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CHAPTER I 

INTRODUCTION 

There are several well-known sufficient conditions for the asymp­

totic stability, in the sense of Poincare-Liapounov, of solutions of sys­

tems of ordinary differential equations. The simplest result is the 

following one, due to Perron [l]t let x, g be real vectors with n com­

ponents, let A be a real n x n matrix, and suppose t is real. If all 

of the characteristic roots of A have negative real parts, if g(t, x) is 

continuous for small ||x||, if t > 0, and if 

g(t, x) =o(||x||) 

as ||x| | 0, uniformly in t for t > 0, then the identically zero solu­

tion of the nonlinear system 

x |! = Ax + g(t, x) 

where 
I _ dx 

X dt ' 

is asymptotically stable. 

The situation is more complicated in the case of nonlinear func­

tional differential equations. Bellman [2] and others have extended the 

above theory for nonlinear ordinary differential equations to single 

nonlinear differential-difference equations, and recently Nohel [3] has 

established criteria for the stability and instability of solutions of 



the equation 

u« = a / 0
Q ( © - h) u(t - h) dh + 7 O

Q(0 - h ) g t - h , u(t - hfj dh, (l) 

t > 0 , where u and g are real functions, a is a real constant, and 0 

is a given positive constant. The present study is an extension of the 

stability theorem for equation (l) to a system of equations of this type 

of the form (3) below. 

The problem here considered is not without physical motivation. 

The equation 

u' = - £ / 0 ° (8 - h) [ e u ( t - h ) - 1] dh, (2) 

where c is a given positive constant, and u represents the logarithm of 

the power in a one-region "circulating fuel'1 nuclear reactor having 

"transit time" 0 , is clearly a special case of the system (2) below 

with n = 1, g(t, u ) a power series in u beginning with the second-degree 

term, and t not entering explicitly. A stability theory for the iden­

tically zero solution of (2) follows easily from Theorem 3. The deri­

vation of this equation is given by Ergen Physically, the sta­

bility criterion for the identically zero solution of (2) describes con­

ditions under which the equilibrium state of the reactor is stable. 

Preliminaries. — Consider the system 

Y Y : = ^ Z. a j 5 / 0
J - (©j- h) y.(t - h) dh 

G I 
+ / J (0,- h) g [t - h, y.(t - h),...,y,(t - h)] dh, (3) 

Q J J X J 
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t > 0 . . w i th i n i t i a l cond i t ions 

y 
y . ( t ) = q . ( t ) , 0 < t < © j = l , . . . , n . 

I t w i l l s u f f i c e t o assume t h a t each g . i s a r e a l func t ion which i s 

3 
cont inuous i n ( t , u ) f o r t > 0 , and t h a t 

g (T, u ) = O ( | | u | | ) 

as | | u | | -* 0 , uniformly i n t , f o r t > 0 . 

D e f i n i t i o n I , - - A s o l u t i o n $ ( t ) of (3) i s a r e a l cont inuous n -vec to r d e ­

f ined o n O < t < Q + o ( , where 

© = max ©. , 

3 J 

CX > 0 , and t h e components and $ \ a r e cont inuous on ©. < t < © + , 
and s a t i s f y t h e system (3) on t h i s i n t e r v a l . Note t h a t t he zero v e c t o r , 

y. = 0 , j = l , . . . , n , i s a s o l u t i o n of ( 3 ) . 
0 

I t i s necessa ry t o remark t h a t t h e e x i s t e n c e of each component of t he s o l u ­

t i o n over t h e e n t i r e i n t e r v a l above fo l lows only as a consequence of 

Theorem 3o 

D e f i n i t i o n 2 . — The norm | | x | | of a v e c t o r x with components x ^ , . . . , ^ 

i s def ined by 

I M I = £ |X.|. 

i = 1 

To s impl i fy t h e n o t a t i o n in t h e proof of t h e s t a b i l i t y theorem, the 

fo l lowing d e f i n i t i o n i s a l so mades 
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Definition 3 . — Let x be an n-vector with components x^,...,xn# Then 

= Z |x±|. 
i = 1 

Definition k.— The solution y. = 0 , j = l,...,n of system (3) is said 
" — " ~ ~ ~ ~ — — » j 

to be stable if, given an e > 0 , there exists a 8 > 0 , such that if 0(t) 

is any solution of (3) for which 

max I |0(t)|I < 6 , 

0 < t < © 

then 

| | 0(t)|| < . 

for t > © . 

Definition — The solution y. E. 0, j = 1,...,n of system (3) is said 

3 
to be asymptotically stable if it is stable and if 

lim I |0((t)| I = 0 , 
t + 0 0 

where $(t) is as above. 

Definition 6 . ~ The solution y. = 0 , j = l,...,n of system (3) is said 

3 
to be unstable if it is not stable. 

Procedure.— The following procedure is employed? first, a linear pro­

blem is formulated by replacing the nonlinear terms in the original sys­

tem (3) by known functions of t, and a solution of the linear problem is 

derived (in the form of a complex contour integral) by formal calculations 
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WITH THE LAPLACE TRANSFORMATION. THIS FORMAL SOLUTION IS THEN SHOWN 

(THEOREM L) TO BE AN ACTUAL SOLUTION. NEXT, A REAL REPRESENTATION 

THEOREM (THEOREM 2 ) , ANALGOUS TO THE VARIATION-OF-CONSTANTS FORMULA 

FOR ORDINARY DIFFERENTIAL EQUATIONS, IS OBTAINED. BY USING THIS REPRE­

SENTATION THEOREM, CONDITIONS ARE OBTAINED FOR THE STABILITY, ASYMP­

TOTIC STABILITY, OR INSTABILITY OF THE IDENTICALLY ZERO SOLUTION OF THE 

ASSOCIATED LINEAR SYSTEM. FINALLY, THE SOLUTION OF THE NONLINEAR PRO­

BLEM IS SHOWN TO HAVE A REPRESENTATION IN THE FORM OF A NONLINEAR SYS­

TEM OF INTEGRAL EQUATIONS, FROM WHICH IS DERIVED A SUFFICIENT CONDITION 

FOR THE ASYMPTOTIC STABILITY OF THE IDENTICALLY ZERO SOLUTION OF THE 

NONLINEAR SYSTEM (3) (THEOREM 3 ) . 
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CHAPTER II 

SOLUTION OF THE LINEAR PROBLEM 

(h) 
y. = > a„. / 3 (©.- h) y.(t - h) dh 
JJ i = 1 J1 o 3 1 

0 . 
+ / J(© - h) g [t - h, y (t - h),...y (t - h)] dh, 

Q J 3 3 
t > ©., with initial conditions 

y 
y.(t) = q.(t), 0 < t < ©., (£) 
3 3 3 

where q.is a real continuous function, a., and ©. are real constants 3 JI 3 
with ©. > 0 , i, j « 1,..., n. First, one considers the associated 3 
linear systems 

y. = V a.. / 3 (©, - h) y.(t - h) dh + W.(t), (6) 3 ^— J 1 N J 1 3 i = 1 

t > © , where 

which satisfies (5) on 0 < t < ©^, j = 1 , . . . , n. To ensure that 

¥.(t) has a Laplace integral, assume that W.(t) is continuous for 3 3 
t < 9. , and that there exist constants c ., , c.r,, such that 3 9 Jl* J2> 

l^(t)| < C j l e cJ2 t , t > © . (7) 

Now define 
oo 

L.(y) = / e " s t y(t) dt , 
3 ©. 

3 

Derivation of the formal solution. — Consider the system 
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whenever the integral exists. All formal aspects which are not justified 

here will be established in the next section. Thus, proceeding for­

mally, the j'th equation of the system (6) is now considered. Multiply 

both sides of (6) by e and integrate on t from 0 . to infinity. 

3 
This yields, after an integration by parts on the left-hand side, 

-y .(e.)e" 9 j s + sL.(y.)= 21 a.. I.. (s) + L (W.), (8) 
3 3 3 3 ± = •]_ J1 J1 j 3 

where 
0 0 0 . 

I., (s) = / e" S t / 3 ( 0 . - h) y. (t - h) dh dt. 
J 1 0 . 0 3 

To evaluate I.. (s), let 

t - h = r 

in the inside integral, giving 

I..(s) « / e" s t [/ (0 . - t - r) y.(r) dr] dt . 
J 1 0 . t - 0 . 3 1 

Interchange of the order of integration yields 
r + 0 . 

I..(s) = / 3 y. (r) / J ( 0 . - t + r) e" s tdt dr 
^ 0 1 0 . ^ 

3 
» r + 0 . 

+ /y.(r) / J ( 0 . - t + r) e" S t dt dr . 
0 . 1 r ^ 
J 

It is now assumed that the system (6), with initial conditions (5) can 

be solved recursively for the y^ s, i = 1, 2, (j - l), as known 

functions of t, which are continuous and of exponential order. (Observe 

that this is immediate in the case j = 1.) Using also the initial 
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condition (5) and evaluating the inside integrals, one obtains 
- Q.s 9 

I. . (s) = 6 J / 3 rq. (r)dr -
0 

.s 9. 
/ J ( l - e 
0 

- sr ) q . (r) dr 

3 
+ 

9. - 9,s 
s 

(9) 

and, for i < 

I..( s) = 2l!jL / j r y.(r) d r - £4*̂ /̂ 1 - e" S r ) y.(r) dr 
0 0 

+ 
Y. _ - E.s Jl - 1 - E IL. s 2 s 

To simplify equation (9), let 

and 

9. 
A . = / J r q . (r ) dr 

3 0 J 

9. 

B . - f 3
 q.(r) dr $ 

(10) 

(11) 

since q. is given, A. and B. are known constants, j =1,..., n. Further, 

3 3 3 
since all y^ s are known functions, i = 1,..., (j - l ) , I ^ ( s ) is a 

known function for i = 1,..., ( j - l ) . If one uses (9), (lO), and (ll), 

and recalls that 
y j ( V = q j ( V ' 

one can write (8) in the form 
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s - a .. 
33 

0. 
s 

- a.. B 
- ©.s 

e J L 

- 0 s 
+ a.. A. -2 i-

JJ J s 
- ©.s ©. 

J3 3 / 
+ a.. —-w 

JJ 2 
^ / J e " S r q.(r) dr 

s 0 
j - 1 

+ y a.. I.. (s) + L.(W.) 4 - Ji Ji 3 3 

1 = 1 

(12) 

But observe that 
A. B A 1 

? o 

©. 
+ A. / 3 e 9. r 

s r q.(r) dr = / 3 f (r - p) e" p Sdp q.(r) dr. 
3 0 0 3 

' (13) 

Using (13) in (12), one obtains 
- O.s - ©,s 

s - J U L J L . + !iL (1 - e" W j S ) L.(y.) = q,(0.) e" wj' 
S ^ J J J J 

S q 0 . r 3 - 1 
+ a., e" y j s / V (r - p) e" p S dp q.(r) dr + a „ I,_. (s) 

33 0 0 i = 1 
(Hi) 

+ L.(W.) s R.(s) . 0 0 J 

Note that, as a result of this equation, the Laplace integral of the un­
known function y. is now given in terms of quantities which are com-

3 

pletely known. To simplify the notation further, observe that the co­
efficient of L.(y.) in (li|) has a removable singularity at s = 0 9 

3 3 

and define 
f a_.e, 
s 

G (s) 
0 

+ (1 - e" V ) , s * 0, 
s 

a.©. s = 0 . 

s 

2 * 
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Further, let R.(s) represent the right-hand side of (lit.)• Thus, 3 

[5>], one obtains formally the solution 
f + i oo ts 

2- V ™ R j ( s ) d s ' fi>oii' (15) 

J 3 3 
where the path of integration is along the line Re s = ^3 , and the 
line Re s = is located to the right of all the zeroes of G. 

3 3 
The existence of such a line is proved in the next section. 

Formal solution is actual solution . — 
Theorem 1, Let cr.(t) be continuous on 0 < t < ©. , and let • 3 ~ 3 ' 
W.(t) satisfy (7), j =1,..., n. Then the components of the solution 3 
of system (6) with initial conditions (5) are given by (l5), provided 

that ^ is sufficiently large, j =1,..., n . 

Proofs It suffices to prove that each component y.(t) of the solution 
3 

of (6) satisfies an inequality of the form 

| 7 j(t)| < c j 3 e C JU* , t > , (16) 

for suitably chosen constants c^ and c^ , since this implies that 

the Laplace integral of each y. converges absolutely, and thus repre-
3 

sents an analytic function of s for Re s > c^ , and consequently 

also G_.(s) =̂  0 for Re s > c^ • Further, this implies the existence 

of the line Re s = 3. such that all the zeroes of G (s) are located 13 3 

after one applies the inversion theorem for the Laplace transformation, 
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to the left of this line. By the method of successive approximations 

it can be shown that each y. is continuous and of bounded variation 
3 

for t > ©.., and thus that the application of the inversion theorem 

is justified. Moreover, the absolute convergence of the Laplace in­

tegral justifies all interchanges of order of integration which were 

made in the formal derivation of the preceding section. The proof is 

by induction. 

The inequality (l6) for the case j = 1 has been established by 

a theorem of Nohel [6], Since the proof in that case is essentially 

similar to the induction step of the present theorem, it will be omitted 

here. Assume, then, that (l6) holds for j = 1 , ( k - l). Now ob­

serve that the solution of the k'th equation of (6) can be found from 

the integral equation 
t t 

7 k ( t ) =
 qk (V + akk f ( ek " h ) y k ( x " h ) d h d T + f V t ) dT ( l 7 ) 

k °k 
k t © 

+ I _ a / / * (0 - h) y (T - h) dh dr . i = 1 K 1 0, 0 K 1 

k 

Since q (t) is continuous on 0 < t < 0 it is uniformly bounded 

there, and thus y^t) satisfies (16) on this interval. Suppose that 

the inequality (l6) holds on 0 < t < T , T > 0 and T is arbitrary. 

Without loss of generality, it can be assumed that c^ and c^ are 
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both p o s i t i v e . I f one uses (7) and both i n d u c t i o n assumptions i n ( 1 7 ) , 

+ / C K L E C k 2 T d T + Z K J / / K (9 K - H) C ± 3E CILI ( T - H ) 

°k 1 - 1 °k 0 

dh d r 

After one performs t h e i n t e g r a t i o n s , and makes crude e s t i m a t e s , 

\7VM\ < |A + |A VJ |JS-| l k k 

k - 1 
+ 5 " la 

kk ' "c 

i = 1 k i 
^2 
: iU 

- c , , 9. 

k c. 

e k + 

- c . , 9. —i 
e iU k 

14 

( E 0 ^ + JS; e

c k 2 t ) 
C k 2 

C-. , t e 1U • 

I f one chooses c ^ > c ^ f o r i < k, and c ^ > c ^ , 

|y K(T)| < K V I +L«KKL 
TC3 0 + e " C k l | Q k +

 C k l 

k - 1 
+ Z LA. 

i = 1 k i 
C I 3 
CLI. 

- c.,9. 
e iU k 

c . , 
14 

c. , t e kk 

'k2 

c, , t e kU 

I f c c, , , and c . , a r e chosen s u f f i c i e n t l y l a r g e , t h e de s i r ed k 2 ' kU 14 

i n e q u a l i t y w i l l t hus hold fo r a l l t > 9^ . 

Real r e p r e s e n t a t i o n theorem. — For t h e purpose of e s t a b l i s h i n g c r i t e r i a 

f o r s t a b i l i t y of t he i d e n t i c a l l y zero s o l u t i o n of (4), t he s o l u t i o n of 

t h e system ( 6 ) , (£) i n t h e form of t h e contour i n t e g r a l ( l £ ) i s un­

s a t i s f a c t o r y . Rather , an analogue of t h e v a r i a t i o n - o f - c o n s t a n t s 

formula i n r e a l form i s needed, and t h i s can be obta ined when one 

one o b t a i n s fo r t h e i n t e r v a l T < t < T + 9. 
— — k ' 

| y k ( t ) | < k k ( e k ) | + l a j / A (ek - h ) c k 3 e c k l ^ " h ) dh ^ 
9, 0 k 
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APPLIES THE CONVOLUTION THEOREM BELOW TO THE FORM OF THE SOLUTION (L£), 

AFTER SHOWING THAT Q ( S) ^[ias 8 X 1 INVERSE TRANSFORM, J = 1, 

3 S 
9***9 n j IT 

IS CLEAR THAT EACH TERM OF R.(S) HAS AN INVERSE TRANSFORM. 

3 
IT WILL BE SHOWN THAT ( S J SATISFIES THE HYPOTHESES OF THE 

3 S 

FOLLOWING THEOREM [ 7 ] : LET F (S) BE ANALYTIC IN THE HALF-PLANE 

RE S > O< > 0 AND HAVE THE REPRESENTATION 

w \ _ c . u ( s ) 
F ( S ) " I + T T - I > 8 8 > 0 , 

S 

WHERE U(S) IS BOUNDED. THEN F(S) IS THE LAPLACE TRANSFORM OF THE 

FUNCTION 

X + I • 
F(T) =PR.V. ±?f e F(S) DS, X > O< , 

X - I 0 0 

WHERE PR.V. DENOTES THE CAUCHY PRINCIPAL VALUE OF THE INTEGRAL. OBSERVE 

THAT, SINCE G.(S) IS ANALYTIC FOR ALL S, AS CAN BE SEEN READILY, 3 
A ^ GJ IS ALSO ANALYTIC FOR S > (X^ } WHERE RE S = IS THE 3 
LINE WITH THE PROPERTY THAT ALL ZEROES OF G.(S) LIE TO THE LEFT OF 

3 
THIS LINE. OBSERVE ALSO THAT 

9 (18) 

AND IT WILL BE SHOWN IN THE NEXT LEMMA THAT 

THUS 1 IS THE LAPLACE TRANSFORM OF THE FUNCTION CTTSL 
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, £. + ix ts 
K.(t)= lim ^ / r\ ^ | ^ ^ ^ . > o<. , (19) 

->• + <» 

where the existence of the line Re s = CX. has been established by 
3 

Theorem 1. 
Lemma 1. K.(t), defined by (19), has the following properties: 3 

i) K.(t) = 0 for t < 0 J 
0 . ii) K.»(t) = a.. / J(©. - h) K.(t - h) dh, t > ©. 3 33 o 3 3 5 3 

iii) K (0+) = 1 . 

Proof: i) If t < 0, the integral defining K.(t) is zero, since no 
3 

new singularities are encountered in shifting the contour to + 0 0 , 
ii) Observe that this states that K.(t) is a solution of the 

3 
homogeneous equation 

©. y.'(t) = a. . / J(©.- h) y.(t - h) dh, t > 3 33 o 3 3 9 V 
for each j = 1 , n . To prove this, one would like to differentiate 

the integral (l9) which defines K. . But since this cannot be done 
3 

directly, we observe first that (l8) can be written n -i S - G. (s) n 1 _ 1 . .1 _ 1 
GTTS! = £ + J = - + Q. (A) , 
i .\S J S n f \ S 1 

3 sG A s ) J 

where a. .©. a.. ~ 
- (1 - e" V) QJTS) = — - ^ = CXJLJ. 3) a S | S| - + - , (20) 

3 
if Re s > o{ . . Thus, for t > 0, we obtain 3 
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K.(t) 3 1 B. + ix ts 
= lim - i - / J ^— + e t s Q . ( s ) d s , 

x + 0 0 B . - i x 3 
or 

K.(t) J 
i t s 

= 1 + lim / 
x -* + 0 0 B. - ix 

J 

a . .9. a .. n 

JLLJ - (l - e" V ) s 2 s 

sG.(s) J 
d s , (21) 

Now from (20) it is clear that (2l) can be differentiated to give for 

t > 9. [8] 
3 

K . 1 (t) = lim 
J x -* + 

n B. + ix 
— / 3 

B. - ix 
3 

ts 
'a. .9 a. . 

i U - -r (i -
s s 

- 9.SX e J ) 

G.(s) 
3 

ds. (22) 

To show that the integral in (22) is the right-hand side of i i ) , observe 

that 

^ - 1 " f ^ = / j ( 9 . - h) e" S h dh. 
s 2 0 3 

After this expression is substituted into (2l) and the order of integra­

tion is interchanged, 

9. 
K. ' ( t ) = a. . / J (9 - h) 
3 33 o 3 

lim 
x -> + 0 0 

+ ix s(t - h) 
"crtsT 
3 

ds dh. t > 9. ' 3 

which is just the result stated in i i ) , using the definition of *^(t) 

given by (l9h 

i i i ) The proof follows from (21)j we can write 
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. ^ + n t s , 
K.(0 +) = l im l im J ^ / R 3 . 2— + e

t S Q . ( s ) d s , £ . > CX. . 

t -* 0 x -* °° / J 

or by uniform convergence in t , f o r small t , t h e l i m i t s and t h e i n ­

t e g r a t i o n can be in te rchanged , and t h u s 

K.(0 +) = 1 + l im j i . />fJ . l im e t s Q . ( s ) ds , 
2 T r i ^ j " l x t - 0 + 3 

y i e l d i n g 

K.(0 +) = 1 . 
3 

Theorem 2. The s o l u t i o n of t h e func t i ona l system (6) s a t i s f y i n g t h e 

i n i t i a l cond i t i ons (5) i s given by 
Q R 

y . ( t ) = q . ( 9 . ) K . ( t - 0 . ) + a . . / J / (r - p ) K . ( t - 0 , - p ) dp q . ( r ) d r 
J 3 3 3 3 J J o 0 J J J 

t j - 1 t 0 . 
+ / K . ( t - t) W.(t) d r + 2. a . . / K . ( t - t) / J ( 0 . - h ) y . (t - h) dh d 

0 . J J i = 1 J 1 0 . J 0 ^ 1 

J J 

3 = 1 , . . . , n , where K . ( t ) i s de f ined by ( l 9 ) . 
3 

Proof; In Theorem 1 i t w a s shown t h a t t he formal s o l u t i o n (l5>) of (6) 

fo r t > 0 , i s an a c t u a l s o l u t i o n . Now (l5>) may be w r i t t e n in the form 
3 

A+ i x - ( t - 0 . ) s 
7 , ( t ) = q . ( 0 . ) l im F / 3 6 H L i ^ ds 

3 3 x -> + - - i x j V s ; 

£ . + i x s ( t - 0 . ) 0 . r 
+ A I I U m ^ / r J • 0 U ' 1 / 3 / ( r - p ) e - P s dp q ( r ) d r ds 

-I. « y«.-XX 1 0 0 J 

X - + + 0 0 J&J O 
1 A + i x t s 0 0 

+ l im ~ r / / J [2-r-x / e~ S I > ¥ . ( r ) d r ] ds 
x-> + » 2 N X A . - i x V s ' 0 . J /"̂  0 3 

3 - 1 ^ + i x f t s 0 0 0 
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g . > 0( ,3 where the definition of R. from (ll|.) is used. The defi-

3 3 3 nit ion of K.(t) and the convolution theorem [9] applied to this equa-3 
tion give the desired result. Note that 

lim y (t) = lim + K (t - Q.) q 1 ( 0 , ) = q , ( 0 • 
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CHAPTER III 

BEHAVIOR OF K.(T) FOR LARGE T 
3 

BEFORE THE NONLINEAR SYSTEM CAN BE CONSIDERED, THE BEHAVIOR OF 

SOLUTIONS OF THE LINEAR SYSTEM A S T TENDS TO INFINITY MUST BE EX­

AMINED MORE SPECIFICALLY. THE FOLLOWING RESULTS, OBTAINED BY NOHEL 

[10], [LL] ARE IMPORTANT FOR THIS PURPOSE. 

LEMMA 1.— THE CONSTANTS A., IN (6) PLAY THE FOLLOWING ROLE: 
3 3 

I) IF A.. > 0, G.(S) HAS AT LEAST ONE ZERO WITH A POSITIVE 
33 3 

REAL PART. 

- 0 O 2 
II) IF A .. < 0, LET A.. = — . THEN, IF 

33 9 33 9 

W. ^ -£r, N = 1, 2, . . . , ALL ZEROES OF G.(S) LIE STRICTLY IN THE 
3 3 

LEFT S-HALF-PLANE. 

- W .2 

1113 ^ ajj =
 "5^" ' wj =

 T j ' n =
 1 ^ 1 2> * # * ' V s ) 

HAS EXACTLY ONE PAIR OF ZEROES ON THE IMAGINARY AXIS FOR EACH N, WHILE 

ALL REMAINING ZEROES LIE IN THE LEFT S-HALF-PLANE. 

IV) IF A.. = 0 FOR SOME J < N, THE FUNCTION Y. CAN BE FOUND 
33 - 9 3 

IMMEDIATELY BY INTEGRATION OF THE J !TH EQUATION, SINCE EACH Y_̂ , FOR 

I < J, IS A KNOWN FUNCTION OF T. NOTE THAT IN THIS CASE G.(S) = S, AND 
3 

THE ONLY ZERO OF THIS FUNCTION IS AT S = 0, 

PROOFS I) FOR EACH J > 1, G_.(S) IS CONTINUOUS FOR ALL S, 
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and G . (0) < 0 . 
3 

lim G . (s) = + 00 

3 s •* + 00 

Thus G.(s) must have at least one real positive zero as a consequence 3 

of the intermediate-value theorem. 
- w.2 

ii) Let a.. = ^ , and let s = in for some real number n, . 
33 3 

Then 

0(1!,) = 

w.2 -JL 
0 . 

3 

1 - cos ©.n 

r-̂  + i 
• 3 2 , 2 . Q -n + . s i n ©.n 

' 3 J J* if ^ 0 

(23) 

i f rj = 0 . 

Observe that the real part of G (iij) will be zero if, and only if, 
2nn 

©.rj = 2 nit , i.e., n = -g- , n = + 1 , . . . . Since G.(s) is entire 
3 j J 

in s, the argument principle can be used. A contour in the form of a 

large semicircle C is taken in the right half-plane, and the change 

in (arg G.(s)) in going around the boundary of C is computed. 
3 

Let s trace out the contour ABCDA in the s-plane shown in Fig. 

1 , and compute A arg G.(s) on ABCDA. First, on AB, let s = Re^ , 
3 

assuming R large. From (l£), 

Further, 
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Figure 1. Contour for Integral in Lemma 1. 
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A arg G.(s) = A arg R 3e 3 1^ + arg (l + 0{i~) ) - A arg (R 2
e
2 1^) , 

3 R 
or 

A arg G.(s) = A arg R e ^ + A arg(l + 0 ( i ) ) , 
R' 

Thus, on AB^ A arg G.(s) = 5j , noting that, for large real s, G.(s) is 
3 3 

real and positive, and arg G.(A) is zero. On BC, let s = in, . Then, 
3 

from (23), since w. ̂  ~ " , G.(irj) =/ 0 , and arg G.(irj) is a continuous 
3 3 3 3 

function of n with arg G.(i - 0)= 0 . Thus, as s traces out the line 
3 

segment BC, arg G.(s) decreases from 5 to zero. The segment CD is 
3 

handled in the same way as the segment BC, and; in this case, arg G (s) 

decreases from zero to - ̂ , while the arc DA is handled in the same way 

as the arc AB, and arg G.(s) increases from - * to zero. Mien these 
3 

results are combined, one obtains arg G (s) = arg G.(s) [AB] + arg G.(s) [BC] 3 3 3 + arg G.(s) [CD] + arg G.( s ) [DA] , 3 3 
or, 

which yields 
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A arg G.(s) = 0 

on ABCDA, provided that w. / , n = + 1, + 2, . . . , and thus, 
3 3 

by the argument principle, all zeroes of G.(s) lie in the left s-half-

plane, 

iii) If ¥. = ? E , n = + 1 + 2. • . . , we find from (23) that 
J J 

n = ~ L , n = + l + 2 is a zero of the function G.(in). If 

a contour similar to Fig. 1, but indented at the zeroes is taken, it is 

seen that there are no zeroes of G in the right half-plane. 
J 

This lemma yields a result better than Theorem 1 about the 

existence of the line Re s = 0( ^ which has the property that all zeroes 

of G.(s) lie to the left of this line in the case a.. < 0. 
3 33 

- W.2 
Lemma 2.- If a ^ < 0, a . . = -^J- , ^ ^ 2 ™ , n = + 1, + 2,..., 

3 3 

there exists a constant X . > 0, such that 
3 9 

X . 
K (t) = 0 ( e" J t ) , t > 0 , j = l , 2, . , . , n . 

- w 2 
2 nri i Proof; If w . i- -g- , and if a. . = • — , then, by Lemma 1, all 

3 3 3 3 3 

zeroes of ^ ( s ) lie in the left half-planej hence, there exists a con­
stant X . > 0, such that all zeroes of G.(s) lie in the half-plane 

3 3 

Re s < - X . < 0 . 
3 

Recalling the definition of K.(t) in (L9), the path Re s = &. may 
3 f 3 
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taken as 

Re s = , \ > 0 . 
2 * J 

Thus - x. 
I + I T 

ts 
+ I X 

-1 <- UvJ 

K,(t) = ^ lira / -S,—, ds,t>9. 
X "> + OO - ~ J ' J 

- 7 ^ - ix 

As before, 

where 
G .Tsl s 

Q.( s ) = 0 ( - i _ ) 

|s|3 

as Isl -> 0 0 , for Re s > - x • therefore 
J 

X . X . 
T s^+ix ts - J . + ix 

K i ( t ) = 2RTI L I M J X — ds + lira / ^ e t SQ.(s)ds, 
2 " 1 X • r 

or, equivalently, 

Now let 

- -ji + ix 
K (t) = giy lira / e t s Q (s) ds . 

J
 X -> + OO A J 

—Y" - i x 

- x. 
s = — J + iv 

Then 

K.(t) 
J 

X . - —it x x . 
6 ^ lira / e l t V Q.(- -JL + iv) dv, t > 9. 2N x + 0 0 - x 
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Since 
0 0 x. 

/ |Q,(- -J + iv) | dv 
_ OO 

w 2 
is convergent, the result follows. It is clear that if a = - - G — , 

33 » j 

w. = Sĵ I , n = + 1, + 2, . . . , K,(t) is merely uniformly bounded, and 

3 Y J 3 
if a.. > 0, K (t) becomes unbounded exponentially. 33 3 
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CHAPTER IV 

STABILITY 

Y, 1 = Z a.. / J(9. - H) Y (T - H) DH , (2U) 
J • _ -i J l <-\ .1 -L 

2kn 
is asymptotically stable j if w. = *— , it is merely stable, and if 

3 J 

a . > 0 , it is unstable. However, as is well known for ordinary differ-33 9 

ential equations, it does not follow without proof that the same re­

sults hold for the corresponding nonlinear problem. 

The following result [12] will be employed: 

Lemma 3«— Let F, G, and H be continuous real-valued functions for 

t > a, with H(t) > 0^ and suppose that, for t > a, 
t 

F(t) < G(t) + / H(s) F(s) ds . (2$) 
a 

Then, for t > a, 
t t 

F(t) < G(t) + / H(s) G(s) exp(/ H(u) du) ds . 
a s 

Proofs Let 
t 

R(t) =/H(s) F(s) ds . (26) 
a 

Before proceeding to the stability theorem for the nonlinear sys­

tem, note that Lemma 2% combined with the representation theorem, im-

v 2 ^ 
plies that if a. = — J — w „ ^ , k = + 1, + 2, . . . , the iden-33 J

 3 3 ~" 
tically zero solution of the linear system associated with (h)9 

.1 © 1 a.. / 
i = l ^ 0 
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Then 

R»(t) = H(t) F(t) , 

, w. t ^ , k = + 1 , + 2, . . . , j = 1 , 2, . . ., n. 

Let g. be continuous in (t, u) for t > 0 and ||u||j small. Moreover, let 
3 

gj(t, u) - o U l u l l j ) , 

as I |u| I tends to zero, uniformly in t, for t > 0, and assume each of 

the initial conditions q. to be continuous for 0 < t < Q., j = 1 , . . . , n . 
J 3 

and, from ( 30 ) , 

R1(t) - H(t) R(t) < H(t) G(t) . 
t 

Multiplying "by exp( - / H(u) du , 
a 

t t 
4(H(t)e- a" H ( u ) d U ) < H(t) G(t)e" / H ( u ) d u • at — a 

Integrating from a to t, 
t t t 

R(t)e " / H ( u ) d u < /H(s) G(s) e " / H ( u ) d u ds , a — a 9 

a 
or 

t t 
R(t) < /H(s) G(s) e " / H ( u ) d u ds . (27) s a 

Using (27) and (26) in (25) , 

t t 
F(t) < G(t) + /H(s) G(s) exp( / H(u) du) ds . 

a s 
The principal result can now be stated. 

Theorem 3 . — In the nonlinear functional system (U), let a^ < 0 , 

- w ,2 
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Then the identically zero solution of (1±) is asymptotically stable. 

6 = max q.(t) (28) 
r0 < t < 0 . 

- J 
a l l 3 

can be continued for increasing t > 0 . , so long as | | $ | | . remains 

3 3 
small. As long as 0.(t) exists, the representation theorem for the 

3 
linear system suggests that the components 0 At) satisfy the integral 

equation t 0 . 
0.(t) = x (t) + / K.(t - T) / J ( 0 . - h) g.[T - h,0 ( T - h),...,^.(T - h)]dh dx 

j - 1 t J 0 + / K . ( t - T ) Z . a . . / J ( 0 . - h ) 0T.(T - h ) d h d T , 
0 . J i = l -1 

J 

where 
w.2 0 . r 

x . n ( t ) = q .(0 .)K.(t - 0 . ) - J / J / [ ( r - p)K,(t - 0 . - p]dp q.(r) dr (30) 3U 3 3 3 ^ 3 0 0 ^ ^ 

and, by Theorem 2, 

t 3 - 1 9. 
x . n ( t ) + /K.(t - T) T a.. / 3(0. - h) 0 . (T - h) dh dr 

J 

is th a t solution of (2k) satisfying 

y.( t) = q.(t) 0 < t < 0 . 3 ^3 > - ~ 3 , 

Proof: The solution components 0,(t) of (I4), with 
3 
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/- w.2 \ 

First, it is shown that there exist constants 8 > 0 and X J > 0 , 

such that 
X. 

I*j0(t)| < ^ e" V ( t " V t > Qy j = 1, . . . , n , (31) 

where 6 i s a constant which will be small provided only that 6. in 

(28) is small. To prove this, recall that, by Lemma 2, there exist 

constants X . > 0 and c ... > 0 , such that 
X . 
j + 

K (t) < e" 2 , t > 0, j = 1, 2, . . n. (32) 
If (28) and (32) are used in (30) , (30) becomes 

X . g X . X . 

|x.0(t)| < 6 C L L E - -2^ ( t - V + 4 - C..I.6- ' V/ V(r - p) e T ?dP dr. 

Now define 
©. r 

c ,9 = / V(r - p) e 2 p dp dr , 
J ^ 0 0 

and 

8 ; ) 1 = 8 0 j l ( l + ¥ 0 j 2 } ' ( 3 3 ) 

This proves (31), and (33) shows that 6 ^ can be made small by taking 6 

small. 

If one uses (31) and (32) in the integral equation (29), one 

obtains for t > 0^ , 

where a.... in Theorem 2 has been replaced by / —̂ —J . This can be 

verified by direct substitution. 
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| 0 . ( t ) | < 6 j l e " 2^ ( t * V 

+ c . / e " 2 1 ( t " T ) / 3 ( 0 . - h ) | g . f ^ h , 0 . ( T - h ) , . . . g f . . ( T - h I I | d h d« 

+ c . n / e " T U " t J | Z a . . / J ( 0 , - h ) 0 . (T-h) dh | dx . 
3 1 0 . i = l 3 1 0 J 1 

I f one employes t h e o rder cond i t i on on g and D e f i n i t i o n 3 , one ob ta ins 
j 

f o r t > and | | 0 | | . s u f f i c i e n t l y sma l l , 
x. t N / + x ©. j - i 

j 
t ^ * o 

+ e c n / e " ^ ( t ~ T ) / J ( o . - h ) | g f . ( T - h ) | d h dT 
J-L Q 0 J J 

+ c._ / e - t C t " T J / J ( 9 , - h ) £ | a . . | 1 0 . ( T - h ) | d h d T . 
J-L Q o J i = ] _ 3 1 1 

J 
Af t e r t h e terms invo lv ing sums a r e combined, 

x . t X * © 
| 0 . ( t ) | < a . . e " - / e " ^ ( t - T ) / J ( © . - h ) | ^ . ( T - h ) | d h dT (3H) 

3 J i J i Q Q 3 3 
3 

+ C n X ^ l a - - l + C ) / J (©.-h) |^ [ . (T-h)dh dT . 
3 T~; ( J 1 J ©. o J 1 

1 - 1 J x . 
/ \ t 

I f b o t h s i d e s of (3U) a re m u l t i p l i e d by e 2 and U. i s def ined by 
X . 

V . M = e i | ^ ( t ) | , 

one o b t a i n s , a f t e r i n t e r chang ing t h e o rde r of i n t e g r a t i o n i n t h e f i r s t 
double i n t e g r a l , 
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X © © t X 

U j ( t ) - V 6 j 4+ e c._ / J(©.- h ) / e "2" U . ( T . h ) d T d h 
J-L 0 J ©. J 

J 

j - 1 t Xj © . 
+ c„ 21 [|a..| + e 1 / e T T / J(©.- h)| 0.(t - h)| dh d x . 

J l i = l J 1 ©. 0 3 1 

3 

if ||0|| . is sufficiently small. Let (t - h) be a new variable in the 
3 

first double integral, and call it t again. Then 

U j ( t ) - V ^ J + «c. / J(0.- h) e if h / j U.(T) dx dh (35) 
* J ± 0 J ©.- h J 

©. \ t - h 
+ ec.., / J(©.- h) e 2 n / U.(t) dx dh 

J l 0 J ^ 3 

J 
j - 1 t \j © 

+ c S ~ [ | a . . | + e ] / e T / J(©.- h) |0. (x - h)| dh dx 
J-L J1 q. o 3 1 

for t > ©. , provided that ||0|| . is sufficiently small. 
3 * 3 

Define 
3 - 1 t ^ © 

F.(t) = y [ | a . . | + e] / e 2 T / 3(©.~ h)|0.U - h ) | dh dx (36) 

i = 1 j 

j = 2 , . . . n, and F (t) E 0 . 

The following lemma will be employed; 

Lemma U. — Under the hypotheses of Theorem ^ there exist positive 

constants X., q*-> such that 
3 3 

X . 

F (t) < ye " ̂  t, 

where . -*• 0 as 6 -»• 0 , j = 1 , . . . , n, and where X . is defined as in 
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(31). Further, without loss of generality, it can be assumed that 

+ ec. n / ^(9,- h)e T 2 h / U , U ) dx dh + c A 1 A e H " CT j } t 

J- 1- Q J Q e 3 JJ- J j 

if t > 9., and ||#||. is sufficiently small. Note that U.(t) is known 
J O 3 

on 0 < t < 9̂  , and can be expressed in terms of Q ^ ^ ) there. Thus 

the first integral in (38) is a constant. Let 

9 X j 9 
8,0 = / j ( V h)e 2 h / J U . ( T ) d T d h , (39) 

J 0 J ©.- h J 

it is evident that o. ? will be small if 5. is sufficiently small. 
3<~ 3 

Using (39) and the fact that U.(t) > 0 in (38) , we obtain, for t > 9 
3 3 

and I | 0 | I . sufficiently small, 
3 

9 Xj t 
U (t) < 8. n e " V + e c . n 8 , p + ec,n / j ( 9 . - h)e 2 h / U.(t) dr dh 

Letting 

crj < T . (37) 
i = 1,••., n 

Proof will be postponed. 

Vfrien Lemma h is used in (35) , one obtains 

j j ©. j, 9. 
U . ( t ) < r e 2 + £ c . 1 / J ( 9 . - h ) e T / J U.(t) dx dh (38) 

3 " Jl J 1 0 J 0 . - h J 

J 
x. x. 

9. i , t - h 
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c. = / j ( 0 . - h)e h dh, 
3 3 0 J 

+ f e e . , c 
Q Jl J3 
j 

X . X . 
J O v ( J 

8.. e 2 j + ec... 6.0 + c._ 0 .e 2 
Jl Jl j2 Jl J 

cr \ )s 
J n n ( t " s ) eC._c. 0 

e jl j3 ds. 

Recall that, from (37), 
x. 

0 < c r 

thus, if one chooses 

e < 
5" c .,c . 0 

jl J3 
which can be done by choosing . small, one obtains, after inte-

3 

grating, 
x. 

U.(t) < 8..e 1? °.1 + 

. . cc ._c .At - 0 . ) J f i . 
+ e c . l 6 j 2 e j l 3 3 3 - , e 2 j - ec . 

C . . 2 . e c 0 

+ J 1 J J3 

\. x. 
- cr)t ec.nc._t ( J - o r . - e c . - c . J © . 

e 2 - e jl j3 e 2 jl j3 J 

a positive constant, (39) simplifies to 
X . x. t 

„ / , \ , t 0 ^ 6 , , „ _ . y (J - o O t + e C . - . C . ~ / U.(T) dr, (I4O) U .(t) < 8 j le 3 Cjl 6j2 + Cjl * j e 2 ^ Jl J3 0 j 

if t > 9. , and | |0| | . is sufficiently small. Applying Lemma 3 to 
3 3 

(1*0) yields, for | |0| | . sufficiently small, 
3 

U.(t) < e._ e ¥ ° j + e c. 8.9 + c.n J . e ( ^ " ) * J - Jl J Jl j2 jl v j J 
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After simplifying, and making crude estimates, this reduces to 

U .(t) < 

3 
Noting that 

err) c. y. 

r: - J L 

+ ^ i i e ^ V e c C 

X . 
e( J - cr.) t. (Ui) 

< 2 

when e and cf. are chosen as above, (III) becomes 3 ' 
U.(t) < 

J 

if t > ©., and | |0| | . is small. If now the definition of U. (t) is 3 3 3 
employed, 

x. 
| ^ ( t ) | < |2c «j + 8 j l e + e c ^ c ^ l e " ^ (U2) 

if t > 0 . , and ||0|| . is sufficiently small. If one lets 3 3 
X . 

UJ = 2 c 3 i * J + 8jl e 2 9 j + e cji c j 2 ' 

a positive number which goes to zero with 6, (1±2) reduces to 

l̂ (t)| < u j 6 -«3 * , 

if t > 0^, and | |0| | is sufficiently small. Using Definition 31 

won = î (t) 
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it is clear that if 6 is chosen sufficiently small, (U3) will hold for 

all t > 9̂ $ moreover, since 

if 0 < t < 0^, 0-̂ (t) is uniformly bounded for all t > 0 by a constant 

which can be chosen arbitrarily small, provided only that 6 is chosen 

sufficiently small. Next, we assume that the components (f $r>9<>..,$^ . 

satisfy (U3)| as above, this will imply that there is a uniform bound 

for each component (jf ...,$k ̂  for all t > 0, provided only that 6 is 

sufficiently small. Thus, will be small so long as \$, (t)| and 

6 are both small enough. Thus |0k(t)|will satisfy (U3) for all t > © k , 

and thus (U3) holds for all j = 1 , . . . , n, provided 6 is chosen suffi­

ciently small. Moreover, (U3) implies that ||0(t)|| . 0 as 
3 

t ->- + <» ̂  j = 1 , . . . , n. Thus, by Definition 5>. the identically zero 

solution of (U) is asymptotically stable, and hence is also stable. 

This completes the proof of the theorem, except for the lemma, which 

remains to be proved. 

Lemma Under the hypotheses of Theorem 3 , there exist positive con­

stants tf.,cr?, such that 
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A. . 

F,(t) < 3 , e ( ^ * , 

t > 9 . , where ^. •+ 0 as 6 + 0, j = 1 , ..., n, and where X. is defined as 
3 3 3 

2J1 (31) . 

Proofs Recall the definition of F.(t): 
3 

= £ f | a , , | + e j f e 2 T / j ( 9 -h ) |0 . (<r -h ) |dh d r , j = 2 , 3 , . . . , 
J i = i c J 1 ; ©. o J 1 

(36) 

F (t) = 0. 

The lemma is trivially true in the Case j = 1 . Using induction, suppose 

the conclusion of the lemma to hold for j = 1, 0..,(k - l ) , for some 

k > 2 . In particular, by this induction hypothesis, the estimates on 

each | 0 .| given by (U3) will hold for t > 9 . , and for t < 0 . , 
3 3 3 

| 0 j(t)| < 8 , 

j = l,...,(k - l ) . Define A. try 
3 

3 3 s 

Then 

A. = max(u., 6 e ° o j) . (hh) 
3 3 

| 0 (t)| < A. e~ °j \ (U5) 
J J 

for all t > 0 . If one takes absolute values in (36) , and uses (U5), 

(36) becomes, for j = k, 

kl . . 
i=l 

t K̂T 9 -?r y k /^ >» A _ - c/. (-r-h) 

0 
8L . I + e / e T / K ( 9 -h) A.e ~ 1 " "'dx dh, 

t > 0. . Let 
k 



CT̂ . = min (min .» ^ 

Then, making crude e s t i m a t e s , 

K ( t ) | < I C . J Z 1 

k i ' . t ; l—i 

i < k 

t \ 0, k - 1 .( . x 
/ e T T / k ( 0 - h ) £ ° t ( T - h , d h 
On 0 j = l ^ 

t > 0, . I n t e g r a t i o n y i e l d s 

J -L 
Z 1 l a ^ l + e ( k - l ) 

i = l 

e k k - 1 

To s imp l i fy t h e n o t a t i o n , l e t 

C7< T 
e k D X 

no te t h a t p, -> 0 a s 6 0 , by ihh). I f one s u b s t i t u t e s t h i s i n t o 
Iv 

i n e q u a l i t y becomes 

F . ( t ) < P v / e ( T - ° k ) T D T . k - p k ft 

Another i n t e g r a t i o n y i e l d s 

F , ( t ) < k — 

I f one l e t s 
2 k 

<fk = 

t h e i n e q u a l i t y becomes 

F. ( t ) < Jf. 

t > 0 , k = 1 , . . . , n, and t h e proof i s complete . 
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