Multi-commodity Flows and
Cuts 1n Polymatroidal Networks

Chandra Chekuri
Univ. of Illinois, Urbana-Champaign

Joint work with

Sreeram Kannan, Adnan Raja, Pramod Viswanath
(UIUC ECE Department)

Paper available at http://arxiv.org/abs/1110.6832




Max-flow Min-cut Theorem

[Ford-Fulkerson, Menger]|

G=(V,E) directed graph with
non-negative edge-capacities

max s-t flow value equal to min
s-t cut value

if capacities integral max flow
can be chosen to be integral




Multi-commodity Flows

Several pairs (s,t;),...,(Si,t)
jointly use the network
capacity to route their flow

f.(e) : flow for pair 1 on edge e
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Max Throughput Flow and
Min Multicut

f(e) : flow for pair i on edge e
>.file) <c(e) foralle

max Y; val(f) (max throughput ﬂow)Sl




Max Throughput Flow and
Min Multicut

f.(e) : flow for pair 1 on edge e
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Multicut: set of edges whose removal
disconnects all pairs

Max Throughput Flow < Min Multicut Capacity




Max Concurrent Flow and
Min Sparsest Cut

f.(e) : flow for pair 1 on edge e

>.file) <c(e) foralle

S1

val(f) > A D, foralli

max A (max concurrent flow) t




Max Concurrent Flow and
Min Sparsest Cut

f.(e) : flow for pair 1 on edge e
>.file) <c(e) foralle
val(f) > A D, foralli

max \ (max concurrent flow)

Sparsity of cut = capacity of cut / demand separated by cut

Max Concurrent Flow < Min Sparsity




Flow-Cut Gap: Undir graphs

[Leighton-Rao’88] examples via expanders to show
Max Throughput Flow < O(1/log k) Min Multicut
Max Concurrent Flow < O(1/log k) Min Sparsity

k = ©(n?) in expander examples




Flow-Cut Gap: Undir graphs

[Leighton-Rao’88] for product multi-commodity flow

Max Concurrent Flow > Q (1/log k) Min Sparsity

[Garg-Vazirani-Yannakakis’93]
Max Throughput Flow > Q(1/log k) Min Multicut

[Linial-London-Rabinovich’95, Aumann-Rabani’95]
Max Concurrent Flow > Q (1/log k) Min Sparsity




Flow-Cut Gap: Undir graphs
Node Capacities

[Feige-Hajiaghayi-Lee’05]
Max Concurrent Flow > Q (1/log k) Min Sparsity

[Garg-Vazirani-Yannakakis’93]
Max Throughput Flow > Q(1/log k) Min Multicut




Flow-Cut Gap: Dir graphs

[Saks-Samorodnitsky-Zosin’04]
Max Throughput Flow < O(1/k) Min Multicut

[Chuzhoy-Khanna’07]
Max Throughput Flow < O(1/n!'/7) Min Multicut

[Agrawal-Alon-Charikar’07]
Max Throughput Flow > Q(1/n!!/23) Min Multicut
> 1/k Min Multicut (trivial)




Flow-Cut Gap: Dir graphs

Symmetric demands: (s, t;) and (t,s;) for each pair and
cut has to separate only one of the two

[Klein-Plotkin-Rao-Tardos’97]
Max Throughput Flow > 2(1/log? k) Min Multicut

Max Concurrent Flow > Q (1/log? k) Min Sparsity
[Even-Naor-Rao-Schieber’95]
Max Throu. Flow > Q(1/log n log log n) Min Multicut




Flow-Cut Gaps: Summary

k pairs in a graph G=(V,E)

* O(log k) for undir graphs
* Throughput Flow vs Multicut
* Concurrent Flow vs Sparsest Cut
* Node-capacited flows [Feige-Hajiaghayi-Lee’05]

O(polylog(k)) for dir graph with symmetric demands

Polynomial-factor lower bounds for dir graphs




Polymatroidal Networks

Capacity of edges incident to v jointly constrained by a
polymatroid (monotone non-neg submodular set func)

iosc(e) <Af(S)forevery S C {1,2,3,4}




Detour:
Network Information Theory

Question: What is the information theoretic capacity of a
network?

Given G=(V,E) and pairs (s;,t,),...,(S,,t;) and rates/
demands Dy,...,D, : can the pairs use the network to
successfully transmit information at these rates?

* Can use routing, (network) coding, and any other
scheme ...

* Network coding [Ahlswede-Cai-Li-Yeung’00]




Network Information Theory:
Cut-Set Bound

Max Concurrent Rate < Min Sparsity

S

(£ )




Network Information Theory

Max Concurrent Rate < Min Sparsity

In undirected graphs routing 1s near-optimal (within
log factors). Follows from flow-cut gap upper bounds

In directed graphs routing can be very far from
optimal

In directed graphs routing far from optimal even for
multicast

Capacity of networks poorly understood




Capacity of Wireless
Networks




Capacity of wireless networks

Major 1ssues to deal with:
* Interference due to broadcast nature of medium

* noise




Capacity of wireless networks

Recent work: understand/model/approximate wireless
networks via wireline networks

* Linear deterministic networks [Avestimehr-Diggavi-
Tse’09]

* Unicast/multicast (single source). Connection to
polylinking systems and submodular flows [Goemans-
Iwata-Zenklusen’09]

Polymatroidal networks [Kannan-Viswanath’11]
* Multiple unicast.




Directed Polymatroidal Networks

[Lawler-Martel’82, Hassin’79]
Directed graph G=(V,E)

For each node v two polymatroids
* p, with ground set 0 (v)
* p,F with ground set 6*(v)

S.._<f(e) < p,(S) forall S C §(v)
Secsfe) < p, (S) forall S C §*(v)




s-t flow

Flow from s to t: “standard flow” with polymatroidal
capacity constraints




What 1s the cap. of a cut?

Assign each edge (a,b) of cut to either a or b
Value = sum of function values on assigned sets

Optimize over all assignments

min{l+1+1, 1.2+1, 1.6+1}




Maxtlow-Mincut Theorem

[Lawler-Martel’82, Hassin’79]

Theorem: In a directed polymatroidal network the max s-t
flow 1s equal to the min s-t cut value.

Model equivalent to submodular-flow model offEdmonds-
Giles’77] that can derive as special cases

* polymatroid intersection theorem
* maxflow-mincut in standard network flows

* Lucchesi-Younger theorem




Undirected Polymatroidal Networks

“New” model:
Undirected graph G=(V,E)

For each node v single polymatroids
* p, with ground set (v)

S..sfe) < p(S) forall S C &(v) o

Note: maxflow-mincut does not hold, only within
factor of 2!




Why Undirected
Polymatroidal Networks?

captures node-capacitated flows in undirected graphs

within factor of 2 approximates bi-directed
polymatroidal networks relevant to wireless
networks which have reciprocity

ability to use metric methods, large flow-cut gaps for
multicommodity flows in directed networks




Multi-commodity Flows

Polymatroidal network G=(V,E)
k pairs (sq,t;),...,(Si,t)
Multi-commodity flow:

f. 1s s-t; flow

fe) = > f(e) is total flow on e

flows on edges constrained by polymatroid
constraints at nodes




Multi-commodity Cuts

Polymatroidal network G=(V,E)

k pairs (sq,t;),...,(Si,t)

Multicut: set of edges that separates all pairs
Sparsity of cut: cost of cut/demand separated by cut

Cost of cut. as defined earlier via optimization




Main Results

* O(log k) flow-cut gap for undir polymatroidal networks
* throughput flow vs multicut
* concurrent flow vs sparsest cut

O(Mog k)-approximation in undir polymatroidal networks for
separators (via tool from [Arora-Rao-Vazirani’04])

Directed graphs and symmetric demands
* O(log? k) flow-cut gap for throughput flow vs multicut
* O(log? k) flow-cut gap for concurrent flow vs sparsest cut

Flow-cut gap results match the known bounds for standard
networks




Other Results

See paper ...

Remark: Two “new” proofs of maxflow-mincut
theorem for s-t flow 1n polymatroidal networks




Implications for network
information theory

[Kannan-Viswanath’11] + these results imply

capacity of a class of wireless networks understood to
within O(log k) factor for k-unicast




Local vs Global Polymatroid
Constraints

A more general model:

G=(V,E) graph

f: 2F — R is a polymatroid on the set of edges

f(S) 1s the total capacity of the set of edges S
Function 1s global but problems become intractable

[Jegelka-Bilmes’10,Svitkina-Fleischer’09]




Technical Ideas

* Directed polymatroidal networks: a reduction via
uncrossing 1n the dual to standard edge-capacitated
directed networks

* Undirected polymatroidal networks: dual via Lovasz-
extension

- sparsest cut: round via line embeddings inspired by
[Feige-Hajiaghayi-Lee’05] on undir node-capacitated
graphs

- multicut: line embedding 1dea plus region growing
[Leighton-Rao’88,Garg-Vazirani-Yannakakis’93]




Rest of talk

O(log k) upper bound on gap between max concurrent
flow and min sparsity in undir polymatroidal networks




Relaxation for Sparsest Cut

Want to find edge set E’ C E to
minimize cost(E’)/dem-sep(E’)

Variables:

x(e) whether e 1s cut or not

y(1) whether pair sit. 1s separated or not




Relaxation for Sparsest Cut

Relaxation for standard networks:
min Y, c(e) x(e)

2:Diy(®) =1

dist (s;,t) > y(1) for all pairs 1
x,y>0

Dual of LP for max concurrent flow




Relaxation for Sparsest Cut

Relaxation for polymatroidal networks:
min cost of cut

2iDiy(®) =1

dist (s;,t) > y(1) for all pairs 1

x,y >0




Modeling cost of cut

* Each cut edge uv has to be assigned to u or v
* Introduce variables x(e,u) and x(e,v) for each edge uv
» Add constraint x(e,u) + x(e,v) = x(e)

« ForanodevifS C ¢(v) are cut edges assigned to v
then cost at v is p,(S)




Relaxation for Sparsest Cut

Relaxation for polymatroidal networks:
min cost of cut

2:Diy(®) =1

x(e,u) + x(e,v) = x(e) for each edge uv
dist (s;,t) > y(1) for all pairs 1

x,y>0




Modeling cost of cut

* Each cut edge uv has to be assigned tou or v
* Introduce variables x(e,u) and x(e,v) for each edge uv
» Add constraint x(e,u) + x(e,v) = x(e)

« ForanodevifS C ¢(v) are cut edges assigned to v
then cost at v is p,(S)

* X, 1s the vector (x(e,,v),x(e,,v),...,x(¢e,,v)) where
€,6,,...,&, are edges 1 o(v)

+ Use continuous extension p* (x,) to model p,(S)




Relaxation for Sparsest Cut

Relaxation for polymatroidal networks:
min Y, p*,(x,)

2:Diy(®) =1

x(e,u) + x(e,v) = x(e) for each edge uv
dist (s;,t) > y(1) for all pairs 1

x,y>0




[Lovasz-extension of f

f'(x) = E, . [0,1][ fx)] = [' f(x") dO

where x/= {1 | x, >0}

Example: x=(0.3,0.1,0.7, 0.2)
x? = {1,3} for# = 0.21 and x? = {3} for 6 = 0.6

f*(x) = (1-0.7) f(0) + (0.7-0.3)f({3}) + (0.3-0.2) f({1,3})
+(0.2-0.1) f({1,3,4}) + (0.1-0) f({1,2,3,4})




Properties of {*

f* 1s convex iff f 1s submodular

Easy to evaluate f*

f*(x) = f (x) for all x when f is submodular

If f 1s monotone and x < y then f*(x) < f*(y)




Relaxation for Sparsest Cut

Relaxation for polymatroidal networks:
min Y, p*(X,)

2:Diy(®) =1

x(e,u) + x(e,v) = x(e) for each edge uv
dist (s;,t) > y(1) for all pairs 1

X,y >0

Lemma: Dual to LP for maximum concurrent flow




Rounding of Relaxation

Standard undirected networks:

« FEdge capacities: round via [/, embedding [Linial-
London-Rabinovich’95,Aumanna-Rabani’95]

* Node-capacities: round via /ine embedding [Feige-
Hajiaghayi-Lee’05]




Line Embeddings

[Matousek-Rabinovich’01]
(V,d) metric space w(uv) non-neg weight for each uv

g . V — R 1s a line embedding with average weighted
distortion o« > 1 1f

e |g(u)-g(v)| <d(u,v) for all u,v (contraction)

* 2w W) [gw-gv)| = X, w(uv) d(uv)/a




Line Embeddings

[Matousek-Rabinovich’01]
(V,d) metric space w(uv) non-neg weight for each uv

g . V — R 1s a line embedding with average weighted
distortion « if

 |gu)—g(v)| <d(u,v)for all u,v (contraction)
* 2w W) lg-gW)| = X, wuv) d(uv)/«

Theorem [Bourgain]: Any metric space on n nodes admits
line embedding with O(log n) average weighted distortion.




Rounding Algorithm

Solve Lovasz-extension based convex relaxation
x(e) values induce metric on V

Embed metric into line with O(log n) average
distortion w.r.t to weights w(uv) = D(uv)

Pick the best cut S, among all cuts on the line




Rounding Algorithm

Solve Lovasz-extension based convex relaxation
x(e) values induce metric on V

Embed metric into line with O(log n) average
distortion w.r.t to weights w(uv) = D(uv)

Pick the best cut S, among all cuts on the line

Remark: Clean algorithm that generalizes edge/
node/polymatroid cases since cut 1s defined on
edges though cost is more complex




Rounding Algorithm




Analysis

U(0(Sy)): cost of cut at ¢

Lemma: [ 1/(6(Sy)) d0 <2 Y p*(x,) =2 OPT;,.
D(0(S,)) : demand separated by 6 cut

Lemma: [ D(6(Sy)) df > Y. D, dist (s;t.)/log n
Therefore:

J U0(Sy)) dO / [ D(0(Sy)) df < O(log n) OP Ty,




Proof of lemma

Lemma: [ (8(Sy) d6 < 2 3, p*(x,)
U(0(Sy)) 1s difficult to estimate exactly

Recall: uv € 4(S,) has to be assigned tou or v

Assign according to x(e,u) and x(e,v) proportionally

u ‘—‘ \
L—> x(e,v)

'_‘1—> x’(e,v) < x(e,v)

0




Proof of lemma

Lemma: [ (8(Sy) d6 < 2 3, p*(x,)
U(0(Sy)) 1s difficult to estimate exactly

Recall: uv € 4(S,) has to be assigned tou or v

Assign according to x(e,u) and x(e,v) proportionally

With assignment defined, estimate [ 1(d(S,)) df by
summing over nodes




Proof of lemma

Lemma: [ (5(Sy) df < 2 3, p*,(x,)
With assignment defined, estimate [ 1((S,)) df by
summing over nodes

[USS) 40 < 23, p*,(x",) < 23, p¥,(x,)

x’, = (X' (e,v),...,x'(e,,v)) where o(v)={ey,...,e,}




Concluding Remarks

* Flow-cut gaps for polymatroidal networks match
those for standard networks

Questions:

* L, embeddings characterize flow-cut gap in
undirected edge-capaciated networks. What
characterizes flow-cut gaps of node-capacitated and
polymatroidal networks?

What are flow-cut gaps for say planar graphs?
Okamura-Seymour instances?




Thanks!




Continuous extensions of f

For f : 2N — R* define g : [0,1]N — R* s.t
for any S C N want {(S) = g(1y)

given X = (X, X,, ..., X,) € [0,1]N want polynomial
time algorithm to evaluate g(x)

for minimization want g to be convex and for
maximization want g to be concave




Canonical extension

X = (X, Xy, ..., X,) € [0,1]N

min/max Y, ¢ s f(S)
2505 =1
Yoag=x; foralli

ag>0 forall S

f (x) for minimization and £ (x) for maximization: convex
and concave closure of f




Submodular f

« For minimization f (x) can be evaluated in poly-time
via submodular function minimization

- Equivalent to the Lovasz-extension

« For maximization ' (x) is NP-Hard to evaluate even
when f 1s monotone submodular




