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SUMMARY

The Web is increasingly being accessed by portable, multi-touch wireless devices.

Despite the popularity of platform-specific (native) mobile apps, a recent study of

smartphone usage shows that more people (81%) browse the Web than use native

apps (68%) on their phone [79]. Moreover, many popular native apps such as BBC

depend on browser-like components (e.g., Webview) for their functionality [48]. The

popularity and prevalence of web browsers on modern mobile phones warrants charac-

terizing existing and emerging threats to mobile web browsing, and building solutions

for the same. Although a range of studies have focused on the security of native apps

on mobile devices, efforts in characterizing the security of web transactions originating

at mobile browsers are limited.

This dissertation presents three main contributions: First, we show that porting

browsers to mobile platforms leads to new vulnerabilities previously not observed in

desktop browsers. The solutions to these vulnerabilities require careful balancing be-

tween usability and security and might not always be equivalent to those in desktop

browsers. Second, we empirically demonstrate that the combination of reduced screen

space and an independent selection of security indicators not only make it difficult

for experts to determine the security standing of mobile browsers, but actually make

mobile browsing more dangerous for average users as they provide a false sense of

security. Finally, we experimentally demonstrate the need for mobile specific tech-

niques to detect malicious webpages. We then design and implement kAYO, the first

mobile specific static tool to detect malicious webpages in real-time.
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CHAPTER I

INTRODUCTION

Internet connected mobile devices are going to outnumber humans in the year 2013 [88,

152]. Moreover, global mobile data traffic is expected to increase 13-fold between 2012

and 2017 [49]. Both platform-specific applications (“native apps”) and browser-based

applications (“web apps”) enable mobile device users to perform security sensitive

operations such as online purchases, bank transactions and accessing social networks.

The distinction between native apps and web apps on mobile devices is increasingly

being blurred. Many popular native apps, such as BBC, depend on browser-like com-

ponents (e.g., Webview) for their functionality [48]. Moreover, as HTML5 becomes

universally deployed and mobile web apps directly take advantage of device features

such as the camera, microphone and geolocation, the difference between native and

web apps will vanish almost entirely. A recent study of smartphone usage [79] shows

that more people (81%) browse the Web than use native apps (68%) on their phone.

Over 85% of handsets shipped globally in 2011 included some form of browser and it

is expected that over 2.1 billion mobile devices will have a web browser component

by 2016 [33]. This trend and the increasing use of web browsers on modern mobile

phones warrant characterizing existing and emerging threats to mobile web browsing,

and building solutions for the same. Although a range of studies have focused on the

security of native apps on mobile devices, efforts in characterizing the security of web

transactions originating at mobile browsers are limited.

Mobile web browsers have long underperformed their desktop counterparts. Whether

by implementing limited alternative standards such as WAP [200] or incomplete ver-

sions of HTML, the first mobile browsers provided a meager set of capabilities and
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attracted only a small number of early adopters. However, recent improvements in

processing power and bandwidth have spurred significant changes in the ways users

experience the mobile web. Modern mobile browsers provide rich functionality equiv-

alent to their desktop counterparts using web technologies such as HTML, JavaScript,

and CSS. Furthermore, browsers on mobile platforms now build on the same or sim-

ilarly capable rendering engines used by many desktop browsers [40, 42]. Other fea-

tures of mobile browsers include support for cryptographic tools including SSL/TLS

and the corresponding user interfaces to convey SSL/TLS security implemented by

websites to the end user. All these features have allowed mobile users to become

increasingly reliant upon browsers to enable sensitive personal, social and financial

exchanges.

Despite the apparent similitude between functionality offered by desktop and mo-

bile browsers, the browsing experience on mobile devices is considerably different.

This difference can be largely attributed to the dramatic reduction of screen size

and the ability of invoking mobile specific functionality (e.g., SMS) through the web

browser. These differences impact the design of web browsers and webpages built

specifically for mobile devices, which in turn might lead to a number of security con-

sequences. First, due to the limitations in the screen real estate, existing desktop

browser software was not directly ported to mobile devices. Accordingly, while many

mobile browsers bear the name of related desktop applications, their internal compo-

nents might differ. The impact of these changes on security has not previously been

evaluated. Second, in spite of the availability of SSL/TLS, mobile users are regularly

becoming the target of malicious behavior. A 2011 report indicates that mobile users

are three times more likely to access phishing websites than desktop users [80]. Secu-

rity indicators (i.e., certificate information, lock icons, cipher selection, etc.) in web

browsers offer one of the few defenses against such attacks. A user can view different

security indicators and related certificate information presented by the browser to

2



offer signals or clues about the credibility of a website. Although mobile and tablet

browsers appear to support similar security indicators when compared to desktop

browsers, the reasons behind the increasing number of attacks on mobile browsers

are not immediately clear. Finally, reduced screen size and availability of rich func-

tionality also impacts the structure of webpages built specifically for mobile platforms.

The content, functionality and layout of webpages have regularly been used to per-

form static analysis to determine maliciousness in the desktop space [84, 147, 176].

Features such as the frequency of iframes and the number of redirections have previ-

ously served as strong indicators of malicious intent. Due to the significant changes

made to accommodate mobile devices, such assertions may no longer be true. For

example, whereas such behavior would be flagged as suspicious in the desktop setting,

many popular benign mobile webpages require multiple redirections before users gain

access to content. Previous techniques also fail to consider mobile specific webpage

elements such as calls to mobile APIs. For instance, links that spawn the phone’s

dialer (and the reputation of the number itself) can provide strong evidence of the

intent of the page. New tools are therefore necessary to identify malicious pages in

the mobile web.

To begin the effort of making mobile browsing secure, it is essential to understand

the state-of-the-art of security in mobile browsers, and analyze the similarities be-

tween desktop and mobile browsers. This analysis can assist browser vendors with

decisions of reusing security features from the desktop environment into the mobile

environment to avoid duplication of effort. Browser vendors can also evade repeating

already solved errors in desktop browsers in the corresponding mobile versions. Sec-

ond, it is vital to understand the similarities and differences across the diverse browser

software on popular mobile platforms. This evaluation can provide insight into the

security impact of similar vulnerabilities in web browsers built by different vendors.
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Furthermore, identifying similarities between different browsers can also facilitate for-

mulating mobile specific standards for prevalent security problems. Third, studying

the structural differences in mobile and desktop webpages will help build robust tools

that consider the impact of changes in mobile webpages on security. Finally, stronger

permission systems are necessary to manage the dynamic nature of mobile web apps

and multiple access requests to sensitive information and hardware.

1.1 Thesis Statement

The goal of this thesis is to investigate the factors affecting security of the mobile

web to improve the design and implementation of mechanisms for securing mobile

web browsing. We argue that mobile web is different from the desktop web and thus

demands independent evaluation and new techniques to protect sensitive information.

Based on our evaluation of popular mobile browsers and mobile specific webpages,

we propose the following thesis statement.

Mobile browsers, webpages and user interfaces significantly differ from those in

the desktop environment thereby profoundly impacting security. Making the impact of

limited display and mobile specific functionality integral to the design of web security

solutions for mobile platforms identifies and addresses new threats.

1.2 Contributions

This dissertation makes the following contributions:

Perform the first comprehensive and systematic evaluation and comparison of se-

curity of desktop and mobile browsers: Modern mobile browsers now build on the

same or similarly capable rendering engines used by many desktop browsers and also

enable SSL/TLS transactions. We analyze SSL/TLS security indicators and display

security on ten mobile (Android Mobile, Blackberry (Mango), Blackberry (Webkit),

Chrome Beta, Firefox Mobile, Internet Explorer (IE) Mobile, Nokia Browser, Opera

Mini, Opera Mobile and iPhone Safari) and three tablet (Android on Motorola Xoom,
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Android on Samsung Galaxy and iPad2 Safari) browsers. We then compare the se-

curity standing of these mobile browsers with five most popular desktop (Chrome,

Firefox, Internet Explorer, Opera and Safari) browsers. Our analysis covers over

90% of the mobile browser market and over 95% of the desktop browser market by

download.

Identify new display security vulnerabilities in modern mobile browsers and imple-

ment real world attacks: We identify previously unknown erroneous display security

policies in user event routing and boundary control, and implement multiple attacks

that demonstrate their seriousness. Even though many mobile browsers rely on the

same rendering engines as their desktop counterparts, our experiments demonstrate

that mobile browsers are vulnerable to attacks not previously seen in the desktop

space. Additionally, we exploit the conflict between usability and security in the mo-

bile environment with limited screen estate to show that adopting some policies from

desktop browsers exposes mobile browsers to new phishing attacks.

Demonstrate that the incomplete and inconsistent nature of SSL/TLS indicators

in mobile browsers preclude experts from determining the security of web transactions:

We experimentally illustrate that all popular mobile and tablet browsers fail to meet,

in numerous instances, the recommendations in the W3C guidelines for user interface

of security information, whereas in comparison desktop browsers largely follow the

guidelines. We outline attacks on mobile browsers, such as phishing and undetectable

man-in-the-middle, enabled by failure to properly follow these guidelines. Further-

more, we highlight missing security indicators, e.g., extended validation (EV) SSL

indicators.

Design and implement the first mobile-specific static tool to detect malicious web-

pages in real-time: We demonstrate that mobile specific webpages differ significantly

from their desktop counterparts in content, layout and functionality. We design and
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implement kAYO, a fast and reliable mechanism that distinguishes between mali-

cious and benign mobile webpages. kAYO makes this determination based on static

features of a webpage ranging from the number of iframes to the presence of known

fraudulent phone numbers. First, we experimentally demonstrate the need for mobile

specific techniques and then identify a range of new content-based static features that

highly correlate with mobile malicious webpages. We then apply kAYO to a dataset

of over 350,000 known benign and malicious mobile webpages and demonstrate 90%

accuracy in classification. Moreover, we discover, characterize and report a number

of webpages missed by Google Safe Browsing and VirusTotal, but detected by kAYO.

Finally, we build a browser extension using kAYO to protect users from malicious

mobile websites in real-time.

Research impact: The newly discovered mobile browser vulnerabilities have been

acknowledged and a subset of them addressed [2–4] by some browser vendors in the

latest version of their browsers. The work on display security of mobile browsers

(Chapter 3) was recognized as one of the top 10 papers of 2012 at the national level

‘CSAW AT&T Best Applied Security Paper Award’ competition. Moreover, it won

the institute-level ‘SAIC Best Student Paper Award’ and the ‘Best Demo’ prize at the

College of Computing research day at Georgia Tech. The second piece of this thesis

(Chapter 4) was recognized as the ‘Best Student Paper’ at the Information Security

conference 2012 and was covered by several media outlets [45,53,90,119,186,199]. The

third and final piece of this thesis on detecting mobile malicious webpages (Chapter 5)

has led to a patent.

1.3 Dissertation Outline

The goal of this dissertation is characterizing security of modern mobile browsers and

implementing new mechanisms to secure web browsing on mobile devices. Chapter 3

provides details on the newly discovered display security vulnerabilities in modern
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mobile browsers. We then discuss real-world attacks that exploit these vulnerabil-

ities and also propose defenses. Additionally, we give an example of a universally

adopted security policy that makes mobile browsers more vulnerable to phishing at-

tacks than desktop browsers. Chapter 4 studies the impact of the small screen size

of mobile devices on implementation of SSL/TLS indicators in browsers. We ex-

perimentally demonstrate that mobile browser vendors have implemented incomplete

and inconsistent subsets of SSL/TLS indicators usually found in desktop browsers.

We then discuss the impact of the unavailability of these indicators and outline po-

tential phishing and man-in-the-middle attacks on security experts accessing mobile

browsers. After studying security vulnerabilities in mobile browsers, we focus on mo-

bile webpages in Chapter 5. We demonstrate the structural differences in desktop and

mobile webpages through a series of experiments. We then characterize the conse-

quence of these changes on existing static tools to detect desktop malicious webpages

to show the need for mobile-specific tools. By selecting novel and existing static fea-

tures of webpages relevant to mobile, we build the first technique to detect mobile

malicious webpages in real-time.

Chapter 6 discusses our ongoing work on building new permission systems for

mobile web apps. We study the impending changes in mobile web apps due to the

introduction of HTML5 and web API suites such as Firefox Boot2Gecko [51]. We

then provide a brief overview of our proposed architecture and future work. Chapter 7

offers concluding remarks.
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CHAPTER II

RELATED WORK

Browsers and websites are the core components of web browsing. A web browser is a

software application for retrieving, presenting and traversing information resources on

the World Wide Web, whereas a webpage is information written in a document so that

it renders correctly in a web browser. Securing each of these components individually

is important to secure the end-to-end browsing experience. A web browser implements

several security policies to protect users and individual websites from attacks [216].

While most of these policies are embedded in the browser’s code, others are user

facing (e.g., SSL/TLS indicators). Malicious browser extensions and plugins can also

compromise private information of a user. Therefore, web browsers employ techniques

to sandbox potentially malicious untrusted extensions [69] and plugins.

Simply securing the browser does not protect users from all web-based attacks.

Attackers build malicious webpages to steal a user’s identity or other sensitive infor-

mation such as passwords [104] and credit card numbers [172]. Traditionally, browser-

based attacks originated from bad websites. However, due to poor security policies of

web applications or vulnerabilities in the software supporting websites [47], attackers

have recently been successful in compromising large numbers of trusted web sites to

deliver malicious payloads to unsuspecting visitors [141].

2.1 Web Browser Policies and Attacks

Design flaws in security policies, implementation errors, and trade-offs between per-

formance and security lead to attacks on web browsers. Browsers implement sev-

eral defense techniques against potential attacks, including access control policies for

browser resources.

8



2.1.1 Access Control Policies

The Same Origin Policy (SOP) [67] is the most widely used access control policy in

modern browsers. The SOP protects the content owned by a principal (domain or

website, e.g., www.example.com) from being modified by an untrusted principal (e.g.,

www.attacker.com). The SOP defines each principal based on the corresponding

browser resource, which include the Document Object Model (DOM), network, cook-

ies, other persistent state and display [191]. For example, a principal for the DOM

resource is defined as the tuple 〈protocol, domain, port〉; whereas for the cookie

resource, a principal is labeled by 〈domain, path〉. This incoherency in labeling prin-

cipals leads to replay attacks and privilege escalation [191].

Older techniques for inter-frame communication lead to breach of authentication

and confidentiality. The fragment identifier messaging method provided confiden-

tiality without authentication, whereas the postMessage method provided authenti-

cation, but breached confidentiality. Barth et al. [72] proposed stricter policies for

fragment identifier messaging by adopting ideas from well-known network protocols

and modified the postMessage API to allow the sender specify an intended recip-

ient. These access control policies were primarily focused on isolating cross origin

components of webpages. Jackson et al. [133] recognized that the security policy

of browsers provides no isolation between documents from the same origin (scheme,

host, and port), even if those documents have different security characteristics. This

lack of isolation leads to origin contamination vulnerabilities in a number of browser

security features, such as cookies, encryption, and code signing. Other weaknesses

in access control mechanisms such as frame navigation policies [72, 209], client-side

browser state [134], cookie path protection, and display protection [209] also expose

browsers and web applications to a range of attacks.
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2.1.2 Attacks and Defenses

SQL injection [168] is one of the most prevalent security risks as of 2013 [169]. This

attack is carried out by inserting malicious SQL statements into an entry field for

execution. Another way of injecting client-side scripts into webpages viewed by other

users is Cross Site Scripting (XSS) [68]. The persistent and non-persistent types of

XSS, together have surpassed buffer overflows to become the most common publicly

reported security vulnerability in recent years [197]. Other steadily rising browser

threats include Cross Site Request Forgery (XSRF) [71], clickjacking [6, 7, 182] and

phishing. Implementation errors in the browser code [55,74], slow adoption of security

techniques [221] and incorrect handling of privileges in browser extensions [69] further

increase the threats to the browser and the user.

A range of defenses have been proposed to protect browsers from attacks. To

defend against login CSRF, Barth et al. [71] proposed that browsers implement the

Origin header, which provides the security benefits of the Referer header while re-

sponding to privacy concerns that have lead to the widespread suppression of the

Referer header. Another client-side defense that mitigates cross-origin CSS attacks

was proposed by Huang et al. [129]. The authors advocate enforcing content type

checking for style sheets loaded from cross-origins, even if the requesting page is in

quirks mode. Other defense techniques against web attacks include enforcing new

security policies [129] and algorithms [54,68] in browsers, running tools for detecting

JavaScript-based attacks [92,120,139,177], and implementing security vulnerabilities

scanners [65].

2.1.3 Browser Extensions

Malicious extensions exploit browser vulnerabilities to run their code with all the

privileges and features as that supported by any native programming languages. Re-

searchers have investigated vulnerabilities in extension platforms of Firefox [65, 137,
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149] and most recently Chrome [85,148].

One of the fundamental defenses against malicious browser extensions is privilege

separation [184]. Similar to OpenSSH [175] and qmail [75], this concept has been

applied to build several tools and frameworks for modern web apps [78, 110, 142,

143, 161]. Moreover, studies have established that privilege separation has value in

software projects that employ security experts (e.g., browsers [101]). Yet another

protection technique from malicious plugins is implementing policies for document

access, persistent state, network connections and other devices [122]. The plugin is

required to run in a separate process from the browser and all interactions with the

underlying system are performed through the browser. Finally, permission systems for

browser extensions are popular in defending against malicious extensions [69,111,124].

2.1.4 Browser Kernels and Operating Systems

Websites include a number of cross-domain elements for rich features and user expe-

rience. Therefore, it is important to provide strong isolation between cross-domain

principals in a browser to ensure code integrity and confidentiality. The OP Web

browser [123] was the first to design a small browser kernel to enforce new browser

security features and handle resources. The authors broke the web browser into sev-

eral distinct and isolated components based on processes and made all interactions

between these components explicit. The OP browser kernel then managed each of

the components and interposed on communications between them. The OP browser

allows any security model to be specified with their framework. However, this flex-

ibility comes with a cost. The OP browser requires intimate interactions between

browser components, such as JavaScript interpreter and HTML engine to use IPC

and be inspected by the browser kernel. When targeting a specific security model,

such as that of existing browsers, this additional IPC cost does not add any benefits
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since isolating browser components within an instance of a webpage provides no ad-

ditional security protection. Furthermore, the OP browser kernel does not provide

cross-principal display protection. The Gazelle [209] browser provides cross-principal

display protection and also reduces the cost of separating browser components within

the same instance of a webpage by removing the requirement of IPC communication.

The security architecture of the Google Chrome browser [73] also repudiates the

monolithic browser architecture that combines the “user” and the “web” into a sin-

gle protection domain. Chromium has two modules than run in separate protection

domains: a browser kernel, which interacts with the underlying operating system,

and a rendering engine, which runs with restricted privileges in a sandbox. All these

secure web browsers are built on top of commodity operating systems and include

complex user-mode libraries and shared system services within their trusted comput-

ing base (TCB). The Illinois operating system and browser [198] reduce the TCB for

web browsers drastically and simplify browser-based systems. The authors expose

browser-level abstractions at the lowest software layer to remove almost all tradi-

tional OS components and services from the TCB by mapping browser abstractions

to hardware abstractions directly.

2.2 Browser Security Indicators

Traditional desktop browsers contain user facing security indicators in addition to

the security techniques embedded in the browser code. A range of security indicators

are displayed in the chrome of the browser including the lock icon, the https URL

prefix, and public key certificates.

2.2.1 Ineffective Security Indicators on Desktop Browsers

Each website provides its certificate information to the browser and the browser in

turn conveys the same to the user using graphical and textual indicators. Certificates

and other SSL/TLS indicators are meant to provide simple cues to the user about the
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identity of the website and protection from eavesdroppers. However, several studies

have indicated that these security cues used in desktop browsers go unnoticed [97,100,

185,192,211] or are absent in websites [193]. In a study conducted by Dhamija et al.,

desktop web browser users were challenged to identify phishing attacks in the presence

of phishing and fraudulent certificate warnings [97]. 23% of their subjects completely

ignored the passive or non-interruptive phishing warnings, and 68% of subjects quickly

clicked through the active or interruptive fraudulent certificate dialogs. Another

study by Akhawe et al. [135] used Mozilla Firefox and Google Chrome’s in-browser

telemetry to observe 25 million warning impressions in situ. The authors found that

users continued through a tenth of Mozilla Firefox’s malware and phishing warnings,

a quarter of Google Chrome’s malware and phishing warnings, and a third of Mozilla

Firefox’s SSL warnings. Moreover, it was observed that users rarely click on the

explanatory links such as “More Information” or “Learn More”.

Although domain name mismatches between certificates and websites are observed

often [206], Sunshine et al. [196] showed that users ignore TLS warnings for domain

name mismatches, and showed that users ignore TLS warnings for expired certificates

and unknown CAs. Moreover, a majority do not understand these warnings. The

lock icon is the security indicator most often noticed [100,211]. However, even when

used as a security cue by users, many do not fully understand its meaning [97,98,100]

and its absence also often goes unnoticed [97]. Additionally, the majority of users

who rely on the lock icon remain unaware of its identity feature [97,100,115,211] and

do not reliably understand the concept of certificates [97, 98]. Indicators for newer

technologies such as EV-SSL have also been shown to be ineffective to convey better

security to the user as compared to a simple SSL certificate [76, 136].
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2.2.2 Improved Security Indicators

Several techniques have been proposed to design better security indicators to pre-

vent potential attacks such as phishing. Researchers have proposed better warn-

ings [196], more effective interface dialogues [76], browser plugins [91], trusted path

from the browser to the human user [214] and mandatory security indicators [126]

to help users make correct security decisions. Other proposed security mechanisms

include disabling JavaScript in the user browser and forcing persistent visibility of

the browser’s location line [113]. Dynamic Security Skins [98] allow a remote web

server to prove its identity in a way that is easy for a human user to verify and hard

for an attacker to spoof. Finally, efforts have been taken [29,34–36,41] to standardize

security indicators and thus minimize confusion across browsers.

2.3 Malicious Webpages

Simply securing the web browser alone cannot protect a user from all web-based

attacks. Attackers build malicious webpages to steal a user’s identity or other sensitive

information such as passwords or credit card numbers.

2.3.1 DNS-based Approaches

A popular approach in detecting such malicious activity on the web is by lever-

aging distinguishing features between malicious and benign DNS usage. The first

study [205] in this direction proposed to collect real-world DNS data for analyzing

malicious behavior. The results of the passive DNS analysis showed that malicious

domains that are used in fast-flux networks exhibit behavior that is different than

benign domains [217]. Antonakakis et al. [63] added to the passive monitoring idea

by proposing Notos, a detection scheme that dynamically assigns reputation scores to

domain names whose maliciousness is yet to be discovered. The premise behind No-

tos is that agile malicious uses of DNS have unique characteristics and thus malicious

14



use of DNS can be distinguished from benign use. To this end, the authors analyze a

number of features from three categories, network-based features, zone-based features

and evidence based features. Notos is unable to detect malicious domains that are

mapped to a new address space each time and never used for other malicious purposes

again. This limitation is addressed by yet another passive DNS monitoring system

called EXPOSURE. EXPOSURE uses time-based features which account for short-

lived domains. Other efforts to identify malicious domains include more passive DNS

monitoring tools [173, 217] and active DNS probing methods [127, 131]. Active DNS

probing methods repeatedly query the domains that are advertised to be malicious

by various sources (e.g., spam mails) to detect the abnormal behavior. The main

drawback of active DNS analysis is the possibility of being detected by the miscre-

ants who manage the domains under analysis. Passive DNS analysis, in comparison,

is more stealthy because of its non-intrusiveness characteristics.

These techniques did not detect all types of web-based attacks. While some of

these existing efforts focused solely on detecting fast-flux service networks [127, 164,

171, 210], another [77] can also detect domains implementing phishing and drive-by-

downloads. Fast-flux service networks [127] are malicious systems that abuse Round-

Robin DNS. Most of the efforts in detecting fast-flux service networks [127, 140, 164,

171] differ from each other only in the number of features used and the details of the

classification algorithms. They are also limited to mainly studying fast-flux domains

advertised through email spam. In particular, potential fast-flux domain names are

extracted from the URLs found in the body of spam emails in a dataset. Then an

active probing strategy is applied, which repeatedly issues DNS queries to collect

information about the set of resolved IP addresses to classify each domain name into

either fast-flux or non-fast-flux. Perdisci et al. [173] overcame the limitations of such

techniques by performing passive analysis of recursive DNS (RDNS) traffic traces.

A major drawback of these DNS based mechanisms is that they do not necessarily
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provide deeper understanding of the specific malicious activity implemented by a

webpage or domain.

2.3.2 Content-based and In-depth Inspection Techniques

Dynamic approaches using virtual machines [159, 176] and honeyclient systems [130,

157,163] provide deeper visibility into the behavior of a webpage. Honeyclient systems

fully execute the contents of a webpage. This includes fetching the webpage, all

the resources that are linked from it, and then interpreting the associated dynamic

content, such as JavaScript code. The complete visibility into each webpage leads

to a very low false positive rate and great accuracy. However, downloading and

executing each webpage also impacts performance and hinders scalability of dynamic

approaches. Each webpage can take anywhere from a few seconds to several minutes,

depending on the complexity of the analyzed page.

This performance penalty can be avoided by using static approaches. The oldest

static approach is signature-based techniques based on string patterns in malicious

code, commonly used in anti-virus tools [32]. Such techniques can be easily evaded us-

ing obfuscation, thus suffering from high false negative rates [92,179]. These high false

negative rates can be reduced by using static approaches that rely on the structural

and lexical properties of a webpage and do not execute the content of the webpage.

One such technique of detecting malicious pages is using statistical methods for URL

classification based on a URL’s lexical and host-based properties [114, 117, 144, 153].

Garera et al. used URL statistical techniques to classify phishing URLs [117]. A larger

scale classification was carried out by Ma et al. [153] using lexical properties of URLs

and registration, hosting, and geographical information of the corresponding hosts.

All URL-based techniques usually suffer from high false positive rates. Using HTML

and JavaScript features extracted from a webpage in addition to URL classification

helps address this drawback and provides better results [84,156,212,218]. Commonly
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used features include visibility and size of iframe tags, and the number of script tags

referencing external resources. Static approaches avoid performance penalty of dy-

namic approaches. Additionally, using fast and reliable static approaches to detect

benign webpages can avoid expensive in-depth analysis of all webpages.

2.4 The Mobile Web

Mobile Internet users are growing rapidly [166]. Based on the current rate of change

and adoption, mobile web usage will be greater than desktop Internet use by 2015.

Mobile users access Internet using both native applications and web browsers. De-

spite 81% of mobile users browsing web on their phones using a web browser [79],

the majority of security research in the recent years has focused on securing native

applications on mobile devices.

2.4.1 Native Application Security

The Android, iPhone, Symbian and Windows operating systems use different types of

permissions. The Android OS and iOS have been the most popular among researchers

due to the popularity of the iOS platform and both widespread use and open source

nature of the Android platform.

Detecting overprivilege in Android applications and studying its impact on users’

private data has been a popular area of study. Enck et al. applied Fortify’s Java

static analysis tool to decompiled applications to study the applications’ use of a

small number of permissions and API calls [106]. Their analysis uncovered pervasive

use or misuse of personal and phone identifiers, and deep penetration of advertising

and analytics networks. Felt et al. detected overprivilege by manual classification of

a small set of Android applications [111], whereas the Kirin [107] system used static

analysis focusing on permissions and other application configuration data. Kirin relies

solely on developer permission requests, rather than examining whether or how per-

missions are used by applications. Another permission overprivilege study examined
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1,100 Android applications’ permission requirements and used self-organizing maps to

visualize which permissions are used in applications with similar characteristics [66].

Other tools to detect overprivilege include application source code analyzer [204], ap-

plication package attribute analyzer [87], NLP to detect reasoning behind permission

requests [170] and static analysis on Android APIs [118].

Several systems also studied the impact of application overprivilege on users’ pri-

vate data. TaintDroid [105] used system-wide dynamic taint tracking to identify

privacy leaks in Android applications. By using static analysis, the authors studied

a number of applications and confirmed the exfiltration of information. PiOS [102]

performed static analysis on iOS applications for the iPhone. The PiOS study found

that the majority of analyzed applications leaked the device ID and over half of the

applications included advertisement and analytics libraries.

In addition to application overprivilege, host security is a growing concern on

smartphones. OS-level protections such as Saint [167] and Security-by-Contract [96]

provide enhanced security mechanisms for Android and Windows Mobile. These ap-

proaches prevent access to sensitive information; however, once information enters the

application, no additional mediation occurs.Mulliner et al. [160] provide information

tracking by labeling smartphone processes based on the interfaces they access, effec-

tively limiting access to future interfaces based on acquired labels. Finally, Aquifer

presents a policy framework and system for preventing accidental information disclo-

sure in modern operating systems such as Android, iOS, and Windows 8 [162].

2.4.2 Mobile Web Security

Web browsers have become one of the most popular applications on today’s smart

phones. The mobile web research so far has focused on browser energy consumption

analysis [201], device performance [93] and mobile latency [56]. However, there are

limited or no efforts in securing web browsing on mobile devices. In addition to
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malicious mobile applications affecting user privacy [102,105] and potentially harming

the cellular network [202,203], the increasing user base of mobile platforms and mobile

e-commerce have made mobile browsers an attractive target for attackers [24, 28,

31, 59, 95, 112, 165, 178, 183, 183]. Researchers have already begun to think about

defending against attacks on mobile phones using smart CDNs [150]. Although mobile

browsers will be targets of security attacks in the coming years, security issues in

mobile browsers will be new since the devices have serious limitations compared to

desktops. However, a large-scale security analysis of the differences between mobile

and desktop browser software has not yet been performed.

In addition to the underlying code, the user interfaces of mobile browsers differ

significantly from their desktop counterparts. The small display of mobile phones

and tablet computers leads to adaptation in user facing security indicators in web

browsers. Until now, almost all research efforts in the area of security indicators in

browsers have been focused on desktop browsers. However, in light of the recent

attacks targeted towards mobile browsers [28, 59] and considering how the mobile

browser user interface differs from desktops, it is important to analyze and understand

the security indicators used in mobile browsers. Although the W3C [35] guidelines

consider mobile browsers in their definitions, a large-scale evaluation of the state-of-

the-art security indicators in mobile browsers has not been carried out.

Finally, all the approaches for malicious webpage detection have focused on web-

sites built for desktop browsers in the past. Although differences in mobile and desk-

top websites have been observed before [83], it is unclear how these differences impact

security. Furthermore, the threats on mobile and desktop websites are somewhat dif-

ferent [112]. Static analysis techniques using features of desktop webpages have been

primarily studied for drive-by-downloads on desktop websites [84, 176], whereas, the

biggest threat on the mobile web at present is believed to be phishing [81]. Efforts
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in mitigating phishing attacks on desktop websites include isolating browser appli-

cations of different trust level [116], email filtering [114], using content-based fea-

tures [212, 218] and blacklists [151]. The best-known non-proprietary content-based

approach to detect phishing webpages is Cantina [218]. Cantina suffers from perfor-

mance problems due to the time lag involved in querying the Google search engine.

Moreover, Cantina does not work well on webpages written in languages other than

English. Finally, existing techniques do not account for new mobile threats such as

known fraud phone numbers that attempt to trigger the dialer on the phone. Con-

sequently, whether existing static analysis techniques to detect malicious desktop

websites will work well on mobile websites is yet to be explored.

In summary, the mobile web is evolving rapidly. Most of the existing techniques

in securing web browsing focus primarily on the desktop environment. However, due

to the differences in the mobile and desktop environments, the threats in desktop

might not translate directly to the mobile environment. Furthermore, the mobile

web presents new threats due to the newly added functionality such as web APIs.

Therefore, investigating security of mobile browsing independent of desktop browsing

is crucial.
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CHAPTER III

MEASURING SYSTEMIC WEAKNESSES IN MOBILE

BROWSER SECURITY

3.1 Introduction

Mobile web browsers have long underperformed their desktop counterparts. Whether

by implementing limited alternative standards such as WAP [200] or incomplete ver-

sions of HTML, the first mobile browsers provided a meager set of capabilities and

attracted only a small number of early adopters. However, recent improvements in

processing power and bandwidth have spurred significant changes in the ways users

experience the mobile web.

Modern mobile browsers now build on the same or similarly capable rendering

engines used by many desktop browsers [40,42]. Mobile browsers are so capable that,

through APIs such as WebViews, many of the most popular mobile apps (e.g., BBC,

Walgreens) [48,82] act as wrappers for the browser pointed to specific webpages. How-

ever, due to limitations in the screen real estate and memory, existing desktop browser

software was not directly ported to mobile devices. Accordingly, while many mobile

browsers bear the name of related desktop applications, their internal components

might significantly differ. The impact of these changes on security has not previously

been evaluated. Given the popularity of browsing on mobile devices [79,152], focusing

on the security of mobile browsers is critical.

In this chapter, we perform the first large-scale security comparison between mo-

bile and desktop browsers. While there are many potential areas for investigation,

we focus on the issues of display security due to the screen constraints of mobile
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devices. Given the often crowded layout of mobile webpages, we specifically investi-

gate the behavior of overlapping HTML elements (and how browsers handle clicks -

i.e., “user event routing”), behavior at the boundaries between non-overlapping items

(“boundary control”) and the impact of nonpersistent availability or complete ab-

sence of the address bar. We apply blackbox analysis across ten mobile, three tablet

and five desktop browsers and demonstrate that many mobile and tablet browsers

are vulnerable to new two classes of attacks due to inconsistent click-event routing

and incorrect write policies. We illustrate that desktop browsers are not susceptible

to these attacks and present solutions to address the new vulnerabilities. We then

discover a third class of vulnerability resulting from a clash between considerations

made for usability in mobile browsers and a universally implemented display policy,

demonstrating that making usability considerations while creating mobile software is

crucial and blind porting of traditional browser code to mobile devices can introduce

unexpected vulnerabilities.

We make the following contributions:

• Characterize display security disparity between the most popular mo-

bile and desktop browsers: We analyze display security on ten mobile (An-

droid Mobile, Blackberry (Mango), Blackberry (Webkit), Chrome Beta, Firefox

Mobile, Internet Explorer (IE) Mobile, Nokia Mini-Map, Opera Mini, Opera

Mobile and iPhone Safari), three tablet (Android on Motorola Xoom, Android

on Samsung Galaxy and iPad2 Safari) and five desktop (Chrome, Firefox, Inter-

net Explorer, Opera and Safari) browsers. We use blackbox analysis as source

code is not available for the majority of browsers. Table 3 on page 14 summa-

rizes our findings.

• Identify erroneous implementations of display security policies: We
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identify previously unknown erroneous policies in user event routing and bound-

ary control and implement multiple attacks that demonstrate their seriousness.

Even though many mobile browsers rely on the same rendering engines as their

desktop counterparts, our experiments demonstrate that mobile browsers are

vulnerable to attacks not previously seen in the desktop space.

• Expose conflict between usability and display security: We show that

some re-implemented policies from desktop browsers, specifically Top-Level

Frame Navigation [70], expose mobile devices to phishing when mobile browsers

hide or completely eliminate indicators such as the address bar for reasons of

usability. In particular, we demonstrate the ability to navigate users away from

their intended destinations. Our technique is new and does not use address bar

spoofing similar to the phishing techniques studied earlier [112, 165]. We find

that our technique enables a more dangerous and easy to launch attack, since

it exploits a built-in policy in all web browsers instead of attempting to spoof

the address bar in individual browsers.

Our analysis demonstrates that the discovered vulnerabilities are not isolated

bugs; rather, they are pervasive and affect all but one of the most popular mobile

and tablet browsers in some capacity.1 We have communicated our results to various

browser vendors who have acknowledged the presence of these vulnerabilities. More-

over, we argue that because an increasing number of apps rely on mobile browsers,

that these issues are relevant to all mobile app developers. Our results are the first

comprehensive study in display security and they provide strong evidence that the

security of mobile browsers has taken steps backward when compared to desktop

browsers.

1The Chrome Mobile browser was not susceptible to any of the attacks described in this work at
the time of experiments (June 2011). However, the latest version of the Chrome Mobile browser (as
of Dec 2013) minimizes the address bar on page rendering, thereby being susceptible to the attack
described in Section 3.5.
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Table 1: Details of the browsers used for experimental evaluation. We also evaluated
Opera Mini 5.5.1, Android 2.2.1 and Android 2.3.3 on Nexus One and Android 4.0.1 on
Galaxy Nexus. We observed the same vulnerabilities in both the old and new versions
of Opera Mini and Android browsers (except Android 4.0.1). (*: The version numbers
of these browsers were not apparent. We have used the default browsers shipped with
the referenced version of the OS.)

Category Browser Name Version Rendering Engine Operating System Device

Mobile

Android 2.3.6 Webkit Android 2.3.6 Nexus One
Blackberry 5.0.0 Mango Blackberry OS 5.0.0.732 Bold 9650
Blackberry 6.0.0 Webkit Blackberry OS 6 Torch 9800

Chrome Beta 0.16.4301.233 Webkit Android 4.0 Galaxy Nexus
Firefox Mobile 4 Beta 3 Gecko Android 2.3.6 Nexus One

Internet Explorer * Trident Windows Phone LG-C900
Mobile 7.0.7004.0 OS

Nokia Mini-Map * Webkit Symbian S60 E71x

Opera Mini 6.0.24556 Presto Android 2.3.6 Nexus One
5.0.019802 Presto iOS 4.1 (8B117) iPhone

Opera Mobile 11.00 Presto Android 2.3.6 Nexus One
Safari * Webkit iOS 4.1 (8B117) iPhone

Tablet Android * Webkit Android 3.2.1 Motorola Xoom
Android * Webkit Android 3.1 Samsung Galaxy
Safari * Webkit iOS 4.3.5 (8L1) iPad 2

Desktop

Chrome 15.0.874.106 Webkit OS X 10.6.8 –
Firefox 7.0.1 Gecko OS X 10.6.8 –

Internet Explorer 8.0.7600.16385 Trident Windows 7 –
Opera 11.52 Presto OS X 10.6.8 –
Safari 5.1.1 Webkit OS X 10.6.8 –

3.2 Overview

This section discusses our experimental methodology and defines our threat model.

3.2.1 Methodology

We analyze the rendering differences between popular desktop and mobile browsers

for security. The studied browsers are shown in Table 6. We have selected these

browsers as they represent approximately 90% of mobile browsers in the market [14],

as shown in Table 2.

We define a ‘display element’ as any HTML element that can color pixels on the

screen. For example, iframe, image, text, text area, link, table and button all

fall under display elements. However, HTML elements such as head or option do

not qualify as display elements. We create customized scenarios to evaluate common

interactions of cross-origin display elements: 1) when they overlap, 2) when they

border each other and 3) when they are navigated to new sources. Given the tight
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Table 2: Market Share of Popular Mobile Browsers as of April 2012 [14]. We cover
approximately 90% of the mobile browsers in the market for our evaluation.

Browser Name % Market Share
Opera 22.52
Android 21.18

iPhone Safari 19.85
Nokia 11.65

Blackberry 6.08
iPod Touch 3.72

Other (Firefox Mobile, 3.28IE on Windows Phone 7 OS etc.)

layout of many mobile webpages and the corresponding small screen sizes of the

associated devices, characterizing such interactions is critical. We discover new classes

of vulnerabilities in mobile browsers and evaluate their risk by implementing attacks

exploiting the vulnerabilities. All the experiments were performed on browsers on

real mobile phones, and are recreated in the respective emulators to create many of

the figures throughout the chapter.

3.2.2 Threat Model

We consider two classes of adversaries. Each adversary attempts to attack other web-

site principals and/or the user and exploit the constrained nature of a mobile device’s

display. Each adversary can identify the user’s mobile browser and is knowledgeable

of the display-related security vulnerabilities associated with that browser.

Landlord attacker: The landlord attacker is a malicious principal2 who can host his

own websites such as landlordattacker.com. For example, the owner of a phishing

website such as blankofamerica.com imitating bankofamerica.com is classified as a

landlord attacker. A ‘tenant’ is a principal who rents an area on a landlord’s website to

render his own content such as advertisements. After the landlord gets honest tenants

on his website, he attempts to exploit the honest tenant and/or the honest user. The

2A principal is the owner of some web content. In general, one principal does not trust another
with respect to his resources [208].
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landlord cannot read or change parts of the content in the tenant’s rented area on

the screen (due to the Same Origin Policy3), but controls the external properties

of the tenant’s rented area. For example, the landlord can specify the dimensions,

transparency and position of the tenant’s area on his website. The landlord instead

tries to attack the honest tenant and honest user by manipulating his own website

display.

We note that not every user visiting the malicious website will be exploited. De-

pending on the vulnerability targeted by the landlord attacker, the honest tenant

and honest user may be attacked only when landlordattacker.com is rendered in a

vulnerable browser. Placing web advertisements, displaying popular content indexed

by search engines and sending bulk e-mail to users are some of the techniques that

the landlord attacker can use to attract users to his website [72].

Tenant attacker: The tenant attacker is a malicious principal who can rent an

area of the display on a website owned by an honest landlord. For example, the

tenant attacker can insert a malicious advertisement or widget into an honest website.

Websites such as iGoogle allow any user having an account to upload a new widget.

We assume that an honest user visits an honest website containing at least one tenant

attacker area using a vulnerable mobile browser. The tenant attacker has knowledge

of the display vulnerabilities in the popular mobile browsers. He manipulates the

content of his rented area to attack the honest website and/or the user.

A successful exploit is able to:

1. Influence the state and logic of a victim website principal across Same Origin

Policy boundaries, and/or

2. Deceive a user into performing unintended actions or sharing private data.

3The Same Origin Policy prevents a document or script loaded from one domain from getting or
setting properties of a document from another domain [18,181].
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3.3 User Event Routing

Overlapping elements are common in many webpages. From drop-down menus to

floating advertisements, the ability to overlay objects allows for content to be dynam-

ically presented to the user. However, the interaction between such elements must

be strictly defined, especially in cases when they are controlled by different origins.

When two or more display elements share the same pixel on the screen, browsers

must decide both a) which element can control the ‘coloring’ (display) of the pixel

and b) which element owns and responds to the user access to that pixel (user event

routing). For example, if a drop-down menu covers over an image and a user clicks

in this shared screen area, the browser must decide whether the principal owning the

image or the principal owning the menu will respond to a user’s click action.

Although all browsers make these decisions, the security relevance of user event

routing in overlapped elements has not previously been studied. Our evaluation

demonstrates that while desktop browsers consistently route user actions to the top-

most element, event routing is inconsistent across mobile and tablet browsers. This

inconsistency allows hidden elements to intercept user actions and potentially perform

dangerous operations. We first discuss the results of our evaluation of overlapped el-

ements using the methodology in Section 3.2.1 and then present attacks exploiting

the vulnerabilities.

3.3.1 Experimental Evaluation

Mobile and tablet browsers:

Inconsistent click-event reception: Click-event reception refers to a browser choosing

the element that receives a user’s click action in a stack of overlapped elements. In the

Android mobile, Android tablet on Xoom, Nokia Mini-Map and Opera Mini browsers,

a user’s onclick event on an image is routed to the onclick events of buttons, text

areas and links below the opaque image, thereby executing the events of the hidden
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mesothelioma-find-lawyer.com

Display: user's view of the webpage
User access: the user's click 
actually accesses the hidden 

mesothelioma ad

Click Fraud

Figure 1: Left image: Fake image advertisement of sales in San Francisco on the
www.landlordattacker.com website; Right image: The mesothelioma ad from
Google AdSense placed directly below the enticing fake sales ad image by malicious
landlord. A user clicking on the mesothelioma ads [1] earns the landlord attacker
more money. The landlord places the honest mesothelioma ads from AdSense in an
iframe and overlays it with the more enticing images of sales in San Francisco to
increase the rate of clicks. When a user clicks on the fake sale ad in San Francisco,
the mesothelioma ad is clicked benefiting the landlord attacker. The Opera Mini
(pictured), Android mobile, Android tablet on Xoom and Nokia Mini-Map browsers
are vulnerable to the click fraud attack.

elements. We note that only the events corresponding to the element directly situated

below the area where a user clicks responds to the click action. Click events of all

the elements situated below the image are not executed when the user clicks on the

image.

In the Nokia Mini-Map and Opera Mini browsers, even if the top image has an

onclick event associated with it, the onclick events of the buttons below the image

are given preference. If the image on top does not have an event associated with it,

the buttons below the image are clickable in the Android mobile and Android tablet

on Xoom browsers.

Incorrect write policy: The Android mobile, Android tablet on Xoom, Nokia Mini-

Map and Opera Mini browsers allow a user to write into the text areas in an iframe

situated below an opaque image. When a user clicks on the portion of the image
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overlapping any part of the text area below, the text area pops out on top and the

user can write into the box.

Desktop browsers: The desktop browsers always route click and write events ex-

clusively to the top element in a stack of overlapped elements.

3.3.2 Attacks

We present three novel techniques that exploit inconsistent click-event reception and

incorrect write policies for overlapping elements.

1) Click Fraud: This attack is possible due to inconsistent click-event reception in

overlapping elements. Click fraud occurs in pay-per-click advertising when a malicious

principal creates illicit clicks on an ad by either tricking a real user or by imitating a

legitimate user’s click with a program. Such attacks generate revenue per click with

no actual interest in the target of the ad’s link. A popular pay-per-click advertising

program is Google’s AdSense. A malicious landlord or tenant website cannot manip-

ulate the ad placed by Google (due to the Same Origin Policy) and thus cannot trick

a legitimate user into clicking on an unwanted ad by disguising it with more enticing

content.

Consider a malicious landlord principal who creates an AdSense account and em-

beds relevant content containing targeted keywords to attract high paying ads. The

high paying ads [1] are generally not as popular as ads for discounts or coupons and

thus are not clicked very often. A landlord attacker can carry out click fraud as shown

in Figure 1, on a browser that allows a user to inadvertently access hidden content

(links, buttons etc.) placed below an opaque element such as an image. The landlord

attacker overlaps the mesothelioma ad (right) with more enticing and opaque content

such as sales at local restaurants (left). If an honest user clicks the area containing
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the attractive content from a vulnerable browser, the mesothelioma ad4 below the

attractive content will be clicked without the user’s knowledge. Since the user’s click

is captured by the Google AdSense ad instead of the image on top, the malicious

landlord illicitly benefits.

2) Login CSRF: This attack is possible due to inconsistent click-event reception

and incorrect write policies. The intention of an attacker in a login Cross Site Re-

quest Forgery (CSRF) is to make the honest user’s browser log in as the attacker

into a legitimate website without any notice to the user. While seemingly counter-

intuitive, such an attack allows an adversary to monitor operations executed by the

user and steal their private information. For example, if an attacker successfully

logs in into his Yahoo account from the victim’s browser, the victim’s actions on all

of the websites (search, shopping, finance, health) belonging to Yahoo’s single sign-

on system will be recorded in the attacker’s account. If the user makes a purchase

at shopping.yahoo.com and enters his credit card details, the information will be

stored in the attacker’s profile. Note that the user will not be asked to sign-in since

the attacker has already signed in in the user’s browser. Previous work has leveraged

a browser’s network connectivity and a browser’s state to launch a login CSRF at-

tack [71]. We present a new mechanism to launch the login CSRF attack by exploiting

the vulnerability of incorrectly handling user access to overlapped display elements in

mobile browsers. Our method is more robust and not easy to detect since it exploits

an in-built vulnerability in the browsers.

Consider a malicious website landlordattacker.com. The landlord includes a

legitimate iframe containing the ‘sign in’ page of www.yahoo.com as shown in Figure 2

(right). The landlord then overlaps the iframe completely with an opaque image as

shown in Figure 2 (left). The image shows enticing free content on the landlord’s

4Mesothelioma is a cancer caused by inhaling asbestos and an ad costs $65.21 per click [15].
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Display: user's view of webpage User access: user actually fills the username
and password fields on the hidden yahoo page

and signs in as the attacker

attacker's 
username
attacker's 
password

Login CSRF

Figure 2: Login CSRF attack on Yahoo’s sign in page. Left image: Image over-
lapping the www.yahoo.com iframe on www.landlordattacker.com. The text areas
for entering ‘solution’ of the CAPTCHAs are placed exactly over the email and pass-
word fields on yahoo.com. The verify button is placed exactly above the ‘sign in’
button of yahoo.com. The two CAPTCHAs are the real email and password of the
attacker’s Yahoo account.; Right image: Login page of www.yahoo.com included in
an iframe on www.landlordattacker.com, placed below the image. The Android mo-
bile (pictured), Android tablet on Xoom, Opera Mini and Nokia Mini-Map browsers
are vulnerable to this attack.

website and includes two image CAPTCHAs expected to be solved by the user to

access the free content. The intention of the landlord attacker is to make the user

enter the attacker’s credentials into the hidden iframe below the opaque image. The

landlord accomplishes this by setting the two CAPTCHAs to the email and password

of the attacker’s Yahoo account. For example, in Figure 2, FVbLzzF and following

are the username and password respectively of the attacker’s Yahoo account. The

landlord attacker then carefully places each of the solution boxes of the CAPTCHAs

on the image exactly overlapping the email and password fields (text areas) of the

Yahoo iframe below the opaque image. The ‘Verify’ button on the image of the

CAPTCHAs is exactly overlapped with the ‘Sign in’ button of the Yahoo iframe

below.

When an honest user visits landlordattacker.com from a vulnerable browser, he

solves the two CAPTCHAs on the image to view free content. Since the browser allows
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user access to the text area below the image, when the user fills in the CAPTCHA

on top, he actually fills in the username and password of the landlord attacker in the

Yahoo iframe below the image. Once the user clicks the verify button on the image,

the ‘sign in’ button on the Yahoo iframe is clicked instead, thereby logging the user’s

browser into www.yahoo.com as the attacker.

In general, solving a CAPTCHA does not disclose private user information and is

perceived as a security feature. Therefore, even a careful user would likely be willing

to solve the CAPTCHA. Because the top image is opaque, the user is completely

oblivious to the consequences of his seemingly benign action. Once the attacker is

logged in from the user’s browser, all the potential consequences of login CSRF are

possible.

3) User Interaction Interception: This attack is possible due to inconsistent click-

event reception. A malicious landlord can launch a user interaction interception attack

on his cross-origin tenant by inserting display elements below a cross-origin tenant

image. In a webpage containing mutually distrusting principals, each principal’s

actual content as well as the user interaction with the principal’s content are private

to that principal (due to the Same Origin Policy). Therefore, the browser must not

allow unauthorized observation by a principal on a user’s interaction with another

tenant.

A malicious landlord attacker can intercept user interaction with an opaque cross-

origin image ad with a click event in a browser that gives priority to the user events

(such as onclick, onmouseover) of elements situated below the image. The expected

behavior of onclick on the image is navigation of user’s browser to the advertiser’s

webpage. A user’s interaction with the ad on the malicious landlord’s page is private

to the advertiser because of the Same Origin Policy. To snoop on the user interaction

with the tenant, the landlord fills the entire screen area below the image ad with
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buttons that have an onclick event defined. If a user visits the landlord’s website

from a vulnerable browser and clicks on the image ad, the click event of the buttons

below the image will be executed. This browser behavior will allow a malicious

landlord to monitor user interaction with the honest tenant.

3.3.3 Analysis

Android Mobile, Android tablet on Xoom, Nokia Mini-Map and Opera Mini browsers

are susceptible to all the attacks; whereas, none of the desktop browsers are suscep-

tible to any of the attacks. We found discrepancies between browsers made by the

same vendors. For instance, while Opera Mini is susceptible to all of the attacks

discussed in this section, neither the Opera desktop nor Opera Mobile browsers are

vulnerable. However, this behavior does not indicate that Opera Mobile enforces all

the same policies implemented in Opera desktop as seen in Section 3.4.

These experiments demonstrate that there are a number of ways in which user

actions can be intercepted by hidden and potentially malicious objects when rendered

by many popular mobile web browsers. However, as our next set of tests demonstrates,

there are more direct ways by which malicious objects can elicit direct user interaction.

3.4 Boundary Control

Many websites contain one or more cross-origin tenants in the form of ads or widgets.

Websites (landlord) rely on the browsers to restrict a tenant’s dimensions to the dis-

play area as defined by the landlord. However, if a browser allows a malicious tenant

to control its own dimensions (display ballooning), the tenant can easily expand its

own boundaries, completely disregarding the dimensions specified by the cross-origin

landlord. This lack of boundary control allows the tenant to dominate the constrained

mobile screen and intercept a user’s intended interaction with the landlord. We discuss

details of the discovered vulnerability and then describe potential attacks.
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3.4.1 Experimental Evaluation

Mobile and tablet browsers: The Android mobile, iPhone and iPad2 Safari, Opera

Mini and Opera Mobile browsers allow an iframe to stretch its own dimensions to fit

the content inside the iframe. Even if the landlord specifies the dimensions of the

iframe, the cross-origin tenant can change them by putting more content in the iframe.

By altering the iframe’s dimensions, the tenant’s iframe does not alter the layout of

the original page; rather all other elements on the screen are adjusted around the new

dimensions of the iframe while retaining the original relative layout.

Desktop browsers: We observe that desktop browsers restrict the boundaries of

a cross-origin tenant to those defined by the landlord. Instead of expanding, these

browsers add scroll bars to the contained iframes, allowing the user to scroll the

iframes to access the content not immediately visible due to the boundary restrictions.

Therefore, the phishing and password stealing attacks are not possible on desktop

browsers.

3.4.2 Attacks

We illustrate two attacks that take advantage of incorrect boundary control.

1) Display Ballooning→ Phishing: Display ballooning allows a malicious website

principal to push legitimate content far outside of the view of the user (an attack made

acute by the general lack of visible scroll bars), thereby causing a client to interact

with a seemingly benign but actually dangerous function.

Consider the iGoogle mashup webpage (landlord) containing each widget (tenant)

inside an iframe. As shown in Figure 3, an honest user innocently adds a malicious

widget (ATTACKER) to his profile. ATTACKER is placed “North” of the honest

widget Amazon, which shows online deals and helps the user purchase the items of

his choice. The intention of the malicious tenant is to navigate an honest user to a

website of the tenant’s choice. To launch the attack, the malicious tenant alters his
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Display Ballooning      Phishing

Figure 3: Left image: Layout of the malicious and honest widgets on the mashup
webpage. ‘ATTACKER’ is a malicious widget and Amazon and YouTube are honest
widgets; Right image: The browser allows a cross-origin tenant to write its own
dimensions. The malicious widget expands its own dimensions and masquerades as
the honest Amazon and YouTube widgets on the browser. It pushes the honest
widgets south and launches a phishing attack on the user. This attack works in
the iPhone Safari (pictured), Android mobile, iPad2 Safari, Opera Mini and Opera
Mobile browsers.

dimensions, expands his own iframe and masquerades as the Amazon and YouTube

widgets, while pushing the real Amazon and YouTube widgets “South”, far outside

of the user’s view. Unless the user scrolls down very far, he is unable to notice the

attack. The user perceives the masqueraded Amazon as the real widget and clicks on

the deals of the attacker’s choice.

The tenant attacker does not necessarily need to know the presence and layout of

specific widgets on the victim’s personal profile. The attacker can masquerade as any

of the default widgets generally included on the mashup website. Unless the victim

is very familiar with the layout of his profile, he will trust the masqueraded widget.

Additionally, if the malicious widget is published on a well known mashup website,

a not-so-careful user may be willing to click on links he finds interesting irrespective

of the credibility of the widget presenting the links to him. The phishing attack can

work on any mash-up website with a similar layout. The Appendix provides code for
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a malicious widget on iGoogle.

2) Display ballooning→ Password Stealing: Consider a malicious advertisement

(tenant attacker) situated to the “North” of the login box of an honest website.

The malicious ad can steal a user’s credentials by stretching its own dimensions and

including a fake login box, which looks exactly the same as the honest website’s login

box. The real login box would be pushed “South” beyond the bottom of the user’s

screen. Because the user is not able to see all the content on the screen at the same

time, the user will likely enter his credentials in the fake login box.

3.4.3 Analysis

The Android mobile, iPhone and iPad2 Safari, Opera Mini and Opera Mobile browsers

are susceptible to phishing and password stealing as a result of display ballooning.

The desktop browsers restrict a tenant iframe’s dimensions to those specified by the

landlord thereby preventing these attacks.

Browsers made by the same vendor deal with boundary control inconsistently.

For example, the Opera Mini, Opera Mobile and iPhone Safari browsers exhibit the

same vulnerability, whereas their desktop versions do not. Additionally, while the

Android tablet browser on Xoom is susceptible to display ballooning similar to its

mobile version, the Android tablet browser on Galaxy behaves like desktop browsers,

correctly implementing tenant boundary restrictions.

The experiments in Section 3.3 and Section 3.4 demonstrate that none of the desk-

top browsers are vulnerable to the attacks feasible on mobile browsers. Intuitively,

adopting similar policies implemented on desktop browsers will prevent introduction

of new vulnerabilities in mobile browsers. However, we show in the next section that

reusing desktop browser code without modifications can lead to unexpected vulnera-

bilities in mobile browsers, due to adjustments made in mobile browser software for

improved usability.
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3.5 Top Level Frame Navigation

The address bar indicates the URL of the viewed webpage and, in some browsers,

the current security status. Because of limited screen real-estate, mobile browsers

minimize the address bar once a page is rendered, hiding it from the user. This

usability concession in mobile browsers directly conflicts with the ‘Top-Level Frame

Navigation’ display policy [70] implemented throughout desktop browsers. This policy

governs a principal’s ability to navigate principals of other origins. In particular,

this policy allows top-level frames (i.e., the landlord) to be navigated by any of its

descendants (i.e., tenants) regardless of their origin. Because users can always see the

address bar, it is possible for a user to determine if the current destination represents

their intended target or a malicious webpage [70]. Accordingly, all desktop browsers

allow a user to always view the top-level window’s address bar.5 We show that since

mobile browsers do not make the address bar persistently available to a user, browser

policies that assume persistent view of address bar for security can be exploited. We

also discuss the differences in our attack and the already studied attacks [112, 165]

that exploit non-persistent address bar in mobile browsers, and argue that our attack

is more dangerous and easier to launch.

3.5.1 Attack and Experimental Evaluation

A tenant attacker (descendant) can launch a phishing attack if he can navigate the

cross-origin top-level window and the top-level window’s address bar is not visible to

the user.

Consider a webpage www.honest.com consisting of a malicious cross-origin ad-

vertisement as shown in Figure 4 (left). The onload event of the ad is to navi-

gate the top-level window to www.attacker.com, which looks exactly the same as

5The Chrome, Firefox and Safari desktop browsers allow users to hide the address bar through
options [125].
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!
! AOL.com - Welcome to AOL

!
!Options                                         Back

!
! AOL.com - Welcome to AOL

!
!Options                                         Back

Phishing (exploiting top-level frame navigation policy)

Figure 4: Left image: www.aol.com webpage containing a cross-origin malicious
advertisement. The browser displays only the ‘title’ of the page and does not display
the address bar.; Right image: Due to the top-level frame navigation policy, the
malicious ad can redirect the top-level window to www.attacker.com, which looks
exactly the same as AOL’s website, thereby launching a phishing attack. The user
cannot detect the attack since the address bar containing the URL of the top window
is not included in the mobile browser’s view due to space constraint. The Nokia
Mini-Map and Blackberry Mango browsers are the most susceptible to this attack.
However, all other mobile and tablet browsers (except Chrome Beta and iPad2 Safari)
are also susceptible to this attack due to address bar not being persistently available
while browsing.

www.honest.com (Figure 4 (right)) and contains malicious content. When the ad on

the honest page is loaded, it navigates the top-level window to the attacker’s page.

If the user’s browser shows the address bar of the top-level window, the user may

be able to detect the phishing attack and refrain from interacting with the malicious

page. However, if the user’s browser does not show the address bar, the user cannot

detect the phishing attack. The Appendix provides sample code for this attack.

Experimental Evaluation:

Mobile and tablet browser results: All ten mobile and three tablet browsers

allow a tenant principal of any origin to navigate the top-level window to any source.

The iPhone Safari browser minimizes the top-level address bar for better usability

once a page is rendered. Moreover, the address bar disappears from view once a user
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starts interacting with the content on the page. This behavior is seen in all mobile

browsers except Blackberry Mango, Chrome Beta, IE Mobile 8 and Nokia Mini-Map.

IE Mobile browser persistently displays the address bar only in the portrait mode and

never in the landscape mode. The Chrome Beta is the only mobile browser allowing

persistent view of the address bar. In the Blackberry Mango and Nokia Mini-Map

browsers, the address bar of the top-level window is never accessible to the user on

the screen while browsing. The web address of the top-level window can be viewed

from Options → Advanced → Page Info in the Nokia Mini-Map browser. In the

Blackberry Mango browser, a user is required to click on the lock icon in the top

right corner of the screen to access the address of the webpage. It is difficult for a

user to browse to this page info every time he wants to access the top level URL. This

makes the Blackberry Mango and Nokia Mini-Map browsers the most susceptible to

phishing attacks by navigation of top-level window to malicious pages, since the user

can never detect the attack unless he intentionally checks the page information and

views the webpage’s address.

Interestingly, Safari on the iPad2 differs slightly from its iPhone version in that

the address bar is present at all times, enabling users to protect themselves from the

phishing attack. However, the Android tablet browsers (both Xoom and Galaxy)

exhibit similar behavior as their mobile version and hide the address bar when a

user starts interacting with the webpage. Therefore, the Android tablet browsers are

susceptible to the phishing attack. We also note that due to the smaller screen size

of mobile browsers, the complete URL of a webpage is not necessarily displayed to a

user. This makes it even more difficult for a user to make a decision of the credibility

of a website at the time of page load, when the address bar temporarily flickers at

the top of the browser.

Desktop browser results: All five desktop browsers allow a tenant principal of
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any origin to navigate the top-level window to any source. However, the desktop

browsers always display the address bar in the window. We note that if Chrome’s

option to hide the address bar becomes the widespread default, the ‘Top-Level Frame

Navigation’ policy should be reconsidered for all browsers.

3.5.2 Analysis

When a user interacts with a webpage on a desktop browser by scrolling or zooming,

the top-level address bar is always available to the user. However, because of the

drastically reduced screen size of mobile devices, removing the address bar from view

makes sense in mobile browsers. Because this necessarily pushes the address bar out

of the user’s sight for most of the time while browsing, the current policy for top-

level frame navigation is not appropriate for mobile browsers. We discuss potential

solutions to this problem in Section 6.4.3.

We note that our phishing attack is significantly different than the existing phish-

ing attacks [112, 165, 183] exploiting address bar hiding in mobile browsers. The

existing attacks [112, 165] assume that the user is already on a phishing website,

spoof the address bar and then preclude the user from viewing the ‘real’ address bar

using Javascript. Therefore, a successful attack requires an attacker to trick a user

into browsing to the phishing website. Our attack does not assume that a user is

already on a phishing website. Instead, an attacker can post an advertisement on any

legitimate website and then redirect the user to a phishing website without requiring

any explicit user interaction. This makes our attack more dangerous and feasible as

compared to the attacks that require user interaction to launch a phishing website.

Any legitimate website hosting cross-origin content becomes vulnerable to our attack.

We note that once an attacker redirects a user to a phishing website by exploiting the
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Table 3: Summary of observed display-related vulnerabilities in candidate browsers
and respective attacks possible (A Xdepicts that attack is possible). 1) Equivalent
vulnerabilities exist in mobile and tablet browsers with different rendering engines.
2) Mobile, tablet and desktop browsers from the same vendor do not necessarily
implement the same code to handle display elements in different settings. 3) Desktop
browsers are more compliant with security policies for display.

Type Rendering Browser Name

Attacks

Engine

Vulnerability - Vulnerability - Vulnerability -
Incorrect handling of Cross-origin tenant Inconsistent

user access to modifying self view of
overlapping elements dimensions address bar
Click fraud, Login Display Ballooning:

PhishingCSRF, User Password Stealing,
Interaction Interception Phishing

Mobile

Webkit

Android X X X
Blackberry Webkit X

Chrome Beta
iPhone Safari X X

Nokia Mini-Map X X

Presto Opera Mini X X X
Opera Mobile X X

Gecko Firefox Mobile X
Mango Blackberry Mango X
Trident Internet Explorer X

Tablet Webkit
Android on Xoom X X
Android on Galaxy X

Safari on iPad X

Presto, Opera,
Desktop Gecko, Firefox,

Webkit Safari, Chrome,
Trident Internet Explorer

top-level frame navigation policy, existing address bar spoofing techniques [112, 165]

can be used to increase the success rate of the attack.

3.6 Discussion and Potential Solutions

Mobile browsers necessarily make considerations for the constrained platform on

which they run. Unfortunately, in the process of porting their software to these

devices, vendors have introduced a number of new classes of vulnerabilities. While

seemingly unrelated, Table 3 shows that these issues are repeated across many mo-

bile browser vendors. The vulnerabilities presented in this work are made even more

dangerous by the constrained nature of the mobile screen as shown in Section 3.4.2.

A subset of vendors of the evaluated browsers have confirmed the presence of

the vulnerabilities [2–4]. We note that unavailability of a standard for user event
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routing and boundary control may be a cause of these vulnerabilities. Identical vul-

nerabilities were observed in browsers irrespective of the rendering engine used or the

manufacturer. For example, the Android Mobile (Webkit) and Opera Mini (Presto)

browsers exhibit the same issues; whereas, the five Webkit-based mobile browsers do

not demonstrate all of the same vulnerabilities. Intuitively, assuming that browsers

built by the same company have some overlap in the development teams suggests

that browser components may be reused across platforms. However, the differences

in the presence of vulnerabilities in the mobile, tablet and desktop browsers built

by the same vendor (e.g., Opera) suggests that new vulnerabilities have been intro-

duced while porting components from existing browser software to a new platform.

Whether the discovered vulnerabilities are implementation or design errors in individ-

ual browsers is hard to state with certainty. The pervasive nature of the vulnerabilities

hints at a more concerning trend.

We propose solutions for the vulnerabilities discussed in this chapter. Browsers

should always route the click, hover and write user events exclusively to the top ele-

ment in a stack of overlapped elements. This will provide consistency in handling user

event routing and also prevent the attacks discussed in Section 3.3.2. Secondly, The

attacks possible due to erroneous boundary control can be prohibited by restricting

dimensions of tenant iframes to those specified by the landlord irrespective of the

origins of the tenant and landlord. We note that the evaluated desktop browsers have

implemented preventive measures against the attacks discussed herein. We recognize

that if desktop browsers implemented the exact same erroneous policies discussed in

this work, they might be susceptible to the attacks described herein. However, it is

important to note that in addition to desktop browsers implementing the respective

policies correctly, the constrained screen size of mobile devices makes the attacks dis-

cussed in this work more plausible and dangerous on mobile browsers. For example,

the non-persistent nature of address bar and small screen size makes the phishing
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attacks discussed in Sections 3.4 and 3.5 more difficult to detect and easier to launch.

Although borrowing desktop browser policies addresses the vulnerabilities in user

event routing and boundary control, the small screen size of mobile devices demands

more restrictive policies than those implemented in desktop browsers to prevent the

phishing attack discussed in Section 3.5. We propose using Gazelle’s top-level frame

navigation policy [209] allowing only tenants with the same origin and the user to

navigate the top-level window. This approach would better balance issues of usability,

specifically screen real-estate, and security. A more extreme solution would be remov-

ing support for the top-level frame navigation policy from mobile browsers; however,

legitimate webpages relying on this mechanism for functionality may break. Offload-

ing security decisions to the cloud [62] would be another alternative solution to the

generic problem of tension between security and usability on small mobile screens.

Most critically, borrowing the top-level frame navigation policy to the mobile environ-

ment is evidence that security and usability teams are not interacting closely enough

with each other. Any solutions should be applied with input from both groups.

We evaluated the impact of the discovered vulnerabilities on formally defined

display security policies in earlier works. One of the recent works on display security

in desktop browsers that solved some well-known issues is the Gazelle browser work

by Wang et al. [209]. Gazelle is a secure web browser [209] that defines more formal

access control rules for position, dimension, content and content source (location)

control between cross-origin principals. According to Gazelle’s display access control

matrix (refer to the Ideal column in Table 4 and Table 5), a landlord should be able to

read and write the position and dimensions of a tenant. The landlord can write over

the entire tenant screen area with new content (change location) without modifying

the current tenant’s private content. However, he should not be able to read or write

a cross-origin tenant’s private content (pixels). The tenant should be able to read

and write its own pixels and read its own dimensions.
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We tested the candidate mobile and desktop browsers against these proposed

policies. Our experiments showed that the desktop browsers conform to all of the

suggested policies. However, the mobile and tablet browsers violated recommended

display security policies due to the new found vulnerabilities in user event routing

and boundary control. The mobile browsers susceptible to the ‘user interaction inter-

ception’ attack allow a landlord to read the cross-origin tenant’s private information

(user interaction) as shown in Table 4. Moreover, the mobile browsers allowing ‘dis-

play ballooning’ allow a tenant to write its own dimensions (Table 5). This shows

that the new found vulnerabilities violate formally specified display security policies.

Table 4: Gazelle’s (the ideal column) policies for a landlord to access a cross-origin
tenant’s position, dimensions, pixels and URL location. R: Read access. W: Write
access. R*: Android mobile, Android tablet on Xoom, Nokia Mini-Map and Opera
Mini browsers allow a landlord to read user interaction with its cross-origin tenant.
This vulnerability breaches the access control policy for the tenant’s ‘pixels’ allowing
the landlord to launch the user interaction interception attack.

Landlord
Fail Pass

Ideal Android mobile, Nokia Android tablet on Galaxy,
Android tablet Mini Chrome Beta, iPhone and

[209] on Xoom, Map iPad2 Safari, IE Mobile,
Opera Mini Opera Mini and Mobile,

Blackberry Mango and Webkit
position (x,y,z) RW RW RW RW

dimensions (height, width) RW RW RW RW
pixels – R* R* –

URL location W W – W

The relevance of our observations goes well beyond web browsing. A significant

amount of research effort has recently focused on the security of mobile applica-

tions [102, 105, 106]. These studies have generally centered around applications built

for specific platforms. However, an increasing number of applications are becoming

highly dependent on the browser. In particular, applications by a number of popu-

lar companies (e.g., BBC) are actually wrappers around the browser and point their

users to specific webpages within a target domain. The advantage to this approach
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Table 5: Gazelle’s (the ideal column) policies for a tenant of a cross-origin landlord
to access its own position and dimensions on the landlord’s page, its URL location
and its pixel content. R: Read access. W: Write access. RW*: Android mobile,
iPhone and iPad2 Safari, Opera Mini and Opera Mobile allow a cross-origin tenant
to write self dimensions and are thus susceptible to the phishing and password stealing
attacks. IE Mobile does not allow a tenant to read self dimensions. This may allow a
malicious landlord to shrink the tenant’s dimensions to ‘zero’ without any notice to
the tenant.

Tenant
Fail Pass

Ideal
Android mobile, Android tablet on

IEiPhone and Galaxy and Xoom,
iPad2 Safari, Chrome Beta, Firefox Mobile

[209] Opera Mini Mobile, Nokia Mini-Map,
and Mobile Blackberry Mango

and Webkit
position (x,y,z) – – – –

dimensions (height, width) R RW * R –
pixels RW RW RW RW

URL location RW RW RW RW

is that it allows companies to ensure a relatively consistent user experience across all

platforms with minimal development effort. As a consequence, however, such “appli-

cations” now also potentially become vulnerable to the kinds of attacks discussed in

this chapter.

3.7 Conclusion

Constrained screen size fundamentally changes the browsing experience on mobile

phones. Crowded layout, the inability to consume large amounts of content con-

currently and the difficulty in discerning boundaries between different objects on a

webpage make it hard for users to browse the web in the manner to which they are

accustomed. In response to these problems and to alleviate these difficulties, mobile

browsers have been changed significantly from their desktop counterparts. However,

the impact of these changes on security has not been studied. In this work, we perform

the first large-scale comparison of display security between the most popular mobile,

tablet and desktop browsers and demonstrate that the differences are far from simply
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cosmetic. We identify and implement a number of attacks based on two new classes

of vulnerabilities found only on mobile and tablet browsers, and then present solu-

tions to address the vulnerabilities. We then identify a third class of vulnerability

that exploits the small screen size of mobile devices and a universally implemented

policy in all browsers. Our results and feedback from browser vendors exemplify that

new vulnerabilities have been introduced while porting browser software to mobile

platforms and that usability should be considered while designing solutions instead

of blindly porting desktop browser code to the mobile environment.

3.8 Appendix

A] Code Samples:

1) Login CSRF attack (Section 3.3.2): landlordattacker.com

<html>

<body>

<IFRAME NAME="csrf" SRC="http://mlogin.yahoo.com/w/login/user?ssl=false"

style="position:absolute; top:20; left:10;" WIDTH="250" HEIGHT="100"></IFRAME>

<img src="image.png" WIDTH="400" HEIGHT="400"

style="position:absolute; top:20; left:3;">

</body>

</html>

Image.png is the image shown in Figure 2 (left). The image totally overlaps the iframe

below it.

2) Display ballooning attack (Section 3.4.2): Widget code

<?xml version="1.0" encoding="UTF-8" ?>

<Module>

<ModulePrefs title="ATTACK" height="25" width="10" scaling="true" />

<Content type="html">
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<![CDATA[

<div style="text-align:center"> <a>

<IFRAME src="http://attacker.html" width="100\%" height="110" frameborder="0"

style="position:absolute; top:0px; left:0px"></IFRAME>

</a> </div>

]]>

</Content>

</Module>

The attacker.html iframe contains the malicious imitated widgets for Amazon and

YouTube.

3) Phishing attack (Section 3.5.1)

1) Parent code:

<html>

<head> Legitimate parent </head>

<body>

<IFRAME src="http://www.evil-advertisement.html" WIDTH=300 HEIGHT=300></IFRAME>

</body>

</html>

2) Cross-origin child (e.g., http://www.evil-advertisement.html) code:

<html>

<head> Cross-origin advertisement

<script>

function navigate_parent() {

window.top.location="http://www.phishing-attack.com";

}

</script>

</head>
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<body onload="javascript:navigate_parent()"> </body>

</html>

The parent includes a malicious advertisement from http://www.evil-advertisement.html,

which in turn navigates the top-level window of the browser to http://www.phishing-attack.com

that looks exactly like the original parent webpage.
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CHAPTER IV

AN EMPIRICAL EVALUATION OF SSL INDICATORS IN

MOBILE BROWSERS

4.1 Introduction

Mobile browsers provide a rich set of features that often rival their desktop counter-

parts. From support for Javascript and access to location information to the ability

for third-party applications to render content through WebViews, browsers are be-

ginning to serve as one of the critical enablers of modern mobile computing. Such

functionality, in combination with the near universal implementation of strong cryp-

tographic tools including SSL/TLS, allows users to become increasingly reliant upon

mobile devices to enable sensitive personal, social and financial exchanges.

In spite of the availability of SSL/TLS, mobile users are regularly becoming the

target of malicious behavior. A 2011 report indicates that mobile users are three times

more likely to access phishing websites than desktop users [80]. Security indicators

(i.e., certificate information, lock icons, cipher selection, etc.) in web browsers offer

one of the few defenses against such attacks. A user can view different security

indicators and related certificate information presented by the browser to offer signals

or clues about the credibility of a website. Although mobile and tablet browsers

appear to support similar security indicators when compared to desktop browsers,

the reasons behind the increasing number of attacks on mobile browsers [24, 31] are

not immediately clear.

In this chapter, we perform the first comprehensive empirical evaluation of security

indicators in mobile web browsers. The goal of this work is not to determine if average

users take advantage of such cues, but instead whether security indicators are applied
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in a manner that allows expert users to accurately determine the identity of a website

or verify the use of strong cryptographic primitives for communications. We believe

that this distinction is critical because it highlights areas where not even the best

trained users will be able to differentiate between malicious and benign behavior.

Rather than an ad hoc analysis, we base our study on the recommendations set

forward by the W3C for user interface security [35] as a proxy for best practices. In

particular, we measure which browsers strictly conform to the absolute requirements

(“MUST” clauses) and prohibitions (“MUST NOT” clauses). We perform our analysis

across ten mobile and two tablet browsers, representing greater than 90% of the mobile

market share [39], and then compare our results against the five most popular desktop

browsers. Our experiments demonstrate that while the majority of desktop browsers

largely meet the W3C recommendations, all mobile browsers fail to meet many of

the guidelines. Additionally, we observe that mobile browsers exhibit tremendous

inconsistency in the presentation and availability of such indicators in contrast to

traditional desktop browsers.

Our main contribution is a comprehensive and systematic evaluation and compar-

ison of security indicators and security information for mobile and tablet browsers,

to our knowledge the first such analysis undertaken. The main findings of our ex-

periments are that all popular mobile and tablet browsers fail to meet, in numerous

instances, the recommendations in the W3C guidelines for user interface of security

information, whereas in comparison desktop browsers largely follow the guidelines.

Our findings of tremendous inconsistency of user interfaces across mobile browsers,

and between mobile and desktop browsers, are also expected to be of considerable

interest. Among other contributions, we outline attacks on mobile browsers, such as

phishing and undetectable man-in-the-middle, enabled by failure to properly follow

these guidelines; and we highlight missing security indicators, e.g., extended valida-

tion (EV) SSL indicators [34, 136, 192]. These are intended to convey an augmented
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assurance process, however we find most mobile browsers fail to implement EV-SSL

indicators visible to users, and their absence along with that of any distinguishing

browser behavior, precludes EV-SSL certificates from providing relying parties any

benefits beyond non-EV SSL certificates.

The remainder of our chapter is organized as follows: Section 4.2 provides def-

initions and explains the mandatory elements of the W3C guidelines; Section 4.3

provides the primary results of our evaluation; Section 4.5 discusses secondary obser-

vations; Section 4.4 presents ways in that a user can be mislead about the identity

of a website or the use of encryption and attacks that are enabled by this confusion;

Section ?? presents an overview of related research; and Section 5.7 offers a discussion

of our findings and concluding remarks.

4.2 Background on the W3C Recommendations

The World Wide Web Consortium (W3C) has defined user interface guidelines [35] for

the presentation and communication of web security context information to end-users

of both desktop and mobile browsers. For context in later sections, we first define the

terminology and then provide a brief explanation of the W3C guidelines referenced

within this chapter.

4.2.1 Definitions

User interface elements: User interface elements in browsers are divided in two

categories [35]:

• Primary User Interface: the portions of a user interface that are available to

users without being solicited by a user interaction. The primary user interface

elements related to security traditionally include the padlock icon, the address

bar, the https URL prefix, the favicon, and the site-identity button or URL

coloring to signify the presence of EV-SSL and SSL certificates [34].
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• Secondary User Interface: the portions of a user interface that are available to

the user after they are solicited by a specific user interaction. The secondary

user interface elements related to security include the security properties dia-

log, domain name, owner information, verifier information, information on why

a certificate is trusted, validity period of manually accepted certificates (self-

signed) and cipher details of an SSL connection.

Trust anchor: A trust anchor represents an authoritative entity represented by a

public key and associated data. The public key is used to verify digital signatures

and the associated data is used to constrain the types of information for which the

trust anchor is authoritative. Relying parties (web browsers) use trust anchors to

determine if digitally signed information objects are valid by verifying digital signa-

tures using the trust anchor’s public key and by enforcing the constraints expressed

in the associated certificate data. Our interpretation is that a trust anchor refers to

a certificate authority (CA).

Root: A root is a trust anchor that is any certificate authority (CA).

Trusted root: A trusted root is a CA whose public key is a priori trusted by the

browser and may certify other keys.

Certificates: Public key certificates are widely used to provide keying material and

convey a website’s identity information to the user. The W3C defines four types

of certificates. We define two additional certificate types that are not covered in

the W3C document. We provide our interpretation for the definitions of certificate

types in the W3C document where they are ambiguous. For additional information

regarding the commercial practice of issuing and managing SSL certificates, please
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refer to the requirements defined by the CA/Browser forum [36].

• Validated certificate: This is a public key certificate that has been verified by

chaining up to a trusted root. Our interpretation is that a standard SSL cer-

tificate signed by a CA trusted by a browser refers to a validated certificate.

• Augmented assurance certificate: The certificate chain for such a certificate

MUST be validated up to a trusted root that is recognized as augmented assur-

ance qualified by the user agent (user’s browser). We interpret an EV-SSL cer-

tificate as an augmented assurance certificate that is validated by the browser.

• Self-signed certificate and untrusted root certificate: A self-signed certificate is

a certificate that is signed by its own creator and is not a priori trusted by a

browser. Our interpretation of an untrusted root certificate is that it refers to

a certificate holding the public key of a CA, that is signed by a CA not a priori

trusted by the user’s browser.

• Interactively accepted trust anchors or certificates: This refers to either a CA

or a website’s public key that is accepted by a user and thereby used as a

trust anchor by the browser. Whether the trust anchor is accepted just for the

present transaction or for the present and the future transactions depends on

the options presented to the user by the browser and then the option chosen by

the user.

• Unverifiable certificates: An unverifiable certificate refers to a certificate that is

neither included in a user’s browser, nor can be verified by the browser through

a trust chain.

• Untrusted site certificates: These certificates are signed by a trust anchor that

is not a root and the trust anchor is not included in the user’s browser.
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When a browser receives a website certificate, the public key therein (and the

certificate) is untrusted unless either the certificate was previously interactively

accepted (for future sessions), or trust can be derived in it transitively, through

a trust chain starting from a trust anchor (i.e., a CA key already trusted by the

browser).

Pinning: Pinning associates one or more certificates with a specific website. The

certificate provided by the website can either be self-signed or one issued by an un-

trusted root. Once a user interactively accepts such a certificate for the first time, the

browser pins the certificate to the website. After pinning, the browser warns users

only when the same website presents a different certificate. No warning messages are

shown by the browser if a site shows a certificate consistent with previously pinned

certificates for that site.

Identity Signal: An identity signal on a TLS-secured webpage includes information

about the owner of the webpage and the certificate issuer’s organization. A webpage’s

certificate provides its owner information and the issuer’s (e.g., Certificate Authority)

organization.

De-referencing a URI: The act of retrieving a representation of an information

resource identified by a URI is known as dereferencing that URI [27]. The act of

creating a representation is simply a transformation of information into an appropri-

ate form consumable by a user. For example, when a user accesses a bank account

statement, the binary data is retrieved from a database on the server and presented

to the user after conversion into a readable text format.
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TLS/SSL: The Transport Layer Security (TLS) protocol allows client/server appli-

cations to communicate across a network in a way designed to prevent eavesdropping

and tampering. The predecessor protocol of TLS is called Secure Socket Layer (SSL).

Strong TLS: An http transaction is strongly TLS-protected if it is TLS-protected,

an https URL was used, strong TLS algorithms were negotiated for both confiden-

tiality and integrity protection, and at least one of the following conditions is true: the

server used a validated certificate that matches the dereferenced URI; the server used

a self-signed certificate that was pinned to the destination; the server used a certificate

chain leading to an untrusted root certificate that was pinned to the destination.

A strong TLS algorithm implies that no version of the TLS protocol that suffers

known security flaws has been negotiated. Therefore, versions of SSL prior to SSLv3

MUST NOT be considered strong. Additionally, a strong TLS algorithm must also

select a cipher suite for which key and algorithm strengths correspond to industry

practice. More information on strong and weak TLS algorithms can be found in the

W3C document [35] and RFC 4346 [26].

Weak TLS: An http transaction is weakly TLS-protected if it is TLS-protected,

but strong TLS protection could not be achieved for one of the following reasons:

TLS handshake used an anonymous key exchange algorithm, such as DH_anon; the

cryptographic algorithms negotiated are not considered strong, such as

TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA; certificates were used that

are neither validated certificates nor self-signed certificates pinned to the destination.

Error messages: The W3C document defines common error interaction require-

ments and practices to signal two classes of errors ordered by increasing severity:

warning/caution messages and danger messages.
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Warning/caution messages are intended for situations when the system has reason

to believe that the user may be at risk based on the current security context infor-

mation, however a determination cannot positively be made. Danger Messages are

intended for situations when there is a positively identified danger to the user (i.e.,

not merely a risk).

Subject organization logotype: This is a logotype representing the organization iden-

tified in the subject name in the certificate.

4.2.2 W3C Guidelines

We chose a subset of the absolute requirements (MUST) and prohibitions (MUST

NOT) specified in the W3C user interface guidelines.1 We omitted the guidelines

represented by clauses including the MAY, MAY NOT, SHOULD and SHOULD

NOT keywords as they represent the optional guidelines [25]. We classify the W3C

guidelines into five categories: identity signal, certificates, TLS indicators, robustness

and error messages.

1) Identity signal: availability:

The security indicators showing identity of a website MUST be available to the

user either through the primary or the secondary interface at all times.

2) Certificates: required content:

In addition to the identity signal, the web browsers MUST make the following

security context information available through information sources (certificates): the

webpage’s domain name and the reason why the displayed information is trusted (or

not).

3) TLS indicators:

1The guidelines deemed to be the most critical and definitively testable were selected based on
the authors’ experience and knowledge of the area of SSL indicators.
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Table 6: Details of the browsers used for experimental evaluation. (*: The version
numbers of these browsers were not apparent. We have used the default browsers
shipped with the referenced version of the OS.)

Category Browser Version Rendering Operating Device
Name Engine System

Mobile

Android 2.3.3 Webkit Android 2.3.3 Nexus One

Blackberry 5.0.0 Mango Blackberry Bold 9650OS 5.0.0.732
Blackberry 6.0.0 Webkit Blackberry OS 6 Torch 9800

Chrome Beta 0.16.4130.199 Webkit Android 4.0.3 Nexus S
Firefox Mobile 4 Beta 3 Gecko Android 2.3.3 Nexus One

Internet Explorer * Trident Windows Phone LG-C900Mobile 7.0.7004.0 OS
Nokia Browser 7.4.2.6 Webkit Symbian Belle Nokia 701

Opera Mini 6.0.24556 Presto Android 2.3.3 Nexus One
5.0.019802 Presto iOS 4.1 (8B117) iPhone

Opera Mobile 11.00 Presto Android 2.3.3 Nexus One
Safari * Webkit iOS 4.1 (8B117) iPhone

Tablet Android * Webkit Android 3.1 Samsung
Galaxy

Safari * Webkit iOS 4.3.5 (8L1) iPad 2

Desktop

Chrome 15.0.874.106 Webkit OS X 10.6.8 –
Firefox 7.0.1 Gecko OS X 10.6.8 –

Internet Explorer 8.0.7600.16385 Trident Windows 7 –
Opera 11.52 Presto OS X 10.6.8 –
Safari 5.1.1 Webkit OS X 10.6.8 –

a) Significance of presence: Any UI indicator (such as the padlock) MUST NOT

signal the presence of a certificate unless all parts of the webpage are loaded from

servers presenting at least validated certificates over strongly TLS-protected interac-

tions.

b) Content and Indicator Proximity: Content MUST NOT be displayed in a

manner that confuses hosted content and browser chrome indicators, by allowing that

content to mimic chrome indicators in a position close to them.

c) Availability: The TLS indicators MUST be available to the user through the

primary or the secondary interface at all times.

4) Robustness: visibility of indicators:

Web content MUST NOT obscure the security user interface.
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5) Error messages:

a) Interruption: Both warning/caution and danger messages MUST interrupt the

user’s current task, such that the user has to acknowledge the message.

b) Proceeding options: Warning/caution messages MUST provide the user with

distinct options for how to proceed (i.e., these messages MUST NOT lead to a sit-

uation in which the only option presented to the user is to dismiss the warning and

continue).

c) Inhibit interaction: The interactions for danger messages MUST be presented

in a way that makes it impossible for the user to go to or interact with the destination

website that caused the danger situation to occur, without first explicitly interacting

with the danger message.

4.3 Empirical Observations

We evaluate ten mobile and two tablet browsers against the W3C recommended prac-

tices for security indicators. The details of the browsers are provided in Table 6. For

each of the guidelines described in Section 4.2.2, we create and run a set of experi-

ments to verify compliance on all the candidate browsers and record our observations.

All the experiments were performed on web browsers on real mobile phones, and are

recreated in the respective emulators to generate many of the figures throughout the

chapter. The browser versions used in our evaluation are approximately the latest as

of February 12th, 2012. Table 7 through Table 12 provide the synopsis of the results

of our experiments.

4.3.1 Identity Signal: Availability

An identity signal contains information about the owner of a website and the cor-

responding certificate issuer. Before issuing a certificate, the certificate provider re-

quests the contact email address for the website from a public domain name registrar,
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Table 7: Results of experiments on candidate mobile browsers to test compliance with
the first two W3C guidelines given in Section 4.2.2. Each guideline column consists of
sub-columns stating the experiments performed on the browsers. An × implies that
the browser does not comply with the respective W3C guideline. A · implies that the
browser complies with the respective W3C guideline.

Mobile and Tablet 1) Identity signal: availability 2) Certificates: required content
Browsers Owner Certificate Domain Information on

information issuer’s info name why certtificate
(See Table 6 for versions) available? available? available? trusted available?

Android · · · ×

Blackberry Mango · · · ·
Blackberry Webkit · · · ·

Chrome Beta · · · ×

Firefox Mobile · · · ×
iPhone Safari × × × ×

Nokia Browser · · · ×
Opera Mini × × × ×
Opera Mobile × × × ×

Windows IE Mobile × × × ×
Safari on iPad 2 × × × ×

Android on Galaxy · · · ×

Table 8: Results of experiments on traditional web browsers to test compliance with
the same guidelines as given in Table 7, with × and · symbols also implying the same.
Note that all the desktop browsers are compliant.

Desktop Browsers 1) Identity signal: availability 2) Certificates: required content
(See Table 6 Owner information Certificate issuer’s Domain name Information on why cert
for versions) available? information available? available? trusted available?

Chrome · · · ·
Firefox · · · ·

IE · · · ·
Opera · · · ·
Safari · · · ·

and checks that published address against the email address supplied in the certificate

request. Therefore, the owner of a website is someone in contact with the person who

registered the domain name. Popular browsers represent the owner information of a

website using different terminology including owner, subject, holder and organization.

We visited a public webpage presenting a trusted root certificate from all the can-

didate browsers. We then evaluated the browsers for the presence of identity signal,

either on the primary or the secondary interface.
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Figure 5: Identity information displayed by Firefox Mobile.

Observations: The IE Mobile, iPhone and iPad Safari, and Opera Mini and Mobile

browsers do not provide a user interface to view certificates. Accordingly, the identity

signal information is not available for a user of these browsers and thus none of these

five browsers comply with the W3C guideline for availability of identity signal. We

note that when a website presents a certificate that is from a CA not from a trusted

root, all the browsers provide an interface to view the certificate via an error message.

The Android mobile and tablet, Blackberry Mango and Webkit, Chrome Beta and

Nokia browsers always allow a user to view certificates (both trusted and untrusted)

and therefore comply with this guideline. A user is required to click the lock icon

to view certificate information on the Chrome Beta and Blackberry Mango browsers.

However, the browsers do not provide any visual indication to the user about this

process of accessing the certificate information. Browsers supporting a UI for viewing

certificate information provide a clear indication in the “options” in the browser menu.

Although the Firefox Mobile browser does not support a certificate UI, it displays the

identity information of a website when the site identity button is clicked, as shown in

Figure 5. All desktop browsers comply with this guideline. Tables 7 and 8 provide

the summary of our results.

4.3.2 Certificates: Required Content

In addition to the identity signal content, a certificate from a website must provide

the same website’s domain name and the reason why the displayed information is

trusted (or not). Trust reasons include whether or not a certificate was accepted
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interactively, whether a self-signed certificate was used, whether the self-signed cer-

tificate was pinned to the site that the user interacts with, and whether trust relevant

settings of the user agent were otherwise overridden through user action. We believe

that information such as “certificate is implicitly trusted” and “the certificate chain

is trusted/valid” also conveys the reason behind a browser trusting or not trusting a

particular website.

We analyzed the candidate browsers for the presence of the required certificate

content by visiting a website that uses strongly TLS-protected connection with its

clients.

Observations: The IE Mobile, iPhone and iPad Safari, and Opera Mini and Mo-

bile browsers do not provide a user interface to view certificates from trusted CAs.

Therefore, these browsers fail to meet the W3C guideline. Additionally, even though

the remaining mobile and tablet browsers provide a user interface to view certificate

information, they do not provide an explanation on why a particular certificate is

trusted. Only the Blackberry Mango and Webkit browsers comply with the guideline

by making all the required parts of a certificate available. When a website presents

a certificate from a trusted CA, the Blackberry Mango and Webkit browsers show

the reason “certificate is implicitly trusted”. Therefore, all but two mobile and tablet

browsers fail to meet this W3C guideline. All desktop browsers follow this guideline

correctly. Tables 7 and 8 provide the summary of our results.

4.3.3 TLS Indicators

TLS indicators include the https prefix, the padlock icon, information about the

ciphers used in the connection and url coloring (or site identity button) to depict the
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Table 9: Results of experiments on candidate mobile browsers to test compliance
with the W3C guidelines 3a and 3b given in Section 4.2.2. The symbol notation
is as defined in Table 7. ‘s’: Implies that the https URL prefix is present on the
‘s’econdary interface.

Mobile and Tablet TLS indicators
Browsers 3a) significance of presence 3b) position

(See Table 6 for versions) Mixed content: Mixed content: Favicon not next
no lock shown? no https shown? to lock icon?

Android Open lock with × ×
a question mark

Blackberry Mango × × ·
Blackberry Webkit × × ·

Chrome Beta Closed lock with https striked ·
a cross on top through

Firefox Mobile No security × ·
indicators shown

iPhone Safari · × ·
Nokia Browser · × ·
Opera Mini · × ·
Opera Mobile · × ·

Windows IE Mobile × × ·
Safari on iPad 2 · × ·

Android on Galaxy Open lock with × ·
a question mark

Table 10: Results of experiments on traditional web browsers to test compliance with
the same guidelines as Table 9. The symbol notation is as defined in Table 7. ‘p’:
Implies that the https URL prefix is present on the ‘p’rimary interface.

Desktop Browsers TLS indicators
(See Table 6 3a) significance of presence 3b) position
for versions) Mixed content: Mixed content: Favicon not next

no lock shown? no https shown? to lock icon?
Chrome Lock with a × ·

yellow triangle
Firefox · × ·

IE · × ·
Opera · × ·
Safari · × ·

difference between EV-SSL and SSL certified webpages.

a) Significance of presence: If a web browser displays a TLS indicator for the

presence of a certificate for a webpage consisting of content obtained over both http
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Figure 6: Blackberry Mango browser rendering a mixed content webpage. Note that
the webpage contains a Google map obtained over an http connection. Although the
webpage holds mixed content, the browser displays the padlock icon as well as the
https URL prefix indicators. This behavior fails to meet with guideline 3a.

and https connections (mixed content), this guideline is not followed.

We created a simple webpage that uses a strong TLS connection to retrieve the

top level resource and embedded a map obtained from a third-party over an unse-

cured http connection. We analyzed the browsers while rendering the this page for

two basic TLS security indicators: the https URL prefix and the padlock icon. If a

browser shows any of these two indicators on a mixed content webpage, it does not

follow the W3C guideline. We also observed whether a browser shows a warning to

the user suggesting the presence of mixed content on the webpage.

Observations: The Blackberry Mango, Blackberry Webkit and IE Mobile browsers

display a lock icon on a webpage holding mixed content, thus failing to meet the

W3C guideline. Figure 6 shows a screen shot of the Blackberry Mango browser when

a mixed content webpage is rendered. The Blackberry Webkit and IE Mobile browsers

display a mixed-content warning and, if the user proceeds to the webpage, a lock icon

is displayed. The Android browsers on the mobile and tablet devices present an open

lock with a question mark inside the lock. The Chrome Beta browser displays a

closed lock with a cross on top and a striked through https URL prefix for a mixed

content webpage. This behavior of Android and Chrome is inconsistent with the other

browsers. Therefore, it is necessary for the users of these browsers to understand the

meaning of the new symbols in order to interpret its reference to mixed content on a

webpage.
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Android Mobile Blackberry Mango Blackberry Webkit

Chrome Beta Firefox Mobile Internet Explorer Mobile

Nokia Browser Opera Mini Opera Mobile

iPhone Safari Safari TabletAndroid Tablet

Figure 7: Security indicators on the primary interface (address bar) of all the mobile
and tablet browsers. Every browser has three screenshots of the address bar: from
top to bottom, the websites are Google over an http connection, Gmail over a secure
connection with an SSL certificate and Bank of America over a secure connection
with an EV-SSL certificate.

All the browsers display the https URL prefix either on the primary or the sec-

ondary interface. We note that this issue is present even in popular desktop browsers.

The behavior of displaying the https URL prefix on a mixed content webpage fails

to meet the W3C recommendation in both the desktop and mobile environments as

shown in Tables 9 and 10.

b) Content and Indicator Proximity: The padlock icon used as a security in-

dicator and the favicon used as an identity element of a website are two popular
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Figure 8: The address bar of the Android browser when a webpage over SSL is loaded.
The browser places the favicon adjacent to the lock icon, thereby violating the W3C
guideline 3b described in Section 4.2.2. The star icon to the right of the address bar
is to bookmark the webpage.

elements that use a browser’s chrome. If a browser allows a favicon to be placed next

to the padlock, an attacker can feign a secure website by mimicking the favicon as

a security indicator. We evaluate this scenario by visiting a webpage over a strong

TLS connection from all candidate browsers and observed the relative locations of

the favicon and padlock.

Observations: The Android mobile browser does not follow the W3C guideline. The

browser places the favicon of a webpage beside the padlock icon as shown in Figure 8.

All other browsers adhere to this guideline, as shown in Tables 9 and 10.

We observed several inconsistencies in the use and position of the padlock icon

and the favicon in the mobile and tablet browsers. As shown in Figure 7, the favicon

is displayed only on the Android (mobile and tablet), Blackberry Webkit and Firefox

Mobile browsers. The remaining mobile and tablet browsers never display a favicon.

This behavior is inconsistent with desktop browsers. We believe lack of screen space

to be one of the drivers behind the removal of the favicon from the mobile environ-

ment. In addition to the almost total lack of use of favicons, we also noticed that

the position of the padlock icon in mobile browsers is inconsistent across different

mobile browsers. In the past, researchers have shown that the padlock icon is the

security indicator most often noticed by users [100,211]. Traditional desktop browsers

generally display the padlock icon in the address bar. However, all mobile and tablet
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Table 11: Results of experiments on candidate mobile browsers to test compliance
with the W3C guidelines 3c and 4 given in Section 4.2.2. The symbol notation is
as defined in Table 7. ‘s’: Implies that the https URL prefix is present on the
‘s’econdary interface.

Mobile and Tablet TLS indicators 4) Robustness
Browsers 3c) availability Content obscures

(See Table 6 for versions) https prefix Lock shown? Cipher details indicators on
available? available? the address bar?

Android ·(s) · × ×

Blackberry Mango ·(s) · · NA
Blackberry Webkit ·(s) · · ×

Chrome Beta · · · ×
Firefox Mobile ·(s) · On clicking the × ×

site identity button
iPhone Safari ·(s) · × ×
Nokia Browser ·(s) · × ×
Opera Mini ·(s) · × ×
Opera Mobile ·(s) · × ×

Windows IE Mobile ·(s) · × ×
Safari on iPad 2 ·(s) · × ·

Android on Galaxy ·(s) · × ×

browsers except Android (mobile and tablet), Blackberry Webkit, Chrome Beta, and

IE Mobile browsers display the lock icon on the title bar instead of the address bar.

We believe that the reason behind this shift of location of the padlock icon in the

mobile and tablet browsers is the non-persistent availability of the address bar to the

user. Whenever a user starts interacting with a webpage, most mobile browsers hide

the address bar to accommodate more content on the small screen.

c) Availability: We studied the presence of the lock icon, the https URL prefix

and details of the cipher used in a TLS connection by visiting a TLS protected web-

page using all candidate browsers. The padlock icon and the https URL prefix are
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Table 12: Results of experiments on traditional web browsers to test compliance with
the same guidelines as Table 9. The symbol notation is as defined in Table 7. ‘p’:
Implies that the https URL prefix is present on the ‘p’rimary interface.

Desktop Browsers TLS indicators 4) Robustness
(See Table 6 3c) availability Content obscures
for versions) https prefix Lock shown? Cipher details indicators on

available? available? the address bar?
Chrome ·(p) · · ·
Firefox ·(p) · On clicking the · ·

site identity button
IE ·(p) · × ·

Opera ·(p) · · ·
Safari ·(p) · × ·

primary interface indicators and cipher information is a secondary interface indicator

on desktop browsers.

Observations: Websites handling sensitive digital transactions (such as banks) ask

users to search for the https URL prefix to ensure security of their transactions.

Therefore, easy access to the https URL prefix is important. This indicator is

present in the address bar (primary interface) of desktop browsers and is clearly

visible to the user at all times. Among the mobile and tablet browsers, all but the

Blackberry Mango browser display the https URL prefix in the address bar. The

Blackberry Mango browser does not have an address bar and provides a choice to

view the webpage’s URL from the browser’s options. This setting requires a user to

be knowledgable of the change to be able to find the URL of the current webpage

and also makes the https URL prefix a secondary interface indicator. Although the

other mobile browsers display the https URL prefix in the address bar, they hide the

address bar (except Chrome Beta) for better usability. In the Chrome Beta browser,

if the URL of a webpage is longer than the screen size, the https URL prefix is hidden.

Since a user is required to interact with the address bar to view the URL prefix of a

webpage, the https URL prefix becomes a secondary interface indicator in all mobile
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and tablet browsers. This increases the likelihood of a successful downgrade attack

(e.g., SSLstrip [30] attack) on the mobile and tablet browsers, since a user requires

effort to view the https URL prefix.

The information about the ciphers used in setting up the TLS connection between

a website server and the user’s browser is not available in any of the browsers except

Blackberry Mango andWebkit. Accordingly, all the mobile and tablet browsers except

two do not comply this W3C guideline for our experiments. Tables 11 and 12 provide

the summary of our results.

4.3.4 Robustness: Visibility of Indicators

The TLS indicators generally found on the primary interface are lock icon, https

URL prefix, URL coloring and site identity button. Typically, the address bar in a

web browser holds these indicators. Therefore, we examined whether web content

overwrites or pushes the address bar containing security indicators out of a user’s

view during browsing.

Observations: Presumably, in order to free up screen real estate for other purposes,

the address bar on all but one mobile browser is overwritten by web content once a

webpage is rendered and/or when a user starts interacting with the page. The IE

Mobile browser always displays the address bar, when the user accesses content in the

portrait view. However, the address bar is never displayed in IE Mobile when a user

interacts with a webpage in the landscape mode. The Chrome beta browser makes the

address bar persistently available in both the portrait and landscape modes. Out of

the two tablet browsers, only the tablet Safari browser avoids the security indicators

on the address bar being overwritten by a webpage’s content, therefore allowing a

persistent view of the security indicators on the primary interface. The Android

tablet browser hides the address bar once a webpage is rendered. Tables 11 and 12
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show that all the candidate desktop browsers follow this guideline unlike the mobile

and tablet browsers.

4.3.5 Error Messages

We created example scenarios that demand the warning/caution and danger messages,

given the definitions in the W3C document. The W3C document provides examples

of scenarios that demand a danger alert. However, as the document does not specify

any scenarios that should trigger warnings, we carried out our tests using the following

scenario.

We classified the scenario of a browser rendering a mixed content webpage as one

that should trigger a warning. This is because on a webpage with both insecure and

secure content, the user may or may not interact with the insecure content on the

webpage. Therefore, the browser system is unable to positively determine whether the

user is at risk. In contrast, we used an example scenario given in the W3C document

for our experiments on danger messages. The W3C document defines ‘rendering

a webpage presenting a self-signed certificate’ as one that should trigger a danger

message, since the certificate is not from a trusted root.

a) Interruption: We examined whether the mobile and tablet browsers display a

warning or danger message in our test scenarios. We further observed the nature of

the messages to confirm that they actually interrupt the user’s actions as specified

by the W3C guidelines and are not displayed at a position on the screen which a user

can ignore and continue interacting with the website.

Observations: Only four mobile and tablet browsers (Android Galaxy, Blackberry

Webkit, IE Mobile and Nokia) display a warning notifying the user of the existence
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Table 13: Results of experiments on traditional web browsers to test compliance with
the W3C guidelines 5a, 5b and 5c given in Section 4.2.2. The symbol notation is
as defined in Table 7. NA: Implies that the concerned experiment is not applicable
to that browser, the reasoning can be found in the text. (*: Our view is that a
browser should display a warning message for a webpage holding mixed content, to
avoid misleading users trained to interpret SSL indicators to mean that the (entire)
webpage is secured.) ×∗: Implies that the browser fails to warn a user according to
our view.

Mobile and Tablet 5) Error messages
Browsers 5a) Interruption 5b) Proceeding 5c) Inhibit

(See Table 6 for versions) Warning Danger options Interaction
(mixed content) (self-signed (for warnings) (for danger

cert) messages)

Android ×∗ · NA∗ ·
Blackberry Mango ×∗ · NA∗ ·
Blackberry Webkit · · “Continue, Close connection, ·

View cert, Trust cert" options

Chrome Beta ×∗ · NA∗ ·
Firefox Mobile ×∗ · NA∗ ·
iPhone Safari ×∗ · NA∗ ·
Nokia Browser · · · ·
Opera Mini ×∗ × NA∗ ×

Opera Mobile ×∗ · NA∗ ·
Windows IE Mobile · · “Yes and No" ·

options

Safari on iPad 2 ×∗ · NA∗ ·
Android on Galaxy · · “Continue, View Certificate, ·

Go Back” options

Table 14: Results of experiments on traditional web browsers to test compliance with
the same guidelines as Table 11. The symbol notation is as defined in Table 7 and
Table 11.

Desktop Browsers 5) Error messages
(See Table 6 5a) Interruption 5b) Proceeding 5c) Inhibit
for versions) Warning Danger options interaction

(mixed content) (self-signed cert) (for warnings) (for danger messages)

Chrome ×∗ · NA∗ ·
site identity button
shows a warning

Firefox ×∗ · NA∗ ·
IE · · “Yes, No” ·

More info options

Opera ×∗ · NA∗ ·
Safari ×∗ · NA∗ ·

of insecure content on a mixed content webpage, before the webpage is rendered.

The other browsers do not interrupt the user by displaying a warning. The iPhone
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Safari browser shows a mixed content warning on a console that needs to be enabled

by a user and is intended for developers. We believe that most iPhone Safari users

are unlikely to enable the debug console, carefully browse the debug messages and

therefore understand the presence of mixed content. Among the desktop browsers,

only IE displays a mixed content warning, thereby interrupting a user.

The mobile and tablet browsers comply with the interruption guideline by dis-

playing a danger message, when a webpage with a self-signed certificate is rendered.

The Opera Mini browser is the only browser that does not display a danger message

in this scenario; it simply renders the webpage and does not show any TLS indicators.

b) Proceeding options: We examined whether the warning message displayed for

a mixed content webpage provides a user with more than one option to proceed after

interruption.

Observations: Only the Android Galaxy, Blackberry Webkit, IE Mobile and Nokia

browsers display a warning message when navigated to a mixed content webpage.

The IE Mobile browser informs the user about the presence of unsecured content on

the webpage and provides two options for continuing: <Yes, No>. However, there is

no option to the user to view the certificate provided by the top-level website using

a secured connection. Conversely, the Android Galaxy and Nokia browsers provide

an option to view a website’s certificate. The options presented by the Android

Galaxy browser are <Continue, View Certificate, Go back> and those presented by

the Nokia browser are <Options, Back>. The “Go back” and “Back” options nav-

igate the user to a webpage viewed right before the mixed content webpage. The

options provided by the Nokia browser are <Accept this time only, Accept perma-

nently, Certificate details>. The Blackberry Webkit browser provides the options to

<Continue, Close Connection (default), View Certificate, Trust Certificate>. Among

71



    anonymized URL  

    Anonymized URL

Figure 9: Danger message on iPhone Safari when a website presenting a self-signed
certificate is accessed. This message interrupts the user and also inhibits the user
from proceeding without interacting with the danger message first. Note that the
website’s URL has been anonymized for submission.

the desktop browsers, IE provides <Yes, No, More info> options to proceed when a

mixed content webpage is rendered.

c) Inhibit interaction: This guideline requires a browser to prevent a user from

interacting with a website that triggers a danger message, before user interaction

with the danger message. We visited a website presenting an untrusted self-signed

certificate from all the browsers.

Observations: All mobile and tablet browsers except Opera Mini display a danger

message on receiving a self-signed certificate. Additionally, they restrict a user’s

interaction to the danger message. A user is unable to access the website content

before explicitly interacting with the danger message. Figure 9 shows the danger

message presented by the iPhone Safari browser before loading a webpage with a

self-signed certificate. The Opera Mini browser does not show an error for self-

signed certificates. It simply routes the user to the webpage presenting the self-signed

certificate. All desktop browsers correctly follow this guideline. Table 11 and Table 12
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summarize our experimental results of the error message guidelines.

4.4 User Deception and Potential Attacks

Table 15: Summary of potential attacks on candidate mobile browsers. A × implies
that the attack is possible. A · implies that the corresponding attack is not possible
on the browser.
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Phishing without SSL × · · · · · · · · · · ·
Phishing with SSL · × · · · × · × × × × ·
Phishing using a · × · · · × · × × × × ·
compromised CA
Industrial espionage/ × × × × × × × × × × × ×
Eavesdropping

The W3C user interface guidelines, which we use as a proxy for best practice,

are an effort to communicate security information to users such that they can make

informed decisions about websites that they visit. If these guidelines are not imple-

mented by a browser, users are more easily misled about the identity of a website or

the security of a connection. We discuss four attacks that are enabled on browsers vi-

olating one or more of the W3C guidelines. Table 15 provides a summary of potential

attacks described in this section on the candidate browsers.

4.4.1 Deception Methods

We discuss techniques to confuse user perception about the security of a website’s

pages when rendered in a browser that fails to meet one or more of the W3C guidelines.

A malicious website or a network attacker successful in deceiving a user is more likely

to succeed in stealing a user’s sensitive information (i.e., phishing). We assume that

a malicious website principal or a network attacker has knowledge of the incomplete

security indicators in popular mobile browsers. We also assume that an honest user

visits a website using a mobile browser that does not follow one or more of the W3C

guidelines discussed in Section 4.2.2. Violation of a single W3C guideline may permit
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multiple attack vectors. The goal of an adversary is to trick the user into believing

that they are interacting with a secure website when they are actually interacting

with an insecure one.

1. Close imitation of identity information: A malicious website can closely

imitate the identity of a legitimate website to confuse a user. Attackers of-

ten buy domains that very closely resemble a legitimate website’s domain in

addition to imitating the content of the legitimate website. For example, an

attacker can buy the domain “bankofamericaa.com” that closely resembles the

“bankofamerica.com” domain (the malicious one has an additional ‘a’ at the

end of bankofamerica). Difficulty in clearly viewing a website’s URL due to the

constrained screen size of a mobile device allows for the possibility of a user

overlooking the slight difference in the domain name. Additionally, the attacker

can also obtain an inexpensive SSL certificate for his malicious website so that

the browser shows SSL indicators to the user to confuse the user into believing

that the malicious website is the legitimate one.

An expert user can view a website’s identity, domain name and reason behind

trusting the website, presented in the website’s certificate to identify the true

owner of the phishing website and avoid divulging sensitive information. Ab-

sence of the identity information of a website, domain name and the reason of

trusting that particular website certificate is a violation of guideline 1 and 2

given in Section 4.2.2.

2. Lock icon spoofing: The padlock icon is an important TLS indicator on the

primary interface of a browser. The padlock combined with the presence of the

https prefix in the URL signifies the presence or absence of SSL. The placement

of the padlock icon is critical because it provides a clean indication of encryption

and therefore security. If browsers situate a site’s favicon next to the padlock

74



icon in the primary interface, the utility of the padlock icon is diminished.

A malicious website can make its favicon appear exactly the same as a user’s

browser’s padlock icon. This provides the illusion of strong TLS encryption and

allows an attacker to convince an expert user that his personal information (e.g.,

credit card number) is kept confidential and encrypted in transit. Moreover, the

fake padlock makes the website appear more legitimate without the attacker

purchasing any SSL certificates. Finally, a browser allowing an attacker to

manipulate the contents of the security indicators with website content is a

direct violation of guideline 3b described in Section 4.2.2.

3. Cipher downgrade: Aman-in-the-middle (network attacker) can tamper with

the initial messages sent by a client browser to establish an SSL connection with

a website server and force the negotiation of a weak cipher. An expert user can

refrain from providing sensitive information on a connection established using

a weak cipher, by viewing the cipher negotiated for the TLS connection with

the server. However, the same expert would be unable to detect the presence of

a weak cipher on an SSL connection carrying sensitive data if the browser does

not display cipher information of the connection. Such a browser fails to meet

the W3C requirement 3c in Section 4.2.2.

4. Substitute http for https: The https URL prefix is a TLS security indicator

signifying encryption on the channel between the client and the server. Since

the https URL prefix is available on the primary user interface (address bar),

a user can easily view this indicator while browsing sensitive data. If a network

attacker changes the intended https website to an http website, a user may

be able to recognize that he is using an unsecured connection by noticing the

change from https to http in the address bar.
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If the https prefix is not available to a user persistently, requirement 3c de-

scribed in Section 4.2.2 is not followed.

5. Mixed content: The content of a webpage is interpreted as mixed if the top-

level resource was retrieved through a strongly TLS protected http transac-

tion and some dependent resources were retrieved through a weakly protected

or unprotected http transaction. Dependent resources include inline images,

stylesheets, script content, and frame content. If a browser displays security in-

dicators defined for strongly TLS secured webpages on a webpage hosting mixed

content, users gain a false notion of security for the unsecured content. This

can lead to users providing sensitive information such as passwords while inter-

acting with unsecured http content embedded in a webpage whose top resource

is acquired over a strongly protected TLS connection. Moreover, this browser

behavior does not comply with the W3C guideline 3a given in Section 4.2.2.

4.4.2 Attacks

An attacker can exploit one or more of the above techniques for user deception to

launch a range of attacks. We describe four attacks in order of increasing effort

required from an attacker.

i) Phishing without SSL: An attacker masquerades as a trustworthy entity in a

phishing attack. By closely imitating a legitimate website’s identity information in

combination with lock icon spoofing, a malicious website can launch a phishing attack

without SSL on a browser violating the W3C guidelines 1, 2 and 3b as follows.

An attacker buys a domain name that closely resembles the domain name of the

legitimate website. For example, to spoof www.bankofamerica.com, the attacker buys

the domain name www.bankofamericaa.com. The attacker then imitates the content

of the targeted legitimate website. Instead of spending money on purchasing an

SSL certificate to increase the “false” credibility of the malicious website, an attacker

76



instead makes the favicon of the malicious website a lock image. Therefore, the closely

imitated domain name provides an impression of correct identity of the intended

website and the spoofed lock provides an illusion of strong encryption.

When this malicious website is rendered in a browser that makes viewing the URL

of the website difficult, situates the favicon next to the padlock icon and does not offer

a UI to view identity information such as website owner’s name, even an advanced

user might be subjected to phishing.

ii) Phishing with SSL: Spoofing only the lock icon may not be adequate to launch

a successful phishing attack. To increase the credibility of a phishing website, the

attacker can buy an inexpensive SSL certificate for the website. The presence of a

valid certificate causes a browser to display SSL indicators such as the https URL

prefix and URL coloring (or colored site identity button) in addition to the lock icon

in the browser’s chrome. If a user blindly trusts just these SSL indicators and can

not verify additional identity information of the website (violation of guideline 1 and

2), he can be subjected to a phishing attack.

iii) Phishing using a compromised CA: Compromising a CA allows an attacker

to obtain rogue certificates for legitimate websites. There have been several such

attacks recently [37, 38]. If a user’s browser trusts a CA, the browser will accept all

certificates signed by the CA without showing any warning to the user. This behavior

persists even when the same CA is compromised and the necessary update to remove

the trusted CA from the browser has not been installed. An expert user who is

knowledgeable of a CA compromise can verify every certificate issuer’s organization

in the certificate chain, therefore declining interacting with a malicious website with a

rogue certificate. If a browser fails to meet guidelines 1 and 2, thereby not presenting

user interface to enable certificate viewing, even an expert user could be exposed to

a phishing attack.
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iv) Industrial espionage / eavesdropping: A man-in-the-middle (network) at-

tacker can use any one of the cipher downgrade, substituting http for https or

inserting mixed content techniques for user deception to launch an eavesdropping

attack on a user’s session as follows:

SSLstrip attack: The SSLstrip [30] man-in-the-middle attacker sits on a local

network and intercepts traffic. When the attacker detects a request to an encrypted

https site, he substitutes a duplicate of the intended destination as an unencrypted

http site. This switching strips away the security that prevents a third party from

stealing or modifying data, while deceiving the server that an encrypted page has

been sent to the client. The network attacker can also fake a lock icon in the stripped

http page, by replacing the favicon by a lock icon [154]. If the https prefix is not

available to a user persistently, he may not be able to recognize that he is using an

unsecured connection by noticing the change from https to http in the address bar.

A browser not displaying the https prefix persistently does not follow requirement

3c in Section 4.2.

Cipher downgrade attack: A man-in-the-middle (network attacker) can tamper

with the initial messages sent by a client browser to establish an SSL connection with

a website server. Before a TLS connection is set up, a client and server exchange a

list of ciphers that they support. A network attacker can modify the list of supported

ciphers sent by the client to a list containing only weak ciphers, and then forward the

client’s request/response to the server. On receiving a list of only weak ciphers (e.g.,

DES-CBC-SHA), the server can either drop the connection because no ciphers are

mutually supported, or provide support for that cipher and begin an encrypted session

with the weak cipher. When a connection using the weak cipher is initiated, all the

data in transit is protected using the weak cipher’s encryption scheme. This allows a

network attacker to capture the stream of data and break the weak encryption offline.

The attack is also useful to mislead even an expert user that their transactions are
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over a connection with strong encryption algorithms, since the SSL indicators such

as https URL prefix and lock icon are present even for a connection using a weak

cipher. If a browser does not display cipher information, it fails to meet the W3C

requirement 3c in Section 4.2.

Mixed content attack: A man-in-the-middle attacker can tamper (e.g., code injec-

tion) with the unencrypted content present on a webpage consisting of mixed content

and replace the original content with any malicious content of his choice. If a web

browser displays SSL indicators for a webpage containing mixed content (violation of

guideline 3a), even an expert user may be unable to detect a network attack exploiting

the mixed content on a webpage.

Our experimental results combined with this threat model make the candidate mo-

bile and tablet browsers susceptible to phishing and eavesdropping attacks as shown

in Table 15.

4.5 Additional results

We discuss our findings that are not directly related to the guidelines studied in

Section 4.3. We note our observations on the positive and negative characteristics

shown by the mobile and tablet browsers. We also discuss an important security

scenario that is not represented in the W3C guidelines and argue that it requires

attention. Table 16 provides a summary of the results covered in this section.

4.5.1 The Good

The W3C document defines two guidelines that MUST hold when strong TLS algo-

rithms are negotiated between a client and a server:

1. No version of the TLS protocol that suffers known security flaws has been

negotiated. At the point of writing of this document, versions of SSL prior to

SSLv3 MUST NOT be considered strong.
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Table 16: Results of the support for SSLv2, the null cipher, DES-CBC-SHA (weak
cipher) and whether browsers differentiate between EV-SSL and SSL certified web-
pages. The symbol notation is as defined in Table 7.

Mobile and Tablet SSLv2 Null cipher Weak cipher EV-SSL vs SSL
Browsers supported? supported? prohibited? differentiation?

(See Table 6 for versions) (DES-CBC-SHA)
Android · · × ×

Blackberry Mango · · × ×
Blackberry Webkit · · × ×

Chrome Beta · · · ×
Firefox Mobile · · · · (site identity

button coloring)
iPhone Safari · · × · (title

URL coloring)
Nokia Browser · · × ×
Opera Mini · · · ×
Opera Mobile · · · ×

Windows IE Mobile · · · ×
Safari on iPad 2 · · × · (title

URL coloring)
Android on Galaxy · · · ×

2. A cipher suite has been selected for which key and algorithm strengths corre-

spond to industry practice. The “export” cipher suites explicitly prohibited in

appendix A.5 of TLSv11 [26] (RFC 4346) MUST NOT be considered strong.

To verify the compliance with these guidelines we conducted two experiments.

SSLv2: We browsed to a website supporting only SSLv2 from each of the candidate

browsers. We found that all the mobile, tablet and desktop browsers comply with

the first guideline and do not support SSLv2.

Null cipher: The null cipher is one of the prohibited ciphers in RFC 4346 and

one of the most dangerous ciphers because it represents the lack of an encrypted

communication channel. To test browser compliance with the second guideline for

strong TLS algorithms, we built a website that supports only the null cipher. We
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observed that none of the mobile, tablet or desktop candidate browsers support the

null cipher.2

Discontinuing support for SSLv2 and the null cipher automatically reduces the

probability of cipher downgrade attacks on the candidate browsers.

4.5.2 The Bad

A browser supporting a weak cipher can enable a network attacker to break the

encrypted messages offline. The SSLv3 cipher-suite consists of certain weak ciphers,

although they are stronger than the SSLv2 ciphers and the null cipher. We verified the

support of the DES-CBC-SHA weak cipher. We observed that six (Android Mobile,

Blackberry Mango and Webkit, iPhone and iPad2 Safari and Nokia Browser) out of

the eleven mobile and tablet browsers support the weak cipher. The other mobile and

tablet browsers display error messages conveying the absence of a common encryption

protocol with the server. It is interesting to note that the the Safari browser in its

mobile, tablet and even desktop versions supports this weak cipher. However, the

Android tablet browser does not support this cipher, unlike its mobile version. Since

most mobile and tablet browsers do not allow users to see the cipher used on a TLS

connection, they can not determine that a weak cipher is being used. No desktop

browser other than Safari support this cipher.

4.5.3 The Silent

The W3C document does not establish guidelines for the browser user interface to

signify the difference between EV-SSL [34,192] and SSL certificates. The sole distinc-

tion between an SSL and an EV-SSL certificate from a user’s perspective is the set

of indicators on his browser. For example, the Firefox desktop browser uses a green

site identity button to convey the presence of an EV-SSL certificate on a website.

2We did not test for the support to all the prohibited ciphers (as given in TLSv11 [26]) by the
candidate browsers.
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However, the site identity button is blue in the same browser when a website with an

SSL certificate is rendered.

SSL certificates can be ‘domain-validation-only’ with minimal verification per-

formed on the details of the certificate. Since any successful SSL connection causes

the padlock icon to appear, users are not likely to be aware of whether the website

owner has been validated or not. Therefore, fraudulent websites have started using

inexpensive domain-validated SSL certificates with minimal verification to gain user

trust. EV-SSL certificates were created to restore confidence among users that a

particular website has been subjected to more rigorous vetting and has a verifiable

identity. If browsers do not differentiate between SSL and EV-SSL certificates, then

the fundamental motivation [34] behind EV-SSL certificates becomes void, so too

does the incentive for site owners to pay extra for such certificates. An SSL certifi-

cate from Go Daddy costs $12.99/year [9] and an EV-SSL certificate from VeriSign

costs $1499/year [22]. In a browser with no differentiation between SSL and EV-SSL,

both these certificates are the same from a user’s perspective. An adversary holding

a domain name and willing to spend money for the SSL certificate would then trigger

exactly the same user interface elements to users, and thus appear to provide identical

guarantees as a website certified by the more expensive certificate.

Experimental observations: We browsed both EV-SSL and SSL certified webpages

using all the candidate browsers. With the exceptions of the Firefox Mobile and the

iPhone and iPad Safari browsers, none of the mobile or tablet browsers display any

indicators that differentiate between EV-SSL and SSL certified webpages. The Firefox

Mobile browser uses green and blue colors of the site identity button to depict the

presence of EV-SSL and SSL certified webpages respectively. The Safari mobile and

tablet browsers use green and blue coloring of the ‘title’ to represent the difference

between EV-SSL and SSL. This behavior of the Firefox Mobile and the Safari browsers
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is consistent with their desktop counterparts. However, the IE Mobile, and the Opera

Mini and Mobile browsers are not consistent with the methods used on their desktop

counterparts to portray the different between EV-SSL and SSL webpages.

Gauging the security level of a website using the different EV-SSL and SSL indi-

cators can be complicated for an average user. The inconsistency across the mobile

and desktop browsers from the same vendor adds to an already confusing task. We

believe that a clear guideline on the indicators for differentiating between EV-SSL and

SSL certified webpages is necessary to help browser vendors provide the expected in-

terface consistently in the desktop and mobile environments. Moreover, we suggest

that a guideline from a well established international standards organization such as

the W3C is a minimal starting point in order to achieve consistency across browser

software from different vendors.

We note the following advice within official guidelines from the CA/Browser Fo-

rum [29]: In cases where the relying application accepts both EV and non-EV certifi-

cates, it is recommended that the application’s behavior differ in a distinct way for each

type of certificate. Application developers should consider the EV treatment offered by

other application developers that also recognize EV certificates and, where practical,

provide consistent treatment. We believe that much more specific advice is essential,

for example, in a revision or extension of the W3C user interface guidelines [35].

4.6 Discussion and Concluding Remarks
4.6.1 Discussion

For this study, we selected a subset of the absolute requirements and prohibitions

from the W3C guidelines. From our experimental analysis, we observed that popular

mobile and tablet browsers fail to meet many of the guidelines. However, by and

large popular desktop browsers follow the set of guidelines studied in this chapter.

Furthermore, the inconsistencies that we observed herein are cause for significant
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concern, as consistency of user interfaces is recognized as a fundamental usability

attribute [132], conveying many user benefits including enhancing users’ ability to

transfer skills across similar systems, and reducing training time on new and related

systems. Moreover, related to security, inconsistency confuses users, and confusion

aids the attacker. Our results raise an important question: is it appropriate to apply

the same user interface guidelines for web security to both the desktop and the mobile

environments?

We believe that the non-conformance to the W3C guidelines and the inconsisten-

cies in the use and presentation of SSL indicators in mobile browsers is primarily due

to the adjustments made in the browser interface as a result of the tension between

usability and security, and possibly due to dis-connects between mobile and desktop

development teams. For example, the address bar consisting of the padlock icon and

the https URL prefix indicators is persistently available in desktop browsers, however

is hidden (apparently to better accommodate content on small mobile screens) for the

majority of the time during user interaction. It is cumbersome for a user to bring the

address bar in view (to observe indicators) by scrolling to the top of the mobile screen,

suggesting this will be done far less frequently, whereas viewing the indicators on a

desktop browser requires little or no extra effort. This ease of interaction with desk-

top browsers also makes consuming certificate information simpler for a user. Again

in contrast, current design decisions related to mobile screen real estate force users to

execute scrolling operations to view all the content of a certificate, implying greater

inconvenience and effort compared to consuming certificate information on desktop

browsers; in other cases, mobile browser vendors have decided to make certificate in-

formation entirely unavailable. Such significant design changes preclude even expert

users from discerning clues about the credibility and security of websites, due to the

absence of security indicators, leaving average users with no hope at all. These secu-

rity concerns, the very significant non-conformance with existing recommendations,
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and tremendous inconsistency both within and across browser vendors, lead us to

call for the establishment of new recommendations for the mobile environment that

specifically take into account its limitations and additional challenges.

4.6.2 Conclusion

Modern mobile browsers enable a range of sensitive operations over SSL/TLS connec-

tions. Although these browsers aim for equivalent functionality to traditional desk-

tops, their smaller screen size has resulted in significant changes to the presentation

and availability of SSL indicators. We have carried out the first evaluation of security

indicators in mobile browsers, using the W3C web interface guidelines to measure

compliance in ten mobile and two tablet browsers. We observed that mobile browsers

fail to meet many of the security guidelines and exhibit tremendous inconsistency in

the presentation and availability of SSL indicators in contrast to traditional desktop

browsers. Such significant design changes preclude even expert users from discerning

clues about the credibility and security of websites, raising significant concerns about

the security of average users. Additionally, we observed that the absence of clear and

consistent EV-SSL indications leads to EV-SSL certificates currently adding complex-

ity to the mobile ecosystem without any corresponding benefits. Our work may be

viewed as a call to arms for greater consistency in mobile browser security interfaces

and greater attention to the specific challenges of mobile device issues in security user

interface guidelines. It also raises questions about the utility and usability of security

indicators as presently implemented in mobile browsers and related questions about

the viability of extended validation SSL certificates in light of current mobile browser

user interfaces.
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CHAPTER V

KAYO: DETECTING MOBILE MALICIOUS WEBPAGES

IN REAL-TIME

5.1 Introduction

Mobile devices are increasingly being used to access the web. However, in spite of

significant advances in processor power and bandwidth, the browsing experience on

mobile devices is considerably different. These differences can largely be attributed

to the dramatic reduction of screen size, which impacts the content, functionality and

layout of mobile webpages.

Content, functionality and layout have regularly been used to perform static anal-

ysis to determine maliciousness in the desktop space [84, 147, 176]. Features such as

the frequency of iframes and the number of redirections have previously served as

strong indicators of malicious intent. Due to the significant changes made to accom-

modate mobile devices, such assertions may no longer be true. For example, whereas

such behavior would be flagged as suspicious in the desktop setting, many popular

benign mobile webpages require multiple redirections before users gain access to con-

tent. Previous techniques also fail to consider mobile specific webpage elements such

as calls to mobile APIs. For instance, links that spawn the phone’s dialer (and the

reputation of the number itself) can provide strong evidence of the intent of the page.

New tools are therefore necessary to identify malicious pages in the mobile web.

In this chapter, we present kAYO1, a fast and reliable static analysis technique

to detect malicious mobile webpages. kAYO uses static features of mobile webpages

1Our technique is called “kAYO” (knockout in boxing terminology) because it knocks out mali-
cious mobile webpages.
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derived from their HTML and JavaScript content, URL and advanced mobile specific

capabilities. We first experimentally demonstrate that the distributions of identical

static features when extracted from desktop and mobile webpages vary dramatically.

We then collect over 350,000 mobile benign and malicious webpages over a period of

three months. We then use a binomial classification technique to develop a model

for kAYO to provide 90% accuracy and 89% true positive rate. kAYO’s performance

matches or exceeds that of existing static techniques used in the desktop space. kAYO

also detects a number of malicious mobile webpages not precisely detected by existing

techniques such as VirusTotal and Google Safe Browsing. Finally, we discuss the

limitations of existing tools to detect mobile malicious webpages and build a browser

extension based on kAYO that provides real-time feedback to mobile browser users.

We make the following contributions:

• Experimentally demonstrate the differences in the “security features”

of desktop and mobile webpages: We experimentally demonstrate that the

distributions of static security features used in existing techniques (e.g., the

number of redirections) are different when measured on mobile and desktop

webpages. Moreover, we illustrate that certain static features are inversely

correlated to a webpage being malicious, when extracted from desktop and

mobile pages. The results of our experiments demonstrate the need for mobile

specific techniques for detecting malicious webpages.

• Design and implement a classifier for malicious and benign mobile

webpages: We collect over 350,000 benign and malicious mobile webpages.

We then identify a range of new mobile relevant static features from these web-

pages that distinguish between mobile benign and malicious webpages. kAYO

provides 90% accuracy in classification and shows improvement of two orders of

magnitude in the speed of feature extraction over similar existing techniques.

87



We further empirically demonstrate the significance of kAYO’s features. Finally,

we also identify 173 mobile webpages implementing cross-channel attacks, which

attempt to induce mobile users to call numbers associated with known fraud

campaigns.

• Implement a browser extension based on kAYO: To the best of our

knowledge kAYO is the first technique that detects mobile specific malicious

webpages by static analysis. Existing tools such as Google Safe Browsing are

not enabled on the mobile versions of browsers, thereby precluding mobile users.

Moreover, the mobile specific design of kAYO enables detection of malicious

mobile webpages missed by existing techniques. Finally, our survey of existing

extensions on Firefox desktop browser suggests that there is a paucity of tools

that help users identify mobile malicious webpages. To fill this void and for

immediate use, we build a Firefox mobile browser extension using kAYO, which

informs users about the maliciousness of the webpages they intend to visit in

real-time.

The remainder of the chapter is organized as follows: Section 2 provides an

overview of related research. Section 3 experimentally motivates the need for mobile

specific static techniques. The static feature set used in kAYO followed by the collec-

tion process of the data used in modeling kAYO is described in Section 4. Section 5

provides details about the machine learning techniques used, the implementation and

evaluation of kAYO’s model, the effectiveness of kAYO’s features, and comparison

of kAYO with existing techniques. The browser extension architecture is described

in Section 6. Section 7 presents case studies of malicious mobile webpages detected

by kAYO in the wild and also discusses the limitations of our technique and future

work. Section 8 provides concluding remarks.
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Figure 10: Normalized density curves of static features when measured on mobile and
desktop webpages. There is substantial difference between the distributions of the
number of (a) iframes, (b) Javascript and (c) redirections when measured on mobile
and desktop versions of the same websites, whereas, the distribution of the number
of (d) IP addresses is similar.

5.2 Motivation

Static analysis techniques to detect malicious websites often use features of a webpage

such as HTML, JavaScript and characteristics of the URL. Usually, these features

are fed to machine learning techniques to classify benign and malicious webpages.

These techniques are predicated on the assumption that the features are distributed

differently across benign and malicious webpages. Accordingly, any changes in the

distribution of static features in benign and/or malicious webpages impacts classi-

fication results of static analysis techniques. While successful, these static analysis

techniques have been used exclusively for desktop webpages [84,176,218].
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Mobile websites are significantly different from their desktop counterparts in con-

tent, functionality and layout. Consequently, existing tools using static features to

detect malicious desktop webpages are unlikely to work for mobile webpages. We ex-

plain four factors that motivate building separate static analysis techniques to detect

malicious mobile webpages.

1) Differences in content: Mobile websites are often simpler than their desktop

counterparts. Therefore, the distribution of content-based static features (such as the

number of JavaScripts) on mobile webpages differs from that of desktop webpages. For

example, Figure 10 (a) and Figure 10 (b) show the normalized density of the number

of iframes and the number of Javascript found in mobile2 and the corresponding

desktop versions of the top-level webpage of the 10,000 most popular websites from

Alexa [46]. Approximately 90% of mobile webpages do not have any iframes, whereas

the corresponding desktop webpages have multiple iframes. Desktop webpages have

more Javascripts than mobile webpages.

Due to the simplicity of mobile webpages, the majority of other content related

static features used in existing techniques including, the number of images, page

length, the number of hidden elements, and the number of elements with a small area

also differ in magnitude in mobile and desktop webpages.

2) Infrastructure: Website providers use JavaScript or user agent strings to iden-

tify and then redirect mobile users to a mobile specific version. Figure 10 (c) shows

the normalized density of the number of redirection steps taken by the desktop and

mobile versions of the top 10,000 websites on Alexa before landing on the final URL3.

Even the most popular mobile websites show multiple redirects, which has tradition-

ally been a property of desktop websites hosting malware [176]. However, multiple

redirects does not necessarily indicate bad behavior for mobile websites due to the

2We describe the method used to define and identify mobile webpages in detail in Section 5.3.2.
3We use the term final URL to denote the URL that is rendered in the browser after redirections

(if any) from the seed URL. The final URL may change based on the browser’s user agent.
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characteristics of their hosting infrastructure.

We note that not all static features used in existing techniques differ when mea-

sured on mobile and desktop webpages. For example, the number of IP addresses

returned by DNS servers for mobile and desktop versions of the same sites are com-

parable. Mobile websites appear to share their hosting infrastructure with the cor-

responding desktop websites [146]. We used seven public (Google, OpenDNS, Ul-

traDNS, Norton, DynDNS, Level3, and Scrubit) DNS servers to obtain the IP ad-

dresses returned in the DNS A records of mobile and corresponding desktop URLs of

Alexa top 10,000 websites. As seen in Figure 10 (d), the distributions of the number

of IP addresses returned by the seven DNS servers are similar for mobile and desktop

websites.

3) Impact of screen size: The screen size of a mobile phone is significantly smaller

that that of a desktop computer. Therefore, a mobile user only sees a part of the URL

of a webpage. Intuitively, the author of a mobile phishing webpage may only need to

include misleading words at the beginning of the URL and a short URL might suffice

to trick a user.

4) Mobile specific functionality: Mobile websites enable access to a user’s per-

sonal information and advanced capabilities of mobile devices through web APIs.

Existing static analysis techniques do not consider these mobile specific functional-

ities in their feature set. We argue and later demonstrate that accounting for the

mobile specific functionalities helps identify new threats specific to the mobile web.

For example, the presence of a known ‘bank’ fraud number on a website might indi-

cate that the webpage is a phishing webpage imitating the same bank [64].

Limitations of existing techniques: These discrepancies between mobile and

desktop webpages demand investigation. Existing static analysis techniques and tools

for detecting malicious webpages are focused on desktop webpages. Therefore, they
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are unable to detect mobile specific threats with high accuracy.4 Secondly, several web-

pages built specifically for mobile, return empty pages when rendered in a desktop

browser. Thus, even existing dynamic analysis techniques that execute websites in

desktop browsers on virtual machines, are ineffective on such mobile websites. Fi-

nally, signature based tools such as Google Safe Browsing currently only work with

desktop browsers. We manually visited five mobile specific known malicious webpages

collected from PhishTank [16], from the Google Chrome mobile browser. We observed

that these webpages are flagged as malicious on the Chrome desktop browser, but

not on the Chrome mobile browser whose users are the real targets of the mobile

malicious webpages. Although enabling Google Safe Browsing in mobile Chrome is

an engineering effort, we argue and later demonstrate that a mobile specific static

technique can also detect new threats previously unseen by such services.

Goals: Considering the limitations of existing techniques, the goals of this work are

three-fold. First, identifying relevant static features from mobile specific webpages in

the wild. Second, implementing a fast and reliable static analysis technique to detect

malicious mobile webpages in real-time. And finally, developing a mobile browser

extension that will inspect mobile webpages in real-time and provide feedback to the

user.

5.3 Methodology

Our objective is to design and develop a technique to identify mobile specific mali-

cious webpages in real-time. We extract static features from a webpage and make

predictions about its potential maliciousness. We first discuss the feature set used in

kAYO followed by the collection process of the dataset.

4We demonstrate this experimentally in Section 5.4.
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Table 17: The 44 features of kAYO from four categories. According to our knowledge,
the category of mobile specific features is studied for the first time in this work. The
significance of these features is described in Section 5.4.2.

Category Features Total # of
features

Mobile specific # of API calls to tel:, sms:, smsto:, mms:, 8mmsto:, geolocation; # of apk, # of ipa

JavaScript presence of JS, noscript, internal JS, external JS, embedded JS; 10# of JS, noscript, internal JS, external JS, embedded JS

HTML

presence of internal links, external links, images;

14

# of internal links, external links, images
# of cookies from header, secure and HTTPOnly cookies,

presence of redirections and iframes,
# of redirects and iframes,

whether webpage served over SSL,
% of white spaces in the HTML content

URL

# of misleading words in the URL such as bank,

12

# of forward slashes and question marks, digits,
# of dots, hyphens and underscores,

# of equal signs and ampersand, subdomains,
# of two letter subdomains, semicolons,

presence of subdomain, % of digits in hostname
length of URL

Total: 44

5.3.1 kAYO Feature Set

A webpage has several components including HTML and JavaScript code, image

files, the URL, and header information. Additionally, mobile specific webpages also

access applications running on a user’s device using web APIs (e.g., the dialer). We

extract structural, lexical and quantitative properties of such components to generate

kAYO’s feature set. We focus on extracting mobile relevant features that take minimal

extraction time. Our hypothesis is that such features are strong indicators of whether

a webpage has been built for assisting a user in their web browsing experience or for

malicious purposes.

Our feature set consists of 44 features in total, 11 of which are new and not

previously identified or used. We describe the newly identified features in detail. A

subset of features in kAYO have been used by other authors in static inspection of
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desktop webpages in the past.5 However, it is important to note that these features

when extracted from mobile webpages and desktop webpages differ in magnitude (e.g.,

number of iframes) and show varying correlation with the nature of the webpage (i.e.,

malicious/benign).

We divide kAYO’s 44 features into four classes: mobile specific features, JavaScript

features, HTML features and URL features. To the best of our knowledge, we are

the first to use these mobile specific features. Table 17 summarizes the 8 mobile, 10

JavaScript, 14 HTML and 12 URL features. We empirically illustrate the effectiveness

of each of the features in Section 5.4.2.

5.3.1.1 Mobile specific features

We collect eight mobile specific features to capture the advanced capabilities of mobile

webpages. Mobile websites enable access to personal data from a user’s phone, an

experience not offered by desktop websites. For example, APIs such as tel: and

sms: spawn the dialer and the SMS applications respectively on a mobile device.

In order to characterize the behavior of mobile API calls, we extracted the number

of API calls tel:, sms:, smsto:, mms: and mmsto: from each mobile webpage.

We further extracted the target phone numbers from these API calls. We ran the

commercially available Pindrop Security Phone Reputation System (PRS) [17] on

each phone number. Based on the results of the PRS, we gave the score of 1/0

(known fraud/benign) to each phone number scraped from the mobile API calls, and

added the score as a feature in kAYO. We only extracted phone numbers with API

prefixes that could trigger an application installed on a user’s phone. We did not

consider phone number strings simply listed on webpages without an API prefix.

We argue that due to the popularity of application markets such as Google play

5A subset of kAYO’s features was selected from prior literature on desktop webpage classification
using static features. Only the features deemed to be the most critical and definitively applicable to
mobile webpages as shown by manual analysis, were selected based on the authors’ experience and
knowledge of the area.
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and iTunes, a website hosting its own mobile application binary (e.g., .apk or .ipa

files), might suggest bad behavior. Therefore, we added number of .apk and .ipa files

found on a webpage as a feature. If we found more than a threshold (in the few

hundreds) of apk/ipa files on the same webpage, we assumed that the webpage was

an app store and was unlikely to be malicious.

5.3.1.2 JavaScript features

JavaScript enables client-side user interaction, asynchronous communication with

servers, and modification of the DOM objects of webpages on the fly. We extract

10 features that capture the JavaScript relevant static behavior of a webpage, two

of which are new. All the features are faster to extract than the features based on

JavaScript deobfuscation.

JavaScript found on malicious webpages can be obfuscated. Instead of deobfuscat-

ing every JavaScript, we extract simple JavaScript related features from a webpage.

The primary reason in choosing this approach is that a large number of benign web-

pages include potentially dangerous JavaScript code as shown by Yue et al. [215]. For

example, 44.4% of the top 6,805 websites from Alexa use the potentially dangerous

eval function. These observations invalidate the assumption made in existing tech-

niques [84]; that potentially dangerous JavaScript keywords are more frequently used

in malicious webpages. Secondly, external JavaScript can be very large, sometimes

of the order of a few megabytes. Our goal is to build a real-time browser extension

based on kAYO. Accordingly, we avoided using features that would slow down the

feature extraction process.

We argue that benign webpage writers take efforts in providing good user experi-

ence, whereas, the goal for malicious webpage authors is to trick a user into performing

unintentional action with minimal effort. We therefore determine whether a webpage
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has noscript content and also measure the number of noscript. Intuitively, a be-

nign webpage writer will have more noscript in the code to ensure good experience

even for a security savvy user. We add these two newly identified features to our set.

Webpages generally include three types of JavaScript: internal, external and em-

bedded. An internal JavaScript is one hosted on the same domain as that of its parent

webpage, whereas, an external JavaScript’s domain is different from its host’s domain.

Both internal and external JavaScript are simply links to JavaScript hosted elsewhere.

Since mobile webpages are often simpler than desktop webpages and phishing is the

biggest threat on mobile webpages at present, we expect that benign webpages will

include more external JavaScript for advertisements and analytics purposes, whereas

malicious webpages will have a lower number of external JavaScript. Accordingly,

we determine whether a webpage holds external and internal JavaScript, and then

extract the number of internal and external JavaScript from a webpage. Unlike inter-

nal and external JavaScript, embedded JavaScript code is contained in the webpage.

If the number of lines of JavaScript is relatively small, a webpage with embedded

JavaScript loads faster than pages that must reference external code. This is be-

cause, as the web browser loads the page and encounters the reference to the external

code, it must make a separate request to the web server to fetch the code. Webpages

built for performance often use a number of embedded JavaScript. Performance is

critical in the mobile web since it impacts revenue and user interest [174]. Therefore,

we determine whether a webpage hosts embedded JavaScript and then calculate the

number of embedded JavaScript in a webpage. Our assumption is that on average,

benign webpages will have more embedded JavaScript. Finally, we determine whether

JavaScript is present at all on a webpage, and measure the total number of JavaScript

on the webpage including embedded, internal and external.
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5.3.1.3 HTML features

We extract 14 features in total from the HTML code of each webpage. Popular

webpages include a number of images, and internal and external HTML links for

better user experience. For example, the top-level page of m.cnn.com includes links

to other news articles published by CNN (internal HTML links), advertisements for

a local restaurant (external HTML link) and images related to the latest breaking

news. Accordingly, we first determine whether a webpage has any images, internal

and external HTML links. We then extract the number of internal links, external

links and images from a webpage as features of kAYO.

Malicious webpages (especially those implementing drive-by-downloads and click-

jacking) include links to bad content in iframes [176]. Recall that the distribution of

iframes on mobile webpages is different as compared to that on desktop webpages.

However, we do not rule out the possibility of a mobile malicious webpage including

malicious content in iframes and consider the presence and number of iframes in a

webpage as features in kAYO. Past research also shows that malicious websites take

several redirections before leading the user to the target webpage to avoid DNS based

detection [176]. Recall that mobile webpages generally take at least one or more

redirections since both desktop and mobile versions of the webpage share hosting

infrastructure. Therefore, we determine whether a webpage was redirected and then

measure the number of redirections the user experiences before landing on the final

URL. Finally, we extract other features such as the percentage of white spaces in

the HTML content, the number of cookies from the header, the number of secure

and HTTPOnly cookies, and whether the webpage is served over an SSL connection.

Readers are encouraged to refer to prior literature [84,156,218] for more information

on the usefulness of these HTML features.
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5.3.1.4 URL features

Structural and lexical properties of a URL have been used to differentiate between

malicious and benign webpages. However, using only URL features for such differen-

tiation leads to a high false positive rate. We extract 12 URL features in total.

Authors of phishing webpages often exploit the familiarity of users to a web-

page [97] by including words in the URL that can mislead a user into believing that

the phishing webpage is the legitimate webpage. Words such as login and bank are

commonly used in the URL of the login webpage for benign websites that are highly

prone to imitation. Only a part of the URL is visible to the user of a mobile phone

due to the small screen [58]. Therefore, intuitively, the author of a phishing webpage

will include misleading words at the beginning of the URL. We consider the presence

of such words in the URL as a new feature in kAYO.

A significant number of phishing domain names are simply IP addresses of ma-

chines hosting them [114, 155]. Therefore, we calculated the number of digits in a

URL and the percentage of digits in the hostname. Phishing webpage developers

usually create a number of subdomains to include deceptive keywords such as paypal

as a subdomain. This might increase the length of phishing URLs [155]. Therefore,

we include the length of a URL, whether the URL contains a subdomain, the num-

ber of subdomains, and the number of dots as features. Our URL feature set also

contains the number of semicolons, equal signs and ampersand symbols, hyphens and

underscores, forward slashes and question marks. Interested readers are referred to

prior literature [114,138,153] for details on the importance of these URL features.

Note that the HTML, JavaScript and URL features are not specific to mobile and

can be used for analyzing desktop webpages as well. However, the mobile features

derived from mobile applications such as dialer and SMS do not apply to desktop

webpages.
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Table 18: Indicators of mobile specific webpages extracted by manual analysis of the
top-level mobile and desktop webpages of the 1,000 most popular websites on Alexa.
We identified one top-level domain (TLD), nine subdomains and seven URL path
prefixes.

Mobile Webpage Indicators
Top Level Domain .mobi

Subdomain m., mobile., touch., 3g., sp.,
s., mini., mobileweb., t.

URL Path Prefix /mobile, /mobileweb, /m, /mobi,
/?m=1, /mobil, /m_home

5.3.2 Data Collection

Our data gathering process included accumulating labeled benign and malicious mo-

bile specific webpages. First, we describe an experiment that identifies and defines

‘mobile specific webpages’. We then conduct the data collection process over three

months in 2013.

Identification of mobile specific webpages: We crawled the top-level webpage of

the 1,000 most popular websites from Alexa.com [46] using the Android mobile and

desktop Internet Explorer (IE) browsers. We used Android mobile version 4.0 and

IE desktop version 9.0 for Windows 7. We then manually analyzed each pair of final

URLs for the same seed URL when crawled from each browser. Before classifying

a URL as mobile specific, we confirmed that the final URLs for desktop and mobile

were different for the same seed URL. We also compared the contents of each pair

of desktop and mobile webpages, and ensured that the two contents were different.

We ignored all the seed URLs that led to an identical final URL when crawled from

the desktop and the mobile browser. Our analysis identified nine subdomains (e.g.,

m.) and seven URL path prefixes (e.g., /mobile) in the URLs of popular websites to

represent their mobile specific webpages. Additionally, we considered all URLs with

the ‘.mobi’ Top Level Domain (TLD) to be mobile sites [50]. We defined a mobile
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Figure 11: Number of mobile specific websites found in every 10,000 websites in the
top 1,000,000 URLs on Alexa.

specific webpage as one containing any of these 17 mobile indicators in the URL and

showing differences in content from the corresponding desktop webpage. Table 18

summarizes the mobile indicators.

Building the dataset: To generate training data for our model, we statically

crawled the top-level webpage of the top 1,000,000 most popular websites from Alexa

from an Android mobile browser. We then extracted the mobile specific webpages

using the algorithm described above. Figure 11 shows the number of top-level mobile

specific webpages found in the dataset. 1,244 out of the first 10,000 most popular

websites offer a mobile specific version and 763 maintain mobile specific webpages

in the 10,000-20,000 range. From 20,000 onwards upto one million, the number of

mobile specific webpages found using our algorithm is largely constant. We observed

that 485 out of the top one million Alexa websites have the ‘.mobi’ TLD. Using the

17 mobile indicators defined in Table 18, we collected 53,638 mobile specific URLs

at the top-level by statically crawling each website in Alexa from an Android mo-

bile browser. We then crawled each of the 53,638 mobile specific websites two levels

deep. Interestingly, we found links to several non-mobile URLs on the mobile specific
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webpages. We discarded all non-mobile webpages and were left with 295,512 mobile

specific URLs at depth two. In total, we derived 349,150 mobile specific URLs from

the Alexa one million websites.

Gathering data for malicious mobile URLs was challenging since the mobile web

is still evolving and new threats are emerging. We monitored several public black-

lists [10,11,13] continually for a period of three months and extracted mobile specific

URLs from the blacklists. We set up a continuous feed from two public blacklists

and crawled newly uploaded malicious URLs every two seconds. We also monitored

PhishTank’s [16] valid and online dataset for mobile specific phishing URLs. After

monitoring these sources for three months, we gathered data from 531 top-level and

4,681 depth two mobile specific malicious URLs. Note that our dataset also contains

mobile URLs that were submitted to the blacklists before 2013, but were live at the

time of crawling.

We established ground truth of the labels (malicious/benign) of webpages in our

dataset by using VirusTotal [23] and Google Safe Browsing [43]. The Google Safe

Browsing tool performs both static and dynamic analysis on webpages [176]. It first

discards benign webpages identified using static analysis and then performs dynamic

analysis on the webpages tagged as malicious following static analysis. VirusTotal

queries 41 different malware detection tools based on dynamic analysis, crowd sourc-

ing and signatures. To be conservative, we labeled a URL as malicious only when

Google Safe Browsing tagged a URL as malicious, or four or more tools queried by

VirusTotal labeled the URL as malicious. We also performed manual inspection if

necessary. For example, the URLs from PhishTank are crowdsourced, and Google

Safe Browsing and VirusTotal do not detect all valid URLs from PhishTank as ma-

licious. We manually visited such URLs to ensure that they are phishing webpages.

Our final dataset consisted of 349,137 benign URLs and 5,231 malicious URLs. We

used this dataset to train kAYO’s model.
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5.4 Implementation and Evaluation

We describe the machine learning techniques that we considered to tackle the problem

of classifying mobile specific webpages as malicious or benign. We then discuss the

strengths and weaknesses of each classification technique, and the process for selecting

the best model for kAYO. We build and evaluate our chosen model for accuracy, false

positive rate and true positive rate. Finally, we compare kAYO to similar existing

techniques and empirically demonstrate the significance of kAYO’s features.

5.4.1 Model Selection and Implementation

We treated the problem of detecting malicious webpages as a binary classification

problem. We considered each known benign mobile webpage as a negative sample

and each known malicious mobile webpage as a positive sample. We considered three

popular binary classification techniques in machine learning, Support Vector Machines

(SVM), naïve Bayes and logistic regression.

Support Vector Machines (SVM) is a popular binary classifier. However, it

works well only on a few thousand samples of data. Due to the scaling problem of

SVMs and our large dataset, SVM was not the best choice for kAYO.

Naïve Bayes is generally used when the values of different features are mutually

independent. Many features that we extracted were mutually dependent. For exam-

ple, the number of scripts in a webpage was dependent on the number of internal,

external and embedded JavaScript in the webpage, which were three other features

of our model. Since the assumptions required for optimal performance of naïve Bayes

did not hold for our dataset, we could not use the naïve Bayes classifier.

Logistic Regression is a scalable classification technique and makes no assumption

about the distribution of values of the features. Therefore, this technique was the

best fit for our dataset. We used the binomial variation of logistic regression to model

kAYO and employed `1-regularization to avoid overfitting of the data.
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Figure 12: The final ROC curve for kAYO’s logistic regression model with regular-
ization.

We used the scrapy [19] web scraping framework to crawl the collected mobile

URLs. We then built a parser for extracting features discussed in Section 5.3.1 from

each input webpage dynamically. The crawler and feature extraction scripts were

implemented in Python. We used logistic regression on the extracted features for

training and testing. We programmed the logistic regression model in the numerical

computing language Octave [8]. We tested the model on a machine with quad core

3.4 GHz Intel Core i7 processor and 16 GB memory.

5.4.2 Evaluation

Our dataset contained 349,137 benign URLs and 5,231 malicious URLs. We divided

our dataset into three subsets: training, cross-validation and test. We first randomly

shuffled the data and set aside 10% of the data as the test set. The remaining 90%

of data was used for training and 10-fold cross-validation.

For each validation round we calculated the accuracy, the false positive rate and

the true positive rate on the validation set. We further used `1-regularization to avoid
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overfitting. We varied the regularization parameter from 0 to 1,000 in the intervals of

10 and chose the best parameter. We then plotted a ROC curve by taking the mean

of all false positive rates6 and false negative rates7 output from every cross-validation

step, and found the best threshold for differentiating between malicious and benign

data. Figure 12 shows the final ROC curve.

kAYO provided 91% true positive rate and 7% false positive rate on the cross-

validation set. We used the best parameters obtained from the training and cross-

validation steps to test the 10% labeled dataset set aside. Our test set shows 90%

accuracy, 8% false positive rate and 89% true positive rate. We anticipate that in

reality, the false positive rate on the test set would be lower than what was found

using the labeled samples. This is because kAYO detected a number of malicious

mobile URLs in the wild that we hand verified, and were not detected by tools that

we used for establishing ground truth of our datatset. More details on examples and

in-depth analysis of mobile malicious URLs detected by kAYO in the wild can be

found in Section 6.4.3.

Comparison with existing static techniques:8 We have identified and used 11

new mobile-relevant features previously not studied. We note that none of the ex-

isting techniques account for mobile specific features considered in kAYO. The non-

commercial static analysis technique closest to kAYO is Cantina [218]. It detects

phishing webpages in real-time using static features of webpages. We requested the

authors of Cantina to run our test URL set through their tool for direct comparison

with kAYO. However, the authors informed us that Cantina was not available. There-

fore, we could not compare kAYO’s performance directly with it. We instead compare

6False positive rate is equal to (1 - recall) or (1 - sensitivity).
7False negative rate is also known as precision or specificity.
8To the best of our knowledge, kAYO is the first technique that uses static features of webpages

to detect malicious mobile pages. Therefore, we compare against existing desktop techniques. We
also could not secure access to the code or software of these related desktop techniques from the
respective authors upon request. Thus, our only option was to base kAYO’s comparison on the
results discussed in the related research papers of existing techniques.
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Table 19: Comparison of kAYO with Cantina, a technique using static webpage fea-
tures to detect phishing webpages in real-time. kAYO’s evaluation set size is over two
orders of magnitude larger than that of Cantina. Moreover, kAYO’s feature extrac-
tion process is two orders of magnitude faster than Cantina. Cantina’s functionality
is dependent on external tools unlike kAYO and Cantina works well only on webpages
written in the English language. kAYO does not have these drawbacks.

Factor Cantina [213,218] kAYO

Designed to detect Phishing Mobile web
threats

Detects pages written in English-only Any language
Avg. feature extraction time 2.82 sec 0.016 sec

Evaluation set size 200 34914(# of webpages)
True positive rate 97% 89%
False positive rate 6% 8%

External dependencies Requires Google’s search Noneengine to function
Detects pages missed by No YesGoogle Safe Browsing?

kAYO with the methodology, speed and performance of Cantina given in related re-

search papers [213, 218]. Table 19 summarizes the comparisons. Cantina provides

better true positive rate and comparable false positive rate against kAYO. However,

there are several drawbacks to Cantina. First, Cantina’s functionality depends on

the results of Google’s search engine unlike kAYO. Moreover, Cantina assumes that

every webpage not ranked by Google is malicious. We argue that this is a strong

assumption and might lead to a high false positive rate. Additionally, this methodol-

ogy prevents Cantina from analyzing webpages not visited by Google’s search engine.

kAYO does not depend on any external tools and can detect malicious webpages

missed by Google Safe Browsing. Second, kAYO’s feature extraction process is over

two orders of magnitude faster than Cantina. On an average, kAYO takes 0.016 sec-

onds to extract the features of a webpage and Cantina takes 2.82 seconds. We argue

that this improvement in the speed of analyzing webpages makes kAYO more usable

than Cantina in real-time. Finally, Cantina performs well only on webpages written in
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Table 20: Comparison of kAYO with five existing static analysis techniques that
detect malicious desktop webpages. kAYO provides the lowest false positive rate on
an evaluation set twice as large as the one used by other techniques. kAYO also
considers mobile web threats, whereas, the other techniques are focused on detecting
desktop web threats.

Tech- Designed for Tested False Evalua-
nique Enviro- Threat on Pos tion set

nment rate size

[84] Desktop Drive by Drive by 9.9 15000Downloads download only

[188] Desktop Malicious Drive by 13.7 15000JavaScript download only

[153] Desktop Spam URLs Drive by 14.8 15000download only
Union of Desktop Drive by, Drive by 17.1 15000[153,188] malicious JS, download only
[108,147] spam URLs

kAYO Mobile Existing Existing mobile 8.1 34914mobile web web threats
threats

English due to its heuristic features whereas kAYO can work with webpages written

in any language.

We also compared kAYO’s performance with existing static analysis tools that

detect non-phishing attacks. The closest non-commercial tool to kAYO based on the

diversity of features and the scale of the evaluation set is Prophiler [84]. Prophiler de-

tects drive-by-downloads on desktop webpages. We contacted the authors of Prophiler

and to allow us to run our URL dataset on their tool. However, they too informed us

that their tool was not available. Therefore, we could not perform a direct comparison

of kAYO with Prophiler. We instead compare kAYO’s performance with the perfor-

mance numbers of existing static techniques described by Canali et al. [84]. Canali et

al. performed an analysis of 15,000 webpages consisting of about 5,000 known web-

pages launching drive-by-downloads. The contenders of the comparison were then

existing tools detecting malicious JavaScript [108, 147, 188], drive-by-downloads [84]

and spam URLs [153]. Table 20 and Table 21 show the comparison of performance
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Table 21: Comparison of kAYO with five existing static analysis techniques that
detect malicious desktop webpages. kAYO’s feature extraction process is 10 times
faster than the fastest existing technique [188] and classification time is 100 times
faster than the fastest existing technique [153]. kAYO is the only technique that
considers mobile specific features of webpages.

Technique
Time in sec Considers

Feature Classi- mobile
extraction fication webpages?

[84] 3.06 0.24 7

[188] 0.15 0.034 7

[153] 3.56 0.020 7

Union of N/A N/A 7[108,147,153,188]
kAYO 0.016 0.0002 3

of kAYO with each of these techniques. kAYO provides the lowest false positive rate

over an evaluation set twice as large as the one used by other techniques as shown

in Table 20. Moreover, kAYO’s feature extraction process is 10 times faster than the

fastest existing technique [188] and classification process is 100 times faster than the

fastest existing technique [153]. Finally, all the existing techniques are focused on

desktop threats, whereas, kAYO focuses on mobile specific threats. Accordingly, had

we been able to run these tools over our dataset, they would have performed more

poorly.

Need for mobile specific techniques: Because neither Cantina nor Prophiler were

made available to us, we performed an experiment to demonstrate the need for new

mobile specific models. Intuitively, due to the disparity in the same static features

when measured on mobile and desktop webpages (as discussed in Section 5.2), and

the emergence of new mobile specific features, a model trained on desktop webpages

will not generate precise results for mobile webpages. Note that we are not making

claims about the exact performance of each system against our dataset; rather, we

are attempting to demonstrate (in the absence of either being made available and in

good faith) that previously published techniques not considering the changes and new
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Figure 13: Ex1: Results of a model trained on desktop webpages using desktop
features studied in earlier techniques and then tested on mobile webpages. Ex2:
Results of a model trained on mobile webpages by adding mobile specific features
to the feature set and tested on mobile webpages. Ex1 shows that a model trained
on desktop pages using static features from earlier desktop-specific techniques, when
applied to mobile webpages performs poorly. However, when a model is trained with
the same static features and additional mobile specific features exclusively on a mobile
datatset, the results of testing on a mobile dataset improve significantly as seen in
Ex2.

features identified in this work perform significantly worse than our own when ana-

lyzing malicious mobile webpages. A more exact comparison would only be available

if the authors of these systems make them available.

For this experiment, we created a training dataset of desktop webpages and a test

datatset of mobile webpages. We statically crawled Alexa top 10,000 webpages to the

second level using the desktop Internet Explorer browser version 9.0 for Windows 7.

We obtained the desktop malicious webpages by monitoring public blacklists [10, 11,

13] and crawling live URLs to level two. We verified ground truth of these URLs using

Google Safe Browsing and VirusTotal. We randomly shuffled the collected webpages

and chose 10,000 webpages while keeping the proportion of benign and malicious

webpages in the dataset equivalent to the mobile dataset described in Section 5.3.2.

We then created a test dataset of 1000 mobile benign and malicious webpages by
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randomly selecting URLs from the larger dataset described in Section 5.3.2.

We extracted 33 out of the 44 static features in kAYO from each webpage in the

desktop and mobile datasets. We disregarded the 11 new mobile features used in

kAYO and instead focused our analysis on the 33 features previously used in similar

desktop static techniques. We note that the goal of this experiment is not to extract

all desktop relevant features used earlier, but demonstrate that a model trained on

features extracted from desktop webpages does not perform well when applied to

mobile webpages. We believe that these 33 features accurately represent the static

features used in earlier techniques to detect malicious desktop webpages [84,108,114,

147,153,188,213,218].

We used logistic regression with regularization to train a model on the desktop

webpage dataset and tested the model on the mobile dataset. Figure 13 shows the

results of our experiments. Ex1 shows that using 33 features, we achieved 77% accu-

racy in training on desktop webpages. However, when the parameters obtained from

this model were applied to the mobile dataset, the accuracy reduced significantly to

40%. The difference between the accuracy of the training and testing dataset is the

important comparison metric in this experiment as it demonstrates the inability of

previous desktop-only models to accurately characterize mobile webpages. Ex2 simply

shows kAYO’s results (discussed in Section 5.4.2) of training and testing on mobile

webpages considering mobile specific features. Both training (91%) and testing (90%)

dataset accuracies improve notably. More importantly, the accuracies of the training

and testing datasets in Ex2 are comparable unlike those in Ex1. These results further

corroborate our intuition that mobile specific static techniques are necessary.

Proprietary techniques: We note that the static analysis component of Google’s

Safe Browsing tool is proprietary and no information can be retrieved about its per-

formance. Moreover, Google Safe Browsing is not enabled on mobile browsers at

present. Therefore, even if Google’s tool identifies a mobile webpage as bad, Chrome
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Figure 14: The Pearson Coefficient Correlation (PCC) of each of the features ex-
tracted in kAYO with the label (malicious/benign), found using our evaluation
dataset. Each point corresponds to the correlation of a feature with the label. In
total there are 44 points corresponding to the 44 features of kAYO, including the
newly identified features and the ones adopted from existing techniques. The Y value
of each point depicts the predictive power of the corresponding feature i.e. PCC. The
greater the absolute value of the PCC of a feature, the better predictive power of the
feature. Note that all the PCC values are non-zero implying that every feature in
kAYO’s feature set is significant and impacts the result of classification.

and Firefox mobile browser users do not benefit from this information unlike the

desktop users of these browsers. Even though enabling Safe Browsing on mobile is

an engineering effort, we later demonstrate the importance of employing a mobile

specific technique such as kAYO.

Significance of kAYO’s feature set: It is important to observe that kAYO’s

feature set has been carefully created to ensure relevance to mobile webpages and

negligible extraction time. We experimentally demonstrate the significance of kAYO’s

features using the Pearson product-moment Correlation Coefficient (PCC). PCC is

a measure of the linear dependence between two variables giving a value between

+1 and −1 inclusive [180]. In other words, PCC provides information about the

predictive power of a feature over the classification result. The larger the absolute

value of the PCC of a feature, the more its predictive power. For example, a feature
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Figure 15: Architecture of the mobile browser extension based on kAYO. User enters
the URL he wants to visit in the extension toolbar and receives a response in real-time
from our backend server about the maliciousness of the URL. If the URL is benign
according to kAYO, the page of interest is rendered in the browser. Otherwise, the
user is shown a warning message to not visit the URL.

with PCC -0.6 is a better predictor of whether a webpage is malicious than a feature

with PCC 0.21. It is important to note that identifying features with very high PCC

values is extremely difficult given the hundreds of different components of webpages

and the diversity of possible threats.

We find the PCC between each feature in kAYO’s feature set and the label (be-

nign/malicious), from the test set used for evaluation. Intuitively, if kAYO’s features

are significant, then the absolute value of the PCC of each feature with the label

must be non-zero. Figure 14 shows the plot of the PCC of each of the 44 features of

kAYO with the label. The circles show the PCC of the newly identified features of

kAYO and the Xs depict the PCC of features adopted from earlier works. As seen in

the Figure, all the PCC values are non-zero, implying that every feature in kAYO is

significant.

Comparison with existing browser tools: Browser extensions and plugins help

protect users from visiting malicious websites. The most prevalent threat on the mo-

bile web at present is phishing. Therefore, we surveyed the most popular anti-phishing

Firefox desktop extensions for comparison with kAYO. These 33 extensions were se-

lected by searching for the keyword ‘phishing’ on the Firefox extension store. Most
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of the extensions were certificate verifiers, password protectors or file protectors. We

did not find any extensions performing content-based static analysis. We disregarded

extensions that were built only for one specific website (e.g., FB Phishing Protector

and LibertyGuard) or were no longer supported (e.g. Nophish). We then chose the

top five extensions (Anti Phishing 1.0, DontPhishMe, Netcraft Toolbar, PhishTank

SiteChecker and Phish Tester) based on the number of users for further analysis. We

randomly selected a set of 10 known malicious URLs from our dataset and queried

each tool with the URLs. PhishTank SiteChecker simply queried PhishTank and re-

turned the result, detecting three of the 10 URLs. Netcraft detected three out of the

10 URLs as well, two of which were also detected by Phish Advisor. Anti Phishing

1.0 detected one URL. Phish Tester and DontPhishMe did not generate any results.

We also tested the freely available trial version of the Lookout safe browsing

tool [12]. Lookout is one of the most popular security applications available for

mobile devices. This tool protects users of the Android mobile and the Chrome mobile

browsers from phishing scams and malicious links on the mobile web. We browsed the

same 10 known malicious URLs from both the Android mobile and Chrome mobile

browser on a device running the Android 4.0 operating system. We were presented

with alerts for only two out of the 10 URLs by Lookout, while kAYO detected eight

out of the 10 webpages.

Given the paucity of a working extension to detect different threats on mobile web-

pages, and the unavailability of signature-based tools such as Google Safe Browsing

for mobile browsers, we developed a mobile browser extension using kAYO.

5.5 Browser Extension

Building a browser extension based on kAYO adds value for two reasons. First, the

mobile specific design of kAYO enables detection of new threats previously unseen

by existing services (e.g., pages including spam phone numbers). Second, building an
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extension allows immediate use of our technique. We discuss other potential avenues

of adopting kAYO in Section 5.6.3.

We developed a browser extension using kAYO for Firefox Mobile9, which informs

users about the maliciousness of the webpages they intend to visit. Our goal was to

build an extension that runs in real-time. Therefore, instead of running the feature

extraction process in a mobile browser, we outsourced the processing intensive func-

tions to a backend server. Figure 15 shows the architecture of the extension. User

enters the URL he wants to visit in the extension toolbar. The extension then opens

a socket and sends the URL and user agent information to kAYO’s backend server

over HTTPS. The server crawls the mobile URL and extracts static features from

the webpage. This feature set is input to kAYO’s trained model, which classifies the

webpage as malicious or benign. The output is then sent back to the user’s browser

in real-time. If the URL is benign according to kAYO, the extension renders the

intended webpage in the browser automatically. Otherwise, a warning message is

shown to the user recommending them not to visit the URL.

Users of the extension will browse both mobile specific and desktop webpages since

not all websites offer a mobile specific version. Recall that being a mobile specific

technique, kAYO does not perform well on desktop webpages. Consequently, pro-

cessing all pages of interest through kAYO might output incorrect results for desktop

webpages. To address this problem, the backend server first detects whether the in-

tended webpage is mobile specific using the same method explained in Section 5.3.2.

The webpage is processed by kAYO only if it is mobile. The desktop webpages are

analyzed using Google Safe Browsing. Note that any other existing technique for

detecting desktop malicious webpages can be used instead of Google Safe Browsing.

We performed manual analysis of 100 randomly selected URLs (90 benign and 10

9Firefox Mobile is one of the very few mainstream mobile browsers that support browser exten-
sions. Similar extensions can easily be developed on other mobile browsers once supported.
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malicious) from our test dataset and measured the performance of kAYO in real-time.

On an average, an output was received in approximately one second from the time

the user entered a URL in kAYO’s toolbar. We argue that the good performance is

due to careful selection of quickly extractable features and lower complexity of mobile

webpages as compared to desktop webpages. The maximum delay in result generation

was seen in scraping the input webpage from its respective server. Caching already

scraped webpages with an acceptable expiration time can further reduce this delay.

Figure 16 shows a screen shot of our browser extension at work. We plan to make

the extension available publicly post publication.

5.6 Discussion

kAYO detected a number of malicious webpages in the wild that were not found by

existing techniques. We investigate these webpages in detail and then describe the

limitations and future work of kAYO.

5.6.1 Investigating False Positives

We used Google Safe Browsing and VirusTotal for establishing ground truth of our

dataset for training and evaluating kAYO. However, such dynamic analysis techniques

execute webpages on desktop browsers running on virtual machines and miss mobile

specific threats. To validate our intuition, we performed manual analysis on webpages

that were identified as malicious by kAYO, but were tagged as benign by Google Safe

Browsing and VirusTotal. Performing manual in-depth analysis for all webpages

classified as malicious by kAYO was not feasible. Therefore, we chose a random

subset of 100 URLs from the false positives obtained by running kAYO on the test

dataset in Section 5.4.2.

We verified each of the 100 URLs by visiting them manually from an Android

mobile browser version 4.0. We found 10 URLs to be suspicious. These 10 URLs

contained survey pages to win iPads or Visa gift cards, uncommon online electronic
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equipment stores and stores selling health-related products. Most URLs did not have

a Google page rank. One particular webpage prompted a user to download a binary

file masquerading as a flash update. We downloaded and found the binary file to be

malicious by querying VirusTotal. Another webpage had a known bank fraud phone

number prefixed with the tel: API. Two out of the 10 suspicious URLs were also

marked as suspicious by the Lookout safe browsing tool. We have reported these 10

webpages to PhishTank. Five out of the 10 URLs that we submitted have already

been validated by PhishTank and marked as malicious. All 10 URLs went offline

within one week of submission. This further strengthens our intuition since phishing

URLs are usually short lived [127, 158]. We note that PhishTank might not validate

some of the URLs we submitted. This is because, PhishTank’s validation process is

based on crowdsourcing and threats such as known bank fraud numbers on a website

might not be detected without the availability of tools such as Pindrop PRS [17].

5.6.2 Cross-channel threats

We found 173 unique mobile webpages in our dataset (including training and testing)

that hosted API prefixed known fraudulent phone numbers and were all tagged as

benign by Google Safe Browsing and VirusTotal. These numbers are associated with

a number of known financial fraud campaigns (against a number of different major

US-based institutions) according to our queries to the Pindrop Security PRS [17].

These results show that adversaries have begun to exploit such cross-channels (e.g.,

create a phishing webpage and include a fraud phone number) to attack mobile users.

Moreover, these experiments suggest that the false positive rate of kAYO might be

lower in reality, given that mechanisms fail to classify such pages as malicious. We

intend to conduct a further analysis of such attacks in our future work.
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5.6.3 Limitations and Future Work

The expected concerns of kAYO are similar to those of existing malicious website

detection tools using static analysis. Evasion by mimicking the features we consider

to be good indicators of a legitimate webpage can be used to defeat kAYO. However,

our comprehensive set of features makes it harder to evade kAYO, as seen from our

evaluation over a large dataset.

We statically crawled the top million websites of Alexa. Therefore, we did not

collect webpages that use JavaScript to detect and redirect to the mobile webpage. We

have also missed the mobile webpages represented by ways other than the ones used

by the top 1,000 websites. We do not make any claims about gathering all mobile

webpages from Alexa top one million. However, given the large set of webpages

collected, we believe that our dataset is a representative cross section. Finally, the

focus of this work was on mobile webpages designed for phones. We defer the analysis

of webpages built for tablets to future work.

kAYO’s features reflect current trends in mobile malicious webpages. The poten-

tial of bad activity in the mobile web could increase yet further over time. kAYO’s

feature set and model will need to be updated, according to the new threats faced

by the mobile web in the future. However, such updates are necessary in all static

techniques that aim to detect new threats.

In-depth dynamic analysis of webpages always provides more accurate results as

compared to static analysis techniques. According to our knowledge, there exist no

techniques for in-depth analysis of mobile webpages. However, the availability of

such tools will enable detection of threats such as malicious mobile binaries hosted on

websites. If mobile specific dynamic analysis techniques are developed, then kAYO

can be used as a pre-filter to reduce the number of webpages submitted for in-depth

analysis. Finally, kAYO can be integrated in existing tools such as Google Safe

Browsing.
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Using signature based blacklist approaches such as Google Safe Browsing might

improve the performance of kAYO’s browser extension. A blacklist can be synchro-

nized with kAYO’s extension server and enforced locally. Although such techniques

might reduce the average delay in page rendering, they will also preclude from pro-

tection against webpages that change dynamically defeating kAYO’s goal of real-time

evaluation. We plan to investigate performance enhancing designs that preserve real-

time evaluation in future work.

5.7 Conclusion

Mobile webpages are significantly different than their desktop counterparts in con-

tent, functionality and layout. Therefore, existing techniques using static features

of desktop webpages to detect malicious behavior do not work well for mobile spe-

cific pages. We designed and developed a fast and reliable static analysis technique

called kAYO that detects mobile malicious webpages. kAYO makes these detections

by measuring 44 mobile relevant features from webpages, out of which 11 are newly

identified mobile specific features. kAYO provides 90% accuracy in classification, and

detects a number of malicious mobile webpages in the wild that are not detected by

existing techniques such as Google Safe Browsing and VirusTotal. Finally, we build

a browser extension using kAYO that provides real-time feedback to users. We con-

clude that kAYO detects new mobile specific threats such as websites hosting known

fraud numbers and takes the first step towards identifying new security challenges in

the modern mobile web.
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CHAPTER VI

FUTURE WORK

This thesis has identified and provided solutions for a number of security issues in

modern mobile browsers and webpages. This chapter discusses other open problems

in the area of mobile web security. First, we discuss direct extensions of the work

presented in this thesis. We then delve deeper into the changing paradigm of mobile

applications and propose a permission system for modern mobile web applications.

6.1 Advancing Dialogue on Mobile Browser Security

The work in this thesis demonstrates that mobile browsers have taken steps back in

terms of security as compared to desktop browsers. Chapter 4 experimentally illus-

trated that by and large, desktop browsers adhere to security standards set forth by

organizations such as the W3C. However, due to the unavailability of security guide-

lines specific to mobile browsers, mobile browser vendors have implemented inconsis-

tent and incomplete sets of SSL indicators available on their desktop counterparts.

This allows newer versions of mobile browsers to introduce previously non-existent

security issues. For example, the content-indicator proximity guideline (3b from Sec-

tion 4.2.2 in Chapter 4) was correctly followed by Firefox Mobile version 4 Beta 3.

However, the latest version of Firefox Mobile (as of June 2013) violates this guideline

by placing the padlock icon adjacent to the favicon of a webpage. We strongly believe

that such oversights can be avoided by defining and standardizing security guidelines

separately for mobile browsers. We plan to advance this dialogue with browser ven-

dors and standardizing institutions such as the W3C to bring strict guidelines for

browsers on mobile platforms.
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6.2 Tools for Malicious Mobile Webpage Detection

kAYO, the tool presented in Chapter 5 was designed to target existing threats on

mobile webpages. The biggest threat on mobile at present is phishing. However, the

mobile threat landscape can change in the future. Our tool did not consider threats

originating from obfuscated JavaScript since such threats are not yet prevalent in the

mobile space. Introducing static features extracted from deobfuscated JavaScript may

enable detecting mobile webpages injecting malicious JavaScript. However, introduc-

tion of such features will increase extraction time and must be balanced with goals

of real-time analysis. Chapter 5 also provided examples of detecting cross-channel

threats (e.g., create a phishing webpage and include a fraud phone number) present

on the mobile web by querying commercial phone reputation systems. We believe that

the mobile specific features related to fraudulent phone numbers are strong. How-

ever, the ability of attackers to acquire and advertise new fraudulent phone numbers

frequently, opens interesting performance problems for extending kAYO to develop

production quality tools. Finally, dynamic analysis techniques will be required to

detect webpages hosting malicious mobile binaries or launching drive by download

attacks. A combination of static and dynamic tools will present stronger defenses

against malicious mobile webpages.

6.3 Hybrid Mobile Applications

The design, structure and languages used to build native apps are usually more com-

plex as compared to web apps. Furthermore, native apps need to be built and modified

for each targeted mobile platform. Although mobile web apps provide cross-platform

functionality and are less complex than individual native apps, web apps do not yet

provide the same device functionality as that of native apps. Therefore, developers

often choose the path of hybrid apps. Hybrid apps, similar to native apps, run on

the device, and are written with web technologies (HTML5, CSS and JavaScript).
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Hybrid apps run inside a native container, and leverage the device’s browser engine

(not the real browser) to render the HTML and process the JavaScript locally. A web

view control is used (e.g. UIWebView on iOS and WebView on Android) to present

the HTML and JavaScript files in a full-screen format [99]. A web-to-native abstrac-

tion layer allows hybrid apps access to device capabilities (such as the accelerometer,

camera and local storage) that are not yet fully accessible in mobile web apps due to

the security boundary between the browser and the device APIs.

The dependance of hybrid apps on rendering engines used in existing mobile

browsers makes the display security research presented in this thesis applicable to

hybrid apps. Furthermore, hybrid apps currently do not provide ways of including

user interfaces to show SSL/TLS indicators. This design amplifies the phishing and

man-in-the-middle security problems discussed in Chapter 4.

Other future research problems include building privacy preserving contextual

permission systems for hybrid applications. Existing efforts in this area [190] take the

first step by building a manifest-based permission system that controls application

behavior using information flow control. Developer learning curve and user incentive

of understanding and defining a complex set of rich policies are some of the limitations

of existing works. We plan to delve deeper into this area. In particular, we plan to

investigate challenges in building unified permission systems that can be deployed for

web, native and hybrid apps on mobile platforms.

6.4 Unified Permission Systems for Mobile Web Apps

The family of HTML5 technologies is set to dramatically change the way in which

applications are designed for mobile devices. In particular, HTML5 provides direct

support for features including audio, video and geolocation information. While access

to these features has become a mainstay of “native” mobile apps, their inclusion in

this standard makes it possible for mobile web apps to provide many of the features
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currently implemented by their native counterparts. Direct support for these features

within mobile browsers will be transformative - whereas app makers have traditionally

had to invest significant effort to develop software across multiple platforms, HTML5

will allow developers to rely on the mobile browser to deliver a single codebase and a

unified user experience.

Mobile web browsers provide web apps with access to features including cookies,

Javascript, native code and Flash by default. This may lead to granting more than

necessary privileges to certain web apps. For example, a file-sharing app has access

to Flash by default but may not need it for proper functioning. Access to the default

browser features, potentially sensitive hardware (e.g., camera, microphone) and data

(e.g., GPS location, contact information) require protection when provided to web

apps. While support for HTML5 features is currently limited in mobile web apps,

desktop browsers providing such features typically prompt users on a per-use, per-

site basis. Mobile browsers too have adopted the same per-use, per-site permission

model and thus, suffer from several weaknesses. The current permission model for

mobile web apps does not provide a holistic view into the permissions required by

an app. Providing a single interface containing every permission that may be used

by an app allows both users and security experts a better opportunity to assess the

potential for malicious behavior by the app. As an example, the Android manifest

file and install-time warnings have successfully served as the basis of a wide-range

of malware-detection tools [86, 89, 107, 109, 111, 219, 220]. However, we note that

simply extracting the underlying platform’s (such as Android) model and mapping

web apps’ requests directly to the platform APIs [189] is not the best matching since

the structure of mobile web apps and native apps is different. We discuss several

differences in the factors contributing to the security of native apps and web apps.

We then argue that there is a need to define permissions for web apps separately

while maintaining as much overlap with native app permissions as possible for user
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learnability and reducing developer efforts. Finally, we argue that the dynamic nature

of mobile web apps necessitates a one-stop, easy-to-use permission model that can

allow users to access, modify or change the permissions granted to individual web

apps.

In this work, we present a proof of concept mechanism that addresses some of

these weaknesses and allows a subset of the Android application security model to

be easily expressed by remotely stored mobile web apps. Our goal is to provide ex-

pert users with a single interface that allows them to reason about the permissions

requested by mobile web apps similar to native apps. We start with a clean slate with

no permissions given to a web app by default. We argue that developers should be

required to declare permissions needed for a web app up front including the permis-

sions provided by default in current browsers. We then discuss a hybrid approach of

install-time and run-time permission authorization. We propose webifest, an XML file

similar to the manifest in Android framework that includes permission declarations

and can be used to allow mobile web apps to provide a concise declaration of the

resources they intend to use. We argue that encouraging mobile web app developers

to request fewer privileges will reduce the attack surface.

We are careful to note that our proposed solution is not a tacit endorsement of

the Android permission model in particular. Specifically, we are not arguing that

users fully pay attention to and understand all Android permissions. Should a better

model be found, we would still argue that all mobile applications should be evaluatable

through a security interface providing a complete view of potential behavior. Given its

extensibility and the success with which security experts have had using it to detect

malicious applications, we simply rely on the Android model to illustrate our point.

The remainder of this section provides a brief overview of our proposed architec-

ture and attempts to consider best practices for webifests.
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6.4.1 Background

We discuss factors affecting security of mobile web apps and compare the significance

of the same factors in the security of native apps. Building on this analysis, we discuss

the potential requirements in defining a permission model for mobile web apps.

6.4.1.1 Security Factors

Web apps provide cross-platform functionality, reduce developer effort and are easy

to update. However, these useful properties also make web apps difficult to secure.

We discuss several factors that contribute to the security of a web app and compare

the security consequences of each of the factors with those of native apps.

• Nature of permissions: Mobile web apps are more dynamic in nature because

web application providers can easily update the server side code. This dynamic

nature of web apps allows frequent changes to the permissions required for

execution. In comparison, it is difficult to silently make such changes to native

apps. Current web browsers also do not provide an interface to view all the

permissions required by a web app, unlike a native app.

• User effort: One of the primary protections for native apps is the attacker has

to lure the user into installing his app. It is much easier for an attacker to

lure a user into following a link to the attacker’s web app through email or

advertisements.

• Application markets: Native apps have some level of security through app mar-

kets (such as Apple and Google) that detect and remove malware. No such

mechanism exists for mobile web apps. Unless an online marketplace such as

the Chrome webstore [21] is formed for the mobile web, having a centralized

system for security analysis will not be possible. Moreover, if such a system is

developed, the dynamic nature of web apps will require continuous monitoring
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to ensure security. Therefore, permission/capability detection during applica-

tion submission to the marketplace (e.g., the MSIL code analysis performed on

the Windows Phone Marketplace [52]) may not work well for mobile web apps.

• Identical app logic: It is not possible to ensure that all users of the same web app

receive an identical copy of the app unlike native apps. Therefore, web apps

can collect contextual data such as location more easily by asking different

permissions from different users. Due to all users possesing an identical copy of

a native app, user-rating systems in native application markets work well. These

ratings allow an average user to decide whether an app is good or bad. No such

protection exists for mobile web apps. Moreover, even if a third-party entity

such as Google independently discovers that a particular mobile web app is bad,

conveying this information to the future visitors of the web app is difficult.

• Default permissions: Android native apps are provided with no default permis-

sions. Web apps running in a browser are provided with permissions to access

several browser resources such as cookies (maintaining SOP), Flash, download

code to the device and run Javascript. Therefore, certain web apps may end up

with more privileges than required for their execution.

This is not a comprehensive list of all the factors associated with the security of

web and native apps. Other factors including security of the underlying operating

system [121], browser [57, 61], identity management using certificates also impact

mobile web app security. We have discussed the major factors that lead to differences

in the security of web and native apps.

6.4.1.2 Reflection

The comparison between native and web apps shows that additional security factors

need to be considered while designing permission systems for managing access re-

quests from mobile web apps. However, we also observe that following wide adoption
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of HTML5, both native and web apps on mobile platforms will request access to

similar user sensitive data and hardware. Therefore, we choose an approach that will

build upon the permission model for native apps and also provide additional features

required by mobile web apps.

We anticipate more requests to sensitive information from a mobile web app as

compared to a desktop web app. This is because a mobile device can provide con-

textual information such as location unlike desktop. Current desktop and mobile

browsers request run-time permissions for each feature requested by a web app. Desk-

top browsers such as Safari allow permissions to be stored for a specific time duration.

Other browsers such as Chrome desktop store the location permission given to a web-

site forever unless the user revokes it. However, current browsers do not allow a user

to view all the permissions used by a web app nor do they allow a user to easily

access, modify or revoke permissions.

The lack of a centralized authority such as an app market increases the proba-

bility of malicious web apps on the mobile platform. We argue that mobile web app

users should be able to easily revoke or selectively grant permissions without being

overwhelmed with warnings and thus suffering from warning fatigue.

6.4.2 Proposed Architecture

Goal: We want to provide expert users with a single interface that allows them to

reason about the permissions requested by mobile web apps similar to native apps.

We use the Android system as an example and argue that our central idea can be

applied to any mobile platform. Our proposed model [60] provides a user consent per-

mission system that gives full view of the required permissions, alerts the user when

a web app asks for dangerous permissions and also allows easy revocation of permis-

sions granted to individual web apps. We propose that a web app developer declares

all the required permissions to the browser using an XML file similar to the Manifest
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file in Android. In addition to specifying how to access a particular phone feature,

our model requires a web developer to define what he wishes to access in the form of

permission. For example, when a web developer uses the HTML5 Geolocation API

to access location, he should specify that the app would require the corresponding

permission ACCESS_COARSE_LOCATION as defined in the Android framework.

Permission categorization: We propose a design where the set of permissions given

to a web application by default is null. Therefore, to access resources such as Flash, a

web developer will have to request permission. This behavior is significantly different

than the behavior of current browsers where a website rendered in the browser runs

with full browser-privileges and only requests user permission for access to features

such as location. We note that we always allow web apps access to the core platform

technologies defined in the browser technologies for HTML51 [128] and do not con-

sider them in the permission system. The motivation behind requiring developers to

explicitly request access to default browser features such as Flash is to encourage web

developers to request least privilege. However, the current per-use, per-site permis-

sion model would generate multiple warnings every time a user accesses a web app

if universally implemented features such as cookies have to be authorized. This may

lead to warning fatigue [35,103,187,195] and careless clickthrough.

We propose classifying permissions required by mobile web apps into two cate-

gories, normal and dangerous. We argue that a web app connected to the Internet

should not be allowed access to permissions corresponding to the signatureOrSystem

category [5] in the Android permission system. We also note that permissions in the

signature category [5] loosely correspond to the already implemented Same Origin

Policy in browsers. Out of the 75 normal or dangerous [145] permissions provided by

the Android framework, warnings are generated only for the dangerous permissions at

1The HTML5 core platform technologies are HTML, CSS, DOM and Javascript.
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install-time. We argue that permissions required by web apps should also be treated

in a similar fashion. However, we note that the set of permissions for web apps falling

under the normal and dangerous categories would differ from the ones defined in the

Android framework and not all of the permissions for native apps on Android would

be relevant to web apps. For example, permissions such as BROADCAST_SMS and

BROADCAST_PACKAGE_REMOVED are not relevant for web apps. Addition-

ally, permissions such as INTERNET are crucial for a web app to work unless it is

working in offline mode. Therefore, we envision that the number of permissions that a

web app can request would be much lower than 75. Even if the browser produces run-

time warnings for time-of-use dangerous permissions, we envision that the number of

warnings would be limited.

We propose categorizing permissions based on whether a permission will provide

access to a user’s private data. Normal permissions would be the ones that are crucial

for the basic functionality of a web app. Examples of a normal permission are INTER-

NET, ACCESS_WEBSTORAGE etc. Examples of dangerous permissions would be

CAMERA, CALL_PHONE and RECORD_AUDIO. The normal permissions will be

granted by the browser without user consent while a warning will be generated when

a web app requests access to a dangerous permission.

Managing webifests: We propose a webifest, an XML file that can be used by web

developers to define all the permissions required by an app. The browser intercepts all

webifest files sent by the website in the top-level address bar. For example, consider

the following webifest:

<webifest domain=foo.com>

<permission=INTERNET, ACCESS_COOKIES,

CAMERA, ACCESS_COARSE_LOCATION>

</webifest>
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This webifest indicates that a web app from the domain .foo.com/ is requesting

permissions to access the Internet, cookies, camera and coarse location.

When a web app is loaded, the browser intercepts the webifest file only if it

is sent over an HTTPS connection. This is to avoid a man-in-the-middle attacker

changing the permissions requested by a website. The browser then searches existing

webifests for one that matches the domain of the new webifest. If an old webifest

does not exist, the browser parses the permissions in the webifest into the normal

and dangerous categories. The browser provides normal permissions to the web app

without user consent.

Instead of generating an install-time warning for all the dangerous permissions at

once similar to native apps, the browser then uses the run-time warning model. When

a web app requires a dangerous permission, the browser generates a warning and the

user has to approve the permission. Note that the browser does not store the approval

when user consents through a warning message. However, the browser provides an

interface for the user to selectively approve, store or revoke permissions by using an

interface users are already familiar with. We propose extending the interface provided

by browsers to access SSL certificate information to accommodate permissions. For

example, consider the Chrome mobile browser shown in Figure 17. Clicking on the

lock icon in Chrome mobile opens a dialogue that provides identity information of a

website. A Chrome mobile browser running our proposed model will also provide an

interface to store or revoke any of the permissions requested by a web app. When the

browser intercepts a webifest, it generates a list of permissions requested by the web

app. This list contains both the normal and dangerous permissions and the status

information of whether they have been approved. Once a user ‘stores’ a permission,

the browser retains the consent and the user is not asked to approve permissions on

subsequent visits to the same web app until the webifest is either revoked by the user

or modified by the corresponding web app.
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View Permissions

View Certificate Info

Permissions

Your location
fine (GPS) location

Hardware controls
take pictures and videos

Your cookies
read cookies, write cookies

Network communication
full internet access

https://www.foo.com https://www.foo.comuser clicks
on the lock

Figure 17: User interface for permission management of mobile web apps. Left:
When a user clicks on the lock icon, the browser shows this interface to interact

with permissions and certificates. Right: The browser provides an interface to view
the status of the permissions requested by www.foo.com (domain in the address

bar). The user has not stored hardware controls permissions, whereas he has stored
the location, cookies and Internet access permissions. The cookie and Internet

permissions are normal permissions granted without user consent. The location and
hardware control permissions require explicit user consent. The user can easily

revoke a permission by unchecking the box next to it.

If a browser finds an older webifest for the same ‘domain’ as that of a newly

received webifest, the browser compares the values of the ‘Permissions and Domain’

attributes of the old and the new webifest. If the attributes are the same, the browser

simply ignores the new webifest. Otherwise, the browser generates a warning for the

user about a new webifest sent by the web app and displays the additional permissions

required. If the user authorizes the new webifest, the browser stores the new one and

discards the old copy. The browser still requires run-time approval of additional

permissions if any in the new webifest. If a user rejects the new webifest, the web app

continues to execute with the permissions in the old webifest until the user deletes

the webifest.

We note that our proposal is only for a website requesting permissions of the

underlying system. However, we observe that in addition to requesting necessary
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permissions, a website can also register web-intents with the browser using the web-

ifest file, similar to the manifest file in native apps.

Storing webifests: We propose that a webifest for each web app should be stored

using the HTML5 web storage [207]. Web storage supports ‘local storage’ which is

similar to persistent cookies. When a browser intercepts a webifest, the webifest file

is stored in the local storage allocated to the corresponding web app’s domain. The

browser also maintains the status of user approval on all the permissions. Javascript

is not allowed access to a webifest unlike other local storage objects.

Managing access requests: When a web app requests access to a phone feature

such as camera, the browser searches for the corresponding webifest. The browser

verifies whether the user has already granted the requested permission and if granted,

allows access without user intervention. If a webifest corresponding to a web app does

not exist or the user did not store consent to access the resource requested by the

web app, the browser does not allow access. If the permissions required by a web app

change, the web app is expected to send a new webifest with the modified permissions

in the HTTP response header.

Revocation: Revoking permissions from individual web apps is straightforward. To

revoke all the permissions, a user can simply delete the corresponding webifest from

the local storage of an app. Alternatively, the user’s browser is required to provide

an interface that allows the user to revoke all permissions using the in-browser inter-

face. A user can also selectively revoke permissions granted to individual web apps

using the in-browser interface shown in Figure 17. Current mobile browsers do not

provide an interface to clear access granted to individual websites. For example, in

the Android, Dolphin, Firefox Mobile and Opera Mini browsers, a user is required to
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revoke location access from all web apps at once. This browser behavior precludes a

user from revoking permissions granted to only one app if he has provided location

authorization to multiple web apps such as Yelp and Google maps. Existing browsers

will need modifications to support the proposed revocation procedure.

Conditions: We require that a browser supporting our initial model allow only

the domain displayed in the address bar of a web app (top-level domain) to save a

webifest. Secondly, a cross-domain element embedded in the web app is prohibited

from requesting access to hardware or data.

The reasons for allowing only the top-level domain of a web app to save a webifest

are the following: a web app may contain cross-domain embedded elements such as

advertisements in iframes. If a browser processes the webifest received in the HTTP

response header of such an element, there are two ways of obtaining user authorization

for the permissions requested by the embedded element. The browser can create

separate authorization warnings for the webifest received from each domain or the

browser can combine the permissions requested by all domains and create one warning

listing all the permissions and the respective domains. The former can overwhelm

the user and latter may provide a false sense of security. In the latter scenario, a

user may perceive the set of permissions listed in the long warning as the permissions

required by the top-level web app to execute. Prohibiting embedded elements from

saving webifests can address these issues. Therefore, a browser supporting our model

ignores webifests received from embedded elements in a web app.

The second condition of disallowing a cross-domain embedded element to request

access to hardware or data follows as a consequence of enforcing the first condition.

Since our model requires a webifest for every ‘domain’ to be able to access a resource,

if the browser ignores webifests received from embedded elements, the corresponding

domains are unable to access resources.
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Consider a web app at foo.com that saves a webifest in the browser when the

user visits the web app. Later, if an iframe from foo.com is embedded in another

web app accessed by the user, foo.com may try to access resources using the already

existing webifest. To avoid this, we require that the browser ignore access requests

made by cross-domain elements embedded in the top-level web app. Cross-domain

embedded elements only have access to the Internet. We explore the consequences of

these conditions in the discussion section.

Size and content: The expected memory overhead in integrating the proposed

model in current browsers would be insubstantial due to the small size of webifest

files.

Current web apps in mobile browsers do not require all the information provided in

the manifest file for native apps for their execution. In addition to declaring required

permissions, the manifest file in a native app describes application components such

as activities and broadcast receivers, declares permissions required by other apps in

order to access the app, the libraries that the app is linked against and the minimum

level of the Android API required by the app [20]. Most of this additional information

is required since a native app code resides on the device and is always available.

This is not true for web apps. For example, at present there is no mechanism that

enables a web app to handle an intent created by a native app or the Android system.

Whether such a mechanism is possible is an interesting project beyond the scope

of this work. Since the compelling need for current mobile web apps is effectively

handling permissions, we chose a lightweight manifest file.

6.4.3 Discussion

The goal of the proposed model is not necessarily to ensure that average users make

better security decisions, but instead to provide an interface for expert users to be
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able to assess the potential behavior of web apps. If a security expert is unable to

evaluate whether a web app is malicious, how can an average user be expected to

do the same? Nevertheless, we believe that maintaining significant overlap between

the permission models for native and web apps will help average users in making

informed security decisions. More importantly, security experts will be able to use

the proposed model to design tools similar to the malware detection tools for native

apps [86,89,107,109,111,219,220].

There are other efforts in the area of permission management for mobile web apps

such as Mozilla’s WebAPI [44]. However,WebAPI aims at providing consistent APIs

that will work in all web browsers and our motivation is designing a permission model

for mobile web apps that increases security and user control. Another related effort

in restricting the capabilities of web apps is the Content Security Policy (CSP) [194].

CSP enables the authors of a web app restrict from where the application can load re-

sources, whereas our proposal deals with restricting web apps’ access to the resources

on a user’s device. We discuss the advantages and disadvantages of the proposed

model.

Pros: Although the normal permissions are granted without user intervention, their

use will enable developers to request least privilege. For example, the default Android

mobile and Opera Mini browsers support Flash and videos can be played easily in

the browser without user consent. However, a word to PDF converter web app may

not require Flash support. Requiring a web developer to ask for Flash permission

explicitly may reduce overprivileged web apps.

The simple update and revocation procedure for permissions granted to web apps

maintains the highly dynamic nature of web apps while allowing the user to revoke

permissions easily at will. For example, if a security expert wants to disable cookies for

a suspicious looking webpage, he can do so using the selective permission revocation
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model (desktop browsers have a similar functionality for cookies). The user will not

have to disable cookies across all webapps in this case, a provision currently available

in mobile web browsers. An average user on the other hand will not have to worry

about basic details of browser management due to the normal permissions being

provided by the browser without user consent.

Providing a similar user interface for permission management as that of the native

apps facilitates user learnability of the proposed web app permission model. More-

over, striving for maximum overlap between the permissions defined for native and

web apps may reduce the effort required to secure mobile apps (native and web) and

also reduce developer effort.

Cons: Prohibiting a cross-domain embedded element such as iframe from storing

webifests may break the logic of certain mobile web apps. However, we argue that

due to the constrained nature of mobile browsers, the complexity of mobile web apps is

lower. Therefore, the number of cross-domain embedded elements in mobile web apps

is expected to be minimal. We plan to investigate models allowing a cross-domain

embedded element to access resources. One such method would be to fall back to

the per-use, per-website model currently used in browsers. For example, if a non-

Google web app includes a Google map, the browser can generate an authorization

request for location access when a user wants to interact with the map and never

provide the interface to store the permission. Another potential technique would be

to fetch a webifest file when a user interacts with a cross-domain embedded element.

For example, if a non-Google web app includes a Google map, when a user wishes

to interact with the map by clicking on it, the browser fetches the webifest file for

the map and generates an authorization request to access the resources required by

Google maps, again with no storing facility.

Our model mandates explicit authorization for cookies and ignores webifests sent
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by embedded elements. This prevents third-party cookies in a webpage from tracking

a user across sessions. However, due to the universal usage of cookies, not allow-

ing cookies from other domain excluding the top-level domain in the address bar

may break several websites. Whether our model should allow cookies for embedded

elements is a topic for future work.

If a web application does not support webifests, a browser supporting webifests

can default to the current model of processing permissions based on per-use, per-

website. Although this approach maintains backward compatibility, it defeats the

purpose of our model. We assert that a browser should support the same permission

model for all the elements of a web app irrespective of their domain. If the top-level

web app supports webifests, the browser should use the webifest model for all the

elements. Otherwise, the browser should use the per-use, per-website model.

Adopting the proposed model will require collaborative efforts from web devel-

opers and browser vendors. Finally, storing the webifests file may be tricky since

implementing local storage features in a browser may pose information leakage or

information spoofing risks [207].

Security comparison with native apps: The notion of security in the proposed

model is similar to that of the permissions model for native apps. The model does not

protect users against malicious apps that can access sensitive data as a result of user

authorization. The level of security depends on a user’s knowledge about permissions

and the consequences of authorizing a web app to access sensitive information. More-

over, the model cannot provide the guarantee that a web application would request

the least privileges required for its execution. Researchers have previously shown that

native app developers attempt to obtain least privilege for their applications, but fall

short due to API documentation errors and lack of developer understanding [109]. We

expect the same effort from mobile web app developers. We also note that developers
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that change the permissions required by their app too often might turn away users.

Since the browser does not store a permission unless explicitly approved by the user

and also alerts the user when a new webifest is detected, multiple changes in webifests

may make the user suspicious or annoyed.

Research questions: Several research questions present themselves:

• Normal versus dangerous permissions, where to draw the line? We based our

initial proposal of categorization on whether a web app requests permissions to

access a user’s private data. Are there other possible categorization procedures

that can further reduce warnings?

• If the set of normal permissions is large, would it be problematic to grant normal

permissions without user consent?

• Would users and developers understand the new model easily?

• Can a mechanism other than local storage be used to maintain webifests? Using

local storage requires creating a special exception for preventing Javascript from

accessing webifests.

• Is warning fatigue possible for the proposed model? If the total number of

permissions available for web apps on a platform is limited, the probability of

warning fatigue would be curtailed.

Looking forward: Due to the availability of contextual information, we envision

widespread use of HTML5 to access user’s data on a mobile device. We have taken

the first step towards rethinking the permission system for mobile web apps. An

alternative permission model would be adopting the install-time all-or-nothing model

defined in Android native apps. Yet another client-side solution for the permission

management problem would be defining in-browser policies to limit a user’s access to
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potentially malicious websites and also block a website’s access to sensitive features

such as contact lists. Although this approach is possible for corporate phones, it would

be difficult to implement on personal phones of average users. Moreover, restricting

functionality can result in poor user experience. To avoid pushing security decisions to

the user, multiple security tools such as Zozzle [94] can be executed in the browser to

protect the user from malicious web apps. However, due to the hardware limitations

of mobile devices, this approach will entail severe performance penalties and will not

be practical. Finally, if a mobile web app store similar to the Chrome webstore is

available in the future, providing centralized security measures would be possible.

Our proposed model provides more control to the user, but also redirects more

security decisions to the user. Offloading security decisions to a user is not the best

idea. However, we imagine that in the absence of a proxy like setting or an umbrella

webstore, client side defenses on mobile devices would be limited.
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CHAPTER VII

CONCLUSION

Mobile web browsers and webpages are significantly different than their desktop coun-

terparts. This dissertation demonstrated that several factors impact the security of

mobile web browsing including porting of desktop browser code to the mobile environ-

ment, usability changes made to browsers to adapt to the small screen, modifications

in the content and layout of mobile specific webpages, and rich functionality offered

by mobile webpages (or web apps). We then discussed several new pain-points in

securing mobile web browsing by identifying new vulnerabilities in modern mobile

browsers, experimentally demonstrating the differences between mobile and desktop

browsers in terms of security, illustrating the tension between usability and security

on the small screen platform, and showing the need for new mobile specific tools to

detect malicious webpages. Finally, this work provided potential solutions for the

new found vulnerabilities, successfully initiated a dialogue with browser vendors to

address these security issues, and built the first mobile-specific static tool to detect

malicious webpages in real-time.

This dissertation is just the first step towards securing mobile web browsing, an

activity performed by hundreds of millions of people everyday. Looking forward, in-

clusion of new features in mobile webpages, adoption of HTML5 and WebAPI suites

such as Boot2Gecko, existence of native, hybrid and web apps on the same mobile

platform, and further increase in the use of the mobile web for sensitive communica-

tions will lead to new challenges in securing mobile web browsing.
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