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SUMMARY

This body of work explores an emerging aspect of human-robot interaction, trans-

parency. Socially guided machine learning has proven that highly immersive robotic

behaviors have yielded better results than lesser interactive behaviors for performance

and shorter training time. While other work explores this transparency in learning

by demonstration using non-verbal cues to point out the importance or preference

users may have towards behaviors, my work follows this argument and attempts to

extend it by offering cues to the internal task representation.

What I show is that task-transparency, or the ability to connect and discuss the

task in a fluent way implores the user to shape and correct the learned goal in ways

that may be impossible by other present day learning by demonstration methods.

Additionally, some participants are shown to prefer task-transparent robots which

appear to have the ability of “introspection” in which it can modify the learned goal

by other methods than just demonstration.
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CHAPTER I

INTRODUCTION

Learning by demonstration that takes advantage of the natural social interaction be-

tween human and robot is a burgeoning area of study. In previous work, Thomaz and

Breazeal laid the foundation for leveraging human interaction with robot transparency

to further interactive machine learning [34, 33]. Here, one of the most compelling ar-

guments about interactive machine learning with robots is made; they show that,

instead of strictly taking input from the human, the robot can use gesture and social

cues to inform the human about the internal state of the robot. These behaviors

are transparent in that they indicate internal state. This is in contrast with more

“opaque” behaviors. The work points out an important observation; namely that we

can look to developmental learning as a hint on what kind of cues humans use to

inform one another. It was shown that gesture and gaze are just a few major social

cues that can be leveraged. Argyle’s treatise[3] on gaze provides a great reference

for how gaze can be characterized and used or leveraged. Inspired by this as well as

other social cues that have been shown to be useful, such as pointing [8, 7] and natural

language [29], I designed a study to explore task-transparency or ways to explicitly

make available the task to the human in ways that are familiar to the teacher.

Transparency in human-robot interaction is the communication that facilitates an

inference, or a way of guessing, to the internal state of the humanoid. Fundamentally

an human-computer interaction term, transparency in general is the ability for a de-

vice to be so intuitive as to blend into our daily lives. In human-robot interaction,

transparency has been linked to natural behaviors that facilitate interaction between

human and robot. It has been shown in previous research that humans that work
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together share what they believe to be a shared task representation to complete the

task in unison. This was studied in detail with the work of Bratman [6]. While

Bratman’s work focuses on shared task planning, joint activity and a commitment

to jointly supporting the task; his work provides strong evidence that through com-

mitment, humans actively facilitate the learning process by supporting the efforts of

others. Further evidence that supports this but argues too of the subtle interactions

between collaborators can be found in the work of Baron-Cohen [4]. Here too, point-

ing is identified as an important and interesting way that humans interact with one

another for communicative reasons. The importance of these social cues has been ar-

gued for by others but has only recently gotten the attention it deserves in robotics.

I further support this in my work and further extend the importance of it in robot

task learning.

Learning by demonstration is a specific sub field of robotics that enables a dream

of many roboticists to build robots that dynamically add new tasks to its repertoire.

To design adaptable robots, engineers will need to consider the same environment and

modalities that humans utilize and provide enough primary functionality to survive

in our environment. Learning by demonstration studies are usually performed under

a controlled environment in which little noise gets in the way of what is learned.

Breazeal et al.[7] point out that inference is not straight forward and that many

times the shared representation becomes out of sync due to sensor error or otherwise.

These errors that are produced should be corrected as soon as they are discovered

which motivates much of the work in robot transparency; revealing state early and

often provides enough feedback so that the collaborator can correct these minor errors.

My intuition and the focus of my study attempts to provide a framework such that

these small deviations can be corrected quickly. By making the argument that task

transparency will reveal and alleviate any sort of symbolic error early, I expected the

human demonstrator to modify the internal goal state. Many may argue that a good
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saliency model, like the ones found in [20, 21] will help alleviate much of the noise in

the demonstration. I don’t disagree, but supervised learning (in the broadest sense)

can always help correct implementation problems or errors in the model as long as

the supervisor has modification access to the error in the representation. Making a

step in this direction, I am attempting to take a different view and ask what I can

make available to the supervisor to aid learning by demonstration toward becoming

more accurate. To do this, I am allowing the user to directly clarify specific goals that

were taught rather than specifying entirely new demonstrations or by constructing

goal sequences. To achieve this, I provide the robot with a speech interface that

allows the robot to explore its own representation while hypothesizing that humans

will commit to modifying that representation through dialog. Following in this line

of thought, I provided a transparency mechanism to allow the human to detect when

something has deviated from the intended goals that the human has taught and

provide a mechanism for the learned goals to be refined and fixed in a partial order

plan ad hoc and on the spot.

By revealing the internal state, or more specifically the learned goal that was

previously taught, I hypothesize and show that humans correct the goal and signif-

icantly improve the accuracy of the learned goal. I explore the importance of task

transparency to goal accuracy during teaching. Previous work has indeed shown the

subtle effects of transparency on teaching but by also explicitly making symbolic goals

available to the robot to reveal at all times, I expect the accuracy of the goals post

interaction to significantly improve in accuracy with respect to the intended goal.

Using our robot, Simon, I set up a study to explore two different interactions that

were designed to explore task transparency in further detail. I designed the interac-

tion during the baseline interaction to elicit very little feedback from the robot, using

very few, or if they were needed, the most basic social cues while the experimental

group received an interaction that contained social cues that will discuss later (gaze,
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pointing and a basic dialog system) and show that these basic techniques will allow

the human teacher to shape the goal better than the baseline interaction alone. I

used two tasks for each group, cleaning up the table and building a door to remove

demonstration bias. And finally, I built a framework for learning first order relations

from observation. Though, these relations were grounded by an expert, myself, from

the robot’s sensors and used to build a representation of the task. I present the results

of a user study that shows a predilection of humans to view machines that can discuss

their own learned task model as more intelligent while also showing that the resulting

learned task is more accurately transferred from human to machine. By providing a

basic dialog system along with the first order task learning framework, task learning

accuracy was shown to significantly improve over the baseline.

It is important to clarify at this point that, ethically, the goal of learning by

demonstration for human-robot interaction is not to create perfect replicas of human

learning in robots but to facilitate human interaction and leverage the interaction to

maximize the accuracy of what is learned. This human-centered learning process is a

cooperative and social activity. Thomaz[33] has called this approach Socially Guided

Machine Learning or SG-ML. These theories inform the design of interactive learning

systems, not by emulating biological mechanisms but by taking advantage of them to

facilitate the interaction. In fact, there have been many interactive machine learning

studies showing that interactive learning that takes advantage of these natural modes

of communication have advantages over batch learning [38], or that transparency in

active learning improves performance [10].

Task transparency having such an important role for human learning, as I hypoth-

esize, should translate and provide better performance for robot learning. I show that

this is the case, pointing to improvements in accuracy with each clarification that the

human gives.
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CHAPTER II

EXAMPLE SCENARIOS

In the near future, robots will soon be asked to perform minor household tasks. This

may include doing the laundry, doing the dishes, or simply cleaning up. The role of

robots in our society won’t be restricted to the home; but also to our workplaces as

robots are asked to build products along-side or in lieu of human labor. As such, I

designed two scenarios to represent these types of tasks that the robot will be asked

to perform in the future. The first scenario is cleaning up, wherein the robot is asked

to sort, organize, and place objects in the world around it. I explore these situations

in more detail as a theme throughout my thesis.

2.1 Building a Door

The first example is from a domain of one of our collaborators, General MotorsTMinvolves

a task that can only be executed by humans at the moment. The basic task of building

a door is very complex on the floor of major manufacturers, simultaneously requiring

solutions to major unsolved problems in computer vision, precision, and manipula-

tion. On the manufacturing floor, every part of the car is moving on an assembly line

and all assembly actions are performed by a human worker on the door while it is

moving. Involving robots in this task requires solutions to human-robot collaboration

on the assembly floor that incorporate manipulation in a dynamic environment.

The exact sequence of events of one particular worker on the floor was presented

to us by GM as particularly challenging. I explore this task in detail as a case-study

for learning by demonstration, demanding that the robot learn the actions and goals

that need to be satisfied on a car door by the worker before it leaves his hands on the

manufacturing floor. The sequence from the workers standpoint is thus: pick up the
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Figure 1: Creating the abstract door for the door task

Figure 2: The “build a door” task

door lock and insert it inside the hull of the door (which is subsequently hollow) place

it by feeling around for the holes, then align the door lock by peering through the

screw hole in the side of the door, then bolting it from the outside. An attached cable

is run through a hole in the interior face of the hull of the door. Finally, place the

panel over the cable and seal the hot glue with a roller. This includes many challenges

for robots including precision of manipulation in a cramped hollow door, bi-manual

manipulation for holding and bolting the door lock, tracking major features on the

door, and timing the seal of the panel. I simplify this task by first building an abstract

door as seen in Figure 1.
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Initial

Build Door Goal

Figure 3: Step by Step solution to the build a door task

The parts in the task were Plexiglass (cut using an Epilog laser cutter) with 3D

printed handles made with a Dimension 3D printer. The goal of the task was to learn

how to place and orient the panel and window.

The door building task involves moving two pieces into place. One example com-

pletion is shown in Figure 3. In the presence of other parts and door features, the

task was to learn that the panel is aligned to the bottom of the door and the window

to the top.

The robot’s objective is then to simply learn to align and place the objects cor-

rectly by demonstration. I will use this example task throughout this paper and is

the center of discussion for the study as well.

2.2 Cleaning Up

For the other task that was used, I structured the task to have the human collabo-

rators teach the robot to “clean up” which I defined simply as putting like colored

objects together into small groups. Again, in this task, I abstracted the clean-up task
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Figure 4: The “clean up” task

from a typical cleanup scenario. Cleaning up fundamentally involves understanding

a few concepts: orienting, ordering, and placing. For instance, these abstractions are

analogous to collecting dishes and placing them near the sink or collecting books and

placing them on a book shelf, right side up in alphabetical order. I explore this task

only as a placement exercise.

Initial

Clean up Goal

Figure 5: Step by step solution for the clean up task

The task is to place like colored objects near one another as shown in Figure 5.

In this figure, the yellow arch is denoted with a half circle, yellow and blue blocks
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with the rectangle, and blue keystone with the polygon. The objects are arranged,

by an expert, in the same placement for every user on the table. The goal of this

task is to move the objects in two moves to cleanup the table by color. Completion

occurs in two moves: move the yellow block next to the yellow arch, followed by the

blue keystone next to the blue block in any order. Redundant or extraneous subtasks

may be encountered such as having the first move, placing the blue keystone to the

right of the blue block discover that the blue keystone is also above the yellow arch.

This could be considered too specific an objective for that action. This is meant to

be fixed in later demonstrations or through some clarification mechanism.
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CHAPTER III

BACKGROUND AND RELATED WORK

My work could be placed closest to the work of Thomaz and Breazeal. Their work on

establishing transparency, or the broad class of communicative acts that facilitate and

aid in revealing the internal state of the robot collaborator as important to supervised

learning motivates more investigation. Task-transparency is inspired by my interest

in human robot interaction with respect to learning by demonstration (LbD). In this

chapter, I will explore some experiments in LbD and transparency.

3.1 Transparency

“[Transparency] would say that there is nothing in the state of the sys-

tem that cannot be inferred from the display. If there are any modes, then

these must have a visual indication; if there are any differences in behav-

ior between the displayed shapes, then there must be some corresponding

visual difference.”

-Dix [14]

Transparency is historically a term used in human-computer interaction. The term

is applied towards mechanisms that allow the user to “peer” into the internal working

state of the machine and provides the ability to modify that state. More specifically,

some part of the internal working state is made visible by formatting or translating

the internal state for the user. Transparency has become a central heuristic for users

in devices and has born out its need in human computer interface design.

Donald Norman implores us to consider the emotional machine in robot design[30]:
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“... the robot should display its emotional state, much as a person

does...so that the people with whom it is interacting can tell when a

request is understood, when it is something easy to do, difficult to do, or

perhaps even when the robot judges it to be inappropriate.”

His emotional machine idea reveals something fundamental to design, that well de-

signed devices in the future will use, what some may consider, unorthodox commu-

nicative channels. Emotional robot design is controversial. Aside from the debate is a

steady stream of evidence that by leveraging our nonverbal communicatory channels,

supervised interactive machine learning performance can be significantly improved.

Thomaz[25, 33, 34] has demonstrated this result previously and Breazeal et. al.

[7] demonstrates how fundamental these cues are for human robot teamwork. Fur-

thermore, Thomaz further shows[33] evidence that to support the idea that robot

transparency improves interaction by 1) reducing the total time spent with the robot,

and 2) detecting and reducing errors.

Early work in transparency and learning by demonstration pointed out similar

results. Thomaz and Breazeal[25] show increased accuracy in Q-Learning attributed

to transparency. This study uses speech, gaze, and gesture to help guide the teach-

ing process and was an early indicator of transparency’s usefulness in learning by

demonstration.

The broad concept of transparency is emerging as a qualitatively interesting

method of using social cues to maintain synchronicity of state. It affords an affective

channel that is recognized by users as a preferred method of peripheral communica-

tion. Recent work by Mutlu[27], uses one type of transparency, gaze, to establish

footing in conversation and can successfully establish role in conversation. This was

shown to be an effective method of manipulating the roles of the participants in the

study also show that transparency can be used to internalize roles established by the

robot agent.
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I am interested in using transparency as a method of imploring the user to play a

role as teacher. Similar to the work of Thomaz’ Sophie’s Kitchen experiment [34] in

which participants were able to successfully utilize subtle gaze cues to provide guid-

ance and improve performance of the virtual agent, I show performance improvement

with regard to task accuracy.

3.2 Learning by Demonstration

Learning by demonstration has been surveyed fairly recently [2] and provides many

important studies in the field. They define learning by demonstration as a subset

of supervised learning that incorporates observing a number of demonstrations, D,

from a teacher using observations of pairs in its state and action space to generate

some policy. Some of the earliest work has been under the name “Programming

by Demonstration”, or PbD, in which a set of actions and parameters are used to

construct a behaviors that can be executed arbitrarily many times. Friedrich and

Dillmann[17] demonstrate a system that begins with a set of skeleton programs and

macros that can be arranged through example to construct interesting behaviors. This

allows the user to construct some permutable number of possible plans using a given

set of actions and objects that the robot knows how to deal with. PbD, one of the

original types of LbD has, as of recently, been updated to use newer forms of machine

learning and vision techniques to allow teachers to construct far more complicated

plans [29, 10], to teach specific actions [9, 23], and to teach the robot about specific

discrete and/or continuous features about the object or the goal. Advances have also

allowed the teacher to further provide generalizations about the task [13, 8]. More

recent advances have incorporated many new modalities that have been afforded

by modern advances in the state of the art such as speech recognition and speech

synthesis for dialog, teleoperation using gestures[16], and shadow teleoperation using

feedback control[19].
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All of these techniques have been under the guise of one name or another, whether

it be programming by demonstration, learning by demonstration, apprenticeship

learning [1], or socially guided machine learning [33]. Interesting directions LbD and

PbD have taken in the past range from, leveraging new technologies to incorporating

more abstract concepts that have been well studied in theory of mind research, such

as saliency models[12], and ontology building[17], that further allow for the robot

to build a repertoire given a primitive set and to have a model of attention that

resembles the human.

While much of their work has revolved around learning by demonstration, some

recent work has provided more information to the user than just the execution of

the learned task or behavior. The work of Mataric and Nicolescu has provided a

mechanism that allows the user to understand what the robot has learned and al-

lows the user, through execution only, to stop the robot and correct the currently

executing plan by specifying changes using speech commands or new positive demon-

strations that clarifies the erroneous goal of the learned task [29]. Chernova’s LbD

system[11] allows for the robot to ask for a completely new demonstration. Both

of these implementations provide an incremental architecture to integrate newly ob-

served demonstrations into a less precise or an erroneous task representation to build

a more perfect representation that the robot intends to satisfy by executing the task.

My work extends work from Thomaz, Breazeal, and Chao [34, 33, 10, 7] in the di-

rection of Nicolescu [29] by additionally focusing on a correction mechanism through

dialog. My work stands in contrast to each of these for the following reasons: 1) I

provide a task-transparent mechanism that is specific to learned goals, 2) I am identi-

fying and studying the accuracy of the learned goal, and 3) I am allowing the robot to

modify the goals without restriction. These objectives stand in support of the work

of Nicolescu[29] whose work with dialog and partial order plans shows positive re-

sults but was focused on planning and was not explicitly considered transparent or
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evaluated with naive users.
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CHAPTER IV

ROBOT PLATFORM

I took advantage of the Socially Intelligent Machines Lab’s resources for my investi-

gation. The specifics of what already exists are separated into the robot hardware

that I used, the sensory system that I set up, and the architecture that was used to

program our robot, Simon.

4.1 Robot Hardware

For my study, I have taken advantage of our robotic platform, Simon, an humanoid

upper-torso robot with seven degrees of freedom per arm and four for each hand. The

torso has two degrees of freedom, pitch and yaw, and a highly expressive head. Simon

was designed specifically to work with humans; it was designed to be friendly, having

non-rigid compliant arms and a childlike voice.

The torso and arms were designed and manufactured by Meka. The torso features

two compliant arms that are safe to use around humans. The motors are built with

custom series elastic actuator technology[15] run on an ethercat bus attached to a

Linux real time operating system. Simon is attached to a metal pole to prevent it

Figure 6: Simon the Robot
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from falling over and to aid in calibration. The entire system runs on a custom Meka

controller that maintains internal motor state for the robot.

4.2 Sensory Environment

The sensory environment for my study was a combination of ARToolkit+[22] to track

objects and the Windows 7 speech API for speech recognition. All of my abstrac-

tions involved using different fiducials that are recognized using a package called

ARToolkit+. ARToolkit+ uses small fiducial tags to recognize an object’s identity,

position, and orientation. These barcode-like tags can be seen in Figure 2 or in Fig-

ure 4 in Chapter 2. ARtoolkit+ is run using a dual camera mount hanging from the

ceiling pointing at a table situated between the robot, Simon, and the participant.

This provides a mechanism to map the barcode id to the color and shape of the object

while also providing detail on its position and orientation.

The Windows 7 speech API software was used for recognition. It requires a

grammar that includes the phrases in Figure 1 for recognition and is based on custom

implementations of Microsoft software. The recognition software provides a limited

vocabulary that when organized in a certain way, produces sentence tags. These tags

represent the semantic meaning of each sentence recognized. For instance “Simon,

forget about the blue window” will return the tag FORGET:BLUE-WINDOW. The

tag is parsed into a declarative command and a referent after each spoken phrase.

I am also taking advantage of speech synthesis using the default “Junior” voice

from Apple’s OS-X operating system. This provides a method for Simon to com-

municate in an unassuming child-like voice. We are interfacing with this using a

system pipe to a command line and sentences are put together using a formula that

is described later in Chapter 6.
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4.3 Software Cognitive Architecture

In addition, I took advantage of our software platform, c6m (based on a the creatures

architecture, see [5]). This package uses an inverse kinematics package that imple-

ments CCD[37] to control the arm in the workspace; this package side-by-side with an

animation system allows Simon to play a number of animations, designed in 3D CAD

software, that involve the head, the arms, and the hands as well as the capability to

enter into interactive modes interchangeably with playing animations. It is built into

a small number of major components that can be described visually in Figure 7.

Each perception module is connected with c6m through a small subnet. c6m has

a custom network stack on top of UDP called IRCP (detailed more in Hancher’s MS

thesis [18]). Every incoming observation becomes a set of percepts P = {p1, ..., pn}

where each p ∈ P is is an atomic classification and is aggregated in a perception

system to be merged with other percepts by using match values p(o) = m, where

m ∈ [0, 1] and o is some percept observation. These observations are merged together

in the perception system to later become derived percepts.

External Modules send data to our percept system over the network. Sensory

data is captured by packet handlers that are merged into percepts and added to a

“percept tree” where primitive features in the world captured by external modules

(i.e. vision, speech, ARToolkit) and added to the base perceptual level of the tree. For

each time, t, this root percept data gets refreshed by each module and based on the

structure of the tree, other percepts that may use that data are updated appropriately.

These percepts are called “derived percepts” and are meta information such as “most

salient” object which is a percept that contains information about about the object

of attention. Other derived percepts include any sort of meta information from the

lower level tags. For instance, in my study, ARToolkit+ may only send packet data

about the location and the IDs of the tag but higher level knowledge such as color

and shape may be mapped to these tags as a way of simplifying the vision problem.
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Figure 7: c6m Architecture

This meta data may understand or perceive that “ID 5” is really just “blue block”

and those derived percepts are updated on the tree.

The belief system moderates a belief set B between each time frame and merges

the current percept set into the previous beliefs. I wrote a number of similarity metrics

to merge and aggregate percept data into beliefs appropriately and these belief objects

detail the perceived state of the world classified and arranged by ARToolkit+ tag ID

and type. This is usually analogous to objects in the world. For instance, a single

belief may contain percepts about its color, it’s location, shape, size, and any other

features that may be important to learn about. Each belief is then used to make

decisions about next actions based on a set of hierarchical action tuples that require

preconditions, a small set of execution parameters, and postconditions. Animations

are triggered through these action tuples as well as our inverse kinematics code that is

integrated as one of the interactive action tuples. After each high level action begins

to run, the lower level joint trajectories are rendered into our simulated framework

to be visualized. The motor system watches this data for changes and sends it to our

controller, a Meka real-time operating system that manages Simon’s motors via an

ethercat bus.
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Learning in c6m is based on and inspired by previous and some unpublished work

of Thomaz [25, 33] and others. The focus of the learning framework is on goal learning

in which a number of demonstrations are given, observed and stored by the robot.

Goals are represented by the consistent logical sentences (more specifically relations

based percept data, see 5.1) that make up the end state for every demonstration and

action. The demonstration, a capture of the belief system after every demonstration

and every action at the end of the action, are merged by determining the frequency of

the observed percepts in each belief and determining whether not or it is consistent

with every other demonstration it has observed. If, for any reason, the objectives

aren’t consistent, then it is considered unimportant and thrown out as a goal condi-

tion. Algorithm 4.1 describes how this works in pseudocode. The goal is then the set

of constraints put forth by the consistent perceivables for all of the demonstrations.

This method was based on similar work by Thomaz[33] and Chao[10].

consistent goals = list()
action list ← G1...Gn

for Gi in action list do
for relation in Gi do

count = count exist(G1...Gn)
if count

n
> thresh then

push(consistent goal, relation)
end if

end for
end for

Algorithm 4.1: Determine consistent goal constraints

Algorithm 4.1 builds basic “move” actions based on the goals in each movement.

By identifying the object (ARToolkit tag) that changed the most, a pseudo-action is

built : move(<object>). This makes correspondence between out of order demonstra-

tions possible. The input for this algorithm is the set of n actions goals or objectives

(G1...Gn) that are deemed to correspond. Once these are aggregated, they are sent

to the algorithm (4.1).
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The two previously mentioned implementations have been made that use a version

space to more formally generalize. Most of my work extends this portion of the c6m.
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CHAPTER V

TASK LEARNING AND PLANNING

A number of contributions were made to the framework to support the requirements

in the door building task. First, I developed a relational learning subsystem for of our

task learning framework so that Simon can learn about spatial relations based on the

percept and belief data. I also developed an implementation of a partial order plan

learner which discovers sequence constraints on the system and finally a few needed

interaction components based on the relation subsystem and the partial order plan

subsystem. A dialog subsystem was built to use the relations and allow Simon to

create a small dialog about the goals that were discovered from the original learning

framework using synthesis and recognition. This was also followed up with a method

of using traditional optimization to solve first order logical sentences with grounded

relations.

5.1 Relational Symbol Grounding

The relational grounded learning revolves around one continuous feature from the

perception system to provide higher level reasoning symbols: location. I focus mainly

on spatial relational learning for my task learning. Grounded symbols are labels

such as Left Of (A,B) or Right Of (A,B) or even Next To (A,B). (Background

regarding first order logic can be found in appendix A.2.) I reduce the symbols

representation to a uni-modal Gaussian by taking the two locations of the referents

and subtracting one from the other as the sample data for the learner.

Figure 8 and 9 visualize a simple relational example: Left Of . In Figure 9,

positive examples of “this object is to the left of this object” are used to find the

mean and covariance of the sample set. Once they are calculated, the model is used
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Figure 8: Example situation: Object Ab or Ar to the left of Object B?
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Figure 9: Example grounded relation: Left Of
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as a discriminator to test whether or not the blue sample fits. In this case, it doesn’t, it

is an outlier and thus the symbol is not activated. On the other hand, the red symbol

fits the model, Left Of (Ar,B), learned from the training data and is returned as a

positive fit. So for the blue sample, the position of some object B is not to the left of

some object A but for the red sample, we can safely say it is true.

The relational position, ~vr = ~vA−~vB is used to fit a Gaussian by finding the mean

and covariance. With n number of examples and vri , the relational position of the

ith sample then the mean and covariance are found as usual:

µ =
1

n

n∑
i=1

~vri

Σ∗ =
1

n− 1

n∑
i=1

(~vri − µ) (~vri − µ)T

Similar to the perception system, grounded symbols are evaluated on a tree in

which primitive relational features are first computed. The basic percepts that are

available to all of the higher level spatial percepts are relational distance and relational

position. These are special features that are not trained and are special in that they

are provided to the framework as-is. The symbols used in my study are the following:

• Relational Position (A,B) with value type (x,y,z) or ~vr

• Relational Distance (A,B) with value type scalar distance

• Left Of (A,B) with value type : confidence

• Right Of (A,B) with value type : confidence

• Top Of (A,B) with value type : confidence

• Bottom Of (A,B) with value type : confidence

• Next To (A,B) with value type : confidence
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The relational position, ~vr and L2 norm relational distance, |~vr|2, provide the

dependency data data required for the uni-modal Gaussians to properly determine

their confidence. Some examples of of higher level relational features that require

the primitive features include Left Of which requires a multidimensional evaluation

on the position of the objects with respect to one another and Next To which could

be described with a multidimensional Gaussian but is trained as a one dimensional

Gaussian.

This model, once trained, is labeled and new data can be determined to fit this

model. Discrimination is a simple thresholded p-value. So for some ΓR relational

alphabet (in our case, the taxonomy above) and some symbol γ ∈ Γ, the mechanism

finds the distance γ∗ of some sample ~v,

~vd = ~v − µγ,

γ∗ = ~vd ·
1√∣∣∣Σγ

(
1
|~vd|1

~vd

)∣∣∣
where |~vd|1 is the L1 Norm. This determines distance from mean value in units of

deviation. We can then threshold the value and decide whether or not the evaluated

symbol, γ = Left Of for instance, with the specified parameters (object Ar and B

from the example) can be confidently said to be true using this measure of confidence.

In my case, I threshold the value to two units to evaluate whether γ is true when it

is observed in the environment.

These relations were trained synthetically by an expert, myself, before the study

began and all use location as a primary feature from the belief system.

5.2 Grounded Relational Task Learning

At a high level, I define a relation to be some type of grounded symbol between two

objects. These trained relations, once grounded and observed, are aggregated into
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Move(Red)

Left_Of(Red, Black)
Bottom_Of(Red, Blue)

Move(Red)

Left_Of(Red, Black)
Bottom_Of(Black, Blue)

Move(Red) [merged]

Objective:
Left_Of(Red,Black)

Demonstration 1

Demonstration 2

Figure 10: Example of merging actions to determine objective

each action’s objective set and are merged into a single list of potential objectives of

that action (see Chapter 4 and the pseudocode for the merge in Algorithm 4.1 for

more detail) that were asked to merge. If the action consistently produces the same

results, then that is the objective.

I define all actions in the task learning system to be primitive “move” actions. The

example in Figure 10 shows a simple example from the clean up task. This example

reduces the problem a bit to aid explanation. In the real task, the move action would

also contain shape data and the colors would be yellow and blue. In this example,

the changed state of the world is found to be that the red object moved. An action

is created called “Move(Red)” with the objective of that action becoming just the

changed relations for that action. When the actions are merged in the partial order

plan learning, the objectives are merged but the sequence remains. Anything that

is consistent in every action in every demonstration remains as an objective for that

action. This method was inspired by previous work as well [33]. In previous work,

a far more complete solution is provided in which the criteria and expectations of a

goal are maintained. An expectation is the desired feature value while the criteria

are the beliefs that are relevant to apply that expectations to. These are maintained
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to determine whether it can proceed with the task. Also in the original version,

as well as newer implementations[10], an entire version space is enumerated during

generalization.

5.3 Learning and Planning in Partial Order Plans

Since a partial order plan (or POP for short) is a directed graph in nature, (see

appendix B), there are some interesting characteristics, namely it becomes easier to

linearize POP trees. Child nodes in my notation precede parent nodes in demon-

stration. Since the POP is learned from demonstration, all of the starting positions

represent some initial state in a demonstration. Starting at these leaf nodes, we can

be guaranteed to terminate. For every node that has multiple children, then as long

as the child sequences connect in the future, we must satisfy all of the child sequences.

Luckily, this is never encountered for my implementation since my representation can

not learn partial order plans this way so the linearization algorithm (presented later)

does not take this into account even though it is possible. Learning happens using

a variant of most common subsequence (see Figure 11) and my particular lineariza-

tion algorithm uses a modified depth first search (or an algorithm that iterates over

the tree, most recent child found first) to generate a random linearization from the

partial order plan. The intuition is similar to that of a threading model - forking

and joining - except that each “thread” is queued until the main thread is complete.

Any action that has multiple children need all child paths satisfied before continuing

with the linearization. Sibling nodes are queued and not executed until active child

sequence reaches the join stage in the future, which the parent with multiple children

can proceed. My particular algorithm (Algorithm 5.1), a particular variant of the

linearization method found in [32], focuses on a single task that must join in the

future.

Since we are learning the partial order plan, and the objectives simultaneously
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Orient Orient
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Place

Pickup

Orient

Place

Orient

Sink Sink

Partial Order Plan

Demonstrations

Pickup

Orient

Place

Pickup

Orient

Place

Determine Consistent 
Ordering Constraints

Demo 1 Demo 2

Figure 11: Most Common Subsequence POP Learning from the door task

then correspondence becomes a challenge between demonstrations. This is resolved

using a constraint to the user that each demonstration only gets to move an object

once and that correspondence is solved by using the object of attention to do action

matching before merging and determining the consistency of each action. Once the

actions correspond, then they are sequenced by the partial order plan learner. These

actions are exactly represented by something that looks like: “Move(<object>)”. The

goal of the task ends up being the sum total of the objectives in the linearization.

Learning the partial order plan has been explored a few times in LbD. Famous

architectures include the PRODIGY system [36] which was a fully integrated planning

system that included partial ordering constraints on the plans generated. Though this

is different than ours in that it was the sole focus and the learning aspect was not

grounded in dynamic symbols. Also UCPOP is an earlier famous work that was

able to handle actions that produced conditional effects [31]. My partial order plan

learning uses a simple and proven algorithm - that of “most common sub sequence”,

which had success in earlier work in natural methods of robot POP learning [29]. Most
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startnodes ← all leaf nodes(task tree)
push bottom(stack,startnodes)
visited children(startnodes)
while notempty(stack) do

currentAction ← pop(stack)
execute(currentAction)
for child in children(currentAction) do

visited child(child)
if num parents(child) == num visited child(child) then

push top(stack, child)
else

push bottom(stack, child)
end if

end for
end while

Algorithm 5.1: Linearization of a Partial Order Plan

common subsequence POP learners consider every action preceding a future action

to be a potential sequential constraint of the future action. Once enumerated, these

are filtered by consistency and linked into a tree structure. The consistent ordering

constraints are then linked together to form the partial order plan as in Figure 11.

My variant POP learner algorithm can be found in Figures 5.2 and 5.3 where each

demonstration is a list of all transitions from a preceding node a node that follows it

in the demonstration sequence.

function CountParents(demonstrations) : sink node
for demo in demonstrations do

for transition in demo do
if transition exists in all other demonstrations then

map this transition as child → all potential parents
end if

end for
end for
return FindStructure(alltransitions, sink, emptyset)
end function

Algorithm 5.2: Preparing demonstrations for sequencing the Partial Order Plan

Once the linearization of the partial order plan is created, the objectives need to

be satisfied. I developed a method for satisfying the discrete objectives based on the
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function FindStructure(data, node) : node
remove node as parent in all transitions in data
for transition in data do

if transition has zero parents left then
add as child to node
remove transition from data

end if
end for
for child in node do

FindStructure(data, child)
end for
return node
end function

Algorithm 5.3: Sequencing the Partial Order Plan

PDF = P (R1|pos) ∗ P (R2|pos) ∗ ...

γ∗ =
R∏
i=1

γRi

Figure 12: Objective function used during optimization

underlying distribution using an optimization procedure. Given some set of symbols,

say Left Of(A,B) and Top Of(A,C) then by maximizing the p-value in the symbols

domain, we can find the best position to place the object of interest to satisfy the

most symbols in the set. In this example, it is possible to satisfy both of them, but

in some cases, the algorithm could be given a set to satisfy that is unsatisfiable. This

algorithm still attempts to solve it as best as it can given its limitations. I use the

Nelder-Mead algorithm [28] to find a local maximum given a start position which I

seed to be the average means of the first two first order relations in the objective.

The objective function I use is simply the joint probability distribution function of

the relations. Figure 12 illustrates this objective function.

Nelder-Mead’s simplex algorithm simply returns the position of the local maxima

that satisfies some subset of of the relational symbols. This is then used as the

expected position of the object of interest for that move action.
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CHAPTER VI

TRANSPARENT INTERACTION

Ready State

IDLE

Observing Demonstrating

"Simon, I want to teach you to clean up"

Let me show you

That's how you clean up

"Simon, will you show me how to clean up?"

Figure 13: Interaction Diagram

Focusing on task transparency, I wanted to study how a robot can reveal its

internal representation using a few mechanisms: pointing, dialog, and gaze. These

social cues were used as transparency mechanisms that have been shown to be useful

in the past [7, 27]. I coded a grammar that was given to the robot and sentence

tagging, provided in the Speech API, was used to extract the commands about objects

and relations that the recognition software knew about to generate goals and plans to

execute. My particular implementation combines these ideas with our learning system

to learn and build complex goals that include both action and sequence constraints

(see Section 5.3 and Section 5.2).

I avoided the problem of manipulation of the objects when executing the task

to simplify the problem. In the two scenarios in Chapter 2, once the observing

phase completes (Figure 13), then the robot will need to demonstrate its understood

objectives of the task. In the case of moving the objects for each scenario (panels for

the door, blocks for cleanup), I programmed Simon to ask the participant to move,

align, and place the objects in lieu of the robot. Figure 14 explores the differences
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Non task-transparent User Action Task-transparent
Looking straight ahead Looking at head height,

gently looking around
↓ “Will you show me how to

build a door”
↓

”Pickup the
<object>”

”Pickup the <object> and
looks in that direction”

↓ “Okay Simon, I did that.” ↓
“Put it here” “Put it here”

<Points to position> <Points to position>
↓ “I believe that was

because...”
<dialog> <dialog>

Repeats until user satisfied
“Okay Simon, let’s move
on”

Repeats until task complete

Figure 14: Interaction scenario during participant demonstration between robot
and human

between a transparent interaction interaction and what is required of the user for

manipulation.

In the example of building a door, one sequence of events may be that the par-

ticipant requests that the robot enter a learning state in which the robot will learn

to build a door. The participant may then give a demonstration and complete the

learning process (see Chapter 5). After the demonstration is complete, the user may

enter a demonstration mode. This interaction, in the task-transparent case, will do

so while conversing about its (potentially) overly specific goal. The user may then

have the opportunity to correct the robot’s internal goal.

I defined task transparency to have three major components: Dialog, Pointing,

and Gazing.

31



6.1 Robot Pointing and Gazing

To maintain a fluent interaction, robot pointing was only used to clarify some con-

tinuous destination for an object. Since manipulation is not implemented, the robot

had a need to request that the human place an object of reference (again from the

action in the POP, see 5.3), at a specific location. When the request arose for Si-

mon, the robot would ask that the “<object>” be placed “here” which is followed

by a pointing gesture to the location. It is important to note here that pointing is a

challenging manipulation problem. For the purposes of my experiment, I designed a

set of pointing animations using a 3D animation tool, Maya, and the position that

is requested by the optimization procedure is mapped to the closest animation that

points in that direction.

The gazing behavior is a challenging inverse kinematics problem. Our codebase,

c6m, uses a modified CCD implementation that allows me to make the robot look at

a position in the distance without reaching out for it with is neck. I took advantage

of this in my code and had it look at the ARToolkit+ tags. The tags were calibrated

into Simon’s frame before having it gaze at the tags. The gazing behavior focuses

on the object of interest during the task or it is not used at all in the case of a

non-transparent interaction.

6.2 Task-transparent Dialog

I presented a script to the user that allowed them to communicate their intentions to

the robot. Table 1 gives a basic overview regarding the interaction commands that

are allowed by the participant. The structure of the interaction is managed by a finite

state machine that maintains and controls the interaction.

One example of a basic interaction is as follows. The user approaches the robot

and begins a task “I want to teach you to build a door” which puts the robot into

learning mode and begins a new task. The new task is created in its memory and a
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snapshot of the current belief system is taken to compare later. This snapshot is used

to build a consistent goal for the task to be relevant when further demonstrations

are given. This process was documented earlier in Chapter 4. The user then creates

a demonstration or sequence of actions by beginning and ending actions repeatedly

using the script in Table 1.

1. The user proclaims “I am moving an object”, which begins a new primitive

“move” action and capture the current beliefs to compare later.

2. The user then moves the object and completes the action by saying, “Did you

see that, Simon?”.

3. This ends the action, takes a snapshot of the belief system and adds the action

to the partial order plan to be later sequenced.

4. Steps 1-3 are repeated until the demonstration is completed.

5. Upon completion of the entire demonstration, the user finalizes the sequence

of actions, or the demonstration, by telling the robot, “That’s it Simon, that’s

how you build a door”. This finalizes the task by capturing the relations from

the belief system for the demonstration itself.

6. Subsequent demonstrations can be merged into the task by using the command

“Simon, let me show you again” which recalls the most current task from mem-

ory and begins another demonstration. This demonstration is appended to the

set of observed demonstrations and the interaction repeats.

The merging of the actions is documented in section 5.3 which create not only the

partial order plan constraints but also merges the action set into a minimum number

of actions.

After the participant builds the initial understanding of the task using demonstra-

tions, a human teacher can modify the task using more demonstrations or if presented
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with the opportunity, can have a dialog with Simon to further clarify the task. Once

the robot is asked, “Simon, will you show me how to <task>?”, the robot begins

to demonstrate the task, revealing what it did and did not understand about the

demonstrations. During this exercise, the human discovers whether or not Simon has

correctly understood the task. The robot will then linearize the partial order plan and

given its observations (which for our purposes, starts the plan off in the initial state

of the demonstration), would start iterating through its plan. For each action that it

encounters, it asks to place the object of attention at a particular spot that it points

at (explored in section 6.1). At this point, the robot, in the task transparent interac-

tion will go into a state of dialog. The dialog interaction allows the user to modify the

internal objectives of that interaction using a few commands, again found in Table

1. Since there is the possibility that the interaction involves many possible relations

(for example, the door task which regularly produces more than 30 relations), a set of

five objectives of that action were randomly sampled and expressed to the user in the

form of “I believe the objective is for <object> to be to the <relation> of <object>

and for ...”.

Simon is able to reveal its objective using this formulaic sentence. For instance, in

the case of the clean-up task (Figure 5), the objective may be: “I believe the objective

is for the blue block to be next to the blue keystone and the yellow arch to be next to

the yellow block.”. In this case, the objective is correct, but in the case that it is too

specific, it may also include the case “The blue block is on top of the yellow block”

which is irrelevant to the goal but was present in the demonstration. In this case, the

user is allowed to modify the objectives by following the script found in Table 1.

For instance, a user may request that the robot “forget about the blue block”

which may be irrelevant to the current action’s objectives. These clarifications were

shown to significantly modify the learned goal as the dialog proceeded.
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Table 1: Dialog commands cheatsheet for the user
“I want to teach you to build a
door”

Start the task <X>

“I want to teach you to clean up”
“I am moving an object” Begin an action
“Did you see that, Simon?” End an action
“That’s it Simon, that’s how you
build a door”

End the task <X>

“That’s it Simon, that’s how you
clean up”
“Will you show me how to <X>” Have the robot execute the most cur-

rent task
“Let me show you again.” Repeat a demonstration of the most

current task in memory
“Okay Simon, I did that.” Move on to the next action in

the Partial Order Plan“Okay Simon, let’s move on.”

“Forget about the <object>” Filter out all objectives of current ac-
tion with <object> as one of the refer-
ents

“Also consider <object1>
<relation> <object2>”

Add an explicit relation with
<object1> and <object2> as the
referents

“Only consider <object>” Similar to the forget action, this com-
mand filters out all objectives where
<object> is not one of the referents.
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6.2.1 Clarifications

The clarifications have very specific effects on the objective. I defined the following

three clarification mechanisms:

• “Forget” <object>: filters the objectives. For example, for all A and B of

relation(A,B) in objectives, if A or B is <object>, then remove that objective

• “Also consider<object1><relation><object2>”: explicitly add<relation>(<object1>,

<object2>) to the objectives

• “Only consider <object>”: filter the objectives. For example, for all A and B

of relation(A,B) in objectives, if A or B is <object>, then keep that objective,

otherwise remove

In the door task, there were twenty-one tags on the table at all times. In this

example, if the participants were teaching with red only, the participants may find

it easy to start by saying “Forget about the blue panel” and “Forget about the blue

window”. This will remove all of the overly specific objectives that surround the blue

objects and generalize the task quickly by allowing the user to understand and modify

the internal representation without going back to demonstration.
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CHAPTER VII

EVALUATION

My hypothesis is that task-transparency aids in the accuracy of the learned goal to

the mental model of the teacher. As such, the null hypothesis is simply that task-

transparency has no effect on the accuracy of the goal. I tested my interaction on

eighteen subjects from both outside the Georgia Institute of Technology and from

within. Seven of these participants were robotics students from within the college and

had experience with robots, four were from within the College of Computing and were

considered to have intermediate experience and seven were considered novices. Eight

students were in group A and ten students were in group B. Each of the participants

received a “cheatsheet” of the speech commands that the robot was able to understand

along with very specific representations of the task that explained the relations that

the robot understands as well as an explanation of the goal that they are to teach.

They were provided assistance if they had questions and were allowed to ask questions

until they felt comfortable with the task before the study began. After the study

began, they were only allowed to ask questions related to the functioning of the

speech recognition system since recognition had a high miss rate for certain dialects.

I tested two interactions on two tasks, pictured in Table 2.1

Table 2: Group design
NTT TT

Door Task Group A Group B
Clean Up Group B Group A

Time Step 1 Step 2

1NTT: non-task transparent interaction, TT:task-transparent interaction
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NTT User Action TT
Looking straight ahead Looking at head height,

gently looking around
↓ “I’m moving an Object” ↓
↓ <Moving object> Trying to follow movement
↓ “Did you see that Simon?” ↓

Repeats until demonstration completed

Figure 15: Interaction scenario during participant observation between robot and
human

In Table 2, Group A received the non-task-transparent interaction with the door

task before they received the task-transparent interaction with the clean up task.

Thus our independent variable is whether or not the human is training the robot

with the task-transparent interaction or with the non-transparent interaction. This

within study was counter-balanced and corrected for task familiarity by providing two

different interactions with different two tasks. To ensure that task preference didn’t

bias the results, I collected results to validate that task preference did not contribute

to the qualitative results. The results can be found in Figure 19. While they show a

small bias toward the clean up task, it isn’t significant enough to warrant worry.

7.1 Experimental Design

My study involves two phases, teaching and demonstrating.For the teaching phase,

Simon observes the participant’s actions and learns from a structured interaction.

The sequence diagram for the learning phase can be found on Figure 15.

For the learning phase, there are two possible interactions, non task-transparent

(NTT) and task-transparent (TT) which yield familiar but subtly different inter-

actions. For the baseline, NTT interaction, Simon gives little indication that it is

observing or paying attention while the TT interaction provides a small and subtle

gazing interaction. For both of the interactions, Simon provides verbal feedback in

the form of “Okay” to acknowledge that the beginning of the action was received
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NTT User Action TT
Looking straight ahead Looking at head height,

gently looking around
↓ “Will you show me how to

build a door”
↓

”Pickup the
<object>”

”Pickup the <object> and
looks in that direction”

↓ “Okay Simon, I did that.” ↓
“Put it here” “Put it here”

<Points to position> <Points to position>
↓ “I believe that was

because...”
<dialog> <dialog>

Repeats until user satisfied
“Okay Simon, let’s move
on”

Repeats until POP satisfied

Figure 16: Interaction scenario during participant demonstration between robot
and human (repeated)

followed by a “Yes, I saw that” when the action is completed and Simon has properly

recognized the end of action phrase. For the NTT interaction, the participant was

allowed to return to this phase as a way of clarification to take advantage of the strict

learning by demonstration input.

The learning phase uses the same task learning code and, with the same input,

gives the same results. It is in the demonstration phase where things change signif-

icantly. In the NTT interaction, speech synthesis and pointing are used to commu-

nicate actions and intentions but not the internal representation of the task while

the task-transparent version expressed the learned task by utilizing gaze, pointing,

and a dialog interaction that afforded the user a clarification mechanism. In the

NTT interaction, the user was allowed to repeat the demonstration until they felt

Simon had successfully learned the task. In the task-transparent interaction, they

were asked to teach Simon the task followed by a dialog in which Simon was able to

express the learned task and provided the dialog mechanism to modify the internal
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representation.

The NTT interaction is meant to reflect a somewhat typical interaction in LbD

systems. Simon looked straight ahead to avoid gazing at the wrong objects, com-

manded the user using speech synthesis to perform the action and only pointed when

the objective could not be explained using speech synthesis. When clarifications

needed to be made, the user would go back to the learning phase to do it.

On the other hand, the TT interaction enabled Simon to point (as in the NTT

version), to look at the objects of interest, and a dialog system. This is considered

the task-transparent interaction since the internal objective is revealed through a few

interactive channels. I show that task-transparent interactions improve accuracy in

the learned task as well as being considered more intelligent compared to the non

task-transparent interactions.

7.1.1 Data collection

During the interaction, data was collected from the user for further analysis. My

dependent variable, accuracy, was measured during the interaction according to our

distance metric (Section 7.2). The objective of our study was to determine the effects

of task transparency on goal accuracy. As such, I collected data after each demon-

stration and after each clarification. This afforded the granularity per clarification

of the objectives. For instance, the baseline interaction allowed the participant to

teach as many times as required but was unable to make any direct clarifications to

the learned goal since it was not revealed. The participants task and belief system is

captured after each command. More specifically, the current action’s objectives are

captured to analyze what the participants attended to in the clarification.

7.2 Distance Metric

In order to compare and show a difference between our experimental conditions (NTT

vs TT), I use the dependent variable of goal accuracy.I define the accuracy of a goal to
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be the hamming distance from one goal to another with the cardinality of the union

set as the maximum distance.

The distance measure between the goals of an action or task from the expert, GE,

and the goals of the respective action or task from the naive user, GP , is my measured

dependent variable. The distance defines the accuracy of what was intended to be

taught (through the task-transparent framework) by the expert to what was actually

taught by the participant in that particular interaction. The distance was defined to

be:

d = len (GE ∪GP )− len (GE ∩GP ) (1)

Note that len (GU ∪GP ) ≥ len (GE ∩GP ) thus the distance metric is never neg-

ative, i.e. d ∈ [0, len (GE ∪GP )]. Where zero is the same and len (GE ∪GP ) is

perfectly different.

In the case where the len (GE ∪GP ) > len (GE ∩GP ), then the extraneous objec-

tives grow linearly with each wrong objective and don’t grow at all with each objective

that is in line with what the expert taught. Special code was written to normalize

the relational equivalencies. For instance “left AND bottom” between two referents is

equivalent to “right AND top” with the referents in opposite order. These identities

were taken into account when calculating the distances in the code. This was used to

measure the accuracy of the goal both when the task was complete and when each

clarification was made. My hypothesis was that between the independent variable

(TT vs NTT), the accuracy is smaller for the TT interaction. Also of interest was

to characterize how the user affected the accuracy for each clarification during the

demonstration phase.
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Table 3: Expertly trained goals for the two tasks

Clean up Task
G1 = {Next To(Yellow Block, Yellow Arch),

Next To(Blue Block, Blue Keystone)}
Build door Task
G2 = {Left Of(Panel,Tag#17), Top Of(Window,Panel),

Bottom Of(Panel, Tag#17), Top Of(Panel,Tag#15),
Bottom Of(Panel, Tag#18), Top Of(Window,

Tag#18), Right Of(Panel, Tag#18), Top Of(Window,
Tag#17), Left Of(Window, Tag#17),

Right Of(Window, Tag#18)}

7.3 Task Scenarios

Each user was asked to teach the robot how to clean up and to build a door. See

Chapter 2 for basic details. Simon learned with the following grounded relations

(trained by an expert): Left Of , Right Of , Top Of , Bottom Of , and Next To.

The goals for each task (Table 3) are those that are consistently met after all demon-

strations and clarifications are complete. This was given to the user for reference if

asked.

With the goal accuracy not normalized in my distance metric, it is impossible

to compare distances between these goals. This was intentional. The larger the

cardinality of the set GP ∪ GE (goal of the participant & goal of the expert), the

smaller the effect of differences between the expert’s goal and the participant’s goal.

This means that for simple tasks, such as the “clean up” task, a single difference in

the task’s goal representation can change the normalized value by larger amounts. Or

in other words, for x,y as the cardinality of the two respective tasks, one difference is

larger than the other, 1
x
< 1

y
, when x > y. For this reason, I analyze the task data

separately between my independent variable for each task.
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Table 4: Clean Up Task Accuracy
Clean Up

Non-Task-Transparent Task-Transparent
Mean Distance 1.8 0.63

Median Distance 2 1
p-value < .001

7.4 Results

I analyzed the dependent variable, goal accuracy, between the NTT interaction and

the TT interaction for each groups data. Since, the task accuracy can’t be compared

between tasks, the data had to be split into four sets. Data from each group rep-

resenting the NTT and TT interactions for each task. I analyze the independent

variable by task by doing two separate one-tailed student’s t-test for the independent

variable, NTT/TT, for each task to determine significance.

In the case of determining accuracy with respect to the action during clarification,

the object of interest is used to determine the goal of just that object. The object of

interest is defined to be the object that was moved during the primitive move action.

Once we determine the goal of just that action, the distance is calculated with respect

to just that action to the experts action.

7.4.1 Task Accuracy

Task accuracy based on the previous metric, Section 7.2, where a smaller value is

better (shorter distance to expert demonstration) yields positive results. In fact, for

both tasks, the accuracy yields better and more accurate tasks to what the user was

told to teach. For both the complicated door building task and the simple clean up

task, the task is modified in a statistically significant way to reduce the more specific

learned goal to something that is more general in more situations. See table 4 and

table 5.
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Table 5: Build a Door Task Accuracy
Door Task

Non-Task-Transparent Task-Transparent
Mean Distance 80.38 33.2

Median Distance 77.5 27
p-value < .001

Task-transparency aids the user in shaping what is learned by the robot by clarify-

ing and reducing the specificity of the goals produced with learning by demonstration

alone. Each grounded symbol that is consistent in the learned task is intrinsic to the

set of demonstrations learned and is actually a constraint on the optimization. The

explicit modifications allow the user to remove extraneous constraints on the task and

generalize further past what was taught by the demonstrations.

Analysis of experience to accuracy reveal that experience did not in general affect

accuracy results. Pairwise t-tests reveal that all p-values between accuracy in each

group for each level of experience (robotics student, computer experience, or novice)

are all ≥ 0.09, which I consider insignificant since all values are > 0.05.

For all of the users who performed the door task, Simon reproduced the task ex-

actly and the user chose not to repeat it. For the cleanup task, six of the eight users

performed only once and the remaining three users in the NTT group demonstrated

the twice to clarify. For most of the extraneous constraints, the tags that were removed

from the demonstration for the door task were immutable table fiducials. Despite all

corrections in the demonstration set, these can not be generalized away using tradi-

tional learning by demonstration methods given the task environment. Any number

of demonstrations cannot remove immutable always-there features if the demonstra-

tions must happen in the presence of such features. By using task-transparency, the

user is able to remove them and provide a more accurate representation of the task

to Simon.
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Figure 17: Average change in specificity of the goal after each clarification

7.4.2 Clarification Analysis

One interesting consequence of the dialog is that we can see how each clarification

changes the specificity of the goal (defined by the number of features that changed

or the delta). For instance, if a single clarification is made, then we’d expect the

number of features to either increase or decrease in value. The most interesting case

is with respect to building a door. In Figure 17, I’ve aligned each action to the

expert’s equivalent action and found the difference of the clarified series. We can see

that the first clarification changes the specificity the most. For instance, if the user

understands that Simon has somehow mischaracterized the goal by including some

extraneous blue window when the real objective only involved the red panel, then by

removing the blue window, six relations were removed from the goal, thus reducing

the specificity2. As time went on, the effect of each clarification was, on average,

reduced.

2See Chapter 6, Section 6.2.1 for the detailed taxonomy of possible corrections and their effects
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Finally, I wanted to analyze how long people were willing to interact with Simon.

On average, for the complicated door task, the participant was willing to provide 4.2

clarifications on average while for the more simpler clean up task, 1.13 clarifications

was sufficient.
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7.4.3 Qualitative Response

In addition to the quantitative results, a questionnaire was given to allow a free

response about the interaction between the robot and the human. The participants

also received questions focusing on preference and perception. The basic questions

that were asked are the following:

• “If you were to interact and teach with Simon on a daily basis - which of the

two would you be willing to work with daily?”

• “Was there a difference in intelligence level between the two studies? If so:

which did you perceive to be ’more intelligent’ and if not: just mark ’same level

of intelligence.”

7.4.3.1 Perceived Intelligence

Of the seven responses that were received, six claimed that the task-transparent inter-

action was more intelligent despite the challenging interaction. Some select comments

about this interaction can be found in Figure 18.

“I feel like study two[TT] is higher level because Simon talked about
my objective which I can discuss about that.”
“I was more impressed with what Simon could do in the 2nd study.”
“I think that the asking and answering of questions showed a level
of intelligence that was not present in the first study.”

Figure 18: Select comments regarding perceived intelligence

7.4.3.2 Preference

Out of eighteen participants, nine preferred the task-transparent version and nine

preferred the non-task-transparent version. Out of these, Figure 19, shows that they

were, for the most part, not biased towards any one task.

An equal number of subjects preferred the TT interaction to the NTT interaction

and the NTT interaction to the TT interaction. Analysis of the accuracy to the NTT
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Figure 19: Task Preference out of Eighteen participants. Between Group A (NT-
T/D,TT/C) and Group B(NTT/C,TT/D), p-value: 0.31 > 0.05

and TT preference reveals that there is no significant difference in accuracy between

those who preferred the NTT interaction to those that preferred the TT interaction.

Accuracy p-values for Group A, between those that preferred NTT to TT are 0.5 and

0.15 for the door building accuracy and cleanup accuracy respectively while Group B

had p-values of 0.39 and 0.17. This also points out that preferring the NTT preference

was not correlated with accuracy. The comments reveal just why participants had no

preference toward the interaction type. The comments for these questions reveal that

the subjects sometimes prefer the robot to not be so pedantic. One participant that

prefers the intelligent interaction said, “I found it interesting having to correct and

work with Simon as he learned and then made mistakes and then continued learning.”

said one participant who preferred the TT interaction. While others preferred the

hands off approach of the NTT interaction, “It was [an] easy task, and I don’t have to

specify all [of the] rules.” and “Even though in the second one, Simon was trying to

tell me the goal of the task, but the way it presented [the task] is confusing and not

obvious to me. So I prefer the first one.” were just some of the responses of some of
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the users. The interaction may need some work to make it more amenable to human

interaction but the goal accuracy is a positive metric that shows the advantage of the

task-transparent version which may be useful for future task learning interactions.

7.4.3.3 Feedback regarding the verbal interaction

The verbal interaction that followed the execution was an important part of the ex-

periment. I found that the implementation challenged the users who felt constrained

by the script and confused by the speed of the speech. Out of the twelve responses

regarding the verbal interaction, eight cited it positively and four cited it negatively.

This reveals that there is nothing conclusive about this split opinion. One obser-

vation from the comments seems to suggest that those who had negative comments

regarding the dialog pointed to Simon speaking too quickly and having a hard time

understanding and keeping up with the relations and referents in Simon’s frame. Just

some of the feedback can be found in Figure 20.

Positive

• “I liked interacting with the robot and asking him questions.”

• “because i liked that Simon was talking to me more.”

Negative

• “I feel like study two[TT] is higher level because Simon talked
about my objective which I can discuss about that.”

• “I thought the explanations Simon gave were simpler. It was
hard to follow all the detail Simon gave about the positioning
of the window/panel in the second study. It was less confus-
ing.”

Figure 20: Select comments regarding the dialog interaction
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7.5 Discussion

Learning by demonstration requires a very complicated coupled interaction that de-

mands each participant to carry a large burden in maintaining a common experience.

This puts the burden on the roboticist to design behaviors that facilitate this biologi-

cal desire humans have developed and make available enough information to facilitate

these social learning mechanisms, like those described in Tomasello[35]. Utilizing this

information, the human teacher can transfer goals and tasks more effectively from

human to machine. But most importantly, designing a coupled transparent algo-

rithm is challenging. From an interactive standpoint, transparency in human com-

puter interaction has always focused on making devices that don’t reveal its internals

but provides this information in ways that make sense for humans. Thomaz and

Breazeal[33, 7] have had the most success in coupling these transparent robot learning

mechanisms with learning algorithms. While my work shows that task-transparency

provides good results, my study also shows that this interaction should be natural and

needs to be a designed in a principled way, by designing algorithms that utilize trans-

parency as a critical consideration. One of the basic findings of my study’s discourse

interaction was that my particular implementation spoke too fast, spoke in a way

that made it hard to follow (in other words the referents were sometimes not labeled

well enough), and that participants prefer this interaction to be available throughout

the entire learning interaction. By measuring the accuracy per clarification, I have

also characterized the clarification process as making only minor changes as further

clarifications are provided indicating perhaps that further interactions have less of an

impact on accuracy.

My hope is that, in the future, better design considerations will be enumerated

that will provide a useful taxonomy for building learning interactions in socially
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guided machine learning. Thomaz, Breazeal, and Chao [33, 7, 10] have clearly pro-

vided a number of design considerations including gaze, pointing, gesture, and intro-

spection (utilizing active learning). In this way, my work stands alongside theirs by

additionally considering dialog. What I show in my study is that within the trans-

parent design pillar, providing an interface to the symbolic goals itself in a way that

feels natural to the human is as important of a design consideration as many of the

non-verbal communicative acts have been shown to be.
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CHAPTER VIII

CONTRIBUTIONS

Task transparency in robot learning through demonstration has been shown to im-

prove task accuracy. Having seen positive results from my study, I can conclude a

few things; 1) task transparency is an important behavioral design consideration in

LbD, 2) users would prefer a less obtrusive transparency mechanism, and 3) the way

users clarified the task takes on the strategy of making the largest changes to the

specification first, followed by subsequent detailed clarifications.

In my study, I made an observation that in the door task, the features that required

the most attention are the immutable features on the table. This is an important

distinction between the task-transparent interaction and the non-task transparent in-

teraction. The task transparent interaction provided a mechanism that allowed the

participant to remove features that were unimportant. With traditional learning by

demonstration, demonstrations may have the condition that they be trained in an

environment that can not be modified. In this case, the task’s criteria may be overly

specific and require that the task only be performed in the same type of environment

that it was trained in. What the task-transparent interaction provided was a mecha-

nism to further generalize past the limitations of the environment that it was trained

in.

To ensure that the users prefer one interaction over the other, my study made

it obvious that the behavior needs to reveal the task in a way that makes sense

for human teachers. My particular implementation was not transparent enough in

the most traditional human computer interface terminology. In fact, the mechanism

revealed far too much internal state and this got in the way of the natural interaction
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that the participants expected. My study emphasizes the need for the design of

an unobtrusive discourse between human and robot about the internalized task to

improve task learning accuracy and aid generalization.
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APPENDIX A

LOGIC

A cursory explanation of logic follows for brevity. Further study in propositional logic,

first order logic, and second order logic can be found in many fundamental Artificial

Intelligence sources [32, 26, 24] I will only cover propositional and first order logic.

A.1 Propositional logic

Propositional logic is one of the most fundamental logics. It provides a mechanism

for declarative statements that have some truth value and has traditionally been used

to represent world state and can be used in planning and knowledge representation.

Propositional logic includes some alphabet, Γ, or in our case, some number of features.

It also uses a number of symbols that represents relationships between the features.

These rules may include P → Q represents an “if-then” relationship where Q is true if

P is true. This says nothing of Q’s effect on P. Other basic symbols include ¬P → Q,

which uses a new symbol, ¬ that represents a negation, or in other words, when P

is false, then Q is true. This only represents a single direction of inference. So if Q

is known, we still can’t say anything about P. We can directly link their relationship

by using something called a biconditional, ↔ that represents a direct relationship to

each other. So P ↔ Q will represent an “identity” where the value of P is always

the same as Q. In general, a fully-defined propositional logic is some language that

includes some alphabet and rules, or L = (Γ,Ω, ζ) where the Γ is our alphabet, for

instance (P,Q, Y ellow Block, Y ellow Arch, etc), Ω = {→,↔,¬,∧,∨, etc} represents

the symbols we use to build our current statements, and finally, ζ represents our rules,

for instance P∧Q→ ¬T may represent some relationship or rule between the alphabet
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Rules(ζ) Example Discussion
P Block A block object exists

P ∧Q Y ellow Block ∧ Y ellow Arch Both the yellow block and yellow arch
exist

P → Q Arch→ Y ellow Arch If an Arch exists, then a Yellow Arch
also exists

P → ¬Q Keystone→ ¬Y ellow Since no keystone objects are yellow,
by knowing if it is a keystone, it im-
plies that it is yellow, the converse is
not necessarily true.

P ↔ Q Y ellow Block ↔ Blue Block If the yellow block exists, so does the
blue block. If the blue block exists, the
yellow block also exists.

Figure 21: Rough interpretation of propositional logic in the task-transparency
study

that is observed or found to be consistent.

A.2 First Order Logic

In earnest, my task transparency study uses more formal first order logic than propo-

sitional logic. First order logic extends propositional logic to include predicates and

quantification [32]. Predicates, in our usage, can help describe attributes or relations

between symbols. For instance, {IsLarge(a), IsBlue(a), IsYellow(a), Next To(a, b)}

may represent some attribute of some variable, a. So we can create interesting rules

such as IsYellow(a)→IsLarge(a) then we can create rules that imply that allow yellow

objects are also large. If we design a ∈ {Block} and b ∈}Keystone} then we can

even say that the block is next to the keystone using Next To(a,b). If a contained

both Keystone and Block and Next To(a,a) then we may have problems since a in

this case could be Next To(Keystone,Keystone). This represents a need for quantifi-

cation in the representation that helps generalize and constrain the variables usage.

Generalization and quantification help define the limitations of our variable a in our

examples. Two possible quantification symbols exist such as ∃ and ∀, which repre-

sent “there exists” and “for all” respectively. “There exists” quantifies the situation
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Rules(ζ) Example Discussion
Next To(a, b) Next To(Y ellow Block,

Y ellow Arch)
The yellow block is next to the
yellow arch

∃aIsKeystone(a) IsKeystone(Blue Keystone) At least one of the objects in the
world is a keystone. In this case,
there exists a blue keystone.

Figure 22: Rough interpretation of first order logic in the task-transparency study

such that, given some set of possible objects, say a ∈ {Arch,Block} in our previous

example, then we can safely say that within the set, a, the number of possible arches

that exist is at least one. See Figure 22 for a few symbols that I use in my study.

56



APPENDIX B

PARTIAL ORDER PLANS

Partial Order Plans (or POP for short) have successfully been used to represent

sequential task constraints. When a task is executed by an agent, a concise definition

can be helpful as a heuristic for its planner. A planner that sufficiently represents its

state and its actions preconditions and postconditions may have the ability to plan its

way through sequential constraints but by explicitly explaining sequential constraints,

a useful heuristic may emerge. Classically, partial ordered plans are represented with

some type of propositional or first order logic [32]. My example partial order plan can

be found in Figure 23. In this example, you must place the window and the panel into

place before you are finished with the task. But first, to accomplish that, the robot

must execute both paths in some sequence. In this example, the plan points out the

fact that you can orient and place the window and the panel in different orders but

they must happen before the task is complete.

In this example, the objective is for both pieces to be placed (WindowPlaced,

PanelPlaced) by first picking up the piece and then orienting it correctly followed by

releasing it from the robots hand. A linearization of this partial order plan is one

particular sequenced list of actions to take to accomplish the task. For instance, in our

example one particular linearization is that you need to Pickup, Orient, and Release

the window before the panel. Another linearization of this plan may be that you need

to perform those actions on the panel before the door. Both are valid linearizations.

More formally, most partial order plans can execute them in parallel. My execution

code linearizes the partial order plan given the robot’s limitations; but one particular

correct linearization may be that the robot picks up the panel, orients it, picks up
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Start

End

Pickup(Panel)

Orient(Panel)

Release(Panel)

Pickup(Window)

Orient(Window)

Release(Window)

PanelPlaced, WindowPlaced

¬WindowInHand¬PanelInHand

WindowInHandPanelInHand

WindowPlacedPanelPlaced

Figure 23: Example door building partial order plan

the window, places the panel, and finally orienting and placing the window. This

is a valid linearization of the partial order plan but requires more capability than

has been given to Simon by this study. After each action, a particular change in

the world state is activated or deactivated. In the example, after a pickup action is

executed, the symbol WindowInHand becomes activated and needs to be deactivated

to successfully accomplish the task. The objectives of an executed action need to be

satisfied before the action is considered complete.

Partial order plans provide a good framework for building sequential constraints

of a plan. While my implementation is not a complete solution, POPs have provided

a framework for handling constraints in a formal way that make planning clear and

unobtuse.
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