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SUMMARY 

In many air conditioning applications, the cooling and dehumidification coil is unable to 

properly meet the dehumidification requirements of the load. In any air conditioning process, 

the enthalpy change of moist air can be considered to have two components, the "latent" 

component at constant temperature, and the "sensible" component at constant moisture. The 

latent heat ratio of the load is defined as the ratio of the latent load to the total load. The 

latent heat ratio of the system is the ratio of the latent cooling to the total cooling performed 

by the cooling equipment. The latent heat ratio of a conventional cooling and 

dehumidification coil is often smaller than the latent heat ratio of the load. This mismatch is 

often ignored, which degrades the comfort conditions, or compensated with reheat, which 

degrades energy efficiency. The most efficient means of increasing the latent heat ratio is 

currently a heat pipe to exchange heat from the return air (upstream of the coil) to the 

downstream, supply air. A proposed cycle to be investigated, desiccant enhanced cooling 

(DEC), utilizes moisture exchange in a similar way that heat pipes use heat exchange to 

provide a better match between the latent load of the space and the latent load capabilities of 

the equipment. A rotary desiccant wheel, or moisture exchanger, is placed between the supply 

and return air. The return air picks up moisture from the wheel and the supply air deposits 

moisture to the wheel. Since the return air stream is now nearer to its dew point when it 

reaches the cooling coil, the coil performs increased dehumidification. After exiting the 

cooling coil, the supply air stream undergoes additional dehumidification as it passes through 

the desiccant wheel. The adsorption process in the wheel releases energy, thus effectively 



providing free reheat to the moist air. The air leaving the desiccant wheel, headed for the 

conditioned space, now has the proper supply air conditions of low humidity and moderately 

low temperature which allow it to absorb the heat and humidity load of the space. In addition, 

the evaporating temperature of the vapor compression unit can be raised, increasing its 

efficiency. 

Proper materials selection and design of this innovative technology require realistic 

simulations. It is anticipated that a various desiccant materials will be investigated for the 

proposed system. The current work considers methods to improve both the accuracy and 

efficiency of the needed simulation. A parabolic moisture concentration profile assumption 

that has proven to agree well with experimental adsorption data will be used to model the 

diffusion process inside the desiccant particle. This contrasts with an existing model, the 

pseudo-gas-side controlled model, which uses an empirically degraded lumped transfer 

coefficient approach to solve for the rate of adsorption. The use of the parabolic 

concentration profile is more suitable in modeling the adsorption process for a variety of 

materials than the lumped capacitance method as it proceeds from first principles after the 

concentration profile assumption. It is expected to increase the accuracy of the solution as the 

parabolic profile assumption more closely approximates the physics of the adsorption process. 

In addition, the resulting system of partial differential equations retains the same number of 

independent variables as the lumped transfer coefficient method. Both the transient and the 

periodic steady state solutions are of interest. The two solutions will be investigated to 

determine the most efficient way of simulating the system comprising the desiccant wheel, 



cooling coil, and refrigeration cycle. If the integrated system proves through use of the 

transient model to respond much more quickly to changes in load than the rate at which the 

load changes, then it will be possible to use the periodic steady state solution to simulate the 

DEC system. The advanced model of this innovative concept will be used to assess desiccant 

enhanced cooling as an alternative to heat pipe technology and to evaluate preliminary design 

parameters. 

The following reports on the state of the project. Development of the rotary desiccant wheel 

model is in its final stages. The development of the governing equations for the parabolic 

concentration profile model and the implementation of the model is described in Chapter 3. 

The model validation procedure is covered in Chapter 4. The first phase of the validation 

procedure was to compare the model with simple systems. The model was first compared with 

a rotary heat exchanger and a counterflow heat exchanger by setting the mass transfer 

coefficient to zero and setting the speed of rotation high in the case of the counterflow heat 

exchanger. The agreement with published heat exchanger performance data was excellent. 

The model was then compared with fixed bed adsorption experimental data and 

simultaneously compared with two other models; the pseudo-gas-side controlled model, and a 

model that accounts for solid side diffusion. The parabolic concentration profile shows good 

agreement with the experimental data and the solid side diffusion model. The commonly used 

pseudo-gas-side controlled model also shows favorable agreement. However, the parabolic 

concentration profile model has the advantage of incorporating a commonly available 



property, the effective diffusivity, to account for the solid side diffusion process. The pseudo-

gas-side model's empirically degraded mass transfer coefficient has been determined for a 

very few systems. As the research will investigate the effect of a variety of innovative 

desiccant materials on the proposed system's performance, the pseudo-gas-side controlled 

model is not feasible for the current study. 

The model is then compared to the considerably more complex case of a rotary heat and mass 

exchanger. The results of this comparison were fairly favorable, however further work is 

required to quantify the results. Various convergence routines were attempted in order to 

speed up convergence to periodic steady state. None of the routines tried thus far have been 

entirely successful. The convergence routine attempts will not be addressed in this report. 

The results will be reported at a later date when this phase of the project is completed. 



1. INTRODUCTION 

1.1 Concepts  

Use of desiccants for dehumidification purposes in air conditioning systems has been 

investigated in recent years. Desiccants are materials which upon contact with moist air at 

moderate temperatures exhibit a great affinity for water vapor. There are two main groups of 

desiccants: solids and liquids. Solid desiccants are porous materials. The water vapor 

molecules condense and adhere to the surface of the pores. This surface effect is called 

physical adsorption. Liquid desiccants incorporate the condensed water vapor molecules into 

their bulk. This volumetric effect is physical absorption. The term sorption has been adopted 

to describe both processes. Internal energy is released during the sorption process; 

consequently, warm humid air passed through a desiccant exits hot and dry. When the bed, or 

the solution in the case of liquid desiccants, has become saturated, hot air must be brought 

into contact with it to regenerate the desiccant. 

The most common desiccant dehumidifier configuration is the rotary desiccant wheel. The 

current state-of-the-art rotary wheel consists of a spoked hub with tape wound around 

spacers, forming a parallel passage geometry. The surface of the tape is coated with a thin 

layer of a solid desiccant or impregnated with a liquid desiccant solution. See Fig 1. for 

illustration of the geometry of the parallel passage rotary desiccant wheel. This particular 

configuration along with laminar moist air flow is desirable due to [37] its relatively high mass 
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transfer to pressure drop ratio. Various research groups have directed considerable resources 

towards mathematical and experimental investigation of these systems. As a result of this 

effort, desiccant assisted cooling systems have proven to be economically beneficial in certain 

specialty applications as well as demonstrating an improved capacity to handle large latent 

loads compared with conventional vapor compression (VC) dehumidification equipment. 

1.2 Applications  

In many air conditioning applications, the cooling and dehumidification coil is unable to 

properly meet the dehumidification requirements of the load. The enthalpy change of moist 

air can be considered to have two components, the "latent" component at constant 

temperature, and the "sensible" component at constant moisture. The latent heat ratio of the 

load is defined as the ratio of the latent load to the total load. The latent heat ratio of the 

system is the ratio of the latent cooling to the total cooling performed by the cooling 

equipment. The latent heat ratio of a conventional cooling and dehumidification coil is often 

smaller than the latent heat ratio of the load. VC technology requires the coil temperature to 

be below the dew point of the moist air in order to perform dehumidification. In commercial 

applications, reheat is often applied to the cool and wet leaving air stream in order to 

maintain prescribed comfort requirements of the air-conditioned space. In residential 

applications, the mismatch of the system to the load is usually ignored. 

The coil apparatus dew point (ADP) of the VC unit is determined by constructing a line on 
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the psychrometric chart through the return air state (state #2) and the supply moist air state 

(state #3) and extending the line to the saturation curve (See Fig. 12). A common model used 

to describe cooling coil performance considers the supply air state as a mixture of bypass air, 

which remains at the return air state, and the moist air that has passed through the cooling 

coil and has reached equilibrium with the cooling coil. In reality, the coil temperature varies 

along the length of the coil and the ADP is not the average temperature of the coil. It is a 

function of various parameters such as velocity of the air, coil depth, refrigerant temperature 

and entering air state. The ADP is actually an upper temperature limit for the cooling coil. 

Only in an ideal heat exchanger will the moist air reach equilibrium with the coil. In order to 

maintain prescribed comfort conditions, the actual coil temperature will be lower than the 

ADP temperature. As the ADP increases, the coefficient of performance (COP = cooling 

effect produced/work input) of the VC unit increases. It is desirable to have a VC unit 

operating at the highest possible ADP as this will increase the system efficiency. 

When large latent loads are present, the VC equipment is incapable of meeting the space 

conditioning requirements. For example, a standard VC unit processing 50% relative 

humidity air falls short of providing the space dehumidification requirements when the latent 

load fraction is 0.4 [14]. Even with an ADP of 40°F, the VC system does not meet the latent 

load and overcools the air. In addition to not properly meeting the load requirements, 

lowering the ADP causes the VC unit to operate at a low COP. For this reason, desiccant 

assisted cooling systems (DACS) have demonstrated technical feasibility and have been found 

to provide better humidity control than VC units in situations where large latent loads occur 
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[19], and [44]. 

Achieving lower humidity in a conditioned space is desirable in many industrial applications 

and processes. Product quality improves with lower relative humidity in production and 

storage of many items. For example, relative humidities of 10% are required for manufacture 

and storage of some pharmaceuticals [3]. Other industries, such as food and beverage 

production, electronics, chemicals, rubbers, plastics, metals, glass, cosmetics, and many others 

use depressed humidity levels during manufacture and storage of their products. 

Supermarkets applications of DACS have achieved a fair amount of success. Some of the 

reasons that supermarkets are good candidates for DACS include the high latent-to-sensible 

load that the supermarket experiences due to the sensible heat absorbed by the open food 

refrigeration cases and the large amount of traffic experienced by the supermarket. Lower 

humidity levels reduce frost buildup on the food, require less work for the refrigeration cases 

and fewer defrost cycles, and increase the shelf life of food. Cargocaire Corporation began 

marketing a commercial hybrid desiccant cooling system designed for supermarkets 

applications in 1985. There are currently 135 of these units operating in supermarkets around 

the nation. Table 1.1 lists some supermarket chains which install the hybrid desiccant cooling 

system in all new supermarkets and major renovations in the regions indicated [20], [5] and 

[42]. In 1988, Cargocaire's hybrid desiccant system sales were 250 percent higher than those 

of 1987 [5]. 
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Table 1.1 Supermarkets which routinely install hybrid desiccant cooling systems 
in all new stores [5] 

Chain 	Location 

Winn-Dixie 
H.E. Butt 
Big Bear 
Bormans 
Allied 
Pick and Save 
Air Force Commissary 

Florida 
Texas 
Columbus, Ohio 
Detroit, Michigan 
Detroit, Michigan 
Michigan 
Hybrid systems are chosen 
depending on location 

Desiccants have been found to act as a good filter for contaminants [40]. In addition to 

removing particulate contaminants, vapor contaminants are condensed out of the air. 

Desiccants are effective in removing carbon monoxide, nitrogen dioxide, and sulfur dioxide 

[40]. The adsorption capacity that desiccants have for pollutants and the subsequent effect on 

performance will be further quantified by research underway at the Solar Energy Research 

Institute and the University of Wisconsin. This attractive feature of desiccants increases the 

motivation to use them in HVAC systems as indoor air quality is an emerging important topic 

in space conditioning. As air-tightness increases, which is the current trend in energy efficient 

architecture, the contaminant problem as well as the moisture problem will be exacerbated. 
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2. RELEVANT PRIOR WORK 

2.1 Developments in Desiccant Technology 

There are two major types of desiccant systems described in the literature: hybrid and 

Pennington cycles. The Pennington cycle, first developed by Neal Pennington in 1952 [52], 

consists of a desiccant dehumidification stage followed by heat exchange with the ambient air. 

The purpose of these initial stages is to artificially increases the wet bulb depression. A stage 

of direct evaporative cooling is applied to the warm, dry air to supply cool, moist air to the 

conditioned space. The hybrid cycles incorporate a VC unit with a desiccant wheel to provide 

independent control of wet bulb and dry bulb temperature. The hybrid cycles sometimes use 

evaporative cooling to minimize compressor work, and also have the option of using 

compressor and/or condenser waste heat to partially supply regeneration energy to the 

desiccant. The Pennington and hybrid cycles vary in the amount of recirculation and 

ventilation air that is processed. See Fig. 2a and 2b for illustrations of a Pennington cycle and 

a hybrid cycle. 

The previously discussed desiccant hybrid cooling system for supermarket applications was 

developed with GRI support and marketed by Cargocaire [1] and [48]. The system integrates 

a downsized conventional VC unit with a desiccant wheel. The sensible load is carried by the 

VC unit as well as an indirect evaporative cooler, and the latent load is carried by the 

dehumidifier wheel. Gas fired heat is used to regenerate the bed. 
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Calton [11] completed a field analysis of one of these systems in a 56,000 sq-ft store. The 

airflow requirements in the store from use of the system was reduced from 1 to 0.42 cfm/sq-

ft. This lower airflow rate resulted in initial ductwork installation and materials savings that 

suggest immediate payback in installation of this type of system. 

Burns, Mitchell and Beckman [10] considered three different hybrid desiccant systems and 

performed a computer simulation of each system's performance in a supermarket application. 

The three cycles have variations on the amount of recirculation air that is processed as well as 

usage of waste condenser heat for regeneration of the bed. In this study, all the cycles 

examined were discovered to be strong alternates to VC space conditioning. 

Manley, Bowlen and Cohen [30] formulated and performed a computer simulation using field 

testing results in order to extend the performance of the supermarket systems to various 

climates, desiccant system types, and store types. The gas fired desiccant system was found to 

be attractive in humid climates. A gas fired desiccant HVAC system optimization was 

discussed. All of the optimization suggestions have since been incorporated into Cargocaire's 

hybrid system. 

Significant effort has been expended in minimizing pressure drop through a solid desiccant 

dehumidifier. A rotary desiccant wheel with highly uniform passages is desirable as it will 

have a lower pressure drop than a wheel with a wide variation in the passage size. The ratios 

of the Stanton number for heat (St h) and mass (St n,) transfer to friction factor (f) are often 
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used as one of the preliminary design consideration in a desiccant bed. The St h/f and the 

Stm/f are dimensionless parameters which represent the ratio of heat transfer to pressure 

drop and the ratio of mass transfer to pressure drop, respectively. The desired effect is high 

ratios. Table 2.1 lists the St/f ratios that have been obtained for various configurations at 

different facilities: 

Table 2.1 Experimental St h/f and Stm/f By Various Researchers [37] 

Researcher Desiccant Bed Description 

Pla-Barby 	Packed thin particle bed 
et. al 

IGT 
	

Corrugated fiber material 
impregnated with molecular 
sieve particles 

IIT 
	

Parallel wall configuration 
silica gel sheets 

UCLA/SERI Parallel passage config. 
with silica gel bonded to 
polyester tape 

&di LA 
0.06 0.02 

0.32* 0.21* 

0.49* 0.20 

0.49* 0.40** 

* Constant heat flux conditions 	 ** Projected value 

The COP of DACS such as the Pennington cycles in recent years have become similar to 

those of the absorption cycle COP. However, the desiccant assisted cooling systems have the 

advantage of requiring lower grade thermal energy than the absorption chiller. For silica gel, 

an adiabatic desiccant wheel often produces a maximum COP when the regeneration 

temperatures are 60°C to 80°C [44]. These temperatures are compatible with flat plate solar 

collector technology and can partially be supplied by waste condenser heat. 
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Table 2.2-COP's experimentally obtained for Pennington cycle DACS [43] and [55] 
Researcher COPth  COPeieC 	Approximate Date 

IGT Solar MEC I .45 1970 
IGT Solar MEC III .46 8.0 1970's 
AiResearch .60 5.8 1970's 
IIT .60 1970's 
IGT HCOP .95 6.2(Computer Projection) 1970's 
ASK 1.00 1980 
SERI 1.07 7.2(Computer Projection) 1980's 
EXXON/GRI 1.05 5.4 1983 

Table 22 lists experiment COP's for Pennington types cycles obtained various researchers. 

These results have been achieved in either field or laboratory conditions. Both SERI and 

EXXON project a COP of 1.3 [43] and [55] by about 1990. The improvements that SERI and 

EXXON plan to incorporate to achieve this include using other types of silica gel that are not 

currently commercially available, using unequal flowrates for the process and regeneration 

period, and recycling some of the hot process air for the regeneration period [55]. 

Yearly simulations were performed on a solar fired desiccant cooling system [34] by Nelson, 

Beckman, Mitchell and Close based on an effectiveness-NTU (NTU = number of transfer 

units, see Table 3.1) model for the dehumidifier wheel. This model is discussed in the 

following section. Component models of the recirculation and ventilation systems were 

developed for use with TRNSYS. Results of the six month simulation give a COP ranging 

from .67 to .79 with a variable collector area. 

Significant gains have been made in optimizing the rotary desiccant wheel. Some general 

conclusions of the optimization studies are that a parallel passage laminar flow rotary 

2.4 



desiccant wheel with high passage uniformity is desirable for pressure drop considerations. 

Small desiccant particles such as microbead silica gel are also desirable as they effectively 

transfer moisture yet decrease pressure drop through the wheel. Many promising new 

desiccant materials have been recently introduced. Other performance advances have been 

achieved through the use of desiccants that minimize regeneration temperature. The 

currently marketed DACS do not use these optimized wheels, however a small market has 

been found for the commercially available rotary desiccant dehumidifiers. The fundamental 

design concepts of the rotary desiccant wheel have been developed. The technology is ready 

for development of innovative applications of desiccant technology such as the proposed 

desiccant enhanced cooling system. 

2.2 Mathematical Models  

The solid desiccant rotary wheel and the fixed bed have been modeled in a variety of ways. 

The mass and energy conservation equations are developed as well as the rate equations at 

the solid-moist-air interface. The models that account for gas and solid side resistance 

consider mass conservation equations for the fluid phase as well as diffusion in the solid. 

Many alternative models neglect the transfer process within the desiccant and consider the 

model to be gas side controlled. For the models that consider fluid phase resistance only, the 

mass transfer coefficient combines the effect of the air boundary layer mass transfer barrier 

and the intraparticle diffusion resistance in order to account for neglecting the gradients that 

surely exist in the solid phase. With this correction for solid side resistance in the gas phase, 

such a model is termed a pseudo-gas-side controlled model. Most of the models in the 

literature assume that the local rate of adsorption is proportional to the difference between 
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the free stream humidity ratio and the humidity ratio of a hypothetical moist air layer that is 

in equilibrium with the desiccant particle. This equilibrium model is valid [29] in modeling 

adsorption processes in which the particle is small and the mass flow rate of the air is low. 

Low flow rates allow more time for the moist air at the desiccant-moist-air-interface to 

approach equilibrium with the particle. Particles size is also important in the equilibrium 

theory as the particle diameters must be sufficiently small to neglect the concentration 

gradient that exists in the axial direction for both the desiccant bed and the moist air [42]. 

Both these requirements hold true for high performance rotary desiccant wheels designed to 

minimize pressure drop. 

Carter [11] developed the conservation and rate equations for simultaneous heat and mass 

transfer in a desiccant bed. The rate equations are gas and solid side resistances for mass 

transfer and gas side for heat transfer. The diffusion equation is written for the desiccant 

granules. His numerical solution employed a modified Euler method. An experiment of a 

fixed bed was carried out and there was shown to be some discrepancy between theoretical 

and experimental results. 

Bullock and Threlkeld [8] have developed a nonlinear numerical solution to the governing 

heat and mass transfer equations for pseudo-gas side controlled model. A predictor-corrector 

numerical procedure is utilized. The shapes of the experimental and theoretical outlet air 

state curves were similar. 

R.B. Holmberg [21] considered the pseudo-gas-side controlled model and used a Crank- 
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Nicholson implicit numerical scheme for the periodic steady state case. The Gauss-Seidel 

convergence technique was used for iterative solution of the bed and fluid state. 

Maclaine-cross developed a finite difference program called MOSHMX [46] for the pseudo-

gas-side controlled model. The numerical scheme used is a second order Runge-Kutta for 

solution of the bed and fluid states. MOSHMX is also used to obtain periodic steady state 

through successive simulation of the wheel until steady state operation is reached. A Newton-

Raphson method is sometimes used to speed up the rate of convergence [46]. 

Lavan and Mathiprakasam [32] obtained linearized solutions for the governing equations for 

the pseudo-gas-side controlled model. The linearized solutions are found to agree well with 

the nonlinearized numerical solutions. The linear model saves significant computing time. 

SERI has also developed several different types of models including a gas-side controlled 

model and a gas and solid side controlled model for an isothermal bed [37]. 

An upper limit of performance for the rotary dehumidifier wheel can be established by 

analysis of a dehumidifier wheel idealized with respect to transport phenomena. For the gas 

side controlled model, this idealization results in the assumption that the heat and mass 

transfer coefficients are infinite in the fluid. The model therefore assumes no temperature or 

concentration gradients perpendicular to the flow. The modeling for this ideal wheel was 

developed by Close and Banks of the Commonwealth Scientific and Industrial Research 

2.7 



Organization (CSIRO) in Australia. This model [4], [12] and [28] combines temperature and 

humidity ratio into two independent potentials. The potentials are functions of the state 

properties of the air-water vapor-matrix system. When the conservation equations are written 

in terms of these potentials, the two equations become uncoupled, two-dimensional 

hyperbolic wave equations. The resulting differential equations are solved via the method of 

characteristics. Lavan, Monier, and Worek [26] also conducted an analysis in which a 

reversible desiccant cooling system was studied in order to determine upper limits on the 

performance of the system. The reversible thermal COP for the dehumidifier wheel coupled 

with evaporative cooling system was 4.66 for typical values of ambient humidity. 

Van Den Buick, Mitchell, and Klein [50] present the wave theory for the ideal dehumidifier 

and, using Jurinak's [23] independent potentials developed for silica-gel-air-water vapor, 

solve for the outlet regeneration and dehumidification states of an ideal dehumidifier. 

Operating charts were developed for various conditions. The independent potential charts 

have been developed by Maclaine-cross for lithium bromide, lithium chloride, and calcium 

chloride. Van Den Buick, Mitchell and Klein [50] combined the results of the wave theory 

operating charts and developed expressions for enthalpy effectiveness and moisture 

effectiveness. The effectiveness expressions define the moist air outlet state of the real 

dehumidifier relative to the moist air outlet state of the idealized dehumidifier described in 

the preceding paragraph. Once the dehumidifier effectiveness is determined and the outlet 

state of the idealized dehumidifier is solved, the outlet state of the moist air is known. The 
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moisture effectiveness expressions are arrived at by analogy with an expression for 

effectiveness of a heat transfer alone rotary regenerator developed by Shah [45]. These 

correlations are reportedly valid [50] over a wide range of operating conditions. 

The literature widely utilizes the pseudo-gas-side controlled model in the case of thin 

desiccant beds in which the lumped transfer coefficient is well known. This model, however, is 

not valid in cases where the performance of new desiccants is investigated. The solid and gas 

side controlled model is appropriate in the investigation of new materials. Yet consideration 

of the diffusion inside the particle adds a third independent variable to the problem. The 

solution is further complicated as the order of the system of partial differential equations 

increases from one to two due to the diffusion term in the solid phase. 
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3. RESEARCH PLAN 

In recent years, there have been advances in gas-fired desiccant cooling technology. Minimal 

attention to electric specific applications has been seen. As previously demonstrated, gas fired 

desiccant cooling technology has attracted a small market. The continuing need to improve 

the efficiency of cooling equipment and to improve dehumidification performance of vapor 

compression equipment introduces unique and novel problems. A new and creative 

application of desiccant technology can potentially resolve some of the load mismatch that 

occurs in vapor compression technology between the latent load of the space and the latent 

load of the equipment. 

The cycle to be investigated, DEC, places a desiccant wheel between the return and supply 

air stream in order to perform moisture exchange between the two air streams. The concept is 

analogous to heat pipe technology which performs heat exchange between the two air streams 

in order to provide a closer match between the latent load of the space and the latent load 

capabilities of the equipment. Evaluation of the DEC system via simulation requires 

modeling. The model used will assume a constant hourly heat and moisture load in the 

conditioned space. A constant load ultimately leads to a steady state operation of the system. 

Initially, a transient model will be developed for simulation of the system. If the transient 

model reveals that the load is massive and slowly changing compared with the response time 

of the DEC system, the periodic steady state solution will be sought as an additional 

simulation tool. 
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In modeling of the DEC cycle, it is anticipated that both transient and steady state system 

simulations will be necessary for this study. The transient simulation is an explicit problem, 

and the periodic steady state simulation is an implicit problem. In the periodic steady state 

problem, the bed state at the beginning of the process period is not known and must be 

assumed. When the integration of one revolution of the wheel is completed, a new state for 

the initial state of the desiccant bed has been calculated. If the calculated state differs from 

the assumed state, a new initial bed state is assumed and the integration is repeated until the 

calculated bed state equals the assumed state. A variety of algorithms are available to 

calculate the new "guess" of the bed state and these will be mentioned subsequently. The 

model developed will differ from the previous developed rotary desiccant dehumidifier wheel 

models in that a parabolic concentration profile assumption is used to model the mass 

transfer process in the solid phase. The model developed will be integrated into a VC model 

and system simulations performed. Preliminary design parameters will be investigated. 

3.1 Solid Rotary Desiccant Wheel 

i. Model Improvement-The Parabolic Concentration Profile Assumption 

The most common model in the literature for thin desiccant beds is the pseudo-gas-side 

controlled model. An experimentally determined mass transfer coefficient is used which is 

somewhat lower than an air side mass transfer coefficient in order to account for the diffusion 

resistance in the desiccant particle. This type of model can produce significant [36] error, up 

to 30%, in outlet moisture concentration over time for regular density silica gel when 
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compared with the model that accounts for a concentration profile in the particle. It is 

proposed to model the diffusion in the silica gel particle with a parabolic concentration 

profile. The parabolic profile assumption is intuitive, remarkably simple, and has been 

observed experimentally. An assumed quartic [14] concentration profile has been 

investigated, but the conclusions were that the slight gains in accuracy were not sufficient to 

compensate for the lost simplicity. The parabolic concentration profile assumption in 

adsorption studies has been shown to produce excellent agreement with the exact solution 

[14] except for an initially small time period when the profile is developing. The parabolic 

profile assumption solution also has compared favorably with Rosen's dynamic, linear 

adsorption model which considers both film and intraparticle resistances. Rosen's rigorous 

solution, presented in 1951, is now considered the classical solution to fixed bed sorption [41]. 

The conservation of mass and energy equations for the gas side controlled parallel passage 

wheel are developed through the use of the following major assumptions and simplifications 

that are currently used in rotary desiccant wheel models: 

Geometric symmetry allows the following two simplifications: 

1.No radial variation in moist air properties are considered. 

2. No radial variation in desiccant properties are considered. 

General properties of desiccants and moist air support the next assumptions: 

3. Free pore volume of the desiccant is negligible when-compared with the 

passage volume. Hence storage capacity of moist air entrained in the 
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matrix is neglected. 

4. Negligible axial conduction of heat or moisture compared with the 

forced convection rate. 

5. The tranverse temperature gradients inside the desiccant bed are neglected. 

6. Velocity of dry air is constant. 

7. Heat transfer coefficients and density of moist air are constant. 

8. Moist air is an ideal gas mixture. 

The mass transfer process can be modeled with the following final assumptions: 

9. A layer of moist air exists at the surface of the desiccant particle in 

equilibrium with the local moisture content of the desiccant particle. 

10.Mass transfer potential can be described by local differences in 

humidity ratio (i.e. a modified Fick's Law approach). 

Fig. Al in the appendix illustrates the control volume used in development of the 

conservation equations and Table 3.1 describes the nomenclature. The appendix describes 

the development of the conservation equations. After application of the above assumptions 

and simplifications, the simplified conservation of mass equation is: 

8w 	M /0 8W 
+f 	dd 	= 0 

az 	Rl 	 ar 

and the simplified conservation of energy equation is: 

01
dd

/8 	al 
+f 

az 	3  RI 	ar 
d a , 

 
= 0 
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For the constant heat transfer coefficient assumption, the heat transfer rate equation is: 

ai/az = NTUg  cp  (TT  - T) + i fg  8w/8z 
	

(1) 

Substituting the heat transfer rate equation into the conservation of energy yields the 

following expression for the rate of enthalpy change of the bed: 

avar = -11(pr;){N -rucij cp (Te - T) + ifg  8w/8z } 
	

(2) 

For a simplistic pseudo-gas-side controlled model, the mass transfer rate equation is: 

aw/az = NTU. j  (we' - w) 
	

(3) 

Substituting the mass transfer rate equation into the conservation of mass yields the following 

expression for the rate of change of moisture content of the bed: 

awd/ar = -11(13ri)Nm e,j (we' - w) 	 (4) 

Where r. = (Mad /md  ai  8). This expression, after converting all nondimensionalized 

independent variables to dimensional variables results in the following mass transfer rate 

equation: 

awdiat = - 	a L/ Pi Mdd(We'- w) 
	

(5) 

As the variable a is the surface area of desiccant per unit length, the term a L is an effective 

surface area of the rotary desiccant wheel. 

The proposed model differs from the pseudo-gas-side controlled model at this last equation. 

The additional assumption of the proposed model is that a parabolic concentration profile 

exists at all times in the desiccant particle. Fig. 3 illustrates the assumed concentration 

profile: 

W = al  + a2  (r/R)2  
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Where W denotes the local moisture content of the particle. The conservation of mass 

equation for diffusion of moisture in spherical coordinates assuming radial symmetry can be 

written as: 

8W/at = 1/r2  afr2 D aW/arl/ar 
	 (6) 

The boundary conditions are first from continuity of mass transfer at the surface of a 

spherical particle of radius R: 

- Pp  D aW/ar I rmIt = hm (we w) 

and secondly from symmetry at the center of the sphere: 

aVar I r.o 
	0 

The initial condition can presume a uniform state: 

W[r,t = 0] = Wo[r] 

Differentiating the assumed parabolic profile and inserting the first boundary condition into 

the results, the rate equation at the surface of the particle becomes: 

aW/ar I r. R  = 2 a2  (R/R2) = 2 a2/R = - hm  (we  - w)/(pp  D) 

At the surface of the particle, the local moisture content is: 

W[r=R] = al  + a2 	 (7) 

The average moisture content of the particle can be found through integration of the 

parabolic profile over the volume of the particle and dividing by the total volume of the 

particle and is: 

Wd  = al  + 3/5 a2  

or rearranging: 

al  = Wd  - 3/5 a2  

Substituting the above expression for a l  into Equation (7), the new expression for local 
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moisture content at the surface of the particle becomes: 

W[r=R] = Wd  + 2/5 a2  

The humidity ratio of the moist air in equilibrium with the surface of the desiccant particle is 

evaluated using the surface moisture content of the particle, i.e. we = we[Wd+ 2/5a2,T]. 

Substituting this into the rate equation at the surface of the particle, a nonlinear expression 

for a2  results: 

a2  = - (hm  R)/(2 pp  D) {we[Wd +2/5a2,T] - w} 

where a2  must be solved for in order to find aW/ar I r . R • Once a2  is solved by iteration, then 

integrating Equation (6) over the volume of the particle to find the volumetric average of the 

rate of change of moisture content of the particle yields: 

awd/at = (3/R) D aW/ar I r. R  = (6/R2) D a2 	 (8) 

Further substituting the nonlinear equation for a 2  into Equation (8) yields: 

awdat = - (6/R2) D hm  R/(2 pp  D) {we[Wd  +2/5a2,T] - w} 

= - (3 hm/ pp  R) {we[Wd +2/5a2,T] - w} 

For a spherical particle, the particle density is: 

Pp = Mparticle/V  = Mparticle/(4/3 it R3) 

Substituting this expression into the rate equation yields: 

awd/at = - (3 hm  4/3 7r R3/ Mparticie  R) {we[Wd +2/5a2,T] - w} 

= - (4 ir R2 hm/ Mpartide) { We[Wd 2/5a2/1 ] w} 

Noting that the surface area of a spherical particle is A 5  = 4 ff R2  yields: 

awdat = - 	As/Mpartiele) {we[Wd + 2/5a2;1 ] w} 
	

(9) 

Equation (9) is the nonlinear mass transfer rate equation which will be substituted for the 

widely used lumped capacitance constant coefficient rate equation. The analogy between 

Equation (5) and (9) is apparent when the two are compared. The parabolic profile 
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assumption has been reported to be valid in the modeling of adsorption processes [2], [15], 

[27] and [41]. This model proceeds from first principles after the initial assumption of the 

parabolic profile. The effects of diffusion are incorporated into the solution utilizing a 

method that has proven accurate, yet the computational cost of the solution of the system of 

equations increases very little when compared to the pseudo-gas-side model. The system of 

equations remains first order with two independent variables. The extra computational cost 

lies in the solution of a nonlinear rate equation versus a linear one. 

The DEC system to be investigated operates under different regeneration conditions as a 

conventional desiccant assisted cooling system. As the DEC operating conditions vary greatly 

from the conventional desiccant enhanced cooling cycles, materials other than silica gel will 

be investigated to determine the type of desiccant that is most appropriate for DEC. An 

arbitrarily lumped mass transfer coefficient is of questionable accuracy and is also not 

available for many desiccants. As the diffusivity of adsorbents is a commonly available 

property, the parabolic profile model is more suited for this application. 
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Table 3.1-Nomenclature Used in Development of Governing Equations 

AS  = (4 r R2) = Surface area of a spherical particle 

c = Heat capacity of moist air 

D = Effective diffusivity of desiccant particle 

11, = Air side convective mass transfer coefficient 

hq  = Effective heat transfer coefficient 

= Pseudo-gas-side controlled model lumped mass transfer coefficient 

i = Enthalpy of fluid (moist air) 

ifg  = Enthalpy of vaporization 

iwd  = Enthalpy of wet desiccant 

mda. 	= Mass flow rate of dry air for period j 

Mdd = Total mass of dry desiccant 

Mparticle = Mass of desiccant particle 

N'TUq J  = hq  A/(mda  cp) = Number of transfer units for heat transfer 

NTUrnj = fin, A/thda ni  = Number of mass transfer units used in pseudo-gas-side model. 

R = Radius of desiccant particle 

r = Radial position inside desiccant particle 

T = Temperature of moist air 

T, = Temperature of moist air in equilibrium with desiccant bed 

w = Humidity ratio of moist air 

we' = Humidity ratio of moist air in equilibrium with desiccant bed 

evaluated using the average moisture content of the particle. 

we  = Humidity ratio of moist air in equilibrium with desiccant bed 

evaluated using the surface moisture content of the desiccant particle. 

Wd  = Volumetric average moisture content of desiccant per unit mass dry 

desiccant 

W = Local moisture content of desiccant per unit mass of dry desiccant 

z = Nondimensional axial position 

Greek: 
a = Desiccant-moist air interface area per unit length 

flj  = Ey8 = Period fraction 

8 = Time for wheel to complete 1 revolution 

= Duration of period j 

= Period mass capacity ratio = (Mckithdaj 8) 
pp  = Particle density 

T = Nondimensional time coordinate 
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The developed system of equations are coupled and nonlinear due to the nonlinear mass 

transfer rate equation, the nonlinear property relations, and the nonlinear adsorption 

isotherm. The adsorption isotherm is an expression for moisture content of the desiccant as a 

function of humidity ratio and temperature of the moist air in equilibrium with the desiccant. 

For example, the adsorption isotherm for regular density silica gel obtained by Brandemuehl 

through integration of the Clausius-Clapeyron equation and a regression analysis of 

Hubbard's [46] data yields the following relationship: 

is/ifg  = 1 + .2843 e-1°.28 wd 

= 3387.7 (2.112 Wd 	sat/33873) is/ifg 

where: 

is  = Heat of adsorption 

= Vapor pressure of water in equilibrium with the desiccant 

= Saturation pressure of water vapor evaluated at the temperature 

of the moist air in equilibrium with the desiccant bed 

The desiccant bed boundary conditions are the initial state of the bed in the case of the 

transient solution or the periodic steady state boundary conditions in the case of the periodic 

steady state solution (see Fig .  4). The boundary conditions at the inlet to the bed for both the 

regeneration as well as process air stream are specified. Knowledge of the initial values of the 

bed (or periodic steady state boundary conditions) and the inlet states of the moist air allow a 

numerical solution for the desiccant bed to be implemented. In summary, the numerical 

solution for the desiccant bed can be determined as a result of the knowledge of the following 

system of equations: 

3.10 



1. Conservation of mass expression 

2. Conservation of energy expression 

3. The two transfer rate equations 

4. The expression for enthalpy of the desiccant as a function of the 

temperature and moisture content of the bed 

5. The expression for enthalpy of moist air as a function of humidity 

ratio and temperature 

6. The adsorption isotherm 

7. The inlet moist air stream states, both process and regeneration 

8. The initial values or periodic steady state boundary conditions of the 

bed 

ii. Numerical Scheme-The Bulirsch Stoer Method 

As previously developed, the system of equations for the pseudo-gas-side model are as 

follows: 

	

ai/az = NTUq  cp  (Te  - T) + i fg  aw/az 	 (10) 

aVar = - 1/(ri  /3j) { NTUq  c,, (Te  - T) + ifg  aw/az } 	 (11) 

aw/az = NTUm  (ire  - w) 	 (12) 

	

awdiaT = -11(1.;  fli) NTUm  (ire  - w) 	 (13) 

The parabolic concentration profile model differs from the pseudo-gas-side model. While the 

particle temperature will vary along the flow, constant temperature in the particle 

perpendicular to the air flow is assumed. Therefore the temperature of the desiccant particle 

is equal to the temperature of the hypothetical equilibrium layer, T o  and for a spherical 

particle equations (12) and (13) are replaced by the following mass transfer rate equations: 
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awdiaT = - (3 hm  8/pp  R) {we[W+2/5a2,Te] - w} 	 (14) 

aw/az = p, (3 h m  A, 8/pp  R) {we[W+2/5a2,Te] - w} 	 (15) 

Analogous expressions can be developed for a planar geometry. This is a system of partial 

differential equations. However, these equations can be written in the following form: 

ai/az = f[T,w,Te,W] (10a) 

mor = -1/(fi j rj) f[T,w,Te,W] (11a) 

aw/az = g[W,Tow] (15a) 

awdor = -11(fj rj) g[W,Te,w] (14a) 

Where the equations are numbered to correspond to the rate equation that they represent. 

Although the conservation of mass and conservation of energy equations are partial 

differential equations, the form of Equations (10a),(11a),(14a) and (15a) are ordinary 

differential equations. If the right hand side can be evaluated at a given location, the solution 

can be advanced a step in both the axial and temporal direction using an ordinary differential 

equation (ODE) method. The right hand side of Equations (10a),(11a),(14a) and (15a) 

depend on both the desiccant state (W d,Te) and the moist air state (w f,Tf). In order for both 

states to be known at a given location, an alternating direction approach must be utilized in 

the solution: A step is taken in the axial direction and a step is taken in the temporal 

direction. Specifically, the desiccant state at (t+ At,x + Ax) is found using information from 

(t,x+Ax), (t-At,x+Ax) etc. while the moist air state at (t+ At,x+ Ax) is found using information 

from (t+At,x), (t+At,x-Ax) etc. Information for the desiccant state comes only from previously 

temporal positions, while information for the moist air state only comes from previous axial 

positions and therefore the use of ODE methods can be implemented. The desiccant state 
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and the moist air state are coupled by the right hand side of the rate equations. 

A variety of solutions for the rotary desiccant wheel exist in the literature. The numerical 

solutions seen include the following: modified Euler, predictor corrector, and Runge-Kutta 

with adaptive stepsize control. Both the transient and steady state solutions are of interest. 

The transient solution "marches" through the solution. One method of obtaining periodic 

steady state is via repeated integrations of the wheel until the state of the bed at the end of 

the rotation is equal to the state of the bed at the beginning of the rotation within a specified 

tolerance. A convergence routine can be utilized to speed up the rate of convergence. For 

example, Maclaine-cross obtained the steady state solution with a second order Runge-Kutta 

numerical integration method and used a Newton-Raphson algorithm to accelerate 

convergence to periodic steady state operation. 

The parabolic concentration profile model will use a similar approach, yet with a efficient 

ODE integrator called the Bulirsch-Stoer (B-S) method. This method was proposed by its 

authors [7] in 1966. The three key features of the method are a multistep method with an 

even powered error function, adaptive stepsize control, and rational function extrapolation to 

a grid size of zero for the purposes of decreasing the truncation error. The multistep method 

used by the algorithm is called the modified midpoint method. It is a midpoint rule algorithm 

slightly modified by Gragg [18]. The modified midpoint method (MMM) procedure as 

applied to some ODE, dy/dx = f(x,y), is as follows for an overall step of size H [18]: 
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xi . i  = xi + h 	i=0,1,...,n-1 

where h = H/n is the adjustable secondary stepsize 

The first step: n(x i,h) = Yo  + h f(xo,yo) 

The second through nth step: 

ti(xot,h) = 	+ 2 h f(xi,n(xi,h)) i=1,2,...,n-1 

The corrector (n+ 1)th step: 

Y(h,x) = 1/2 [n(x i,h) + n(xn,h) + h f(xn,n(xn,h))] 

Where Y(h,x), the final step, is the approximation to the solution at location x using a step 

size h. 

The MMM integration algorithm's truncation error is of special interest in the context of the 

B-S method. Gragg [18] has shown that the asymptotic expansion of Y(h,x) has only even 

powers of x, i.e.: 

Y(h,x) = y(x) + a 2(x) h2  + ;(x) h4  + ;(x) h6  + 	 (16) 

As the first step of the algorithm is a first order method, the expansion of n(x,h) associated 

with the step which produces the largest error is of the form: 

n(h,x) = y(x) + a l(x) h + a2(x) h2  + a3(x) h3  + a4(x) h4  + 	 (17) 

As the errors associated with stepping from x to x + H has a first order truncation error step, 

this error propagates through to the final step. Therefore the approximation to y(x) has an 

expansion of the form: 

Y(h,x) = y(x) + ;(x) h + a 2(x) h2  + a3(x) h3  + a4(x) h4  + 	 (18) 

However, Gragg has shown that n(x,h) = n(x,-h) and subsequently Y(h,x) = Y(-h,x). The only 

way that this can hold is for the odd powers of equation (17) and (18) to disappear, i.e. a l(x) 

= a3(x) = a5(x) = = 0. The result is equation (16). When the MMM integration technique 
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is used with an extrapolation technique to approximate the solution as y(x) = Y(0,x), two 

orders of magnitude of truncation error are cancelled at a time. 

The B-S method proceeds as follows: The differential equation is repeatedly integrated from 

x to x+H using a successively smaller secondary stepsize. Figure 5 illustrates the process. The 

solution converges with an increasing number of steps. Each time the solution Y(h,x+H) is 

found, a rational function extrapolation to a grid spacing of zero is performed using the 

previous solutions. The rational function extrapolation procedure is preferred in some 

problems because of it's ability to model poles. For our application, it is preferred because 

there is evidence in the literature that rational function extrapolation is a slightly more 

efficient procedure than polynomial extrapolation [6a]. A rational function is the quotient of 

two polynomials: 
2 
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where A = v for m odd 

and v = A + 1 for m even 

This is called a diagonal rational function extrapolation due to the manner in which A and v 

are defined. The function must satisfy the following: 

Ym(hk) Y(hk,x ) 

	

k=i,i+ 1,...,i+m 

In other words, for a given secondary grid spacing, h k, the rational function is set equal to the 

solution of the differential equation obtained using that stepsize. {h k} is a decreasing 

sequence of MMM stepsizes tending toward zero. The desired solution, Y.(0)=P 0/00, is 

computed following each execution of the MMM algorithm by a recursion formula developed 

in [17]. Convergence is obtained when: 
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IY m(0) -17  m-1( 0)1 < E 

where e is some specified tolerance. The formulas assume that the approximation is a 

function in h2, which is the case for the MMM algorithm. Fig. 6 illustrates the extrapolation 

process. The five solutions, where Y.(0) = W d(t =.08), are plotted versus the stepsize H/n 

used (The fifth integration, n=16, was not included on Figure 1 for clarity). Fig. 6 shows 

T.(0), where the independent variable is time, using the first 2 solutions, corresponding to 

m=2, and Y.(0) for m=3,4, and 5. In this example, convergence occurs at m=5, which uses 

five solutions. The method also incorporates adaptive stepsize. This allows the solution to 

take large steps in the region of the solution where constant gradients exist. The nature of the 

varying stepsize is illustrated in Fig. 7. During the region where the curvature of the slope 

changes, the algorithm takes smaller steps. When the slope of the curve is fairly constant, the 

stepsize continues to increase. The figure indicates for each step the number of MMM steps 

needed for the algorithm to converge. If the number of integrations (m in Figure 6) was large, 

the next suggested step size is smaller than the previous one, if the number of integrations 

was small, the next step size is increased. Specifically, the authors of the method suggest the 

following method in choice of the next stepsize given the previous overall stepsize, Hd id : 

Hne„, = Hdid *(6/i) 	 (19) 

Where i indicates the number of times that the interval was reintegrated. In the application of 

the rotary desiccant wheel, it has been necessary to limit FI next  to some Hne,ct max due to stability 

problems which occur at very large stepsizes. The program calculates the maximum stepsize 

allowable due to stability considerations as an upper limit on the stepsize. In the rotary 
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desiccant wheel, changes in the rotation speed of the wheel, desiccant particle size, or mass 

flow rate of the dry air can have a profound effect on the gradients, or transfer rates, in both 

the temporal and axial directions. It is important to have a method such as this which does 

not rely on assumed appropriate grid sizes. The repeated evaluations provide a measure of 

confidence in the results. 

In solution of the desiccant wheel, evaluation of the right hand side (RHS) of Equations (10), 

(11), (14) and (15), is the most time consuming portion of the solution process. The nonlinear 

parabolic profile rate equation, the nonlinear expression for the hypothetical equilibrium 

state and the property relations must be solved for each evaluation of the rate equation. 

Keeping the number of RHS evaluations down to the minimum without sacrificing accuracy is 

important in order to maximize computational efficiency. The B-S method compares well 

with other methods in this respect. For example, one suggested sequence of increasing 

number of steps to reach the same location is: 2,4,6,8,12,16,24.... For example, if the B-S 

method takes 2, 4 and 6 steps across the same distance, and converges at n=6, the number of 

RHS evaluations is (n+ 1 for each n) 3 + 5 + 7 = 15 evaluations. As we have achieved the 

accuracy of at least a grid size of 6, this is 15 evaluations/6 steps = 2.5 evaluations/step. With 

each successive extrapolation the order of error is a power of 2 higher. For this example, the 

order of truncation error is 6. This is a higher truncation error than 4th order Runge-Kutta 

but only requires 2.5 evaluations/step versus the 4th order Runge-Kutta's 4 evaluations/step. 

2.5 evaluations/step is more work than if a second order method is used. However, a bigger 

step can probably be used as the truncation error is smaller than the second order methods, 
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thereby decreasing overall effort. In the above example, the new suggested step size as 

according to Equation (19): Hnext = Hdid*(6/3) = 2*Hdid  or twice the previous overall 

stepsize. Use of the model reveals that large steps are used in portions of the wheel that have 

constant gradients. 

In their 1966 paper in which Bulirsch and Stoer propose the method [7], a study was done 

comparing the B-S method with a fourth order Runge-Kutta (4 RHS evaluations per step), an 

Adams-Moulton-Bashforth predictor corrector method (2 RHS evaluations per step) and a 

polynomial extrapolation. The polynomial extrapolation is essentially the B-S method 

differing only in the extrapolation technique. Euler's equation of motion for a rigid body 

without external forces and the equation y'= -y were solved through numerical integration 

using the four methods. As previously mentioned, the work involved in obtaining a solution 

can be represented by the number of RHS evaluations of the differential equation. Figures 8b 

and 9b show the results of the comparison for the 4 methods. The B-S method is superior in 

computational work performed for the examples here. As the exact solutions for the examples 

are known, the authors also computed the error associated with each method. Figures 8a and 

9a show the error results for each of the methods. The B-S method generally produces the 

lowest error with the least number of function evaluations. The results of this paper are 

significant and indicate that the method is promising. Although the use of the B-S method 

requires more programming time for it's added complexity, it can reap benefits in terms of 

computational efficiency. It is concluded that method compares favorably with other 

commonly used ODE solvers and can provide the most computationally efficient algorithm 
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for numerical solution of the parabolic concentration profile model for the rotary desiccant 

dehumidifier. 

iii. Information Flow for the DEC Model 

a. Transient 

Fig. 10a illustrates the information flow of the transient model. State #1 is the indoor or 

ventilation air and is specified. The initial state of the bed is specified as well. The integrated 

desiccant wheel model and cooling and dehumidification coil model will proceed in the 

following manner. 

1. Calculate state 2 using rotary desiccant wheel model 

2. Calculate state 3 using cooling and dehumidification coil model 

3. Calculate state 4 using rotary desiccant wheel model 

Repeat this procedure until periodic steady state is reached or load period has ended 

b. Periodic Steady State 

Once the transient rotary desiccant wheel model is completed, the model will be further 

developed for integration with a cooling coil model. Figure 10b illustrates the information 

flow for the periodic steady state model. State point 1 is the indoor or ventilation air and is 

specified. The initial state of the bed is unknown. For each load specification, or each hour in 

the case of a varying hourly load, the following procedure is followed: 

1.The initial state of the bed is tentatively assumed 

2. Calculate state 2 using explicit rotary wheel model 

3. Calculate state 3 using cooling and dehumidification coil model 

4. Calculate state 4 using explicit rotary wheel model 
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5. Choose a convergence technique to update the assumed initial state of 

the bed at the start of the process period and return to #2 

This procedure will be repeated until the state of the bed at the beginning of the process 

period equals the state of the bed at the end of the regeneration period. There are several 

convergence techniques which have been investigated. These will be discussed in the next 

chapter. 

3.2 Application of the Model  

One proposed electric specific desiccant cooling technology, Desiccant Enhanced Cooling 

(DEC), has been proposed by Cromer of Florida Solar Energy Center (FSEC) [14]. The 

system uses moisture exchange in a similar way that heat pipes use heat exchange to enhance 

the performance of vapor compression cooling. The process air stream initially being moist 

and very warm is first passed through a desiccant bed and absorbs moisture from the bed, 

thereby raising the humidity ratio of the air and lowering the dry bulb temperature of the air 

stream. The cooling coil then performs more dehumidification as its inlet air is now closer to 

the dew point. Exiting the coil, the cold, wet air again passes through the wheel and deposits 

moisture. As the wheel performs essentially adiabatic dehumidification, heat is generated 

during the adsorption of water vapor that occurs. Therefore the air stream exits the wheel 

dryer and hotter (See Figure 11). As the return or "regeneration" stream is warmer and has a 

lower relative humidity than the supply or "process" stream, the potential exists for the 

transfer of moisture from the supply to the return air stream. The DEC concept promises to 

raise the efficiency of traditional vapor compression cooling equipment via increase of the 

evaporator temperature. Figure 11 illustrates the conventional vapor compression cycle with 
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reheat as well as the DEC cycle on a psychrometric chart. The path line 1-2-3-5 is the DEC 

process path. The path line 1-4-5 is the vapor compression with reheat process. Fig. 11 shows 

that the VC unit for the DEC cycle will have a higher ADP for the DEC system than for the 

VC with reheat system. As previously stated, currently the most efficient way of providing 

reheat is to place a heat pipe heat exchanger between the supply and return air stream. Heat 

pipe technology pays a performance penalty in that it requires a lower ADP than VC cooling. 

As a result of this, it is expected that the DEC system will allow a higher efficiency VC unit 

compared with both the VC with reheat system and the integrated heat pipe/cooling and 

dehumidification coil system. 
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4.0 MODEL VALIDATION 

The validation process is an essential part of model development. Once the equations are 

developed and the code written, the model is used to simulate a known solution. This process 

validates the theory and the implementation of the theory. Successful completion of the 

validation procedure provides confidence in the results that the model produces. The 

validation procedure completed to date in the present work are simulation of the desiccant 

wheel as rotary and counterflow heat exchangers and comparison with heat exchanger theory, 

comparison of the model with fixed bed adsorption experiments, and simultaneous 

comparisons with both a pseudo-gas-side controlled and a diffusion resistance model. Finally 

the model is compared with experimental data from a heat and mass exchanger wheel that 

was tested at the Solar Energy Research Institute. The procedure and results of these tests 

are presented below. 

4.1 Heat Exchanger Comparison  

The rotary heat exchanger provides a solid surface which alternatively is rotated in the hot 

and cold stream (see Fig. 13). The solid matrix material is heated as it passes through the hot 

stream and cooled as it passes through the cool stream, thereby becoming a medium for heat 

to flow from the hot to the cold stream. Rotary heat exchangers are attractive for their 

compactness, inexpensive matrix mesh materials are frequently used and the periodic flow 

reversals tend to be self cleaning [24]. 
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Converting the rotary desiccant wheel model to a rotary heat transfer alone exchanger was 

the first test applied to the model. This case was implemented by making the convective mass 

transfer coefficient zero. The moisture content of the air stream and the desiccant remain 

constant and sensible heat alone is transferred. The heat transfer wheel model was then run 

until periodic steady state obtained, and the resulting outlet states compared with the mean 

outlet state produced by the effectiveness-NTU method [24]. Periodic steady state is reached 

when the state of the desiccant at the beginning of the current rotation is equal to the state at 

the end of the rotation within some specified tolerance. For the rotary heat exchanger, the 

effectiveness of the heat exchanger is determined by the three dimensionless numbers, 

C,./Chun, NTUhe  and Crain/Cm.. Cr  is the matrix heat capacity rate and is defined as: 

Cr  = Cm  Mm/8 

The number of transfer units for the rotary heat exchanger is denoted as NTU h, where the 

subscripts are used to differentiate it from the NTU's defined for the rotary desiccant wheel 

model. The NTUI„, for a balanced flow regenerator with equal transfer coefficients in each 

period is: 

NTUJ  = hq  AS  / (2 Cmin) 

Table 4.2 at the end of this chapter describes the nomenclature used. The fluid heat capacity 

rates, Crain  and C. are: 

Crain  = min{ (c1,1  nki ), (cu  mu) } 

Cmax  = max{ (Co M 0), (Cc2 thf,2) 

where the subscripts 1 and 2 denote the periods of the regenerator. The effectiveness of the 

heat exchanger, which is a correlation of the dimensionless outlet fluid temperature based on 

numerical results of the governing equations for the case of balanced flow (C min  = Cm ) is 
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defined as: 

T 	- T 	T 	- T 
E = 	o c,o 	co _ 	h,o  

T 	- T 	T 	- T 
h,i 	c,i 	h,i 	c,i 

(3) 

The effectiveness then is tabulated in [24] as a function of the three relevant variables: 

E = E[Cr/Crara, NTUhx,  Cmin/Cmax] 

These tables were produced from consideration of numerical results in the literature of 

Coppage and London [13], and Lambertson [26] as the major sources of information. The 

first heat exchanger simulation was run for C r/Crain  —1, NTUhx  = 2, Crara/Cranx  =1. For this case, 

E =.601. Through the use of equation (3), the outlet temperature of the hot and cold fluid are 

found. These outlet temperatures are the mean outlet temperature for each period, which is 

the outlet temperature of the fluid averaged over the period. The periodic steady state 

solution of the model is plotted in Fig. (14) along with the effectiveness solution for that case. 

In addition, the inlet conditions, To  = 35 °C and Tki  = 65°C are plotted. The agreement is 

excellent and shows that the model behaves well in the heat transfer only mode. Fig. 15 plots 

the results of the periodic steady state solution for the following case: 

Cr/Crain  =5,  NTI-Inx ' 3,  Cmin/Cmax 1, E =0.746= 

The excellent agreement between the average period outlet temperature and the E-NTU 

temperature is evident. 

As the matrix heat capacity rate of a rotary heat exchanger becomes large, the behavior 

approaches that of a counterflow recuperator. The effectiveness of the rotary heat exchanger 
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is essentially equal to the effectiveness of the counterflow recuperator for C r/Cmin > 5. The 

correlation between the two is [24]: 

rotary hx — E counterflow hx i 1  - 1/(9  (Cr/Cmin) (93) 1 

The counterflow heat exchanger has a higher effectiveness than the rotary heat exchanger due 

to the fact that energy transfer occurs directly in the counterflow heat exchanger. At high 

matrix heat capacity rates, the matrix is either rotating very quickly, the mass of the matrix is 

large or the heat capacity is large. Each of these cases allows the matrix to transfer more 

energy from one stream to the next and the case of a counterflow heat exchanger, which is a 

direct-type heat exchanger, is approached. 

Two counterflow heat exchanger simulations which were completed also produced excellent 

agreement with heat exchanger theory. The results are plotted in Fig. 16 and Fig. 17. A 

summary of the results of the heat exchanger validation procedure are tabulated in Table 4.1. 

Table 4.1-Results of Heat Exchanger Simulation 

Ca se CI-Cmin NTUnx CminXmax kliterature Lim 

Rotary Heat Exchanger 1 2 1 .601 .612 

Rotary Heat Exchanger 5 3 1 .746 .740 

Counterflow Heat Exchanger 10 3 1 .750 .746 

Counterflow Heat Exchanger 10 6 1 .857 .853 

The comparison of the current model with the numerically based correlations for heat 

exchanger theory gave favorable results. This type of comparison indicated that the heat 
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transfer theory and the numerical procedure associated with the heat transfer theory have 

been implemented correctly. The next two validation procedures were implemented in order 

to test the mass transfer theory and implementation in the model. 

4.2 Fixed Bed Adsorption  

The next test to be applied to the wheel was comparison with fixed bed adsorption. The data 

which was used as a comparison is the PhD work done at UCLA by A.A. Peseran [36]. 

Peseran's work included a review of properties and modeling characteristics of water vapor 

adsorption on regular density silica gel for thin desiccant beds. His work compared 

experimental data against the pseudo-gas-side (PGS) model and a diffusion resistance model. 

Use of the experimental data and the two models in Peseran's thesis were ideal for validation 

of the parabolic concentration profile model. For these runs, the spherical particle 

concentration profile assumption was used as the moist air experiences contact with most of 

the particle surface area in a fixed bed. The adsorption isotherm and heat of adsorption used 

in the simulation were the same that Peseran used in his modeling. Regular density silica gel 

grade 01 were used in the experiments. Fig. 18 and 19 show example results of two of the 

completed runs. 

The parabolic concentration profile model compares favorably with the experimental data in 

this run as well as the diffusion resistance model. The PGS controlled model compares 

favorably in these examples as well. However, the PGS controlled model uses an empirically 

degraded mass transfer coefficient correlation which is available for water vapor adsorption 
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on silica-gel as a result of extensive testing of this particular system. The parabolic 

concentration profile model uses a more commonly available property, the effective 

diffusivity, in modeling the resistance to mass transfer inside the desiccant particle. As the 

current work will investigate the effects of several desiccants on the DEC system's 

performance, the parabolic concentration profile model is more suitable for the current work. 

The PGS model would not be feasible as the empirically degraded mass transfer coefficient is 

not known for systems other than the silica-gel-water-vapor system. 

The general conclusions of the fixed bed comparisons are that the parabolic profile 

assumption does well in approximating the diffusion inside the desiccant particle for thin 

desiccant beds. In a thin bed, which will always be the case for the current study due to 

pressure drop considerations, the parabolic profile develops quickly and the assumption 

becomes a good one for the current study. From these results, the parabolic concentration 

profile mass transfer model and numerical implementation of the model show promise of 

providing accurate solutions for the proposed system. 

4.3 Rotary Desiccant Wheel Experimental Data  

Extensive testing of various rotary desiccant wheels has been performed at the Solar Energy 

Research Institute (SERI). A graduate student at the University of Wisconsin, K.J. Schultz, 

has reported on the experimental results of three of the wheels in his PhD work [46]. These 

experimental results were used to compare the solution of the current model with the 

performance of a real rotary dehumidifier. Although the silica gel particles are spherical, the 
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planar parabolic concentration profile assumption was used due to the parallel passage 

geometry of the tested wheel. The silica gel particles are adhered to the passage walls of the 

wheel. One side of the particle will therefore be exposed to the moist air stream while the 

other side will be attached to the passage wall and will not experience contact with the moist 

air stream. This geometry seems more conducive to the planar assumption with the particle 

diameter as the thickness of the planar "slab" of desiccant. The use of the planar geometry 

also allows the model to run quite a bit faster using a stepsize many times larger than that of 

the spherical case. This is due to the lower amount of exposed surface area of the planar 

geometry and the resulting smaller number of transfer units. Fig. 20 and 21 give example 

performance results for two separate runs of one of the SERI wheels simulated. 

The results of the simulation are fairly favorable. This indicates that the planar assumption 

does well in the parallel passage wheel. Fig. 21a is a plot of the outlet moisture content versus 

time for the simulation, and the experiment. The plot of the average outlet moisture content 

for the simulation reveals that periodic steady state has not been reached. This problem has 

occurred in several of the rotary desiccant wheel comparisons. The moist air outlet states 

approach periodic steady state up to a certain point and further rotations of the wheel does 

not change the outlet state any more. This problem is currently under investigation. However, 

the results of these comparisons appear to be very favorable once this problem is cleared up. 
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Table 4.2-Nomenclature for Heat Exchanger Theory 

As  - Surface area for each period 
Crain - Minimum heat capacity rate 
cf  - Heat capacity for fluid 
M. - Mass of matrix material 
E - Heat exchanger effectiveness 
NTUhx  - Number of transfer units 
rotation 

Subcripts 
1 - Period 1 
2 - Period 2 

Cmax - Maximum fluid heat capacity rate 
Cr  - Matrix heat capacity rate 
c 	 matrix .. - Heat capacity of matr 
mf  - Mass flow rate of fluid 
hq  - Convective heat transfer coefficient 

- Time of heat exchanger to complete i 
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Initial values are: Wd (t =0) = W. and Id(t =0) = I. 

The Solution is obtained by "marching" from left to right 
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Fig. 10a-Illustration of the Transient Model Solution Process 

for each constant load period 
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for each constant load period 



Supply 	"Process 
Air 	Air" 

Return "Regeneration 
Air 	 Air 

Rotary 
Desiccant 
Dehumidifier 

— 0.03 

— 0.02 

Humidity (kg/kg) 

— 0.01 

0.00 

10 	20 	30 	40 

Dry Bulb Temperature (C) 

2 

Fig. 11-Desiccant Enhanced Cooling 



RIP temperature 
for DEC 

Humidity Ratio 

(lbwo/lbda) 

0.01 
RIO temperature 
for VC 
with reheat 

— 0.03 

0.02 

45 	60 	75 	90 

Temperature (I) 

Fig. 12-Illustration of the Desiccant Enhanced Cooling System Process 

Versus Conventional Vapor Compression with Reheat Process 

on a Psychrometric Chart 



x 

 

  

Fig. 13-Illustration of a Rotary Heat Exchanger 



T
e

m
p

e
ra

tu
re

  (
C

)  

Rotary Heat Exchanger 

Cr/Cmin= 1 NTU=2 Cmin/Cmax= 1 

85 	 

80 — 
	0 	0 Periodic Steady State Solution 

70 — 

75— 
	0 	O eff—NTU solution 

Period Inlet Temperature 

65 — 

60-Q° 0 
55 4 	\-i-n 

50 	 -0 -  '0-o 	 -0-°  45 	 -(1(600 0 -0-8:04;i -0-0-0- 
40 
35 
30 

25 
0.000 	0.200 	0.400 	0.600 	0.800 	1.000 

Time (dimensionless) 

Fig. 14-Comparison of Model with Rotary Heat Exchanger: Case 1 



cn) 

T
e
m

p
e
ra

tu
re

  

Counterflow Heat Exchanger 

Cr/Cmin=5 NTU=3 Cmin/Cmax=1 
85 

	

80— 	O 	0 Periodic Steady State Solution 

	

75— 	0 	0 eff—NTU solution 
—Period Inlet Temperature 

70 — 

65 — 

60 — 

55 

0.000 	0.200 	0.400 	0.600 	0.800 	1.000 

Time (dimensionless) 

50 

45 — 

40-Q 

35 — 

30 	 

25 	 

Fig. 15-Comparison of Model with Rotary Heat Exchanger: Case 2 



T
em

p
e
r

a
tu

re
  

85 

80 

75 

70 

65 

60 

55 

50 

45 

40 

35 

30 

Counterflow Heat Exchanger Simulation 
Cr/Cmin=1 0 Cmin/Cmax=1 Ntu,o=3 

0 	0 Periodic Steady State Solution 
O 	eff—NTU Solution 

Period Inlet Temperature 

Eacaa . 3 - 0 . e3 , 0.0:0:6: 

25 	 
0.000 0.200 	0.400 	0.600 	0.800 	1.000 

Time (dimensionless) 

Fig. 16-Comparison of Model with Counterflow Heat Exchanger: Case 3 



T
e

m
p

e
ra

tu
re

  

Counterflow Heat ExchancerSimulation 

Cr/Cmin=1 0 Cmin/CmQx=1 Ntu,o=6 
85 

	

80— 	 
A 	A eff—NTU Solution 

	

75— 	Period Inlet Temperature 

70 

65 — 

60 

55 

50 

45 

40 

35 

30 

25 

0 	0 Periodic Steady State Solution 

:6:6:6:6:0:o:olacaea= 

0.000 	0.200 	0.400 	0.600 	0.800 	1.000 

Time (dimensionless) 

Fig. 17-Comparison of Model with Counterflow Heat Exchanger: Case 4 



0 
0 
0 
N 

O 
O 
8 

Model 3 

VS: Eq. (C.35); Vo ■ 4.48x10'6 J/s 

VS: Eq. (C.35); Do  • 4.48x10-5  m2/s 

Mode 2 INIIII 
--.,b.....1

1-  [ shin • 0.0088 

PP 

Tin  • 22.1•C 

.m. mOMP,  m• 

•••■111. ■••••• :MIND Mb •••••• ••■•■ .1•11•1. 

0 0 0 
Model 2 	0 e 0 

APP 

r...0'1  To  • 22.1•C 

V • 0.55 m/s 

T • 1500 s 

0 . o 
o 

. 	 . 
91.00 	0..20 	0.40 	O. 60 	0.80 	1. do 

t*. TIME. FRACTION OF PERIOD 

Fig. 18-Comparison of Model with Fixed Bed Adsorption, PGS model and 
Diffusion Resistance Model: Example 1 
Model 2 refers to PSG controlled model 

Model 3 refers to diffusion resistance model 
PP = parabolic profile model 



00 
t•, 

To • 24 

V • 0.32 •is 

T • 1000 s 

Model _2 

0 

O 
40 

O 

0 

mi. n • 0 .00366 
Model 3 

••••■■•••111. .041W 
0 C..) 
0 

(r)  
2,  ILI 

laJ 
CC 
CD 

o 
0 0 

PI • 

Q 
z 

0 
o 

,v W 

LAJ 
0 
0 

tu 

0 
0 . 
0 4.1 

P 
Model 2 

0.20 	0. 40 	0.60 	O. 80 
TIME, FRACTION OF PERIOD 

0 0 
0 

1 . do 

Tin • 25. 78•C 
41■11111. 	 e■NP •••■ 

A 
A 

Model 3 

0 
0 

Fig. 19-Comparison of Model with Fixed Bed Adsorption Data, PGS model and 

Diffusion Resistance Model: Example 2 

Model 2 refers to PSG controlled model 

Model 3 refers to diffusion resistance model 

note that 2 different diffusivities were used for the two runs of model 3 

PP = parabolic profile model 



Model Comparison with Experiment 

Run # 11-13-85 1A 

w
 (

kg
w

v/
kg

d
a

)  

0.035 
0.033 
0.031 
0.029 
0.027 
0.025 
0.023 
0.021 
0.019 
0.017 11' 
0.015 
0.013 
0.011 
0.009 
0.007 
0.005 

0 

sim 

inlet 

exp 

---A-- 

sim,ovg 

0.465 	 0.93 

Time 

Fig. 20a-Comparison of Model with Rotary Desiccant Wheel Experimental Data 

Outlet Humidity Ratio for Example 1 



sim 

inlet 

exp 

sim,avg 

120 

110 

100 

90 

80 

70 

60 

50 

40 

0 0.465 0.93 

Model Comparison with Experiment 

Run # 11-13-85 1A 

Time 

Fig. 20b-Comparison of Model with Rotary Desiccant Wheel Experimental Data 

Outlet Enthalpy for Example 1 



11 07 85 2a 

0.03 

0.028 

0.026 

0.024 

0.022 

0.02 

0.018 

0.016 

0.014 

0.012 

0.01 

0.008 

0.006 

0 0.465 

T ime 

sim 

inlet 

exp 

sim,cvg 

0.93 

Fig. 21a-Comparison of Model with Rotary Desiccant Wheel Experimental Data 

Outlet Humidity Ratio for Example 2 



1 1-07 5 2a 

110 

105 

100 

95 

90 

85 

80 

75 

70 

65 

60 

55 

50 

45 

40 

35 

    

  

sim 

inlet 

A 	 

exp 

 

    

0 
	

0.465 
	

0.93 

T ime 

Fig. 2113-Comparison of Model with Rotary Desiccant Wheel Experimental Data 
Outlet Enthalpy for Example 2 



Moist air in 

dH 

Moist Rir out @ i+ di 
w+ dw 

Sd 

APPENDIX A-DEVELOPMENT OF GOVERNING EQUATIONS FOR THE ROTARY 

DESICCANT WHEEL 

See Table AI for nomenclature description 

H+dH 

sp 

Equilibrium boiebo 
Lager @Te,we 
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(adhered to tape) 

Inert tape 
@Te 

Fig. AI-Illustration of Parallel Passage Control Volume 

i. Conservation of Mass: 

aomsj/at = 

= mH ,, - 	+ ariivjax dx) 

Canceling terms and rearranging: 

aomswvat + 	dx = 0 

Let: 

= (thdai/N) w 	and 
	

dM„v  = Wd d Mdd 

Where N, coda, dMdd are constant. The conservation of mass becomes: 

dMdd  awd /at + ( Iiida.;/N)  aw/ax dx = 0 
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The mass of dry desiccant inside the control volume can be written as: 

dMdd = Pb Ac dx ( 1 ) 

Where the bulk density of dry desiccant is related to the true density of the desiccant as: 

pb  = {2 sd/(sp +2sd)} pp  

Substituting this into the conservation equation and canceling the dx term: 

pb  Ac  awd/at + ( imaj/N) aw/ax = 0 

Rearranging: 

aw/ax (pdd N/ thdai) awd/at = 0  

Scale the independent variables as follows: 

z = x/L 	7 = t/8 

The conservation equation becomes: 

aw/az + (pdd  A, L N/ iri, a  r) awd/ar = 0 

The term pdd  Ar  LN = Mdd,j fl Mdd, the active mass of the dry desiccant in period j, which is 

the total mass of the dry desiccant in the wheel times the period fraction The final form of 

the conservation of mass partial differential equation is: 

aw 	M
dd

/8 awd + 
az 	J m 	ar 

d a , j 

= 0 

ii. Conservation of Energy: 

a(du,,,d)/at = l ma,x - ima,x+dx 

= 	(Lao, + aimaiaX dx) 

Canceling terms and rearranging: 

a(du,d)/at + ai ndax dx = 0 
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Let: 

	

and 	 Uwd = livid dMdd ima (iiidaj/N) 

Conservation of energy becomes: 

dMdd auwd/at + (riidaj /N) ai/ax dx = 0 

The internal energy of the wet desiccant u wd, can be written as: 

uwd  = I - P vwd  

Inserting this expression into the conservation of energy: 

dMdd 8 {I - (P v)„( }/at + (thda j /N) ai/ax dx = 0 

Distributing the derivative: 

dMdd  {avat - 8(P v)„ d/at} + (ti-i daN) ai/ax dx = 0 

and expanding the P vwd  derivative: 

dMdd  {avat - P avwd/at - vwd  ap/at} Thdaj/N  ai/ax dx = 0 

The derivative avwd/at in the above equation is zero since the derivative of the specific 

volume of the wet desiccant with respect to time is negligible. The dry desiccant and the 

sorbed water can be considered to be incompressible substances. The derivative aP/at also 

disappears since the pressure drop with respect to time is zero for the desiccant bed as it is 

open to the atmosphere. The conservation of energy is: 

	

dMdd  avat + 	,j/N) ai/ax dx = 0 

Inserting Equation (1), scaling the independent variables as before and rearranging, the final 

expression for the conservation of mass is: 

a; 	n 	al 

	

i 	= 0 az 
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w 
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moist air layer in 
equilibrium with 

Desiccant Bed 

iii. Heat Transfer Rate Equation 

The control volume for development of the heat transfer rate equation is shown. The energy 

balance can be stated as follows: 

Rate of change 	 Rate of 	 Rate of energy release 

of moist air 	= 	convective 	+ 	due to heat 

enthalpy 	 heat transfer 	 of vaporization 

Adiabatic Centerline Due to Symmetry 

the desiccant bed 	Axial direction, x 
at Te, we 

Fig. A2 Control Volume for Development of Heat Transfer Rate Equation 

The energy balance statement can be written in equation form as: 

- i ma,) = hq  Ax (Te  - T) + i rg[Te] (M,,,,x+ Ax  - 	 (1) 

Assuming that the surface area per unit length of the bed, a s, is constant, and using the 

following relations: 

Mw Mdaj W  

i ma = Mclaj 

where the mass flow rate of the moist air, m da, is constant, Equation (1) becomes: 
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mda,j (i.,e. - lx)/Ax = hq  a (Te  - T) + 	ifg[Te] (wx+ A), - wx)/Ax 
	

(2) 

Rearranging Equation (2) and taking the limit as Ax-.0: 

8i/8x = hq  a/md. (Te  - T) + i rg[Te] 8w/8x 
	

(3) 

Let z=x/L be the non-dimensionalized axial position, and noting that for a = constant, we 

have a L = As, the final form of the heat transfer rate equation becomes: 

8i/8z = NTUq,j  (Te  - T) + i ig[Te] NTUmj  (We  - w) 
	

(4) 

where NTUqj  = hq  As/iTha j  and the relationship aw/az = NTU mi  (we  - w) was developed in 

chapter 3. 
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for the given temperature and moisture content arrived at. The adsorption isotherm was 

determined by through a regression analysis of the data fitted to Equation (16). 

Table Al. Nomenclature Used in Appendices 
A = Adsorbed surface area 
As  = Surface area 
A, = Cross sectional area of passage 
cm  = Heat capacity of matrix 
ci„ = Heat capacity of liquid water 
• = Heat capacity of water vapor 
cds  = Heat capacity of dry air 
dMdd  = Differential mass of dry desiccant in control volume 
G = Total Gibbs free energy 
hq  = Convective heat transfer coefficient 

ida = Specific enthalpy of dry air 
L = Specific enthalpy of water vapor 
i = Specific enthalpy of moist air fluid (per unit mass dry air) 
ifg = Enthalpy of vaporization of liquid water 
I = Specific enthalpy of wet desiccant (per unit mass dry desiccant) 
Im  = Specific enthalpy of mixture 
I ms  = Total enthalpy rate of moist air 
L = Length of desiccant bed 

Mdd = Total mass of dry desiccant 
Mdd, 	j dd ddj = O M) = Active mass of dry desiccant in period j 
ms  = Mass of sorbed water 
mds  = Total mass flow rate of dry air through the dehumidifier 
Mc], = Total mass flow rate of dry air through the dehumidifier 
Ms,/  = Mass of sorbed water in control volume 

= Mass flow of water vapor through control volume passage 
NTUa  = Number of transfer units for heat transfer for period j 
N = Slumber of passages 
n = Number of moles 

= Number of moles adsorbed 
• = Partial pressure of water vapor 
• = Saturation pressure of water vapor 
P = Total pressure 
qs, = Isosteric heat of adsorption 
RH = Relative humidity 
R = Gas constant 
S = Total enthalpy 
s = specific enthalpy 
s = Height of passage 
Sd  = Thickness of desiccant sheet 
T = Temperature of fluid 
T, = Temperature of desiccant and moist air in equilibrium with desiccant 
Tref = Reference temperature where enthalpy of dry air and liquid water is taken to be 

zero 
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t = Real time coordinate 
U = Total internal energy 
Uwd  = Total internal energy of wet desiccant 
u,,d  = Specific internal energy of wet desiccant (per unit mass dry desiccant) 
V = Total volume 
v = Specific volume 
v,,d  = Specific volume of wet desiccant 
vg  = Specific volume of vapor 
vf  = Specific volume of liquid 
of  = (vf  - vg) = Volume of vaporization of liquid water 
V■Td  = Volumetric average moisture content of desiccant per unit mass dry 
desiccant 
w = Humidity ratio of moist air = (mass of water vapor/mass of dry air) 
we  = Humidity ratio of moist air in equilibrium with the desiccant 
x = Real axial position 
z = Nondimensional axial position 

Greek: 
a = Surface area per unit length 

= (ei/e) = Period fraction 
gS = Surface tension of adsorbed phase 

= Chemical potential of adsorbed phase 
ttg  = Chemical potential of vapor phase 
pb  = Bulk density of dry desiccant = Mass of dry desiccant per unit volume of 

dehumidifier 
pp  = Particle density of dry desiccant = Mass of dry desiccant per unit volume of dry 

desiccant 
r = Nondimensional time coordinate 
8 = Time for wheel to complete 1 revolution 
ei  = Duration of period j 
ti  = (Mdd/(8 mdaj)) = Mass capacity ratio for period j 
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APPENDIX B-THERMODYNAMIC PROPERTIES MOIST AIR 

It is necessary to develop a consistent theory for the thermodynamic properties of moist air. 

Moist air can be treated as an ideal gas mixture at atmospheric pressure for water vapor 

pressure less than 2 psia [53]. The property development uses the Gibbs-Dalton mixture 

model for the mixture for the mixture of dry air and water vapor. The Gibbs-Dalton model 

considers the properties as if each component existed separately at the temperature and 

volume of the mixture. In this model, each component has an individual component pressure. 

For an ideal gas mixture, the component pressure is the partial pressure. 

I. Enthalpy 

The enthalpy of an ideal gas mixture, which depends on composition and temperature is: 

I.=Erni J J 

For moist air, it will be assumed that the two components are water vapor and dry air; 

therefore, 

Im = rnda ida 

i  = Im/mda = ida 	(IIlswifInda)  Lv = i da NV  iwv 

If at the arbitrary reference temperature the enthalpy of liquid water and the enthalpy of dry 

air are chosen to be zero, then the enthalpy for the mixture is as follows: 

= ida w 

:=Cpda  (T - Tref) + w cp „, (T - T„) + i rg[T.f] + i ljTred 
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where ii„,[Tred is chosen to be zero. 

ii. Relative Humidity 

The relative humidity of moist air is defined as: 

RH (%) = P,,[w]/P„,,,,,,,[T] (100%) 

where: 

Pvivrwi = w Ptotal / (0.62198 + w) 

The expression used for the saturation pressure of water vapor at the temperature of the 

mixture is the Goff correlation for the saturation pressure of water vapor over liquid water: 

logio(P) = a (1-8) + b log io(9) + c (1- 10d( 1 /91)) + e(10f(i -9) -1) + g 

where: 

= 273.15/T(K) 	 a = 10.79586 
	

b = 5.02808 

c= 1.50474E-4 	 d = -8.29692 
	

e = .42873E-3 

f= 4.76955 	 g = -2.2195983 

iii. Enthalpy of Vaporization 

The Clapeyron equation is employed for the enthalpy of vaporization: 

ifg  = T vig  dP/dT 	= T {RT/Psat  - v} dP/dT I sat  

The derivative of the Goff correlation is taken to evaluate the slope of the saturation curve 

for use in the Clapeyron equation. These property relations allow evaluations of the 

thermodynamic properties of moist air using only a saturation curve correlation and heat 

capacity data. 
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Appendix C - Thermodynamics of Desiccant Materials 

i. Adsorption Isotherm 

A desiccant is a material with a high affinity for water vapor. When water vapor at a 

moderate temperature is brought into contact with the desiccant, the water vapor "condenses" 

and adheres to the surface of the pores. This phenomena is called physical adsorption. 

Internal energy is released as a consequence of the adsorption process. The heat of sorption 

is similar in magnitude to the heat of vaporization of liquid water. The adsorbed phase is two 

dimensional and has less internal energy than a three dimensional liquid. Therefore the heat 

effect associated with adsorption is higher than that of pure condensation. Solution of the 

rotary desiccant wheel problem requires a relationship for the enthalpy of the wet desiccant 

as a function of temperature and moisture content. This enthalpy expression must correctly 

account for the heat effect associated with adsorption. Solution of the rotary desiccant wheel 

problem also requires an expression for the equilibrium adsorption isotherm. The adsorption 

isotherm is an expression for the moisture loading of the wet desiccant as a function of 

temperature and the vapor pressure of the water vapor air in contact with the desiccant. One 

method of developing the expression for the adsorption isotherm follows. 

For the case of an adsorbate in equilibrium with the adsorbed phase, we have: 

Therefore, for an infinitesimal change in conditions: 
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dug = dAs 	 (1) 

The chemical potential for a one component adsorbate is defined as: 

us = aG/an I Toky 
	 (2) 

For the gaseous phase, water vapor in our case it is: 

itg  = aG/an I Tx 	 (3) 

Expanding both sides of Equation (1) for the case of constant number of moles adsorbed: 

(ailg/aT)p  dT + (apg/aP)T  dP = (aits/aT)p4  dT + (aiidaP)TA  dP + (ails/aA)Tx  dA 

and inserting the definitions (2) and (3): 

(a2Gg/an aT) p  dT + (a2Gvan aP) T  dP 

= (a2Gs/anaT)p4  dT + (a2GjanaP)TA  dP + (a 2Gs/anaA)T3, dA 	 (4) 

The first law of thermodynamics of the adsorbed phase is: 

	

dUs  = T dS, - /55  dA - P dV, + /is  dns 	 (5) 

The Gibbs free energy is: 

GS  = Us  - T Ss  + P Vs 	 (6) 

The differential of the Gibbs free energy is found by differentiating Equation (6) and by 

inserting Equation (5) to eliminate some of the terms: 

	

dGs  = - Ss  dT + VS  dP + us  dri s  - dA 	 (7) 

The differential of the Gibbs free energy for the water vapor phase is derived from the 

Maxwell relations and is: 

dGg  = - Sg  dT + Vg  dP + ug dns = 	 (8) 

Noting that the partials of Equation (4) are independent of the order of differentiation and 

inserting (7) and (8) into (4): 

-aSg/an dT + aVg/an dP = -aSs/an dT + aVs/an dT + aVs/an dP - acbdan dA 	(9) 

Rewriting this equation as: 
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-sg  dT + vg  dP = - s s  dT + vs  dP - 805/an dA 	 (10) 

Where the partial molar notation is used for extensive quantities only. is not an extensive 

quantity so the derivative is kept on this term. The area of the absorbate is held constant, 

which is natural for a constant number of moles adsorbed on a desiccant of constant mass. 

Rearranging (10) we get: 

(813/8T)A,n, = (sg  - ss)/(vg  - 

The chemical potential for the gas phase is: 

= i - T s Jig 	g 	g g (12) 

and for the adsorbed phase: 

/Is  = is - Ts  ss 	 (13) 

We can eliminate the entropies from (11) using (12) and (13) and noting that at equilibrium 

we have us  =Ag: 

(aP/arox, = (ig  - i s)/{ T (Vg  - vs) } 	 (14) 

Assuming that the adsorbed phase is liquid-like, V g  > > Vs  and treating the water vapor as an 

ideal gas, which is valid for moist air at atmospheric pressure: 

(aP/aT)A, = P (ig  is)/ {R T2 } 	 (15) 

Rearranging (15): 

(81n P/aT)A,. (ig - is)/ {R T2} 	 (16) 

Dropping the superscripts, the expression (i g  - is), is the difference between the partial molar 

enthalpy in the adsorbed phase and in the gaseous phase. This- is called the enthalpy of 

adsorption. The negative of this term is defined in the literature as the isosteric (constant 

number of moles adsorbed) heat of adsorption, as this is the heat effect associated with the 

change in vapor pressure with temperature with the number of moles adsorbed held constant. 

Equation (16) is developed in [47] and [19]. White [54] developed the same expression using 
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collision theory. This expression is the equilibrium adsorption isotherm. The isosteric heat of 

adsorption can be obtained from plotting experimental data of vapor pressure versus 

temperature at constant moisture content. The isosteric heat of adsorption is then the slope 

of this curve. 

ii. Enthalpy 

The enthalpy is a function of temperature and the mass of sorbed water: I = I[T,m s]. 

Therefore: 

dI = (aI/aT)ms  dT + (aI/ams)T  dins 
	 (17) 

But (avaT)ms  is the heat capacity of the wet desiccant and assuming that the adsorbed phase 

behaves like liquid water: 

(avaT)., = cm + ms  c lw 	 (18) 

Where cm, the lumped heat capacity of the matrix: 

cm  = 2 (c, dm,)/M 

While the other partial derivative needs to be evaluated. As previously developed, the 

expression for the isosteric heat of adsorption is: 

qst' = - ( aIs/an - aIs/an ) 

Where the prime notation indicates a per unit mole basis. Rearranging: 

aIdan = aidan - q s,' 

The mass of sorbed water is ms  = ns  M, and the mass of the water vapor is m g  = ns  M we get 

the following expression: 

aI/ams  = ais/am - q„ 

The term ai/amg  is the enthalpy of vaporization of liquid water. Therefore the partial 

derivative becomes: 



aI/ams  = 1fg - qst 

Assuming that the heat capacities are linear in the temperature range of interest, and 

integrating Equation (17) from I[T ref,ms = 0] = 0 to the state of interest I[T,m s  = m], the 

following form of the enthalpy of the wet desiccant as a function of temperature and pressure 

results: 

I[T,ms] = (Mad cm + Ms clw ) (T Tref) + f o (i fg gst) dins 	 (18) 

Equation (18) can be expressed per unit mass of dry desiccant: 

I[T,Wd] = (cm  + Wd  Chv  ) (T - Tref) + 	(ifg  - qs,) dW 	 (19) 

Where Wd  = nisiMad• 

a. Example Calculation for Regular Density Silica Gel 

The ratio qs,/ifg  for regular density silica-gel was investigated by Close and Banks [4]. It was 

observed from examination of three sets of data from Hubard, Ewing and Bauer, and 

Hougen, Watson and Ragatz [22] that although the isosteric heat of adsorption and the 

enthalpy of vaporization are functions of temperature, the ratio between the two are 

independent of temperature, i.e. qs,/i fg  = g(Wd). Now the expression (i ll  qst) in the integral 

of Equation (19) can be written as: 

ifg  q.st = ifg 	= 1fg ( 1  - f(Wd)) 

Rearranging Equation (19), we have the following final expression for the enthalpy of the wet 

desiccant: 

I[T,Wd] ( Cm  Wd  Chv  ) (T - Tref) + ifg  W  g 1-f(W) ) dW 	(20) 

The expressions for qst/ifg  is a piecewise polynomials and are of the form: 

f(W)=aW3 -bW2  +cW+d 

This expression can be inserted into the integral of Equation (20) and the resulting enthalpy 

C.5 



APPENDIX D-PROGRAM LISTINGS 
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program BSDES 
C Controls the Bulirsch Stoer algorithm for solution of the 
C parallel passage type rotary dessicant wheel 

implicit double precision (a-h,o-z) 
common /finalx/ xf 
common /finalt/ taufp,taufr 
common /max/ dxmax,dtmax 

C xtry - first B-S step deltax 
data xs/0./ 
data res,ip,tdid/1D-6,0,0./ 

C Call subroutine to open data files and calculate wheel parameters 
call SYSPAR(ip) 
call ODF 
xtry =dxmax 

10 continue 
C Call Bulirsch-Stoer algorithm which takes one temporal 
C step and one axial direction step using the B-S method. 
C Input is xs- axial positional position 
C xtry-step size to try eps-accuracy required 
C Returned values are axial position, next suggested 
C step size, step size achieved and temporal position 

call XBSSTEP(xs,xtry,tau,tdid,ipss) 
C if periodic steady state has been reached then end 

if(ipss.eq.1) goto 40 
C Increment axial location 

xs = xs+xtry 
C If final time coordinate and final axial coordinate 
C have been reached then reset time and axial position 

if(tau.ge.(taufr-res).and.xs.ge.(xf-res)) then 
tau=0. 
xs=0. 
xtry=dxmax 

C Start new rotation 
goto 10 
endif 

C test for reaching outlet face of wheel 
if(xs.ge.(xf-res)) then 
xs = 0. 
xtry =dxmax 
endif 

C test if next step size integrates past outlet face 
if (xs.lt.xf.and.(xs+xtry).ge.(xf-res)) xtry =xf-xs 

C Restart B-S method 
goto 10 

40 continue 
close(1) 
close(2) 
stop 
end 

subroutine ODF 
C opens data files 

open(1,file='des.prn') 
open(2,file='bc.prn') 
return 
end 

subroutine SYSPAR(ip) 
C Subroutine prompts for input air stream states and 
C calculates system parameters 



implicit double precision (a-h,o-z) 
common /totP/ Ptotal 
common /finalx/ xf 
common /finalt/ taufp,taufr 
common /htcap/ cpda,cpwv 
common /htcp2/ cplw,cd 
common /xfer/ rNl'Uqm,rNTUmm,rhqfd 
common /ref/ Tref 
common /mcap/ tmcap 
common /parp/ Rad,Deff,rhop 
common /calc/ Tempd,rmda,Asurf,RNrev,RMdd 
common /bcbed/ wf,rif 
common /thprop/ Re,Pr,Dh,rkf,rleng 
common /max/ dxmax,dtmax 

C Physical parameters of the wheel and inlet air states are read 
C in from input.dat: Rad - radius of desiccant particle 
c Deff - effective diffusivity rhop - density of particle 
C rNrev - # of revolutions per hour rmda - mass flow rate of dry air 
C rMdd - total mass of dry desiccant 

if(icc.eq.0) then 
icc =1 
open(1,file='input.dat') 
read(1,*) cpda,cpwv,Tref,cplw,cd,Ptotal,Rad 

* ,Deff,rhop,rmdap,rmdar,Asurf,rNrev,rMdd,taufp 
* ,taufr,xf,wfp,Tfp,wfr,Tfr,Ac,Pr,Dh,rkf,rleng 
* ,rmuair,rNufd 

close(1) 
C calculate enthalpy of inlet process air stream 

Rifp = (Cpda+wfp*Cpwv)*(Tfp-Tref)+enthvap(Tref)*wfp 
wf=wfp 
rif=rifp 

C Calculate enthalpy of inlet regeneration stream 
Rifr = (Cpda+wfr*Cpwv)*(Tfr-Tref)+enthvap(cref)*wfr 
endif 
if(ip.eq.0) then 
rmda=rmdap 
beta = taufp 
wf=wfp 
rif=rifp 
else 
rmda=rmdar 
beta = taufr-taufp 
wf=wfr 
rif=rifr 
endif 
Re = rmda*Dh/(rmuair*Ac) 
rNTUqm = Asurf/rmda 
rNTUmm = beta*rMdd/(rmda*rhop*2.*Rad) 
Tmcap = beta*RMdd*RNrev/(3600. *rmda) 
rhqfd = rNufd*rkf/Dh 
if(ist.eq.0) then 
ist= 1 
rNTUq = rhqfd*rNTUqm 
rNTUm = rhqfd/(Cpda+wfp*cpwv)*rNTUmm 
a = 1.0/(rNTUq**2.+rNTUm**2.)**0.5 
b = 1.0/rNTUm 
dxmax = 2.*dminl(a,b) 
dtmax = tmcap*dxmax 
write(*,*) ' dtmax =',dtmax,' dxmax=',dxmax 
write(*,*) 'dtmax dxmax ?' 



read(*,*) dtmax,dxmax 
write(*,10) dtmax,dxmax 
endif 
return 

10 	format(lx,' dtstabIe=',f8.6,' dxstable=',f8.6) 
end 

subroutine XBSSTEP(xs,xtry,tau,tdid,ipss) 
C program description in main program 

implicit double precision (a-h,o-z) 
dimension rmast(2,20),dstate(2,20),dloc(3,200),dst(2,40) 
dimension rmasav(2,20),dstsav(2,20),yerr(2,20),dlocs(3,200) 
integer nseq(9) 
external enthvap 
common /fmalx/ xf 
common /bcbed/ wf,rif 
common /finalt/ taufp,taufr 
common /htcp2/ cplw,cd 
common /max/ dxmax,dtmax 
data nuse,res,eps/7,1D-6,0.01/ 
data nseq(1),nseq(2),nseq(3),nseq(4),nseq(5),nseq(6) 

* ,nseq(7),nseq(8),nseq(9)/2,4,6,8,12,16,24,32,48/ 
C Boundary conditions of moist air depend on temporal position 
C At the axial position x=0, perform B-S step in temporal direction 

if(xs.eq.0) then 
C tstart returns the desiccant state at the inlet to the 
C bed (dstsav) as well as the time step that was achieved (tdid) 
C and the number of steps it took (nst). Tau is the initial 
C time position. Save desiccant states at prior to integration 

if(tdid.eq.0.and.ncyc.eq.0) then 
j =1 
open(7,file='icbed.dat') 

26 	continue 
read(7,*,end =29) dloc(1,j),dloc(2,j),Td 
dloc(3,j) = (cd+dloc(2,j)*cp1w)*(Td-273.15)+ 

(0.2843/10.28)*(exp(-10.28*dloc(2,j))-1.0)*enthvap(Td) 
j =j +1 
goto 26 

29 	continue 
dstsav(1,1)=dloc(2,1) 
dstsav(2,1)=dIoc(3,1) 
kllast=j-1 
close(7) 
else 

C kllast is the number of B-S steps in the axial position 
C taken last time period 

do 31 j=1,kllast 
dloc(1,j) =dlocs(1,j) 
dloc(2,j) =dlocs(2,j) 
dloc(3,j)=dlocs(3,j) 

31 	continue 
endif 
call tstart(dstsav,nst,tau,tdid,eps) 
write(*,500) nst,tdid,tau 

C Save moist air state at inlet to bed 
do 24 j=1,nst 
rmasav(1,j) = wf 
rmasav(2,j) = rif 

24 	continue 
dlocs(1,1) = xs 



dlocs(2,1)=dstsav(1,nst) 
dlocs(3,1)=dstsav(2,nst) 
kloc =1 
endif 

35 	continue 
C Dstsav and rmasav are the starting points for the mmid routine 
C Each time the solution is reintegrated 
C the starting values of the desiccant and moist air states are 
C needed. These values are stored as Dstsav and masav 

do 100 i=1,9 
do 39 j=1,nst 
do 37 k=1,2 
dstate(k,j) = dstsav(k,j) 
rmast(k,j) = rmasav(k,j) 

37 continue 
39 continue 

C MMID performs modified midpoint steps in axial direction. 
C The desiccant state at x=xs from tau to tdid is dstate. 
C the moist air state at x=xs from tau to tdid is rmast. 
C On output, these arrays are replaced by the moist air state 
C and the desiccant states at x=xs+xtry. Integration in the 
C temporal direction is achieved using nst modified midpoint 
C steps to go from tau to tau+tdid. 

call mmid(rmast,dstate,xs,xtry,nseq(i),tau,tdid,nst,dloc,dst) 
C extrapolation method assumes even powered error function 

xest = (xtry/nseq(i))**2. 
C Perform rational function extrapolation on the moist air 
C state. On output, the error yen is returned 

call rtextr(i,xest,rmast,yerr,nst,nuse) 
errmax=0. 

C scale error and find the maximum 
do 41 k=1,nst 
do 40 j =1,2 
errmax=dmaxl(errmax,dabs(yerr(j,k)/rmast(j,k))) 

40 continue 
41 continue 

C scale error to desired accuracy 
errmax=errmax/eps 

C if solution has converged, save values 
if(errmax.11.) then 
write(*,600) xs+xtry,nseq(i) 

C Desiccant state at tau+tdid is saved. This is needed for 
C startup of the next time step 

do 42 j=1,nseq(i) 
kloc = kloc+ 1 
dlocs(1,kloc)=dlocs(1,1doc-1)+xtry/nseq(i) 
dlocs(2,kloc)=dst(1,j) 
dlocs(3,kloc) =dst(2,j) 

42 	continue 
C if outlet face has been reached indice is ldlast 

if((xs+xtry+res).ge.xf) then 
write(1,400) xs+xtry,real(ncyc)+tau,rmast(1,nst) 

* ,rmast(2,nst) 
Idlast=kloc 

C test for end of process period 
if(dabs(tau-taufp).1e.res) then 

C change inlet air to regeneration stream 
ip =1 
call syspar(ip) 



tdid =dtmax 
C Call subroutine which reverses direction 

call REV(dlocs,kllast) 
do 43 k=1,2 
dstate(k,1) = dlocs(k+ 1,1) 

43 	continue 
endif 

C test for end of regeneration period 
if(dabs(tau-taufr).1e.res) then 

C Reverse integration direction 
call REV(dlocs,kllast) 

C store the calculated bed boundary condition 
do 48 j=1,1cllast 
write(2,*) dlocs(1,j),dlocs(2,j),dlocs(3,j) 

48 	continue 
C change inlet air to process stream 

ip=0 
call SYSPAR(ip) 

C Call subroutine to guess PSS boundary condition 
ncyc=ncyc+1 
call BCCONV(dlocs,dloc,kllast,relerr,ncyc) 

C Store the guessed boundary condition 
do 50 j=1,kllast 
write(2,*) dlocs(1,j),dlocs(2,j),dlocs(3,j) 

50 	continue 
if(relerr.lt.1.) ipss=1 
write(*,250) relerr,ncyc 
write(2,*) relerr,ncyc 
do 58 k=1,2 
dstate(k,1) = dlocs(k +1,1) 

58 	continue 
endif 

endif 
C save these values as they will be the new starting 
C point for the mmid routine 

do 65 j=1,nst 
do 60 k=1,2 
dstsav(k,j) = dstate(k,j) 
rmasav(k,j) = rmast(k,j) 

60 	continue 
65 	continue 

goto 160 
endif 

100 continue 
110 continue 

C if here, solution has not converged by nsteps =48 
write(*,*) ' xbsstep failure' 
ipss =1 
goto 35 

160 continue 
return 

250 format(lx,' pss error=',f8.3,' ncyc=',i3) 
300 format(lx,' x = ',f6.4,' # steps=',i3) 
400 format(lx,f5.3,1x,f6.3,2(1x,f9.5)) 
500 format(lx,' # of steps =',i3,' dtau =', 

* f7.5,' time =',f7.5) 
600 format(lx,f7.5,1x,i3) 

end 

SUBROUTINE REV(dlocs,k) 



implicit double precision (a-h,o-z) 
common /finalx/ xf 
dimension dlocs(3,250),sw(3,250) 

C Reverses integration direction 
do 55 j=1,k 
sw(1,j) = xf-dlocs(1,k-j +1) 
do 54 n=2,3 
sw(n,j) = dlocs(n,k-j+1) 

54 	continue 
55 	continue 

do 57 j=1,k 
do 56 n=1,3 
dlocs(n,j) = sw(n,j) 

56 	continue 
57 	continue 

return 
end 

subroutine TAUSTEP(rmast,taus,ttot,nst,dstate,dloc,x) 
implicit double precision (a-h,o-z) 

C This subroutine performs modified midpoint steps to 
C determine the desiccant state at positions 
C in the temporal direction. The moist air state at 
C all temporal positions is known, the desiccant state 
C at time=taus is input as dstate(1,1) and dstate(2,1). 
C the routine goes from taus to taus+ttot using nst steps. 
C On output, the dstate array has been solved from 
C dstate(i, l) through dstate(i,nst+ 1) 

dimension rmast(2,20),dstate(2,20),temp1(2,1) 
dimension eqst(2,1),dPdx(2,1),temp2(2,1),dloc(3,250) 
common /mcap/ tmcap 
data res /1E-6/ 
dtau = ttot/(nst-1) 

C find correct initial desiccant state 
i=2 

5 	continue 
if(x.le.(dloc(1,i)+res).and.(x+res).ge.dloc(1,i-1)) then 
dstate(1,1) = (dloc(2,i)-dloc(2,i-1))/(dloc(1,i)- 

* dloc(1,i-1))*(x-dloc(1,i))+dloc(2,i) 
dstate(2,1) = (dloc(3,i)-dloc(3,i-1))/(dloc(1,i)- 

* dloc(1,i-1))*(x-dloc(1,i))+dloc(3,i) 
else 
i=i+1 
if(i.gt.250) then 
write(*,*) x,(dloc(1,j), j=1,i) 
endif 
goto 5 
endif 

C the subroutine para finds the state of the 
C hypothetical moist air layer in equilibrium with 
C the desiccant. The desiccant state and the moist 
C air state are inputs. Eqst is the output 

call para(dstate,rmast,l,eqst,x) 
C Derivs evaluates the right hand side of the 
C rate equations. 

call derivs(rmast,eqst,l,dPdx,x) 
C mmm step 

dstate(1,2) = dstate(1,1) - dtau*dPdx(1,1)/tmcap 
dstate(2,2) = dstate(2,1) - dtau*dPdx(2,1)/tmcap 

C the temporary variables are needed to pass to para and derivs 



do 15 i=1,2 
templ (i , 1) = dstate(i,2) 
temp2(i , 1) = rmast(i,2) 

15 continue 
tau = taus+dtau 
call para(templ,temp2,1,eqst,x) 
call derivs(temp2,eqst,1,dPdx,x) 
dt2 = 2.*dtau 

C the second through nst-1 MMM steps 
do 30 j =2,nst-1 
dstate(1,j +1) = dstate(1,j) - dt2*dPdx(1,1)/tmcap 
dstate(2j +1) = dstate(2,j) - dt2*dPdx(2,1)/tmcap 
do 25 i=1,2 
templ(i , 1) = dstate(i,j + 1) 
temp2(i,1) = rmast(i,j +1) 

25 continue 
tau = tau+dtau 
call para(templ,temp2,1,eqst,x) 
call derivs(temp2,eqst,1,dPdx,x) 

30 continue 
C the last mmm step 

dstate(1,nst) = 0.5*(dstate(1,nst) + 
dstate(1,nst-1) - dtau*dPdx(1,1)/tmcap) 

dstate(2,nst) = 0.5*(dstate(2,nst) + 
dstate(2,nst-1) - dtau*dPdx(2,1)/tmcap) 

100 continue 
return 
end 

subroutine TBSSTEP(tau,ttry,dstate,nstmax,eps) 
C Bulirsch-Stoer method for temporal direction at inlet to bed 
C Inputs are tau-temporal position, ttry-time step to be 
C attempted. Outputs are tdid-the time step which was achieved, 
C tnext-the suggested next time step, dstate-the desiccant 
C state at the inlet to the bed from tau to tau+tdid, and 
C nstmax-the number of steps it took to achive this. 

implicit double precision (a-h,o-z) 
dimension dstate(2,20),temp(2,1),yerr(2,1) 
integer nseq(9) 
data nseq(1),nseq(2),nseq(3),nseq(4),nseq(5),nseq(6) 

* ,nseq(7),nseq(8),nseq(9) /2,4,6,8,12,16,24,32,48/ 
data nuse /7/ 

1 	continue 
do 30 j=1,9 

C perform modified midpoint steps from tau to tau+ttry 
C using an increasing number of steps; nseq(j) 

call mmd(dstate,tau,ttry,nseq(j)) 
xest = (ttry/nseq(j))**2. 
do 10 i=1,2 
temp(i,l) = dstate(i,nseq(j)+1) 

10 continue 
C perform rational function extrapolation on the 
C solution and assess its error based on the 
C results of previous mmm steps 

call rtextr(j,xest,temp,yerr,l,nuse) 
errmax = 0. 

C scale error and find its maximum 
do 12 i=1,2 
errmax = d maxl(errmax ,dab s(yerr(i , 1)/temp(i, 1))) 

12 continue 



C scale error according to desired accuracy 
errmax = errmax/eps 

C test for convergence 
if(errmax.lt.1.) then 
nstmax = nseq(j) 
goto 40 
endif 

25 continue 
30 continue 

write(*,*) 'Tau BSSTEP failure' 
goto 1 

40 continue 
return 
end 

subroutine TSTART(dstate,nstmax,tau,ttry,eps) 
C Tstart is the routine which controls the B-S routine 
C in the time direction at the inlet to the bed. Tau is 
C the input. dstate is the output array of the bed state 
C from dstate(i,1) to dstate(i,nstmax + 1) at x=0. 
C which corresponds to 
C time=tau to tau+ttry. The number of 
C steps the algorithm needed for convergence is nstmax 

implicit double precision (a-h,o-z) 
dimension dstate(2,20),dstsav(2,1) 
common /icbed/ Wd,rld 
common /finalt/ taufp,taufr 
common /max/ dxmax,dtmax 
data res/1E-6/ 

C the first time through, the desiccant state is the initial 
C 	assumed bed state 
C if regeneration or process period has just begun, 
C 	dstate is the proper input 
C and if new rotation has begun, tau finish =tauprocess period 

if((tau-res).10.0.and.(tau+res).gt.0.0) then 
tfin=taufp 
ttry =dtmax/2. 
goto 11 
endif 
if((tau-res).1t.taufp.and.(tau+res).gt.taufp) then 
ttry =dtmax/2. 
goto 11 
endif 

C otherwise dstsav is the initial desiccant state 
do 10 i=1,2 
dstate(i,1) = dstsav(i,1) 

10 continue 
11 	continue 

C call the B-S routine for the temporal direction. Input is 
C tau-starting position. ttry-time step to ttry. eps-rel accuracy 
C dstate(1,1) and dstate(2,1) which are the initial conditions 
C output is the desiccant state at positions from tau to 
C tau+ttry using nstmax steps. 

call TBSSTEP(tau,ttry,dstate,nstmax,eps) 
tau=tau+ttry 

C Save the converged desiccant state at x=0 and tau =tau+ttry 
C as dstsav will be the initial condition next time. 

do 15 i=1,2 
dstsav(i,1) = dstate(i,nstmax +1) 

15 continue 



nstmax = nstmax +1 
C do not integrate past tauf, change final time 
C to end of regeneration period if process period has ended 

if((tau+ttry).ge.tfin) then 
ttry = tfin-tau 
tfin =taufr 
else 
ttry =dtmax 
endif 
return 
end 

subroutine MMD(dstate,taus,dttot,nstep) 
C modified midpoint method for temporal direction 
C at inlet to desiccant bed 
C Inputs are dstate(1,1), dstate(2,1), 
C. taus-starting time position, dttot-total time 
C step to be taken, and nstep-number of steps to take 
C Output is dstate - the desiccant state at each position 
C from taus to taus+dttot 

implicit double precision (a-h,o-z) 
common /bcbed/ wf,rif 
common /mcap/ tmcap 
dimension dstate(2,20),rmast(2,1),temp(2,1),dPdx(2,1) 
dimension eqst(2,1) 
data xst/O./ 
nst=1 

C moist air state is inlet moist air state 
rmast(1,1) = wf 
rmast(2, 1) = rif 

C find equilibrium state 
call para(dstate,rmast,l,eqst,xst) 

C find right hand side of rate equations 
call derivs(rmast,eqst,l,dPdx,xst) 
dtau = dttot/nstep 
dstate(1,nst+1) = dstate(1,nst) - dtau*dPdx(1,1)/tmcap 
dstate(2,nst +1) = dstate(2,nst) - dtau*dPdx(2,1)/tmcap 
do 30 i=1,2 
temp(i,1) = dstate(i,nst+ 1) 

30 continue 
nst=nst+1 
tau = taus + dtau 
call para(temp,rmast,l,eqst,xst) 
call derivs(rmast,eqst,l,dPdx,xst) 
dt2 = 2.*dtau 
do 40 j =2,nstep 
dstate(1,nst +1) = dstate(1,nst) - dt2*dPdx(1,1)/tmcap 
dstate(2,nst +1) = dstate(2,nst) - dt2*dPdx(2,1)/tmcap 
do 35 i= 1,2 
temp(i,l) = dstate(i,nst+ 1) 

35 continue 
nst = nst + 1 
tau = tau + dtau 
call para(temp,rmast,l,eqst,xst) 
call derivs(rmast,eqst,l,dPdx,xst) 

40 continue 
dstate(1,nst) = 0.5*(dstate(1,nst) + dstate(1,nst-1) 

* - dtau*dPdx(1,1)/tmcap) 
dstate(2,nst) = 0.5*(dstate(2,nst) + dstate(2,nst-1) 

* - dtau*dPdx (2 ,1)/tmcap) 



return 
end 

subroutine MMID(ym,dstate,xs,xtot,nstep,tau,tdid,lcnt,dloc 
* ,dst) 

C MMID takes modified midpoint steps in the axial direction. 
C Inputs are xs-axial starting position, xtot-total axial 
C distance, nstep-number of steps to take 
C ym-moist air state at x=xs from tau to tau+tdid, 
C dstate-desiccant state at x=xs from tau to tau+tdid, 
C (corresponds to ym) 
C tau-starting time position, tdid-ending time position 
C knt-number of time steps. Output is ym-moist air state 
C at x=xs+xtot from tau to tau+tdid and dstate-desiccant state 
C at x=xs+xtot from tau to tau+tdid. 

implicit double precision (a-h,o-z) 
dimension dstate(2,20),ym(2,20),yn(2,20),dloc(3,250) 
dimension eqst(2,20),dpdx(2,20),dst(2,40) 
dx = xtot/nstep 

C find hypothetical moist air state in equilibrium with 
C the desiccant 

call para(dstate,ym,lcnt,eqst,xs) 
C evaluate right hand side of rate equations 

call derivs(ym,eqst,Icnt,dpdx,xs) 
x=xs+dx 

C MMM step 
do 20 j=1,Icnt 
do 10 i=1,2 
yn(i,j) = dx*dpdx(i,j) + ym(i,j) 

10 continue 
20 continue 
22 continue 

C take time steps at x=xs+dx from time=tau to tau +tdid 
C using knt steps to find desiccant state at this axial 
C location. 

call taustep(yn,tau,tdid,knt,dstate,dloc,x) 
do 23 i=1,2 
dst(i,1) = dstate(i,knt) 

23 continue 
call para(dstate,yn,lcnt,eqst,x) 
call derivs(yn,eqst,Icnt,dpdx,x) 
dx2=2.*dx 

C MMM step #2 though nstep-1 
do 30 n=2,nstep 
do 27 j=1,knt 
do 25 i=1,2 
sw = dx2*dpdx(i,j) + ym(i,j) 
ym(i,j) = yn(i,j) 
yn(i,j) = sw 

25 continue 
27 continue 

x = x + dx 
call taustep(yn,tau,tdid,lait,dstate,dloc,x) 
do 28 i=1,2 
dst(i,n) = dstate(i,knt) 

28 continue 
call para(dstate,yn,lait,eqst,x) 
call derivs(yn,eqst,Icnt,dpdx,x) 

30 continue 
C Last MMM step 



do 45 j=1,1mt 
do 40 i=1,2 
ym(i,j) = 0.5*(dx*dpdx(i,j) + ym(i,j) + yn(i,j)) 

40 continue 
45 continue 

return 
end 



subroutine DERIVS(rmast,reqst,kno,dPdx,x) 
implicit double precision (a-h,o-z) 

C Property subroutines- Contains heat transfer 
C coefficient for spherical particles in a packed bed 
C 
C Programs DERIVS, PWVSAT, ENTHVAP, RTEXTR, RHQEL 
C 	contained in psubs.for 

C Subroutine computes right hand side of rate equation 
C given the moist air state (rmast) and the hypothetical 
C equilibrium state (eqst), kno is the size of the input 
C arrays. dPdx(i,1) through dPdx(i,kno) is the output. 

dimension nnast(2,20),reqst(2,20),dpdx(2,20) 
external enthvap 
external rhqel 
common /htcap/ cpda,cpwv 
common /xfer/ rNTUqm,rNTUmm,rhqfd 
common /ref/ Tref 
common /mcap/ tmcap 
do 10 j=1,kno 

C find tf given wf and if 
cpm = cpda+rmast(1,j)*cpwv 
tf = (rmast(2,j)-rmast(1,j)*enthvap(Tref))/cpm + Tref 
dPdx(1,j) = (1.7/1.6)*rhqfd*rNTUmm/Cpm*(reqst(1,j)-rmast(1,j)) 
dPdx(2,j) = rhqfd*rNTUqm*(reqst(2,j)-tf) 

* + dPdx(1,j)*enthvap(tf) 
10 continue 

return 
end 

subroutine RTEXTR(iest,xest,yest,dy,kno,nuse) 
implicit double precision (a-h,o-z) 

C Diagonal rational function extrapolation 
dimension x(11),yest(2,20),yz(2,20),dy(2,20),d(20,20,7) 
dimension fx(7) 
x(iest) =xest 
if(iest.eq.1) then 
do 10 j=1,Imo 
do 5 i=1,2 
yz(i,j) = yest(i,j) 
d(i,j,1)=yest(i,j) 
dy(i,j)=yest(i,j) 

5 	continue 
10 continue 

else 
ml =min(iest,nuse) 
do 11 k=1,m1-1 
fx(k +1) = x(iest-k)/xest 

11 	continue 
do 15 j=1,imo 
do 14 i=1,2 
yy=yest(i,j) 
v=d(i,j,1) 
c=yy 
d(i,j,1)=yy 
do 13 k=2,m1 
bl=fx(k)*v 
b =bl-c 
if(b.ne.0) then 
b=(c-v)/b 



ddy =c*b 
c=bl*b 
else 
ddy =v 
endif 
if(k.ne.ml) v=d(i,j,k) 
d(i,j,k) = ddy 
yy=yy+ddy 

13 continue 
dy(i,j) = ddy 
yz(i,j) = yy 

14 continue 
15 continue 

endif 
do 20 j=1,kno 
do 17 i=1,2 
yest(ij) = yz(ij) 

17 continue 
20 continue 

return 
end 

function PWVSAT(temp) 
implicit double precision (a-h,o-z) 

C Finds the saturation pressure of water vapor given temp. 
C Goff correlation: good for -50C to 100C 
C Pwvsat is in atmospheres 

real a,b,c,d,e,f,g,gz,thet 
data a,b,c,d,e,f,g /10.79586,5.02808,1.50474E-4, 
* -8.29692,0.42873E-3,4.76955,-2.2195983/ 

C test to see if error will occur here 
thet = 273.15/temp 
gz = a*(1.0-thet)+b*log10(thet) + c*(1 . 0-10. **(d *(1 . /thet 
*-1.)))+e*(10.**(f*(1.-thet))-1.0)+g 
pwvsat = exp(gz*log(10.)) 
return 
end 

function ENTHVAP(T'emp) 
implicit double precision (a-h,o-z) 

C Function to compute the enthalpy of vaporization 
C at saturation 

external pwvsat 
data Rmwv,vfl ,vf2,vf3/0.46152,3.90638E-9,0.562034E-8, 
* 0.999406E-4/ 

data a,b,c,d,e,f,g/10.79586,5.02808,1.50474E-4, 
* -8.29692,0.42873E-3,4.76955,-2.2195983/ 
thet = 273.15/temp 
dthdT = -273.15*(Temp)**(-2.0) 
ac = -a*dthdt 
be = (b/log(10.))*(dthdT/thet) 
cc = c*d*log(10.0)*(dthdT/thet**(2.0))*10.0**(d*(1.0/thet-1.0)) 
ec = -e*f*log(10.0)*thet*dthdT*10.0**(f*(1.0-thet)) 
dlnpsdT = log(10.0)*(ac+bc+cc+ec) 
dPwsdt = dlnpsdT*pwvsat(temp) 
of = vf1*(Temp-273.15)**2 + vf2*(Temp-273.15) + vf3 
enthvap = Rmwv*dlnpsdT*(Temp)**(2.0)+(Temp)*vf*dpwsdT 
return 



end 

function RHQEL(xs) 
implicit double precision (a-h,o-z) 

C calculates convective heat transfer coefficient 
C based thermal entry length for parallel plates 

common /thprop/ Re,Pr,Dh,rkf,rleng 
xbar=(xs*rleng)/(Dh*Re*Pr) 
if(xbar.le.2.5E-4) rNu=19.72 
if(xbar.gt.2.5E-4.and.xbar.le.2.5E-3) rNu=-4.34178E+03 

* *(xbar-2.5E-3)+9.951 
if(xbar.gt.2.5E-3.and.xbar.le.0.01) rNu=-294.667*(xbar-.01) 

* +7.741 
if(xbar.gt.0.01.and.xbar.le.0.015) rNu=-31.8*(xbar-.015) 

* +7.582 
if(xbar.gt.0.015.and.xbar.le.0.025) rNu=-3.9*(xbar-.025) 

* +7.543 
if(xbar.gt.0.025.and.xbar.lt.0.05) rNu=-.08*(xbar-.05) 

* +7.541 
if(xbar.ge.0.05) rNu=7.54072 
rhciel=rNu*rkf/Dh 
return 
end 



subroutine PARA(dstate,rmast,neval,eqst,xs) 
implicit double precision (a-h,o-z) 

C 
C Subroutines in this program contain properties of regular 
C density silica gel grade 01. Desiccant diffusivity is not constant 
C and the adsorption isotherm and heat of adsorption as fitted to 
C 	available data by Peseran 
C 
C This subroutine finds (we,Te) given Wd,Id, and wf for 
C regular density silica gel using the 
C parabolic profile assumption model 

dimension dstate(2,20),eqst(2,20),rmast(2,20) 
external rtsec 
external rhqel 
common /totp/ Ptotal 
common /parp/ Rad,Deff,rhop 
common /htcap/ cpda,cpwv 
common /xfer/ rNTUqm,rNTUmm,rhqfd 
common /ppr/ a2 
data xaccl,xacc2,eqst1/0.1,1E-5,.02/ 
data A,B,C,D,F /.0078,.05759,24.16554,124.478,204.226/ 

C secant method is used to find the temperature 
do 10 j=1,neval 
niter=1 
eqst(2,j) = rtsec(dstate(1,j),dstate(2,j),xaccl) 

C First guess 
if(j.gt.1) eqstl = eqst(1,j-1) 

C Resubstitution loop to solve for a2 
if(dstate(1,j).1t.0.05) rHads=-12400*dstate(1,j)+3500 
if(dstate(1,j).ge.0.05) rHads =-1400*dstate(1,j) +2950 
Dseff= 4.48E-6*exp(-0.974E-3*rHads/eqst(2,j))/2.8 

5 	continue 
C once a2 is known, the humidity ratio of the moist 
C air in equilibrium with the desiccant is found explicitly 
C from the adsorption isotherm relationship. 

cpm = cpda+eqstl*cpwv 
C Spherical Case 

rcoeff= -(1.7/1.6)*(rhqfd/cpm)*Rad/(2*rhop*Dseff) 
C Planar Case 
C 	rcoeff= -(rhqfd/cpm)*Rad/(rhop*Dseff) 

a2 = rcoeff*(eqstl-rmast(1,j)) 
C Planar Case 
C 	y0 = dstate(1,j)+2.*a2/3. 
C Spherical Case 

y0 = dstate(1,j)+0.4*a2 
RHE = A- B*y0 + C*y0**2 - D*y0**3 + F*y0**4 
pwv = pwvsat(eqst(2,j))*RHE 
eqst(1,j) = 0.62198*pwv/(Ptotal-Pwv) 
relerr = abs(eqstl-eqst(1,j)) 
if(relerrat.xacc2) then 
goto 10 
else 
eqstl = eqst(1,j) 
niter = niter+ 1 
endif 
goto 5 

10 continue 
return 
end 



function rtsec(Wd,rid,xacc) 
implicit double precision (a-h,o-z) 

C Root secant method 
common /htcp2/ cplw,cd 
data niter,tml,tm2 /30,283.15,373.15/ 
rK1 = cd + Wd*cplw 
if(Wd.lt.0.05) rK2 = -12400*Wd**2/2.+3500*Wd 
if(Wd.ge.0.05) rK2 = -1400*Wd**2/2.+2950*Wd 
rhfgl = enthvap(Tml) 
rhfg2 = enthvap(Tm2) 
fl = rid - rK1*(Tm1-273.15)- Wd*rhfgl +r1C2 
f = rid - rK1*(Tm2-273.15)- Wd*rhfg2+rK2 
if(abs(fl).1t.abs(f)) then 
rtsec=tml 
tml=tm2 
sw=fl 
fl=f 
f=sw 
else 
tml=tml 
rtsec=tm2 
endif 
do 10 j=1,niter 
dtemp = (Tml-rtsec)*f/(f-fl) 
tml =rtsec 
fl=f 
rtsec=rtsec+dtemp 
rhfg = enthvap(rtsec) 
f = rid - rK1*(rtsec-273.15) - Wd*rhfg+rK2 
if(abs(dtemp).1t.xacc.or.f.eq.0) goto 20 

10 continue 
write(*,*) 'no. of iterations exceeded' 

20 continue 
tml=rtsec 
return 
end 



subroutine PARA(dstate,rmast,neval,eqst,xs) 
implicit double precision (a-h,o-z) 

C Subroutines in this program contain properties of regular 
C density silica gel. Constant desiccant diffusivity is assumed 
C Close and Banks heat of adsorption is used 
C Clausius-Clayperon is used for adsorption isotherm 
C 
C This subroutine finds (we,Te) given Wd,Id, and wf for 
C regular density silica gel using the 
C parabolic profile assumption model 

dimension dstate(2,20),eqst(2,20),rmast(2,20) 
external rtsec 
external rhqel 
common /totp/ Ptotal 
common /parp/ Rad,Deff,rhop 
common /htcap/ cpda,cpwv 
common /xfer/ rNTUqm,rNTUmm,rhqfd 
common /ppr/ a2 
data xaccl,xacc2,eqst1/0.1,1D-3,.02/ 

C secant method is used to find the temperature 
do 10 j=1,neval 
niter=1 
eqst(2,j) = rtsec(dstate(1,j),dstate(2,j),xacc1) 

C First guess 
if(j.gt.l) eqstl = eqst(1,j-1) 

C Resubstitution loop to solve for a2 
5 	continue 

C once a2 is known, the humidity ratio of the moist 
C air in equilibrium with the desiccant is found explicitly 
C from the adsorption isotherm relationship. 

cpm = cpda+eqstl*cpwv 
C Spherical Case 
C 	rcoeff= -(rhqfd/cpm)*Rad/(2.*rhop*Deff) 
C Planar Case 

rcoeff= -(rhqfd/cpm)*Rad/(rhop*Deff) 
a2 = rcoeff*(e,qstl-rmast(1,j)) 

C Planar Case 
y0 = dstate(1,j)+2.*a2/3. 

C Spherical Case 
C 	y0 = dstate(1,j)+0.4*a2 

rhstar = 1.0+0.2843*dexp(-10.28*y0) 
yl = (2.112*y0)**rhstar 
y2 = (29.91*pwvsat(eqst(2,j)))**(rhstar-1) 
pwv = pwvsat(eqst(2,j))*yl*y2 
eqst(1,j) = 0.62198*pwv/(Ptotal-Pwv) 
relerr = 2.*abs(eqstl-eqst(1,j))/(eqstl+eqst(1,j)) 
if(relerr.lt.xacc2) then 
goto 10 
else 
eqstl = eqst(1,j) 
niter=niter+ 1 
endif 
goto 5 

10 continue 
return 
end 

function rtsec(Wd,rid,xacc) 
implicit double precision (a-h,o-z) 

C Root secant method 



common /htcp2/ cplw,cd 
data niter,tml,tm2 /30,283.15,373.15/ 
rK1 = cd + Wd*cplw 
rK2 = (0.2843/10.28)*(dexp(-10.28*Wd)-1.) 
rhfgl = enthvap(Tml) 
rhfg2 = enthvap(Tm2) 
fl = rid - rK1*(Tm1-273.15)- rK2*rhfgl 
f = rid - rK1*(Tm2-273.15)- rK2*rhfg2 
if(dabs(fl).1t.dabs(0) then 
rtsec=tml 
tml=tm2 
sw=fl 
fl=f 
f=sw 
else 
tml=tml 
rtsec=tm2 
endif 
do 10 j=1,niter 
dtemp = (Tml-rtsec)*f/(f-fl) 
tml=rtsec 
fl=f 
rtsec =rtsec+dtemp 
rhfg = enthvap(rtsec) 
f = rid - rK1*(rtsec-273.15) - rK2*rhfg 
if(dabs(dtemp).1t.xacc.or.f.eq.0) goto 20 

10 continue 
write(*,*) 'no. of iterations exceeded' 

20 continue 
tml =rtsec 
return 
end 



subroutine BCCONV(dstc,dstg,k,relerr,ncyc) 
C Calculates PSS relative error at end of each rotation 

implicit double precision (a-h,o-z) 
dimension dstc(3,150),bcc(2,150),bcg(2,150) 
data pssacc/1D-3/ 
relerr = 0.0 
do 3 j=1,k 
do 2 i=2,3 
relerr = dmaxl(relerr,dabs(2.*(dstc(i,j)-bcc(i-1,j))/ 

* (dstc(i,j)+bcc(i-1,j)))) 
2 continue 
3 continue 

do 10, j=1,k 
do 5, i=1,2 
bcc(i,j) = dstc(i+1,j) 

5 continue 
10 continue 

relerr = relerr/pssacc 
return 
end 



subroutine BCCONV(dstc,dstg,k,relerr,ncyc) 
real dstc(3,50), bcc(2,50), bccl(2,50), bcc2(2,50) 

C Contains convergence routines to guess the periodic steady state 
C boundary conditions 

real bcg(2,50), bcgl(2,50), bcg2(2,50), smg(2,50) 
real dstg(3,50) 
data pssacc/1E-2/ 
relerr = 0.0 
do 3 j=1,k 
do 2 i=2,3 
relerr = max(relerr,abs(2*(dstc(i,j)-bcc(i-1,j))/ 

* (dstc(ij)+bcc(i-1,j)))) 
2 continue 
3 continue 

do 10, j=1,k 
do 5, i=1,2 
bcc(i,j) = dstc(i +1,j) 
if(ncyc.eq.1) bcg(i,j)=dstg(i+1,j) 

C 	call EXP(bcc(i,j),ncyc,bccl(i,j),bcc2(i,j)) 
dstc(i +1,j) = bcc(i,j) 

5 continue 
10 continue 

C call smoothing routine 
C 	call smcurv(dstc,k) 

relerr = relerr/pssacc 
return 
end 

SUBROUTINE LAGEXT(XG,XC,ncyc,XG1,XC1,XG2,XC2) 
data thet,dampf/.785398,0.2/ 

C Convergence routine by Lagrange Interpolation Method 
C variables: 
C XC-new calculated state 	XG-New guess (output) 
C XC1-Last calculated state 	XG1-Last guess 
C XC2-2nd to last calculated value XG2-2nd to last guess 
C XG3-3rd to last calculated value XG3-3rd to last guess 
C ncyc-Number of revolutions 

C First three times, resubstitution is used 
if(ncyc.lt.3) then 
XG2=XG1 
XC2=XCl 
XG1=XG 
XCl =XC 
XG=XC 
return 

endif 

C Transform X,Y coordinate system to Zeta,Xi coordinate system 
if(icc.eq.0) then 
icc=1 
f=cos(thet) 
g = sin(thet) 

endif 
if(ncyc.ge.12) dampf=.05 
if(ncyc.ge.20) dampf=0.0 
Zeta=XG*f-XC*g 
Zetal =XG1*f-XCl*g 
Zeta2=XG2*f-XC2*g 



Xi=XG*g+XC*f 
Xi1=XG1*g+XCl*f 
Xi2=XG2*g+XC2*f 

C Calculate new Xi 
Xi = Zetal*Zeta2*Xi/((Zeta-Zetal)*(Zeta-Zeta2)) + 
* Zeta*Zeta2*Xil/((Zetal-Zeta)*(Zetal-Zeta2)) + 
* Zeta*Zetal*Xi2/((Zeta2-Zeta)*(Zeta2-Zetal)) 

C Transform back to X,Y 
XT = Xi*g 
XG2=XG1 
XC2=XCl 
XG1 =XG 
XC 1 =XC 
XG=dampf*XT+(l-dampf)*XC 
if(xg.lt.0.0) xg =xc 
return 
end 

SUBROUTINE WEGST(XG,XC,ncyc,XG1,XC1,XG2,XC2) 
data dampf/0.1/ 

C...convergence by wegstein's method 
C 
C... summary dictionary 
C xc, xg on input: calculated and guessed values 
C 	xg on output: new guess 
C 
C ncyc: 	number of revolutions 
C 
C xcl, xgl: last values 
C 
C...begin routine processing 
C 
C...on first call, resubstitution 
C 

IF (ncyc.eq.1) THEN 
XG1 = XG 
XCl = XC 
XG = XC 
RETURN 

ENDIF 
C 

XT = (XG1*XC-XC1*XG)/(XG1-XG+XC-XC1) 
XG1 = XG 
XCl = XC 
XG = dampf*XT +(l-dampf)*XC 
if(xg.lt.0.0) XG=XC 
if((xg/xc).gt.20) XG=XC 
RETURN 
END 

SUBROUTINE LSELIN(XG ,XC , ncyc,XG 1 ,XC 1 ,XG2 ,XC2) 
data dampf,npts/1.,3/ 

C Convergence routine by LSE line fit 
C XC-new calculated state 	XG-New guess (output) 
C XCl-Last calculated state 	XG 1 -Last guess 
C XC2-2nd to last calculated value XG2-2nd to last guess 
C ncyc-Number of revolutions 

if(ncyc.ge.35) dampf= O. 



C First two times, resubstitution is used 
if(ncyc.lt.npts) then 
XG2=XG1 
XC2=XC1 
XG1=XG 
XCl =XC 
XG=XC 
return 

endif 

Xgbar=(xg+xgl+xg2)/npts 
Xcbar=(xc+xcl +xc2)/npts 
Bnum = xg*xc + xgl*xcl + xg2*xc2 - npts*xgbar*xcbar 
Bden = xg**2 + xg1**2 + xg2**2 - npts*xgbar**2 
B = Bnum/Bden 
A = Xcbar-B*Xgbar 
XT = A/(1-B) 
XG2=XG1 
XC2=XCl 
XG1=XG 
XCl =XC 
XG=dampf*XT+(l-dampf)*XC 
if(xg.lt.0.0) xg=xc 
if(((xg-xg1)/(xgl-xg2)).gt.10) xg=xg1+(xgl-xg2) 
return 
end 

SUBROUTINE NRAPH(XG,XC,ncyc,XG1,XC1,XG2,XC2) 
C Newton Raphson in one dimension 

if(ncyc.eq.1) then 
F = 2*(XG-XC)/(XG+XC) 
XG1=XG 
XC1=XC 
XG=XC 
return 
endif 

C Newton Raphson method in one dimension 
Fl = 2*(XG1-XC1)/(XG1+XC1) 
F = 2*(XG-XC)/(XG+XC) 
DFDX = (F1-F)/(XG1-XG) 
DX = F/DFDX 
XT = XG - DX 
XG2=XG1 
XG1=XG 
XCl =XC 
XG=XT 
if(xg.lt.0.0) xg=xc 
if(((xg-xg1)/(xgl-xg2)).gt.10) xg=xg1+(xgl-xg2) 
return 
end 

subroutine QUADR(X,NCYC,X1,X2) 
C Fits the last three points to a quadratic as a 
C function of N 

if(ncyc.lt.15) then 
X2=X1 
X1=X 
return 

endif 



Ncycl =Ncyc-1 
Ncyc2=Ncyc-2 
D = Ncyc*Ncyc2+Ncycl*Ncyc2-Ncyc*Ncycl-Ncyc2**2 
C = ((X-X2) + (X1-X)*(Ncyc2-Ncyc)/(Ncycl-Ncyc))/D 
B = (X1-X)/(Ncycl-Ncyc)-C*(Ncyc+Ncyc1) 
A = X - B*Ncyc - C*Ncyc**2 
XT = A - B**2/(2*C) 
)C2 =X1 
X1 =X 
if(XT.1t.0) return 
X = XT 
return 
end 

subroutine EXP(X3,Ncyc,X2,X1) 
C Exponential curve fit 

rn1 = real(ncyc)/2.0 
rn2 = real(ncyc/2) 
if(ncyc.lt.8.or.(rnl-rn2).gt.0.1) then 
X1 =X2 
X2 =X3 
Return 
endif 
XO = (Xl*X3-X2**2)/(X1+X3-2*X2) 
X1 =X2 
X2 =X3 
X3 =XO 
return 
end 



subroutine smcurv(dstg,k) 
C Subroutine smooths the guessed bed condition 

real dstg(3,50) 
do 100 j =3,k-2 
do 50 i=2,3 
iavgl =0 
iavg2 =0 
iavg3 =0 
dl = (dstg(i,j-2)-dstg(i,j-1))/(dstg(1,j-2)-dstg(1,j-1) 

* )*(dstg(1,j)-dstg(1,j-1))+dstg(i,j-1) 
d2 = (dstg(i,j-1)-dstg(i,j +1))/(dstg(1,j-1)-dstg(1,j + 1) 

* )*(dstg(1,j)-dstg(1,j-1))+dstg(i,j-1) 
d3 = (dstg(i,j +2)-dstg(i,j +1))/(dstg(1,j +2)-dstg(1,j + 1) 

* )*(dstg(1,j)-dstg(1,j + 1))+dstg(i,j + 1) 
if((dl/dstg(i,j)).1t.0.85.or.(dl/dstg(i,j)).gt.1.15) 

* iavg1=1 
if((d2/dstg(i,j)).1t.0.85.or.(d2/dstg(i,j)).gt.1.15) 

* iavg2 =1 
if((d3/dstg(i,j)).1t.0.85.or.(d3/dstg(i,j)).gt.1.15) 

* iavg3 =1 
if(iavgl.eq.l.and.iavg2.eq.l.and.iavg3.eq.1) dstg(i,j) = D2 

50 	continue 
100 continue 

return 
end 
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