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CHAPTER T
INTRODUCTION
There are several well-known sufficient conditions for the asymp=-
totic stability, in the sense of Poincare-Liapounov, of solutions of sys-
tems of ordinary differential egquations. The simplest result is the
following one, due to Perron [1]: let x, g be real vectors with n com-
ponents, let A be a real n x n matrix, and suppose t is real., If all
of the characteristic roots of A have negative real parts, if g(t, x)} is
contimous for small ||x||, if t > 0, and if
glt, x) =of]]x||)
as llx|] -+ 0, uniformly in t for t > C, then the identically zeroc solu-

tion of the nonlinear system

x v = ax + glt, x)
where
J,[‘:d-)-c
dt

is asymptotically stable.

The situation is more complicated in the case of nonlinear func-
tional differentisl equations. Bellman [2] and others have extended the
above theory for nonlinear ordinary differential equations to single
nonlinear differential-difference equations, and recently Nohel [3] has

established criteria for the stability and instability of solutions of



the equation
u! = j (@ - h) (t-h)dh+fog(9-h)gE‘.-h,u(t-hi‘dh, (1)

t > @ , where u and g are real functions, a is a real constant, and @

s
is a given positive constant, The present study is an extension of the
stability theorem for equation (1) to a system of equations of this type
of the form (3) below,

The problem here considered is not without physical motivation,
The equation

v=- g0 (6 - n) (28 - P 1] gn, (2)

where ¢ is a given positive constant, and u represents the logarithm of
the power in a one-region "circulating fuel™ mclear reactor having
transit time" © , is clearly a special case of the system {2) velow
withn =1, g(t, u) a power series in u beginning with the second-degree
term, and 1 not entering explicitly. A stability theory for the iden-
tically zero solution of (2) follows easily from Theorem 3. The deri-
vation of this equation is given by Ergen [L]. Physically, the sta-
bility criterion for the identically zero solution of (2) describes con-
ditions under which the equilibrium state of the reactor is stable.

Prelimingries. == Congider the system

3 e,
¥ - J - -
Y. ié ajifo (9j h) yi(t h} dh

J 1
6.
+£ J (oj- h) gj[t - h, 7,{t - h),...,yj(t - h)] dh, (3)




t > Oj, with initial conditions

yj(t)=qj(t), 0= ¢t = 6, 3=1,...pm
It will suffice to assume that each gj 1s a real function which is
continuous in (t, u) for t > 0, and that
gj(t, u) = ol||u]|)

as ||u]] = 0, uniformly in t, for t > O,

Definition l.,-- A solution ¢(t) of (3) is a real continuous n-vector de-

fined on 0 <t <0 + >4 where

3

@ = max ©

J 37

X > 0, and the components dj and GE are continuous on Oj <t< @+X |
and satisfy the system (3) on this interval. Note that the zero vector,
y.=0, 3=1,...,n, is a solution of (3).

It is necessary to remark that the existence of each componént of the solu-
tion over the entire interval above follows only as a consequence of

Theorem 3,

Definition 2.=-- The norm ||x|| of a vector x with components X geeas¥y

is defined by

k
xll = 5 Ixls

i=1
To simplify the notation in the proof of the stability theorem, the

following definition is also mades




Definition 3.,-- Let x be an n-vector with components X seeesXpo Then

J
xlly = S Il

i=1

Definition li,== The solution Yy =0, §=1,.s.,n of system (3) is said
to be stable if, given an ¢ > 0, there exists a 8 > O, such that if @(t)
is any solution of (3) for which
max ||g(t)]| <8,
0< t < ©
then

[(e)]] < e

for t >0 .

2

Definition 5.-- The solution Y5 E 0, 3 =1,...,n of system {3) is said
to be asymptotically stable if it is stable and if

1im ||g(t)]] = o,
t > + =

where @{t) is as above,

Definition 6,=- The solution vy = 0, 3 ¥ 1,ee.,n of system (3) is said

to be unstable if it is not stable,

Procedure,=-- The following procedure is employed: first, a linear pro-
blem is formulated by replacing the nonlinear terms in the original sys-
tem (3) by known functions of t, and a solution of the linear problem is

derived {in the form of a complex contour integral) by formal calculations




with the Laplace transformation. This formal solution is then shown
(Theorem 1) to be an actual solution, Next, a real representation
theorem (Theorem 2), analgous to the wvariation-of-constants formula

for ordinary differential equations, is obtained. By using this repre-
sentation theorem, conditions are obtained for the stability, asymp-
totic stability, or instability of the identically zero sclution of the
associated linear system. Finally, the solution of the nonlinear pro-
blem is shown to have a representation in the form of a nonlinear sys-
tem of integral equations, from which is derived a sufficient condition
for the asymptotic stability of the identically zero solution of the

nonlinear system (3) {Theorem 3).



CHAPTER I1

SOLUTION OF THE LINEAR PROBLEM

Derivation of the formal solution, == Congider the system

. j 6.
vy = i§=;1 ajs é J (oj- h) y,(t - h) dn "

o,
J
+ _g (oj- h) gj[t - b, vy (b - h),...yj(t = h)] dn,

t > ©,, with initial conditions

j,

yj(t)=qj(t), 0= t = 8, (5)

where qjis a real continuous function, a,, and Oj are real constants

Ji

with Qj > 0,1i, J=1,.4., n. First, one considers the associated

linear system:

n J Q.
= J - - +
Y3 > ajifo (Qj h)yi(t h) dh Wj(t), (6)
i=1
t > ©,, where
J

L ] _ [ ] +
ys (Oj) =7y, (0j ),

which satisfies {(§) on 0 < t < 8, j=1,..., n. To ensure that

3

Wﬁ(t) has a Laplace integral, assume that Wj(t) is continuous for

t < Oj , and that there exist constants ¢ such that

j1* ©320

|wj(t)| e®32 t > o, (7)

1A
0

Now define

[}
~
®
|
0
e
(
-
ot
N
o
d-
-

Lj(y)



whenever the integral exists. All formal aspects which are not justified
here will be established in the next section. Thus, proceeding for-

mally, the j'th equation of the system (6) is now considered. Multiply

st

both sides of (6) by e~ and integrate on t from @, to infinity.

J
This yields, after an integration by parts on the left-hand side,

-0, o
-yj(Oj)e JS+sLj(yj)—i§='_laji Iji(s)+Lj(Wj), FB)

where

w Q_
I.(s)=/ e 5P 7/ (6. -n)y. (t -h) dn dt.
ji 3 A 3 i

To evaluate Iji(s), let

in the inside integral, giving

> t
_ - 5t
Iji(s) —é'. e [{ _ g'(aj -t -7) yi(r) dr] dt .

J J

Interchange of the order of integration yields

8, r +6e, %
I.(s)=/"1 y. (r) f JHo, -t +r) e %%t ar
J3 0 1 o. J

3
SRR +r) e St

/ v {r S Oj -t +r)e dt dr .
. Ir

It is now assumed that the system {6), with initial conditions (5) can
1
be solved recursively for the Y5 8 1i=1, 2, cauy (j - 1), as known

functions of t, which are contimuious and of exponential order, (Observe

that this is immediate in the case j = 1.) Using also the initial



condition (5) and evaluating the inside integrals, one obtains

- B.5 Q. - B.s e,
I..(s)=e—'1—-f‘]rq.(r)dr-g-——zl-f‘](l-e_ ST) q.(r) dr (9)
JJ 5 0 J s 0 J

e. - 9.5
+ J.1l-e J_ L. (y,)
S 2 J7d
S

and, for i < j,

- 0.5 0, - 0,s O,
I.(s) =3 — fidry (r)dr - e /41 - &~ 57) v.(r) ar
ji s 0 i S2 0 i

e, 1 - @.s
+ - __:_EE_JL_. L.(y.).
s s jYi

To simplify equation (9), let
o,
A, =/ rq.lr)ar (10)
J 0 J
and
B,
B, =/ q.(r)ar; (11)
J 0 J

since a; is given, Aj and Bj are known constants, j = 1,..., n. PFurther,
1
since all y; s are known functions, i =1,..., (j - 1), Iji(S) is a
known function for i = 1,..., {(j - 1). If one uses (9), (10), and (11),
and recalls that
(8.) =q_ (0,
Y570 J)’

one can write (8) in the form



o, - 8.5
i} Jdol-e 3 L.(y.) = q.00,) e 95
S~ %5 |s R SRS M A J
_o.s (12)
+ a__A_e—_i_
3373 s
e~ @.s e-Os OJ - sr ( )

- a B, + e Ar) dr

3373 T2 33T ! 43

3 -1
+ +
Z 235 Iji(s) Lj(Wj) .
i =1

But observe that

A, B e, e. r _ :
gl + 'Q + Eﬁ S e ™5 qj(r) dr = /'j/‘(r -p)e P%p g (r) ar. - (13)
s s 0 o 0 J

Using (13) in (12), one obtains

5 - fijgi_. + igi_ (1 - & Ojs) L.(y,) =q.(6.) & gjs
s < 33 ia
- @.s gj r( ) e~ PS (r) st (s) (14)
+ < } - d . dr + R
ajye 3 _é' _é' r -ple p q,ir) dr i%l as; Iy s 1

Note that, as a result of this equation, the Laplace integral of the un=-
known function yj is now given in terms of quantities which are com-
pletely known. To simplify the notation further, observe that the co-
efficient of Lj(yj) in (1L4) has a removable singularity at s =0 ,

and define

a.e,
bl
s s2
Gj(s) = a0
- —Lza——, S=0.
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Further, let Rj(s) represent the right-hand side of (14). Thus,
after one applies the inversion theorem for the Laplace transformation,
[5], one obtains formally the solution

s 2 AT s
J

eni /‘] -y ow EEG) RJ(S) ds, ﬁj > O(j ) (15)

where the path of integration is along the line Re s = /é% , and the
line Re s = ij is locagted to the right of all the zeroes of Gj .

The existence of such a line is proved in the next section.

Formal solution is actual solution . ==

Theorem 1, Let qj(t) be contimious on 0 < t < Oj , and let

h%(t) satisfy (7), j =1,..., n. Then the components of the solution
of system (6) with initial conditions (5} are given by (15), provided
that ’/% is sufficiently large, J = l,ees, 0 .

Proof: It suffices to prove that each component yj(t) of the solution
of (6) satisfies an inequality of the form

e Ut b o (16)

33 and cjh , since this implies that

‘Yj(t)| = €33

for suitably chosen constants c
the Laplace integral of each yj converges absolutely, and thus repre-
sents an analytic function of s for Re s > cjh , and consequently
also Gj(s) # O for Re s> cg, - Further, this implies the existence

of the line Re s =,33 such that all the zeroes of Gj(s) are located




to the left of this line, By the method of successive approximations
it can be shown that each yj is continuous and of bounded variation
for t > Oj’ and thus that the application of the inversion theorem
is justified. Moreover, the absolute convergence of the lLaplace in-
tegral justifies all interchanges of order of integration which were
made in the formal derivation of the preceding section, The proof is
by induction,

The inequality (16) for the case J = 1 has been established by
a theorem of Nohel [6]. Since the proof in that case is essentially
similar to the induction step of the present theorem, it will be omitted
here. Assume, then, that (16) holds for j =1,..., (k - 1), Now ob-
serve that the solution of the k'th equation of (6} can be found from

the integral equation

t t
yk(t) = qk(ok) + akk,g (Qk - h) yk('t - h) dh d= +_g Wk(‘r) d+ (17)
k k

t 8
akiéé (Ok-h) yi(‘r-h)dhd‘r.
k

Since qk(t) is contimwous on 0 < t < Ok s, it is uniformly bounded
there, and thus y, (t) satisfies (16) on this interval. Suppose that
the inequality (16) holds on 0 < t+ < T, T>Q , and T is arbitrary,

Without loss of generality, it can be assumed that Cyeo and ckh are
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both positive. If one uses (7) and both induction assumptions in (l?),

one obtains for the interval T < t < T + @

k 3
t @
7 (83 < lgfe )] + la,] é gk (6 - h) s e’ ku("‘ - h) g ds
k
+ jﬁ c 27 + k-1 l | /ﬁ ij (o h) Gih(T - h)
/ Cyq © k2 d= i;;_l a4 /4 . c 50 dh d=x .,
k k

After one performs the integrations, and makes crude estimates,

c -c,8 c
k3 e  "khk| (c,t , Tkl c
7, ()] < la @] + oy, | 1221 o + X (0, + Kb at)
k -1 c. -c, @
' 43 + w‘] cp )t
= ! °il, Ek “ib o T
If one chooses Cy), > C) for i <k, and .~ koo
c -c, @ c
k3 e klik k1l et
Iy (6)] < la (e )] +la.| [|XZ]| [o +o—Kik o+ KL} o
k k K ek Ca k Sl Co
k -1 c, c.1.@
o2 layl c';"’%'2 O * clhk s .
1=1 ik il
Ir Cros Ol and cy), Bare chogen sufficiently large, the desired

inequality will thus hold for all t > Ok .

Real representation theorem. -= For the purpose of establishing criteria

for stability of the identically zero solution of (h), the solution of
the system (6}, (5) in the form of the contour integral {(15) is un-
satisfactory. Rather, an analogue of the variation-of-constants

formula in real form is needed, and this can be obtained when one
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applies the convolution theorem below to the form of the solution (15),
after showing that 57%57 has an inverse transform, j=1,..., n§j it
J
is clear that each term of Rj(s) has an inverse transform,
. 1 . e
It will be shown that GST§7 satisfies the hypotheses of the
following theorem [7]: let f(s} be analytic in the half-plane

Re s > & > 0 and have the representation

where u(s) is bounded., Then f{s) is the Laplace transform of the

function
1 x+tie ts
F(t) = pr.v. Eﬁ;{ ime fls)ds, x > X ,

where pr.v., denotes the Cauchy principal value of the integral. Observe
that, since Gj(s) is analytic for all s, as can be seen readily,
GS%E? is also analytic for s > <3<j , where Re s = CX& is the
line with the property that all zeroes of Gj(s) lie to the left of

this line. Observe also that

N 1 s - G, (s)
mjs '—'g‘*’T(—‘}—SjS R (18)

and it will be shown in the next lemma that
- G,(
iG ) > = 0(= 3°
3 |s|

Thus G—%Ej is the Laplace transform of the function
b
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1 /63 + ix ets (
Kyb) = dim s f/g.-ix 6ts] 4 By T Fyo 19)
x—}+¢’ J J

where the existence of the 1line Re s = ij has been established by

Theorem 1.

Lerma 1. Kj(t), defined by (19), has the following properties:

i) Kj(t) = Ofort < O

ii) K.'(t) =a fgj(g -h)K,(t -h)dh, t > ©
j g 3 ] ’ j

i4i) Kj(0+)= 1.

Proof: i) If t < O, the integral defining Kj(t) is zero, since no
new singularities are encountered in shifting the contour to + =

ii) Observe that this states that Kj(t) is a solution of the
homogeneous equation

e

tt)=a,, f36.-h)y (t -n)dn t > B,
73 334 78y ), ’ i’

for each j =1,..., n., To prove this, one would like to differentiate
the integral (19) which defines Kj . But since this cannot be done

directly, we observe first that (18) can be written

1 1 s - G,(s) 1 (s)
G_r_.).z.. b o = ¢ Q.\s
j® ° st(s) S a7
where a..ne. a..
I3 e %)
Qj(s) = ¢ “{S] =o(]%T 3) as |s| >+ = | (20)

if Res > cxj . Thus, for t > 0O, we obtain
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. 1 J ts
K.(¢t) = 1im — ~— +e°°Q.(s) as
3T L é_-ix : el o
J
[ a.@, a,.. o 7]

_ ] BJ + ix s s (21)

K.t} =1+ 1im [ e ds. (21
x>+ = Bj - ix st(s)

Now from (20} it is clear that (21) can be differentiated to give for

t > Oj [8]
a
. a..e i3
s 1 By rIx 4 -lJ—i-‘?gj(l-egjs)
(t) = 1im ==/ e E s d (22)
T he ZTHR gy s,
X J Gj(s)

To show that the integral in (22) is the right-hand side of ii), observe

that

e.
Y .
s

[
L“

%]

a% Rl

J j(ej -h)e P 4n,
0

After this expression is substituted into (21} and the order of integra-

tion is interchanged,

t) j' | jfg + ix s(t - h)
K tit) = -h 1im ——G—T—j—— ds dh t>@
J B O j x>+ ﬁJ js J,

which is just the result stated in ii}, using the definition of X 3 (t)

given by (19},

iii} The proof follows from (21); we can write
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1 /g.+ixets ts
= lim lim = /7 J . = +e Qj(s)ds,/gj>0<..

J + enl p. - ix s J
t+0 x-= /é,J

or by uniform convergence in t, for small t, the limits and the in-
tegration can be interchanged, and thus

+ ix
+y . 1 /63 .
KJ(O ) =1+ l1im 2_11‘3_. f lim +

ts Q.(s) ds s
- ix T j

x> J

yielding

Theorem 2, The solution of the functional system (6) satisfying the
initial conditions (5) is given by

(6) = q,(e,) K, 2/

t) =q.(6,)K.(t -0,) +a_, (r -=p) X, (t =90, - p) dp q,(r) dr
73 1437557 % 3 ] { {; P27 j PR

t

j=1 t 9.
- - J - -
+£. Kj(t. ) Wj('r) dr + ié ass g. Kj(t ) f (0j h) .Vi(‘r h) dnh ds,
] ]

J=1,u4., n, where Kj(t) is defined by (19).
Proof: In Theorem 1 it wgs shown that the formal solution (15) of (6)

for t > ej is an actual solution. Now (15) may be written in the form

/é>+ ix o (t -O_j)s
G(s)

yj(t) = qj(a.) 1im
x> e /5.3

+1x

s(t ~9,)
+a,, lim T—(—)J—f‘}f(r-p)e b3 dpq I') dr ds
JJ .~ ix i

N /gJ+ ix ts
lim -—f [ﬁ—[—) fe J(r) dr] ds

xT e /5:1 J'

. e /gj+ ix ets C - sr 9j
+ lim = iél ajifj - ix {‘?G) .gfj[e é (Oj - h)yi(r—h) dh] dr} ds

ds
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/é?j > CXLV where the definition of Rj from (1)) is used. The defi-
nition of Kj(t) and the convolution theorem [9] applied to this equa-

tion give the desired result, Note that

lim, y.(t) = lim, K. (t -0.) q.(6.) = q.(0.) .
oot T T aet I VR R MRS R
j 3
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CHAPTER III

BEHAVIOR OF Kj(t) FOR LARCE t

Before the nonlinear system can be considered, the behgvior of
solutions of the linear system zs t tends to infinity must be ex-
amined more specifically. The following results, obtained by Nohel
(10}, (11) are important for this purpose.

Lemma 1.-- The constants 3y in {6) play the following role:
i) if ass >0, Gj(s) has at least one zero with a positive

real part.
-(w_ )2

Oj :

ii) if a,, <0, let a ., = Then, if
JJ JJ

w, # 282, n=1,2, ., .., all zeroes of Gj(s) lie strictly in the

left s=half-plane,

- W,2
iii) if a, = b, w, = 3%1, n=+1, +2, . .., G.U(s)
33 3 3 ; -7 = J

has exactly one pair of zerces on the imaginary axis for each n, while
all remaining zerces lie in the left s~half-plane,

iv) if ajj = 0 for some j < n, the function yj can be found
immediately by integration of the j'th equation, since each Yy for

i < j, is a known function of t. Note that in this case Gj(s) =g, and

2

the only zero of this function is at s =0,

Proof: i) For each j > 1, Gj(s) is contimous for all s,
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and Gj(O) < (.
Further,

lim G,(s) =+ =,
g+ + =

Thus Gj(s) mst hyve at least one real positive zero as a consequence

of the intermedigte-value theorem,

- w2
ii) Let 345 = -—§§- , and let s = in for some real mumber 1 .

Then

w.2 1l - cos 8.5 q3 -. t .7sin O.q

T s | Tt T g o

J 1 q
(23)

Gj(lq) = w20

.8, sn=0.

Observe that the real part of Gj(iq) will be serc if, and only if,

1]

qu =2mnn , i.e., Y - s =% 1, .. .. Since Gj(s) is entire

in s, the argument principle can be used. A contour in the form of a
large semicircle C is taken in the right half-plane, and the change
in {arg Gj(s)) in going around the boundary of C 1is computed.

Let ;-trace out the contour ABCDA in the s-plane shown in Fig,
’

1, and compute A arg Gj(s) on ABGDA, First, on AB, let s = Re1¢

assuming R large. From (15),
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s=plane

Figure 1. Contour for Integral in Lemma 1.



el

It

A ere GJ'(S) B arg B3 4 arg (14 O(I%g) ) - & arg (R%6%1Y) ’
or

Aarg G.(s) = Aarg R ei¢ + A arg{l + 0(—12)) .
J R

?

Thus, on AB, A arg Gj(s) = noting that, for large real s, Gj(s) is

P A

real and positive, and arg Gj(A) is zero, On BC, let s =in ., Then,

from {23), since w. # g%i, Gj

(iq) # 0, and arg Gj(iq) is a contimous
J

function of n with arg Gj(i - 0)=0, Thus, gs s traces out the line
segment BC, arg Gj(s) decreases from% to zero. The segment CD is
handled in the same way as the segment BC, and; in this czse, arg G (s)

J

decreases from zero to - %, while the arc DA is handled in the same way

as the arc AB, and arg Gj(s) increases from - g to zero. When these

results are combined, one obtains

arg Gj(s) = arg Gj(S) [A/ﬁ] +  arg Gj(s) [BC]
+ arg G,(s) [CD] + arg G,(s) [BA1
or,
weo@ =3 -3 -1},

which yields
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N arg Gj(S) =0

2nn
B,

on ABCDA, provided that Wh #
J

n=+ 1, *+ 2. 4 e . and thus,

2

by the argument principle, all zeroes of Gj(s) lie in the left s-half-

plane.
s _ 2nm _ . _
iii) If Wj =5 »r~xl, * 2, «+ « » 4, we find from (23) that
J
2mm - . . .
n=%==,n=%*1,*%* 2, ..., is a zero of the function Gj(lq). If
J

a contour similar to Fig, 1, but indented at the zeroes is taken, it is
seen that there are no zeroes of Gj in the right half-plane,
This lemma yields a result better than Theorem 1 about the

existence of the line Re s = C¥j which has the property that all zeroces

of Gj(s) lie to the left of this line in the case 253 < 0,

-Ww2
j 2nn
Lemng 2.-- If a,, <0, ay, = —§7l- » ¥ Fo.n=11, *2,..,
J J
there exists a constant ‘j > 0, such that
- l.
k(1) = ole 3lw,t>%,j=ge,...,m

- W2
Proof: If W, # Egz , and if a,, = o—md= _ then, by Lemma 1, all
—_— J 3 33 o
zeroes of Gj(s) lie in the left half-plane; hence, there exists a con-

stant lj > 0, such that all zeroes of Gj(s) lie in the half-plane
Re s <« = lj <0 ,

Recalling the definition of Kj(t) in (19}, the path Re s = /é% may
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taken as
-
Re s = i A >0 .
2 2 j
Thus - A
+ s
) 1 _Ej X obs
K.t = ey 1 - -
2“1]{41?@:[ G;(?) ds, t > @
2
- - ix
4is before,
1 1
== +
G—J.-T'-S-} = Qj(s) ,
where
Q.(s) = o(2—)
J 3
s
as |s| »= , for Re s > - A_ ; therefore
J
A, A,
1 -—2*1+1xts _'2"l+ixts
K, (t) = 5= lim / | —ds + lim [ e Q.(s) ds,
J x—p+m j x...,.’_m -j J
-7 T -3
or, equivalently,
A,
-+ ix
K.(t) = sor  1im S e Q.(s) ds .
3 2“x_>+m lj 3
- —=+= - ix
2
Now let
-\,
SzT.il + iv ,
Then X,
- —%t X it L
K, (t) = & lin /&7 Q- +iv)ant >0, .
T e te o 3 J
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Since
] Xj
- —_—t
{'lej( 5 iv) | dv

w.2

is convergent, the result follows. It is clear that if ajj = - 7&—- R

J
L ggﬂ ,n=+1, +2 ..., Kj(t) is merely uniformly bounded, and
J

if aj; > 0, K.(t) becomes unbounded exponentially,

J
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CHAPTER IV

STABILITY

Before proceeding to the stability theorem for the nonlinear sys-

tem, note that Lemma 2, combined with the representation theorem, im~-

w.2

plies that if a,=--4—, w,# 2% k=+1, +2, . . ., the iden-
j3 93_ J Qj ==

tically zero solution of the linear system associated with (h),

9.
J
aji_é. (oj - h)y. (t - n) dn, (o)

is asymptotically stable; if wj = SEE , it is merely stable, and if
J

a.. > 0, it is unstable. However, as is well known for ordinary differ-
JJ

ential equations, it does not follow without proof that the same re-
sults hold for the corresponding nonlinear problem,

The following result [12] will be employed:
Lemma 3,-= Let F, G, and H be continmuous real-valued functions for

t > a, with H(t) > 0, and suppose that, for t > a,

t
F{t) < 6lt) + / H(s) F(s) as . (25)
a

Then, for t > a,

t t
F{t) < Glt) + / H(s) G(s) exp(/ H(u) du) ds ,
a s

Proof: Let

t
R(t) = S H(s) F(s} as . (26)
a
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Then
R'(t) = H(v) F(t) ,
and, from (30),
R'(t) - H(t) R(t) < H(t) al¢) .

t
Multiplying by exp( - / H(u) dqu ,
. a

{Hu) du

—-(R(t

t
H(t) G(t)e-'gH(u) du .

Integrating from a to t,
t t
-ﬁHh)mx f f(s) Gls —iHW)w ds

a

R(t)e
or

t
t
R(E) < /H(s) als) em/ BlW) du g (27)

a

Using (27) and (26) in (25} ,

t t
Flt) < ¢(t) + S H(s) G(s) exp( / H(u) du) ds .,
: a 5
The principal result can now be stated,

Theorem 3.-- In the nonlinear functional system (4), let a 33 < 0,
= ] 2
a,. = T'L W
JJ j ? 7

Let g, be contimous in (t, u) for ¢t > O and ||u|l; small. Moreover, let

2]

l

)k=i1,i2,oc.,j=1,2,.'.’n.

L=
[N

gj(t, u) = o([lullj) ,

as ||u]| tends to zero, uniformly in t, for t > O, and assume each of

the initial conditions qj to be contimious for 0 <t < Qj, J=1l,e.e, .



e

Then the identically zero solution of () is asymptotically stable.

Proof: The solution components ¢j(t) of (L), with

6 = max |qj(t)] (28)
D0« t < @,
- - J
all j
can be contimed for increasing +©+ > Qj’ so long as |l¢||j remains

small., As long as Qj(t) exists, the representation theorem for the

linear system suggests that the components ¢j(t) satisfy the integral

equation
% Q.
= - J - T =- T - T - T
¢j(t) xjo(t) +£.Kj(t r)g (oj h} gj[ h, ¢, ( h),...,¢j( h)ldh 4
3
% J-1 0.
-7 J - T - T
+ é: Kj(t ) i:§;1 ajié (Gj h) ¢i( h) dh dr ,
b
where
W,2 Gj T
xjo(t_) = qj(Gj_)Kj(t - ej) - 5‘3 é .Cf)[(r - p)Kj(t - 0, pldp qj(r) dr (30)
and, by Theorem 2,
t ( i-1 OJ )
X O(t) +'é..Kj t - 1) 121 a4 / (OJ - h cz!i(r - h) dh d=
J

is that solution of (24} satisfying

A
©

v5t) = q5le), 0 4
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- w,2
where aflj in Theorem 2 has been replaced by —--41——) . This can be

J
verified by direct substitution.

First, it is shown that there exist constants ujl >0 and A 5 >0,

such that
AL
- -4t -0,) .
|xj0(t)|_§ bjle 2 J t>9j,J=1,...,n,
where ajl is a constant which will be small provided only that

(31)

§. in
J

(28) is small. To prove this, recall that, by Lemma 2, there exist

constants xj >0 and cjl > 0, such that

AL

t

-
Kj(t)gc e 2 ,t>03=1,2, .., n.

Jl

If (28) and (32) are used in (30), (30) becomes

X, L
A - S -0 P F
|xj0(t)| S 8cye -7‘1 it 5 cjllije 2 3/ S
J 0 0
Now define
o x 2
c.2=fjf(r—p)e 2P dp ar,
o0 o
and
w.2
= +
by =8 cjl(l j c j2} .

(32)

.
J
- p) e 2 pdp dr,

(33)

This proves (31), and (33) shows that & j1 ©an be made small by taking &

small,

If one uses (31) and (32) in the integral equation (29),

obtains for t > Oj ’

one
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A,
- (-
19,8 < 550 2 (6 -0,)

. ﬁ(t-r) gj :
teg _é'.e 2 _é (Oj-h)lgj[rwh, ¢1('r-h),...¢JJ -r-h]]dh d=

J A,

- ‘t-'r)
A=) 5 PR %o h) @, (s-n) an| ds .

J
If one employes the order condition on g, and Definition 3, one obtains

J
for t > Oj, and ||¢]]. sufficiently small

|¢(‘b)| < 5'1 e '“‘l(t-g )+ E:C j’e -‘l(t T)
J =

J

fJ(o -h) Z|¢ (=-h)|dh d=
) =

+ ec fte' ;i(t") fgj(o -h) | ¢,(z-h)]dah d=
Y o J J
j

+c

b }-j-(t ) 23
jlfe‘ | o h)z la., | |¢; (=-h)|dh d~ .

. 0 i=1
J
After the terms involving sums are combined,

7\
laj(t)lg ujle' 2 3+ ecy fe 3 (4 f J(Q -h |¢ (v=h)[dh d=  (34)

_ﬂ
le {I al ¥ } f (- 1')fJ(O -h)|¢, (+=h)db ds .
A,
If both sides of (3Y4) are multiplied by e ?'] ¥ and U; is defined by

X,
-l
Uj(t) =g 2 ]¢j(jc.)| ,

one obltains, after interchanging the order of integration in the first

double integral,



30

A @ o b if_l
U,lb) <8y e Jd+ee fI6-n) /e & Uls-h)dean
JO J o. J
j
ot t 2 e gt -
+ o.- -h i
+ ¢4 i:§;1 [|aji| e ] é:e é‘ 3 hl| ¢i N | dh d=

J
if ||¢|]j is sufficiently small., Let (v - h) be a new varigble in the

first double integral, and call it + again. Then

A
: . 8.
Uj(t)<51e J§J+gc1f3(o-h)e'§'hf3 U,.(<) d¢ dh (35)
0 ©.-h
3
A
o, M, t-h
+ ec,. S Je.-h)e 2hf U,.(x) dr dn
Jqo 5. J
J
X A,
J=-1 t J . .
t ey Z [[ajil +el [ e J(oj- h) |g (x = n)| dn dv
i=1 Qj 0

for t > Oj , provided that ||¢J|j is sufficiently small,

Define

j=1 v N
Fj(t)— Z []ajil +e]_ée 2

e,
J J(oj- n){g. (= - n)| an dr (36)
i=1 j °
j=2, . .+ . n, and Fl(t) = 0.
The following lemma will be employed:

Lemma l4. -- Under the hypotheses of Iheorem 3, there exist positive

constants Uj’ crh, such that
L
F.(t) < y.e (-4 - o) 4
J - J

where 55-+ Oas 6+0, j=1, ..., n, and where Kj is defined as in
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(31). Further, without loss of generality, it can be assumed that

X
. i
oy < ™ T . (37)
i=1,see,

Proof will be postponed.

When Lemma L is used in (35}, one obtains

L x
—_d 9 dn 73
Uj(t)s 6,0 2 +B.‘Jl’£ (e-h)eT é_hujm dt dh (38)
’ A
h (4 - t
+ echo O-h T‘l j(-r)d*rdh'!'cjlje-g. T ’
J

if t>0,, and [14] |j is sufficiently small. DNote that Uj(t) is known

on O < t < e,

< ©4, and can be expressed in terms of qj(t) there, Thus

the first integral in (38) is a constant. Let

° Moo
=/ .- h 3 .
85 é‘ (ej hle 2 é.-hUj( ) dv dh (39)
J

it is evident that will be small if uj is sufficiently small,

j2
s

Using (39) and the fact that Uj(t) > 0 in (38), we obtain, for t > Oj

and | |¢| ]J. sufficiently small,

2.0 X
) t
3 h
Uj(t? e e "1’2"1 tecs b, ecjl,g (Oj- hle ?1 éUj(r) dt dh
J
(3
+ ©51 Kj e 2 C%) t .

Letting
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A,

o, -
.=/ 36.-hle 2 "an,
3305 J
a positive constant, (39) simplifies to
3 3
e, (4 - ot + ey fU (z) dar, (Lo)
Uj(t) < 850 2 "5 + e c51850 *eg Kje 2 °53

%
if ¢t > 65, and ]|¢|lj is sufficiently small. Applying Lemma 3 to
(4O} yields, for ||¢l|j sufficiently small,

Ho, Uje(%j--o"j)t

+ +
3= a R B I

t y
+ fec c, 6.820j+ec
o, 41 33 J1
J

J1 J2 °51 %;

Recall that, from (37),

thus, if one chooses

which can be done by choosing ]|¢|]j small, one obtains, after inte-

grating,
A A .9
e, (=t - )t 0. ec..c, (t-0,)
ROPIE | ey,
3 51 h| 11852 KJe b 6518 7§ R R VA |
X
ec..c..(t - @.) ”| o,
acj1°j2e J17i3 g - ujle 2 j - ecj16j2
c..2 :j 25
+ i%l 35733 o "Cﬁ)t eachcJBte(2 o chJB)J .
J
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After simplifying, and making crude estimates, this reduces to

AL
(—-1-0'.’)0..5’. 11 X,
o) s QE—L B L f T e, el - ox) b, (41)
_d - - . J17J
5~ 03~ 5053
Noting that
AL
J_
2 o'j < 2,
j -'O/ - gC ,.C
7 Y 31733

when ¢ and 03 are chosen as above, (hl) becomes

A
-0, 53
Uj(t) < lie ©i Byt LI “’31‘332] e(2 o3) t,

if ¢ >8,, and ||gz![|j is small. If now the definition of Uj(t) is

employed,
A,

o i}
19,060 < J2c,) B, + 0e 2 5+ o;ts

ecjlcj2‘e J (hE)

if >0, and | 1¢| |j is sufficiently small, If one lets
X,

-0
= + i +
. 2cj125j B..e 2 j+ ec

j hal 31%32°

a positive number which goes to zero with s, (42) reduces to

_a.v-t’
lﬁj(t)l Suje J

L

if t > 6,, and | 2] ‘1 is sufficiently small, Using Definition 3,

g1, = 19 ()]



3L

it is clear that if 8 is chosen sufficiently small, (43) will hold for

all t > 01; moreover, since

9, )] <8,

if0<t<e, ¢1(t) is uniformly bounded for all t > O by a constant
which can be chosen arbitrarily small, provided only that & is chosen

sufficiently small., Next, we assume that the components @_, ¢2""’¢L-1

satisfy (L43); as above, this will imply that there is a uniform bound

for each component Gl,...,d

1 for all t > O, provided only that & is

sufficiently small, Thus, []¢||k will be small so long as |¢L(t)| and
8 are both small enough. Thus |¢£(t)lwill satisfy (43) for all t > Ok ,
and thus (43) holds for all j =1,..., n, provided s is chosen suffi-

ciently small. Moreover, (43) implies that |l¢(t)|\j -+ 0 as

t++e j=1,,.., n. Thus, by Definition 5, the identically zero

solution of (L) is asymptotically stable, and hence is also stable.
This completes the proof of the theorem, except for the lemma, which

remains to be proved.

Lemma l,-= Under the hypotheses of Theorem 3, there exist positive con-

stants Kj,cyg, such that
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t >0, where ¥, *0as6+0, j=1, ..., n, and where A, is defined as
J, J > H 3 2 J

Proof: Recall the definition of Fj(t):
A

i1 t 3 e,
FAt) = 7 Sla..| + 8 feZ " /Io,-n)|¢g. (s=h)|ah d=, §=2,3,..., n;(36)
J =1 (I e, o J 7
j
F,(t) =0,

The lemma is trivially true in the case j = 1, Using induction, suppose

i

the conclusion of the lemma to hold for j =1,...,(k - 1), for some
k > 2, In particular, by this induction hypothesis, the estimates on

each |¢J] given by (L3) will hold for t > Oj, and for t < Gj,

|¢j(t)| <6,

J = 1l,eeey{k = 1), Define A, Ty

Aj = max(uj, 5 e o?lgj) . {(Lk)

Then
9,01 < &, & % (15)
for all t > 0. If one takes absolute values in (36}, and uses (L5),

(36) becomes, for j =k,
k-1 t %t o
\Fk(t)‘ < lckl\ 1Z=1 |j|aki| + ;} é e 7 gk(gk-h)Aie -di(T—h)dT dh,
k

t> Qk. Let
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b
= mji (IT]:LI] .y )
Cri min R o T

Then, making crude estimates,
k-1 t X e k-l _ ()
|Fk(t)| < ]ckll z lakil +el fe2 [ (Ok-h) z Y dh d-,
i=1 Oy 0 =1
t > 08 . Integration yields

k
a2 kel t & [oe
|7, (£)]<]e | 7_1%[21 la, | + s(k-l{loké‘e T [e_o{ikﬁi}c’kfdf. (L6)
k

To simplify the notation, let
k=1 =] 4] (e e
J K k 'k
oo = le1{ Za2 la.] + elk-1) —<e -1]s;
K = =] ki &

note that g, > 0 as 8 > 0, by (bh). If one substitutes this into (L6),

inequality becomes

)"

t
Ft)< o S (5 -o ) 4.,
%

Another integration yields

If one lets

the inequality becomes

’H<
F (t) < ¥, -G)t

3

t>68 , k=1

\? g = « s 5 0, and the proof is complete.
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