed that the estimator behaves accordingly to the large properties that were

theoretically shown, which is an important feature for real-life applications.

In terms of some of the drawbacks, we can mention that our method does not offer automatic

variable selection; however, this could be implemented by thresholding the obtained empir-

ical wavelet coefficients in a post-estimation stage or by simple inspection, since a function

that is zero over [0,1] maps to zero in the wavelet projection. Similarly, the proposed estima-

tor was observed to be highly sensitive to the bandwidth choice δ(n), consequently, the use

of cross-validation or grid-search during the estimation stage might be helpful to improve the

accuracy of results.

Finally, in those design regions were the number of observed samples is small it is possible to

obtain abnormally large wavelet coefficients; also as a result of the use of periodic wavelets,

some problems may arise at the boundaries of the support for each function. Nonetheless, this

can be fixed: using the idea developed by Pensky and Vidakovic (2001) [52], it is possible to

avoid those samples that are associated with too-small density estimates ĥn, stabilizing the

estimated wavelet coefficients and reducing the estimator bias.

Based on out theoretical analysis and numerical experiments, we can argue that our proposed

method exhibits good statistical properties and is relatively easy to implement, which consti-

tutes a good contribution in the statistical modeling field and in particular, in the analysis of

the non-linear additive regression models.
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CHAPTER 4

LEAST SQUARES WAVELET-BASED ESTIMATION FOR ADDITIVE

REGRESSION MODELS USING NON EQUALLY-SPACED DESIGNS

As was mentioned in Chapter 3, Additive regression models are actively researched in the sta-

tistical field because of their usefulness in the analysis of responses determined by non-linear

relationships with multivariate predictors. In this kind of statistical models, the response

depends linearly on unknown functions of predictor variables and typically, the goal of the

analysis is to make inference about these functions.

In this Chapter, we study the problem of additive regression using a very simple least squares

approach based on a periodic orthogonal wavelets expansion on the interval [0,1]. For this es-

timator, we analyze its statistical properties, showing strong consistency (with respect to the

L2 norm) characterized by optimal convergence rates up to a logarithmic factor, independent

of the dimensionality of the problem. This is achieved by truncating the model estimates by

a properly chosen parameter, and selecting the multiresolution level J used for the wavelet

expansion, as a function of the sample size. In this approach, we obtain these results with-

out the assumption of an equispaced design, a condition that is typically assumed in most

wavelet-based procedures.

Finally, we show practical results obtained from a simulation study and a real life application,

demonstrating the applicability of the proposed methods for the problem of non-linear robust

additive regression models.
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4.1 Introduction

Additive regression models are popular in the statistical field because of their usefulness

in the analysis of responses determined by non-linear relationships involving multivariate

predictors. In this kind of statistical models, the response depends linearly on unknown func-

tions of the predictors and typically, the goal of the analysis is to make inferences about

these functions. This model has been extensively studied through the application of piece-

wise polynomial approximations, splines, marginal integration, as well as back-fitting or

functional principal components. Chapter 15 of [39], Chapter 22 of [9] and [40], [41] and

[42] feature thorough discussions of the issues related to fitting such models and provide a

comprehensive overview and analysis of various estimation techniques for this problem.

In general, the additive regression model relates a univariate response Y to predictor variables

X ∈ Rp , p ≥ 1, via a set of unknown non-linear functions {fl | fl : R→ R , l = 1, ..., p}.

The functions fl may be assumed to have a specified parametric form (e.g. polynomial) or

may be specified non-parametrically, simply as ”smooth functions” that satisfy a set of con-

straints (e.g. belong to a certain functional space such as a Besov or Sobolev, Lipschitz con-

tinuity, spaces of functions with bounded derivatives, etc.). Though the parametric estimates

may seem more attractive from the modeling perspective, they can have a major drawback: a

parametric model automatically restricts the space of functions that is used to approximate the

unknown regression function, regardless of the available data. As a result, when the elicited

parametric family is not ”close” to the assumed functional form the results obtained through

the parametric approach can be misleading. For this reason, the non-parametric approach has

gained more popularity in statistical research, providing a more general, flexible and robust

approach in tasks of functional inference.

In this Chapter we study the problem of additive regression with random designs using a
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simple least squares methodology based on a periodic orthogonal wavelet basis on the interval

[0,1]. This, motivated by the goal of providing a different and more natural approach than the

one provided in Chapter 3. In addition, given the simplicity of the Least Squares approach,

we provide an in-depth theoretical analysis of its statistical properties of consistency and

convergence rate.

Our results show that in this approach when is possible to choose the detail level J = J(n) of

the multiresolution space VJ such that an ill-conditioned design matrix is avoided, strongly

consistent estimators (with respect to the L2 norm) can be obtained by truncating the esti-

mated regression function using a suitable threshold parameter that depends on the sample

size n. In this setting, we demonstrate that it is possible to achieve optimal convergence rates

up to a logarithmic factor, independent of the dimensionality of the problem. Moreover, we

obtain these results without the assumption of an equispaced design for the application of the

wavelet procedures.

The choice of wavelets as an orthonormal basis is motivated by the fact that wavelets could

be well localized in both time and scale (frequency), and possess superb approximation prop-

erties for signals with rapid local changes such as discontinuities, cusps, sharp spikes, etc..

Moreover, the representation of these signals in the form of wavelet decompositions can be

accurately done using only a few wavelet coefficients, enabling sparsity and dimensionality

reduction. This adaptivity does not, in general, hold for other standard orthonormal bases

(e.g. Fourier basis) which may require many compensating coefficients to describe signal

discontinuities or local bursts.

In addition, we show the potential of the proposed methodology via a simulation study and

evaluate its performance using different exemplary functions and random designs, under dif-

ferent sample sizes. Here, we demonstrate that the proposed method is suitable for the prob-

lem of non-linear additive regression models and behave in coherence with the obtained the-
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oretical results. Finally, we compare the results obtained through our proposed methodology

against a previously published study, using a real life data set.

As it was mentioned in the previous chapter, additive regression models have been studied

by many authors using a wide variety of approaches. The approaches include marginal in-

tegration, back-fitting, least squares (including penalized least squares), orthogonal series

approximations, and local polynomials. Short descriptions of the most commonly used tech-

niques can be found in Chapter 3.

4.2 Wavelet-based Estimation in Additive Regression Models

Suppose that instead of the typical linear regression model y =
∑p

j=1 βjxj + β0 + ε which

assumes linearity in the predictors x = (x1, ..., xp), we have the following:

f(x) = β0 + fA(x) + σ · ε

= β0 +

p∑
j=1

fj(xj) + σ · ε , (4.1)

where ε, independent of x, E[ε] = 0, E[ε2] = 1, σ > 0, σ < ∞. Similarly, xi
iid∼h(x),

an unknown design density of observations and {f1(·), ..., fp(·)} are unknown real-valued

functions to be estimated.

Suppose that we are able to observe a sample {yi = f(xi), xi}ni=1 where x1, ..., xn
iid∼ h(x).

We are interested in estimating β0 and {f1(·), ..., fp(·)}. For simplicity (without loss of gen-

erality) and identifiability, we assume:

(A1) The density h(x) is of the continuous type and has support in [0, 1]p. Also, we assume

∃εh > 0 s.t. h(x) ≥ εh ∀x ∈ [0, 1]p.

(A2) For k = 1, ..., p,
∫ 1

0
fk(x)dxk = 0.

112



(A3) For k = 1, ..., p, sup
x∈[0,1]

|fk(x)| ≤ Mk < ∞ and inf
x∈[0,1]

{fk(x)} ≥ mk > −∞. This

implies that for k = 1, ..., p, fk ∈ L2([0, 1]).

(A4) The density h(x) is uniformly bounded in [0, 1]p, that is, ∀x ∈ [0, 1]p, |h(x)| ≤ M ,

M <∞.

Furthermore, since as J →∞ the orthonormal set
{
φperJ,k (x), 0 ≤ k ≤ 2J − 1

}
spans L2([0, 1]),

each of the functions in (4.1) can be represented as:

fl(x) = lim
j→∞

2j−1∑
k=0

c
(l)
jk · φ

per
jk (x), l = 1, ..., p , (4.2)

where c(l)
jk denotes the j, k−th wavelet coefficient of the l−th function in the model. Similarly,

for some fixed J , fl,J(x), l = 1, ..., p represents the orthogonal projection of fl(x) onto the

multiresolution space VJ . Therefore, fl,J(x) can be expressed as:

fl,J(x) =
2J−1∑
k=0

c
(l)
Jk · φ

per
Jk (x), l = 1, ..., p , (4.3)

where:

c
(l)
Jk = 〈fl(x), φperJk (x)〉 =

∫ 1

0

fl(x)φperJk (x)dx, l = 1, ..., p . (4.4)

Based on the model (4.1) and (4.3), it is possible to approximate f(x) by an orthogonal

projection fJ(x) onto the multiresolution space spanned by the set of scaling functions:

{
φperJ,k (x), 0 ≤ k ≤ 2J − 1

}
,

by approximating each of the functions fl(·), l = 1, ..., p as described above. Therefore,
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fJ(x) can be expressed as:

fJ(x) = β0 +

p∑
l=1

2J−1∑
k=0

c
(l)
Jkφ

per
Jk (x) . (4.5)

Now, the goal is for a pre-specified multiresolution index J , to use the observed samples to

estimate the unknown constant β0 and the orthogonal projections of the functions fl,J(x), l =

1, ..., p.

Remarks

(i) Also, from the above conditions, the variance of the response y(x) is bounded for every

x ∈ Rp.

(ii) The assumption that the support of the random vector X is [0, 1]p can be always satisfied

by carrying out appropriate monotone increasing transformations of each dimensional

component, even in the case when the support before transformation is unbounded. In

practice, it would be sufficient to transform the empirical support to [0, 1]p.

4.3 A Least Squares approach for non-linear Additive model estimation using orthog-

onal wavelet basis

As it is shown in Chapter 22 of [9], it is possible to study the problem of additive regression

using least squares. The empirical L2 risk is minimized over a linear spaced spanned by a

defined orthogonal basis with dimension depending on the sample size. In this setting, con-

sider the unknown functions {f1, ..., fp} to be approximated by their respective orthogonal

projections onto the multiresolution space VJ spanned by a given set of scaling functions{
φperJ,k (x), k = 0, ..., 2J − 1

}
, for a given multiresolution index J . Consequently, the projec-

tion of the function fA(x) =
∑p

j=1 fj(xj) onto VJ belongs to the linear space defined as:
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Fn =

f : [0, 1]p → R | f(x) =

p∑
j=1

2J(n)−1∑
k=0

c
(j)
J(n),kφ

per
J(n),k(xj) , x ∈ [0, 1]p

 , (4.6)

where xj , j = 1, ..., p corresponds to the j-th component of the vector x ∈ [0, 1]p. Thus, this

projection of fA(x) onto Fn is defined by the set of coefficients:{
c

(j)
J,k , j = 1, ..., p ; k = 0, ..., 2J(n) − 1

}
.

As it is shown in [5], by the properties of MRA, ∪j≥0Vj is dense in L2([0, 1]), where Vj is

the space spanned by the orthonormal basis
{
φperJ,k (x), k = 0, ..., 2J − 1 ;

}
for some J ≥ 0.

Therefore, for any Lebesgue measure µ(·) in R that is bounded away from zero and infinity

in its support, we have that ∪j≥0Vj is dense in L2 (µ([0, 1])), thus the following result holds:

Lemma 4.3.1. For any f ∈ L2([0, 1]), ε > 0 and bounded Lebesgue measure µ(x) in Rp,

∃
{
c

(1)∗
J,0 , ..., c

(1)∗
J,2J−1

, ..., c
(p)∗
J,0 , ..., c

(p)∗
J,2J−1

}
for which J = J∗(n0(ε)), such that:

∫
[0,1]p

∣∣∣∣∣∣
p∑
j=1

2J−1∑
k=0

c
(j)
J,kφ

per
J,k (xj)− fj(xj)

∣∣∣∣∣∣
2

µ(dx) ≤ ε . (4.7)

The proof of the above assertion follows from the application of the inequality (
∑d

j=1 aj)
2 ≤

d ·
∑d

j=1 a
2
j , together with the fact that

⋃
j≥0 Vj is dense in L2 (µ([0, 1])). This enables to find

a multiresolution index J as a function of the sample size n sufficiently large, such that it is

possible to approximate each of the functions fj with a precision εj ≤ ε
p·||µ||∞ , j = 1, ..., p,

for ||µ||∞ defined as the infinity norm of the Lebesgue measure µ.

4.3.1 Least Squares problem formulation.

Following (4.1), suppose a model of the form:

y(x) = fA(x) + σ · ε . (4.8)
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Assume conditions stated in 4.3 are satisfied. From (4.7), for a sample {(Xi, Yi)}ni=1, and a

given multiresolution index J = J(n), it is possible to define a least squares estimator of

f(x) over the space of functions defined by Fn in (4.6), as follows:

f̂J(n) = arg inf
f∈Fn

1

n

n∑
i=1

|f(Xi)− Yi|2 ,

= arg min{
c
(j)
J,k , j=1,...,p ; k=0,...,2J(n)−1

} 1

n

n∑
i=1

∣∣∣∣∣∣
p∑
j=1

2J−1∑
k=0

c
(j)
J,kφ

per
J,k (Xij)− Yi

∣∣∣∣∣∣
2

. (4.9)

Define:

c =



c
(1)
J,0

...

c
(1)

J,2J−1

...

c
(p)
J,0

...

c
(p)

J,2J−1


p·2J(n)×1

, B(xi) =



φperJ,0 (xi1)

...

φper
J,2J−1

(xi1)

...

φperJ,0 (xip)

...

φper
J,2J−1

(xip)


p·2J(n)×1

, (4.10)

B =


B(x1)T

...

B(xn)T


n×p·2J(n)

, Y =


Y1

...

Yn


n×1

. (4.11)

Then, it is possible to represent (4.9) as:

f̂J(n) = arg min
c∈Rp·2J(n)

1

n
‖B · c− Y‖2

2 . (4.12)
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Assuming that X1, ...,Xn have continuous joint distribution and p · 2J(n) ≤ n, the matrix B is

non-singular (since the event in which X1, ...,Xn are all distinct happens with probability 1).

Therefore, the problem defined by (4.12) has a unique solution given by:

c∗ =
(
BTB

)−1 BTY . (4.13)

Therefore, for a new observation x, the estimator f̂J(n)(x) can be represented as:

f̂J(n)(x) = B(x)T c∗ . (4.14)

4.3.2 Strong consistency of the Linear Least Squares Estimator.

In this section, we investigate the consistency property for the least squares estimator defined

by equations (4.13) and (4.14). Throughout the analysis, we will use results and definitions

contained in C.1 of the appendix, which have been previously introduced in the statistical

literature.

Theorem 4.3.1. Strong consistency of the Wavelet-based Least Squares Estimator

Suppose an orthonormal basis
{
φperj,k (x), k = 0, ..., 2J − 1,

}
which for J → ∞ is dense in

L2(ν([0, 1])) for ν ∈ Υ, and let Υ be the set of bounded Lebesgue measures in [0, 1]. Suppose

µ is a bounded Lebesgue measure in [0, 1]p, and the following conditions are satisfied for the

scaling function φ:

(a) ∃Φ, bounded and non-increasing function in R such that
∫

Φ(|u|)du <∞ and |φ(u)| ≤

Φ(|u|) almost everywhere (a.e.).

(b) In addition,
∫
R |u|

N+1Φ(|u|) <∞ for some N ≥ 0.

(c) ∃F , integrable, such that |K(x, y)| ≤ F (x − y), ∀x, y ∈ R, for K(x, y) =
∑

k φ(x −

k)φ(y − k).
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(d) Suppose φ satisfies:

i.
∑

k |φ̂(ξ + 2kπ)|2 = 1, a.e., where φ̂ denotes the Fourier transform of the scaling

function φ.

ii. φ̂(ξ) = φ̂( ξ
2
)m0( ξ

2
), where m0(ξ) is a 2π-periodic function and m0 ∈ L2(0, 2π).

(e)
∫
R x

kψ(x) = 0, for k = 0, 1, ..., N ,N ≥ 1 where ψ is the mother wavelet corresponding

to φ.

(f) The functions {fl}pl=1, are such that fl ∈ L∞([0, 1]) and fl ∈ Wm+1
∞ ([0, 1]) , m ≥ N ,

where Wm
∞([0, 1]) denotes the space of functions that are m-times weakly-differentiable

and f (k)
l ∈ L∞([0, 1]) , k = 1, ...,m.

(g) θφ(x) :=
∑

k |φ(x− k)| such that ||θφ||∞ <∞.

According to corollary 8.2 [57], if f ∈ WN+1
∞ ([0, 1]) then ||KJf−f ||p∞ = O

(
2−pJ(N+1)

)
, p ≥

1. Furthermore, assume condition (A3) is satisfied. Define the set of functions:

Fn =

f : [0, 1]p → R | f(x) =

p∑
j=1

2J−1∑
k=0

c
(j)
Jkφ

per
Jk (xj) ; J = J(n)

 , (4.15)

where xj , j = 1, ..., p corresponds to the j-th component of the vector x ∈ [0, 1]p. Also, let

βn > 0 be a parameter depending on the sample and assume E [Y 2] < ∞. Define f̂J(n)

as in (4.12) and let fJ(n) = Tβn f̂J(n) := f̂J(n)1{|f̂J(n)|≤βn} + sign(f̂J(n))βn1{|f̂J(n)|>βn},

Kn = 2J(n). Assume the following conditions hold:

(i) βn →∞ as n→∞.

(ii) Knβ
4
n log(βn)
n

→ 0 as n→∞.

(iii) For some δ > 0 as n→∞ n1−δ

β4
n
→∞.
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Then:

lim
n→∞

∫ ∣∣fJ(n)(x)− fA(x)
∣∣2 µ(dx) = 0 (a.s.) , (4.16)

lim
n→∞

E
{∫ ∣∣fJ(n)(x)− fA(x)

∣∣2 µ(dx)

}
= 0 . (4.17)

The corresponding proof can be found in section C.2 of the appendix.

Remarks

(i) Note that the scaling function φ(x) for the wavelet basis
{
φperJ,k (x), 0 ≤ k ≤ 2J − 1

}
for

fixed J is absolutely integrable in R. Therefore,
∫
R |φ(x)|dx = Cφ <∞.

Corollary 4.3.1. Note that if |Y | ≤ B, B < ∞ (known), to guarantee strong consistency of

the least squares estimator it suffices to verify the following conditions are satisfied:

(a) For some δ > 0, n1−δ →∞, as n→∞.

(b) Kn
n
→ 0, as n→∞.

Remarks and comments

(i) This theorem is similar to theorem 10.3 of [9]. In our case, we investigated the sta-

tistical properties possible to be obtained using a wavelet framework, in the set of

functions Fn defined by (C.10), and assuming conditions stated in 4.3.1 for the scal-

ing function φ hold, when the unknown regression function is additive and given by

m(x) =
∑p

j=1mj(xj).

(ii) From this theorem it is possible to conclude that the estimator defined in (4.12) re-

sults from the application of the wavelet framework directly to the NESD generated
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by the observations X1, ...,Xn. As was shown, this approach provides good statisti-

cal properties which suggests that it is possible to ignore the NESD condition without

compromising the robustness and efficiency of the estimator.

(iii) As was presented, the strong consistency of (4.12) relies on parameters βn and Kn =

2J(n) that need to be selected. In the next section, optimal choices for both are proposed.

4.3.3 Convergence rate of the Wavelet-based Least Squares Estimator.

As was seen in the previous section, Theorem 4.3.1 shows that the least squares (LS) wavelet-

based estimator is strongly consistent for all bounded Lebesgue measures in [0, 1]p when

the set of assumptions for the unknown functions and wavelet basis are satisfied. In this

section, we investigate the convergence rates that are possible to attain with this estimator. In

particular, we are interested in studying the rate at which:

E
[∫

[0,1]p

∣∣fJ(n)(x)− fA(x)
∣∣2 µ(dx)

]
−→
n→∞

0 ,

where fJ(n) = Tβn f̂J(n) for βn > 0 and f̂J(n) defined as in (4.12). Similarly as in the previous

section, to investigate the convergence properties of the LS estimator, we use theorem C.1.6,

introduced by Pollard (1984), detailed in C.1 of the appendix.

Lemma 4.3.2. Suppose an orthonormal basis
{
φperJ,k (x), k = 0, ..., 2J − 1

}
for a certain J ≥

0 which as J → ∞ is dense in L2(ν([0, 1])) for ν ∈ Υ, where Υ represents the set of

bounded Lebesgue measures in [0, 1]. Suppose µ is a bounded Lebesgue measure in [0, 1]p

and conditions stated in Theorem 4.3.1 for the scaling function φ, and assumptions (A1)-(A4)

defined in 4.2 are satisfied. Define the set of functions Fn as in (C.10). Also, let βn > 0 be a

parameter depending on the sample and assume E [Y 2] < ∞. Define f̂J(n) as in (4.12) and

let fJ(n) = Tβn f̂J(n), let Kn = p 2J(n). Furthermore, assume the following condition holds:
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(i)
∑p

j=1 ||fj||∞ < L, for some L < βn.

Then:

E

[
1

n

n∑
i=1

∣∣fJ(n)(xi)− fA(xi)
∣∣2 | Xn

1

]
≤ min

f∈Fn

{
||f − fA||2n

}
+
σ2

n
Kn , (4.18)

where ||f ||2n = 1
n

∑n
i=1 f(xi)

2.

The corresponding proof can be found in Appendix C.3.

Lemma 4.3.3. Suppose an orthonormal basis
{
φperJ,k (x), k = 0, ..., 2J − 1

}
that for J →∞ is

dense in L2(ν([0, 1])) for ν ∈ Υ, where Υ represents the set of bounded Lebesgue measures in

[0, 1]. Suppose assumptions stated in Theorem 4.3.1 for the scaling function φ, and conditions

(A1)-(A4) defined in 4.2 hold. Let the set of functions Fn to be defined as in (C.10).

Then it follows:

inf
f∈Fn

∫
[0,1]p
|f(x)− fA(x)|2 µ(dx) ≤ p2C2

2 2−2(N+1) J(n) , (4.19)

for a constant C2 > 0, independent of n, J .

The corresponding proof can be found in Appendix C.4.

Theorem 4.3.2. Consider assumptions stated for Lemma 4.3.2 and conditions (i)-(iii) for

Theorem 4.3.2 hold . Define f̂J(n) as in (4.12) and let fJ(n) = Tβn f̂J(n), let Kn = 2J(n).

Then:

E
[∫

[0,1]p

∣∣fJ(n)(x)− fA(x)
∣∣2 µ(dx)

]
≤ C̃ max

{
β2
n, σ

2
} p 2J(n)

n
(log(n) + 1)+8C2

2 p
2 2−2(N+1)J(n) ,

(4.20)

for proper constants C̃ > 0 and C2 > 0 independent of n,N, p.
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The corresponding proof is based on the application of Lemma 4.3.2, Lemma 4.3.3 and The-

orem P2 and can be found in Appendix C.5.

4.3.4 Optimal choice of Estimator parameters J(n) and βn.

In this section we propose choices for the parameters J(n) and βn used in the estimator. First,

we look at the selection of the truncating parameter βn.

Lemma 4.3.4. Suppose a model of the form (4.8), with 0 < σ < ∞. Assume ε is a sub-

gaussian random variable independent of x, such that E[ε] = 0, E[ε2] = 1. Let {Y1, ..., Yn}

be the response observations in the sample {Yi,Xi}ni=1.

Then, for βn = 4σ
√

log(n) it follows:

P {max {Y1, ..., Yn} > βn} = O
(

1

n

)
, (4.21)

which implies that lim
n→∞

P {max {Y1, ..., Yn} > βn} → 0 at a rate 1
n

.

The corresponding proof can be found in Appendix C.6.

Remarks

(i) In practice, the value of σ is not known and it can be estimated by the sample variance

σ̂2 of the response. Assuming independence between the random error ε and predictors

X, this is a suitable choice. However, this in practice could lead to a larger than optimal

truncating parameter, since V ar(f(x)) ≥ σ2.

(ii) Another possibility for choosing σ could be the one proposed by Donoho and John-

stone (1994), which is given by σ̂ =
median({|d̂J−1,k| : k=0,...,2J−1})

0.6745
, where d̂J−1,k are the

discrete wavelet coefficients resulting from the DWT of the observed response y.
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Lemma 4.3.5. Define f̂J(n) as in (4.12) and let fJ(n) = Tβn f̂J(n). Suppose assumptions for

Theorem 4.3.2 hold. Then, for βn = 4σ
√

log(n) (n ≥ 2), setting the multiresolution level

J(n) as:

J∗(n) = K1 +
1

2N + 3
log2

(
n

log(n) (log(n) + 1)

)
, (4.22)

minimizes the L2-risk upper bound given by (4.20) and guarantees the strong consistency of

the estimator f̂J(n), where K1 = 1
2N+3

log2

(
(N+1)C2

2 p

C̃ σ2

)
.

The proof of this Lemma consists in the minimization of the upper bound (4.20) with respect

K̃n = 2J(n). Note that the minimum exists and is unique due to the convexity of the objec-

tive function defined by (4.20). Similarly, it is possible to guarantee conditions (i)-(iii) of

Theorem 4.3.1 are satisfied since:

lim
n→∞

(
log(n)γ+t

nγ

)
= 0 ,

∀ γ ≥ 1 , t > 0 (integers) which can be proved by applying L’Hopital’s rule.

Theorem 4.3.3. Suppose assumptions and results for Theorems 4.3.1, 4.3.2 and Lemmas

4.3.4 and 4.3.5 hold. Then, the estimator defined by in (4.12), and fJ(n) = Tβn f̂J(n) attains

the following convergence rate for the L2-risk:

E
[∫

[0,1]p

∣∣fJ(n)(x)− fA(x)
∣∣2 µ(dx)

]
≤ K̃

(
β2
n log(n)

n

) 2γ
2γ+1

, (4.23)

where γ = N + 1, K̃ =
(

2 γ C̃ p
) 2γ
γ+1

(8C2
2 p

2)
1

2γ+1 .

From (4.23), it is possible to distinguish 2 cases:
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(i) From Corollary 4.3.1, if |Y | ≤ B, B <∞ (known) it follows:

E
[∥∥fJ(n) − fA

∥∥2
]

= O
(

log(n)

n

) 2γ
2γ+1

. (4.24)

(ii) If the upper bound of Y is not known, choosing βn as in Lemma 4.3.4, the convergence

rate takes the form of:

E
[∥∥fJ(n) − fA

∥∥2
]

= O
(

log(n)2

n

) 2γ
2γ+1

. (4.25)

The proof of the above assertions follows from Lemmas 4.3.4 and 4.3.5 applied to Theorem

4.3.2.

Remarks

(i) Note that results (i) and (ii) show that the LS estimator defined by f̂J(n) as in (4.12)

does not suffer from the curse of dimensionality. Moreover, its convergence rate is

optimal up to a logarithmic factor. This implies that is possible to apply the wavelet

framework directly over non-equally spaced designs without compromising desirable

statistical properties such as strong consistency and optimal L2 convergence rates.

4.3.5 Simulation Study

In the last section, we introduced a wavelet based least squares estimator for the additive

regression model and proved its statistical properties. In this section, we investigate the

performance of f̂n(x) with respect to the ARMSE (Average Root Mean Squared Error) of

estimation, via a simulation study. For this objective, we choose a set of exemplary base-

line functions that combine different smoothness and spectral properties and are aimed to

challenge the estimation process.
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To simplify the implementation, we select specific functions that are supported in the [0,1]

and also satisfy assumptions (A1)-(A4). These functions are defined as follows:

f1(x) =
1√

2 sin (2π x)

f2(x) = 1− 4 |x− 1

2
|

f3(x) = − cos (4π x+ 1)

f4(x) = 8

(
x− 1

2

)2

− 2

3

f5(x) =
1√
2

cos (2π x)

f6(x) =
1√
2

cos (4π x)

f7(x) = −0.5275 + 4 e−500(x−0.23)2 + 2 e−2000(x−0.33)2

+4 e−8000(x−0.47)2 + 3 e−16000(x−0.69)2 + e−32000(x−0.83)2

f8(x) = 0.2 cos (4π x+ 1) + 0.1 cos (24π x+ 1)

f9(x) = −0.1744 + 2 x3 1(0.5<x≤0.8) + 2 (x− 1)3 1(0.8<x≤1)

In this simulation study, we investigate the performance of the estimator for different sample

sizes, noise variances σ2, wavelet filters and distribution of the predictors X. To quantify the

estimator performance, we use the following global error measure:

̂ARMSE =
√

(
1

B

B∑
b=1

1

n

n∑
i=1

(
f(xi)− f̂n,b(xi)

)2

) , (4.26)

where B is the number of replications of the experiment and n is the number of samples. For

all experiments we choose B = 200.

While implementing the simulations, we considered the following settings in a matlab-based
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Figure 4.1: Graphic representation of the testing functions for the Additive Model.

script:

(i) We generated independent random numbers {Xi}Ni=1 from the {U [0, 1]}9 and
{
Beta(3

2
, 3

2
)
}9

joint distributions (satisfying assumptions (A1)-(A4)), and constructed the model de-

fined in (4.8).

(ii) For the noise variance, we used σ2 = 0.75 and σ2 = 0.25, which produced differ-

ent signal-to-noise ratios (SNR) used to assess the estimator robustness against noisy

observations.

(iii) For the computation of the least squares estimator, we chose the scaling functions gen-

erated by the wavelet filters Coiflets and Daubechies with 24 and 4 coefficients

respectively.
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(iv) Both of the chosen wavelet filters satisfy conditions 1-6 listed in theorem 1. For Coiflets,

the wavelet is near symmetric with compact support and has N/3 vanishing moments

(N is the number of filter taps); in the case of Daubechies, the wavelet does not have

the near-symmetry property but it has compact support and N vanishing moments.

(v) For the evaluation of the scaling functions φperJk (and construction of matrix B) we used

Daubechies-Lagarias’s algorithm.

(vi) The multiresolution level J was chosen to be J(n) = 1+blog2(n)−log2 (log(n) (log(n) + 1))c.

(vii) The truncating parameter βn was selected using the proposition detailed in remark (ii)

of Lemma 4.3.4.

Simulation Results.

In this section, we summarize the simulation results obtained for the baseline distributions

previously defined. In particular, we present the following:

(i) Tables 4.1 to 4.4 present details for ARMSE results obtained for each of the baseline

distributions using a Uniform design {U [0, 1]}9 for predictors. Similarly, in Tables 4.5

to 4.8 present details for RMSE results obtained for each of the baseline functions using

a
{
Beta(3

2
, 3

2
)
}9 design.

(ii) Figures 4.2a - 4.2b show the behavior of the RMSE for each of the functions f1, ..., f9

with respect to sample size and noise variance values σ2 = 0.75 , 0.25, for the Uniform

design {U [0, 1]}9 using Daubechies filter.

(iii) Figures 4.4a - 4.4b show the behavior of the RMSE for each of the functions f1, ..., f9

with respect to the sample size and the noise variance values σ2 = 0.75 , 0.25 for the

Uniform design {U [0, 1]}9 using Coiflets 24 filter.
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(iv) Figures 4.5a - 4.13b show the recovered functions f1, ..., f9 for different sample sizes

n = 512, 1024, 4096 and values of the noise variance σ2 = 0.25, 0.3 for the Uniform

design {U [0, 1]}9 using a Coiflets 24 filter. The dashed lines (black) correspond to

the actual function, computed at each data point x, whereas the magenta points show

the estimated values of the function at each sample x. The red lines corresponds to a

smoothed version of the estimated function values, computed using locally weighted

scatterplot smoothing (lowess) with parameter 0.25 (this was done just for visualization

purposes).

(v) Figures 4.14a - 4.14b show the behavior of the RMSE for each of the functions f1, ..., f9

with respect to the sample size and the noise variance values σ2 = 0.75 , 0.25 for the

Beta design
{
Beta(3

2
, 3

2
)
}9 using Daubechies filter.

(vi) Figures 4.15a - 4.15b show the behavior of the RMSE for each of the functions f1, ..., f9

with respect to the sample size and the noise variance values σ2 = 0.75 , 0.25 for the

Beta design
{
Beta(3

2
, 3

2
)
}9 using Coiflets 24 filter. In each figure, plots (b) and (d)

correspond to zoomed in versions of plots (a) and (c) respectively.

(vii) Figures 4.16a - 4.24b show the recovered functions f1, ..., f9 for different sample sizes

n = 1024, 4096 and values of the noise variance σ2 = 0.3 for the Beta design
{
Beta(3

2
, 3

2
)
}9

using Coiflets 24 filter. The dashed lines (black) correspond to the actual function, com-

puted at each data point x, whereas the magenta points show the estimated values of the

function at each sample x. The red lines corresponds to a smoothed version of the es-

timated function values, computed using lowess smoothing with parameter 0.25 (this

was done just for visualization purposes).
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Table 4.1: RMSE results for Uniform distribution with σ2 = 0.25 using
Daubechies 4 wavelet filter.

n = 256 n = 512 n = 1024 n = 2048 n = 4096

f1(x) 0.0224 0.0143 0.0086 0.0035 0.002
f2(x) 0.0227 0.0156 0.0089 0.0038 0.002
f3(x) 0.0692 0.0174 0.0088 0.0038 0.002
f4(x) 0.0241 0.0141 0.0086 0.0038 0.002
f5(x) 0.0242 0.0148 0.0088 0.0036 0.002
f6(x) 0.0391 0.0155 0.0087 0.0037 0.0021
f7(x) 0.7327 0.1069 0.1051 0.1005 0.0533
f8(x) 0.0289 0.0191 0.0103 0.0049 0.0021
f9(x) 0.0543 0.0268 0.0143 0.0091 0.0029

Table 4.2: RMSE results for Uniform distribution with σ2 = 0.75 using
Daubechies 4 wavelet filter.

n = 256 n = 512 n = 1024 n = 2048 n = 4096

f1(x) 0.042 0.0362 0.0306 0.0126 0.0114
f2(x) 0.0458 0.0345 0.0307 0.0121 0.0108
f3(x) 0.0909 0.0382 0.0301 0.013 0.0109
f4(x) 0.044 0.0342 0.0296 0.0127 0.0113
f5(x) 0.0449 0.0341 0.0304 0.0125 0.0111
f6(x) 0.064 0.0363 0.0305 0.0128 0.0113
f7(x) 0.7577 0.1299 0.1283 0.1097 0.0624
f8(x) 0.0478 0.0395 0.0322 0.0135 0.011
f9(x) 0.0751 0.0468 0.0349 0.0177 0.0119

Results Discussion

As can be observed from the Figures and Tables illustrating the simulation results, the least

squares methodology is able to provide accurate estimates for the simulated settings. In

particular, for the smooth functions the estimates exhibit a small bias and a variance that de-

creases with the sample size as was theoretically shown.

For functions that are smooth and posses oscillations that are concentrated in small sub-

intervals of the support (e.g. f7 and f9), when sample sizes are small the least squares esti-

mates are likely to fail to detect the multimodality of the functions. However, as the sample

size increases, the estimates are very accurate.

As seen from the illustrations of the behavior of the ARMSE with respect to the sample size,
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Table 4.3: RMSE results for Uniform distribution with
σ2 = 0.25 using Coiflets 24 wavelet filter.

n = 256 n = 512 n = 1024 n = 2048 n = 4096

f1(x) 0.0193 0.0163 0.0058 0.0024 0.0013
f2(x) 0.0191 0.0172 0.0057 0.0025 0.0013
f3(x) 0.0198 0.0168 0.006 0.0025 0.0013
f4(x) 0.0214 0.0177 0.0061 0.0025 0.0013
f5(x) 0.0185 0.0165 0.0059 0.0024 0.0013
f6(x) 0.0207 0.0177 0.0057 0.0025 0.0013
f7(x) 0.7776 0.1946 0.0388 0.0353 0.0088
f8(x) 0.0244 0.0222 0.0061 0.0027 0.0013
f9(x) 0.0386 0.022 0.0083 0.0049 0.0032

Table 4.4: RMSE results for Uniform distribution with
σ2 = 0.75 using Coiflets 24 wavelet filter.

n = 256 n = 512 n = 1024 n = 2048 n = 4096

f1(x) 0.0369 0.0375 0.0259 0.0115 0.0102
f2(x) 0.0407 0.0364 0.0268 0.0112 0.0103
f3(x) 0.0377 0.0373 0.0269 0.0116 0.0102
f4(x) 0.0417 0.0353 0.0266 0.0115 0.0104
f5(x) 0.0395 0.0373 0.0265 0.0112 0.0101
f6(x) 0.0397 0.0368 0.0268 0.0113 0.0105
f7(x) 0.7796 0.2165 0.0598 0.0438 0.0178
f8(x) 0.0438 0.0436 0.0273 0.0115 0.0103
f9(x) 0.0571 0.0433 0.0289 0.0132 0.0121

for most of functions the least squares estimates behave similarly. Also, it is interesting to

note the effect of the SNR on the estimation accuracy: although it was observed a decrease

in the perfomance for small SNR, in general the estimates remain within a reasonable range

of accuracy for practical applications. These two facts support the argument that the least

squares estimator is robust enough for sufficiently smooth functions and a good range of

SNR.

In the case of f9 that corresponds to a non-smooth functions, even though the estimation

performance was not as good as for the rest of the functions, it did a reasonably good job

in detecting the average functional form with the simulated sample sizes. However, increas-

ing the sample size would definitely lead to more accurate estimates (bias + variance), as

suggested by the theoretical results.
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(a) Daubechies filter, σ2 = 0.25

(b) Daubechies filter, σ2 = 0.75

Figure 4.2: RMSE results for Uniform Design using Daubechies and Coiflets filter, for values of σ2 = 0.25− 0.75.

Remarks and comments

(i) Practical choice of J(n). Since the optimal multiresolution index J was obtained up

to and unknown additive constant K1 (see Lemma 4.3.5), for implementation purposes
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(a) Coiflets filter, σ2 = 0.25

(b) Coiflets filter, σ2 = 0.75

Figure 4.3: RMSE results for Uniform Design using Daubechies and Coiflets filter, for values of σ2 = 0.25− 0.75.

it is possible to replace it with a predefined integer. However, a large value for this

constant would cause an undesired inflation of the estimator variance and also, increase

the computational complexity of the algorithm.
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(a)

(b)

Figure 4.4: RMSE results for each function using Uniform Design and Coiflets 24 filter, for values of σ2 = 0.25 , 0.75.

(ii) In the case of densities with exponentially decaying tails (i.e. largely deviated form

uniformity), large samples are needed in order to obtain accurate estimates. In fact,

during the simulation study we observed cases where abnormally large wavelet coeffi-
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(a)

(b)

Figure 4.5: Estimated f1(x) using Uniform Design and Coiflets filter.

cients were obtained at the tails of the distribution (or regions with low density values).

This was caused primarily due to possible violations of assumption (A1) and the lack

of information available for a reasonable estimation of the coefficients in those regions.

134



(a)

(b)

Figure 4.6: Estimated f2(x) using Uniform Design and Coiflets filter.

In this context, we suggest the following possible remedial actions:

(a) Restricting the domain of estimation to the 95% empirical quantiles along each

of the dimensions of the predictors. This is a reasonable approach that can pre-
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(a)

(b)

Figure 4.7: Estimated f3(x) using Uniform Design and Coiflets filter.

vent the generation of large coefficient that induce error in the function estimation

procedure. However, this reduces the effective sample size and also, restricts the

possibility of estimation of unlikely or rare cases.

136



(a)

(b)

Figure 4.8: Estimated f4(x) using Uniform Design and Coiflets filter.

(b) Choosing parameter βn via cross-validation to minimize the RMSE. Abnormally

large wavelet coefficients would lead (in general) to large function estimates. This

can be prevented by truncating the final estimates using βn and the use of cross-
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(a)

(b)

Figure 4.9: Estimated f5(x) using Uniform Design and Coiflets filter.

validation would allow an evidence-based selection of this parameter.

(iii) Model without β0. Because of the strang-fix condition, the estimation of a model with a

constant β0 turned out to be unstable. For this reason, we recommend a pre-processing
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(a)

(b)

Figure 4.10: Estimated f6(x) using Uniform Design and Coiflets filter.

stage in which the response is standardized so that it has zero mean and a standard

deviation of 1. This approach is a natural result if we modify assumption (A1) to be

instead E [fj(Xj)] = 0 for j = 1, ..., p. Note that this does not alter at all the model
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(a)

(b)

Figure 4.11: Estimated f7(x) using Uniform Design and Coiflets filter.

structure, estimation procedure or statistical properties. In this case the natural estimator

of the intercept would be given by β̂0 = 1
n

∑n
i=1 yi.
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(a)

(b)

Figure 4.12: Estimated f8(x) using Uniform Design and Coiflets filter.
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(a)

(b)

Figure 4.13: Estimated f9(x) using Uniform Design and Coiflets filter.
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Table 4.5: RMSE results for Beta( 32 ,
3
2 ) distribution with

σ2 = 0.25 using Daubechies 4 wavelet filter.

n = 256 n = 512 n = 1024 n = 2048 n = 4096

f1(x) 0.0324 0.0246 0.0153 0.0058 0.0031
f2(x) 0.0344 0.0212 0.0147 0.0057 0.003
f3(x) 0.0971 0.026 0.0141 0.006 0.0031
f4(x) 0.0325 0.0234 0.0143 0.0054 0.003
f5(x) 0.0369 0.0237 0.0143 0.0054 0.0032
f6(x) 0.0561 0.0248 0.0137 0.0061 0.003
f7(x) 0.7254 0.1071 0.1072 0.101 0.0538
f8(x) 0.0413 0.0273 0.0148 0.0071 0.0033
f9(x) 0.067 0.0341 0.0194 0.0112 0.004

Table 4.6: RMSE results for Beta( 32 ,
3
2 ) distribution with

σ2 = 0.75 using Daubechies 4 wavelet filter.

n = 256 n = 512 n = 1024 n = 2048 n = 4096

f1(x) 0.0578 0.053 0.0442 0.0168 0.0163
f2(x) 0.0593 0.0578 0.0443 0.0187 0.0156
f3(x) 0.1342 0.0534 0.0438 0.0179 0.0153
f4(x) 0.0577 0.0566 0.0462 0.0186 0.0152
f5(x) 0.0583 0.056 0.0445 0.0173 0.0167
f6(x) 0.0819 0.0554 0.045 0.019 0.0156
f7(x) 0.7534 0.1327 0.1373 0.1139 0.0672
f8(x) 0.0662 0.0585 0.0470 0.0196 0.0166
f9(x) 0.0949 0.0635 0.0515 0.0237 0.0169

Table 4.7: RMSE results for Beta( 32 ,
3
2 ) distribution with

σ2 = 0.25 using Coiflets 24 wavelet filter.

n = 256 n = 512 n = 1024 n = 2048 n = 4096

f1(x) 0.0284 0.0252 0.0091 0.0035 0.0017
f2(x) 0.029 0.0258 0.0086 0.0036 0.0017
f3(x) 0.0276 0.0248 0.0085 0.0034 0.0018
f4(x) 0.0312 0.0246 0.0084 0.0036 0.0018
f5(x) 0.0288 0.0246 0.0084 0.0036 0.0017
f6(x) 0.0293 0.0245 0.0088 0.0034 0.0017
f7(x) 0.757 0.1977 0.0398 0.0358 0.0091
f8(x) 0.0347 0.0321 0.0081 0.0038 0.0017
f9(x) 0.047 0.0313 0.011 0.0059 0.0035

Table 4.8: RMSE results for Beta( 32 ,
3
2 ) distribution with

σ2 = 0.75 using Coiflets 24 wavelet filter.

n = 256 n = 512 n = 1024 n = 2048 n = 4096

f1(x) 0.0488 0.0509 0.0346 0.0142 0.013
f2(x) 0.0523 0.0511 0.0347 0.0144 0.0131
f3(x) 0.0492 0.0467 0.0356 0.0149 0.0134
f4(x) 0.0548 0.0493 0.037 0.0145 0.0133
f5(x) 0.051 0.0511 0.0357 0.015 0.013
f6(x) 0.0463 0.0523 0.036 0.015 0.013
f7(x) 0.7911 0.2238 0.0678 0.0466 0.02060
f8(x) 0.0563 0.0537 0.0351 0.0151 0.013
f9(x) 0.0715 0.0574 0.0385 0.0175 0.0151
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(a) Daubechies filter, σ2 = 0.25

(b) Daubechies filter, σ2 = 0.75

Figure 4.14: RMSE results for Beta Design using Daubechies filters, for values of σ2 = 0.25 , 0.75..
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(a)

(b)

Figure 4.15: RMSE results for each function using Coiflets 24 filter, for values of σ2 = 0.25 , 0.75..
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(a)

(b)

Figure 4.16: Estimated f1(x) using Beta Design and Coiflets filter.
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(a)

(b)

Figure 4.17: Estimated f2(x) using Beta Design and Coiflets filter.
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(a)

(b)

Figure 4.18: Estimated f3(x) using Beta Design and Coiflets filter.
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(a)

(b)

Figure 4.19: Estimated f4(x) using Beta Design and Coiflets filter.
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(a)

(b)

Figure 4.20: Estimated f5(x) using Beta Design and Coiflets filter.
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(a)

(b)

Figure 4.21: Estimated f6(x) using Beta Design and Coiflets filter.
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(a)

(b)

Figure 4.22: Estimated f7(x) using Beta Design and Coiflets filter.
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(a)

(b)

Figure 4.23: Estimated f8(x) using Beta Design and Coiflets filter.
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(a)

(b)

Figure 4.24: Estimated f9(x) using Beta Design and Coiflets filter.
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4.4 Practical Application of Wavelet based Least Squares Method

In this section we consider the implementation of our proposed estimator using a dataset

available at the machine learning repository of UCI1 concerning the study of hourly full load

electrical output power (EP) of a combined cycle plant.

This data set was extensively analized by Tüfekci (2014)[58] using different statistical mod-

els, with the goal of predicting EP based on 4 available features. That research utilized a

variety of predictive methods including: Simple Linear Regression (SLR), Multilayer Per-

ceptron (MLP), Radial Basis Function Neural Network (RBF), Additive Regression (AR,

using back-fitting), KStar (instance-based classifier), Locally Weighted Learning, Bagging

REP Tree (BREP, Bootstrap based tree methods), Model Tree rules, Model Tress Regression

(M5P), REP Trees, Support Vector Regression, Least Median Square (LMS), etc. A total of

15 statistical models were used and compared using 2-fold Crossvalidation after randomly

shuffling the data 5 times. Then, prediction accuracy was evaluated using RMSE as an error

metric.

Data set description

The dataset contains 9568 data points collected from a Combined Cycle Power Plant2 over

6 years (2006-2011), when the power plant was set to work with full load. The features are

used to predict the net hourly electrical energy output (EP) of the plant and consist of :

(a) Temperature (AT) : This input variable is measured in degrees Celsius and it varies

1UCI Machine Learning Repository http://archive.ics.uci.edu/ml. Irvine, CA: University of Cali-
fornia, School of Information and Computer Science.

2 A combined cycle power plant (CCPP) is composed of gas turbines (GT), steam turbines (ST) and heat recovery
steam generators. In a CCPP, the electricity is generated by gas and steam turbines, which are combined in one cycle,
and is transferred from one turbine to another. While the Vacuum is collected from and has effect on the Steam
Turbine, he other three of the ambient variables effect the GT performance.
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between 1.81C and 37.11C.

(b) Ambient Pressure (AP): This input variable is measured in millibar with an observed

range from 992.89 to 1033.3 mbar.

(c) Relative Humidity (RH): This variable is measured as a percentage with an observed

range from 25.56% to 100.16%.

(d) Exhaust Vacuum (V): This variable is measured in cm Hg with with an observed range

from 25.36 to 81.56 cm Hg.

The characteristics of the data are the following: The EP is measured in mega watt with an

observed range from 420.26 to 495.76 MW. Similarly, the general structure of the dataset can

be summarized as:

Table 4.9: Application Data Set characteristics, obtained from [58].

Data Set characteristics Multivariate
Number of samples 9568

Attribute characteristics Real
Number of Attributes 5

More details about the data set and the problem in hand can be found in [58].

Implementation settings and results

For this analysis, we chose the following implementation settings:

(a) Daubechies 4 filter for the scaling functions.

(b) J(n) = 1 + blog2(n)− log2 (log(n) (log(n) + 1))c.

(c) The response y was centered and standardized and the predictors X1, ...,Xn were re-

scaled to [0, 1]4.
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(d) To prevent unstable estimates at the tails of the marginal distributions of the predictors,

we restricted the estimation range to the 95% empirical quantiles of the observed sample.

(e) The data was randomly split into training and testing over the samples belonging to the

hypercube defined by the 95% empirical quantiles. 85% of the data was selected for

training and the remaining 15% for testing purposes. The estimation process was re-

peated 100 times. The results for this procedure are illustrated in figures 4.26-4.27b.

(f) For comparison purposes (with results presented in Table 10 [58]), we also implemented

the proposed method using 2-fold CV with Coiflets 24 filter. The process was replicated

10 times. In this case, the wavelet coefficients were obtained using the complete sample,

without restricting the range of the estimation. Table 4.10 illustrates the differences in

accuracy for the wavelet-based estimator and the best regression techniques used in [58].

The obtained results are summarized in the following figures and tables:

(i) Figure 4.26 shows the estimated unknown functions acting on each one of the problem

features.

(ii) Figure 4.25a shows the estimated and actual standardized response, together with the

fn(x) vs y plot and the residual plot ei = fn(xi)− yi.

(iii) Table 4.10 shows RMSE for best methods in [58] and the Wavelet-based LS using 4

features.

(iv) Table 4.11 shows RMSE for best methods in [58] and the Wavelet-based LS using 1

feature (AT).

(v) Table 4.12 shows RMSE for best methods in [58] and the Wavelet-based LS using 2

features (AT-V).

(vi) Table 4.13 shows RMSE for best methods in [58] and the Wavelet-based LS using 3

features (AT-V-RH).
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(a)

(b)

Figure 4.25: Estimaion result plots over the 95% empirical quantiles region and RMSE (computed using the standard-
ized predictions) obtained over 100 replications.

Table 4.10: Comparison results for RMSE for best methods in [58] and the Wavelet-based LS using 4 features.

Kstar BREP M5P MLP RBF LMS SMOREg M5R REP AR Wavelet LS
3.861 3.787 4.087 5.339 8.487 4.572 4.563 4.128 4.211 5.556 4.325
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(a) Estimated f1(x), corresponding to AT.

(b) Estimated f2(x), corresponding to AP.

Figure 4.26: Estimated f1(x) and f2(x) over the 95% empirical quantiles region. The bottom panel illustrates the
sample histograms for each considered feature, within the 95% empirical quantiles region.

Table 4.11: Comparison results for RMSE for best methods in [58] and the Wavelet-based LS using 1 feature (AT).

Kstar BREP M5P LMS SMOREg M5R REP Wavelet LS
5.381 5.208 5.086 5.433 5.433 5.085 5.229 5.085
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(a) Estimated f3(x), corresponding to RH

(b) Estimated f4(x), corresponding V.

Figure 4.27: Estimated f3(x) and f4(x) over the 95% empirical quantiles region. The bottom panel illustrates the
sample histograms for each considered feature, within the 95% empirical quantiles region.

Table 4.12: Comparison results for RMSE for best methods in [58] and the Wavelet-based LS using 2 features (AT-V).

Kstar BREP M5P LMS SMOREg M5R REP Wavelet LS
4.634 4.026 4.359 4.968 4.968 4.419 4.339 4.757
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Table 4.13: Comparison results for RMSE for best methods in [58] and the Wavelet-based LS using 3 features (AT-V-
RH).

Kstar BREP M5P LMS SMOREg M5R REP Wavelet LS
4.331 3.934 4.178 4.580 4.585 4.217 4.291 4.776

Remarks and Comments

(i) From figures 4.26a-4.27b it is possible to observe that the wavelet-based estimator is

able to capture the non-linear influences of each of the features considered in the model.

From the plots it is possible to assess the significance of each one of the uncovered func-

tions in the model; in particular, 4.26a shows an almost linear effect of the Temperature

over EP with negative correlation. For the rest of the predictors, the effect on the re-

sponse is almost negligible.

(ii) From figure 4.25a, we can conclude that the wavelet-based estimator is able to success-

fully predict the EP over the test sample. The predicted vs actual values lie in a straight

line with no evident deviations apart from the noise in the data, showing a strong corre-

lation between predicted and actual values.

(iii) In table 4.10, the average RMSE for the Wavelet-based LS method was 4.325 (non-

standardized testing sample) which shows to be better than most of the results shown

in Table 10 [58]. In particular, the best regression methods studied in such reference

(i.e. Bagging REP Tree, KStar, Model Trees Regression) achieve mean RMSE of 3.861,

3.787 and 4.087 respectively which shows how suitable the wavelet-based least squares

estimator is for the non-linear additive model setting. Even though it could be argued

that our comparison is based on results that were obtained under different settings than

the baseline experiments, the obtained RMSE shows competitive results for the wavelet-

based model. Moreover, the estimation experiments conducted using 85% of the data

for training and the remaining 15% for testing suggest that the prediction RMSE could
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be even smaller than 4.17, which together with the simplicity of implementation posi-

tions the wavelet-based least squares method as a competitive for this kind of problems.

4.5 Conclusions and Discussion

This Chapter introduced a wavelet-based methodology for the non-parametric estimation and

prediction of non-linear additive regression models with NESD. The proposed estimator is

based on the projection of the unknown additive functions onto the space VJ generated by an

orthonormal wavelet basis. In this setting, the data driven wavelet coefficients that define the

model are obtained using a truncated least squares estimates.

For the proposed estimator, we showed its strong consistency and illustrated practical results

via simulations using different exemplary baseline functions. Moreover, we provided conver-

gence rates and optimal choices for the multiresolution index J and the truncation parameter

βn.

Our results show that our estimator doesn’t suffer from the curse of dimensionality, and was

observed to be robust with respect to sample size and noise variance in the model. In fact,

our results show that the proposed method is able to successfully identify and predict the

underlying model functions and response for relatively small sample sizes.

Moreover, the proposed estimators are completely data driven with only a few parameters

of choice left to the user (multiresolution index J , wavelet filter and truncating parameter

βn). Also, the utilized matrix based structure introduces computational speed and makes the

estimators suitable for real-life applications. In our model, we used Daubechies-Lagarias’s

algorithm for the evaluation of the scaling functions φperJk at the observed sample points Xij .

This stage of the estimation process corresponds to the bottleneck in terms of computationally

speed, but for moderate sample sized, the cost of construction is relatively reasonable.
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From a real data application viewpoint, in section 4.4 we tested the proposed least squares

method using a real data set that was extensively analyzed by Tüfekci (2014) [58]. The

obtained results show that the proposed estimators are capable of uncover the existing non-

linear relationships between the response and predictors, while achieving a high predictive

accuracy. In particular, the wavelet-based least squares method showed to be more accurate

than the additive model based on backfitting used in [58].

In terms of some of the drawbacks observed throughout this research for the proposed method,

it is possible to obtain abnormally large wavelet coefficients in those design regions were the

number of samples is small (this is highly likely to occur at the tails of the design distribu-

tion); Also, some problems may arise at the boundaries of the support due to the periodic

wavelets extension. Nonetheless, it is possible to adjust the truncating parameter βn using

cross-validation, which minimizes the effect of those large wavelet coefficients that induce

errors in the prediction of the response and may contribute to reduce the effect predictors

following exponentially decaying distributions.

In summary, based on the theoretical properties and results obtained in this Chapter, we can

argue that the proposed estimators posses interesting interpretations and results and add value

to practical data analysis: it has good asymptotic properties, is able to identify models that

might be hard to do using other methods and also, it is relatively easy to implement which

increases its potential to reach a wide variety of users.

Since the introduced methodology of this chapter relies in the assumption that the dimension-

ality of the design matrix B satisfies p · 2J(n) ≤ n, it would be of high interest to investigate

an alternative approach that relies in the regularization of the objective function 4.9, thus

preventing an ill-conditioned least squares solution. For this reason, in the next Chapter an

alternative approach that corresponds to a ridge-type least squares for the additive regression

163



problem is investigated.
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CHAPTER 5

BAYESIAN APPROACH FOR NON-LINEAR ADDITIVE REGRESSION MODELS

USING CONJUGATE NIG STRUCTURES

In this Chapter, a shrinkage-based estimator for the non-linear additive regression problem in

the presence of gaussian noise is introduced. This shrinkage procedure results from the ap-

plication of a Normal-Inverse-Gamma (NIG) hierarchical model in three different settings:

One general model in which it is assumed that the expansion coefficients follow condition-

ally a Normal distribution, with variance controlled by a single parameter τ . This approach

is implemented using a backfitting methodology that allows the sequential estimation of each

function in the model, choosing the parameter τ that minimizes the empirical MSE from the

data.

Secondly, a more general modelling framework based on a mixture of two NIG models

as joint prior on the expansion coefficients is introduced, enhancing the adaptability of the

model to different degrees of smoothness of functions in the model. Similarly as for the gen-

eral approach, this model is implemented using a backfitting approach, with prior parameters

computed from the data, following the recommendations provided in Vidakovic and De Can-

ditiis (2001)[59].

Next, a special case of the mixture model is introduced. Here, it is assumed that the ex-

pansion coefficients in the model are distributed by a point-mass contaminated Gaussian

distribution, conditional on the noise variance σ2. The point mass models non-energetic co-

efficients, while the Gaussian component represents the more “spread” distribution modeling

large wavelet coefficients.

The conjugacy structure of theNIG model allows the derivation of closed-form expressions
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for the shrinkage rule, that result in a explicit and fast estimation rules. These expressions

are derived in the sequel, and algorithmic procedures for the estimation rules are proposed.

Finally, both models are implemented and evaluated, illustrating their performance against

a set of functions, and comparing the results with the Least Squares approach introduced in

Chapter 4.

5.1 Introduction

Wavelet-based estimation procedures have shown to be appropriate for settings in which it is

needed to estimate functions with unknown smoothness in and adaptive fashion. In particu-

lar, in section 1.1.5 the use of wavelet-based orthogonal basis as a characterization tool for

functional spaces was discussed, showing the adaptability potential of this mathematical tool

for problems in which unknown functions need to be estimated given a set of examples.

Over the course of the last two decades, a variety of non-parametric shrinkage methods have

been proposed and studied. The works by Donoho and Johnstone (1994)[34], and by Donoho

et al. (1995)[27] first introduced RiskShrink, VisuShrink, SureShrink and their modifications.

These procedures, non-linear in nature, exploit the sparsity in the representation of signal in

the wavelet domain, developing different data-dependent thresholding rules for the expansion

coefficients, resulting in non-linear adaptive estimators.

In the non-Bayesian domain, Zhang and Wong (2003)[56] proposed a two-stage wavelet

thresholding procedure using local polynomial fitting and marginal integration for the esti-

mation of the additive components. Their method is adaptive to different degrees of smooth-

ness of the components and has good asymptotic properties. Later on Sardy and Tseng

(2004)[1] proposed a non-linear smoother and non-linear back-fitting algorithm that is based
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on WaveShrink, modeling each function in the model as a parsimonious expansion in a

wavelet basis that is further subjected to variable selection (i.e. which wavelets to use in the

expansion) via non-linear shrinkage.

These methods (non-Bayesian) have been shown to possess excellent approximation proper-

ties, achieving minimax convergence rates over a variety of functional spaces such as Besov

and Sobolev, and exploiting the speed of the discrete wavelet transform (DWT) that enables

computational power when dealing with large dimensions/sample sizes. However, most of

these methods are restricted to the univariate case and rely on equally-spaced observations

of the model features, except for the two methodologies introduced by Zhang and Wong

(2003)[56] and Sardy and Tseng (2004)[1].

Following the line of non-Bayesian methods for additive regression, in chapters 3 and 4, two

different methodologies based on Wavelets that exploit their approximation capabilities were

introduced. In particular, the Least Squares approach that was analyzed in Chapter 4 showed

excellent asymptotic properties and estimation power even for small sample sizes. However,

the theoretical guarantees and performance were subject to a restriction in the dimensions of

the projection matrix generated by the evaluations of the scaling functions φJ,k(·) that gener-

ate the multiresolution space VJ , limiting its flexibility for real-life applications.

In the context of Bayesian methodologies, several approaches have been introduced in the

literature since the seminal work by Donoho and Johnstone (1994) for the problem of func-

tional estimation. The Bayesian paradigm has been proven to be suitable for this kind of

statistical problems, since it allows the incorporation of prior information that is related to

the underlying signal properties such as smoothness, periodicity, selfsimilarity, etc. Some ex-
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amples of these procedures can be found in Vidakovic and Ruggeri (2001)[60], De Canditiis

and Vidakovic (2001)[59], Hall, Kerkyacharian and Picard (1998,1999)[61], Chipman, Ko-

laczyk and McColloch (1997)[62], among others. These methodologies introduce different

shrinkage rules (level-wise, block-based) that are obtained through closed-form expression,

and are restricted either to the univariate and/or equally spaced designs.

In addition to these methodologies, Bayesian procedures that rely on Montecarlo Markov

Chain (MCMC) approximations for the Bayesian inference and derivation of numerical shrink-

age rules have been also proposed in the literature. For example, the work by Brezger and

Lang (2006)[63], and Fahrmeir, Ludwig, et al.(2004)[64] provide procedures that are based

on the use of P-splines and empirical Bayes, combined with MCMC simulations for the

inference. Although these kind of methods have shown good estimation properties, their

performance comes at the expense of computational costs and the challenging theoretical

analysis of statistical properties.

The limitations of the existing Bayesian methodologies motivate the subject of this chapter:

the development of a methodology that treats the non-linear additive regression problem in

a more flexible way than the Least Squares approach, while capturing the adaptivity of the

existing Bayesian procedures.

In fact, in this Chapter, we aim to extend the flexibility and estimation power of Bayesian

methodologies for the problem of non-linear additive regression with non-equally spaced de-

signs. At first, shrinkage-based estimator for the non-linear additive regression problem in

the presence of gaussian noise is introduced. This shrinkage procedure results from the uti-

lization of a Normal-Inverse-Gamma (NIG) model in three different settings: One general
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model in which the expansion coefficients are assumed to be independent and conditionally

distributed as a Gaussian random vector, with variance controlled by a single parameter τ .

This approach is implemented using a backfitting methodology that allows the sequential es-

timation of each function in the model, while choosing the parameter τ that minimizes the

empirical MSE.

Secondly, a more general modelling framework based on a mixture of two NIG models

as joint prior on the expansion coefficients is introduced, enhancing the adaptability of the

model to different degrees of smoothness of the underlying functions in the model. Similarly

as for the general approach, this methodology is implemented using a backfitting approach,

with prior parameters computed from the data, following the recommendations provided in

Vidakovic and De Canditiis (2001)[59].

Next, a special case of the mixture model is introduced. Here, it is assumed that the ex-

pansion coefficients in the model are distributed by a point-mass contaminated Gaussian

distribution, conditional on the noise variance σ2. The point mass models non-energetic co-

efficients, while the Gaussian component represents the more “spread” distribution modeling

large wavelet coefficients. The goal of this model is to provide a more parsimonious estima-

tion of the wavelet coefficients, as a result of a more strict shrinkage rule.

The conjugacy structure of theNIG model allows the derivation of closed-form expressions

for the shrinkage rule, that result in a explicit and fast estimation rules. These expressions are

derived in the sequel, and algorithmic procedures for the estimation rules are proposed.

Finally, the proposed models are implemented and evaluated, illustrating their performance
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against a set of functions, and comparing the results with the Least Squares approach intro-

duced in Chapter 4, and the procedure proposed by Sardy and Tseng (2004)[1].

5.2 Bayesian Extension of the Non-linear Additive Regression Problem Using Gaus-

sian Conditional NIG Model.

Let us recall the additive regression model given by:

y(x) = f(x) + σ · ε ,

=

p∑
l=1

fl(xl) + σ · ε . (5.1)

Here x ∈ [0, 1]p, fl(xl) ∈ L2([0, 1]), and ε ∼ N (0, 1). Furthermore, for identifiability

purposes, assume
∫ 1

0
fl(xl)dxl = 0, for l = 1 . . . , p. Note that this condition implies that:

||f(x)||L2([0,1]p) =

p∑
l=1

||fl(xl)||L2([0,1]).

In general, it follows that ||f(x)||L2([0,1]p) = 1
TG1, where 1T =

[
11...1

]
1×p

, and G is a p×p

matrix with entries given by:

G =



β11 β12 . . . β1p

β21 β22 . . . β2p

...
... . . . ...

βp1 βp2 . . . βpp


p×p

,

where the entries βij =
∫ 1

0

∫ 1

0
fi(xi)fj(xj)dxidxj , for i, j = 1, ..., p. It is clear that this

matrix is symmetric.
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Moreover, under the identifiability condition
∫ 1

0
fl(xl)dxl = 0, for l = 1 . . . , p, G is diagonal,

with diagonal entries given by the L2 norm of the unknown functions in the model.

Now, suppose that each unknown function in the model (5.1) can be approximated by an

element (i.e. a function) of a subspace VJ spanned by the wavelet orthonormal basis:

{
φ00, ψjk , j = 0, ..., J − 1; k = 0, ..., 2J−1

}
,

for some multiresolution index J . Therefore, by the orthogonality principle, it follows that

for l = 1, ..., p:

fl,J(x) = c
(l)
00φ00(x) +

J−1∑
j=0

2j−1∑
k=0

d
(l)
jkψjk(x)

= 〈fl, φ00〉L2([0,1])φ00(x) +
J−1∑
j=0

2j−1∑
k=0

〈fl, ψjk〉L2([0,1])ψjk(x). (5.2)

Now, from (5.2) and (5.1), it is possible to represent fJ(x) (i.e. the projection of the function

f(x) onto the space VJ ) as follows:

fJ(x) = cTJ Ψ̃(x) , (5.3)

where:

cJ =



c(1)
J

c(2)
J

...

c(p)
J


p·2J×1

, c(l)
J =

c(l)
00

d(l)
J


2J×1

, (5.4)

where c(l)
00 , d(l)

J l = 1, ..., p are the expansion coefficients of fl(xl) in (5.2). Similarly, Ψ̃(x)
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is given by:

Ψ̃(x) =



Ψ(x1)

Ψ(x2)

...

Ψ(xp)


p···2J×1

, Ψ(xl) =

φ00(xl)

ΨJ(xl)


2J×1

, (5.5)

where φ00(xl), ΨJ(xl), l = 1, ..., p are the scaling and wavelet functions evaluated at the

l-coordinate of the feature vector x, as shown in (5.2).

Consider now a sample of the form {(yi, xi)}Ni=1. Using definitions (5.4) and (5.5), it is

possible to form the system:

y1 = cTJ Ψ̃(x1) + σ · ε1

y2 = cTJ Ψ̃(x2) + σ · ε2
...

yN = cTJ Ψ̃(xN) + σ · εN .

Putting this system into a matrix form, it follows:

yN×1 =



Ψ̃(x1)T

Ψ̃(x2)T

...

Ψ̃(xN)T


N×p·2J

· cTJ
p·2J×1 + σ · εN×1

y = ˜̃ΨcJ + σ · ε. (5.6)
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Now, since εi
i.i.d∼ N (0, 1), and σ > 0, it follows:

y | X, σ2, cJ ∼ N
(

˜̃ΨcJ , σ2IN

)
, (5.7)

where X is the matrix of observations x1, ..., xN .

Define, θ = ˜̃ΨcJ . Note that the parameter θ in the model corresponds to a location parameter.

Therefore, the model (5.7) becomes:

y | X, σ2,θ ∼ N
(
θ, σ2IN

)
. (5.8)

From (5.8), since ˜̃Ψ is known, by estimating θ it is possible to recover the expansion coeffi-

cients cJ in the model. Indeed:

ĉJ = ˜̃Ψ†θ, (5.9)

where ˜̃Ψ† denotes the pseudo-inverse of ˜̃Ψ.

Remarks:

(i) Note that ˜̃Ψ is an N × p · 2J matrix. In general, since x ∈ [0, 1]p and is assumed to have

a probability distribution of the continuous type, rank( ˜̃Ψ) = min(N, p · 2J). However,

in the case of compactly supported wavelets, this matrix tends to sparse especially when

the multiresolution index J is large, leading to ill-conditioning problems and numerical

instabilities, for this reason, using some regularization technique is recommendable.

(ii) When ˜̃Ψ is not a squared matrix, the use of a pseudo-inverse is needed in order to

recover the empirical coefficients in the expansion (5.2). In fact, since typically N <

p · 2J , the solution for the system ˜̃ΨT ˜̃ΨĉJ = ˜̃ΨT θ̂MAP is not unique, meaning that for
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any vector η within the null-space of range( ˜̃ΨT ) the vector ĉj + αη, α ∈ R is also a

solution.

(iii) Nonetheless, in the case of multiple solutions, the estimate given by Eq.(5.9) corre-

sponds to the one with minimum L2 norm.

Now, consider the case when [cJ , σ2] ∼ NIG(α, δ,µ,Σ). Here, NIG stands for “Normal-

Inverse-Gamma” distribution, and its parameters are given by the positive constants α, δ,

the vector µ ∈ Rp·2J , and the covariance matrix Σ ∈ Rp·2J×p·2J , which is assumed to be

symmetric positive-definite.

Under the aforementioned joint distribution for parameters σ2 (scale) and θ (location), it

follows:

cJ |σ2 ∼ N (µ, σ2Σ),

σ2 ∼ IG(α, δ).

Therefore, the model (5.8) takes the form:

y|cJ , σ2 ∼ N ( ˜̃ΨcJ , σ2
IN), (5.10)

cJ |σ2 ∼ N (µ, σ2Σ), (5.11)

σ2 ∼ IG(α, δ). (5.12)

Remarks:

(i) The “Normal-Inverse-Gamma” (NIG) priors have been used previously in the wavelet

framework because of their conjugate structure with respect to normal conditional mod-

els as in (5.8). See Vidakovic and Müller (1995)[65], Vanucci and Corradi (1999)[66]

and De Canditiis and Vidakovic (2001)[59].
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(ii) The conjugate structure allows for closed form solutions for the Bayes estimators under

squared-error loss, which simplifies theoretical analysis, interpretation of results and

practical implementation.

(iii) In addition to conjugacy, the NIG prior allows modeling the dependence between

neighboring coefficients in the expansion (5.2). For these reasons, it is a reasonable

choice for the analysis and inference of the additive model (5.1).

Now, based on the hierarchical model defined by Eqs.(5.10)-(5.12), our goal is to obtain:

ĉJ = arg max
cJ∈Rp·2J

(π(cJ |y)) . (5.13)

5.2.1 Obtention of the posterior distribution π(cJ |y)

Note that using the model defined in Eqs. (5.10)-(5.12), it follows:

π(cJ , σ2|y) =
f(y|cJ , σ2)π(cJ |σ2)g(σ2)

m(y)
, thus:

π(cJ |y) =

∫ ∞
0

f(y|cJ , σ2)π(cJ |σ2)g(σ2)dσ2

m(y)
. (5.14)

Here,

g(σ2) =
δα

Γ(α)

(
1

σ2

)α+1

e−
δ
σ2 ,

π(cJ |σ2) =
1

(2π)p·2J/2|Σ|1/2σN
e−

1
2σ2

(cJ−µ)TΣ−1(cJ−µ),

f(y|cJ , σ2) =
1

(2π)N/2σN
e−

1
2σ2

(y− ˜̃ΨcJ )T (y− ˜̃ΨcJ )

m(y) =

∫
Rp·2J

∫
R
f(y|θ, σ2)π(cJ |σ2)g(σ2)dσ2dcJ .

175



Now, taking f(y|cJ , σ2)π(cJ |σ2), it follows by letting M = p · 2J :

f(y|cJ , σ2)π(cJ |σ2) =
1

(2π)
N+M

2 |Σ|1/2(σ2)
N+M

2

e−
1

2σ2
(yT y+µTΣ−1µ)

×e−
1

2σ2

(
cTJ (Σ−1+ ˜̃ΨT ˜̃Ψ)cJ−2cTJ ( ˜̃ΨT y−Σ−1µ)

)
. (5.15)

Define:

Σ̃
−1

= Σ−1 + ˜̃ΨT ˜̃Ψ, (5.16)

α = ˜̃ΨTy + Σ−1µ. (5.17)

Similarly, note that cTJ Σ̃
−1

cJ−2cTJα = (cJ−Σ̃α)T Σ̃
−1

(cJ−Σ̃α)−αT Σ̃
−1
α. This implies

that Eq. (5.15) takes the form:

f(y|cJ , σ2)π(cJ |σ2) =
1

(2π)
N+M

2 |Σ|1/2(σ2)
N+M

2

e−
1

2σ2
(yT y+µTΣ−1µ−αT Σ̃

−1
α)

×e−
1

2σ2
(cJ−Σ̃α)T Σ̃

−1
(cJ−Σ̃α). (5.18)

Note that Eq. (5.18) can be futher arranged as:

f(y|cJ , σ2)π(cJ |σ2) =
|Σ̃|1/2

(2π)N/2|Σ|1/2

(
1

σ2

)N/2
e−

1
2σ2

(yT y+µTΣ−1µ−αT Σ̃
−1

α)

× 1

(2π)M/2|Σ̃|1/2(σ2)M/2
e−

1
2σ2

(cJ−Σ̃α)T Σ̃
−1

(cJ−Σ̃α).

Using this last result, it follows that f(y|cJ , σ2)π(cJ |σ2)g(σ2) is given by:

f(y|θ, σ2)π(θ|σ2)g(σ2) =
|Σ̃|1/2δα

(2π)N/2|Σ|1/2Γ(α)

(
1

σ2

)N
2

+α+1

e−
1
σ2

(δ+ yT y
2

+µTΣ−1µ
2

−αT Σ̃
−1

α
2

)

× 1

(2π)M/2|Σ̃|1/2(σ2)M/2
e−

1
2σ2

(cJ−Σ̃α)T Σ̃
−1

(cJ−Σ̃α).
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Define:

δ∗ =
yTy
2

+
µTΣ−1µ

2
− αT Σ̃

−1
α

2
, (5.19)

α∗ =
N

2
+ α. (5.20)

Thus:

f(y|cJ , σ2)π(cJ |σ2)g(σ2) =
|Σ̃|1/2δα

(2π)N/2|Σ|1/2Γ(α)

(
1

σ2

)α∗+1

e−
1
σ2

(δ+δ∗)

× 1

(2π)M/2|Σ̃|1/2(σ2)M/2
e−

1
2σ2

(cJ−Σ̃α)T Σ̃
−1

(cJ−Σ̃α),

=
|Σ̃|1/2δαΓ(α∗)

(2π)N/2|Σ|1/2Γ(α)(δ + δ∗)α∗

×

[
(δ + δ∗)α

∗

Γ(α∗)

(
1

σ2

)α∗+1

e−
1
σ2

(δ+δ∗)

]
× 1

(2π)M/2|Σ̃|1/2(σ2)M/2
e−

1
2σ2

(cJ−Σ̃α)T Σ̃
−1

(cJ−Σ̃α),

=
|Σ̃|1/2δαΓ(α∗)

(2π)N/2|Σ|1/2Γ(α)(δ + δ∗)α∗

×IGσ2 (α∗ , δ + δ∗)NcJ

(
Σ̃α , σ2Σ̃

)
.

Note that the last result implies that:

m(y) =
|Σ̃|1/2δαΓ(α∗)

(2π)N/2|Σ|1/2Γ(α)(δ + δ∗)α∗
, (5.21)

where the rhs of the last expression depends on y through the parameter δ∗.

Therefore, it follows that conditionally on the observation of y, the pair [cJ , σ2] has distribu-
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tion given by:

π(cJ , σ2|y) = NIG
(
α∗, β∗,µ∗, Σ̃

)
, (5.22)

where:

α∗ = α +
N

2
, (5.23)

β∗ = δ +
yTy
2

+
µTΣ−1µ

2
− αT Σ̃

−1
α

2
, (5.24)

µ∗ = Σ̃α, (5.25)

Σ̃ = (Σ−1 + ˜̃ΨT ˜̃Ψ)−1. (5.26)

Now, using the last results, π(cJ |y) is given by:

π(cJ |y) =
(δ + δ∗)

N
2

+αΓ(M
2

+ α∗)

Γ(N
2

+ α)(2π)M/2|Σ̃|1/2(δ + δ∗ + 1
2
h(cJ))

M
2

+α∗
, (5.27)

where h(cJ) = (cJ − Σ̃α)T Σ̃
−1

(cJ − Σ̃α)), and M = p · 2J . Here, the dependence on the

observed vector y is given by the parameter δ∗ defined in Eq.(5.19). Furthermore, since the

matrix Σ̃ is symmetric positive semi-definite, it follows that ∀ w ∈ RN , wT Σ̃w ≥ 0.

5.2.2 Connection between posterior distribution π(cJ |y) and the Multivariate t− distribution

Suppose w ∈ RN . Then, it is said that w follows a multivariate t− distribution with ν

degrees of freedom and parameters µ ∈ RN and Σ ∈ RN×N , (symmetric positive definite),

if its density function is given by:

π(w|ν,µ,Σ) =
Γ(ν+N

2
)

Γ(ν
2
)νN/2πN/2|Σ|1/2

(
1 +

1

ν
(w− µ)TΣ−1(w− µ)

)−( ν+N
2

)

.(5.28)
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Therefore, it is possible to observe that after some algebraic manipulations, it follows:

[c|y] ∼ t2α∗

(
Σ̃α ,

δ + δ∗

α∗
Σ̃

)
.

It is a well known result in statistics that, under aforementioned probability model it follows

that:

E[w|ν,µ,Σ] = Σ̃α, (5.29)

V ar(w|ν,µ,Σ) =

(
ν

ν − 2

)(
δ + δ∗

α∗

)
Σ̃, (5.30)

where ν > 2. Moreover, since the multivariate t− distribution is elliptical, it follows that

Mode(w|ν,µ,Σ) = E[w|ν,µ,Σ].

5.2.3 Obtention of the Bayes Estimator ĉJ

Using the results from the last section, given that [c|y] ∼ t2α∗
(
Σ̃α , δ+δ∗

α∗
Σ̃
)

, it follows that:

Using the last result, by observing Eq. (5.27), it follows that:

ˆcJMAP
= Σ̃α,

=
(
Σ−1 + ˜̃ΨT ˜̃Ψ

)−1

( ˜̃ΨTy + Σ−1µ), (5.31)

where Σ and µ are hyper-parameters of the prior distribution of the location parameter

[cJ |σ2]. Define cLSJ as the least-squares solution of the system:

min
cJ∈Rp·2J

||y− ˜̃ΨcJ ||22.

Thus, cLSJ =
(

˜̃ΨT ˜̃Ψ
)−1 ˜̃ΨTy.
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Similarly, define H =
(
Σ−1 + ˜̃ΨT ˜̃Ψ

)−1 ˜̃ΨT ˜̃Ψ. Therefore, from Eq.(5.31) it is possible to

obtain:

ˆcJMAP
= HcLSJ + (I−H)µ, (5.32)

since I−H =
(
Σ−1 + ˜̃ΨT ˜̃Ψ

)−1

Σ−1.

From the last result, it follows that under the NIG model, the MAP estimator of the empiri-

cal wavelet coefficients of the unknown functions is a weighted average of the least-squares

estimator, and the coefficients location µ. In particular, when µ = 0, the estimator ˆcJMAP

reduces to a ridge-type regularized estimator.

Note that this approach allows the use of efficient numerical algorithms such as Conjugate

Gradient Descent or Steepest Descent which enable fast computations, even in

the case of large sample sizes.

5.2.4 Prior Parameter Selection

From the definition of the expansion coefficients in Eq. (5.4), the simplest possible prior

selection on the location parameter cJ is the following:

µ = 0, (5.33)

Σ = τ 2Ip·2J . (5.34)

This selection for the prior parameter µ results from the fact that typically the wavelet coef-

ficients cj are concentrated around zero.
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Similarly, choosing Σ = τ 2Ip·2J assumes that the wavelet coefficients for the model are

uncorrelated, with equal variance τ 2 > 0. Even though this last assumption can be argued to

be too strong, given the simplicity of the resulting model, it is worth to be analyzed in light

of the balance between practical implementation and accuracy of results.

Note that the aforementioned model depends only on the parameter τ > 0; in order to enforce

robustness in the estimation process, it is possible to find its optimal value via line-search.

5.2.5 Bayesian Model Implementation

Using the prior selection for the hyper-parameters detailed in Eqs. (5.33), (5.34), the estima-

tor takes the form:

ĉJ =
(

˜̃ΨT ˜̃Ψ + τ−2IN
)−1 ˜̃ΨTy, (5.35)

which is the solution of the optimization program:

min
cJ∈Rp·2J

||y− ˜̃ΨcJ ||22 + τ−2||cJ ||22,

which corresponds to an l2− regularized least-squares program. Furthermore, from the last

equation, it is possible to observe that as τ → ∞, the solution converges to the usual least-

squares problem:

min
cJ∈Rp·2J

||y− ˜̃ΨcJ ||22.
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Using the singular value decomposition (SVD) of ˜̃Ψ we can express it as:

˜̃ΨN×p·2J = UN×RΣR×RVT
R×p·2J ,

where,R corresponds to rank( ˜̃Ψ) ≤ min(N, p·2J). Assuming ˜̃ΨT is full column rank, it fol-

lows that UUT = UTU = IN . Similarly, it holds that VTV = IN , and Σ = diag(σ1, ..., σN)

for σ1 ≥ σ2 ≥ ... ≥ σN > 0.

Therefore, the SVD enables to express the first term of the rhs of Eq.(5.35) as follows:

(
˜̃ΨT ˜̃Ψ + τ−2IN

)−1

=
(
VΣ2VT + τ−2IN

)−1
.

Using the matrix inversion lemma (i.e. Woodbury matrix identity), and letting M = p · 2J ,

we obtain:

(
˜̃ΨT ˜̃Ψ + τ−2IN

)−1

= τ 2IM − VSVT ,

for S = diag( τ4σ2
r

1+τ2σ2
r
), r = 1, ..., R. Thus Eq.(5.35) becomes:

ĉJ = VDUTy, (5.36)

where:

D = diag

(
τ 2σr

1 + τ 2σ2
r

)
,

for r = 1, ..., R. This last result implies that:

ĉJ =
R∑
l=1

τ 2σl
1 + τ 2σ2

l

〈y,ul〉 · vl, (5.37)
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where {u1, ...,uR} and {v1, ..., vR} are the columns of the matrices U and V respectively.

Note that the last expression shows that the empirical estimator for the expansion coefficients

corresponds to linear combinations of the columns of the matrix V, with linear coefficients

given by the weighted projection of the observed response y onto the column space of U,

with weights defined by the singular values and stabilization parameter τ .

5.2.6 Iterative Solution of the Model via Backfitting

If we observe the model defined in Eq.(5.1), the estimation of the wavelet coefficients for

each function in the model can be done using an iterative fashion, by using as response

the residuals over the corresponding dimension, assuming that the remaining functions are

known. This is the idea of backfitting[41], and it can be illustrated as follows:

Define rl(xl) = y(x)−
∑

m 6=l f̂m(xm), where f̂m(xm) are estimated of the unknown functions

in the model. Thus, it follows that:

rl(xl) = fl(xl) + σ · ε l = 1, ..., p.

Under this definition, using the hierarchical structure of the Bayesian model as in Eqs.(5.10-

5.12), it follows:

rl|c(l)
J , σ

2 ∼ N ( ˜̃Ψlc
(l)
J , σ

2
IN), (5.38)

c(l)
J |σ

2 ∼ N (µl, σ
2Σl), (5.39)

σ2 ∼ IG(α, δ). (5.40)
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Using this model and the prior parameter selection presented 5.2.4, from Eq.(5.9), it follows

that:

ˆc(l)
J =

(
˜̃ΨT
l

˜̃Ψl + τ−2IN
)−1 ˜̃ΨT

l rl.

Since the functions in the model are not known, using the backfitting approach we can esti-

mate the model using the following algorithm:

Algorithm 1 Computation of Bayes Estimator for NIG model
1: procedure BAYES ESTIMATOR USING NIG MODEL

2: J = blog2(n/p)c, hfilt, vanishing moments.

3: Compute ˜̃Ψ = [ ˜̃Ψ1 . . .
˜̃Ψp] via Daubechies-Lagarias.

4: R = [r1...rp] = 0N×p
5: ĉJ = [ĉ(1)

J . . . ĉ(p)
J ] = 02J×p

6: while ||ŷ− y||2/||y||2 > δ do
7: for l = 1, ..., p do
8: yl = y−

∑
m6=l rm

9: Obtain∗ ĉ(l)
J =

(
˜̃ΨT
l

˜̃Ψl + τ̂−2IN
)−1 ˜̃ΨT

l yl

10: rl = ˜̃ΨT
l

˜̃Ψlĉ
(l)
J

11: rl = rl − r̄l
12: f̂ = R each column corresponds to the estimated functions in the model
13: ŷ =

∑p
l=1 rl estimated response

Remarks

(i) ĉ(l)
J is obtained by solving the system

(
˜̃ΨT
l

˜̃Ψl + τ̂−2IN
)

ĉ(l)
J = ˜̃ΨT

l yl using the method

of conjugate gradients.

(ii) τ̂ is obtained via grid-search, choosing the value that minimizes ||yl − rl(τ)||22.

(iii) δ > 0 is a tolerance parameter that controls the number of inner iterations of the algo-

rithms along each of the coordinates l = 1, ..., p.

(iv) Since the columns of R contain the raw estimated functions in the model which contain
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some noise, it is possible to apply a linear smoother to improve prediction accuracy.

This will be illustrated in the next section via a simulation study.

5.2.7 Simulation Results

In this section, we investigate the performance of Bayesian NIG model and compare its

results with respect to Least Squares estimator previously introduced in section 4.2. The

error measure utilized is the ARMSE (Average Root Mean Squared Error) of estimation.

AMSE(f̂l) =
1

B

B∑
b=1

MSE(f̂l,b), MSE(f̂l,b) =
1

N

N∑
i=1

(f̂l,b(xi)− fl(xi))2

For this objective, we choose the same set of exemplary baseline functions used to investigate

the performance of the Least Squares estimator (see section 4.3.5).

In this simulation study, we use a Daubechies filter with 6 vanishing moments, and sample

sizes N = 512, 1024, 2048, 4096. The random noise variance for the different trials was set

to σ = 0.39. The predictors were drawn from a U [0, 1]p distribution. The predictions were

obtained at 100 equally spaced points along each of the model dimensions.

The following tables (5.1)-(5.4), illustrate the estimation results for this approach:

Table 5.1: ARMSE comparison between Bayes estimator and Least Squares, for B = 50 replications, Daubechies 6
filter and σ = 0.39.

N = 512 f1(x) f2(x) f3(x) f4(x) f5(x) f6(x) f7(x) f8(x) f9(x)

Bayes 0.01664 0.01402 0.01245 0.01221 0.01366 0.01108 0.35583 0.01721 0.02174
Least Squares 0.01594 0.01684 0.01524 0.01562 0.01698 0.01468 0.36407 0.02105 0.02581
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Table 5.2: ARMSE comparison between Bayes estimator and Least Squares, for B = 50 replications, Daubechies 6
filter and σ = 0.39.

N = 1024 f1(x) f2(x) f3(x) f4(x) f5(x) f6(x) f7(x) f8(x) f9(x)

Bayes 0.00412 0.00190 0.00211 0.00198 0.00174 0.00205 0.22512 0.00630 0.00809
Least Squares 0.00384 0.00396 0.00382 0.00377 0.00379 0.00398 0.06580 0.00456 0.00719

Table 5.3: ARMSE comparison between Bayes estimator and Least Squares, for B = 50 replications, Daubechies 6
filter and σ = 0.39.

N = 2048 f1(x) f2(x) f3(x) f4(x) f5(x) f6(x) f7(x) f8(x) f9(x)

Bayes 0.00187 0.00055 0.00063 0.00052 0.00049 0.00049 0.22595 0.00502 0.00691
Least Squares 0.00169 0.00156 0.00162 0.00167 0.00163 0.00165 0.06373 0.002486 0.00497

Similarly, in Figs.(5.1)-(5.2) show RMSE boxplots for B = 50 replications of the estimation

process:
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Table 5.4: ARMSE comparison between Bayes estimator and Least Squares, for B = 50 replications, Daubechies 6
filter and σ = 0.39.

N = 4096 f1(x) f2(x) f3(x) f4(x) f5(x) f6(x) f7(x) f8(x) f9(x)

Bayes 0.000895 0.00027 0.00031 0.00025 0.00019 0.00022 0.22534 0.00481 0.00663
Least Squares 0.00061 0.00061 0.00062 0.00063 0.00063 0.00062 0.00639 0.00065 0.00203

(a) N = 512 samples

(b) N = 1024 samples

Figure 5.1: Estimation result box-plots for the log10(ARMSE) computed for both Bayes and least squares proce-
dures, using B = 50 replications, for each of the testing functions f1(x), ..., f9(x).

The following Figures illustrate the estimation performance of this approach:
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Remarks

(i) As it can be observed in Figs.(5.1) and (5.2), the Bayesian estimates show a slightly

higher variance than the estimates obtained via Least Squares. However, this behavior is

compensated with its superior performance in the MSE sense. On average, the Bayesian

approach show a reduction of nearly 50% in the MSE of estimation when compared to

Least Squares.

(ii) In addition, as the sample size increases, it is possible to observe the reduction of the

MSE of estimation.

(iii) During the implementation, it was observed that it is possible to further improve the

estimator performance by smoothing each of the functions via the application of a local

linear smoother such as lowess. This is due to the fact that the recovered expan-

sion coefficients exhibit sometimes a noisy behavior (depending on the observed sam-

ple) which inflates the variance of the estimates. For this reason, applying a denoising

scheme is beneficial.

(iv) An additional approach to denoise the estimated expansion coefficients could also be

the use of wavelet shrinkage. In fact, the expansion coefficients can be interpreted

as the resulting wavelet decomposition of an unknown function observed at equally

spaced points. Through the application of the procedure proposed by Donoho et al.

(1995)[26], the obtained coefficients can be smoothed, leading to a more parsimonious

representation of the recovered function.
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(a) N = 2048 samples

(b) N = 4096 samples

Figure 5.2: Estimation result box-plots for the log10(ARMSE) computed for both Bayes and least squares proce-
dures, using B = 50 replications, for each of the testing functions f1(x), ..., f9(x).
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(a) f1(x), N = 1024

(b) f1(x), N = 4096

Figure 5.3: Estimated function f1(x) for N = 1024, 4096 samples.
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(a) f2(x), N = 1024

(b) f2(x), N = 4096

Figure 5.4: Estimated function f2(x) for N = 1024, 4096 samples.
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(a) f3(x), N = 1024

(b) f3(x), N = 4096

Figure 5.5: Estimated function f3(x) for N = 1024, 4096 samples.
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(a) f4(x), N = 1024

(b) f4(x), N = 4096

Figure 5.6: Estimated function f4(x) for N = 1024, 4096 samples.
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(a) f5(x), N = 1024

(b) f5(x), N = 4096

Figure 5.7: Estimated function f5(x) for N = 1024, 4096 samples.
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(a) f6(x), N = 1024

(b) f6(x), N = 4096

Figure 5.8: Estimated function f6(x) for N = 1024, 4096 samples.
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(a) f7(x), N = 1024

(b) f7(x), N = 4096

Figure 5.9: Estimated function f7(x) for N = 1024, 4096 samples.
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(a) f8(x), N = 1024

(b) f8(x), N = 4096

Figure 5.10: Estimated function f8(x) for N = 1024, 4096 samples.
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(a) f9(x), N = 1024

(b) f9(x), N = 4096

Figure 5.11: Estimated function f9(x) for N = 1024, 4096 samples.
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5.3 Bayesian Estimation using a Mixture NIG Model.

In the context of and non-linear additive regression model, suppose a hierarchical structure

of the form:

y|cJ , σ2 ∼ N ( ˜̃ΨcJ , σ2
IN), (5.41)

cJ |σ2, γ ∼ γN (µ, σ2Σ) + (1− γ)N (µ, σ2∆), (5.42)

σ2 ∼ IG(α, δ), (5.43)

γ ∼ Bernoulli(q). (5.44)

Here, 0 < q < 1, Σ = λ2I, ∆ = τ 2I, and µ = 0. The motivation for choosing this kind of hi-

erarchical model has to do with its flexibility to model functions with different proportions of

large wavelet and small coefficients, which depends on the function smoothness. This makes

this modeling strategy suitable to adapt better to models defined by functions that differ in

their smoothness degree, while exploiting the conjugacy of the NIG model to obtain closed

form solutions for the Bayes estimator (under squared error loss).

The first component in the model defined by Eq.(5.42) corresponds to a spread distribution

that models large coefficients (i.e. λ � 1), whereas the second component describes small

magnitude coefficients, hence τ is small.

Similarly, the term γ models the proportion for large and small coefficients in the wavelet

expansion. This proposed model can be interpreted as an extension of the model proposed by

Vidakovic and Canditiis (2001).
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5.3.1 Derivation of the Bayes Estimator and Shrinkage Rule

Using results from section 5.2.1, and the model defined in Eqs.(5.41)-(5.44), it is possible to

obtain:

π(cJ , σ2|y) =
1

m(y)
q
(
f(y|cJ , σ2)π(cJ |σ2, γ = 1)g(σ2)

)
+

1

m(y)
(1− q)

(
f(y|cJ , σ2)π(cJ |σ2, γ = 0)g(σ2)

)
.

Note that each of the terms in the above expression can be exactly matched to Eqs.(5.14)-

(5.21). Therefore, following the same procedure used to obtain those equations, it is possible

to define:

α∗ = α +
N

2
, (5.45)

α = ˜̃ΨTy, (5.46)

Σ̃ =
(
Σ−1 + ˜̃ΨT ˜̃Ψ

)−1

, (5.47)

∆̃ =
(
∆−1 + ˜̃ΨT ˜̃Ψ

)−1

, (5.48)

δA∗ =
1

2

(
||y||22 −αT Σ̃α

)
, (5.49)

δB∗ =
1

2

(
||y||22 −αT∆̃α

)
. (5.50)

Furthermore, it is possible to obtain:

m(y) = q · |Σ̃|1/2δαΓ(α∗)

(2π)N/2|Σ|1/2Γ(α)(δ + δA∗)α∗

+(1− q) · |∆̃|1/2δαΓ(α∗)

(2π)N/2|∆|1/2Γ(α)(δ + δB∗)α∗
. (5.51)
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Similarly, the pair [cJ , σ2|y] has posterior distribution given by:

[cJ , σ2|y] ∼ q · A
q · A+ (1− q) ·B

NIG
(
α∗, δA∗, Σ̃α, Σ̃

)
+

(1− q) ·B
q · A+ (1− q) ·B

NIG
(
α∗, δB∗, ∆̃α, ∆̃

)
, (5.52)

where:

A =
|Σ̃|1/2δαΓ(α∗)

(2π)N/2|Σ|1/2Γ(α)(δ + δA∗)α∗
,

B =
|∆̃|1/2δαΓ(α∗)

(2π)N/2|∆|1/2Γ(α)(δ + δB∗)α∗
.

Therefore, if we define:

w =
q · A

q · A+ (1− q) ·B
=

q

q + (1− q) · B
A

,

it follows that:

[cJ , σ2|y] ∼ wNIG
(
α∗, δA∗, Σ̃α, Σ̃

)
+ (1− w)NIG

(
α∗, δB∗, ∆̃α, ∆̃

)
.

This implies:

π(cJ |y) = w · t2α∗

(
Σ̃α ,

δ + δA∗

α∗
Σ̃

)
+(1− w) · t2α∗

(
∆̃α ,

δ + δB∗

α∗
∆̃

)
, (5.53)

where tν(µ,Σ) corresponds to a multivariate t distribution, defined as in Eq.(5.28).
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Therefore, under the squared error loss, the Bayes estimator is given by:

ĉJ = E[c|y] = w · Σ̃α + (1− w) · ∆̃α (5.54)

= w ·
(
Σ−1 + ˜̃ΨT ˜̃Ψ

)−1 ˜̃ΨTy + (1− w)
(
∆−1 + ˜̃ΨT ˜̃Ψ

)−1 ˜̃ΨTy.

Since it is assumed that 0 < q < 1, Σ = λ2I, ∆ = τ 2I, using the same argument that led to

Eq.(5.37), the Bayes estimator becomes:

ĉJ = w ·
(
λ−2I + ˜̃ΨT ˜̃Ψ

)−1 ˜̃ΨTy + (1− w)
(
τ−2I + ˜̃ΨT ˜̃Ψ

)−1 ˜̃ΨTy, (5.55)

=
R∑
l=1

(
w

λ2σl
1 + λ2σ2

l

+ (1− w)
τ 2σl

1 + τ 2σ2
l

)
〈y,ul〉 · vl, (5.56)

where, for M = p · 2J it follows:

w =
q

q + (1− q) · B
A

,

=
q

q + (1− q) · |∆̃|1/2|Σ|1/2(δ+δA∗)α∗

|Σ̃|1/2|∆|1/2(δ+δB∗)α∗

,

=
q

q + (1− q) ·
(
τ
λ

)M ∣∣λ−2I+ ˜̃ΨT ˜̃Ψ

∣∣1/2∣∣τ−2I+ ˜̃ΨT ˜̃Ψ

∣∣1/2
(
δ+ 1

2

(
||y||22−||D̃

1/2
λ UT y||22

)
δ+ 1

2

(
||y||22−||D̃

1/2
τ UT y||22

)
)α+N/2

,

where D̃τ = diag
(

τ2σ2
r

1+τ2σ2
r

)
, and D̃λ = diag

(
λ2σ2

r

1+λ2σ2
r

)
, r = 1, ..., R.

Assuming that ˜̃Ψ is full column rank, it follows that VVT = I. Therefore:

∣∣τ−2I + ˜̃ΨT ˜̃Ψ
∣∣1/2 =

∣∣V(τ−2I + S2)VT
∣∣1/2 =

∣∣τ−2I + S2
∣∣1/2 =

M∏
m=1

τ−1
√

1 + τ 2σ2
m.
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Using this result, it follows that the mixing weight w, takes the form:

w =
q

q + (1− q) ·
(
τ2

λ2

)M∏M
m=1

√
1+λ2σ2

m

1+τ2σ2
m

(
δ+ 1

2

(
||y||22−||D̃

1/2
λ UT y||22

)
δ+ 1

2

(
||y||22−||D̃

1/2
τ UT y||22

)
)α+N/2

(5.57)

This shows that using the mixture NIG model, the Bayes estimator of the expansion coef-

ficients lives in the column space of the matrix V, with coefficients that are weighted ver-

sions of the orthogonal projections of the observed response y onto the row space of U, with

weights depending on the prior parameters in the model, and the singular values of ˜̃Ψ.

5.3.2 Selection of Hyper-parameters

In order to propose an estimation procedure that enforces robustness against the wide range

of possible functions in a model, the selection of hyper-parameters must depend on the data.

In particular, our proposed model requires the specification of the following:

(a) (α, δ), that specify the prior distribution of the prior knowledge of noise variability σ2.

(b) λ2 and τ 2, that model the concentration of large and small expansion coefficients, re-

spectively.

(c) q, that models the prior probability that the coefficients have high variance (i.e. high

energy).

Selection of Prior Parameters (α, δ)

Following the recommendations proposed in Vidakovic and De Canditiis (2001), since σ2 is

modelled via and IG(α, δ) it is possible to set:

α

δ + 2
= median

0≤k≤2J−1

|dJk|
0.6745

, (5.58)

203



where dJk are the detail wavelet coefficients resulting from the DWT of the observed re-

sponse vector y, i.e. d = Wy, where W is an orthogonal wavelet matrix.

Assuming that N = 2J the DWT applied to the data vector y generates a vector d = Wk · y

which has the following structure:

d = [cJ−k; dJ−k; dJ−k+1; ...; dJ−2; dJ−1] (5.59)

In the last expression k corresponds to the number of steps in the DWT (usually, k = J).

Also, it is important to mention that due to the decimated nature of the chosen DWT, the size

of the vector d is also N (as in the original data vector y). In Eq.(5.59), cJ−k corresponds to

the smooth coefficients at scale level J − k; similarly, dJ−k corresponds to the set of detail

coefficients at the scale level J − k.

Since there are infinite number of pairs (α, δ) that are a solution of Eq.(5.58), setting 3 ≤

α ≤ 12 will allow the estimates to remain within the robust region of the Bayes estimator

with respect to α, as shown in [59].

Selection of Variance Parameters λ2, τ 2

Here, we consider the recommendation stated in Vidakovic and De Canditiis (2001), in which

it is suggested that:

λ2 = 3 max
{
dJ−1

}
, (5.60)

τ 2 = max
{

10−6 max |dJ−1|,min |dJ−1|
}
. (5.61)
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Selection of Mixing Probability q

In this case, it is possible to observe the behavior of the wavelet coefficients d resulting from

the DWT of the observed response y, with respect to a certain threshold. This means, that we

can define:

q =
1

2J

2J−1∑
k=0

1{|djk|>δ},

where 1A is the indicator function that has value equal to 1 if A is true, and zero if it is not.

Similarly, δ > 0 is a threshold that is properly defined.

Note that since we assume that d is centered at zero, and normally distributed with variance

σ2IN , it is possible to show that:

P [|dJk| > δ] ≤ 2 · e−
δ2

2σ2 .

This follows from the application of Markov’s inequality and the utilization of the moment

generating function of the Normal distribution.

If we want to find a bound that decays linearly with respect to N = 2J , it is possible to show

that:

P
[
|dJk| >

√
2σ2 log(2J)

]
≤ 21−J .

Therefore, the more number of coefficients |dJk| that are greater than equal to this bound, the

more likely the underlying function has wavelet coefficients with locations corresponding to
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the spread distribution. Therefore:

q =
1

2J

2J−1∑
k=0

1{|djk|>√2σ̂2 log(2J )
}, (5.62)

where σ̂2 = median
0≤k≤2J−1

|dJk|
0.6745

.

Remarks

(a) The proposed settings for the prior parameters in the model are aimed to exploit the

information contained in the data, enforcing the Empirical Bayes approach.

(b) In addition to enhance a data-driven approach, these prior parameter setting are sim-

ple to obtain. In particular, the DWT via Mallat’s algorithm has a low computational

complexity, which improves this method efficiency.

(c) As an alternative way to specify the values for the parameters λ2, τ 2, it is possible to

use a grid-search methodology to identify the values that minimize the MSE of esti-

mation. However, this introduces an additional layer of computational complexity in

the algorithm that may not be beneficial in light of the potential improvements in the

prediction accuracy.

5.4 Bayesian Estimation Using γ-Contaminated NIG Structures

As was observed in sections 5.2 and 5.3, it is possible to approach the Additive regression

problem from a Bayesian perspective, which introduces regularization and shrinkage in the

expansion coefficient estimates.

In this section, we introduce an alternative model that enhances the shrinkage procedure as

a way provide more adaptive expansion coefficients. This was motivated by the behavior
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observed during the implementation of the previous models, stated in remarks 5.2.7, and the

methodology proposed in [59].

Consider a model of the form:

y|cJ , σ2 ∼ N ( ˜̃ΨcJ , σ2
IN), (5.63)

cJ |σ2, γ ∼ γδ(cJ−0) + (1− γ)N (µ, σ2Σ), (5.64)

σ2 ∼ IG(α, δ), (5.65)

γ ∼ Bernoulli(q). (5.66)

This model, is a special case of the mixture NIG structure introduced in section 5.2. Here,

we place a point mass at 0 for the expansion coefficients, which enhances the shrinkage in the

case of low-energy signals. This point-mass can be interpreted as a degenerate multivariate

Gaussian distribution, with location at 0 and covariance matrix given by εIp·2J , for ε→ 0. In

practical terms, this model is expected to enforce sparsity in the estimation, making it more

suitable for variable selection.

5.4.1 Derivation of the Estimator and Point-Mass Shrinkage Rule

Using results from section 5.2.1 and the model equations defined in Eqs.(5.63)-(5.66), it is

possible to show that under squared error loss, the bayes estimator of the expansion coeffi-

cients is given by:

ĉSJ = (1− w)
(
Σ−1 − ˜̃ΨT ˜̃Ψ

)−1 ˜̃ΨTy, (5.67)
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since the posterior distribution of [cJ |y] has the form:

π(cJ |y) = w · δ(cJ−0) + (1− w)t2α∗

(
Σ̃α ,

δ + δ∗

α∗
Σ̃

)
(5.68)

where:

w =
q ·m0(y)

q ·m0(y) + (1− q) ·m1(y)
, (5.69)

m0(y) =
δαΓ(α +N/2)

(2π)N/2Γ(α)
(
δ + 1

2
||y||22

)α+N/2
, (5.70)

m1(y) =
|Σ̃|1/2δαΓ(α∗)

(2π)N/2|Σ|1/2Γ(α) (δ + δ∗)α+N/2
, (5.71)

Σ̃ =
(
Σ−1 + ˜̃ΨT ˜̃Ψ

)−1

, (5.72)

δ∗ =
1

2
||y||22 −

1

2
µTΣ−1µ− 1

2
αT Σ̃

−1
α, (5.73)

α = ˜̃ΨTy + Σ−1µ. (5.74)

It is clear that the proposed estimator (5.67) is a shrunken version of the least squares esti-

mator cLSJ = ( ˜̃ΨT ˜̃Ψ)−1 ˜̃ΨTy. In fact, by letting H =
(
Σ−1 + ˜̃ΨT ˜̃Ψ

)−1 ˜̃ΨT ˜̃Ψ, it follows

that:

ĉSJ = (1− w)HcLSJ .

Observe that as w → 0 the estimator converges to the NIG estimator (which corresponds to

an l2−regularized least squares solution). On the contrary, when w → 1 (meaning that the

expansion coefficients correspond to a low energy function), the Bayes estimator ĉSJ is close

to 0.

From Eq.(5.68), it follows that the posterior distribution of the expansion coefficients, given
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the data and the model corresponds to a w−contaminated multivariate t distribution (as

shown in Eq.(5.28) with parameters ν = 2α∗, µ = Σ̃α, and Σ = Σ̃. Furthermore, from the

properties of this distribution, it follows that any linear transformation given by a matrix A

preserves the distributional structure. In fact,

A · [cJ |y] = w ·Aδ(cJ−0) + (1− w)A · t2α∗

(
Σ̃α ,

δ + δ∗

α∗
Σ̃

)
,

where the second term on the right is distributed as t2α∗

(
AΣ̃α , δ+δ∗

α∗
AΣ̃AT

)
.

Finally, in the backfitting context, the proposed model for each functional component is de-

fined by the following parameters:

wl =
ql

ql + (1− ql) · m1,l(rl)

m0,l(rl)

, (5.75)

m0,l(rl) =
δαll Γ(αl +N/2)

(2π)N/2Γ(αl)
(
δl + 1

2
||rl||22

)αl+N/2 , (5.76)

m1,l(rl) =
|Σ̃l|1/2δαll Γ(α∗l )

(2π)N/2|Σl|1/2Γ(αl) (δl + δ∗l )
αl+N/2

, (5.77)

Σ̃l =
(
Σ−1
l + ˜̃ΨT

l
˜̃Ψl

)−1

, (5.78)

δ∗l =
1

2
||rl||22 −

1

2
αT
l Σ̃
−1

l αl, (5.79)

αl = ˜̃ΨT
l rl. (5.80)

Here, 0 < qm,l < 1, Σl = λ2
l I2J , and µl = 0. Similarly, as proposed in section 5.2.6,

rl(xl) = y(x)−
∑

m6=l f̂m(xm), where f̂m(xm) are estimates of the unknown functions in the

model.

As an alternative for the parameter covariance matrix Σl, instead of modeling it as an iden-
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tity matrix (assuming independence among the expansion coefficients cJ ), it is possible to

use Zellner’s prior. Indeed, under such approach, it follows that Σl = g · ( ˜̃ΨT
l

˜̃Ψl)
−1, for

g > 0 given by possible choices: n, p2, max {n, p2}.

This prior is traditionally called Zellner’s g-prior in the Bayesian literature due to the use

of the constant g introduced by Zellner (1986)[67] in front of Fisher’s information matrix

( ˜̃ΨT
l

˜̃Ψl)
−1. Its motivation is that, it avoids the specification of a whole prior covariance

matrix by using the information matrix as a global scale. Also, it allows for a specification of

the constant g in terms of observational units, or empirical bayes, which introduces flexibility

in the model fitting (at the expense of computational cost).

5.4.2 Elicitation of Hyper parameters

Suppose a fixed l ∈ {1, ..., p}. In order to obtain the model hyper parameters, we follow the

same suggestions and approach described in section 5.3.2.

Similarly for the mixture model, this block-shrinkage approach requires the specification of

the following:

(a) (αl, δl), that specify the prior distribution of the noise variability σ2.

(b) In the case of independent expansion coefficients: λ2
m,l, that models the concentration of

non-zero expansion coefficients, for each function component and block. On the other

hand, when using Zellner’s prior, the constant g > 0 needs to be specified.

(c) ql, that models the prior probability that the coefficients for function fl are zero.
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Selection of Prior Parameters (α, δ)

Following the recommendations proposed in Vidakovic and De Canditiis (2001), since σ2 is

modelled via and IG(αl, δl) it is possible to set:

αl
δl + 2

= median
0≤k≤2J−1

|d(l)
Jk|

0.6745
, (5.81)

where dJk are the detail wavelet coefficients resulting from the DWT of the observed residual

vector rl, i.e. d = W · rl, where W is an orthogonal wavelet matrix. Since there are infinite

number of pairs (αl, δl) that are a solution of Eq.(5.81), setting 3 ≤ αl ≤ 12 will allow the

estimates to remain within the robust region of the Bayes estimator with respect to αl, as

shown in [59].

Selection of Variance Parameter λ2
l

Here, we consider the recommendation stated in Vidakovic and De Canditiis (2001)[59], in

which it is suggested that:

λ2
l = 3 max

{
dl
}
. (5.82)

Here, dl corresponds to the DWT of the residual vector rl.

Selection of Mixing Probability ql

In this case, it is possible to observe the behavior of the wavelet coefficients d(l) resulting

from the DWT of the observed residual rl, with respect to a certain threshold. This means,

211



that we can define:

ql =
1

2J

2J−1∑
k=0

1{|d(l)k |>δl},

where 1A is the indicator function that has value equal to 1 if A is true, and zero if it is not.

Similarly, δl > 0 is a threshold that is properly defined.

Note that since it is possible to assume that d(l) is centered at zero, and normally distributed

with variance σ2IN , it can be shown that:

P
[
|d(l)
k | > δl

]
≤ 2 · e−

δ2l
2σ2 .

This follows from the application of Markov inequality and the utilization of the moment

generating function of the Normal distribution.

If we want to find a bound that decays linearly with respect to L = 2J , it is possible to show

that:

P
[
|d(l)
k | >

√
2σ2 log(2J)

]
≤ 21−J .

Therefore, the more number of coefficients |d(l)
k | that are greater than equal to this bound,

the more likely the underlying function will have expansion coefficients with locations cor-

responding to the non-zero values. Therefore:

ql =
1

2J

2J−1∑
k=0

1{|d(l)k |>√2σ̂2 log(2J )
}, (5.83)

where σ̂2 = median
0≤k≤2J−1

|d(l)k |
0.6745

.
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5.5 Simulation Study

In this section we investigate the finite sample performances of the proposed Bayesian method-

ologies via simulation. All the estimators are implemented using MATLAB®, and estima-

tion results are compared with previously published methodologies AMlet (Sardy and Tseng,

2004)[1], and the Wavelet-based Least Squares, introduced in Chapter 4.

For the simulation, we consider standard conditions: the observed response is corrupted by

Gaussian additive noise, and the features in the model are uniformly distributed in [0, 1]p.

The model used for this analysis is given by:

y(x) = f1(X1) + f2(X2) + f3(X3) + f4(X4) + σ · ε.

Here, Xl are independent U(0, 1), and ε ∼ N (0, 1). Similarly, each of the functions in the

model is given by:

• f1(X1) is the piecewise constant blocks function (Donoho and Johnstone, 1994)[34].

• f2(X2) is the continuous but erratic bumps function (Donoho and Johnstone, 1994)[34].

• f3(X3) is the relatively smooth heavisine function (Donoho and Johnstone, 1994)[34].

• f4(X4) is the zero function (Sardy and Tseng, 2004)[1], representing a non-significant

feature.

In order to adjust the simulation to the settings used by Sardy and Tseng (2004)[1], and obtain

results that can be compared against those published in [1], the non-zero functions are scaled

and centered to have a standard error equal to 3:

∫ 1

0

(fl(x)− f̄)2dx = 32, f̄ =

∫ 1

0

fl(x)dx.
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(a) Blocks (b) Bumps

(c) Heavisine (d) Zero

Figure 5.12: Functions used in the simulated additive model.

The standard deviation of the additive noise σ = 0.05, enabling a large signal-to-noise ratio

of the observed response. The wavelet filter used for the expansion is the Daubechies with

8 vanishing moments. The multiresolution index for the expansion is set as J = log2(N).

The estimator performance is measured using theAMSE, similarly as in section 5.2.7. Here,

we set B = 50 and N = 512, 1024, 2048, 4096, 8192.

The simulation results are displayed by the following instances:
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(i) Figures 5.13 to 5.20 illustrate typical estimates for each function in the model, for each

sample size. Plots for each model, in addition to the Least Squares (LS) estimates are

displayed.

(ii) Tables 5.5 to 5.7 illustrate the empirical MSE of estimation, obtained from the simula-

tion for sample sizes N = 1024, 2048, 4096. Values for each Bayes model, LS and

AMlet estimates are displayed.

(iii) Figures 5.21 to 5.28 provide box plots for the MSE estimates for each Bayes model, LS

and AMlet estimates, for all sample sizes N = 512, 1024, 2048, 4096, 8192.

Table 5.5: AMSE(standard deviation) results for Functions in the model, for N = 1024. In blue the minimum average
MSE, in magenta, the corresponding minimum standard deviation of MSE.

Block Bumps
Bayes Total 0.52016 (0.03557) 1.0619867 (0.02450)

Bayes Mixture 0.52051 (0.03569) 1.06234 (0.02513)
Bayes Point 0.57980 (0.04351) 1.26478 (0.08206)

Least Squares 0.95203 (0.02675) 2.09584 (0.02760)
AMlet[1] 0.97790 (0.14014) 1.31650 (0.20801)

Heavisine Zero
Bayes Total 0.13965 (0.02475) 0.10913 (0.00126)

Bayes Mixture 0.07369 (0.01649) 0.03824 (0.01030)
Bayes Point 0.50730 (0.13925) 0.20343 (0.04192)

Least Squares 0.12967 (0.02566) 0.09834 (0.02725)
AMlet[1] 0.29501 (0.06532) 0.00461 (0.00393 )

5.5.1 Remarks and Comments

(i) As can be observed from Tables x - x and Figures 5.21-5.28 the Bayesian methodologies

present a large sample behavior which is similar to AMlet and LS, meaning that the

MSE decreases as a function of N . In particular, it can be observed that the empirical

results suggest that our proposed procedures, together with the LS present a smaller

L2-risk that Amlet, for all sample sizes included in the study.
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Table 5.6: AMSE(standard deviation) results for Functions in the model, for N = 2048. In blue the minimum average
MSE, in magenta, the corresponding minimum standard deviation of MSE.

Block Bumps
Bayes Total 0.27177 (0.02117) 0.22830 (0.008338)

Bayes Mixture 0.27183 (0.02120) 0.22835 (0.00836)
Bayes Point 0.45494 (0.04079) 0.63394 (0.06133)

Least Squares 0.89767 (0.01446) 2.05133 (0.01560)
AMlet[1] 0.33718 (0.04888) 0.35967 (0.06058)

Heavisine Zero
Bayes Total 0.04165 (0.00876) 0.03153 (0.005162)

Bayes Mixture 0.04169 (0.00878) 0.00575 (0.00149)
Bayes Point 0.83454 (0.11631) 0.31326 (0.03674)

Least Squares 0.07540 (0.01185) 0.04543 (0.01506)
AMlet[1] 0.09442 (0.01739) 0.00105 (0.00079 )

(ii) As can be observed in Figures 5.13 to 5.20, the Bayesian methods are able to accurately

estimate the functions in the model, automatically adapting to each of the functions

irregularities. This is particularly interesting in the case of the Blocks and Heavisine

functions, for which the estimators nicely capture the rapid variations and discontinu-

ities at the different scales.

(iii) From a visual perspective, it is evident from the simulations that as the sample size

increases, the estimates are more stable and accurate which indicates that the Bias and

Variance monotonically decreases with respect to the sample size. In particular, it can

be observed that the Bayesian methods exhibit (in general) a smaller variability than

AMlet and LS, indicating good finite sample behavior in the MSE sense.

(iv) When sample sizes are relatively small, it can be observed that the estimates are noisy

but centered around the true function values. For this reason, the estimation accu-

racy could be improved by introducing a post-processing stage in which the function

estimates are smoothed by introducing local-linear smoothers, or by thresholding the

expansion coefficients in the same way as proposed by Donoho et al. (1994)[34].

(v) Note that in the first case (local linear smoothing), the estimator remains linear, meaning
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Table 5.7: AMSE(standard deviation) results for Functions in the model, for N = 4096. In blue the minimum average
MSE, in magenta, the corresponding minimum standard deviation of MSE.

Block Bumps
Bayes Total 0.17242 (0.01804) 0.02450 (0.00233)

Bayes Mixture 0.17244 (0.01805) 0.02451 (0.00234)
Bayes Point 0.60721 (0.05843) 0.53388 (0.04364)

Least Squares 0.41730 (0.00565) 0.97852 (0.00797)
AMlet[1] 0.06861 (0.010672) 0.05828 (0.00968)

Heavisine Zero
Bayes Total 0.01084 (0.00339) 0.00787 (0.00126)

Bayes Mixture 0.01085 (0.00339) 0.00076 (0.00022)
Bayes Point 0.89621 (0.09760) 0.70119 (0.06212)

Least Squares 0.03990 (0.00429) 0.02122 (0.00358)
AMlet[1] 0.02045 (0.00462) 0.00035 (0.00025 )

that it is a linear combination of the observed response, resulting from the application

of an appropriate matrix. This alternative is more adequate for smooth functions. On

the other hand, after applying thresholding the estimates become non-linear, which is

especially suitable for irregular functions.

(vi) Even though the obtained results correspond to the Daubechies 6 filter (used for the

expansion of all functions in the model), during the implementation phase we tested

different filter such as Symmlets and Coiflets (refer to [3] for technical details), obtain-

ing comparable results. However, since Daubechies-Lagarias algorithm is used for the

construction of the design matrix, there is a trade-off between computational speed and

accuracy of estimation, meaning that choosing a filter too large (in terms of number of

taps) may inflate the computational cost for the calculations of the design matrix, with-

out improving the estimation significantly enough as compared to the use of a shorter

filter. However, the filter choice is a matter of subjective opinion and part of the art of

statistical modeling.

(vii) In the same line as the above argument, the proposed algorithm is capable of allowing

the use of different filters for each feature in the model, meaning that the construction
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of the design matrix can result from the use of multiple wavelet filters. For example,

the simulation results shown in this section could be significantly improved if the Haar

filter was utilized instead of Daubechies 6 for Blocks and Zero functions. Haar basis

spans piece-wise constant functions in L2([0, 1]), so it fits Blocks and Zero almost per-

fectly. This fact illustrates the flexibility of the proposed methodologies to introduce

expert or previous knowledge about the problem to inform the estimation, and allow

experimentation.

(viii) Regarding computational costs and efficiency, once the design matrix is constructed

(using Daubechies-Lagarias), computations are extremely efficient since the estimate

structure enables the use conjugate gradients, avoiding the explicit computation of ma-

trix inversions, thus making the methods competitive when the sample size is moderate.
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(a) Blocks, N = 512

(b) Blocks, N = 1024

Figure 5.13: Typical estimated function Blocks for N = 512, 1024 samples.
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(a) Blocks, N = 2048

(b) Blocks, N = 4096

(c) Blocks, N = 8192

Figure 5.14: Typical estimated function Blocks for N = 2048, 4096, 8192 samples.220



(a) Bumps, N = 512

(b) Bumps, N = 1024

Figure 5.15: Typical estimated function Bumps for N = 512, 1024 samples.
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(a) Bumps, N = 2048

(b) Bumps, N = 4096

(c) Bumps, N = 8192

Figure 5.16: Typical estimated function Bumps for N = 2048, 4096, 8192 samples.
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(a) Heavisine, N = 512

(b) Blocks, N = 1024

Figure 5.17: Typical estimated function Heavisine for N = 512, 1024 samples.
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(a) Heavisine, N = 2048

(b) Heavisine, N = 4096

(c) Heavisine, N = 8192

Figure 5.18: Typical estimated function Heavisine for N = 2048, 4096, 8192 samples.224



(a) Zero, N = 512

(b) Zero, N = 1024

Figure 5.19: Typical estimated function Zero for N = 512, 1024 samples.
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(a) Zero, N = 2048

(b) Zero, N = 4096

(c) Zero, N = 8192

Figure 5.20: Typical estimated function Zero for N = 2048, 4096, 8192 samples.226



(a) Blocks, N = 512

(b) Blocks, N = 1024

(c) Blocks, N = 2048

Figure 5.21: Empirical MSE for Blocks on a log10 scale. In each panel from left to right: Bayes Total, Bayes Mixture,
Bayes Point Mass, Least Squares, Amlet.
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(a) Blocks, N = 4096

(b) Blocks, N = 8192

Figure 5.22: Empirical MSE for Blocks on a log10 scale. In each panel from left to right: Bayes Total, Bayes Mixture,
Bayes Point Mass, Least Squares, Amlet.
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(a) Bumps, N = 512

(b) Bumps, N = 1024

(c) Bumps, N = 2048

Figure 5.23: Empirical MSE for Bumps on a log10 scale. In each panel from left to right: Bayes Total, Bayes Mixture,
Bayes Point Mass, Least Squares, Amlet.
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(a) Bumps, N = 4096

(b) Bumps, N = 8192

Figure 5.24: Empirical MSE for Bumps on a log10 scale. In each panel from left to right: Bayes Total, Bayes Mixture,
Bayes Point Mass, Least Squares, Amlet.
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(a) Heavisine, N = 512

(b) Heavisine, N = 1024

(c) Heavisine, N = 2048

Figure 5.25: Empirical MSE for Heavisine on a log10 scale. In each panel from left to right: Bayes Total, Bayes
Mixture, Bayes Point Mass, Least Squares, Amlet.

231



(a) Heavisine, N = 4096

(b) Heavisine, N = 8192

Figure 5.26: Empirical MSE for Heavisine on a log10 scale. In each panel from left to right: Bayes Total, Bayes
Mixture, Bayes Point Mass, Least Squares, Amlet.
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(a) Zero, N = 512

(b) Zero, N = 1024

(c) Zero, N = 2048

Figure 5.27: Empirical MSE for Zero on a log10 scale. In each panel from left to right: Bayes Total, Bayes Mixture,
Bayes Point Mass, Least Squares, Amlet.
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(a) Zero, N = 4096

(b) Zero, N = 8192

Figure 5.28: Empirical MSE for Zero on a log10 scale. In each panel from left to right: Bayes Total, Bayes Mixture,
Bayes Point Mass, Least Squares, Amlet.

234



5.6 Conclusions

In this chapter, we proposed and explored three different wavelet-based shrinkage methods

for the adaptive estimation of additive regression models, exploiting conjugate structures that

enable simple implementations and relatively efficient estimation using backfitting.

For each method, a complete derivation of the marginal and posterior distributions, model

parameters and Bayes estimators was provided, and the linear nature of the estimates and

shrinkage procedures is illustrated.

The proposed Bayes procedures are flexible and adaptive, capable of modeling dependency

between the expansion coefficients, while introducing regularization in the matrix inversion

needed for the computation of the shrinkage rules. In addition, the hyper-parameters needed

for the specification of the prior distributions are computed from the data by following em-

pirical Bayes, or extracting the values directly from the projection of the observed response

into the wavelet domain, as proposed in [59].

Finally, the performance of each proposed methodology was assessed through a simulation

study using benchmark functions that have been widely used in the literature, comparing

results to those obtained by the Least Squares estimator introduced in Chapter 4, and the pro-

cedure proposed by Sardy and Tseng (2004)[1]. The simulation settings utilized resembled

those used by previous authors, enabling a reasonable comparison with their methods.

Based on the obtained results, we can argue that the proposed Bayes procedures offer a com-

petitive advantage against existing methodologies: they tend to outperform AMlet (without
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the fast computations) and LS for small sample sizes and smooth functions, exhibiting good

asymptotic properties and L2 risk behavior. On top of that, the methods are completely data-

driven and fairly flexible and simple to implement. Moreover, when sample size and number

of predictors is moderate, the estimation process is relatively fast which increases it potential

applicability in real-life scenarios.
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CHAPTER 6

MULTISCALE CORRELATION ANALYSIS IN THE WAVELET DOMAIN

In this Chapter, we exploit the linearity of the Discrete Wavelet Transformation (DWT) for

the analysis of sample correlation. The usual Pearson’s sample correlation coefficient is

decomposed as a weighted sum of correlations between wavelet coefficients at different scale

levels.

This representation enables a more detailed representation of the correlation structure in the

data, revealing linear relationships at scales finer than the one utilized for the data collec-

tion, assessing how existing linear relationships are decomposed across different scales. This

alternative way to express correlation can lead to very useful insights such as identifying

sampling rates that lead to orthogonality between signals, capture the maximal information

between samples or account for the observed relationship between sequences.

This Chapter introduces a formal and novel definition of the wavelet based correlation, dis-

cussing some of its characteristics and properties and providing simulation based examples

that aim to illustrate possible scenarios expected to occur in real-life. In addition, two test-

statistics that exploit the whitening properties of the DWT are proposed for the assessment of

the statistical significance of the observed scale-wise correlations. Furthermore, these meth-

ods are evaluated in terms of their type I and II errors, comparing their performance with

popular parametric and non-parametric statistical tests, using simulated data generated from

stationary MA(1), AR(1) and ARMA(1,1) processes.
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6.1 Introduction

The superb capabilities of wavelets for the decomposition of processes at different time scales

while preserving time localization have translated into a growing popularity of wavelet-based

methodologies for the analysis of correlation between signals. This is specially noticeable

within the fields of economics, finance and physical sciences. Gencay et al. (2001)[68] pro-

vides a detailed description of the application of wavelets in economics and finance, with

most results based on the application of the maximal overlap discrete wavelet transform

(MODWT). This tools was introduced in 2000 by Percival and Walden (2000)[69], and is

a non-orthogonal modified version of the DWT. Among its main differences with the DWT,

it possess the flexibility to handle sequences of any lenghtN , and it is shift-invariant, meaning

that a shift in the signal does not change the pattern of the wavelet transformed coefficients.

Regarding some of the existing research that makes use of wavelet-based correlations, the fol-

lowing works provide good references: Grinsted et al. (2004)[70] proposed a methodology

for the analysis of coherence between signal in a certain state spaces, Capobianco (2004)[71]

applied wavelet methods to the multiresolution analysis of high frequency Nikkei stock in-

dex data, estimating periodic effects in those signals. Later on, Fernández-Macho (2012)[72]

proposed a method for multiple correlation analysis using wavelet transformations, Benhmad

(2013)[73] analyzed the cross-contamination between stock markets, showing a scale depen-

dency via the use of wavelet transforms.

In the atmospheric and physical sciences context, Hudgins (1992)[74] introduced the con-

cepts of wavelets cross spectrum and wavelet cross correlation using the CWT, applying those

concept in the analysis of atmospheric turbulence (Hudgins et al. 1993). Liu (1994)[75]

defined a wavelet cross spectrum, similar to Hudgins but using complex wavelets instead.

Later on, Lindsay et al. (1996)[76] utilized the DWT to define the wavelet covariance, along

with large-sample based confidence intervals for the analysis of surface temperatures in the
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Beaufort sea. In 2000 Whitcher, Guttorp and Percival [77] extended the notion of wavelet

covariance for the MODWT, defining wavelet cross covariance and cross correlation. More

recently, Pering et al. (2014)[78] introduced the use of CWT for the analysis of correlation

in the geosciences domain by combining the scale-wise representations and Spearman’s rank

correlation (see Spearman 1904[79]). In this same context Casagrande et. al (2015)[80] uti-

lized wavelet-based cross-correlations using CWT with complex wavelets, showing a method

able to capture the dynamics of the soil moisture-temperature coupling over a wide range of

temporal scales.

Even though the idea of applying wavelets to generate a multiscale version of the correlation

analysis is not new, most of the existing literature focuses mainly on its applications, with

restricted attention to the tool itself and some of its properties for stationary sequences. In

particular, based on the available information that was possible to gather for the elaboration

of this Chapter, it was observed that few results about the performance of commonly used

tests for the assessment of statistical significance of correlation findings for different types of

stationary processes have proposed in the literature.

For this reason, in this chapter our goal is to introduce a definition of the wavelet based cor-

relation procedure using an orthogonal DWT resulting from compactly supported wavelets,

showing that the additive structure of the sample covariance that leads to a weighted sum

of level-wise correlations between expansion coefficients in the wavelet domain. In addi-

tion, some interesting results regarding some of its distributional and statistical properties is

provided for specific types of stationary processes, aiming to build intuition and provide a

framework over which different statistical tools could be built.

Along this line, our second goal for this Chapter consists of proposing a test statistic that ex-

ploits the whitening property of wavelets for the assessment of the statistical significance of

the observed level-wise correlations. In order to study its expected performance and provide

intuition about the effect of different types of stationary processes over the performance of
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commonly used statistical tests, a simulation-based comparison with the well-known Pear-

son’s t−test and some other non-parametric statistical procedures is provided, utilizing sim-

ulated stationary processes that aim to illustrate possible scenarios that are expected to occur

in real-life.

A a result of this, our findings suggest that the proposed test statistic based on the condi-

tion number of the sample covariance matrix of level-wise wavelet coefficients exhibits a

significantly smaller type I error than popular statistical tests used as benchmark. In partic-

ular, when the analyzed signals are uncorrelated and exhibit short-time high oscillations the

proposed methodology significantly outperforms the other tests, which tend to significantly

increase their false rejection rates reaching in some cases, average rates higher than 30%.

Similarly, in terms of the type II error, the proposed test is in general, as good as the other

tests showing a consistent behavior across the different models and setting that were tested.

Finally, and application use-case that illustrates the applicability of the proposed tools in a

data set that studies daily average temperatures in the cities of Atlanta and Athens, GA. is

presented, and a brief discussion is provided.

6.2 Scale-wise Representation of Sample Correlation via DWT

Consider two real-valued random sequences X1, ..., XN , and Y1, ..., YN resulting from obser-

vations of the random variablesX and Y with assumed joint distribution given by fX,Y (x, y).

Denote as x = [X1 . . . XN ]T and y = [Y1 . . . YN ]T each of the observed sequences respec-

tively. WLOG, assume that E[X] = E[Y ] = 0, and V ar(X) = σ2
X < ∞, V ar(Y ) = σ2

Y <

∞. These assumptions will be utilized throughout the sequel for all derivations and results,

in most cases without explicitly mentioning them.

As it is known in the statistical domain, the correlation is a measure of linear relationship
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between X, Y , and as proposed by Pearson [81], can be computed as:

ρX,Y =
Cov(X, Y )√
V ar(X)V ar(Y )

=
E[XY ]

σXσY
. (6.1)

Note that, if X and Y are independent, meaning fX,Y (x, y) = fX(x)fY (y), then ρX,Y = 0.

Moreover, to compute the correlation we need to obtain the numerator of Eq.(6.1) which

represents the Covariance between X and Y (under the assumption of zero mean random

variables).

In most practical situations knowledge of the underlying probability density of the observed

samples is not available, therefore Cov(X, Y ) cannot be computed directly. In such cases,

natural estimators of E[XY ] and ρX,Y are given by:

Ĉov(X, Y ) =
1

N

N∑
i=1

XiYi =
1

N
xTy =

1

N
〈x,y〉 (6.2)

ρ̂X,Y =
〈x,y〉√
〈x,x〉〈y,y〉

. (6.3)

Here 〈·, ·〉 denotes the standard inner product in RN . Since each of the sequences can be

interpreted as observations resulting from equally spaced measurements of a certain process

(e.g. hourly stock prices, weekly average temperatures, distributed sensors, etc.), it is possible

to represent them in the wavelet domain via the DWT.

In this context, suppose an orthogonal wavelet matrix of the decimated type, denoted by W.

Let dX = Wx and dY = Wy be the resulting vectors of wavelet coefficients from the DWT

of x and y respectively. Then, it follows:

1

N
dTXdY =

1

N
xTWTWy =

1

N
〈x,y〉 = Ĉov(X, Y ), (6.4)

dTXdX = xTWTWx = 〈x,x〉. (6.5)
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The last result indicates that due to the orthogonality of W and the linearity of the DWT, en-

ergy is preserved, so it is possible to analyze the correlation of the sequences in the wavelet

domain, preserving its structure. In fact, the application of the orthogonal DWT can be in-

terpreted as a special rotation of the original sequences that preserves length and allows the

decomposition of their dimensionality into disjoint subspaces where they can be analyzed

separately.

Assuming that N = 2J , the DWT applied to the data sequences x and y generates vectors of

expansion coefficients that have the following structure:

d =



c(J−k)

d(J−k)

d(J−k+1)

...

d(J−2)

d(J−1)


2J

. (6.6)

In the last expression k corresponds to the number of steps or depth in the DWT (usually,

k = J). Also, it is important to mention that due to the decimated nature of the chosen

DWT, the size of the vector d is also N (as in the original data vector x). In Eq.(6.6), c(J−k)

corresponds to the smooth coefficients at scale level J − k; similarly, d(J−k) corresponds to

the set of detail coefficients at the scale level J−k. Assuming k = J , each component d(J−l)
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of d in Eq.(6.6) is given by:

d(J−l) =



dJ−l,0

dJ−l,1
...

dJ−l,2J−l−1


2J−l×1

, for l = J, J − 1, ..., 1.

Here dj,m, cj,m correspond to the discrete wavelet coefficients in the wavelet expansion of a

function f ∈ Vj
⋃
Wj , as described in Chapter 1.

Therefore, it follows that the transformed sequences are structured as:

dX =



c
(0)
X

d
(0)
X

d
(1)
X

...

d
(2)
X

d
(J−1)
X


2J

, dY =



c
(0)
Y

d
(0)
Y

d
(1)
Y

...

d
(2)
Y

d
(J−1)
Y


2J

, (6.7)

which implies that:

Ĉov(X, Y ) = 〈dX ,dY 〉 = c
(0)
X c

(0)
Y +

J−1∑
j=0

〈d(j)
X ,d

(j)
Y 〉. (6.8)

Note that 〈d(j)
X ,d

(j)
Y 〉 =

∑2j−1
k=0 d

(X)
j,k d

(Y )
j,k , for j = 0, ..., J − 1. This last fact, together with

Eq.(6.8) shows that the sample covariance between the sequences x and y can be decom-

posed as the summation of the level-wise inner products of wavelet coefficients.
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Now, from the last set of results, it is possible to express the sample correlation ρ̂X,Y as:

ρ̂X,Y =
c

(0)
X c

(0)
Y +

∑J−1
j=0 〈d

(j)
X ,d

(j)
Y 〉√(

c
(0)
X c

(0)
X +

∑J−1
j=0 〈d

(j)
X ,d

(j)
X 〉
)(

c
(0)
Y c

(0)
Y +

∑J−1
j=0 〈d

(j)
Y ,d

(j)
Y 〉
) . (6.9)

Define for j = 0, ..., J − 1:

wj =

√
w

(j)
X w

(j)
Y =

√√√√ ||d(j)
X ||22 · ||d

(j)
Y ||22(

||c(0)
X ||22 +

∑J−1
j=0 ||d

(j)
X ||22

)(
||c(0)

Y ||22 +
∑J−1

j=0 ||d
(j)
Y ||22

) . (6.10)

Here, w(j)
X =

||d(j)
X ||

2
2

||dX ||22
, and w(j)

Y =
||d(j)

Y ||
2
2

||dY ||22
. Clearly, 0 ≤ wj ≤ 1, for j = 0, ..., J−1. Therefore,

Eq.(6.9) becomes:

ρ̂X,Y =
c

(0)
X c

(0)
Y

||dX ||2||dY ||2
+

J−1∑
j=0

wj ρ̂
(j)
X,Y , and (6.11)

ρ̂
(j)
X,Y =

〈d(j)
X ,d

(j)
Y 〉

||d(j)
X ||2||d

(j)
Y ||2

, j = 0, ..., J − 1. (6.12)

Note that from Eq.(6.12), it is clear that for j = 0, ..., J−1 the terms ρ̂(j)
X,Y satisfy |ρ̂(j)

X,Y | ≤ 1.

Thus, expression (6.11) indicates that the sample correlation ρ̂X,Y can be expressed as the

weighted sum of the level-wise correlation between the expansion coefficients resulting from

the DWT of each of the signals. By this representation, it is possible to assess the individual

contributions of each of the scales to the overall correlation between two signals.

This last fact enables to relate the scale-wise correlations to the original measurement scale,

thus identifying linear relations that may exist at scales that are finer than the one utilized for

the data collection, providing additional information and insights about the data under study.

Remarks

(a) From expression (6.11), another interpretation of the usual correlation coefficient be-
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tween two signals is that it corresponds to the aggregated effect of multiple-scales inter-

actions. Therefore, the multiscale representation offers a richer source of information

about the existing relationships

(b) Note that for a fixed j, wj = 0 if either ||d(j)
X ||2 = 0 or ||d(j)

Y ||2 = 0. This means

that low-energy levels are prone to have small weights. However, smooth signals tend

to concentrate most of its energy in low scale levels, so it can be expected that high

weights could be observed in those cases.

(c) Since w(j)
X =

√
||d(j)

X ||
2
2

||dX ||22
, it follows that:

(c
(0)
X )2

||dX ||22
+

J−1∑
j=0

(w
(X)
j )2 = 1.

(d) Based on the previous definition, since the energy distribution across different scale lev-

els is directly related to the signal smoothness and stochastic characteristics (e.g. self-

similarity, highly localized oscillations, etc.) the observation of the weights distribution

could be a good source of information for the assessment of those signal features.

(e) From a geometrical viewpoint, from Eq.(6.12) it is possible to observe that:

ρ̂
(j)
X,Y = cos(θ

(j)
X,Y ),

where cos(θ(j)
X,Y ) is the angle formed between vectors d

(j)
X and d

(j)
Y in R2j . Therefore:

ρ̂X,Y =
c

(0)
X c

(0)
Y

||dX ||2||dY ||2
+

J−1∑
j=0

wjcos(θ
(j)
X,Y ).
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6.3 Some Interesting Correlation Relationships Between Signals and Properties of

Wavelet Coefficients

In this section, some interesting correlation relationships between signals are studied. This

aims to the generation of insights and the identification of special structures or properties that

arise in such cases for the multiscale approach, generating a framework for further analysis,

testing and interpretation of results. Each of the cases that are studied are complemented with

simulation-based examples that illustrate the properties under discussion.

6.3.1 Case 1: Perfect Correlation between x and y

This is a trivial situation that assumes that Y = aX , for an arbitrary a 6= 0. Due to the

linearity and homogeneity of the DWT, this linear relationship translates into a representa-

tion of the sequence y in the wavelet domain that is just a re-scaled version of the wavelet

representation of the signal x. This implies that:

ρ̂
(j)
X,Y = sign(a), j = 0, ..., J − 1,

wj = 1, j = 0, ..., J − 1,

ρ̂X,Y = sign(a).

This result follows directly from Eqs.(6.11)-(6.12), and suggest that strong linear relation-

ships between signals are likely to be evenly spread out into the level-wise correlations.

6.3.2 Case 2: Perfect correlation between x and y at a particular multiresolution level j0.

Suppose that for a fixed 0 ≤ j0 ≤ J − 1, and β 6= 0, it holds:

d
(j0)
Y = β · d(j0)

X .
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This relation implies that at the multiresolution level j0, samples x and y are linearly depen-

dent. Note that under this condition, it follows:

ρ̂
(j0)
X,Y = sign(β),

wj0 =
|β|

||dX ||2
√
Cj0 + β2

,

Cj0 =
1

||d(j0)
X ||22

(
||c(0)

Y ||
2
2 +

J−1∑
j=0, j 6=j0

||d(j)
Y ||

2
2

)
.

Here, Cj0 > 0 represents the ratio of energies contained in all levels but j0 in signal y and

the energy contained at level j0 in signal x. Note that Cj0 = 0 when all energy in the signal

is concentrated in level j0. Similarly, Cj0 →∞ when no energy is contained at scale j0.

Suppose for a fixed Cj0 > 0, an perfect linear relation between both signals at level j0 exists

and ||dX ||2 = 1 . Then wj0 = wj0(β, Cj0) is a non-negative symmetric function of (β, Cj0),

that as β → ∞, wj0(β, Cj0) → 1. In the presence of linear dependence, the value of Cj0

determines how fast the weight wj0 converges to 1. Fig. 6.1 illustrates this behavior:

Figure 6.1: Plot of the correlation weights wj for different values of Cj > 0. Each of the colored lines represent the
shape of wj(β,C) for a fixed value of C. In the plot, C ranges from 0 to 100. The larger C, the smaller the slope of
the curve around zero, and the slower it reaches the asymptotic value of 1.
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Figure 6.1 shows that a perfect correlation at a fixed scale j0 does not necessarily imply high

weights. In the extreme case when the transformed signals are orthogonal for every scale

level, except for j0, then ρ̂(j)
X,Y = 0, ∀ j 6= j0. Thus, in such scenario the sample correlation

takes the form:

ρ̂X,Y =
c

(0)
X c

(0)
Y

||dX ||2||dY ||2
+ wj0sign(β),

=
c

(0)
X c

(0)
Y

||dX ||2||dY ||2
+

β

||dX ||2
√
Cj0 + β2

Note that because of the effect of the weight wj0 , this value can be small (and even close to

zero), meaning that significant correlation at a scale level does not necessarily reflects on the

overall correlation in the original domain.

Simulation-based examples

In this section the case of correlation between signals at a specific scales is exemplified via

simulation, and some graphical illustrations are provided. The methodology used for this

purpose is the following:

• Generate two independent random sequences X1, ..., XN , Y1, ..., YN for N = 2J ,and

X, Y ∼ N (0, σ2). Construct and orthogonal wavelet matrix W by choosing a appropri-

ate wavelet filter (e.g. Daubechies 6).

• Obtain dX = Wx, and dY = Wy using the wavelet matrix W.

• For a chosen multiresolution level j0 and β 6= 0, set d
(j0)
Y ← β · d(j0)

X . This generates a

new transformed signal d̃Y .

• Return back to the original domain of both signals, meaning x = WTdX , and y =

WT d̃Y .
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• Compute the sample correlation in the usual way (Pearson’s sample correlation coeffi-

cient).

This process is then repeated multiple times, following a montecarlo methodology. The fol-

lowing tables and figures illustrate the obtained results for different values of N , β and σ2:

(i) In Figs. 6.2a-6.3b it is possible to observe that perfect correlation in the wavelet domain

may not be visually evident in the time domain. However, in the wavelet domain that

behavior is clear.

(ii) In Fig. 6.4 the effect of correlation on an individual scale level on the sample correlation

at the original domain is exemplified, using N = 256, β = 1 and σ = 0.1. It is

interesting to observe that the coarser the scale, the less significant the effect of the

correlation. This is particularly evident for panels (a)-(c), whereas for (d)-(e) there is

no significant different between the two samples.

(iii) Also, from Fig. 6.4 in the case of no correlation between wavelet coefficients at each

scale, the scale-correlations are almost symmetric around zero, with variability that is

monotonically decreasing as the detail level increases.

(iv) In Fig. 6.6 the effects of perfect correlation are enhanced due to the artificial nature of

the example. However, when using signals from real applications it can be expected

that significant departures from zero of the median level-wise sample correlation would

occur, which will allow the detection of the presence of correlation between the signals

at a particular scale.

(v) In Fig. 6.6 the effect of perfect correlation a each scale level on the sample behavior of

the scale correlation is exemplified, usingN = 256, β = 1 and σ = 0.1. It is interesting

to observe that the coarser the scale, the less significant the effect of the correlation.
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(a) Uncorrelated signals in the wavelet domain

(b) Correlated signals in the wavelet domain, at scale level=7

Figure 6.2: Comparative Plots of uncorrelated (a) vs. correlated (b) signals in the wavelet domain.
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(a) Uncorrelated signals in the time domain

(b) Correlated signals in the time domain.

Figure 6.3: Comparative Plots of uncorrelated (a) vs. correlated (b) signals in the time domain, with perfect correlation
at scale-level 7.
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(a) Perfect correlation at J = 7

(b) Perfect correlation at J = 6

(c) Perfect correlation at J = 5

Figure 6.4: Comparative boxplots of the typical effects on overall correlation at the original domain, given perfect
correlation at the wavelet domain. The experiments were replicated 1000 times.
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(a) Perfect correlation at J = 4

(b) Perfect correlation at J = 3

(c) Perfect correlation at J = 2

Figure 6.5: Comparative boxplots of the typical effects on overall correlation at the original domain, given perfect
correlation at the wavelet domain. The experiments were replicated 1000 times.
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(a) Perfect correlation at J = 7

(b) Perfect correlation at J = 6

(c) Perfect correlation at J = 5

Figure 6.6: Comparative boxplots of the typical effects on scale correlations in the wavelet domain, given perfect
correlation at each scale level. The experiments were replicated 1000 times.
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(a) Perfect correlation at J = 4

(b) Perfect correlation at J = 3

(c) Perfect correlation at J = 2

Figure 6.7: Comparative boxplots of the typical effects on scale correlations in the wavelet domain, given perfect
correlation at each scale level. The experiments were replicated 1000 times.
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6.3.3 Case 3: Perfect correlation between x and y at a all multiresolution levels 0 ≤ j ≤ J − 1,

and its translation into the original signal domain correlation.

This case is a generalization of the previous situation. Here, instead of just one level perfectly

correlated, it is assumed that all levels are perfectly correlated between the two signal.

Suppose that for a fixed j = 0, ..., J − 1, there exists βj 6= 0, such that:

d
(j)
Y = βj · d(j)

X .

This relation implies that at the multiresolution level j, samples x and y are linearly depen-

dent. Note that under this condition, it follows for j = 0, ..., J − 1:

ρ̂
(j)
X,Y = sign(βj),

wj =
|βj|

||dX ||2
√
Cj + β2

j

,

Cj =
1

||d(j)
X ||22

(
||c(0)

Y ||
2
2 +

J−1∑
j=0, j 6=j0

||d(j)
Y ||

2
2

)
.

Therefore, the sample correlation takes the form:

ρ̂X,Y =
c

(0)
X c

(0)
Y

||dX ||2||dY ||2
+

1

||dX ||2

J−1∑
j=0

βj√
Cj + β2

j

(6.13)

Here, similarly as in the previous case, Cj > 0 represents the ratio of energies contained in

all levels but j in signal y and the energy contained at level j in signal x. Note that Cj = 0

when all energy in the signal is concentrated in level j, and Cj → ∞ when no energy is

contained at scale j.
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Using the same methodology as in Case 2, the following Figures illustrate typical qualitative

behavior of the correlation structure of the signals:

As it can be observed in Fig. 6.8 it is interesting to note the fact that although all scales

are perfectly correlated, the overall correlation (b) is not exactly 1. This is due to the fact

that
∑J−1

j=0 wj 6= 1. However, comparing the scale-correlations between the original uncorre-

lated signals with the perfectly-scale correlated samples, it is clear that there is a significant

difference between the samples. This is evident after inspecting Fig. 6.8b.

6.3.4 Some Theoretical Properties of wavelet coefficients for stationary, finite energy processes.

In this section, some of the properties of wavelet coefficients obtained from the orthogonal

DWT for stationary, finite energy sequences are studied. In particular, we analyze stationar-

ity and dependency between the expansion coefficients resulting from an orthogonal DWT.

Before begining with this analysis, the following definitions are needed:

Definition 6.3.1. A stochastic process {X(t), t ∈ R} is called strictly stationary if, for every

n ∈ Z, every permutation of t1, ..., tn ∈ R, and every lag τ ∈ R, it holds:

(X(t1 + τ), ..., X(tn + τ))
D
= (X(t1), ..., X(tn)) . (6.14)

Here D= denotes “equal in distribution”. Clearly, a sequence Xt1 , ..., Xtn of iid random vari-

ables, satisfying E[X] = µ, and V ar(X) = σ2 < ∞, is strictly stationary. Similarly, note

that if the following conditions are satisfied:

(i) E[|X(t)|2] <∞.

(ii) E[X(t)] = µ.

(iii) For all s, t ∈ R, Cov(X(t), X(s)) = γX(s− t) <∞.
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Then, the process {X(t), t ∈ R} is said to be weakly and second order stationary. Note

that these properties do not necessarily imply (6.14).

Definition 6.3.2. Consider two second order, real-valued, zero mean, weakly stationary pro-

cesses {X(t), t ∈ R}, {Y (t), t ∈ R}. Then if for all t, s, τ ∈ R:

E[X(t+ τ)Y (s+ τ)] = E[X(t)Y (s)] = γXY (t− s), (6.15)

then the processes are said to be cross (weakly) stationary.

Definition 6.3.3. Suppose a process {X(t), t ∈ R} that has mean zero and is at least weakly

stationary. Then, if for every n, integer, finite, τ ∈ R, and any permutation (t1, ..., tn) where

t1 < t2 < · · · < tn it holds:
n∑
k=1

|X(tk + τ)|2 <∞, (6.16)

then, the process is said to have finite energy.

Note that this condition states that at every window of finite length, resulting from any scale

of observations, the energy contained in the signal is finite. In particular, this condition must

be satisfied in order for the multiscale correlation decomposition to be well-defined. In fact,

since the proposed method is based on the orthogonal DWT, energies are preserved.

Definition 6.3.4. A process {X(t), t ∈ R} is said t have stationary increments if for every

vector h ∈ RK , K <∞, it holds:

(X(t+ h1)−X(t), ..., X(t+ hK)−X(t))
D
= (X(h1)−X(0), ..., X(hK)−X(0)) .

(6.17)

Definition 6.3.5. Suppose a stochastic process {X(t), t ∈ R} that is weakly stationary.

Then, if ∀ t ∈ R:

lim
|h|→∞

γX(h) = lim
|h|→∞

E[X(t)X(t− h)] = 0, (6.18)
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then, it has finite memory. This implies that it exists h0 ∈ R large enough such that ∀ h >

h0,∀ t ∈ R the random variables X(t), X(t+ h) can be considered uncorrelated.

Definition 6.3.6 (Averkamp and Houdre (2000)[82]). Let {X(t), t ∈ R} that is weakly sta-

tionary process, with auto-correlation function γX(t, s). The DWT of X(t) is a discrete

random field given by:

{dj,k, j, k ∈ Z} =

{∫
R
X(t)ψjk(t)dt, j, k ∈ Z

}
, (6.19)

which is well-defined if the above path integrals are well defined (i.e. the integral converges

with probability one), and (as noted in [82]):

∫
R

√
γX(t, t)|ψjk(t)|dt <∞.

Note that the coefficients dj,k contain the information about contiguous scales centered around

scale 2j , and time instant k · 2j being the discretization of the CWT discussed in Chapter 1.

If (6.19) is well-defined, then:

E[dj,kdj′,k′ ] =

∫
R
γX(t, s)ψj,k(t)ψj′,k′(s)dtds, (6.20)

is well defined as well.

Some properties of wavelet coefficients resulting from stationary processes.

Lemma 6.3.1. Suppose a process {X(t), t ∈ R} that has stationary increments. Then, the

sequence of wavelet coefficient {djk, k = 0, ..., 2j − 1} is stationary.
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Proof. Suppose a wavelet function ψ(t). Each wavelet coefficient djk is obtained as:

djk =

∫
X(t)ψjk(t)dt,

=

∫
X(t− δ)ψjk(t− δ)dt, set δ = 2−jv, v ∈ Z,

= 2j/2
∫
X(t− 2−jv)ψ(2jt− (k + v))dt.

Since
∫
ψ(t)dt = 0 and (X(t− 2−jv)−X(2−jv))

D
= (X(t)−X(0)), it follows:

djk
D
= dj,k+v, v ∈ Z,

which implies that {djk, k = 0, ..., 2j − 1} is stationary. Note that this result does not neces-

sarily hold in the reverse direction.

Note that as illustrated in Chapter 9, Vidakovic (1999)[3], the following two results relate the

aforementioned Lemma to more general classes of processes:

(a) Lemma 9.2.1 [3]. If X(t), t ∈ R is a weakly stationary process, for l, n ∈ Z and j ≥ l,

the random sequence
{
dj,2j−lk+n, k ∈ Z

}
is weakly stationary as well.

(b) Theorem 9.2.1 [3]. If X(t), t ∈ R is a second order stationary process for which

γX(s, t) is bounded and continuous in R2, then the sequence {dj,k, k ∈ Z} is weakly

stationary iff X(t) is weakly stationary. In particular, if the wavelet basis is compactly

supported, then the condition on the boundedness of γX(s, t) can be relaxed. The proof

of this Theorem can be found in Averkamp (2000)[82].

Lemma 6.3.2. Suppose a White Noise (WN) process {X(t), t ∈ R}, whereX(t)
iid∼N (0, σ2),

for σ2 <∞. Then for a fixed j, k = 0, ..., 2j − 1 the wavelet coefficients djk satisfy::

dj,k
D
= 2−j/2d0,k

D
= 2−j/2d0,0,
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where the wavelet function ψ(t) is compactly supported and satisfies |ψ(t)| < ∞, for every

t ∈ R.

Proof. Since the WN process {X(t), t ∈ R} is strictly stationary, by the definition of wavelet

coefficients, it follows:

dj,k =

∫
X(t)ψj,k(t)dt,

= 2−j/2
∫
X(2−ju)ψ(u− k)du,

D
= 2−j/2

∫
X(u)ψ(u− k)du = 2−j/2d0,k,

= 2−j/2
∫
X(z + k)ψ(z)dz,

D
= 2−j/2

∫
X(z)ψ(z)dz = 2−j/2d0,0,

where the last result holds from the fact that for every u ∈ R, X(2−ju)
D
=X(u).

Lemma 6.3.3. Suppose a WN process sampled at regularly spaced integer-valued intervals

{X(n), n ∈ N}, where X(n)
iid∼N (0, σ2). Then, the sequence of wavelet coefficients result-

ing from the DWT using an orthogonal wavelet family satisfy:

(i) dj,k
D
= d0,k

D
= d0,0.

(ii) d0,0 ∼ N (0, σ2)

Proof. Note that by the definition of the DWT (see section 1.1.8), the scaling and wavelet

filters h = [h(n)], n = 1, ..., L, g = [g(n)], n = 1, ..., L satisfy:

∑
n

h(n) =
√

2,
∑
n

h(n)2 = 1,∑
n

g(n) = 0,
∑
n

g(n)2 = 1.
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Since the DWT of the vector X = [X(1) . . . X(N)]T ∼ N (0, σ2IN) can be obtained by the

linear transformation d = W · x, where WN×N an orthogonal matrix, it follows:

W · x ∼ N (0, σ2W ·W T ),

which implies (due to the orthogonality condition of W ), that (i) and (ii) follow.

Lemma 6.3.4. Consider a second order, zero mean weakly stationary process {X(t), t ∈ R}

with bounded γX(s, t), for every s, t ∈ R. Then for j = 0, ..., J − 1, the following results

hold:

(i) E[dj,k] = 0 for k = 0, ..., 2j − 1.

(ii) V ar(dj,k) = E[d2
j,k] = C

(j)
ψ,X <∞, for k = 0, ..., 2j − 1,

provided the coefficients {dj,k k ∈ Z} are well defined.

Proof. Assuming the process {X(t), t ∈ R} is second order stationary, and the wavelet basis

{ψj,k, j, k ∈ Z} is orthonormal with compact support, it follows from the dominated conver-

gence theorem, and the fact that
∫
ψ(t)dt = 0:

E[djk] =

∫
E[X(t)]ψjk(t)dt = 0.

This result shows that (i) holds. Also, it implies that V ar(dj,k) = E[d2
j,k]. Now, from the

definition of the wavelet coefficients and the orthogonality of the basis, it follows:

E[d2
j,k] =

∫ ∫
γX(s− t)ψj,k(t)ψj,k(u)dtdu,

= 2−j
∫ ∫

γX(2−j(s− w))ψ(s)ψ(w)dsdw = C
(j)
ψ,X ,

where the last equation results from a change of variables in the integration and does not
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depend on k. The expression on the rhs is a function only of the scale level j and γX(·),

which implies that for k = 0, ..., 2j−1 the variance of the wavelet coefficients takes the same

form. Thus, (ii) follows.

Theorem 6.3.1 (Walter (1994)[83], Vidakovic (1999)[3]). Let {X(t), t ∈ R} be a station-

ary process and let XJ(t) be its projection onto the multiresolution space VJ spanned by

{φJ,k(t), k ∈ Z}. If the scaling function is r−regular, then:

E[|X(t)−XJ(t)|2] → 0, when J →∞, and

E[dj,kdj′,k′ ] =
1

2π

∫
R
γ̂X(w)Ψ

(w
2j

) ¯
Ψ
( w

2j′

)
e−iwk2−je−iw

′k2−j
′

2−(j+j′)/2dw,

where γ̂X and Ψ are the Fourier transformations of γX and ψ respectively. Using this last

result, if the wavelet basis is of the Meyer type (see [3]), such that both γ̂X and Ψ are in the

space Cp, p > 1 (i.e. the space of p−times continuously differentiable functions), then the

coefficients defined in (6.19) satisfy:

(i) If |j − j′| > 1, dj,k and dj′,k′ are uncorrelated.

(ii) If |j − j′| = 1, dj,k and dj′,k′ have arbitrarily small correlation.

(iii) If j = j′, then dj,k and dj′,k′ have correlation that is of the order O(|k − k′|−p).

The proof of this theorem can be found in [83].

In the next section, the aforementioned results will be used as the foundation for the develop-

ment of test statistics that can be utilized in the assessment of the significance of level-wise

correlations resulting from its multiscale representation.
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(a) Perfect correlation at j = 1, ..., 7

(b) Perfect correlation at j = 1, ..., 7

Figure 6.8: Comparative box-plots of the typical effects on scale correlations in the wavelet domain and time domain,
given perfect correlation at each scale level. (a) illustrates the usual sample correlation in the time domain, (b) shows
the corresponding p-values for the test-statistic. The experiments were replicated 1000 times. Values for βj were
chose at random.
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6.4 Statistical Tests for Multi-scale Correlation in the Wavelet Domain Based on the

Whitening Property of DWT

In a similar way to their time-domain counterparts, multiscale correlations can be tested for

significance on scale-dependent basis. In this section, we propose two scale-dependent test

statistics designed to assess the significance of the obtained sample correlations in the wavelet

domain. These tests are constructed from both a parametric and non-parametric perspective

and their performance is compared with well known test statistics such as: T-test, Spearman

rank correlation and Kendall’s rank correlation using a simulation study.

In particular, the performance comparison is made in terms of the estimated probability of

type I and type II error for stationary models of the kind: AR(1), MA(1), ARMA(1, 1).

Even though the number of different models that can be encountered in practice is extremely

large, we restrict the simulation study to these models because they tend to cover a range of

stochastic behavior that is likely to be observed in real life situations. Also, the methodology

presented can be easily extended to more sophisticated models, which allows the interested

reader to implement and extend these results beyond what is contained in this section.

6.4.1 Student Test for Normally Distributed Random Variables

Lemma 6.4.1 (Student (1908)[84], Kendall (1938)[85]). Assume the observed sequences

satisfy:

X1, ..., XN
iid∼N (0, σ2

X), and Y1, ..., YN
iid∼N (0, σ2

Y ) and are uncorrelated. Then, for j =

0, ..., J − 1 the level-wise correlations ρ̂(j)
X,Y it is possible to define sample statistics Vj such

that:

Vj =
2j/2√

1− (ρ̂
(j)
X,Y )2

ρ̂
(j)
X,Y ∼ t2j , (6.21)

where t2j denotes a t−distribution with 2j degrees of freedom.
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This result follows from the properties of the Normal distribution and the orthogonality nature

of the DWT. Also, it enables the use of standard hypothesis testing:

H0 : ρ̂
(j)
X,Y = 0

H1 : ρ̂
(j)
X,Y 6= 0

Thus, for a fixed 0 < α < 1, if |Vj| > tα
2
,2j then the null hypothesis is rejected at the

(1 − α)−level of significance. In Fig. (6.9) different shapes of the t−distribution are de-

picted,illustrating the behavior of its tails with respect to the number of degrees of freedom

(ν > 0). Note that as ν grows, the distribution approximates to a standard normal. This

implies, that for values of j > 30 it is possible to utilize the usual Z−statistic instead.

Figure 6.9: Plot of t−distribution for 2j degrees of freedom, j = 1, ..., J−1. Note that ν > 30 the distribution closely
approximates to a N (0, 1) distribution.
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6.4.2 A Local Test Statistic Based on the Distributional Structure of Wavelet Coefficients

for Stationary Sequences, Assuming Normality

Assume that the sequence of wavelet coefficients {dj,k, k = 0, ..., 2j − 1} resulting from the

DWT of a stationary process {X(t), t ∈ R} is distributed as:

dj,k ∼ N (0, σ2
j ), k = 0, ..., 2j − 1, j = 0, ..., J − 1. (6.22)

Here, the assumption of first and second moment being the same for all coefficients in the

same scale results from Lemma 6.3.4. Now, the assumption about normality although it can

be considered too strong (especially in the case of heavy-tailed processes) it can be argued to

be reasonable due to the following facts:

(i) In the case of zero mean, second order stationary gaussian processes (i.e. constant

variance as a function of time), the application of the DWT produces a multivariate

gaussian vector with zero mean and covariance structure given by WΣW T , where Σ

is the covariance matrix of the random vector X = [X(1) . . . X(N)]T . As seen from

Theorem 6.3.1, under certain conditions, these matrix is highly likely to be close to

diagonal.

(ii) Similarly, a process that is stationary with zero mean when viewed in terms of its empir-

ical distribution, under certain conditions (e.g. symmetry and rate of decay of the tails)

it can be approximated by a normal distribution with variance equivalent to the process

variance within the observed window. This approximation, however is not adequate in

the case when the process is not symmetric around its mean and/or when its tails decay

either faster or slower (especially slower) than the Normal distribution (as in the case

of the Double Exponential, t-distribution or Cauchy).

(iii) An example of this situation can be found in processes that are zero mean, station-
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ary and exhibit a high oscillatory behavior during short-time intervals. A time series

generated from an AR(1) process with parameter φ = 0.95 has this kind of features

(see Figs.6.16a and 6.16b for a proper illustration of this behavior). In these cases, the

wavelet coefficients at high scale levels exhibit an empirical behavior that suggests a

significant departure from normality, exhibiting asymmetry and heavy tails.

(iv) The normality assumption can also find a more rigorous ground in the results shown

by Cohen et al. (2015)[86], in which wavelet coefficients resulting from the orthogonal

DWT of iid processes generated from different distributions (e.g. Uniform, Exponen-

tial, Gamma, Weibull, Rayleigh) exhibit normality with constant mean and variance.

This implies that for signals that are close to white noise (WN), it is relatively safe to

assume normality of the wavelet coefficients.

Now, as shown in Theorem 6.3.1, for a process with autocovariance function γX(h) and a

wavelet function ψ(t) with sufficiently smooth spectral densities, then the wavelet coeffi-

cients corresponding to the same scale levels can be considered uncorrelated, provided the

distance between them with respect to the shift k is sufficiently large. The smoother the

respective Fourier transforms, the faster the decay of the correlation between contiguous

wavelet coefficients.

Consider two sequences {X(n), n ∈ N} and {Y (n), n ∈ N} that are zero mean, second

order stationary. Provided condition (6.22) holds and {X(n), n ∈ N} and {Y (n), n ∈ N}

are uncorrelated in the wavelet domain, it is possible to define test statistics T1,j,k, T2,j,k for

j = 0, ..., J − 1, k = 0, ..., 2j − 1:

T1,j,k = 2j/2
σ

(X)
j

σ
(Y )
j

d
(Y )
j,k

||d(X)
j ||2

, (6.23)

T2,j,k = 2j/2
σ

(Y )
j

σ
(X)
j

d
(X)
j,k

||d(Y )
j ||2

. (6.24)
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Under the assumption of normality, no correlation (independence) and σ(X)
j , σ

(Y )
j known, by

Cochran’s Theorem (1934)[87], it follows that T1,j,k and T2,j,k are distributed as t2j (i.e. t

distribution with 2j degrees of freedom).

Now, for a pre-specified confidence level 0 < α < 1, under the null hypothesis H0 of no-

correlation between the wavelet sequences, it is possible to reject H0 if |T1,j,k| > t1−α
2
,2j ,

where this last term corresponds to the 1 − α/2 quantile of the t− distribution with 2j de-

grees of freedom. This definition of the test statistic has the advantage that for each level

it is possible to obtain multiple test statistics that can be used to assess the significance of

the observed sample correlation in the wavelet domain. Another advantage is the fact that

since wavelets capture local behavior, it may be possible that correlation exists only between

coefficients belonging to a particular subset of the shifts k = 0, ..., 2j − 1. For this reason,

using a statistic that utilizes all the coefficients combined (e.g. the average) could lead to the

loss of locality and therefore, a loss in sensitivity of the test.

Using definitions (6.23) and (6.24), the critical value t1−α
2
,2j , it is possible to define:

I1,j = [11,j,0 . . .11,j,2j−1],

I2,j = [12,j,0 . . .12,j,2j−1], where

11,j,k =


1 if |T1,j,k| > t1−α

2
,2j

0 if |T1,j,k| ≤ t1−α
2
,2j

, for k = 0, ..., 2j − 1.

In particular, note that for k = 0, ..., 2j−1 the random variables 11,j,k are iidBernoulli(pj,α),

where pj,α = P
(
|T1,j,k| > t1−α

2
,2j

)
. Moreover, since the two random vectors I1,j and I2,j are

not independent, it is possible to expect a certain level of agreement between them. This

means that for each scale level j = 0, ..., J − 1 it is possible to construct a table of the form:

Therefore, the decision about rejection (or fail to reject) the null hypothesis H0 can be
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Table 6.1: Agreement table for local significance test

H0 0 1

0
∑2j−1

k=0 1(11,j,k=0,12,j,k=0)

∑2j−1
k=0 1(11,j,k=0,12,j,k=1)

1
∑2j−1

k=0 1(11,j,k=1,12,j,k=0)

∑2j−1
k=0 1(11,j,k=1,12,j,k=1)

made by inspecting the entries of Table (6.1). For two wavelet coefficient sequences that

are uncorrelated, we would expect that
∑2j−1

k=0 1(11,j,k=0,12,j,k=0) is large and close to 2j .

Similarly, for two signals that exhibit correlation at some shifts k, it can be expected that∑2j−1
k=0 1(11,j,k=0,12,j,k=0) + 1(11,j,k=1,12,j,k=1) is larger than a certain threshold. In particular, if

the correlation in the wavelet domain for a certain scale is well spread across all shifts k, it

can be expected that this entry has a value that is close to 2j .

This, last statement constitutes just a hypothesis that needs to be validated via a proper sim-

ulational study, since a theoretical derivation of the distribution of the entries of Table 6.1

under the alternative hypothesis for stationary stochastic processes seems, at a first glance, an

extremely challenging task that even though interesting in itself, may not offer any significant

advantages for practical purposes over the insights obtained from a simulation study.

In the case of the entries of (6.1) related to pairs (11,j,k,12,j,k) that are not concordant, since

both indicator variables are dependent (because of the construction of the test statistic), it can

be expected under H0 that their magnitudes should be similar and small, because they most

likely result from random effects. In fact, assuming H0 holds, P(T1,j,k = 0, T2,j,k = 1|H0) ≤

α. For this reason, it can be expected that the empirical distributions of these entries should

be fairly similar.

As can be expected, in practical applications even though the signals may not be correlated,

due to violations of the normality assumption of the wavelet coefficients and/or due to the

possible discontinuities of the spectral densities of the processes {X(t), t ∈ R}, {Y (t), t ∈ R},

together with possible numerical effects, the entries of Table (6.1) can have exhibit a certain

degree of variability that needs to be accounted for. For this reason, the definition a proper
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decision threshold using an empirical approach seems adequate. In particular, due to the

wide variety of stochastic processes that could observed in reality, a comprehensive simu-

lation study would be extremely challenging. However, restricting the type of processes to

those that are encountered more frequently could be a good starting point towards this goal.

Simulation-Based Elicitation of a Decision Threshold for Testing H0 against H1

As was previously mentioned, due to the underlying randomness of data in real life, and the

wide variety of stochastic processes that can be observed, defining empirical-based critical

values seems a reasonable approach. In particular, we will focus on decision values for pro-

cesses of the form AR(1), MA(1) and ARMA(1,1); nonetheless, the methodology utilized

can be easily extended to different kinds of models such as ARMA(p,q), ARIMA, etc.

The goal of this empirical-based study will be to analyze the empirical behavior of the entries

of Table 6.1, under the hypothesis that no correlation between signals in the wavelet domain

exists, and utilizing as critical value t1−α
2
,2j with α = 0.05. For this purpose, a simulation

study was conducted in which several replications of each model with different parameters

were run (the details of the models and the utilized parameters is shown in Section 6.4.4.

The following plots depict representative empirical distributions for each one of the entries

of Table 6.1:

From Fig. 6.10, it is possible to observe the following:

(i) From panel 6.10a, the proportion of pairs of the type (0,0) exceeds 95% with high

probability.

(ii) From panel 6.11a, the proportion of pairs of the type (1,1) is negligible, with a 0.3%

observed in less than 1% of the replications. This suggests that a small critical value

could be utilized for the test.
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(iii) From panels 6.10b and 6.10c, it is possible to observe that the statistical behavior of the

proportion of pairs of the type (0,1)-(0,1) is significantly similar. Both empirical his-

tograms (out of 50000 replications) exhibit the same modes, quantiles and distributional

forms, as was hypothesized in the construction of the test statistic.

Using these results, we proposed the following critical values for the rejection of the null hy-

pothesis H0 (see Table 6.2): Here, p̂∗11 corresponds to the proportion of entries of Table 6.1 of

Table 6.2: Proposed critical values for the count test statistic.

j 4 5 6 7 8+
p̂∗11 0.05 0.05 0.05 0.05 0.05

the type (1,1). These values will be utilized in the simulation-based performance comparison

of type I and II errors, which is presented in the following sections.

An important question that needs to be addressed, in addition with the finding presented in

this section has to do with the distribution of the entries of Table 6.1 under the alternative

hypothesis H1. This is a very important aspect of the test, since the goal is to provide a

statistical test that achieves the lowest possible type I and type II errors. Choosing a critical

value that minimizes the type I of a test error could severely affect its type II error. For this

reason, a threshold that achieves a good balance between the two errors is desired.

6.4.3 A Non-Parametric Significance Test Based on the Geometry of the Wavelet Coefficient

Sequences.

In the previous section, a significance test based on the normality assumption of wavelet co-

efficients was proposed. As argued, this assumption could be too strong in some cases, and

could lead to wrong statistical conclusions. In this section a non-parametric test that exploits
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the geometry of the wavelet coefficient sequences is introduced, aiming to enhance robust-

ness when departures from normality are present in the wavelet decomposition.

Consider now two sequences {X(n), n ∈ N} and {Y (n), n ∈ N} that are zero mean, sec-

ond order stationary. Assume that the corresponding wavelet coefficients resulting from the

orthogonal DWT of each sequence, at each level are uncorrelated. This implies that, if we

look at the sample covariance matrix of the pairs:


d̃(X)

j,0

d̃
(Y )
j,0

 , ...,
d̃(X)

j,2j−1

d̃
(Y )

j,2j−1


 , j = 0, ..., J − 1

that is defined as:

Σ̂j = 2−j
2j−1∑
k=0

d
(j,k)
X,Y d

(j,k)
X,Y

T
, (6.25)

where, d
(j,k)
X,Y =

d̃(X)
j,k

d̃
(Y )
j,k

 ∈ R2 , k = 0, ..., 2j − 1, and d̃j,k = dj,k/||d(j)
X ||2, from the definition

of level-wise correlations Σ̂j satisfies:

Σ̂j = 2−j

 ∑2j−1
k=0 d̃

(X)
j,k

2
∑2j−1

k=0 d̃
(X)
j,k d̃

(Y )
j,k∑2j−1

k=0 d̃
(X)
j,k d̃

(Y )
j,k

∑2j−1
k=0 d̃

(Y )
j,k

2

 =

 1 ρ̂
(j)
XY

ρ̂
(j)
XY 1

 .
This implies that the eigenvalues of Σ̂j are given by:

λ
(j)
1 = 1 + |ρ̂(j)

XY |, and λ(j)
2 = 1− |ρ̂(j)

XY |, for j = 0, ..., J − 1.

Thus, the corresponding condition number is given by:

κ(Σ̂j) =
λ

(j)
1

λ
(j)
2

=
1 + |ρ̂(j)

XY |
1− |ρ̂(j)

XY |
≥ 1.
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This implies that κ(Σ̂j)|H0 = 1 and κ(Σ̂j)|H1 =∞. Here, similarly as in the previous sec-

tion, H0 corresponds to the null hypothesis of no correlation between the wavelet coefficient

sequences.

As can be expected, in practical applications even though the signals may not be correlated,

due to randomness and numerical effects the computed level-wise correlation can be differ-

ent than zero, causing a departure of the condition number κ(Σ̂j) from 1. For this reason,

it is necessary to define a proper threshold that, assuming H0 true, could help us making a

decision about whether or not to reject/fail to reject the null hypothesis.

Elicitation of a Decision Threshold for Testing H0 against H1

Consider the following plot of κ(Σ̂j) as a function of ρ̂(j)
XY :

As it can be observed, the condition number remains relatively stable for 0 < |ρ̂(j)
XY | < 0.5,

which implies robustness for numerical or random effects that may cause artificial inflation

of the condition number. This can be directly linked to a good performance in terms of the

type I error of the test, aspect that is investigated in the next section.

On the other hand, when |ρ̂(j)
XY | > 0.5 the condition number is very sensible to slight varia-

tions of the sample correlation magnitude, which suggests that this test statistic could exhibit

good performance in terms of the type II error.

Along the same line of the above argument, under the assumption that H0 holds, and based

on the fact that 0 ≤ |ρ̂(j)
XY | ≤ 1, it is possible to assume that the distribution of the level-wise

correlations |ρ̂(j)
XY |, for |ρ̂(j)

XY | > ρ∗ can be bounded from above by another distribution with

parameters that can be adjusted to capture the randomness in the samples that cause artificial

inflation of the condition number, while achieving a polynomial rate of decay of the tails.

In other words, if we approximate the distribution of |ρ̂(j)
XY | by another density that behaves
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roughly in the same way up to a certain value ρ∗, but has heavier tails (for |ρ̂(j)
XY | > ρ∗),

and we conduct the hypothesis test based on this approximate density, as long as the quantile

that corresponds to the significance level α used for the test is greater than equal than ρ∗,

the probability of type I error obtained via this approach will be an upper bound of the true

distribution’s probability of type I error. This argument can be summarized in the following

Theorem:

Theorem 6.4.1. Suppose that underH0, |ρ̂(j)
XY | ∼ F0. Let G be another density function class

such that:

(i) supp(F0) ⊆ supp(G).

(ii) For ρ > ρ∗, f0(ρ) ≤ g(ρ), ∀ g ∈ G.

Then, if for an arbitrary 0 < α < 1, there exists ρG,α ≥ ρ∗, such that PG(T > ρG,α) ≤ α, it

follows:

PF0(T > ρG,α) ≤ PG(T > ρG,α) ≤ α.

This result implies that defining a significance level using the density function G is equivalent

to define an upper bound for the significance level corresponding to the density function F0.

Moreover, assuming that the density functions F0 and G are continuous, then by the mono-

tonicity of PF0(T > t), it follows that ρG,α ≥ ρF0,α, meaning that the obtained critical value

using the surrogate distribution is also an upper bound of the critical value corresponding to

the true distribution.

Corollary 6.4.1. Suppose conditions and results of Theorem 6.4.1 hold. Assume there exists

a transformation h : supp(G) → S , that is continuous, strictly increasing and invertible.

Then, for an arbitrary tH,α ∈ S such that:

PH(U > tH,α) ≤ α,
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where U ∼ H, and H corresponds to the probability distribution generated by the transfor-

mation h(G), it follows:

PF0(T > ρG,α) ≤ PG(T > ρG,α) = PH(h(T ) > tH,α) ≤ α,

where h−1(tH,α) = ρG,α.

This result implies that it is possible to define a critical value for the transformed variable

h(T ) and that would be equivalent to the definition of a critical value under the original

distribution, guaranteeing a performance as good as the one measured by using the transfor-

mation.

Putting these last two results in the context of the condition number definition, it follows

that κ(Σ̂j) results from a continuous, strictly increasing transformation of |ρ̂(j)
XY |. Thus, the

proposed procedure of defining critical values based on a surrogate distribution would lead,

in theory, to valid statistical conclusions without making any specific assumptions about the

distributional form of |ρ̂(j)
XY | under H0.

For example, setting as surrogate of |ρ̂(j)
XY | |H0 the Beta(1, 1) = U(0, 1) distribution would

be extremely conservative. In fact, under this setting, the distribution of the condition number

takes the form:

κ(Σ̂j)|H0,Dρ ∼ f(κ|H0,Dρ) =
2

(κ+ 1)2
1{κ≥1}.

Here, Dρ denotes the assumed surrogate distribution for |ρ̂(j)
XY | |H0. Using this distribution, it

is possible to show that for κ∗ > 39, P
(
κ(Σ̂j) > κ∗|H0,Dρ

)
≤ 0.05. This threshold value,

even though it would guarantee a very small type I error of the test, it can severely impact its

type II error.

Along this line of reasoning, suppose now that we use as surrogate for |ρ̂(j)
XY | |H0 aBeta(1,M),
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M ∈ N distribution. Then, it follows:

κ(Σ̂j)|H0,Dρ ∼ f(κ|H0,Dρ) =
M · 2M

(κ+ 1)M+1
1{κ≥1},

and for κ∗ ≥ 1:

P
(
κ(Σ̂j) ≤ κ∗|H0,Dρ

)
= 1− 2M

(κ∗ + 1)M
.

These results follow from the application of a transformation using the definition of κ(Σ̂j),

and then computing the integral corresponding to the cumulative density function.

This approximation of the probability density of |ρ̂(j)
XY | via Beta(1,M), in addition to pro-

duce polynomial rate of decay of the tails, allows for closed form expressions for both the

probability density of the condition number κ(Σ̂j), and its cumulative density function. This

facilitates the analysis and empirical definition of critical values for the statistical test.

For example, let the approximating density of |ρ̂(j)
XY | |H0 be a Beta(1, 5) distribution. This

would imply that the probability of the absolute level-wise correlation exceeding 0.5 would

be less than 0.05, which is reasonable assuming H0 holds. Under this setting, the distribution

of the condition number takes the form:

κ(Σ̂j)|H0,Dρ ∼ f(κ|H0,Dρ) =
128

(κ+ 1)6
1{κ≥1}.

Using this distribution, it is possible to show that for κ∗ > 2.6, P
(
κ(Σ̂j) > κ∗|H0,Dρ

)
≤

0.05.

In order to achieve a good balance between type I and II errors, it may be reasonable to

assume parameters for the approximating distribution of |ρ̂(j)
XY | |H0 that generate a rate of

decay that resembles the empirical evidence for certain type of processes. In particular, as

can be observed in Figs. 6.6 and 6.13 , for signals that correspond to either WN , AR(1) or

MA(1) processes, it is possible to assume that rate of decay of |ρ̂(j)
XY | |H0 as it approaches
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1 can be modeled as polynomial. The use of a polynomial rate instead of an exponential

would be beneficial from a robustness viewpoint, since it will lead to larger critical values,

thus accounting for more variability in the data sources. Of course, this improvement in ro-

bustness could be at the expense of an undesired increase in the type II error of the test. For

this reason, it is possible to follow the same methodology previously proposed based on the

results of Theorem 6.4.1 and Corollary 6.4.1 to majorize the left tail of the distribution of the

|ρ̂(j)
XY | under the alternative hypothesis H1.

Suppose that under H1, |ρ̂(j)
XY | ∼ F1. Let D be another density function class such that:

(i) supp(F1) ⊆ supp(D).

(ii) For ρ ≤ ρ∗∗, f1(ρ) ≤ gD(ρ), ∀ gD ∈ D.

Then, if for an arbitrary 0 < β < 1, there exists ρD,β ≤ ρ∗∗ such that PD(T ≤ ρD,β) ≤ 1−β,

it implies:

PF1(T ≤ ρD,β) ≤ PD(T ≤ ρD,β) ≤ 1− β.

From Corollary 6.4.1, for a continuous, strictly increasing and invertible transformation h :

supp(D)→ S, and an arbitrary tH,β such that:

PH(U ≤ tH,β) ≤ 1− β,

it follows:

PF1(T ≤ ρD,β) ≤ PD(T ≤ ρD,β) = PH(h(T ) ≤ tH,β) ≤ 1− β,

where, h−1(tH,β) = ρD,β .
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Now, suppose that we want to determine a critical value ρ̃ ∈ [0, 1] that for a predefined

0 < λ < 1, solves:

min
0≤t≤1

(λ · PF0(T > t) + (1− λ) · PF1(T ≤ t)) . (6.26)

As can be observed, the solution to 6.26 corresponds to a decision threshold ρ̃ that minimizes

the weighted sum of type I and II errors. In the objective, the parameter λ corresponds to

the imputed relative average cost of each type of error, and can be chosen in accordance to

the problem nature. Similarly, another possible interpretation for this parameter could be the

prior probability that H0 is true.

Using the last set of results related to Theorem 6.4.1 and Corollary 6.4.1, it is possible to

solve:

min
h(ρ∗)≤z≤h(ρ∗∗)

(
λ · PH(G)(Z > z) + (1− λ) · PH(D)(Z ≤ z)

)
. (6.27)

Here, it is assumed that 0 < ρ∗ < ρ̃ < ρ∗∗ < 1. Setting G ∼ Beta(1,M) and D ∼

Beta(M, 1) the optimization problem 6.27 becomes:

min
z≥1

(
λ · 2M

(z + 1)M
+ (1− λ) · eM log( z−1

z+1)
)
, (6.28)

with solution given by:

z∗ = 1 +

(
λ · 2M−1

1− λ

) 1
M−1

. (6.29)

In (6.28), the constraint on h(ρ∗) ≤ z ≤ h(ρ∗∗) is relaxed since it is possible to assume

that |ρ∗ − ρ∗∗| > ε, for ε = ε(M), and under the transformation h, that absolute distance is

significantly increased.

Note that in (6.29), if λ = 0.5, it follows that z∗ = 3 which is independent of the parameter

M . This implies that if equal weights are allocated to each type of error, then by utilizing sur-

rogate distributions Beta(1,M) and Beta(M, 1) the optimal critical value for the condition
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number is independent of the parameter M that controls how fast the tails of the surrogate

distributions decay.

Based on the aforementioned discussion, and the observed statistical behavior of |ρ̂(j)
XY | |H0

for processes of the form AR(1), MA(1) and WN (see Fig. 6.13), we propose the following

critical values according to the corresponding scale level (see Table 6.3):

Table 6.3: Proposed critical values for the condition number test statistic.

j 4 5 6 7 8+
κ∗ 3.3 2.6 2.3 2.0 2.0

In the next section, a simulation-based comparative study between the introduced test statis-

tics and other popular statistical tests is introduced in order to analyze their performance in

terms of the type I and II errors, and validate the proposed critical values.
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(a) Histogram of
∑2j−1

k=0 1(11,j,k=0,12,j,k=0) for J = 8

(b) Histogram of
∑2j−1

k=0 1(11,j,k=0,12,j,k=1) for J = 8

(c) Histogram of
∑2j−1

k=0 1(11,j,k=1,12,j,k=0) for J = 8

Figure 6.10: Typical Histograms of the entries of Table 6.3 for an MA(1) process with parameter θ = 0.9. The
experiments were replicated 50000 times. Similar behavior were observed for for the rest of detail levels fir AR(1),
WN and ARMA(1,1) model, with no significant differences for the empirical quantiles.

281



(a) Histogram of
∑2j−1

k=0 1(11,j,k=1,12,j,k=1) for J = 8

Figure 6.11: Typical Histograms of the entries of Table 6.3 for an MA(1) process with parameter θ = 0.9. The
experiments were replicated 50000 times. Similar behavior were observed for for the rest of detail levels fir AR(1),
WN and ARMA(1,1) model, with no significant differences for the empirical quantiles.

Figure 6.12: Plot of the condition number κ(Σ̂j) as a function of ρ̂(j)XY .
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(a) Histogram of |ρ̂(j)XY | for J = 4

(b) Histogram of |ρ̂(j)XY | for J = 5

(c) Histogram of |ρ̂(j)XY | for J = 6

Figure 6.13: Typical Histograms of the level-wise correlations for uncorrelated sequences of an AR(1) process with
θ < 0. The experiments were replicated 50000 times. Similar behavior were observed for MA(1) and WN processes,
with no significant differences for the type of decay and empirical quantiles.
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(a) Histogram of |ρ̂(j)XY | for J = 7

(b) Histogram of |ρ̂(j)XY | for J = 8

Figure 6.14: Typical Histograms of the level-wise correlations for uncorrelated sequences of an AR(1) process with
θ < 0. The experiments were replicated 50000 times. Similar behavior were observed for MA(1) and WN processes,
with no significant differences for the type of decay and empirical quantiles.
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6.4.4 Simulation Study of the Probability of Type I Error for Uncorrelated Stationary Sequences.

In this section we investigate the performance of the proposed statistical tests via simulation.

All the estimators are implemented using MATLAB®, and estimation results are compared

with previously published statistical methodologies: Pearson’s t−test [79], Spearman’s rank

correlation [81] and Kendall’s [85].

For the simulation, we consider the following models:

Xt = θ · εt−1 + εt, (MA(1) model), (6.30)

Xt = φ ·Xt−1 + εt, (AR(1) model), (6.31)

Xt = φ ·Xt−1 + θ · εt−1 + εt (ARMA(1,1) model), (6.32)

where t ∈ N and εt
iid∼N (0, 1). Here, for stability conditions (stationary models) it is assumed

that |φ| < 1, |θ| < 1. For the simulation, the following parameters were utilized:

(a) MA(1) model: θ = {−0.9, −0.7, −0.5, 0.5, 0.7, 0.9}.

(b) AR(1) model: φ = {−0.9, −0.7, −0.5, 0.5, 0.7, 0.9}.

(c) ARMA(1,1) model: (φ, θ) = {(−0.8, 0.1), (−0.5, 0.1), (−0.2, 0.1), (0.1,−0.8), ...}

{..., (−0.9, 0.9), (0.1,−0.2)}.

(d) C∗ = 0.05, κ∗ = 2.6 for all scale levels j = 1, ..., J − 1.

(e) Significance level for Pearson’s t−test [79], Spearman’s rank correlation [81] and Kendall’s

[85] was set to α = 0.05.

(f) Sequence length N = 512, which allowed a wavelet decomposition up to level J − 1 =

8.

(g) Wavelet filter was set to Symmlet with 10 vanishing moments. This choice is motivated

by the fact that since no wavelet system (except Haar) can be compactly supported and
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symmetric at the same time [5], Symmlets are considered “close to symmetric”. In addi-

tion, the corresponding filter can be set such that the wavelet function ψ(t) satisfies the

vanishing moments condition, which is desirable to enhance the whitening properties

of the DWT for stationary sequences.

The simulations implementation consisted of 100 batches of B = 1000 replications for each

one of the models given in Eqs. (6.30), (6.31) and (6.32). At each replication, two inde-

pendent samples of N = 512 were generated, computing the corresponding DWT, and test

statistics at each scale level j = 1, ..., 8. Test decisions were made based upon the parameters

previously defined, and the following results were collected:

(i) Box plots of the empirical probability of type I error, computed as:

p̂Testm =
1

B

B∑
b=1

1{Tm,b>T ∗}.

Here, Testm refers to the utilized statistical test, Testm,b corresponds to the test statistic

m resulting from the b−th sample, and T ∗ corresponds to the critical value. As was

previously mentioned, B = 1000 and the experiments were repeated 100 times.

(ii) Summary tables with the averages and standard deviations of p̂Testm obtained from all

replications of the experiment.

Since for the simulated processes the obtained results for certain parameter setting exhibit

relatively similar behavior, in this section we include only the most representative cases. For

those models and parameter settings that were omitted, the observed results are almost iden-

tical quantitatively and qualitatively as the ones that are presented.

The reported Tables contain only the sample averages, since in most cases, all tests exhibit
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similar standard deviations that can be observed in the included Box plots in Appendix D.1

Table 6.4: Obtained results for average p̂Testm for
AR(1) with parameter φ = −0.9.

j 4 5 6 7 8
Condition number 0.07576 0.01016 0.0003 0 0.00054

Counts 0.00004 0 0 0 0
T-test 0.05952 0.05482 0.05374 0.05538 0.38382

Kendall 0.04164 0.05028 0.04962 0.05212 0.3677
Spearman 0.0502 0.05084 0.05084 0.05284 0.36946

Table 6.5: Obtained results for average p̂Testm for
AR(1) with parameter φ = −0.7.

j 4 5 6 7 8
Condition number 0.07416 0.0096 0.0004 0 0

Counts 0 0 0 0 0
T-test 0.05904 0.0552 0.05082 0.05522 0.14582

Kendall 0.04286 0.0487 0.04742 0.05338 0.13912
Spearman 0.05066 0.0494 0.04826 0.05462 0.13948

Table 6.6: Obtained results for average p̂Testm for
AR(1) with parameter φ = 0.9.

j 4 5 6 7 8
Condition number 0.08338 0.01436 0.00072 2.00E-05 0

Counts 2.00E-05 0 0 0 0
T-test 0.0663 0.07166 0.0738 0.07486 0.05924

Kendall 0.04774 0.06352 0.06716 0.06942 0.05594
Spearman 0.05624 0.06402 0.0672 0.06948 0.05626

Table 6.7: Obtained results for average p̂Testm for
MA(1) with parameter θ = 0.9.

j 4 5 6 7 8
Condition number 0.07288 0.00916 0.00032 0 0

Counts 0 0 0 0 0
T-test 0.05748 0.0532 0.05114 0.0549 0.1369

Kendall 0.04128 0.04864 0.04936 0.05394 0.13084
Spearman 0.04962 0.0494 0.04978 0.05426 0.13152

Remarks and Comments

(i) As was mentioned, from the simulations that were implemented according to the pro-

posed methodology, in most cases (i.e. when the time series did not exhibit short-time

1In each of the included Boxplots there is an entry with aC2 denomination, that corresponds to a test statistic based
on the weighted differences of two Chi-square distributions, that was included in the simulation but for the purpose of
this Chapter objectives has no influence due to its observed performance.
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Table 6.8: Obtained results for average p̂Testm for
MA(1) with parameter θ = 0.7.

j 4 5 6 7 8
Condition number 0.07418 0.00998 0.0002 0 0

Counts 0 0 0 0 0
T-test 0.05882 0.05434 0.049 0.05454 0.11436

Kendall 0.04148 0.04878 0.04838 0.05162 0.11016
Spearman 0.04978 0.04942 0.04918 0.05224 0.11008

Table 6.9: Obtained results for average p̂Testm for
MA(1) with parameter θ = −0.9.

j 4 5 6 7 8
Condition number 0.09086 0.01664 0.00056 0 0

Counts 0 0 0 0 0
T-test 0.0732 0.07558 0.0699 0.06668 0.05642

Kendall 0.05166 0.06598 0.06596 0.06352 0.0552
Spearman 0.06188 0.06712 0.06752 0.06394 0.05514

Table 6.10: Obtained results for average p̂Testm for
ARMA(1,1) with parameters φ = −0.8, θ = 0.1.

j 4 5 6 7 8
Condition number 0.07634 0.00936 0.00038 0 0

Counts 0 0 0 0 0
T-test 0.0599 0.0535 0.05168 0.05478 0.21726

Kendall 0.04406 0.0491 0.04924 0.05228 0.20614
Spearman 0.05256 0.04992 0.04968 0.05264 0.20726

Table 6.11: Obtained results for average p̂Testm for
ARMA(1,1) with parameters φ = −0.9, θ = 0.9.

j 4 5 6 7 8
Condition number 0.07664 0.00964 0.0002 0 0

Counts 6.00E-05 0 0 0 0
T-test 0.06032 0.05502 0.0525 0.05204 0.05026

Kendall 0.04272 0.04998 0.05004 0.05022 0.0499
Spearman 0.04986 0.04936 0.0513 0.05022 0.04958

high oscillations) the T-test, Spearman’s and Kendall’s tests performed as expected. The

observed average empirical type I error was close to the established significance level

of α = 0.05, with a standard deviation that was within 1% range on average.

(ii) In the cases of highly oscillatory signals (i.e. when −0.9 < φ < −0.5, 0.5 < θ < 0.9

for AR(1) and MA(1), respectively), these tests showed a significant increment in the

average type I error, with average values that were on the range between 14% to 36%.

This behavior could be explained by the fact that these kinds of processes tend to pro-

duce large wavelet coefficients that depart normality at high scales. For a proper illus-
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tration of this statement, consider Fig. 6.16 where a typical time series for AR(1) and

MA(1) with high oscillations are depicted. As can be observed, in panels 6.16b and

6.17b, at scale levels j = 7 and j = 8, the wavelet coefficients exhibit an irregular

behavior with high variability, which is linked to the short time high oscillations that

can be observed in the corresponding time series. Coupling this with results of Tables

6.4 and 6.7, it can be inferred that the inflated probabilities of type I error can be associ-

ated with the observed behavior of the wavelet coefficients. In particular, the departure

from normality in terms of heavier tails. In Fig. 6.18a, a typical empirical distribution

for wavelet coefficients resulting from an AR(1) process with parameter φ = −0.9 is

shown. In it, the departure from normality is evident.

(iii) In such situations, the proposed tests (Local and condition number) remained very sta-

ble, exhibiting average type I errors less than the pre-defined significance level α =

0.05.

(iv) As can be observed from Tables 6.4 to 6.11, in most scenarios the proposed tests (6.4.2

and 6.4.3) outperform the other statistical procedures used as benchmark, leading to an

average type I error probability that is significantly smaller than the other tests. This

enhances their reliability in terms of the false rejection rates that can be expected if

utilized in practice. Nonetheless, this feature needs to be combined with a good per-

formance in terms of the type II error, aspect that is investigated in the next section. A

summary plot that illustrates these results is shown in Fig. 6.15.

(v) In particular, it is interesting to note that in most cases, the count-based tests yields a

zero probability of type I error. This could suggest that the utilized decision threshold

could be too large, and could potentially cause poor performance in terms of the type II

error. This aspect is investigated in the next section.
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Figure 6.15: Summary plot of average type I error probability for each test statistic

290



(a) Scatter plot of AR(1) process with φ = −0.9

(b) Plot of wavelet coefficients generated using DWT with
Symmlet 10 of AR(1) shown in panel 6.16a.

Figure 6.16: Scatter plots of typical AR(1) with high oscillatory behavior and their respective wavelet coefficients
generated from orthogonal DWT using Symmlet 10. The red lines indicate the separation between consecutive scale
levels, arranged in an increasing order.
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(a) Scatter plot of MA(1) process with θ = 0.9

(b) Plot of wavelet coefficients generated using DWT with
Symmlet 10 of MA(1) shown in panel 6.17a.

Figure 6.17: Scatter plots of typical MA(1) with high oscillatory behavior and their respective wavelet coefficients
generated from orthogonal DWT using Symmlet 10. The red lines indicate the separation between consecutive scale
levels, arranged in an increasing order.

292



(a) Typical histogram of wavelet coefficients for level j = 8 of an
AR(1) process with φ = −0.9, obtained by DWT using Symm-
let 10. As seen from the Figure, the coefficients exhibit heavier
tails than the Gaussian distribution, as well as a certain degree of
asymmetry with respect the origin.

Figure 6.18
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6.4.5 Simulation Study of the Probability of Type II Error for Correlated Stationary Sequences.

In this section we study the performance of the proposed tests (6.4.2 and 6.4.3) in terms of

the type II error, comparing them with previously published methodologies in a similar way

as in the previous section. This analysis is necessary to complement the assessment of the

expected performance in terms of type I error of the proposed estimators that was introduced

in the last section. Ideally, an optimal statistical test should have both type I and type II errors

as small as possible, having a high probability of detecting a meaningful difference assuming

the relationship between the signals did exist. In practice this is extremely difficult due to the

adversarial nature between the two errors.

In this study, the statistical models and settings are the same as the ones utilized in Section

6.4.4. However, a slightly different methodology was utilized in order to produce sequences

that were correlated in the wavelet domain:

(i) For each model and parameter setting, a sequence of N = 512 samples was generated,

and the wavelet decomposition was obtained via DWT using a Symmlet 10 filter.

(ii) At each scale level j = 1, ..., 8 the following model was used:

d
(Y )
j,k = βj · d(X)

j,k + εk, k = 0, ..., 2j − 1.

Here, εk are iid N (0, σ2) random variables. The values of βj were chosen within the

range −0.25 < βj < −0.1 and 0.1 < βj < 0.25; similarly, the noise variance σ2 was

set to 30% of the variability of the coefficients d
(j)
X . These values allow the generation

of conditions that impose an adequate degree of complexity for the detection of cor-

relation. High values of βj and/or small values of σ2 will facilitate detection, as was

illustrated in Section 6.3.2.

(iii) The simulations implementation consisted of 100 batches of B = 1000 replications for
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each one of the models given in Eqs. (6.30), (6.31) and (6.32). At each replication, two

independent samples of N = 512 were generated, computing the corresponding DWT,

and test statistics at each scale level j = 1, ..., 8. Test decisions were made based upon

the parameters previously defined, and the following results were collected:

i. Box plots of the empirical probability of type II error, computed as:

p̂Testm =
1

B

B∑
b=1

(1− 1{Tm,b>T ∗}).

Here, Testm refers to the utilized statistical test, Testm,b corresponds to the test

statisticm resulting from the b−th sample, and T ∗ corresponds to the critical value.

As was previously mentioned, B = 1000 and the experiments were repeated 100

times.

ii. The critical values for the proposed tests were set as: C∗ = 0.0039 (for count-based

test), κ∗ = 2.6 for all scale levels j = 1, ..., J − 1 (for condition number test).

iii. Significance level for Pearson’s t−test [79], Spearman’s rank correlation [81] and

Kendall’s [85] was set to α = 0.05.

iv. Summary tables with the averages and standard deviations of p̂Testm obtained from

all replications of the experiment.

In the following Tables results of the most representative cases are included. For those models

and parameter settings that were omitted, the observed results are almost identical quantita-

tively and qualitatively as the ones that are presented. The reported values contain only the

sample averages, since in most cases, all tests exhibit similar standard deviations that can be

observed in the included Box plots in Appendix D.2

2In each of the included Boxplots there is an entry with a C2 denomination, that corresponds to a test statistic
based on the weighted differences of two Chi-square distributions, that was included in the simulation study but for
the purpose of this Chapter objectives has no influence due to its observed performance.
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Remarks and Comments

(i) As it can be observed in Tables 6.12 to 6.18, the counts-based test introduced in Section

6.4.2 exhibits a poor performance in terms of its ability to effectively detect existing

correlations between the signals. This could be explained due to the fact that when

correlation is present, the variation on the empirical histograms for the entries of Table

6.1 is subtle, with just a slight increment of in the modes for the counts of disagreeing

pairs, and pairs of the type (1,1). A possible remedial action would be the investigation

of empirical quantiles for each entry, defining a multiple hypothesis test that allows the

control of the type I error as a whole, via a Bonferroni-type test.

(ii) Similarly, it is possible to observe that for scale level j = 4 the non-parametric tests

Kendall and Spearman rank correlation show a significant rate (approx. 24%) of tests

that fail to rejectH0. This rate significantly decreases as the scale level increases, which

shows a sample size effect on the type II error that is expected due to the nature of the

test statistics utilized in the study. This feature if shared by all the implemented tests,

which is evident from the examination of the entries of Tables 6.12 to 6.18.

(iii) Among all the implemented statistical tests, in terms of the expected probability of type

II error, the T-test shows the best performance across all models and scales, with the

exception of scale level j = 4 in which the Condition number test achieves the best

results.

(iv) In general, it can be noticed that the Condition number test introduced in Section 6.4.3

shows a performance in terms of the expected probability of type II error that even

though is not strictly better than the benchmark tests (except for the scale level j = 4),

achieves values that are small enough to be considered competitive from a practical

viewpoint. Moreover, its observed performance is consistent across all model setting

and scale levels, which supports its reliability and robustness for real life applications.
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A summary plot that illustrates these results is shown in Fig. 6.19.

(v) This fact, added to the significantly better performance of the expected type I error

illustrated in Section 6.4.4 and its behavior observed for small scale levels suggest that

it can be utilized in practical applications.

Table 6.12: Obtained results for average p̂Testm for
AR(1) with parameter φ = −0.9, β = 0.25.

j 4 5 6 7 8
Condition number 0.0859 0.03172 0.00542 6.00E-05 0

Counts 9.99E-01 0.99996 1 1 1
T-test 0.10828 0.00398 0 0 0

Kendall 0.2731 0.01748 6.00E-05 0 0
Spearman 0.24096 0.01656 6.00E-05 0 0

Table 6.13: Obtained results for average p̂Testm for
AR(1) with parameter φ = −0.7, β = 0.25.

j 4 5 6 7 8
Condition number 0.08436 0.03098 0.00446 1.00E-04 0

Counts 0.99902 0.97208 0.87174 0.64876 0.70946
T-test 0.10806 0.00426 0 0 0

Kendall 0.27126 0.0171 2.00E-05 0 0
Spearman 0.23976 0.017 2.00E-05 0 0

Table 6.14: Obtained results for average p̂Testm for
AR(1) with parameter φ = 0.9, β = 0.25.

j 4 5 6 7 8
Condition number 0.09206 0.03368 0.0049 8.00E-05 0

Counts 0.999 0.97204 0.8733 0.63738 0.31556
T-test 0.1154 0.00454 0 0 0

Kendall 0.27038 0.01724 6.00E-05 0 0
Spearman 0.2372 0.01654 6.00E-05 0 0

Table 6.15: Obtained results for average p̂Testm for
MA(1) with parameter θ = 0.9, β = 0.25.

j 4 5 6 7 8
Condition number 0.08444 0.03152 0.0054 0.00016 0

Counts 0.99884 0.97278 0.87236 0.6455 0.31878
T-test 0.10698 0.00416 0 0 0

Kendall 0.2699 0.017 8.00E-05 0 0
Spearman 0.23762 0.01624 8.00E-05 0 0
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Table 6.16: Obtained results for average p̂Testm for
MA(1) with parameter θ = 0.7, β = 0.25.

j 4 5 6 7 8
Condition number 0.08732 0.03362 0.0045 1.00E-04 0

Counts 0.99884 0.97274 0.87264 0.65222 0.31496
T-test 0.1104 0.00442 0 0 0

Kendall 0.27784 0.01806 2.00E-05 0 0
Spearman 0.2449 0.0178 4.00E-05 0 0

Table 6.17: Obtained results for average p̂Testm for
MA(1) with parameter θ = −0.9, β = 0.25.

j 4 5 6 7 8
Condition number 0.08324 0.0278 0.00446 0.00014 0

Counts 0.99914 0.9683 0.8727 0.64704 0.32194
T-test 0.10452 0.0033 0 0 0

Kendall 0.27156 0.0175 0 0 0
Spearman 0.24244 0.01722 0 0 0

Table 6.18: Obtained results for average p̂Testm for
ARMA(1,1) with parameters φ = −0.9 and θ = 0.9,
β = 0.25.

j 4 5 6 7 8
Condition number 0.08788 0.03162 0.0054 0.00018 0

Counts 9.99E-01 0.97154 0.8713 0.64974 0.32064
T-test 0.10854 0.0043 2.00E-05 0 0

Kendall 0.27024 0.01726 4.00E-05 0 0
Spearman 0.23968 0.01694 4.00E-05 0 0

Table 6.19: Obtained results for average p̂Testm for
ARMA(1,1) with parameters φ = −0.8 and θ = 0.1,
β = 0.25.

j 4 5 6 7 8
Condition number 0.08726 0.03112 0.0048 0.00014 0

Counts 0.9987 0.97074 0.86844 0.64848 0.3608
T-test 0.10926 0.00398 0 0 0

Kendall 0.26844 0.01694 4.00E-05 0 0
Spearman 0.2386 0.01638 4.00E-05 0 0

298



Figure 6.19: Summary plot of average type II error probability for each test statistic
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6.5 Application Example: Monthly Temperatures Atlanta-Athens, GA.

We close this Chapter with a study of temperatures from Athens and Atlanta, Georgia, USA.

Figure 6.20a plots monthly averaged temperatures (averaged over day of month) for these two

stations during the period Jan 1950 — Dec 2003. There are 648 observations in each series3.

Athens and Atlanta both lie in the Piedmont region of north Georgia and are approximately

60 miles apart.
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(b) Athens and Atlanta Temperature Sample Autoco-
variances

As seasonality arises in temperature series taken from temperate zone latitudes (winter tem-
3Data was obtained from https://www.iweathernet.com/atlanta-weather-records
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Figure 6.21: Monthly averages and standard deviations of temperatures for both Atlanta (solid blue) and Athens
(dashed blue), computed across the samples shown in Fig. 6.20a.

peratures are colder and more variable than summer temperatures), we first standardize each

series by month via subtracting a monthly sample mean and then dividing by a monthly sam-

ple standard deviation (see Figs. 6.21 and 6.20b). Lund et al. (1995)[88] explains more on

the stationarizing effects of seasonal standardizations. The sample autocovariance functions

for the Athens and Atlanta seasonally standardized series are displayed in Figure 6.20b. The

dashed lines here are 95% confidence bounds (pointwise) for white noise.
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(a) Athens and Atlanta standardized Temperature Sam-
ples

(b) Scatter plot of Athens and Atlanta standardized Tem-
perature Samples

Figures 6.20a and 6.20b give credence to local folklore that Athens and Atlanta enjoy similar

weather. As the seasonal mean and standard deviations from the two sites are also very

similar, the two towns are indeed similar climatologically. In fact, as seen in Fig. 6.22b, both

standardized samples are indeed highly correlated with Pearson’s correlation coefficient of

ρ̂ = 0.9051 and a corresponding p-value= 1.6056× 10−191. Implications of this are that one

site could serve as a reference station for the other. This is very useful should a new gauge

need to be calibrated, a forecast of future series values need to be made, the quality/legitimacy

of future values at one location be questioned.
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For this reason, it would be very interesting to analyze the multiscale correlation patterns

between these two signals, gathering insights about how the cross-related influences between

them boil down into different time scales.

Using the methodology introduced in the previous sections, the following results summarize

the findings of the multiscale correlation analysis of the average daily temperatures between

Athens and Atlanta (Table 6.20 and Fig. 6.23):

Table 6.20: Estimation results for standardized monthly averages temperatures Athens and Atlanta, GA. This results
were obtained using the wavelet filter Symmlet 10.

j = 4 j = 5 j = 6 j = 7 j = 8

ρ̂
(j)
XY 0.8143 0.859 0.9435 0.951 0.9647
wj 0.0518 0.0942 0.2079 0.2389 0.3765

ρ̂kendall 0.6333 0.7419 0.7887 0.8093 0.8439
ρ̂spearman 0.8029 0.9069 0.9247 0.9498 0.9637

Condition number 9.7678 13.1894 34.3966 39.7983 55.6653
T-test 5.6108 9.4932 22.7774 34.7901 58.61

Remarks and Comments

(i) It is interesting to note that the observed correlation in the measuring time scale (days)

is evenly spread among the scale levels of the decomposition. Both signals at all scale

levels exhibit a significant linear relationships that can be observed in Fig. 6.23. This

behavior is clearly captured by the wavelet correlation coefficients, with statistics that

show high significance measured by the condition number approach introduced in Sec-

tion 6.3.1. 6.4.3. These results suggest that there is a strong linear relationship between

the two temperature sequences, resembling what was illustrated in

(ii) As can be observed in Table 6.20, the results obtained by using the condition number

test statistic are concordant with the other statistical tests utilized as benchmark. This

is consistent with the finding presented in sections 6.4.4 and 6.4.5.
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(iii) From the analysis, it follows that the multiscale correlations show that temperatures in

Athens and Atlanta are in-phase across multiple scales. This means that temperatures

are similar at multiple time resolutions that can be directly linked to the scale levels of

the decomposition. For example, for j = 4 to j = 8 correlations in the wavelet domain

are statistically significant, meaning that for time resolutions ranging from 6 minutes

to 90 minutes, average temperatures measured during those intervals are statistically

extremely similar for the two cities.

This application example although very simple, is very illustrative for the extra insights given

by the multiscale correlation analysis via wavelets as compared with the usual sample cor-

relation. Its simplicity of implementation allows an easy extension to more complicated

problems such as:

• Correlation analysis of multiple sites (e.g. spatially-distributed sensors)

• Time varying correlation between two signals (e.g. application of this methodology for

time rolling windows to capture non-stationary behaviors)

• Multiscale correlation analysis at different time-shifts.
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(a) J = 4

(b) J = 5

(c) J = 6

Figure 6.23: Scatter plots of the wavelet coefficients for each scale, corresponding to the DWT of the Athens (x-axis)
and Atlanta (y-axis) daily average temperatures. This results were obtained using the wavelet filter Symmlet 10.
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(a) J = 7

(b) J = 8

Figure 6.24: Scatter plots of the wavelet coefficients for each scale, corresponding to the DWT of the Athens (x-axis)
and Atlanta (y-axis) daily average temperatures. This results were obtained using the wavelet filter Symmlet 10.
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6.6 Conclusions

In this chapter a wavelet based correlation decomposition using an orthogonal DWT was in-

troduced and analyzed. One important feature of this approach is that it breaks down the

sample covariance into an additive structure that leads to a weighted sum of level-wise cor-

relations between expansion coefficients in the wavelet domain. Thus, it enables a scale-by-

scale analysis of the existing linear relationships between two signals.

In addition, some interesting distributional and statistical properties of wavelet coefficients

were provided for certain types of stationary processes, building a theoretical background

that was used for the development of different test statistics. In this context, two statisti-

cal tests that exploit the whitening property of wavelets were proposed and analyzed via a

simulation-based study. Their performance was compared with the well-known Pearson’s

t−test and non-parametric statistical procedures such as Spearman’s rank correlation and

Kendalls’s tau, by using simulated stationary processes aimed to resemble possible scenarios

that are expected to occur in real-life.

As can be observed from Tables 6.4 to 6.11, in most scenarios the proposed test statistics

tend outperform the other statistical procedures used as benchmark, leading to a significantly

smaller average type I error probability than the other tests. Similarly, for the expected prob-

ability of type II error, it was noticed that the Condition number test introduced in Section

6.4.3 showed a performance that even though not strictly better than the benchmark tests

(except for the scale level j = 4), achieves values that are small enough to be considered

competitive from a practical viewpoint.

Also, as a by-product of the simulation study, it was possible to observe that when the ana-

lyzed signals exhibit high oscillations concentrated in short time spans, the usual test statistics

perform poorly in terms of an increased false rejection rate of the no correlation hypothesis

(between 14% and 30%+). These results were obtained for stationary processes of the type
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AR(1), MA(1) and ARMA(1,1), so it may not hold true for other kinds of stochastic pro-

cesses.

In summary, in this Chapter a novel and competitive tool for the significance analysis of mul-

tiscale correlation was introduced, analyzed and evaluated, hence contributing to the existing

methodologies in the scientific community for the correlation analysis of stationary time se-

ries.
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APPENDIX A

APPENDIX CHAPTER 2

A.1 Derivation of the unbiased partial-data estimator.

In this section we provide the derivation for the partial-data estimator proposed in 2.2.2. From

(2.36) and (2.37), it follows:

E(f̂J(x)) =
2J−1∑
k=0

E [ ˜cJk] · φperJ,k (x) . (A.1)

Using (2.35), the expectation in the left hand side (lhs) of (A.1) is given by:

E [ ˜cJk] = E

[
1

N

N∑
i=1

φperJ,k (Y(i))

1− Ĝ(Y(i))

]
− E

[
1

N

N∑
i=1

1(δi=0)(1− F̂ (Y(i)))

1− Ĝ(Y(i))
φperJ,k (Y(i))

]
. (A.2)

Assuming iid samples and G(y) known, the first expectation on the rhs of (A.2) can be

obtained as:

E

[
1

N

N∑
i=1

φperJ,k (Y(i))

1− Ĝ(Y(i))

]
= EY

[
φperJ,k (Y )

1−G(Y )

]
. (A.3)

Similarly, provided iid samples, and both F (y) and G(y) known, the expectation of the sec-

ond term in the rhs of (A.2) can be obtained as:

E

[
1

N

N∑
i=1

1(δi=0)(1− F̂ (Y(i)))

1− Ĝ(Y(i))
φperJ,k (Y(i))

]
= EY,δ=0

[
(1− F (Y ))φperJ,k (Y )

1−G(Y )

]
. (A.4)
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Since fY,δ(y, δ = 0) = g(y)(1− F (y)), it follows:

EY,δ=0

[
(1−F (Y ))φperJ,k (Y )

1−G(Y )

]
= ET

[
(1−F (T ))φperJ,k (T )

1−G(T )

]
− ET

[
F (T )(1−F (T ))φperJ,k (T )

1−G(T )

]
.

(A.5)

Finally, combining (A.3) and (A.5), it follows:

E [ ˜cJk] = EY
[
φperJ,k (Y )

1−G(Y )

]
− ET

[
(1−F (T ))φperJ,k (T )

1−G(T )

]
+ ET

[
F (T )(1−F (T ))φperJ,k (T )

1−G(T )

]
.

(A.6)

Using (2.27) and (A.6), (A.6) takes the form:

E [ ˜cJk] = cJk + ET
[
F (T )(1− F (T ))φperJ,k (T )

1−G(T )

]
, (A.7)

which further implies that for (A.1), it follows:

E(f̂J(x)) = fJ(x) +
2J−1∑
k=0

ET
[
F (T )(1− F (T ))φperJ,k (T )

1−G(T )

]
φperJ,k (x) . (A.8)

To facilitate notation, define bJ,k = ET
[
F (T )(1−F (T ))φperJ,k (T )

1−G(T )

]
. Thus, (A.1) can be represented

as:

E(f̂J(x)) = fJ(x) +
2J−1∑
k=0

bJ,k · φperJ,k (x) . (A.9)

Using the same approach as in (2.29), bJ,k (i.e. the wavelet coefficient that define the bias of

f̂J(x) can be estimated from the sample as follows:

b̃J,k =
1

N

N∑
i=1

1(δi=0)

F̂ (Yi)(1− F̂ (Yi))φ
per
J,k (Yi)

1− Ĝ(Yi)
. (A.10)
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Therefore, the biased-corrected version of the estimator can be represented as:

f̂ ∗J (x) = f̂J(x)−
2J−1∑
k=0

b̃J,k · φperJ,k (x) , (A.11)

f̂ ∗J (x) =
2J−1∑
k=0

c̃∗J,k · φ
per
J,k (x) , (A.12)

where:

c̃∗J,k = c̃J,k − b̃J,k = 1
N

∑N
i=1( 1

1−Ĝ(Y(i))
−

1(δ(i)=0)(1−F̂ (Y(i)))

1−Ĝ(Y(i))
−

1(δ(i)=0)F̂ (Y(i))(1−F̂ (Y(i)))

1−Ĝ(Y(i))
) · φperJ,k (Y(i)) .

(A.13)

Note that (A.13) can be further simplified into:

c̃∗J,k =
1

N

N∑
i=1

(
1− 1(δ(i)=0)(1− F̂ (Y(i)))(1 + F̂ (Y(i)))

1− Ĝ(Y(i))
)φperJ,k (Y(i)) . (A.14)

Computing the expectation of the bias-correction coefficient b̃Jk, it follows:

EY
[
b̃Jk

]
= bJk − ET

[
F (T )2(1− F (T ))

1−G(T )
φperJk (T )

]
. (A.15)

Therefore, the bias of b̃Jk can be corrected by defining b̃∗Jk = b̃Jk+ET
[
F (T )2(1−F (T ))

1−G(T )
φperJk (T )

]
.

Using the empirical argument as in (A.10), b̃∗Jk can be estimated by:

b̃∗Jk = b̃Jk +
1

N

N∑
i=1

1(δ(i)=0)F (Yi)
2(1− F (Yi))

1−G(Yi)
φperJk (Yi) . (A.16)

This implies that the updated bias-corrected estimator of bJk can be represented as:

b̃∗Jk =
1

N

N∑
i=1

1(δ(i)=0)F (Yi)(1− F (Yi))(1 + F (Yi))

1−G(Yi)
φperJk (Yi) . (A.17)
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Taking the expectation of b̃∗Jk, it follows:

EY
[
b̃∗Jk

]
= bJk − ET

[
F (T )3(1− F (T ))

1−G(T )
φperJk (T )

]
. (A.18)

Following the same methodology used to derive (A.17), an updated bias-corrected estimate

of b̃∗Jk, denoted by b̃∗∗Jk can be represented as:

b̃∗∗Jk =
1

N

N∑
i=1

1(δ(i)=0)F (Yi)(1− F (Yi))(1 + F (Yi) + F (Yi)
2))

1−G(Yi)
φperJk (Yi) . (A.19)

Taking the expectation of b̃∗∗Jk, it follows:

EY
[
b̃∗∗Jk

]
= bJk − ET

[
F (T )4(1− F (T ))

1−G(T )
φperJk (T )

]
. (A.20)

This implies that the bias-corrected estimate of bJk represented as b̃∗∗∗Jk = b̃∗∗Jk+ET
[
F (T )4(1−F (T ))

1−G(T )
φperJk (T )

]
can be iteratively updated. Thus, following the same process as before, it follows:

b̃∗∗∗Jk =
1

N

N∑
i=1

1(δ(i)=0)F (Yi)(1− F (Yi))(1 + F (Yi) + F (Yi)
2 + F (Yi)

3))

1−G(Yi)
φperJk (Yi) . (A.21)

From the last set of equations, it follows that this process can be repeated sequentially, in-

finitely many times. This implies that:

˜̃bJk =
1

N

N∑
i=1

1(δ(i)=0)F (Yi)(1− F (Yi))
∑∞

l=0 F (Yi)
l

1−G(Yi)
φperJk (Yi) , (A.22)

provided 0 < F (Y ) < 1. Therefore, it follows that
∑∞

l=0 F (Yi)
l is a convergent series. In

fact, it is a geometric power series that satisfies:

∞∑
l=0

F (Yi)
l =

1

1− F (Yi)
. (A.23)
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Therefore, this implies that (A.22) takes the form:

˜̃bJk =
1

N

N∑
i=1

1(δ(i)=0)F (Yi)

1−G(Yi)
φperJk (Yi) . (A.24)

Clearly, ˜̃bJk is an unbiased estimate of bJk. Therefore, we conclude that the unbiased estimate

of the cJk coefficient, denoted by ˜̃cJk is given by:

˜̃cJk = c̃Jk − ˜̃bJk =
1

N

N∑
i=1

1(δ(i)=1)

1−G(Yi)
φperJk (Yi) , (A.25)

thus, it is possible to define the partial-data density estimator f̂PD(x) as:

f̂PD(x) =
2J−1∑
k=0

c̃Jk · φperJ,k (x) , (A.26)

where:

c̃Jk =
1

N

N∑
i=1

1(δ(i)=1)

1− Ĝ(Yi)
φperJk (Yi) , (A.27)

which is unbiased for fJ(x), provided G(y) is known and 0 < F (Y ) < 1.

A.2 Proof of Lemma 2.2.1

Assume the following conditions are satisfied:

(i) The scaling function φ that generates the orthonormal set
{
φperJk , 0 ≤ k ≤ 2J

}
has com-

pact support and satisfies ||θφ(x)||∞ = C <∞, for θφ(x) :=
∑

r∈Z |φ(x− r)|.

(ii) ∃ F ∈ L2(R) such that |K(x, y)| ≤ F (x − y), for all x, y ∈ R, where K(x, y) =∑
k∈Z φ(x− k)φ(y − k).
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(iii) For s = m+ 1, m ≥ 1, integer,
∫
|x|sF (x)dx <∞.

(iv)
∫

(y − x)lK(x, y)dy = δ0,l for l = 0, ..., s.

(v) The density f belongs to the s-sobolev space W s
2 ([0, 1]), s > 1 defined as:

W s
2 ([0, 1]) =

{
f | f ∈ L2([0, 1]), ∃ f (1), ..., f (s) s.t. f (l) ∈ L2([0, 1]), l = 1, ..., s

}
.

Then, it follows:

sup
f∈W s

2 ([0,1])

E
[
||f̂PD(x)− f(x)||22

]
≤ C1

2J

N
+ C22−2sJ , and (A.28)

for J = blog2(N)− log2(log(N))c:

σ2
J(x) = O(log(N)−1) , (A.29)

E
[
‖ f(x)− f̂PD(x) ‖2

2

]
≤ O(N−s log(N)s) (A.30)

for C1 > 0 , C2 > 0 independent of J and N , provided ∃ α1 | 0 < α1 <∞, CT ∈ (0, 1) such

that (1−G(y)) ≥ CT e
−α1y for y ∈ [0, 1), and 0 ≤ F (y) ≤ 1 ∀y ∈ [0, 1].

Proof

Note that f̂PD(x) can be expressed as follows:

f̂PD(x) =
1

N

N∑
i=1

wiKJ(Yi, x) , (A.31)

where wi = δi
1−G(Yi)

, and KJ(x, Yi) = 2J
∑

k∈Z φ(2Jx − k)φ(2Jy − k), for i = 1, ..., N .

Since it is assumed that ∃ α1 | 0 < α1 < ∞, CT ∈ (0, 1) such that (1 − G(y)) ≥ CT e
−α1y
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for y ∈ [0, 1), this implies that 0 ≤ wi ≤ eα1
CT

, for i = 1, ..., N .

Also, it is possible to bound the L2 risk of the estimator f̂PD(x) as follows:

E
[
||f̂PD(x)− f(x)||22

]
≤ 2

{
E
[
||f̂PD(x)− E[f̂PD(x)]||22

]
+ ||E[f̂PD(x)]− f(x)||22

}
,

(A.32)

where the first term in the rhs of (A.31) corresponds to V ar(f̂PD(x)) and the second, to

bias(f̂PD(x)).

Bound for E
[
||f̂PD(x)− E[f̂PD(x)]||22

]
From (A.31), it follows:

f̂PD(x)− E[f̂PD(x)] =
1

N

N∑
i=1

(wiKJ(x, Yi)− E[wiKJ(x, Yi)]) .

Define Zi(x) = wiKJ(x, Yi) − E[wiKJ(x, Yi)] and Z̃i(x) = KJ(x, Yi) − E[KJ(x, Yi)].

Clearly, E[Zi(x)] = E[Z̃i(x)] = 0. This implies:

|f̂PD(x)− E[f̂PD(x)| ≤ eα1

CT

1

N

∣∣∣∣∣
N∑
i=1

Z̃i(x)

∣∣∣∣∣ ,
since 0 ≤ wi ≤ eα1

CT
, for i = 1, ..., N . Therefore, it follows:

|f̂PD(x)− E[f̂PD(x)|2 ≤ e2α1

C2
T

1

N2

∣∣∣∣∣
N∑
i=1

Z̃i(x)

∣∣∣∣∣
2

E
[∫ 1

0

|f̂PD(x)− E[f̂PD(x)|2dx
]
≤ e2α1

C2
T

1

N2
E

∫ 1

0

∣∣∣∣∣
N∑
i=1

Z̃i(x)

∣∣∣∣∣
2

dx

 .
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From conditions (i) and (ii), Fubini’s thorem implies:

E
[∫ 1

0

|f̂PD(x)− E[f̂PD(x)|2dx
]
≤ e2α1

C2
T

1

N2

∫ 1

0

E

∣∣∣∣∣
N∑
i=1

Z̃i(x)

∣∣∣∣∣
2
 dx

≤ e2α1

C2
T

1

N

∫ 1

0

E[Z̃1(x)2]dx , (A.33)

where (A.33) follows from the fact that Z̃i(x) are iid, with E[Z̃i(x)] = 0, and E[Z̃i(x)2] <∞.

This, together with the application of Rosenthal’s inequality implies E
[∣∣∣∑N

i=1 Z̃i(x)
∣∣∣2] ≤∑N

i=1 E[Z̃i(x)2] = N E[Z̃1(x)2].

Since E[Z̃1(x)2] = E[KJ(x, Y1)2] − (KJfY (x))2 ≤ E[KJ(x, Y1)2], where KJfY (x) =∫ 1

0
KJ(x, u)fY (u)du, and the fact that |KJ(x, y)| = 2J |K(2Jx, 2Jy)|, it follows from (A.33)

and condition (ii):

E
[
||f̂PD(x)− E[f̂PD(x)]||22

]
≤ e2α1

C2
T

1

N

∫ 1

0

E[KJ(x, Y1)2]dx

∫ 1

0

E[KJ(x, Y1)2]dx ≤ 2J
∫ 1

0

[∫ 2J (1−y)

−2Jy

F 2(v)dv

]
fY (y)dy

≤ 2J ||F ||22 . (A.34)

Therefore, substituting (A.34) into (A.33), it follows:

E
[
||f̂PD(x)− E[f̂PD(x)]||22

]
≤ ||F ||

2
2e

2α1

C2
T

2J

N
. (A.35)
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Bound for ||E[f̂PD(x)]− f(x)||22

According to corollary 8.2 [57], if f ∈ W s
2 ([0, 1]) then ||KJf − f ||22 = O

(
2−2Js

)
. Further-

more, assume conditions (i)-(iv) are satisfied. Since E[f̂PD(x)] = KJf(x), it follows:

||E[f̂PD(x)]− f(x)||22 ≤ C2 2−2Js . (A.36)

Finally, putting together (A.35) and (A.36), it follows:

sup
f∈W s

2 ([0,1])

E
[
||f̂PD(x)− f(x)||22

]
≤ C1

2J

N
+ C22−2sJ , (A.37)

as desired, for C1 =
||F ||22e2α1

C2
T

and C2 > 0, independent of N and J .

From (A.37), by choosing J = blog2(N)−log2(log(N))c, it follows that σ2
J(x) = O(log(N)−1).

Furthermore, this also implies that sup
f∈W s

2 ([0,1])

E
[
||f̂PD(x)− f(x)||22

]
= O(N−s log(N)2,

which completes the proof.

Remarks

Note that from (A.37), it is possible to choose the multiresolution level J such that the upper

bound for the L2 risk is minimized. In this context, it is possible to show that J∗(N) =

1
2s+1

log2

(
2sC2

C1

)
+ 1

2s+1
log2(N) achieves that result. Moreover, under this choice of J , it

follows:

sup
f∈W s

2 ([0,1])

E
[
||f̂PD(x)− f(x)||22

]
≤ C̃N−

2s
2s+1 .
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A.3 Proof of Lemma 2.2.2

Under the assumptions and definitions stated in 2.2.1 and 2.2.4, and choosing J = blog2(N)−

log2(log(N))c, it follows:

sup
f∈W s

2 ([0,1])

E
[
‖ f(x)− f̂PD(x) ‖2

2

]
= O(N−s log(N)s) . (A.38)

Proof

Assume conditions (i)-(iv) established in A.2 are satisfied. Furthermore, assume ∃ γ > 0 and

a constant C ∈ (0, 1) such that 1 − Ĝ(y) ≥ Ce−γy, for y ∈ [0, 1). Note that f̂PD(x) can be

expressed as follows:

f̂PD(x) =
1

N

N∑
i=1

wiKJ(Yi, x) , (A.39)

where wi = δi
1−Ĝ(Yi)

, and KJ(x, Yi) = 2J
∑

k∈Z φ(2Jx − k)φ(2Jy − k), for i = 1, ..., N .

Since it is assumed that ∃ γ > 0 and a constant C ∈ (0, 1) such that 1 − Ĝ(y) ≥ Ce−γy,

for y ∈ [0, 1), this implies that 0 ≤ wi ≤ eγ

C
, for i = 1, ..., N . Thus, following the same

methodology as in A.2, it follows that by choosing J = blog2(N)− log2(log(N))c:

sup
f∈W s

2 ([0,1])

E
[
‖ f(x)− f̂PD(x) ‖2

2

]
= O(N−s log(N)s) . (A.40)

Remarks

(i) Observe that by following the same methodology as in A.2, it is possible to obtain:

sup
f∈W s

2 ([0,1])

E
[
||f̂PD(x)− f(x)||22

]
≤ C1

2J

N
+ C22−2sJ ,
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for C1 =
||F ||22e2γ
C2 and C2 > 0, independent of N and J .

(ii) The last result implies that by choosing J∗(N) = 1
2s+1

log2

(
2sC2

C1

)
+ 1

2s+1
log2(N), the

L2 risk of the estimator f̂PD(x) when G is unknown is also mean square consistent,

and achieves a convergence rate of the order ∼ N−
2s

2s+1 .

A.4 Proof of Lemma 2.2.3

From (2.62), and for N large it follows that the rhs of (2.63) corresponds to the sum of

normally distributed random variables ∼ N(0, σ2
Jk) which is indeed a normally distributed

random variable. To obtain its variance, it can be used the fact that:

Cov
(√

N(c̃Jk − cJk) ,
√
N(c̃Jl + cJl)

)
= N E [(c̃Jk − cJk)(c̃Jl − cJl)] . (A.41)

Thus, (2.55) implies:

E [N(c̃Jk − cJk)(c̃Jl − cJl)] = N (E [c̃Jkc̃Jl]− cJkcJl)− (cJk − cJl)O(log(N)) . (A.42)

Using (2.46), it follows:

˜̃cJk ˜̃cJl = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 , (A.43)
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where:

A1 =
1

N2

N∑
i=1

N∑
j=1

δiδjφ
per
Jk (Yi)φ

per
Jl (Yj)

(1−GT (Yi))(1−GT (Yj))
(A.44)

A2 =
1

N2

N∑
i=1

N∑
j=1

δiφ
per
Jk (Yi)Ujl

1−GT (Yi)
(A.45)

A3 =
1

N
RNl

N∑
i=1

δiφ
per
Jk (Yi)

1−GT (Yi)
(A.46)

A4 =
1

N2

N∑
i=1

N∑
j=1

δjφ
per
Jl (Yj)Uik

1−GT (Yj)
(A.47)

A5 =
1

N2

N∑
i=1

N∑
j=1

UikUjl (A.48)

A6 =
1

N
RNl

N∑
i=1

Uik (A.49)

A7 =
1

N
RNk

N∑
i=1

δjφ
per
Jl (Yj)

1−GT (Yj)
(A.50)

A8 =
1

N
RNk

N∑
i=1

Uil (A.51)

A9 = RNkRNl . (A.52)

From the last set of equations, it is possible to observe that the following pairs have the

same structure (i.e. they are symmetric counter parts of each other) (A2, A4), (A3, A7) and

(A6, A8).

Now, assuming that E
[
δ2φperJk (Y )φperJl (Y )

(1−G(Y ))2

]
is finite (provided (2.47), (2.48), and the assumptions

stated above) for A1, it follows:

E [A1] =
1

N2
E

[
N∑
i=1

N∑
j=1

δiφ
per
Jk (Yi)Ujl

1−GT (Yi)

]

=
1

N
E
[
δ2φperJk (Y )φperJl (Y )

(1−G(Y ))2

]
+
N − 1

N
cJkcJl . (A.53)
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Consider possible upper bounds for γ1,Jk(x) and γ2,Jk(x). Using the corresponding defini-

tions stated in 2.2.4, it follows:

γ1,Jk(x) =
1

(1− FX(x))(1−GT (x))

∫ 1

x

φperJk (u)fX(u)du

≤ ‖ fX ‖∞ M 2−
J
2

c(1−GT (x))β+1
(A.54)

≤ e
α1(β+1)

2 ‖ fX ‖∞ M 2−
J
2

cC
β+1
2

T

. (A.55)

Similarly, for γ2,Jk(x), it follows:

γ2,Jk(x) ≤
∫ 1

0

|φperJk (u)|fX(u)du

(1− FX(u))(1−GT (u))

≤
∫ 1

0

|φperJk (u)|fX(u)du

c(1−GT (u))β+1

≤ e
α1(β+1)

2 ‖ fX ‖∞ M 2−
J
2

cC
β+1
2

T

. (A.56)

Therefore, the last result implies that for k, l = 0, ..., 2J − 1 and ĩ ∈ {0, 1}:

γĩ,Jk(x)γĩ,Jl(x) ≤ ‖ fX ‖2
∞ M2 2−J

c2(1−GT (x))2(β+1)

≤ eα1(β+1) ‖ fX ‖2
∞ M2 2−J

c2Cβ+1
T

≤ O(N−1 log(N)) . (A.57)

Using the last result,it follows:

E [(1− δ)γ1,Jk(Y )γ2,Jl(Y )] ≤ eα1(β+1) ‖ fX ‖2
∞ M2 2−J

c2Cβ+1
T

∫ 1

0

(1−G(u))fX(u)du

≤ eα1(β+1) ‖ fX ‖2
∞ M2 2−J

c2Cβ+1
T

. (A.58)
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Clearly, from the last result the same upper bound holds for E [(1− δ)2γ1,Jk(Y )γ1,Jl(Y )] and

E [γ2,Jk(Y )γ2,Jl(Y )].

Now, for the pair (A2, A4), it follows:

E [A2] =
1

N2
E

[
N∑
i=1

N∑
j=1

δiφ
per
Jk (Yi)Ujl

1−GT (Yi)

]

= − 1

N
E
[
δφperJk (Y )γ2,Jk(Y )

1−GT (Y )

]
≤ 1

N

e
α1(β+1)

2 ‖ fX ‖∞ M 2−
J
2

cC
β+1
2

T

∫ 1

0

|φperJk (u)|c(1−GT (u))β−1gT (u)du

≤ 1

N

e
α1(β+1)

2 ‖ fX ‖∞‖ gT ‖∞ M2 2−J

C
β+1
2

T

≤ O(N−2 log(N)) , (A.59)

In the case of the pair (A3, A7) we have:

E [A3] =
1

N
E

[
RNl

N∑
i=1

δiφ
per
Jk (Yi)

1−GT (Yi)

]
≤ O(N−1 log(N))cJk (A.60)

For the term A5 we have the following:

E [A5] =
1

N2
E

[
N∑
i=1

N∑
j=1

UikUjl

]

=
1

N
E [UkUl]
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Therefore, using the definition of Uk:

E [A5] = 1
N
E [(1− δ)2γ1,Jk(Y )γ1,Jl(Y )− (1− δ)γ1,Jk(Y )γ2,Jl(Y )− (1− δ)γ1,Jl(Y )γ2,Jk(Y ) + γ2,Jk(Y )γ2,Jl(Y )]

From the last result and (A.57), it is clear that:

E [A5] ≤ O(N−2 log(N)) (A.61)

Now, for the pair (A6, A8) it is clear from the zero mean condition of Uk and the fact that

RN = O(N−1 log(N)) that:

E [A6] ≤ O(N−2 log(N)) (A.62)

E [A9] ≤ O(N−2 log(N)2) (A.63)

Putting together (A.53)-(A.63) in (A.43) we get:

E
[
˜̃cJk ˜̃cJl

]
≤ 1

N
E
[
δ2φperJk (Y )φperJl (Y )

(1−G(Y ))2

]
+ N−1

N
cJkcJl +O(N−2 log(N)) +O(N−2 log(N)2) +O(N−1 log(N))(cJk + cJl)

(A.64)

Therefore, (A.42) becomes:

E
[
N(˜̃cJk − cJk)(˜̃cJl − cJl)

]
≤ E

[
δ2φperJk (Y )φperJl (Y )

(1−G(Y ))2

]
−cJkcJl+O(N−1 log(N)2) (A.65)
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Therefore, for N large the last result suggests that:

Cov
(√

N(˜̃cJk − cJk) ,
√
N(˜̃cJl + cJl)

)
≈ E

[
δ2φperJk (Y )φperJl (Y )

(1−G(Y ))2
− cJkcJl

]
(A.66)

Finally, in light of the last result and the properties of the Normal Distribution, result (2.64)

follows. Therefore,

f̂PD(x)
app.∼ N

(
f(x) , 1

N

∑2J−1
k=0 σ2

Jk(φ
per
Jk (x))2 + 2

N

∑
k<l E

[
δ2φperJk (Y )φperJl (Y )

(1−G(Y ))2
− cJkcJl

]
φperJk (x)φperJl (x)

)
(A.67)
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APPENDIX B

APPENDIX CHAPTER 3

B.1 Proof of
∫ 1

0
φperjk (x)dx = 2−

j
2 .

For j ≤ 0, the Strang-Fix condition (see [89]) gives φjk(x) ≡ 2−j/2, so the claim is trivial.

In the case of j > 0, it follows:

∫ 1

0

φperjk (x)dx =
∑
m∈Z

∫ 1

0

φjk(x+m)dx

=
∑
m∈Z

∫ 1

0

2j/2φ(2j(x+m)− k)dx

[2j(x+m) = t]

=
∑
m∈Z

∫ (m+1)2j

m2j
2j/22−jφ(t− k)dt

= 2−j/2
∫
R

φ(t− k)dt = 2−j/2 , (B.1)

which shows the desired result.

B.2 Important results from Multivariate Taylor Series expansion.

In this section we provide definitions and results that will be needed for the derivation of the

density estimator ĥn(x) properties.

Define α := (α1, ..., αp), β := (β1, ..., βp), |α| :=
∑p

j=1 αj , |β| :=
∑p

j=1 βj and α! =
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∏p
j=1 αj!. Similarly, let:

xα :=

p∏
j=1

x
αj
j , x ∈ Rp , (B.2)

∂αf := ∂α1
1 · ... · ∂αpp f =

∂|α|f

∂xα1
1 · ... · ∂x

αp
p
. (B.3)

From the multinomial theorem, it follows that for any x ∈ Rp, and any integer k > 0:

|x|k =
∑
α1

∑
α2

·... ·
∑
αp

k!

α1! · ... · αp!
xα1

1 · ... · xαpp , s.t. |α| = k ,

=
∑
|α|=k

k!

α!
xα . (B.4)

Now, suppose a function f : Rp → R, such that f ∈ Ck on a convex open set S ⊂ Rp. We

are interested in the Taylor series expansion of f(x) around a point x0 ∈ S.

If we look at the behavior of f() over the points that are in the line between x and x0, it

follows that any of those points x∗ can be contained in a set defined as:

L(x, x0) = {x∗ ∈ S s.t.∀t ∈ [0, 1] x∗ = x0 + t(x− x0)} .

Using the last definition, we have that ∀x ∈ L(x, x0), f(x∗) = f(x0 + t(x − x0)) = g(t).

Define v = x− x0, therefore, for 1 ≤ l ≤ k, it follows:

g(l)(t) = (v • ∇)l · f(x0 + t · v) ,

327



where

(v • ∇)(l)f = (v1
∂

∂x1

+ ...+ vp
∂

∂xp
)lf ,

=
∑
|α|=l

l!

α!
vα1

1 · ... · vαpp
∂α1

∂xα1
1

· ... · ∂
αp

∂x
αp
p
f ,

=
∑
|α|=l

l!

α!
vα1

1 · ... · vαpp ∂αf . (B.5)

If we now make a Taylor series expansion of g(t) around a point t0, for δ ∈ [t, t0] it follows:

g(t) =
k−1∑
l=0

g(l)(t0)

l!
(t− t0)l +

g(k)(δ)(t− t0)k

k!

Letting t0 → 0 and t → 1, we have that g(l)(t0) →
∑
|α|=l

l!
α!
vα1

1 · ... · v
αp
p ∂αf(x0) and

g(t)→ f(x).

Therefore, the Taylor series expansion of f around x0 is given by:

f(x) =
k−1∑
l=0

(v • ∇)(l)f(x0)

l!
+

(v • ∇)(k)f(x0 + δv)

k!
. (B.6)

Define the Taylor series expansion of f() around x0 of order k and its remainder term as as:

fx0,k(x) =
k−1∑
l=0

(v • ∇)(l)f(x0)

l!
,

Rx0,k(v) =
(v • ∇)(k)f(x0 + δv)

k!
.

. Then, by Taylor’s theorem and (B.4), it follows:

|Rx0,k(v)| ≤ Mh

(k + 1)!
||v||(k+1)

1 , (B.7)
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provided assumption (A4) holds. Finally, from results (B.6) and (B.7), it follows that:

f(x)− fx0,k(x) = Rx0,k(v) . (B.8)

B.3 Consistency of the Kernel density estimator.

In this section, we provide an overview of the asymptotic properties of the density estimator

ĥn(), which are needed later to show the consistency of the estimates β̂0 and ĉ(l)
Jk. See [90]

for a detailed discussion of the Kernel Density estimator properties.

Consider a kernel-type density estimator given by:

ĥn(x) =
1

n

n∑
i=1

1

δp
K

(
x− xi
δ

)
, (B.9)

where 1
δp
K
( x−xi

δ

)
:= Kδ(x, xi) and δ = δ(n) > 0 is a proper bandwidth, and K(x) > 0 is

the kernel function. This last condition guarantees that ĥn(x) is non-negative and continuous

as a finite sum of positive and continuous functions.

From (3.9) and (3.12) it is clear that we need a kernel function such that ĥn(x) > 0 and

bounded in the support of h(). Assume that the chosen kernel satisfies:

(Ak1) K(x) is real-valued, Borel measurable function with ||K||∞ <∞.

(Ak2) K(x) has β−1 (β ≥ 2) vanishing moments, i.e.
∫
K(v)||v||s1dv = 0, s = 1, ..., β−

1.

(Ak3) K(x) belongs to L2(Rp).
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(Ak4) K(x) satisfies
∫
K(v)dv = 1 and

∫
K(v)||v||β1dv = Mk,β <∞.

(Ak5) sup
x,y∈[0,1]p

|Kδ(x, y)| ≤ C1δ
−p, for δ = δ(n) > 0, C1 > 0.

(Ak6) sup
x∈[0,1]p

E [(K2
δ (x, xi))] ≤ C2δ

−p, for δ = δ(n) > 0, C1 > 0, C2 > 0.

Lemma B.3.1. Consider a kernel that satisfies (Ak1)-(Ak6) and a random variable X defined

on a probability space (Ω,=,P) with density h(). Assume (A1) and (A5) are satisfied, then

ĥn() is consistent, provided nδp →∞ and δp → 0 as n→∞.

This means that ∀x ∈ [0, 1]p for which P {ω ∈ Ω |X(ω) = x} > 0, it follows:

ĥn(x)
P→h(x) (B.10)

Proof. Consider an iid sample {yi, xi}ni=1. It follows that the expectation of the density esti-

mator (B.9) takes the form:

E[ĥn(x)] =

∫
K(v)h(x + δv)dv

If we subtract h(x) from the above expression, we get:

E[ĥn(x)− h(x)] =

∫
K(v) [h(x + δv)− h(x)] dv ,

=

∫
K(v) [h(x + δv)− hx,β(x + δv) + hx,β(x + δv)− h(x)] dv ,

=

∫
K(v) [h(x + δv)− hx,β(x + δv)] dv +

+

∫
K(v) [hx,β(x + δv)− h(x)] dv ,

provided assumption (Ak4) holds.
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From (B.6) that in the second term of (B.11): h(x + δv)x,β − h(x) =
∑k−1

l=1
(v•∇)(l)f(x0)

l!
.

Moreover, by assumption (Ak2):

∫
K(v) [hx,β(x + δv)− h(x)] dv = 0 . (B.11)

Similarly, the first term of the rhs of (B.11) can be expressed as: h(x + δv)− hx,β(x + δv) =

Rx,β(δv), provided (B.8). Therefore, from (B.7), it follows:

E[ĥn(x)− h(x)] =

∫
K(v)Rx,β(δv)dv ,

|E[ĥn(x)− h(x)]| ≤
∫
K(v)|Rx,β(δv)|dv ,

≤ Mhδ
β

β!

∫
K(v)||v||β1dv ,

|bias(ĥn)| ≤ C(h, β)δβ , (B.12)

where C(h, β) =
MhMk,β

β!
. Also, from the last set of equations, it is possible to obtain:

sup
x∈[0,1]p

∣∣∣E[ĥn(x)− h(x)]
∣∣∣ ≤ C(h, β)δβ . (B.13)

Now, for a fixed x, the variance of ĥn(x), can be expressed and bounded as follows:
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V ar
(
ĥn(x)

)
=

1

nδ2p
V ar

(
K

(
x− X1

δ

))
,

≤ 1

nδ2p
E

[
K

(
x− X1

δ

)2
]
,

≤ 1

nδp

∫
K(v)2h(x + δv)dv ,

≤ M · C
nδp

, (B.14)

sup
x∈[0,1]p

E
[(
ĥn(x)− h(x)

)2
]
≤ M · C

nδp
, (B.15)

provided assumptions (A6) and (Ak3) hold, for C =
∫
K(v)2dv.

From the above results, it is possible to express the L2 risk of the estimator ĥn(x) as:

R
(
ĥn, h

)
= V ar

(
ĥn(x)

)
+ bias(ĥn(x))2 .

Using results (B.12) and (B.15), we get that:

R
(
ĥn, h

)
≤ M · C

nδp
+ C(h, β)2δ2β (B.16)

Clearly, as n → ∞, if nδp → ∞ and δp → 0, it follows that R
(
ĥn, h

)
→ 0. Therefore,

ĥn(x) is mean-square consistent, which automatically implies:

ĥn(x)
P→h(x) .

If we ignore the constants (with respect to n) in (B.16), it is possible to show that the band-

width δ(n) that minimizes R
(
ĥn, h

)
is given by δ∗ ∼ n−

1
2β+p (up to a constant) and thus,
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R
(
ĥn, h

)∗
≥ C · n−

2β
2β+p . Similarly, under this optimal bandwidth, we have that (B.15)

becomes:

sup
x∈[0,1]p

E
[(
ĥn(x)− h(x)

)2
]
≤M · Cn−

2β
2β+p . (B.17)

B.4 Derivation of an upper bound for E
[(

Y φperJk (Xl)

h(X)

)2
]

.

Consider a sequence of constant positive piecewise functions {gb, b ≥ 1} that satisfy:

(i) 0 < gb(x) ≤ h(x), ∀ x ∈ [0, 1]p.

(ii) gb(x) ≤ gb+1(x), ∀ x ∈ [0, 1]p.

(iii) gb(x) ↑ h(x) as b→∞.

Define gb(x) for b ≥ blog2

(
1
εh

)
c as follows:

gb(x) =


r
2b

r
2b
≤ h(x) ≤ r+1

2b
r = 1, ..., b · 2b − 1

b h(x) > b

Therefore, we can express gb(x) as:

gb(x) =
b·2b−1∑
r=1

( r
2b

)
1{x: r

2b
≤h(x)≤ r+1

2b
} + b · 1{x:h(x)>b} . (B.18)

From (B.18), for a fixed b define:

Ωrb =

{
x :

r

2b
≤ h(x) ≤ r + 1

2b

}
, r = 1, ..., b · 2b − 1 ,

Ωb = {x : h(x) > b} .
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This partitions the support of the random vector X into b · 2b disjoints subsets for which⋃b·2b−1
r=1 {Ωrb}

⋃
{Ωb} = [0, 1]p. Similarly, the sequence of functions {gb, b ≥ 1} approxi-

mate h(x) from below, in a quantization fashion. Therefore:

E

[(
Y φperJk (Xl)

h(X)

)2
]

=
b·2b−1∑
r=1

E

[(
Y φperJk (Xl)

h(X)

)2

1{x: r

2b
≤h(x)≤ r+1

2b
}

]
+E

[(
Y φperJk (Xl)

h(X)

)2

1{x:h(x)>b}

]
,

E
[(

Y φperJk (Xl)

h(X)

)2
]
≤
(
(p ·Mf + |β0|)2 + σ2

)(∑b·2b−1
r=1 E

[
φperJk (Xl)

21{x: r
2b
≤h(x)≤ r+1

2b
}

h(X)2

]
+ E

[
φperJk (Xl)

21{x:h(x)>b}
h(X)2

])
,

E

[(
Y φperJk (Xl)

h(X)

)2
]
≤

(
(p ·Mf + |β0|)2 + σ2

)b·2b−1∑
r=1

∫
Ωrb

φperJk (Xl)
2

h(X)
dx +

∫
Ωb

φperJk (Xl)
2

h(X)
dx

 ,

≤
(
(p ·Mf + |β0|)2 + σ2

)b·2b−1∑
r=1

∫
Ωrb

φperJk (Xl)
2

gb(X)
dx +

∫
Ωb

φperJk (Xl)
2

gb(X)
dx

 ,

≤
(
(p ·Mf + |β0|)2 + σ2

)b·2b−1∑
r=1

2b

r

∫
Ωrb

φperJk (Xl)
2dx +

1

b

∫
Ωb

φperJk (Xl)
2dx

 ,

≤
(
(p ·Mf + |β0|)2 + σ2

)(
2b(b2b − 1) +

1

b

)
,

≤
(
(p ·Mf + |β0|)2 + σ2

) inf
b≥blog2

(
1
εh

)
c

(
2b(b2b − 1) +

1

b

) ,

≤
(
(p ·Mf + |β0|)2 + σ2

){ 1

εh

(
dlog2(

1

εh
)e − 1

)
+

1

dlog2( 1
εh

)e

}
, (B.19)

where the last result holds since the function f(b) = 2b(b2b − 1) + 1
b

is strictly increasing in

b and b ≥ blog2

(
1
εh

)
c.

334



Remarks

Note that this bound could be further improved if instead of piecewise constant functions,

we use a different approximation technique. Nonetheless, obtaining tight bounds is not the

intention of this derivations, but instead showing that the second moment of the random

variable Y φperJk (Xl)

h(X)
is bounded under suitable conditions.

B.5 Asymptotic correlation between Yiφ
per
Jk (Xil)

ĥn(Xi)
and β̂0.

Similarly as for Vc1 in (3.27), consider the asymptotic behavior of Vc3 = Cov
(

1
n

∑n
i=1

Yiφ
per
Jk (Xil)

ĥn(Xi)
, 2−

J
2 β̂0

)
assuming conditions (A1)-(A5) and (Ak1)-(Ak6) hold. Using the covariance properties and

the iid sample {yi = f(xi), xi}ni=1, it follows:

Vc3 =
2−

J
2

n2


n∑
i=1

Cov

(
Yiφ

per
Jk (Xil)

ĥn(Xi)
,

Yi

ĥn(Xi)

)
+

n∑
i=1

n∑
j=1

i 6=j

Cov

(
Yiφ

per
Jk (Xil)

ĥn(Xi)
,

Yj

ĥn(Xj)

) .

(B.20)

Case i = j

We have for i = j, i = 1, ..., n:

Cov

(
Yiφ

per
Jk (Xil)

ĥn(Xi)
,

Yi

ĥn(Xi)

)
= E

[
Y 2φperJk (Xl)

ĥn(X)2

]
− E

[
Y φperJk (Xl)

ĥn(X)

]
E

[
Y

ĥn(X)

]
.
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Using conditional expectation in the same way as in 3.16 and applying dominated conver-

gence, it follows:

Cov

(
Yiφ

per
Jk (Xil)

ĥn(Xi)
,

Yi

ĥn(Xi)

)
→
n→∞

E
[
Y 2φperJk (Xl)

h(X)2

]
− β0E

[
Y φperJk (Xl)

h(X)

]
. (B.21)

Case i 6= j

For i 6= j, i, j = 1, ..., n, it is possible to obtain:

Cov

(
Yiφ

per
Jk (Xil)

ĥn(Xi)
,

Yj

ĥn(Xj)

)
= E

[
YiYjφ

per
Jk (Xil)

ĥn(Xi)ĥn(Xj)

]
− E

[
Y φperJk (Xl)

ĥn(X)

]
E

[
Y

ĥn(X)

]
.

From the definition of ĥn(X) in (B.9), it follows:

ĥn(Xi) =
K(0)

nδp
+
n− 1

n
ĥn−1(Xi) ,

therefore, for n sufficiently large:

ĥn(Xi) ≈ ĥ
(−i)
n−1(Xi) ,

provided nδp uniformly goes to ∞, where ĥ(−i)
n−1(Xi) corresponds to the kernel density esti-

mator computed without the i−th sample, evaluated at Xi.

Let X(−i,−j) denote the sample {X1, ...,Xn} without Xi,Xj . Therefore, using conditional

expectation and for n sufficiently large:
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E

[
YiYjφ

per
Jk (Xil)

ĥn(Xi)ĥn(Xj)

]
= EXi,Xj

[
EX(−i,−j)|Xi,Xj

[
YiYjφ

per
Jk (Xil)

ĥn(Xi)ĥn(Xj)
|Xi,Xj

]]
,

= EXi,Xj

[
YiYjφ

per
Jk (Xil) · EX(−i,−j)|Xi,Xj

[
1

ĥn(Xi)ĥn(Xj)
|Xi,Xj

]]
,

≈ EXi,Xj

[
YiYjφ

per
Jk (Xil) · EX(−i,−j)|Xi,Xj

[
1

ĥ
(−i)
n−1(Xi)ĥ

(−j)
n−1 (Xj)

|Xi,Xj

]]
.

Using the last result and dominated convergence, it follows:

E

[
YiYjφ

per
Jk (Xil)

ĥn(Xi)ĥn(Xj)

]
→
n→∞

EXi,Xj

[
YiYjφ

per
Jk (Xil)

h(Xi)h(Xj)

]
,

→
n→∞

β0 · E
[
Y φperJk (Xl)

h(X)

]
, (B.22)

provided the iid condition of the observed sample. Finally,

Cov

(
Yiφ

per
Jk (Xil)

ĥn(Xi)
,

Yj

ĥn(Xj)

)
→
n→∞

β0 · E
[
Y φperJk (Xl)

h(X)

]
− β0 · E

[
Y φperJk (Xl)

h(X)

]
,

→
n→∞

0 . (B.23)

Therefore, using (B.21) and (B.23) in (B.20), it follows:
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Vc3 =
2−

J
2

n2

{
nCov

(
Yiφ

per
Jk (Xil)

ĥn(Xi)
,

Yi

ĥn(Xi)

)
+ n(n− 1)Cov

(
Yiφ

per
Jk (Xil)

ĥn(Xi)
,

Yj

ĥn(Xj)

)}
,

= 2−
J
2

{
1

n
Cov

(
Yiφ

per
Jk (Xil)

ĥn(Xi)
,

Yi

ĥn(Xi)

)
+
n(n− 1)

n2
Cov

(
Yiφ

per
Jk (Xil)

ĥn(Xi)
,

Yj

ĥn(Xj)

)}
.

This last result implies:

Cov

(
1

n

n∑
i=1

Yiφ
per
Jk (Xil)

ĥn(Xi)
, 2−

J
2 β̂0

)
→
n→∞

0 . (B.24)

As a corollary, we can see that from (B.24), it follows that Cov
(
β̂0 , ĉ

(l)
Jk

)
→
n→∞

0. In fact,

note that Cov
(
β̂0 , ĉ

(l)
Jk

)
can be expressed as:

Cov
(
β̂0 , ĉ

(l)
Jk

)
= Cov

(
β̂0 ,

1

n

n∑
i=1

Yiφ
per
Jk (Xil)

ĥn(Xi)

)
− 2−

J
2 V ar

(
β̂0

)
.

Therefore, from (3.22) and (B.24), it is clear that Cov
(
β̂0 , ĉ

(l)
Jk

)
→
n→∞

0 as desired.

Finally, this asertion also implies that:

Cov

β̂0 ,

p∑
l=1

2J−1∑
k=0

ĉ
(l)
Jkφ

per
Jk (xl)

 →
n→∞

0 , (B.25)

by the properties of the covariance function.

B.6 Asymptotic convergence of Cov
(
ĉ

(l)
Jk , ĉ

(l)
Js

)
.

For any s 6= k, s, k = 0, ..., 2J − 1 and fixed J , assuming conditions (A1)-(A5) and (Ak1)-

(Ak6) hold, it follows:
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Cov
(
ĉ

(l)
Jk , ĉ

(l)
Js

)
= Cov

(
1

n

n∑
i=1

Yiφ
per
Jk (Xil)

ĥn(Xi)
− 2−

J
2 β̂0 ,

1

n

n∑
i=1

Yiφ
per
Js (Xil)

ĥn(Xi)
− 2−

J
2 β̂0

)
,

= E

[
1

n2

n∑
i=1

n∑
j=1

YiYjφ
per
Jk (Xil)φ

per
Js (Xjl)

ĥn(Xi)ĥn(Xj)

]
− 2−

J
2E

[
β̂0

1

n

n∑
i=1

Yiφ
per
Jk (Xil)

ĥn(Xi)

]

−2−
J
2E

[
β̂0

1

n

n∑
i=1

Yiφ
per
Js (Xil)

ĥn(Xi)

]
+ 2−JE

[
β̂2

0

]
− E

[
ĉ

(l)
Jk

]
E
[
ĉ

(l)
Js

]
,

= E

[
1

n2

n∑
i=1

n∑
j=1

YiYjφ
per
Jk (Xil)φ

per
Js (Xjl)

ĥn(Xi)ĥn(Xj)

]
− 2−

J
2Cov

(
β̂0 ,

1

n

n∑
i=1

Yiφ
per
Js (Xil)

ĥn(Xi)

)

−2−
J
2E
[
β̂0

]
E

[
1

n

n∑
i=1

Yiφ
per
Js (Xil)

ĥn(Xi)

]
− 2−

J
2Cov

(
β̂0 ,

1

n

n∑
i=1

Yiφ
per
Jk (Xil)

ĥn(Xi)

)

−2−
J
2E
[
β̂0

]
E

[
1

n

n∑
i=1

Yiφ
per
Jk (Xil)

ĥn(Xi)

]
+ 2−JE

[
β̂2

0

]
− E

[
ĉ

(l)
Jk

]
E
[
ĉ

(l)
Js

]
,

= E

[
1

n2

n∑
i=1

n∑
j=1

YiYjφ
per
Jk (Xil)φ

per
Js (Xjl)

ĥn(Xi)ĥn(Xj)

]
− 2−

J
2Cov

(
β̂0 ,

1

n

n∑
i=1

Yiφ
per
Js (Xil)

ĥn(Xi)

)

2−
J
2Cov

(
β̂0 ,

1

n

n∑
i=1

Yiφ
per
Jk (Xil)

ĥn(Xi)

)
+ 2−JV ar

(
β̂0

)
−E

[
1

n

n∑
i=1

Yiφ
per
Jk (Xil)

ĥn(Xi)

]
E

[
1

n

n∑
i=1

Yiφ
per
Js (Xil)

ĥn(Xi)

]
.

Using the same argument that led to (B.22), for i 6= j, it follows:

E

[
YiYjφ

per
Jk (Xil)φ

per
Js (Xjl)

ĥn(Xi)ĥn(Xj)

]
→
n→∞

E
[
Y φperJk (Xl)

h(X)

]
E
[
Y φperJs (Xl)

h(X)

]
.

Similarly, for i = j:

E

[
Y 2
i φ

per
Jk (Xil)φ

per
Js (Xil)

ĥn(Xi)2

]
→
n→∞

E
[
Y 2φperJk (Xl)φ

per
Js (Xl)

h(X)2

]
.
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Therefore, it follows that:

Cov
(
ĉ

(l)
Jk , ĉ

(l)
Js

)
→
n→∞

0 ,

as desired.

B.7 Proof of Lemma 3.2.4.

Let’s assume conditions (A1)-(A5) and (Ak1)-(Ak4) are satisfied. For i = 1, ..., n, define:

KJ(x, y) = 2J
∑
k

φ(2Jx− k)φ(2Jy − k),

Zi(x) =
yi

ĥn(xi)

(
p∑
l=1

KJ(Xil, xl)

)
− E

[
y1

ĥn(x1)

(
p∑
l=1

KJ(X1l, xl)

)]
.

Since X1, ...,Xn are iid, Zi(x), i = 1, ..., n are iid with E[Zi(x)] = 0. From the definition of

f̂J(x) and Zi(x), after some algebra it is possible to get:

E
[
||f̂J(x)− E[f̂J(x)]||22

]
≤ E

∫
[0,1]p

| (β̂0 − E[β̂0])

1− 2−
J
2

2J−1∑
k=0

p∑
l=1

φperJk (xl)

 |



+E

[∫
[0,1]p
| 1

n

n∑
i=1

Zi(x) |2 dx

]
,

≤ 2E
[
(β̂0 − E[β̂0])2

] ∫
[0,1]p

1− 2−
J
2

2J−1∑
k=0

p∑
l=1

φperJk (xl)

2

dx

+
2

n2

∫
[0,1]p

E

[
|

n∑
i=1

Zi(x) |2
]
dx .
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Denote:

Sf1 =

∫
[0,1]p

1− 2−
J
2

2J−1∑
k=0

p∑
l=1

φperJk (xl)

2

dx ,

Sf2 = E
[
(β̂0 − E[β̂0])2

]
= V ar

(
β̂0

)
,

Sf3 =
2

n2

∫
[0,1]p

E

[
|

n∑
i=1

Zi(x) |2
]
.

Computations for Sf1

Expanding the squared argument for Sf1, it follows:

Sf1 =

∫
[0,1]p

1− 21−J
2

p∑
l=1

2J−1∑
k=0

φperJk (xl) +

p∑
l=1

2J−1∑
k1=0

p∑
m=1

2J−1∑
k2=0

φperJk1(xl)φ
per
Jk2

(xm)

 dx ,

= 1− 21−J
2

p∑
l=1

2J−1∑
k=0

∫ 1

0

φperJk (xl)dxl +

p∑
l=1

2J−1∑
k1=0

p∑
m=1

2J−1∑
k2=0

∫ 1

0

∫ 1

0

φperJk1(xl)φ
per
Jk2

(xm)dxldxm .

Since
∫ 1

0
| φperJk (xl) | dxl ≤ Cφ2−

J
2 and

{
φperJ,k (x), k = 0, ..., 2J − 1

}
are orthonormal, it

follows:

Sf1 = (p− 1)2 + p2
(
2J − 1

)
= O

(
2J
)
. (B.26)

Computations for Sf2

Using the identity V ar(X) = E[X2] − (E[X])2, since β̂0 = 1
n

∑n
i=1

yi
ĥn(xi)

it is possible to

show:
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E
[
β̂2

0

]
=

1

n2

n∑
i=1

n∑
j=1

YiYj

ĥn(Xi)ĥn(Xj)
,

≤ (|β0|+ pMf )
2 + σ2

n2

n∑
i=1

E

[
1

ĥn(Xi)2

]
+

2

n2

n∑
i<j

E

[
YiYj

ĥn(Xi)ĥn(Xj)

]
,

≤ (|β0|+ pMf )
2 + σ2

n
E

[
1

ĥn(X)2

]
+

2

n2

n∑
i<j

E

[
YiYj

ĥn(Xi)ĥn(Xj)

]
,

≤ (|β0|+ pMf )
2 + σ2

n
E

[
1

ĥn(X)2
− 1

h(X)2

]
+

(|β0|+ pMf )
2 + σ2

n
E
[

1

h(X)2

]

+
2

n2

n∑
i<j

E

[
YiYj

ĥn(Xi)ĥn(Xj)

]
.

Now, since |E
[

1

ĥn(X)2
− 1

h(X)2

]
| ≤ Cn−

β
2β+p and h(x) > εh, it follows:

E
[
β̂2

0

]
≤ C1n

− 3β+p
2β+p + C2n

−1 +
2

n2

n∑
i<j

E

[
YiYj

ĥn(Xi)ĥn(Xj)

]
,

for C1 = C · (|β0|+ pMf )
2 + σ2 and C2 =

(|β0|+pMf)
2
+σ2

ε2h
.

Since nδp uniformly converges to∞, ĥn(Xi) ≈ ĥ
(−i)
n−1(Xi), for n large. The notation≈means

that the ratio between the lhs and the rhs terms goes to 1 as n→∞. Also, since we have an

iid sample, it holds:
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E

[
YiYj

ĥn(Xi)ĥn(Xj)

]
= EXi,Xj

[
EX(−i,−j)|Xi,Xj

(
YiYj

ĥ
(−i)
n−1(Xi)ĥ

(−j)
n−1 (Xj)

|Xi,Xj

)]
,

= EXi,Xj

[
EX(−i,−j)

(
Yi

ĥ
(−i)
n−1(Xi)

|Xi,Xj

)
EX(−i,−j)

(
Yj

ĥ
(−j)
n−1 (Xj)

|Xi,Xj

)]
,

≈ EXi,Xj

[
EX(−i,−j)

(
Yi

ĥn(Xi)

)
EX(−i,−j)

(
Yj

ĥn(Xj)

)]
,

≈

(
E

[
Y

ĥn(X)

])2

.

This implies:

E
[
β̂2

0

]
≤ C∗

(
n−

3β+p
2β+p + n−1

)
+
n(n− 1)

n2

(
E

[
Y

ĥn(X)

])2

, (B.27)

for some C∗ > max {C1, C2} > 0. Similarly, it follows:

E
[
β̂0

]
= E

[
β0 +

∑p
l=1 fl(xl) + ε

ĥn(X)

]
,

= E

[
Y

ĥn(X)

]
.

The last result, together with (B.27) imply:
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E
[
β̂2

0

]
−
(
E
[
β̂0

])2

≤ C∗
(
n−

3β+p
2β+p + n−1

)
+
n(n− 1)

n2

(
E

[
Y

ĥn(X)

])2

−

(
E

[
Y

ĥn(X)

])2

,

≤ C∗
(
n−

3β+p
2β+p + n−1

)
− 1

n

(
E

[
Y

ĥn(X)

])2

,

≤ C∗
(
n−

3β+p
2β+p + n−1

)
,

Sf2 = O
(
n−1
)
. (B.28)

Thus, from (B.26) and (B.28), it follows that:

Sf1Sf2 = O
(
2Jn−1

)
.

Computations for Sf3

From Rosenthal’s inequality, ∃C(2) > 0 such that:

2

n2

∫
[0,1]p

E

∣∣∣∣∣
n∑
i=1

Zi(x)

∣∣∣∣∣
2
 ≤ 4C(2)

n2

∫
[0,1]p

n∑
i=1

E
[
Zi(x)2

]
dx ,

≤ 4C(2)

n2

n∑
i=1

∫
[0,1]p

E
[
Zi(x)2

]
dx .

By the definition of Zi(x), it follows:

∫
[0,1]p

E
[
Zi(x)2

]
dx ≤

p∑
l=1

2J−1∑
k1=0

p∑
m=1

2J−1∑
k2=0

E

[
Y 2
i φ

per
Jk1

(Xil)φ
per
Jk2

(Xim)

ĥn(Xi)2

]∫
[0,1]p

φperJk1(xl)φ
per
Jk2

(xm)dx .
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From the orthonormality of the scaling functions
{
φperJ,k (x), k = 0, ..., 2J − 1

}
and (B.1), it

follows:

∫
[0,1]p

φperJk1(xl)φ
per
Jk2

(xm)dx =



1 k1 = k2 l = m

0 k1 6= k2 l = m

2−J k1 = k2 l 6= m

2−J k1 6= k2 l 6= m

Therefore,

∫
[0,1]p

E
[
Zi(x)2

]
dx ≤

p∑
l=1

2J−1∑
k=0

(
E

[
Y 2
i φ

per
Jk (Xil)

2

ĥn(Xi)2

])

+2−J
p∑

l 6=m

2J−1∑
k=0

(
E

[
Y 2
i φ

per
Jk (Xil)φ

per
Jk (Xim)

ĥn(Xi)2

])

+2−J
p∑

l 6=m

2J−1∑
k1 6=k2

(
E

[
Y 2
i φ

per
Jk1

(Xil)φ
per
Jk2

(Xim)

ĥn(Xi)2

])
.

Since sup
x∈[0,1]p

{β0 +
∑p

l=1 fl(xl)} ≤ (|β0|+ pMf ), we can show:

E

[
Y 2
i φ

per
Jk (Xil)

2

ĥn(Xi)2

]
≤

(
(|β0|+ pMf )

2 + σ2
)
E

[
φperJk (Xil)

2

ĥn(Xi)2

]
,

≤ C1E

[
φperJk (Xil)

2

(
1

ĥn(Xi)2
− 1

h(X)2

)]
,

≤ C1 · C · n−
β

2β+pE
[
φperJk (Xil)

2
]
,

≤ C1 · C ·Mn−
β

2β+p (B.29)

for C1 =
(
(|β0|+ pMf )

2 + σ2
)

and M as the upper bound of the density h(x) from assump-

tion (A5). Similarly, when l 6= m, it follows:
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E

[
Y 2
i φ

per
Jk (Xil)φ

per
Jk (Xim)

ĥn(Xi)2

]
≤

(
(|β0|+ pMf )

2 + σ2
)
E

[
φperJk (Xil)φ

per
Jk (Xim)

ĥn(Xi)2

]
,

≤ C1E

[
φperJk (Xil)φ

per
Jk (Xim)

(
1

ĥn(Xi)2
− 1

h(X)2

)
+
φperJk (Xil)φ

per
Jk (Xim)

h(X)2

]
,

≤ C1 · C · n−
β

2β+pE [φperJk (Xil)φ
per
Jk (Xim)] +

C1

ε2h
E [φperJk (Xil)φ

per
Jk (Xim)] ,

≤ C1 · C ·M2−Jn−
β

2β+p +
C1

ε2h
M2−J .

In the case k1 6= k2 l 6= m, it is possible to show:

E

[
Y 2
i φ

per
Jk1

(Xil)φ
per
Jk2

(Xim)

ĥn(Xi)2

]
≤ C1 · E

[
φperJk1(Xil)φ

per
Jk2

(Xim)

ĥn(Xi)2

]
,

≤ C1E

[
φperJk1(Xil)φ

per
Jk2

(Xim)

(
1

ĥn(Xi)2
− 1

h(X)2

)
+
φperJk1(Xil)φ

per
Jk2

(Xim)

h(X)2

]
,

≤ C1 · C · n−
β

2β+pE
[
φperJk1(Xil)φ

per
Jk2

(Xim)
]

+
C1

ε2h
E
[
φperJk1(Xil)φ

per
Jk2

(Xim)
]
,

≤ C1 · C ·M2−Jn−
β

2β+p +
C1

ε2h
M2−J .

The last set of results imply:
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∫
[0,1]p

E
[
Zi(x)2

]
dx ≤ p · 2J · C1 · C ·Mn−

β
2β+p

+p(p− 1)

{
C1 · C ·M2−Jn−

β
2β+p +

C1

ε2h
M2−J

}
+p(p− 1)(2J − 1)

{
C1 · C ·M2−Jn−

β
2β+p +

C1

ε2h
M2−J

}
,

≤ p · 2J · C1 · C ·Mn−
β

2β+p + p(p− 1)

{
C1 · C ·M · n−

β
2β+p +

C1

ε2h
M

}
,

≤ C∗
(

2Jn−
β

2β+p + n−
β

2β+p + 1
)
,

for C∗ = max
{
pC1CM , p(p− 1)C1CM , p(p− 1)C1

ε2h
M
}
> 0. Finally, we obtain:

4C(2)

n2

n∑
i=1

∫
[0,1]p

E
[
Zi(x)2

]
dx ≤ 4C(2)

n
C∗
(

2Jn−
β

2β+p + n−
β

2β+p + 1
)
,

≤ C∗∗
(

2Jn−
3β+p
2β+p + n−

3β+p
2β+p + n−1

)
,

Sf3 = O
(

2Jn−
3β+p
2β+p + n−

3β+p
2β+p + n−1

)
, (B.30)

for C∗∗ = 4C(2)C∗ > 0.

Finally, from (B.26),(B.27) and (B.30), it follows:

E
[
||f̂J(x)− E[f̂J(x)]||22

]
≤ O

(
2Jn−1

)
+O

(
2Jn−

3β+p
2β+p + n−1

)
≤ O

(
2Jn−1

)
. (B.31)

which completes the proof.
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B.8 Proof of Lemma 3.2.5.

Suppose that in addition to assumptions (A1)-(A5) and (Ak1)-(Ak4), the following condi-

tions are satisfied:

(a) ∃Φ, bounded and non-increasing function in R such that
∫

Φ(|u|)du <∞ and |φ(u)| ≤

Φ(|u|) almost everywhere (a.e.).

(b) In addition,
∫
R |u|

N+1Φ(|u|)du <∞ for some N ≥ 0.

(c) ∃F , integrable, such that |K(x, y)| ≤ F (x− y), ∀x, y ∈ R.

(d) Suppose φ satisfies:

i.
∑

k |φ̂(ξ + 2kπ)|2 = 1, a.e., where φ̂ denotes the Fourier transform of the scaling

function φ.

ii. φ̂(ξ) = φ̂( ξ
2
)m0( ξ

2
), where m0(ξ) is a 2π-periodic function and m0 ∈ L2(0, 2π).

(e)
∫
R x

kψ(x)dx = 0, for k = 0, 1, ..., N , N ≥ 1 where ψ is the mother wavelet corre-

sponding to φ.

(f) The functions {fl}pl=1, are such that fl ∈ Wm+1
∞ ([0, 1]) , m ≥ N , whereWm

∞([0, 1]) de-

notes the space of functions that arem-times weakly-differentiable and f (k)
l ∈ L∞([0, 1]) , k =

0, ...,m.

(g) θφ(x) :=
∑

k |φ(x − k)| such that ||θφ||∞ < ∞. Under this condition, it follows that

f
(k)
l ∈ Lp([0, 1]) , k = 0, ...,m for p ≥ 1.

Then under Corollary 8.2 [57], if f ∈ WN+1
∞ ([0, 1]) then ||KJf−f ||p∞ = O

(
2−pJ(N+1)

)
, p ≥

1. This implies:

||E[f̂J(x)]− f(x)||22 = O
(

22Jn−
2β

2β+p + 2−2J(N+1) + n−
β

2β+p2−J(N+1)
)
, (B.32)
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for f(x) = β0 +
∑p

l=1 fl(xl).

Proof. Define flJ(xl) := KJfl(xl) =
∫ 1

0
fl(u)KJ (xl, u) du. Suppose a fixed x, then:

E[f̂J(x)]− f(x) = bias
(
β̂0

)
+

p∑
l=1

2J−1∑
k=0

bias
(
ĉ

(l)
Jk

)
φperJk (xl) +

p∑
l=1

(flJ(xl)− fl(xl)) .

Furthermore, since E
[∑p

l=1 fl(Xl)

h(X)

]
= 0, it follows:

bias
(
β̂0

)
≤ |β0|Cn−

β
2β+p + EX

[
p∑
l=1

fl(xl)EX1,...,Xn

(
1

ĥn(X)
− 1

h(X)

)]
,

≤ (|β0|+ pMf )Cn
− β

2β+p .

Similarly, following the same argument for bias
(
ĉ

(l)
Jk

)
, it is possible to show:

bias
(
ĉ

(l)
Jk

)
≤ (|β0|+ pMf )C2−

J
2 n−

β
2β+p .

Therefore, this implies:
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E[f̂J(x)]− f(x) ≤ C∗1n
− β

2β+p + C∗12−
J
2 n−

β
2β+p

p∑
l=1

2J−1∑
k=0

|φperJk (xl)|+
p∑
l=1

|KJfl(xl)− fl(xl)| ,

(
E[f̂J(x)]− f(x)

)2

≤ C∗∗1 n
− 2β

2β+p + C∗∗1 2−Jn−
2β

2β+p

p∑
l=1

2J−1∑
k1=0

p∑
m=1

2J−1∑
k2=0

∣∣φperJk1(xl)∣∣ ∣∣φperJk2(xm)
∣∣

+

(
p∑
l=1

|KJfl(xl)− fl(xl)|

)2

+ 2C∗12−
J
2 n−

2β
2β+p

p∑
l=1

2J−1∑
k=0

|φperJk (xl)|

+2C∗1n
− β

2β+p

p∑
l=1

|KJfl(xl)− fl(xl)|

+2C∗12−
J
2 n−

β
2β+p

p∑
l=1

2J−1∑
k=0

p∑
m=1

|φperJk (xl)| |KJfm(xm)− fm(xm)| ,

whereC∗1 = (|β0|+ pMf )C andC∗∗1 = (|β0|+ pMf )
2C2 are positive constants independent

of J and n. Furthermore, since
∫ 1

0
|φperJk (u)| du = 2−

J
2Cφ, Cφ, it follows:

∫
[0,1]p
|φperJk1(xl)||φ

per
Jk2

(xm)|dx =



1 k1 = k2 l = m

2J ||θφ||2∞ k1 6= k2 l = m

2−JC2
φ k1 = k2 l 6= m

2−JC2
φ k1 6= k2 l 6= m

Using the last set of equations, we obtain:

350



∫
[0,1]p

(
E[f̂J(x)]− f(x)

)2

dx ≤ C∗∗1 n
− 2β

2β+p + pC∗∗1 n
− 2β

2β+p + pC∗∗1 n
− 2β

2β+p2J(2J − 1)||θφ||2∞

+C2
φC
∗∗
1 n
− 2β

2β+pp(p− 1) +

∥∥∥∥∥
p∑
l=1

|KJfl(xl)− fl(xl)|

∥∥∥∥∥
2

2

+2pCφC
∗
1n
− 2β

2β+p + 2C∗1n
− β

2β+p

∥∥∥∥∥
p∑
l=1

|KJfl(xl)− fl(xl)|

∥∥∥∥∥
1

+2C∗12−
J
2 n−

β
2β+p

p∑
l=1

2J−1∑
k=0

p∑
m=1

∫
[0,1]p
|φperJk (xl)| |KJfm(xm)− fm(xm)| dx .

Using the properties of Lp norms and Corollary 8.2 [57], it follows:

∥∥∥∥∥
p∑
l=1

|KJfl(xl)− fl(xl)|

∥∥∥∥∥
2

2

≤ 2

p∑
l=1

‖KJfl(xl)− fl(xl)‖2
2 ≤ C∗2

−2J(N+1) ,∥∥∥∥∥
p∑
l=1

|KJfl(xl)− fl(xl)|

∥∥∥∥∥
1

≤
p∑
l=1

‖KJfl(xl)− fl(xl)‖1 ≤ C∗∗2
−J(N+1) .

Therefore, this implies:
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∫
[0,1]p

(
E[f̂J(x)]− f(x)

)2

dx ≤ C∗∗1 n
− 2β

2β+p + pC∗∗1 n
− 2β

2β+p + pC∗∗1 n
− 2β

2β+p2J(2J − 1)||θφ||2∞

+C2
φC
∗∗
1 n
− 2β

2β+pp(p− 1) + C∗2
−2J(N+1) + 2pCφC

∗∗
1 n
− 2β

2β+p

+2C∗1n
− β

2β+pC∗∗2
−J(N+1)

+2C∗12−
J
2 n−

β
2β+p

p∑
l=1

2J−1∑
k=0

∫
[0,1]p
|φperJk (xl)| |KJfl(xl)− fl(xl)| dx

+2C∗12−
J
2 n−

β
2β+p

p∑
l 6=m

2J−1∑
k=0

∫
[0,1]p
|φperJk (xl)| |KJfm(xm)− fm(xm)| dx ,

≤ C∗∗∗
{
n−

2β
2β+p + 22Jn−

2β
2β+p + 2−2J(N+1) + n−

2β
2β+p2−J(N+1)

}
+C∗∗∗

2−
J
2 n−

β
2β+p

p∑
l=1

2J−1∑
k=0

∫
[0,1]p
|φperJk (xl)| |KJfl(xl)− fl(xl)| dx


+C∗∗∗

2−
J
2 n−

β
2β+p

p∑
l 6=m

2J−1∑
k=0

∫
[0,1]p
|φperJk (xl)| |KJfm(xm)− fm(xm)| dx

 ,

for C∗∗∗ = max
{
pC∗∗1 , p C∗∗1 ||θφ||2∞ , 2pC2

φC
∗∗
1 , C∗ , 2C∗1C∗∗

}
> 0, independent of J and

n.

Assumption 7 and Corollary 8.2 [57] imply:

∫
[0,1]p
|φperJk (xl)| |KJfm(xm)− fm(xm)| dx ≤


C2−

J
2 ||θφ||∞2−J(N+1) l = m

C · Cφ2−
J
2 2−J(N+1) l 6= m

Therefore:
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∫
[0,1]p

(
E[f̂J(x)]− f(x)

)2

dx ≤ C̃∗∗∗
{
n−

2β
2β+p + 22Jn−

2β
2β+p + 2−2J(N+1) + n−

2β
2β+p2−J(N+1) + n−

β
2β+p2−J(N+1)

}
,

≤ C̃∗∗∗
{

22Jn−
2β

2β+p + 2−2J(N+1) + n−
β

2β+p2−J(N+1)
}
,

for C̃∗∗∗ = max {C∗∗∗ , C||θφ||∞ , C · Cφ} > 0. Thus,

∥∥∥E[f̂J(x)]− f(x)
∥∥∥2

2
= O

(
22Jn−

2β
2β+p + 2−2J(N+1) + n−

β
2β+p2−J(N+1)

)
, (B.33)

which completes the proof.

Remarks

Note that assumptions ii(d)i and ii(d)ii are automatically satisfied by choosing the orthonor-

mal basis
{
φperJ,k (x), k = 0, ..., 2J − 1

}
. These are explicitly stated to be consistent with re-

sults presented in [57] that were used to obtain the estimator approximation properties.

B.9 Proof of Lemma 3.2.6.

DefineF =
{
f | fl ∈ L2([0, 1]), fl ∈ WN+1

2 ([0, 1]), −∞ < ml ≤ fl ≤Ml <∞, l = 1, ..., p
}

whereWN+1
2 ([0, 1]) is the space of functions that areN+1-times differentiable, and f (k)(x) ∈

L2([0, 1]), k = 0, ..., N+1. For f(x) = β0 +
∑p

l=1 fl(xl) consider that assumptions 1-7 from

Proposition 6 and conditions (A1)-(A5), and (Ak1)-(Ak4) are satisfied. Then:

sup
f∈F

(
E
[
||f̂J(x)− f(x)||22

])
≤ C̃n−( β

2β+p)(
N+1
N+3) , (B.34)

provided (3.41) and (3.42), for J = J(n) such that 2J(n) ' n
2β

(2β+p)(N+3) .
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Proof. For C > 0 sufficiently large it follows:

E||f̂J(x)− f(x)||22 ≤ C
(

22Jn−
2β

2β+p + 2−2J(N+1) + n−
β

2β+p2−J(N+1)
)
,

from (B.31) and (B.33).

The last result implies that it is possible to choose J = J(n) such that the upper bound

of the Risk is minimized. Consequently, (ignoring constants) it is possible to show that

2J(n) ' n
2β

(2β+p)(N+3) provides such optimal result. Moreover, since the upper bound is valid

∀f ∈ F :

sup
f∈F

(
E
[
||f̂J(x)− f(x)||22

])
≤ C̃n−( 2β

2β+p)(
N+1
N+3) (B.35)

,

which completes the proof.

Under the optimal choice of J(n), it follows:

E
[∥∥∥f̂J(x)− E[f̂J(x)]

∥∥∥2

2

]
= O

(
n−(N+2

N+3)n−( p
2β+p)

)
, (B.36)∥∥∥E[f̂J(x)]− f(x)

∥∥∥2

2
= O

(
n−( 2β

2β+p)(
N+1
N+3)

)
. (B.37)

As can be observed in (B.36) and (B.37), the variance term of the estimator f̂J(x) is influ-

enced primarily by the properties of the functional space that contains {fl(x) , l = 1, ..., p}

and the wavelet basis
{
φperJ,k (x), k = 0, ..., 2J − 1

}
. Similarly, for n sufficiently large, the bias

effect dominates in the risk decomposition and is responsible for the average approximation

error of the estimator.
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APPENDIX C

APPENDIX CHAPTER 4

C.1 Previous Theorems and definitions

In this section, we provide important definitions and results previously published that are

used to derive the theoretical properties of the proposed estimators.

C.1.1 Theorem P1 (Pollard 1984)

Consider a class of functions G = {g , g : Rp → [0, B]}, then for any n ∈ N and any ε > 0:

P

{
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

g(Zi)− E[g(Z)]

∣∣∣∣∣ > ε

}
≤ 8 · E

[
N1

( ε
8
,G, zn1

)]
· e−

n·ε2
128B2 , (C.1)

where B < ∞ (i.e. the functions g are uniformly bounded over the class G), {Z,Zi}ni=1 is

an iid sample of random variables in Rp, N1

(
ε
8
,G, zn1

)
is the L1

ε
8
-covering number of G on

zn1 = {Zi}ni=1. This is the smallest N ∈ N such that for every function g ∈ G and a given

probability measure µ on Rp and s ≥ 1 there exists a j = j(g) ∈ {1, ..., N} for which

||g − gj||L1(µ) < ε, for ||g||L1(µ) :=
(∫
|f(z)|dµn

)
=
(

1
n

∑n
i=1 |g(zi)− gj(zi)|s

) 1
s .

A detailed proof of this theorem and a illustrative discussion about covering numbers can be

found in [91] and [9].
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C.1.2 Lemma G1 (Györfi et al. 2002)

Consider a probability measure µ on Rp, s ≥ 1, ε > 0 and a class of functions G on Rp.

Then:

M
(
2ε,G, || · ||Ls(µ)

)
≤ N

(
ε,G, || · ||Ls(µ)

)
≤M

(
ε,G, || · ||Ls(µ)

)
. (C.2)

Here, M
(
ε,G, || · ||Ls(µ)

)
represents the size of the largest ε-packing of G with respect to

|| · ||Ls(µ). This is the largest N ∈ N such that the collection of functions {g1, ..., gN} ∈ G

satisfy ||gj − gl||Ls(µ) ≥ ε, for ||g||Ls(µ) :=
(∫
|f(z)|sdµ

) 1
s .

A detailed proof of this Lemma, together with definitions and details about covering and

packing numbers can be found in section 9 of [9].

C.1.3 Theorem G2 (Györfi et al. 2002)

Before stating this theorem, consider the following definitions:

Definitions G2.1 Consider a class of subsets of Rp denoted by A. Let n ∈ N. Then,

(i) For a sample z1, ..., zn ∈Rp, define s (A, {z1, ..., zn}) as the number of different subsets

of {z1, ..., zn} that can be expressed as sets of the form A∩{z1, ..., zn} for A ∈ A. This

is s (A, {z1, ..., zn}) = |A ∩ {z1, ..., zn} : A ∈ A|.

(ii) If for a set H ⊆ Rp s (A, H) = 2n (i.e. every subset of H can be represented as A ∩H

for A ∈ A), then we say that A shatters H .

(iii) The n-th shatter coefficient of A given a sample containing n points is the maximal

number of different subsets of the n points that are contained by sets in A, therefore,
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they can be represented as A ∩H for A ∈ A. We denote the n-th shatter coefficient of

A as S(A, n). Note that for all n > k we have that S(A, k) < 2k implies S(A, n) < 2n.

(iv) Suppose that A ⊆ Rp 6= ∅, the VC dimension (Vapnis-Chervonenkis dimension) VA of

A corresponds to the largest integer n such that there exists a set of n points in Rp that

can be shattered by A. This is VA = sup {n ∈ N : S(A, n) = 2n}.

(v) Suppose G is a class of functions in Rp such that ∀g ∈ G , g : Rp → [0, B]. Let’s define

the set G+ := {(z, t) ∈ Rp × R ; t ≤ (z) ; g ∈ G}. This set corresponds to the set of all

sub-graphs of the functions contained in the set G.

Now, consider a class of functions G in Rp such that ∀g ∈ G , g : Rp → [0, B] with VG+ ≥ 2.

Let s ≥ 1 and µ a probability measure on Rp and let 0 < ε < B
4

; then:

M
(
ε,G, || · ||Ls(µ)

)
≤ 3

(
2eBs

εs
log

(
3eBs

εs

))VG+
. (C.3)

A detailed proof of this Theorem, together with definitions and details about shattering num-

bers and VC dimension can be found in section 9 of [9].

C.1.4 Theorem G3 (Györfi et al. 2002)

This theorem provides an upper bound on the VC dimension for r-dimensional vector spaces.

Consider G to be a r-dimensional vector space of real functions defined on Rp. Let A =

{z : g(x) ≥ 0 : g ∈ G}. Then:

VA ≤ r . (C.4)

A detailed proof of this Theorem can be found in section 9.4 of [9].
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C.1.5 Theorem G4 (Györfi et al. 2002)

This theorem provides necessary and sufficient conditions for the consistency of least squares

estimators. Consider Fn = Fn ({(Yi,Xi}ni=1) a class of functions f : Rp → R. Let βn be a

parameter depending on the sample size n such that βn →∞ as n→∞. Let f̂J(n) be defined

as in (4.12) and fJ(n) = Tβn f̂J(n) (i.e. the truncated version of f̂J(n)) and µ be a Lebesgue

measure in Rp; Then :

(i) If for all L > 0 the following conditions hold:

lim
n→∞

inf
f∈Fn:||f ||∞≤βn

∫
|f(x)− fA(x)|2 µ(dx) = 0 (a.s.) , (C.5)

lim
n→∞

sup
f∈TβnFn

∣∣∣∣∣ 1n
n∑
i=1

|f(Xi)− Yi,L|2 − E
[
(f(X)− YL)2

]∣∣∣∣∣ = 0 (a.s.) , (C.6)

then:

lim
n→∞

∫ ∣∣fJ(n)(x)− fA(x)
∣∣2 µ(dx) = 0, almost surely (a.s.).

Here, YL = TLY =

 Y |Y | ≤ βn

βn · sign(Y ) |Y | > βn

.

(ii) If for all L > 0 the following conditions hold:

lim
n→∞

E
{

inf
f∈Fn:||f ||∞≤βn

∫
|f(x)− fA(x)|2 µ(dx)

}
= 0 , (C.7)

lim
n→∞

E

{
sup

f∈TβnFn

∣∣∣∣∣ 1n
n∑
i=1

|f(Xi)− Yi,L|2 − E
[
(f(X)− YL)2

]∣∣∣∣∣
}

= 0 , (C.8)

then:

lim
n→∞

E
{∫ ∣∣fJ(n)(x)− fA(x)

∣∣2 µ(dx)
}

= 0.

A detailed proof of this Theorem can be found in section 10.1 of [9].
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This theorem shows that strong consistency is achieved for any least squares estimator ob-

tained over a data-dependent class of functions Fn, truncated by a suitable parameter βn that

depends on the sample size and converges to∞, and provided that the approximation error

(C.5) converges to zero a.s. (i.e. for every ω ∈ Ω such that P(ω) 6= 0, fn(ω) → fA with

probability 1), and that the empirical L2 norm uniformly converges to the L2(µ) norm over

the set of functions TβnFn.

C.1.6 Theorem P2 (Pollard 1984)

Suppose F is a class of functions f : Rp → R such that ∀ x ∈ Rp, |f(x)| < B, for

0 < B <∞. Then, for ε > 0 (arbitrary) it follows:

P {∃ f ∈ F : ||f || − 2||f ||n > ε} ≤ 3 · E

[
N2

(√
2

24
ε, F ,X2n

1

)]
e−

nε2

288B2 , (C.9)

where ||g||2 =
∫
Rp |g(x)|2dx and ||g||2n = 1

n

∑n
i=1 |g(xi)|2. A detailed proof of this Lemma,

together with definitions and details about covering and packing numbers can be found in

section 11 of [9].

C.2 Proof of Theorem 4.3.1.

Suppose an orthonormal set of functions
{
φperJ,k (x), k = 0, ..., 2J − 1

}
which as J → ∞ is

dense in L2(ν([0, 1])) for ν ∈ Υ, and let Υ be the set of bounded Lebesgue measures in

[0, 1]. Suppose µ is a bounded Lebesgue measure in [0, 1]p, and the following conditions are

satisfied for the scaling function φ:

(a) ∃Φ, bounded and non-increasing function in R such that
∫

Φ(|u|)du <∞ and |φ(u)| ≤

Φ(|u|) almost everywhere (a.e.).

(b) In addition,
∫
R |u|

N+1Φ(|u|)du <∞ for some N ≥ 0.
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(c) ∃F , integrable, such that |K(x, y)| ≤ F (x − y), ∀x, y ∈ R, for K(x, y) =
∑

k φ(x −

k)φ(y − k).

(d) Suppose φ satisfies:

i.
∑

k |φ̂(ξ + 2kπ)|2 = 1, a.e., where φ̂ denotes the Fourier transform of the scaling

function φ.

ii. φ̂(ξ) = φ̂( ξ
2
)m0( ξ

2
), where m0(ξ) is a 2π-periodic function and m0 ∈ L2(0, 2π).

(e)
∫
R x

kψ(x)dx = 0, for k = 0, 1, ..., N , N ≥ 1 where ψ is the mother wavelet corre-

sponding to φ.

(f) The functions {fl}pl=1, are such that fl ∈ L∞([0, 1]) and fl ∈ Wm+1
∞ ([0, 1]) , m ≥ N ,

whereWm
∞([0, 1]) denotes the space of functions that arem-times weakly-differentiable

and f (k)
l ∈ L∞([0, 1]) , k = 1, ...,m.

(g) θφ(x) :=
∑

k |φ(x− k)| such that ||θφ||∞ <∞.

Under Corollary 8.2 [57], if f ∈ WN+1
∞ ([0, 1]) then ||KJf − f ||p∞ = O

(
2−pJ(N+1)

)
, p ≥ 1.

Furthermore, assume condition (A3) is satisfied. Define the set of functions:

Fn =

f : [0, 1]p → R | f(x) =

p∑
j=1

2J−1∑
k=0

c
(j)
Jkφ

per
Jk (xj) ; J = J(n)

 , (C.10)

where xj , j = 1, ..., p corresponds to the j-th component of the vector x ∈ [0, 1]p. Also,

let βn > 0 be a parameter depending on the sample and assume E [Y 2] < ∞. Define f̂J(n)

as in (4.12) and let fJ(n) = Tβn f̂J(n) := f̂J(n)1{|f̂J(n)|≤βn} + sign(f̂J(n))βn1{|f̂J(n)|>βn},

Kn = 2J(n). Assume the following conditions hold:

(i) βn →∞ as n→∞.

(ii) Knβ
4
n log(βn)
n

→ 0 as n→∞.

(iii) For some δ > 0 as n→∞ n1−δ

β4
n
→∞.
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Then:

lim
n→∞

∫ ∣∣fJ(n)(x)− fA(x)
∣∣2 µ(dx) = 0 (a.s.) , (C.11)

lim
n→∞

E
{∫ ∣∣fJ(n)(x)− fA(x)

∣∣2 µ(dx)

}
= 0 . (C.12)

Proof

The proof for this theorem is based on the application of Theorem G4 (Györfi et al. 2002)

described in C.1.5, checking conditions (C.5)-(C.8) are satisfied.

This proof is composed of 2 parts: the first shows that conditions (C.5) and (C.7) are implied

by assumption (i). The second part shows that assumptions (ii) and (iii) imply conditions

(C.6) and (C.8) of Theorem C.1.5.

Part 1

Consider an arbitrary ε > 0. Then for f ∈ Fn, it follows:

∫
[0,1]p
|f(x)− fA(x)|2 µ(dx) =

∫
[0,1]p

∣∣∣∣∣∣
p∑
j=1

2J−1∑
k=0

c
(j)
Jkφ

per
Jk (xj)− fj(xj)

∣∣∣∣∣∣
2

µ(dx)

≤ p ·
p∑
j=1

∫
[0,1]p

2J−1∑
k=0

c
(j)
Jkφ

per
Jk (xj)− fj(xj)

2

µ(dx)

≤ p ·
p∑
j=1

∫ 1

0

2J−1∑
k=0

c
(j)
Jkφ

per
Jk (xj)− fj(xj)

2

νj(dxj) ,(C.13)

where ν1, ..., νp are bounded Lebesgue measures on [0, 1] (since µ is a bounded Lebesgue

measure in [0, 1]p). Since
{
φperj,k (x), k = 0, ..., 2j − 1, j ≥ 0

}
is dense in L2(ν([0, 1])), by
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Proposition 1 in 4.3.1:

∃
{
c

(1)∗
J,0 , ..., c

(1)∗
J,2J−1

, ..., c
(p)∗
J,0 , ..., c

(p)∗
J,2J−1

}
,

for which J = J∗(n0(ε)) such that:

∫
[0,1]p

∣∣∣∣∣∣
p∑
j=1

2J−1∑
k=0

c
(j)
J,kφ

per
J,k (xj)− fj(xj)

∣∣∣∣∣∣
2

µ(dx) ≤ ε . (C.14)

Therefore, for a given ε > 0, it is possible to find n0(ε) such that for J∗ = J(n0(ε)) (C.14)

holds.

Now for a fixed n = n0(ε) the set Fn is composed of functions that are uniformly bounded

by a parameter depending on the sample size. In fact, it is possible to show that ||f ||∞ ≤

||θφ||∞||f ∗j ||∞ · 2
J(n0(ε))

2 , where ||f ∗j ||∞ = max
j=1,...,p

||fj||∞. Therefore, for an arbitrary ε > 0,

and for all n ≤ n0(ε), ∃ βn > 0 such that:

p∑
j=1

2J(n)−1∑
k=0

c
(j)∗
Jk φ

per
Jk (xj) ∈

{
f ∈ Fn | ||f ||∞ ≤ βn0(ε)

}
.

From this last result and (C.13),(C.14), for n ≥ n0(ε) it follows:

inf
{f∈Fn | ||f ||∞≤βn}

∫
[0,1]p
|f(x)− fA(x)|2 µ(dx) ≤ ε . (C.15)

Since ε > 0 is arbitrary, (C.15) implies:

lim
n→∞

{
inf

{f∈Fn | ||f ||∞≤βn}

∫
[0,1]p
|f(x)− fA(x)|2 µ(dx)

}
= 0 , (C.16)

which shows that as J = J(n)→∞ (n→∞) and βn →∞ (n→∞), (C.5) is satisfied.
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From (C.15) and the last result, the dominated convergence theorem implies:

lim
n→∞

E
{

inf
{f∈Fn | ||f ||∞≤βn}

∫
[0,1]p
|f(x)− fA(x)|2 µ(dx)

}
= 0 , (C.17)

therefore, (C.7) is also implied, provided J = J(n)→∞ (n→∞) and βn →∞ (n→∞).

Part 2

In this part, we use results provided in section C.1.5 of the appendix. Consider L > 0

arbitrary and assume (wlog) that L < βn. Define Z = (X, Y ) and Zi = (Xi, Yi) for i =

1, ..., n. Also, define the set of functions:

Gn =
{
g, : [0, 1]p × R→ R : ∃ f ∈ TβnFn s.t. g(X, y) = |f(X)− TLY |2

}
.

Note that the last definition implies that sup
f∈TβnFn

∣∣ 1
n

∑n
i=1 |f(Xi)− Yi,L|2 − E [(f(X)− YL)2]

∣∣
is equivalent to:

sup
g∈Gn

∣∣∣∣∣ 1n
n∑
i=1

g(Zi)− E [g(Z)]

∣∣∣∣∣ .
Moreover, since it is assumed that L < βn, every function g ∈ Gn satisfies 0 ≤ g(Z) ≤ 4β2

n.

This allows the application of Theorem P1 (Pollard 1984) as follows:

For an arbitrary ε > 0, it follows:

P

{
sup
g∈Gn

∣∣∣∣∣ 1n
n∑
i=1

g(Zi)− E [g(Z)]

∣∣∣∣∣ > ε

}
≤ 8 · E

[
N1

( ε
8
,Gn, zn1

)]
e
− nε2

2048β4n . (C.18)

Lemma G1 shows that N1

(
ε
8
,Gn, zn1

)
≤ M1

(
ε
8
,Gn, zn1

)
. Therefore, a relation between

M1

(
ε
8
,Gn, zn1

)
andM1 (λ, TβnFn,Xn

1 ) needs to be established for some λ = λ(ε) > 0.

Consider g1, g2 ∈ Gn (i.e. ∃ f1, f2 ∈ TβnFn s.t. g(X, y) = |f(X)−TLY |2), then if {g1, ..., gM}
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is an L1- ε
8

packing of Gn on zn1 , ∀1 ≤ j < m ≤M it holds:

1

n

n∑
i=1

|gj(zi)− gm(zi)| ≥
ε

8
.

Using the definition of Gn, it follows:

1

n

n∑
i=1

|g1(zi)− g2(zi)| =
1

n

n∑
i=1

∣∣|f1(Xi)− TLYi|2 − |f2(Xi)− TLYi|2
∣∣

=
1

n

n∑
i=1

(|f1(Xi)− f2(Xi)| |f1(Xi) + f2(Xi)− 2TLYi|)

≤ 1

n

n∑
i=1

|f1(Xi)− f2(Xi)| · 4βn

ε

32βn
≤

n∑
i=1

|f1(Xi)− f2(Xi)| .

Therefore, if {g1, ..., gM} is an L1- ε
8

packing of Gn on zn1 , then {f1, ..., fM} is an L1- ε
32βn

packing of TβnFn on Xn
1 . Thus this result implies:

M1

( ε
8
,Gn, zn1

)
≤M1

(
ε

32βn
, TβnFn,Xn

1

)
(C.19)

Substituting the last result in (C.18), leads to:

P

{
sup
g∈Gn

∣∣∣∣∣ 1n
n∑
i=1

g(Zi)− E [g(Z)]

∣∣∣∣∣ > ε

}
≤ 8 · E

[
M1

(
ε

32βn
, TβnFn,Xn

1

)]
e
− nε2

2048β4n .

(C.20)

Now, applying Theorem G2, for 0 < ε < βn
4

it follows:

M1

(
ε

32βn
, TβnFn,Xn

1

)
≤ 3

(
128 e β2

n

ε
log

(
192 e β2

n

ε

))V
Tβn
F+
n

. (C.21)
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Since TβnF+
n = {(x, t) ∈ [0, 1]p × R : t ≤ f(x) , f ∈ TβnFn}, for t > βn the pair (x, t) /∈

TβnF+
n . On the contrary, when t ≤ βn since ∀f ∈ TβnFn βn ≤ f ≤ βn, every pair

(x, t) ∈ TβnF+
n . This implies:

VTβnF+
n
≤ VF+

n
. (C.22)

Similarly, since dim(Fn) = p · 2J , Theorem G3 implies:

VF+
n
≤ p · 2J + 1 . (C.23)

Combining (C.21), (C.22), and (C.23), it is possible to express (C.20) as:

P

{
sup
g∈Gn

∣∣∣∣∣ 1n
n∑
i=1

g(Zi)− E [g(Z)]

∣∣∣∣∣ > ε

}
≤ 24 ·

((
128 e β2

n

ε
log

(
192 e β2

n

ε

))(p·2J+1)
)
e
− nε2

2048β4n

≤ 24 · e
2(p·2J+1) log

(
192 e β2n

ε

)
− nε2

2048β4n .

Finally, it follows:

P

{
sup
g∈Gn

∣∣∣∣∣ 1n
n∑
i=1

g(Zi)− E [g(Z)]

∣∣∣∣∣ > ε

}
≤

∞∑
n=1

P

{
sup
g∈Gn

∣∣∣∣∣ 1n
n∑
i=1

g(Zi)− E [g(Z)]

∣∣∣∣∣ > ε

}

≤
∞∑
n=1

24 · e
2(p·2J+1) log

(
192 e β2n

ε

)
− nε2

2048β4n

≤
∞∑
n=1

24 · e
{
−nδ n

1−δ

β4n

(
ε2

2048
− 2(p·2J+1)β4n

n
log

(
192 e β2n

ε

))}
.(C.24)

Notice that if for some δ > 0 the following conditions hold:

(a) n1−δ

β4
n
−→∞ as n→∞ ,

(b) 2(p·2J+1)β4
n

n
log
(

192 e β2
n

ε

)
−→∞ as n→∞,

then the series (C.24) is absolutely convergent. DenoteKn = p·2J and observe that condition
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(b) can be bounded as:

2(Kn + 1)β4
n

n
log

(
192 e β2

n

ε

)
≤ 4(Kn + 1)β4

n log(βn)

n
+
C1(Kn + 1)β4

n

n

≤ C2
Knβ4

n log(βn)

n
, (C.25)

for a constant C2 > 0 independent of n.

Therefore, if Knβ
4
n log(βn)
n

−→∞ as n→∞, then we get condition (b) satisfied by assumption

(ii). This implies that the terms in the series (C.24) go to zero. Therefore:

∞∑
n=1

24 · e
{
−nδ n

1−δ

β4n

(
ε2

2048
− 2(p·2J+1)β4n

n
log

(
192 e β2n

ε

))}
<∞ .

This result implies that ∃n0(ε) such that for n > n0(ε), it follows:

P

{
sup
g∈Gn

∣∣∣∣∣ 1n
n∑
i=1

g(Zi)− E [g(Z)]

∣∣∣∣∣ > ε

}
−→ 0 (n→∞) . (C.26)

Similarly, for ε > 0 it follows:

E

{
sup
g∈Gn

∣∣∣∣∣ 1n
n∑
i=1

g(Zi)− E [g(Z)]

∣∣∣∣∣
}

=

∫ ∞
0

P

{
sup
g∈Gn

∣∣∣∣∣ 1n
n∑
i=1

g(Zi)− E [g(Z)]

∣∣∣∣∣ > t

}
dt

≤ ε+

∫ ∞
ε

P

{
sup
g∈Gn

∣∣∣∣∣ 1n
n∑
i=1

g(Zi)− E [g(Z)]

∣∣∣∣∣ > t

}
dt

≤ ε+

∫ ∞
ε

24 ·

((
192 e β2

n

t

)2(Kn+1)
)
e
− n t2

2048β4n dt

≤ ε+ 24
2048β4

n

nε
e

2(Kn+1) log

(
192 e β2n

ε

)
− nε2

2048β4n

≤ ε+ 24 · 2048
1

nδ
β4
n

n1−δ e
−nδ n

1−δ

β4n

(
ε2

2048
− 2(Kn+1)β4n

n
log

(
192 e β2n

ε

))
.
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Clearly, since condition (a) and (b) are satisfied by assumptions (ii) and (iii), the second term

of the above equation goes to zero as n→∞. Since ε is arbitrary, this implies:

E

{
sup
g∈Gn

∣∣∣∣∣ 1n
n∑
i=1

g(Zi)− E [g(Z)]

∣∣∣∣∣
}
−→ 0 (n→∞) . (C.27)

By the Borel-Cantelli Lemma, (C.27) and (C.26) show assumptions (ii) and (iii) imply con-

ditions (C.6) and (C.8) of Theorem C.1.5. This, together with results from Part 1 show that

(C.11) and (C.12) hold, and the Theorem is proved.

C.3 Proof of Lemma 4.3.2.

Suppose an orthonormal set of functions
{
φperj,k (x), k = 0, ..., 2j − 1, j ≥ 0

}
which is dense

in L2(ν([0, 1])) for ν ∈ Υ, which represents the set of bounded lebesgue measures in [0, 1].

Suppose µ is a bounded lebesgue measure in [0, 1]p and that conditions stated in Theorem 1

for the scaling function φ, and assumptions (A1)-(A4) presented in 4.2 hold.

Define the set of functions Fn as in (C.10). Also, let βn > 0 be a parameter depending on

the sample and assume E [Y 2] < ∞. Define f̂J(n) as in (4.12) and let fJ(n) = Tβn f̂J(n), let

Kn = p 2J(n).

Furthermore, assume the following condition holds:

(i)
∑p

j=1 ||fj||∞ < L, for some L < βn.

Then:

E

[
1

n

n∑
i=1

∣∣fJ(n)(xi)− fA(xi)
∣∣2 | Xn

1

]
≤ min

f∈Fn

{
||f − fA||2n

}
+
σ2

n
Kn (C.28)
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Proof

First, note that ||fA||∞ < βn (from condition (i)), implies that ||fJ(n)−fA||2n ≤ ||f̂J(n)−fA||2n.

Therefore, this further implies:

E
[
||fJ(n) − fA||2n | Xn

1

]
≤ E

[
||f̂J(n) − fA||2n | Xn

1

]
≤ E

[∥∥∥f̂J(n) − E
[
f̂J(n) | Xn

1

]
+ E

[
f̂J(n) | Xn

1

]
− fA

∥∥∥2

n
| Xn

1

]
≤ E

[∥∥∥f̂J(n) − E
[
f̂J(n) | Xn

1

]∥∥∥2

n
| Xn

1

]
+ E

[∥∥∥E [f̂J(n) | Xn
1

]
− fA

∥∥∥2

n
| Xn

1

]
+2E

{
1

n

n∑
i=1

(
f̂J(n)(Xi)− E

[
f̂J(n) | Xn

1

]) (
E
[
f̂J(n) | Xn

1

]
− fA(Xi)

)
| Xn

1

}

≤ E
[∥∥∥f̂J(n) − E

[
f̂J(n) | Xn

1

]∥∥∥2

n
| Xn

1

]
+
∥∥∥E [f̂J(n) | Xn

1

]
− fA

∥∥∥2

n
, (C.29)

where the last result follows since the last term in the third inequality is zero. From definitions

(4.10), (4.13), and (4.14), for any i ∈ {1, ..., n} it follows:

E
[
f̂J(n)(Xi) | Xn

1

]
= E

[
BT (Xi) c∗ | Xn

1

]
= BT (Xi)

(
BTB

)−1 BT E [Y | Xn
1 ]

= BT (Xi)
(
BTB

)−1 BT


fA(X1)

...

fA(Xn)


= BT (Xi)

(
BTB

)−1 BT f . (C.30)

Now, from the last set of equations, it follows that E [c∗ | Xn
1 ] =

(
BTB

)−1 BT f, which im-

plies:
1

n

(
BTB

)
E [c∗ | Xn

1 ] =
1

n
BT f .
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Therefore, E [c∗ | Xn
1 ] is the least squares solution for the problem: min

a∈RKn

{
‖B a− f‖2

n

}
. This

implies that
∥∥∥E [f̂J(n) | Xn

1

]
− fA

∥∥∥2

n
= min

f∈Fn
||f − fA||2n.

Therefore, this result and (C.29), imply:

E
[
||fJ(n) − fA||2n | Xn

1

]
≤ E

[∥∥∥f̂J(n) − E
[
f̂J(n) | Xn

1

]∥∥∥2

n
| Xn

1

]
+ min

f∈Fn
||f − fA||2n .

For a fixed x, from definitions (4.10), (4.13) and (4.14), it follows:

E
[∣∣∣f̂J(n)(x)− E

[
f̂J(n)(x) | Xn

1

]∣∣∣2 | Xn
1

]
= E

[∣∣B(x)T c∗ − B(x)TE [c∗ | Xn
1 ]
∣∣2 | Xn

1

]
= E

[∣∣∣B(x)T
(
BTB

)−1 BT (Y− f)
∣∣∣2 | Xn

1

]
= B(x)T HE

[
(Y− f) (Y− f)T

]
HTB(x) ,(C.31)

where H =
(
BTB

)−1 BT . By the assumptions of model (4.1), it follows that E
[
(Y− f) (Y− f)T

]
=

σ2IKn . Therefore, (C.31) can be expressed as:

E
[∣∣∣f̂J(n)(x)− E

[
f̂J(n)(x) | Xn

1

]∣∣∣2 | Xn
1

]
= σ2B(x)T

(
BTB

)−1 B(x) .

By substituting this result in E
[∥∥∥f̂J(n) − E

[
f̂J(n) | Xn

1

]∥∥∥2

n
| Xn

1

]
, it follows:

E
[
||fJ(n) − fA||2n | Xn

1

]
≤ min

f∈Fn
||f − fA||2n +

σ2

n

n∑
i=1

B(xi)T
(
BTB

)−1 B(xi) . (C.32)
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Notice that:

n∑
i=1

B(xi)T
(
BTB

)−1 B(xi) = trace

{
n∑
i=1

B(xi)T
(
BTB

)−1 B(xi)

}

=
n∑
i=1

trace
{

B(xi)T
(
BTB

)−1 B(xi)
}

=
n∑
i=1

trace
{(

BTB
)−1 B(xi)B(xi)T

}
= trace

{(
BTB

)−1
n∑
i=1

B(xi)B(xi)T
}

= trace {IKn} = Kn , (C.33)

where the last 2 equalities follow from definitions (4.10) and (4.13). In fact, it is possible to

observe that
∑n

i=1 B(xi)B(xi)T = BTB. Therefore, this result applied to (C.32) implies:

E

[
1

n

n∑
i=1

∣∣fJ(n)(xi)− fA(xi)
∣∣2 | Xn

1

]
≤ min

f∈Fn

{
||f − fA||2n

}
+
σ2

n
Kn .

which proves assertion (C.28).

C.4 Proof of Lemma 4.3.3.

Suppose an orthonormal basis
{
φperj,k (x), k = 0, ..., 2j − 1, j ≥ 0

}
which is dense in L2(ν([0, 1]))

for ν ∈ Υ, which represents the set of bounded lebesgue measures in [0, 1]. Suppose assump-

tions stated in Theorem 1 for the scaling function φ, and conditions (A1)-(A4) defined in 4.2

hold. Let the set of functions Fn to be defined as in (C.10).

Then it follows:

inf
f∈Fn

∫
[0,1]p
|f(x)− fA(x)|2 µ(dx) ≤ p2C2

2 2−2(N+1) J(n) . (C.34)
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Proof

Denote fJj =
∑2J−1

k=0 c
(j)
Jkφ

per
Jk . Consider:

inf
f∈Fn

∫
[0,1]p
|f(x)− fA(x)|2 µ(dx) = inf

f∈Fn

∫
[0,1]p

∣∣∣∣∣
p∑
j=1

(
fJj (xj)− fj(xj)

)∣∣∣∣∣
2

µ(dx)

≤ p inf
f∈Fn

∫
[0,1]p

p∑
j=1

∣∣fJj (xj)− fj(xj)
∣∣2 µ(dx)

≤ p inf
f∈Fn

p∑
j=1

sup
xj∈[0,1]

∣∣fJj (xj)− fj(xj)
∣∣2

≤ p inf
f∈Fn

p∑
j=1

(
sup

xj∈[0,1]

∣∣fJj (xj)− fj(xj)
∣∣)2

.

By corollary 8.2 of [57], it follows that sup
xj∈[0,1]

∣∣fJj (xj)− fj(xj)
∣∣ = O

(
2−J (N+1)

)
; therefore,

∃C2 independent of n, and J such that sup
xj∈[0,1]

∣∣fJj (xj)− fj(xj)
∣∣ ≤ C2 2−J (N+1). Thus:

inf
f∈Fn

∫
[0,1]p
|f(x)− fA(x)|2 µ(dx) ≤ p2C2

2 2−2(N+1) J(n) ,

as desired.

C.5 Proof of Theorem 4.3.2.

This proof follows the same methodology as in section 10 of [9]. Consider assumptions

stated for Lemma 1 and conditions (i)-(iii) for Theorem 1 hold . Then:

E
[∫

[0,1]p

∣∣fJ(n)(x)− fA(x)
∣∣2 µ(dx)

]
≤ C̃ max

{
β2
n, σ

2
} p 2J(n)

n
(log(n) + 1) ,+8C2

2 p
2 2−2(N+1)J(n) ,

(C.35)

for proper constants C̃ > 0 and C2 > 0 independent of n,N, p.
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Proof

Note that ||fJ(n) − fA||2 =
∫

[0,1]p

∣∣fJ(n)(x)− fA(x)
∣∣2 µ(dx) can be expressed as follows:

||fJ(n) − fA||2 =
(
||fJ(n) − fA|| − 2 ||fJ(n) − fA||n + 2 ||fJ(n) − fA||n

)2

≤
(
max

{
0 , ||fJ(n) − fA|| − 2 ||fJ(n) − fA||n

}
+ 2 ||fJ(n) − fA||n

)2

≤ 2
(
max

{
0 , ||fJ(n) − fA|| − 2 ||fJ(n) − fA||n

})2
+ 8 ||fJ(n) − fA||2n ,

≤ S1,n + 8S2,n .

Observe that E [S2,n] = EXn1

[
E
(
||fJ(n) − fA||2n | Xn

1

)]
. Similarly, from the definition of

fJ(n) and condition (i) of Lemma 1, it follows that ||fJ(n) − fA||2n ≤ ||f̂J(n) − fA||2n. These 2

results and Lemma 1 imply:

E [S2,n] ≤ EXn1

[
min
f∈Fn

{
||f − fA||2n

}]
+
σ2

n
Kn

≤ EXn1

[
min
f∈Fn

{
1

n

n∑
i=1

|f(xi)− fA(xi)|2
}]

+
σ2

n
Kn

≤ inf
f∈Fn

{∫
[0,1]p
|f(x)− fA(x)|2 µ(dx)

}
+
σ2

n
Kn , (C.36)

where the last inequality follows from the properties of the expected value and the iid condi-

tion of the sample Xn
1 = (X1, ...,Xn). Now, for S1,n, define:

Gn =
{
gn : [0, 1]p → R ; gn = fJ(n) − fA | fJ(n) ∈ TβnFn

}
.
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Observe that ∀g ∈ Gn |gn| ≤ 2 βn. Consider u > 0 (arbitrary) and:

P {S1,n > u} = P
{

2
(
max

{
0 , ||fJ(n) − fA|| − 2 ||fJ(n) − fA||n

})2
> u

}
= P

{
max

{
0 , ||fJ(n) − fA|| − 2 ||fJ(n) − fA||n

}
>

√
u

2

}
≤ P

{
max

{
0 , ||fJ(n) − fA|| − 2 ||fJ(n) − fA||n

}
>

√
u

2

}
.

From Theorem P2, it follows:

P {S1,n > u} ≤ 3E

[
N2

(√
2

24

√
u

2
,Gn,X2n

1

)]
e
− n u2

288 (2βn)2

≤ 3E
[
N2

(√
u

24
,Gn,X2n

1

)]
e
− nu

576·4β2n .

Lemma G1 implies that N2

(√
u

24
,Gn,X2n

1

)
≤M2

(√
u

24
,Gn,X2n

1

)
. Similarly, from Theorem

G2, it follows that M2

(√
u

24
,Gn,X2n

1

)
≤ 3

(
2 e 4β2

n(√
u

24

)2 log

(
3 e 4β2

n(√
u

24

)2
))VG+n

. Using the same

argument as in the proof of Theorem 1, Theorem G3 implies that VG+n ≤ Kn + 1. Therefore:

P {S1,n > u} ≤ 3

(
242 12 e β2

n

u

)2(Kn+1)

e
− nu

576·4β2n .

Note that for u > 576β2
n

n
, 242 12 e β2

n

u
≤ 12 e n; Therefore, it follows:

P {S1,n > u} ≤ 3 (12 e n)2(Kn+1) e
− nu

576·4β2n .

Now, consider δ > 0. For u > 576β2
n

n
, E [S1,n] can be bounded as follows:
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E [S1,n] ≤
∫ ∞

0

P {S1,n > t} dt

≤ δ +

∫ ∞
δ

P {S1,n > t} dt

≤ δ + 3 (12 e n)2(Kn+1)

∫ ∞
δ

e
− n t

576·4β2n dt

≤ δ + 3 (12 e n)2(Kn+1)

(
2304 β2

n

n

)
e
− n δ

576·4β2n . (C.37)

Observe that the rhs of (C.37) is continuous for δ > 0. Therefore, it is possible to obtain

a value of δ that minimizes the upper bound. In this context, it is possible to show that

δ∗ = 2304β2
n

n
log
(

9 · (12 e n)2(Kn+1)
)

is the aforementioned minimizer. Using this result, it

follows:

E [S1,n] ≤ 2304 β2
n

n
log
(

9 · (12 e n)2(Kn+1)
)

+
2304 β2

n

n
.

After some algebra, the last expression takes the form:

E [S1,n] ≤ C̃ β2
nKn (log(n) + 1)

n
, (C.38)

for C̃ = 4608 log(12). This, together with (C.36) imply:

E
{
||fJ(n) − fA||2

}
≤ c̃ β2

nKn (log(n) + 1)

n
+ 8 inf

f∈Fn

{∫
[0,1]p
|f(x)− fA(x)|2 µ(dx)

}
+

8σ2

n
Kn .

Finally, from Lemma 2 it follows:

E
{
||fJ(n) − fA||2

}
≤ C̃ max

{
β2
n, σ

2
} p 2J(n)

n
(log(n) + 1) ,+8C2

2 p
2 2−2(N+1)J(n)(C.39)

which proves the desired result.
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C.6 Proof of Lemma 4.3.4.

Suppose a model of the form (4.8). Assume ε is a sub-gaussian random variable independent

of X such that E[ε] = 0, E[ε2] = 1, 0 < σ <∞. Let {Y1, ..., Yn} be the response observations

from the iid sample {(Yi,Xi)}ni=1 and suppose ||fA||∞ ≤ L.

Then, for βn = 4σ
√

log(n) it follows:

P {max {Y1, ..., Yn} > βn} = O
(

1

n

)
. (C.40)

Proof

Denote Y(n) = max {Y1, ..., Yn}. For some δ > 0 it holds:

P
{
Y(n) > βn

}
≤ P {∪ni=1Yi > βn}

≤
n∑
i=1

P {Yi > βn}

≤ n

∫
[0,1]p

P {fA(u) + σ ε > βn | X = u}h(u)du

≤ n

∫
[0,1]p

P
{
|ε| > βn − L

σ
| X = u

}
h(u)du

≤ nP
{
|ε| > βn − L

σ

}
.

Since ε is assumed to be sub-gaussian (E[ε] = 0, E[ε2] = 1, 0 < σ < ∞), we have that

∀s ∈ R, E [es ε] ≤ e
s2

2 . Consequently, it is possible to show that P {|ε| > t} ≤ 2 e−
t2

2 . Using

this result in the last equation, it follows:

P
{
Y(n) > βn

}
≤ 2n e−

(βn−L)2

2σ2 .
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Suppose it is possible to choose βn in such a way that 2n e−
(βn−L)2

2σ2 ≤ 1
n

. This implies

that Y(n) it’s bounded in probability. Under this setting, assuming that for n large enough
√

2σ
√

log(n) > L, it follows:

P
{

max {Y1, ..., Yn} >
√

2σ
√

log(n)
}

= O
(

1

n

)
,

which shows (C.40) holds.
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APPENDIX D

APPENDIX CHAPTER 6

D.1 Additional Results For Type I and II Error Simulation-Based Performance Stud-

ies

D.1.1 Box Plots for Type I Error Simulation Study

(a) Box plot of p̂Testm for J = 4 (b) Box plot of p̂Testm for J = 5 (c) Box plot of p̂Testm for J = 6

(d) Box plot of p̂Testm for J = 7 (e) Box plot of p̂Testm for J = 8

Figure D.1: Box plots of p̂Testm for AR(1) with parameter φ = −0.9. For scale levels J = 4 to J = 7, most of
tests remains within the expected 5% type I error; however, for J = 8 the tests C2, Kendall, Spearman’s and T-test
exhibit a significantly large deviation from the expected error, with an average of approximately 38%. This implies
that on average, for this kind of stochastic processes, wavelet coefficient corresponding to short time scales depart from
normality and exhibit heavier tails, which causes an artificial inflation of the likelihood of a false positive classification.
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(a) Box plot of p̂Testm for J = 4 (b) Box plot of p̂Testm for J = 5 (c) Box plot of p̂Testm for J = 6

(d) Box plot of p̂Testm for J = 7 (e) Box plot of p̂Testm for J = 8

Figure D.2: Box plots of p̂Testm for AR(1) with parameter φ = −0.7. For scale levels J = 4 to J = 7, most of
tests remains within the expected 5% type I error; however, for J = 8 the tests C2, Kendall, Spearman’s and T-test
exhibit a significantly large deviation from the expected error, with an average of approximately 14%. This implies
that on average, for this kind of stochastic processes, wavelet coefficient corresponding to short time scales depart from
normality and exhibit heavier tails, which causes an artificial inflation of the likelihood of a false positive classification.
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(a) Box plot of p̂Testm for J = 4 (b) Box plot of p̂Testm for J = 5 (c) Box plot of p̂Testm for J = 6

(d) Box plot of p̂Testm for J = 7 (e) Box plot of p̂Testm for J = 8

Figure D.3: Box plots of p̂Testm for AR(1) with parameter φ = 0.9. For all scale levels most of tests remains within
the expected 5% type I error.
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(a) Box plot of p̂Testm for J = 4 (b) Box plot of p̂Testm for J = 5 (c) Box plot of p̂Testm for J = 6

(d) Box plot of p̂Testm for J = 7 (e) Box plot of p̂Testm for J = 8

Figure D.4: Box plots of p̂Testm for MA(1) with parameter θ = 0.9. For scale levels J = 4 to J = 7, most of tests
remains within the expected 5% type I error. However, for J = 8, the tests C2, Kendall, Spearman’s and T-test exhibit
a significantly large deviation from the expected error, with an average of approximately 13%.
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(a) Box plot of p̂Testm for J = 4 (b) Box plot of p̂Testm for J = 5 (c) Box plot of p̂Testm for J = 6

(d) Box plot of p̂Testm for J = 7 (e) Box plot of p̂Testm for J = 8

Figure D.5: Box plots of p̂Testm for MA(1) with parameter θ = 0.7. For scale levels J = 4 to J = 7, most of tests
remains within the expected 5% type I error. However, for J = 8, the tests C2, Kendall, Spearman’s and T-test exhibit
a significantly large deviation from the expected error, with an average of approximately 11%.

381



(a) Box plot of p̂Testm for J = 4 (b) Box plot of p̂Testm for J = 5 (c) Box plot of p̂Testm for J = 6

(d) Box plot of p̂Testm for J = 7 (e) Box plot of p̂Testm for J = 8

Figure D.6: Box plots of p̂Testm for MA(1) with parameter θ = −0.9. For all scale levels, most of tests remains within
the expected 5% type I error. In particular, the tests C2, Kendall, Spearman’s and T-test exhibit a slight deviation from
the expected error, with an average of approximately 6.5%.
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(a) Box plot of p̂Testm for J = 4 (b) Box plot of p̂Testm for J = 5 (c) Box plot of p̂Testm for J = 6

(d) Box plot of p̂Testm for J = 7 (e) Box plot of p̂Testm for J = 8

Figure D.7: Box plots of p̂Testm for ARMA(1,1) with parameters φ = −0.8, θ = 0.1. For scale levels J = 4 to J = 7,
most of tests remains within the expected 5% type I error; however, for J = 8 the tests C2, Kendall, Spearman’s and
T-test exhibit a significantly large deviation from the expected error. This implies that on average, for this kind of
stochastic processes, wavelet coefficient corresponding to short time scales depart from normality, which causes an
artificial inflation of the likelihood of a false positive classification.
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(a) Box plot of p̂Testm for J = 4 (b) Box plot of p̂Testm for J = 5 (c) Box plot of p̂Testm for J = 6

(d) Box plot of p̂Testm for J = 7 (e) Box plot of p̂Testm for J = 8

Figure D.8: Box plots of p̂Testm for ARMA(1,1) with parameters φ = −0.9, θ = 0.9. For scale levels J = 4 to
J = 7, most of tests remains within the expected 5% type I error.
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D.1.2 Box Plots for Type II Error Simulation Study

(a) Box plot of p̂Testm for J = 4 (b) Box plot of p̂Testm for J = 5 (c) Box plot of p̂Testm for J = 6

(d) Box plot of p̂Testm for J = 7 (e) Box plot of p̂Testm for J = 8

Figure D.9: Box plots of p̂Testm (average probability of type II error) for AR(1) with parameter φ = −0.9. For scale
levels J = 5 to J = 8, most of tests remains within the 5% average type II error; however, for J = 4 the tests Kendall
and Spearman’s exhibit a significantly large deviation from the expected error, with an average of approximately 24%.
Also, the observed performance of the Condition number test can be considered as good as the statistical tests used as
benchmark.
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(a) Box plot of p̂Testm for J = 4 (b) Box plot of p̂Testm for J = 5 (c) Box plot of p̂Testm for J = 6

(d) Box plot of p̂Testm for J = 7 (e) Box plot of p̂Testm for J = 8

Figure D.10: Box plots of p̂Testm (average probability of type II error) for AR(1) with parameter φ = −0.7. For scale
levels J = 5 to J = 8, most of tests remains within the 5% average type II error; however, for J = 4 the tests Kendall
and Spearman’s exhibit a significantly large deviation from the expected error, with an average of approximately 24%.
Also, the observed performance of the Condition number test can be considered as good as the statistical tests used as
benchmark.
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(a) Box plot of p̂Testm for J = 4 (b) Box plot of p̂Testm for J = 5 (c) Box plot of p̂Testm for J = 6

(d) Box plot of p̂Testm for J = 7 (e) Box plot of p̂Testm for J = 8

Figure D.11: Box plots of p̂Testm (average probability of type II error) for AR(1) with parameter φ = 0.9. For scale
levels J = 5 to J = 8, most of tests remains within the 5% average type II error; however, for J = 4 the tests Kendall
and Spearman’s exhibit a significantly large deviation from the expected error, with an average of approximately 24%.
Also, the observed performance of the Condition number test can be considered as good as the statistical tests used as
benchmark.

387



(a) Box plot of p̂Testm for J = 4 (b) Box plot of p̂Testm for J = 5 (c) Box plot of p̂Testm for J = 6

(d) Box plot of p̂Testm for J = 7 (e) Box plot of p̂Testm for J = 8

Figure D.12: Box plots of p̂Testm (average probability of type II error) for MA(1) with parameter θ = −0.9. For scale
levels J = 5 to J = 8, most of tests remains within the 5% average type II error; however, for J = 4 the tests Kendall
and Spearman’s exhibit a significantly large deviation from the expected error, with an average of approximately 24%.
Also, the observed performance of the Condition number test can be considered as good as the statistical tests used as
benchmark.
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(a) Box plot of p̂Testm for J = 4 (b) Box plot of p̂Testm for J = 5 (c) Box plot of p̂Testm for J = 6

(d) Box plot of p̂Testm for J = 7 (e) Box plot of p̂Testm for J = 8

Figure D.13: Box plots of p̂Testm (average probability of type II error) for MA(1) with parameter θ = 0.9. For scale
levels J = 5 to J = 8, most of tests remains within the 5% average type II error; however, for J = 4 the tests Kendall
and Spearman’s exhibit a significantly large deviation from the expected error, with an average of approximately 24%.
Also, the observed performance of the Condition number test can be considered as good as the statistical tests used as
benchmark.
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(a) Box plot of p̂Testm for J = 4 (b) Box plot of p̂Testm for J = 5 (c) Box plot of p̂Testm for J = 6

(d) Box plot of p̂Testm for J = 7 (e) Box plot of p̂Testm for J = 8

Figure D.14: Box plots of p̂Testm (average probability of type II error) for MA(1) with parameter θ = 0.7. For scale
levels J = 5 to J = 8, most of tests remains within the 5% average type II error; however, for J = 4 the tests Kendall
and Spearman’s exhibit a significantly large deviation from the expected error, with an average of approximately 24%.
Also, the observed performance of the Condition number test can be considered as good as the statistical tests used as
benchmark.
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(a) Box plot of p̂Testm for J = 4 (b) Box plot of p̂Testm for J = 5 (c) Box plot of p̂Testm for J = 6

(d) Box plot of p̂Testm for J = 7 (e) Box plot of p̂Testm for J = 8

Figure D.15: Box plots of p̂Testm (average probability of type II error) for ARMA(1) with parameters φ = −0.8
θ = 0.1. Induced linear relationship given by β = 0.25.

(a) Box plot of p̂Testm for J = 4 (b) Box plot of p̂Testm for J = 5 (c) Box plot of p̂Testm for J = 6

(d) Box plot of p̂Testm for J = 7 (e) Box plot of p̂Testm for J = 8

Figure D.16: Box plots of p̂Testm (average probability of type II error) for ARMA(1) with parameters φ = −0.9
θ = 0.9. Induced linear relationship given by β = 0.25.
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