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SUMMARY

Flexible systems deflect, vibrate, or oscillate when moved. This behavior results

in decreased performance in the form of inaccurate positioning, stress loading, transient

deflection, and residual vibration. In a backdrivable flexible system, coupling between

flexible and rigid-body modes also leads to degraded performance of the rigid-body motion.

For example, sway of a massive payload can backdrive the position of a crane trolley,

forcing it to move in unintended ways. Other examples of backdrivable flexible systems

include helicopters carrying suspended loads and spacecraft with large flexible appendages.

This thesis investigates dynamic models that capture the fundamental behavior of a

variety of backdrivable flexible systems. These models are used to understand and illustrate

the conditions under which a system can be classified as backdrivable. Then, the models are

studied to identify the range of system parameters that can lead to significant backdrivability

and degraded performance. Performance metrics are defined based on analysis of mode

shapes and system poles and zeros to quantify the level of backdrivability resulting from a

given set of system parameters.

The fundamental models are then used to develop and analyze control methods that can

mitigate or suppress the performance degradation seen in both the flexible mode(s) and the

backdriven rigid-body mode(s). The proposed control methods are illustrated through two

demonstrative applications: experiments and simulations of helicopters carrying suspended

loads, and as part of an attitude control system for a spacecraft with flexible appendages

driven by stepper motors.
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CHAPTER I

INTRODUCTION

Flexible systems deflect, vibrate, or oscillate when moved. This behavior results in decreased

performance in the form of inaccurate positioning, transient deflection, internal stress, and

residual vibration. A backdrivable flexible system exists when there is significant coupling

between flexible and rigid-body modes, and this coupling leads to degraded performance of

the rigid-body motion.

For example, sway of a massive payload as shown in Figure 1(a) affects the position of

the crane trolley. Motion of the trolley excites the flexible pendulum mode, leading to swing.

The swinging payload will then apply horizontal forces to the trolley through the suspension

cables, leading to a backdriving effect on the trolley. This effect can be significant when

the payload mass is large relative to the trolley mass. Figures 1(b), (c), and (d) are other

backdrivable systems that will be discussed below.

Figure 2 demonstrates coupling between a pendulum and cart. The solid arrow in the

schematic shown in Figure 2(a) illustrates swinging of the pendulum. As the pendulum

swings, it applies horizontal forces to the cart that lead to a backdriving effect illustrated

by the dashed arrow. Figure 2(b) shows a free response of the system for an initial pendulum

angle of 5 degrees. The swing of the pendulum causes coupled motion of the cart. Note

that while the system states appear to be in phase, the definition of positive x and θ in

Figure 2(a) show they are actually moving in opposite directions. This is typical for flexible

backdriving effects if the mass center remains in a fixed location.

The state of the main body or base, for example the position x of the cart in Figure 2, is

often referred to as the rigid body state throughout this thesis. The flexible element, such

as the pendulum in Figure 2, is referred to as the flexible mode and its angle θ is referred

to as the flexible state. This is despite the fact that the cart itself experiences oscillation

under normal circumstances due to its coupled backdriving effect with the pendulum swing.
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(a) Container crane unloading massive cargo
container. (b) Helicopter carrying a suspended load.

(c) Spacecraft with flexible appendages1. (d) Inverted-pendulum transporter2.

Figure 1: Examples of backdrivable flexible systems.

1Image Source: SSL. (2014). “DIRECTV 14”, Date Accessed: March 5, 2014, Available: http://sslmda.
com/html/satexp/directv14.html.

2Photo Source: JP Wallet, Shutterstock.com, Royalty-free stock photo ID: 300086114,
Date Accessed: December 14, 2015, Available: https://www.shutterstock.com/image-photo/

handsome-young-man-riding-segway-gyropode-300086114?src=aqBH2ffJOT8LDJxu0uqByg-1-51.

2

http://sslmda.com/html/satexp/directv14.html
http://sslmda.com/html/satexp/directv14.html
https://www.shutterstock.com/image-photo/handsome-young-man-riding-segway-gyropode-300086114?src=aqBH2ffJOT8LDJxu0uqByg-1-51
https://www.shutterstock.com/image-photo/handsome-young-man-riding-segway-gyropode-300086114?src=aqBH2ffJOT8LDJxu0uqByg-1-51
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Figure 2: Example of coupling between rigid and flexible modes for a planar cart with
pendulum.

However, without the flexible element or mode present, or if the backdriving effect is mit-

igated through control, then the main body or state would undergo rigid body motion in

response to system inputs.

While coupling between system modes is a well-studied dynamic behavior, this thesis

seeks to explore these effects from new perspectives by studying the coupling dynamics and
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mode shapes, classifying systems that can be described as backdrivable, and using under-

standing of the dynamics to develop control systems that mitigate performance degradation

due to backdriving effects. Systems with flexibility where the main body or base can be

described as “freely floating” are particularly susceptible to backdriving effects. Some exam-

ples include helicopters carrying suspended loads and spacecraft with flexible appendages,

as were shown in Figure 1.

An example of a helicopter carrying a suspended load was shown in Figure 1(b). These

“flying cranes” are extremely versatile. For example, they can be used to transport timber

during remote logging operations, deliver power transmission towers to their installation

locations, and rescue people stranded in otherwise inaccessible areas. These are just a few

examples of tasks that are too expensive, too slow, or physically impossible to perform

with other types of vehicles. In a flying crane, both the helicopter position and attitude

may be affected by the swinging load. The load suspension point is typically below the

helicopter’s center of gravity, so tension in the suspension cable produces an oscillating

torque about the helicopter’s center of gravity as the load swings. The backdrivability may

be significant depending on the helicopter-load mass ratio, helicopter inertia, suspension

point offset distance, and other factors.

A third example of backdrivability is a spacecraft with flexible appendages. Figure 1(c)

shows a commercial communications satellite which includes flexible solar arrays and parabolic

reflectors. In such spacecraft, the significance of the backdrivability depends on the relative

inertias of the appendages and main spacecraft body, and appendage stiffnesses and mount-

ing locations. In addition, the presence of multiple flexible appendages and other sources

of flexibility such as fuel sloshing can complicate the dynamics and lead to additional back-

driving effects. Also, the mass and inertia of a spacecraft will change over time as fuel is

expended. This can lead to increased backdriving effects as the main body inertia decreases

while appendages likely have fixed masses.

As the system complexity increases, so too do the factors and combinations of system

parameters that may lead to significant backdrivability. Therefore, it is beneficial to study

these systems to better understand the dynamic effects and parameter combinations that
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lead to significant backdrivability.

A backdrivable flexible system may arise naturally through mechanical flexible elements.

Another source of flexibility is feedback control systems. For example, in a PD feedback

controller for rigid-body motion, the proportional gain control element acts as stiffness while

the derivative gain control element acts as damping. This can introduce flexibility to the

closed-loop behavior of systems that consist of only rigid body elements.

As an example of the latter case, consider inverted-pendulum human transporters such

as the Ninebot Personal Transporter shown in Figure 1(d). These transporters consist of

two wheels placed side-by-side along the same axis of rotation, and a platform for the rider.

With this wheel configuration, the mechanical design of the transporter is unstable about

the pitch (forward/backward) axis. A feedback controller is utilized to adjust the wheel

torques and maintain the pitch motion within an acceptable envelope so that the device and

rider do not fall over. Because the unstable pitch motion of the transporter is mitigated

with a feedback controller, there is possibility for flexible poles to be introduced by the

stabilized closed-loop control system. This flexibility can lead to so-called “rider-induced”

oscillations that backdrive the transporter base [101]. If these oscillations continue without

intervention by the rider, then they may cause actuator saturation where the motors are

unable to supply the necessary torque to balance the device and rider.

Figure 3 depicts the sequence of events in a practical situation where this oscillation can

be dangerous. The image sequence is captured from a YouTube video showing a Segway

crash with over 1,000,000 views, as of September 2018 [60]. The following describes the

sequence of events pictured in the video frames:

Frame 1 - Starting from rest, the rider starts leaning forward to begin accelerating the

Segway forward.

Frame 2 - The rider has leaned far forward, and the Segway wheels have moved backward

to keep the center of mass in the same position due to linear momentum conservation. This

behavior is a consequence of the non-minimum phase dynamics of two-wheeled inverted

pendulum transporters transporters.

Frame 3 - The Segway and rider move forward.
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Figure 3: Sequence of video frames showing Segway rider oscillation and crash [60].
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Frame 4 - The rider begins initiating a stop by leaning back.

Frame 5 - The wheels accelerate in front of rider to slow down the rider. This requirement

for the wheels to accelerate to begin decelerating the system is another consequence of the

non-minimum phase behavior of these transporters.

Frame 6 - Now that the rider and Segway have slowed down, the wheels race back under

the rider to recover from the backward pitch angle caused by the wheels racing forwards

during the deceleration process.

Frame 7 - The wheels overshoot behind the rider, continuing the base oscillation about

the rider’s stopped position. This base oscillation causes the transporter’s pitch angle to

change rapidly.

Frame 8 - In this case, the base oscillation has caused the motors to reach their perfor-

mance limit and the transporter can no longer recover balance from the steep pitch angle.

This results in the machine turning itself off and the rider falling on his face.

There are many other examples of this type of oscillation during stops in inverted-

pendulum transporter crash videos on the Internet. In some cases, this type of base and

pitch oscillation can occur for several cycles before the device recovers, the rider gets thrown

off, or the motor performance limits are reached and the rider falls. Falls of this type often

result in the rider being dangerously thrown to the ground as the device rolls backwards

out from under him/her. In addition, many riders do not release the handlebars quickly

enough and so do not get their hands up to protect their face.

The dynamic hazards of inverted-pendulum transporters are discussed in more detail in

Appendix A and [101]. The existence of these hazards warrants studying the dynamics of

these devices in more detail in an effort to understand device and rider configurations that

may make them more likely to occur.

1.1 Contributions

1.1.1 Explanation of Backdrivable Flexible Dynamics

This thesis presents dynamic models that capture the fundamental behavior of backdrivable

flexible systems, such as the example systems shown in Figure 1. These models are then
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used to understand and illustrate the conditions and range of system parameters that lead

to significant backdrivability and degraded performance.

As an illustration of the analysis methods, Figure 4 shows a plot of system response

ratio. The response ratio is defined as the ratio of rigid to flexible response amplitude.

The mass ratio shown on the horizontal axis is the mass of the flexible element relative

to the rigid body mass. As the relative mass of the flexible element increases, it has a

larger effect on the rigid body motion and the response ratio increases. As the response

ratio increases, the system is said to be more backdrivable. However, for low mass ratios,

the flexible element will have little effect on the rigid body motion, and the system can be

considered as not backdrivable.

While mass ratio was used here as an example, other system parameter combinations

including relative inertias and geometry may have similar relationships with the response

ratio. This thesis introduces two performance metrics for quantitatively analyzing response

ratio as a function of system parameters. The performance metrics are applied to the

fundamental models to examine how their parameters influence the system backdrivability.

Also, a threshold can be used to identify when a given system will experience significant

levels of backdrivability. However, its numerical value will be application-dependent in

many cases. This ambiguity is conceptually represented by the shaded region in Figure 4.

R
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R
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io

Mass Ratio

Not
Backdrivable

Backdrivable

Figure 4: Example response ratio for a backdrivable system as the relative mass of the
flexible element changes.
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1.1.2 Control of Backdrivable Flexible Dynamics

The fundamental models are also used to analyze control methods that can mitigate or

suppress the performance degradation seen in both the flexible mode(s) and the backdriven

rigid-body mode(s).

One effective technique for controlling flexible systems is input shaping. Input shap-

ing has proven effective on many kinds of machines, including cranes [112], robotic arms

[9, 27, 67, 83], coordinate measuring machines [49, 106], and satellites [33, 93, 94, 104, 102,

120, 128]. The performance of many of these flexible systems can suffer due to backdriv-

ability. Because input shaping eliminates residual vibration, it also reduces the backdriving

effect of the flexible mode on the rigid body. In addition, input shaping does not require

measurements of the flexible system states. These properties make it well-suited for con-

trolling backdrivable flexible systems.

Input shaping is also compatible with feedback controllers that only use partial state

feedback of rigid body motion. Such controller architectures are investigated in this research,

and applied to example systems including helicopters with suspended loads and spacecraft

with flexible appendages. The goal of the controller design is to improve the response

characteristics of both the flexible element and backdrivable rigid body, such as residual

vibration, settling time, and overshoot.

1.1.3 Demonstrative Applications

Two demonstrative applications are presented to illustrate how the backdrivable system

principles may be applied to more sophisticated models and systems, and to demonstrate

the effectiveness of the input shaping method for backdrivable flexible systems. The first

application considers a spacecraft with flexible appendages driven by stepper motors along

with the attitude control system for the spacecraft. The second application addresses chal-

lenges with helicopters carrying suspended loads using experiments and simulations.
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1.2 Thesis Outline

Chapter II presents three fundamental dynamic models of backdrivable flexible systems.

The models include a planar Cart with Pendulum, planar Rotary Hub with Flexible Arm,

and a planar Cart with Inverted Pendulum. The models are linearized to facilitate studying

their modes shapes and for control design in later chapters. The validity of studying the

linear model over the nonlinear model for effects important to backdrivable systems is

verified using the Cart with Pendulum model. Also, an example application of crane trolley

slip while braking is studied using the Cart with Pendulum model.

Chapter III develops two performance metrics for assessing system backdrivability, or

the degree of coupling between rigid and flexible modes. These metrics are useful for

illustrating which system parameters influence backdriving effects and to what degree. The

first metric is based on mode shapes and system response ratios. The second is based

on the system open-loop poles and zeros. The metrics are applied to the fundamental

models to demonstrate and compare the metrics, and to evaluate the backdrivability of the

fundamental models as a function of their key system parameters.

Chapter IV evaluates control methods for backdrivable flexible systems. The effective-

ness of both input shaping and feedback control are studied separately, using the funda-

mental models as examples for demonstration. Also, a controller that stabilizes the Cart

with Inverted Pendulum model is developed as an example of how backdriving effects can

arise from feedback control. Then, a combined input-shaping and PD feedback controller is

presented that uses optimization to determine the input shaping and controller parameters

subject to illustrative performance constraints. The combined controller is demonstrated

with the Rotary Hub with Flexible Arm model.

Chapter V develops constant-amplitude input-shaped step sequences that are useful for

actuating stepper motors that drive flexible elements, for example the flexible appendages

of spacecraft. The constant-amplitude input shapers address challenges of discretized am-

plitude to be compatible with stepper motors, and robustness to modeling error in the

fundamental flexible mode. Robustness to natural frequency modeling error is analyzed us-

ing typical input shaping methods, and limitations of the constant-amplitude input shaping
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technique are addressed.

Chapter VI presents the first demonstrative application of a spacecraft with flexible

appendages driven by stepper motors. The Rotary Hub with Flexible model is used to

demonstrate the effectiveness of the constant-amplitude input-shaped step sequences at

slewing the flexible appendages with limited vibration while also limiting the resulting

point error of the main spacecraft body.

Chapter VII presents the second demonstrative application of helicopters carrying sus-

pended loads. The effectiveness of input shaping is shown on an experimental model-scale,

radio-controlled helicopter. Then, a dynamic model of a Sikorsky S-61 helicopter from the

literature is used to study the helicopter flight modes with and without a suspended load

to illustrate the backdriving effects it has on the helicopter, in particular the helicopter at-

titude. Finally, a combined input-shaping and model-following controller is presented that

shows improved performance and reduced backdriving effects for near-hover flight with a

suspended load.

Lastly, Chapter VIII summarizes the contributions of this thesis and provides sugges-

tions for future work.
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CHAPTER II

FUNDAMENTAL MODELS OF BACKDRIVABLE FLEXIBLE

SYSTEMS

Fundamental models of backdrivable flexible systems are useful for studying key dynamic

response characteristics. They will also be used for identifying backdrivability criteria or

performance metrics and for evaluating control methods. This chapter presents the three

fundamental models that will be utilized in this thesis.

2.1 Model I: Cart with Pendulum

The first fundamental model is a Cart with Pendulum. Figure 5 shows a schematic diagram

of the model. The system states are the cart position x and pendulum angle θ. The flexible

pendulum element can backdrive the cart as it swings. The cart and pendulum masses are

M and m, respectively, and the pendulum length is given by L. The system inputs are

forces u and f applied to the cart and pendulum mass, respectively. The force f is applied

perpendicular to the pendulum. This model configuration is suitable for studying cranes,

and is also an effective planar approximation of some dynamics of helicopters carrying

suspended loads [1]. However, it does ignore coupling effects between heave and pitch/roll.

The nonlinear equations of motion for the Cart with Pendulum are:




M +m −mL cos(θ)

−mL cos(θ) mL2






ẍ

θ̈


 =



mLθ̇2 sin(θ) + u+ f cos(θ)

−mgL sin(θ)− fL


 . (1)

The equations of motion in (1) can be linearized by assuming small angles and ignoring terms

involving θ̇2. Linearizing then solving for ẍ and θ̈ yields the following linear equations of

motion for the Cart with Pendulum:

ẍ = −mgθ
M

+
1

M
u (2a)

θ̈ = −(M +m)gθ

ML
+

1

ML
u− 1

mL
f (2b)
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Figure 5: Cart with Pendulum model schematic.

By taking the Laplace transform of both (2a) and (2b) and solving for the input-output

relationships, the model can be expressed in transfer function form as follows:

X(s)

U(s)
=

s2 + g
L

s2
[
Ms2 + (M+m)g

L

] , (3a)

X(s)

F (s)
=

g
L

s2
[
Ms2 + (M+m)g

L

] , (3b)

Θ(s)

U(s)
=

1
L

Ms2 + (M+m)g
L

, (3c)

Θ(s)

F (s)
=

− M
mL

Ms2 + (M+m)g
L

. (3d)

For studying backdrivable system dynamics, the most interesting of these transfer func-

tions is (3a), the relationship between cart position and the applied force on the cart. The

presence of the pendulum introduces a pair of complex zeros to this relationship which

capture the effect of the pendulum on the cart. The natural frequency of the flexible mode

is:

ωn =

√
g

L

(
M +m

M

)
. (4)

The cart and pendulum mass ratio appears in this expression, suggesting its important role

in the system dynamics. On the other hand, the complex zeros of (3a) occur at ±i
√
g/L,

or the simple pendulum frequency. Figure 6 shows an illustrative pole-zero plot of (3a) to

show the relative locations of the complex poles and zeros.
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Figure 6: Pole-Zero Plot of Cart with Pendulum X(s)/U(s) transfer function.

2.1.1 Sample Backdriven Response

As an illustrative example of the backdrivable flexbile dynamics, consider the response

of the linear Cart with Pendulum model to a bang-bang command applied to the cart.

Figure 7 shows such a response for a command designed to move the cart 1 m. The system

parameters are M = 30 kg, m = 15 kg, and L = 5 m. Figure 7(a) shows the cart position.

The cart moves 1 m and begins to oscillate around this position. This oscillation is the

backdriving effect caused by the swing of the pendulum, shown in Figure 7(b).

2.2 Model II: Rotary Hub with Flexible Appendage

The second fundamental model is a Rotary Hub with Flexible Arm. Figure 8 shows a

schematic diagram of the model. This model may be used to study flexible robots and

spacecraft with flexible appendages. The model consists of a rigid hub with mass m1 and

inertia I1 rotating about a fixed origin O through angle θ1, and an uniform arm with mass

m2, and inertia I2. The distance from the arm pivot M to the arm center of mass is L2,

and the total arm length is 2L2. The system states are the hub angle θ1 and the arm angle

θ2. Vibration of the flexible arm affects the angular position of the rotary hub. The system

inputs are a torque T applied to the hub, and a specified angle θd corresponding to the

driving actuator for the arm. The specified angle θd acts through a torsional spring with

stiffness k that models the flexibility of the appendage. Angles θ2 and θd are measured

relative to the hub. This allows the model to be used to study robot arms with specified
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Figure 7: Response of Cart with Pendulum model to a bang-bang command designed to
move the cart 1 m.

joint angles or spacecraft with flexible appendages driven by stepper motors.

In this thesis, the hub is modeled as a disk and the arm as a slender rod such that

I1 = 1
2m1L1

2 and I2 = 1
3m2L2

2. For small angles and rotational speeds, the linearized

equations of motion of this system are:




1
2m1L1

2 +m2

(
1
3L2

2 + (L1 + L2)
2
)

m2L2

(
L1 + 4

3L2

)

m2L2

(
L1 + 4

3L2

)
4
3m2L2

2






θ̈1

θ̈2




=




T

k (θd − θ2)


 . (5)
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Figure 8: Rotary Hub with Flexible Arm model schematic.

Converting the model to transfer-function form results in:

Θ1(s)

T (s)
=

4
3m2L2

2s2 + k

s2
[
(2m1 +m2)

m2L1
2L2

2

3 s2 + k
(
1
2m1L1

2 +m2

(
L1

2 + 4
3L2

2 + 2L1L2

))] , (6a)

Θ1(s)

Θd(s)
=

−k
(
4
3m2L2

2 +m2L1L2

)

(2m1 +m2)
m2L1

2L2
2

3 s2 + k
(
1
2m1L1

2 +m2

(
L1

2 + 4
3L2

2 + 2L1L2

)) , (6b)

Θ2(s)

T (s)
=

−
(
4
3m2L2

2 +m2L1L2

)

(2m1 +m2)
m2L1

2L2
2

3 s2 + k
(
1
2m1L1

2 +m2

(
L1

2 + 4
3L2

2 + 2L1L2

)) , (6c)

Θ2(s)

Θd(s)
=

k
(
1
2m1L1

2 +m2

(
L1

2 + 4
3L2

2 + 2L1L2

))

(2m1 +m2)
m2L1

2L2
2

3 s2 + k
(
1
2m1L1

2 +m2

(
L1

2 + 4
3L2

2 + 2L1L2

)) . (6d)

There is clearly a more complex relationship between the system parameters and poles,

zeros, and flexible mode natural frequency than for the Cart with Pendulum model, yet the

number of poles and zeros is the same. The natural frequency of the flexible mode is:

ωn =

√
k
(
3m1L1

2 + 2m2

(
3L1

2 + 4L2
2 + 6L1L2

))

2m2 (2m1 +m2)L1
2L2

2 . (7)

which has a complex dependence on the hub and arm masses m1 and m2, the hub radius

L1, the arm length L2, and the stiffness k. Figure 9 shows an illustrative pole-zero plot for

the Θ1(s)/T (s) transfer function given by (6a) to show the relative locations of the complex

poles and zeros. There is a similar structure to the Cart with Pendulum pole-zero plot

from Figure 6, but there is a slight difference in the location of the complex zeros relative

to the complex poles due to the transfer function structure and dependence on the system
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Figure 9: Pole-Zero Plot of Rotary Hub with Flexible Arm Θ1(s)/T (s) transfer function.

parameter values. In general, stable backdrivable flexible systems without damping have

pole-zero plots with similar layouts, where the double integrator is necessary for the base

state to exhibit the “freely floating” backdriving effects.

2.3 Model III: Cart with Inverted Pendulum

The final fundamental model considered in this thesis is a Cart with Inverted Pendulum.

Figure 10 shows a schematic diagram of the model. The system states are the cart position

x and pendulum angle θ. The cart and pendulum masses are M and m, respectively, and

the distance from the pendulum pivot to its center of mass is given by L. The overall

pendulum length is 2L. The pendulum is modeled as a slender uniform rod (pendulum

inertia IG = 1
3mL

2). The system inputs are forces u and f applied to the cart and pendulum

mass, respectively. This model serves as an example of an unstable system that exhibits

backdrivable behavior when feedback control is used to stabilize the pendulum angle. Such

a controller may exhibit flexible behavior due to underdamped complex closed-loop poles

for certain combinations of system and controller parameters. This model may be used to

study inverted-pendulum human transporters.

For small pendulum angles, the linearized equations of motion are:



M +m mL

mL 4
3mL

2






ẍ

θ̈


 =




u+ f

2fL+mgLθ


 . (8)
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Figure 10: Cart with Inverted Pendulum model schematic.

Converting the model to transfer-function form results in:

X(s)

U(s)
=

4
3Ls

2 − g
s2
[
1
3L (4M +m) s2 − g (M +m)

] (9a)

X(s)

F (s)
=

−
(
2
3Ls

2 + g
)

s2
[
1
3L (4M +m) s2 − g (M +m)

] (9b)

Θ(s)

U(s)
=

−1
1
3L (4M +m) s2 − g (M +m)

(9c)

Θ(s)

F (s)
=

2M+m
m

1
3L (4M +m) s2 − g (M +m)

(9d)

Figure 11 shows an illustrative pole-zero plot of (9a) that indicates the relative locations

of the complex poles and zeros. While this system is unstable, the poles and zeros follow a

layout that is rotated by 90 degrees compared to Figures 6 and 9.

2.4 Comparison Between Nonlinear and Linear Models

It is necessary to demonstrate that the linear model given by (2) is a valid approximation of

the system dynamics for the response conditions explored in this thesis. Detailed exploration

of backdrivable dynamics may require using the model to predict large cart and/or pendulum

response amplitudes that could exceed small-angle approximations used to linearize the

model. This section validates the linear model as a useful approximation of the nonlinear

model for investigating backdrivable dynamics by comparing the nonlinear and linear model

responses for a variety of system parameter values and initial pendulum swing angles.

18



Figure 11: Pole-Zero Plot of Cart with Inverted Pendulum X(s)/U(s) transfer function.

One common error metric for evaluating and comparing performance of models is Root

Mean Square Error (RMSE). The nonlinear model (1) and linear model (2) are compared

to each other by simulating the free response to an initial pendulum angle, then calculating

the RMSE between the resulting cart position and pendulum angle responses found using

the two models. The RMSE for cart position and pendulum angle are defined as

RMSEPosition =

√∑N
i=1 (xNL,i − xL,i)2

N
(10)

RMSEAngle =

√∑N
i=1 (θNL,i − θL,i)2

N
(11)

where xNL,i is the ith sample of the nonlinear cart position response, xL,i is the ith sample

of the linear cart position response, θNL,i is the ith sample of the nonlinear pendulum angle

response, θL,i is the ith sample of the linear pendulum angle response, and N is the total

number of data points in the simulated responses.

Figure 12 shows example free responses of the nonlinear and linear models for selected

initial pendulum angles, θ0, and mass ratios, m/M , with L = 3 m. The other initial

conditions are zero, and N = 30, 000 time steps are simulated for each response over ten

linear periods. Figure 12(a) shows the cart position and Figure 12(b) shows the pendulum

angle when θ0 = 5 deg and m/M = 0.2. For this case, RMSEPosition = 9.58× 10−4 m and

RMSEAngle = 0.11 deg. As shown by these results, when the initial pendulum angle and

mass ratio are small, the linear model is a good approximation of the nonlinear model.

Figure 12(c) shows the cart position and Figure 12(d) shows the pendulum angle when
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θ0 = 20 deg and m/M = 0.2. The error between the nonlinear and linear models increases

with the larger initial swing angle, and RMSEPosition = 0.059 m and RMSEAngle = 6.83

deg. A slight error in frequency is increasingly noticeable in the second half of the response.

Figure 12(e) shows the cart position and Figure 12(f) shows the pendulum angle when

θ0 = 5 deg and m/M = 2.0. With the increased mass ratio (heavier pendulum), the errors

are RMSEPosition = 0.019 m and RMSEAngle = 0.55 deg. This is an increase over the first

case, but not as much as for the larger initial pendulum angle in the second case.

Lastly, Figure 12(g) shows the cart position and Figure 12(h) shows the pendulum angle

when θ0 = 20 deg and m/M = 2.0. With both the large initial pendulum angle and mass

ratio, there is visibly significant error in the response due to the linear model not accurately

representing the frequency. Despite the overall large error, the peak-to-peak amplitudes of

the cart position responses have similar amplitude: 1.40 m for linear model and 1.37 m for

the nonlinear model. The errors are RMSEPosition = 0.75 m and RMSEAngle = 21.66 deg

Table 1 summarizes the resulting RMSE for each case. The linear model is a worse

approximation of the nonlinear model for larger initial pendulum angles and mass ratios,

but increasing the initial pendulum angle appears to have a larger impact on the accuracy

of the model than increasing the mass ratio. It is expected that the linear model will be

inaccurate for larger angles due to the small-angle approximation that was utilized to obtain

the linear model, but these results also suggest that increasing the mass ratio magnifies the

inaccuracy. The magnifying effect occurs because the nonlinear equations of motion in (1)

include a M + m sin2(θ) term in the denominator when solved for ẍ and θ̈, whereas the

linear equations do not include the m sin2(θ) term. It is worth noting that the majority of

the error appears due to a frequency desynchronization; the linear and nonlinear responses

have similar amplitudes even for the fourth case shown in Figures 12(g) and 12(h).

To develop a complete picture of the impact of the initial pendulum angle and the mass

ratio on the accuracy of the linear model relative to the nonlinear model, free responses were

simulated for initial pendulum angles between 0.1 and 30 degrees and for mass ratios from

0.05 to 5 for a pendulum length of 3 m. Figure 13 shows 3D surface plots of the cart and

pendulum RMSE vs. initial pendulum angle and mass ratio. As the initial pendulum angle
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(d) Pendulum, θ0 = 20 deg and m/M = 0.2.
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(e) Cart, θ0 = 5 deg and m/M = 2.0.
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(f) Pendulum, θ0 = 5 deg and m/M = 2.0.
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(g) Cart, θ0 = 20 deg and m/M = 2.0.
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(h) Pendulum, θ0 = 20 deg and m/M = 2.0.

Figure 12: Comparison of sample free responses of Cart with Pendulum nonlinear and
linear models for different initial swing angles and mass ratios (L = 3 m).
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increases, the RMSE of the cart position and pendulum angle responses strictly increases.

The relationship with the mass ratio is slightly more complicated, but still shows an overall

trend of higher RMSE for larger mass ratios. Investigating this error behavior in detail

requires examining 2D plots of selected sections of these surface plots.

Figure 14 shows the cart and pendulum RMSE vs. initial pendulum angle for selected

mass ratios. The RMSE of both the cart and pendulum responses strictly increase as the

initial pendulum angle increases, as expected due to the small-angle approximation used in

the small-angle approximation. The cart and pendulum RMSE for the larger mass ratios

increase more quickly. However, there is more complicated behavior for mass ratios above

1. For example, there is larger pendulum RMSE for a mass ratio of 2 than a mass ratio of

5 for some initial pendulum angles around 20 degrees.

To explain why this occurs, Figure 15 shows the cart and pendulum RMSE vs. mass

ratio for selected initial pendulum angles. The RMSE of the cart and pendulum responses

do not strictly increase as the mass ratio increases. There are local maxima for certain mass

ratios, which are particularly noticeable in the pendulum RMSE at larger initial pendulum

angles. This variation as a function of mass ratio explains why Figure 14(b) shows larger

mass ratios have smaller RMSE than smaller mass ratios over some initial pendulum angle

ranges. Figures 14 and 15 show that there is negligible RMSE for pendulum oscillation

below 5 degrees regardless of mass ratio, and small RMSE for pendulum oscillation below

10 degrees when the mass ratio is below 1. These are the parameter ranges where the

surface plots in Figure 13 are dark blue.

As was illustrated in Figure 12, most of the RMSE results from the linear model not

Table 1: Summary of nonlinear vs. linear model RMSE for the sample free responses
shown in Figure 12.

Case Initial Pendulum
Angle, θ0 (deg)

Mass Ratio,
m/M

RMSEPosition (m) RMSEAngle (deg)

Case 1 5 0.2 9.58× 10−4 0.11

Case 2 20 0.2 0.059 6.83

Case 3 5 2.0 0.019 0.55

Case 4 20 2.0 0.75 21.66
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accurately approximating the frequency that arises from larger pendulum response ampli-

tudes and mass ratios. However, one primary system performance characteristic of interest

when studying backdrivable flexible systems is the amplitude of the rigid body response

because it captures the amount of backdriving that occurs. In this case, the amplitude of

the cart position is the performance characteristic of interest for studying backdrivability.
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Figure 13: RMSE between linear and nonlinear model cart and pendulum free responses
vs. initial pendulum angle and mass ratio (L = 3 m).
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The example responses in Figure 12 showed that the linear and nonlinear models predict

approximately the same response amplitudes a wide range of initial pendulum angles and

mass ratios.

To further investigate the error between the linear and nonlinear response amplitudes,

Figure 16 shows the error between the nonlinear and linear cart response amplitudes as a
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Figure 14: RMSE between linear and nonlinear model cart and pendulum free responses
vs. initial pendulum angle for selected mass ratios (L = 3 m).
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Figure 15: RMSE between linear and nonlinear model cart and pendulum free responses
vs. mass ratio for selected initial pendulum angles (L = 3 m).

function of initial pendulum angle and mass ratio. The amplitude error is defined as

Amplitude Error = Ax,L −Ax,NL (12)

where Ax,L is the peak-to-peak amplitude of the linear cart position free response and Ax,NL

is the peak-to-peak amplitude of the nonlinear cart position free response. Figure 16(b)

shows the amplitude error vs. the initial pendulum angle for selected mass ratios. There

is negligible amplitude error below pendulum oscillation angles of 10 degrees, regardless of
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mass ratio. The amplitude error can increase rapidly above 10 degrees if there is a high

mass ratio. Figure 16(c) shows the amplitude error vs. mass ratio for some initial pendulum

angles. For larger initial pendulum angles, the amplitude error initially increases quickly as

the mass ratio increases before approaching asymptotes at higher mass ratios. The larger

errors for larger initial pendulum angles should be expected based on use of the small-angle

approximation when linearizing.

Figure 17 shows the percent error of the cart position response amplitude between

the nonlinear and linear models. The percent error is defined by normalizing (12) by the

nonlinear response amplitude:

Amplitude Percent Error =
Ax,L −Ax,NL

Ax,NL
× 100% (13)

The plots in Figure 17 show that the percent error does not depend on the mass ratio and

increases as the initial pendulum angle increases. The amplitude percent error is less than

1% for initial pendulum angles below 14 degrees.

As an aside, consider the cart position amplitude for larger initial pendulum angles up

to, and above, 90 degrees. Figure 18 shows the cart position amplitude for the linear and

nonlinear models and the amplitude error between the nonlinear and linear models for larger

initial pendulum angles. Figure 18(a) shows that the cart amplitude with the linear model

continues to grow proportionally with the pendulum angle, as should be expected from a

linear model. However, the cart amplitude with the nonlinear model reaches a maximum

for each mass ratio for every initial pendulum angle ≥ 90 degrees. This is a result of

the cart reaching a maximum, or minimum, position as the pendulum swings through

±90 degrees, even for initial angles above 90 degrees (or below -90 degrees). Because the

rotation of the pendulum is properly accounted for in the nonlinear model, the horizontal

velocity of the pendulum reverses direction as the pendulum swings through ±90 degrees.

The horizontal position of the center of mass of the system must remain unchanged, and

using this information, the value for this maximum cart peak-to-peak amplitude for initial

pendulum angles ≥ 90 degrees can be predicted based on the position of the center of mass
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(a) Cart position response amplitude error vs. initial pendulum angle and mass ratio.
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(c) Cart position response amplitude error vs. mass ratio for selected initial pendulum angles.

Figure 16: Amplitude error of cart position response as a function of initial pendulum
angle and mass ratio (L = 3 m).
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when the pendulum is at 90 degrees. This yields the maximum peak-to-peak cart amplitude:

max (Ax,NL) = 2
mL

M +m
. (14)

Figure 18(b) shows the cart amplitude error between the linear and nonlinear models

found using (12) for initial pendulum angles up to 120 degrees. Note that this plot is an

extended version of Figure 16(b) for a larger range of initial swing angles. Because the cart

amplitude found using the nonlinear model reaches a maximum at 90 degrees while the

amplitude found using the linear model continues increasing, the amplitude error begins
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Figure 17: Cart position response amplitude percent error as a function of initial
pendulum angle and mass ratio (L = 3 m).
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Figure 18: Cart position amplitude and amplitude error for larger initial pendulum
angles (L = 3 m).

increasing at a constant rate for initial pendulum angles above 90 degrees. The amplitude

percent error calculated using (13) for larger initial pendulum angles remains independent

of the mass ratio and begins increasing at a constant rate for initial pendulum angles above

90 degrees.

These results show that the linear model of the Cart with Pendulum system should be

suitable for studying backdrivable dynamics for smaller pendulum oscillation angles and for
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reasonable mass ratios (m/M < 2), particularly when the performance characteristic of in-

terest is the response amplitude. Similar results could be obtained for the other fundamental

models presented in the previous sections of this chapter.

2.5 Application Example - Studying Crane Trolley Slip While Braking

One application of the Cart with Pendulum model is for studying swing-induced slipping or

drag of crane trolleys when they are braked following motion commands. With sufficiently

heavy payloads or large payload swing, the crane trolley can be dragged even under braking

load. The sliding mechanism considered here is slip between the crane trolley wheel(s)

and the surface they roll on (e.g., rail(s) or the ground) rather than slip at or between the

braking surfaces. In other words, this analysis assumes that the braking forces are large

enough to lock the wheel(s). To study this slipping effect and analyze when it can occur,

the nonlinear model given by (1), which is representative of a planar crane, is augmented

with a regularized stick-slip friction law to model slip of the trolley/cart while braking.

This section will first show sample system responses where slip occurs for braking following

bang-bang trolley commands. Then, illustrative results are shown for the combinations of

payload-trolley mass ratio, friction coefficient, and payload swing amplitude that may lead

to trolley slip.

2.5.1 Cart with Pendulum Model with Stick-Slip Friction

While numerous stick-slip friction models have been proposed [5], it is important to choose a

model that is suitable for simulation with a continuous stick region and transition from stick

to slip. Garcia et al. [32] used a continuous transition definition for velocities around zero

(the stick-slip region) by defining a very steep linear relationship with a slope of µs/ε, where

ε is a small number representing the velocity at which slip begins. To model the Stribeck

effect at low velocities, a decaying exponential function of the velocity is used to transition

from static µs to kinetic µk coefficients of friction. Figure 19 shows the regularized stick-slip
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friction model used for this study. This friction model can be described mathematically as

µ(v) =





µs
ε v, if |v| ≤ ε

sign(v)

[
µk + (µs − µk) e−

|v|−ε
vm

]
, otherwise

(15)

where v is the relative velocity between the two surfaces and vm is a coefficient for the

decaying exponential envelope shown in Figure 19 that models the Stribeck effect.

While Garcia used this friction model as part of studying crane payload slip during off-

centered lifts [32], this type of friction model is also useful for this study due to its smooth

and continuous nature. This makes it suitable for simulation as part of an augmented Cart

with Pendulum nonlinear model. The nonlinear Cart with Pendulum model is used over

the linear model due to the expected large payload masses and swing angles required to

initiate slip.

The nonlinear equations of motion given by (1) can be augmented with the friction

model in (15) by applying a horizontal friction force to the cart in the negative x direction.

This yields the following augmented equations of motion:



M +m −mL cos(θ)

−mL cos(θ) mL2






ẍ

θ̈


 =



mLθ̇2 sin(θ) + u− Ff + f cos(θ)

−mgL sin(θ)− fL


 (16)

where Ff is the friction force. To model stick-slip friction, let:

Ff = µ(ẋ)N (17)

Friction Coefficient

Velocity
ε

-ε

µs

µk

Figure 19: Continuous stick-slip friction model [32].
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where µ is the friction coefficient given by (15) as a function of the cart velocity ẋ, and N

is the normal force between the cart and the ground. The normal force is given by:

N = (M +m) g +mLθ̇2 cos(θ) +mLθ̈ sin(θ) + f sin(θ). (18)

Substituting (18) into (17), and then substituting the resulting expression into (16) and

rearranging to move the term multiplying θ̈ to the left side yields the following equations

of motion for the Cart with Pendulum model with stick-slip friction:




M +m mL (µ(ẋ) sin(θ)− cos(θ))

−mL cos(θ) mL2






ẍ

θ̈




=



mLθ̇2 sin(θ) + u− µ(ẋ)

[
(M +m) g +mLθ̇2 cos(θ) + f sin(θ)

]
+ f cos(θ)

−mgL sin(θ)− fL


 . (19)

Due to the continuous stick-slip model used, these equations can be solved with standard nu-

merical ordinary differential equation solvers such as MATLAB’s ode45 without significant

numerical difficulties.

2.5.2 Sample Time Response with Trolley Slip

To illustrate the slip that can occur following trolley motion that excites large payload swing,

a sample time response of (19) will be shown for a bang-bang command. For this example

response, m/M = 4, L = 3 m, µs = µk = 0.5, and ε = 0.01 m/s. As a simplification, the

friction is modeled with µs = µk. The braking friction is activated immediately following

the completion of the bang-bang command at t = 6 s (in other words, µ = 0 for t <= 6 s).

If at any point in time the cart velocity exceeds ε = 0.01 m/s while the braking friction is

activated, the friction model transitions out of the stick region and the cart is slipping.

The response of the trolley/cart is shown in Figure 20(a). During the transient motion

between 0 and 6 s, the cart moves with some backdriving from the payload swing shown in

Figure 20(b). The cart motion excites significant payload swing, which is large enough to

disturb the trolley position following the end of the command at 6 s. The braking friction

serves to remove energy from the system, so the payload response in Figure 20(b) steadily
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(b) Payload angle response to bang-bang command.

Figure 20: Response of cart with pendulum model with stick-slip friction to bang-bang
command, with braking friction activated at t = 6 s (m/M = 4, L = 3 m, µs = µk = 0.5,

and ε = 0.01 m/s).

decays and has a slower, damped frequency after 6 s even though the pendulum is modeled

with no direct damping effects.

Figure 21 shows the cart position and velocity after the braking friction is activated at

t = 6 s to better examine the slip as it occurs. Figure 21(b) shows that the cart initially slips

from 6 s to 6.6 s as it is pulled by the swinging payload and simultaneously decelerated by

the braking friction. The cart comes to a stop at 6.6 s due to the braking friction. However,

the payload swing amplitude is still large enough to cause the cart to slip again beginning

at 7.4 s. This secondary slip pulls the cart about 45 cm before the cart finally comes to
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(b) Cart velocity during braking period following command.

Figure 21: Response of cart with pendulum model with stick-slip friction following
completion of bang-bang command and activation of braking friction at t = 6 s

(m/M = 4, L = 3 m, µs = µk = 0.5, and ε = 0.01 m/s).

a final stop around 8.3 s. The small deviations in position after 8.3 s that are visible in

Figure 21(a) result from the continuous stiction transition used in the friction model.

2.5.3 Slipping Parameter Study

A parameter study is performed to more fully examine the payload swing amplitudes, system

mass ratios, and friction parameters which lead to slip. To control for the varied effects

on the response caused by commanded trolley motion depending on the mass ratio and

command amplitude, it is more effective to simulate the system for a given parameter set
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with a specified amount of payload swing. This is done by simulating the free response of

the system with an initial payload angle θ0 and braking friction activated immediately at

t = 0 s. This is somewhat equivalent to restarting the simulation following the completion

of the commanded motion using the final state values as initial conditions for simulation

of the residual motion with braking friction activated. However, this approach ignores any

nonzero cart velocity following the command (i.e., any initial slipping). Also, this approach

assumes that the residual payload swing can be modeled simply as an initial angle rather

than some combination of angle and angular velocity. In other words, the initial total

energy in the residual payload swing is modeled solely as potential energy rather than some

combination of potential and kinetic energy. This simplifies the parameter space in terms

of how the effect of the residual payload swing is parameterized and investigated. Also,

the interdependent effects of command switch times and mass ratio on the residual payload

swing are ignored by studying the free response. Lastly, as was done for the sample slipping

response in Section 2.5.2, the static and kinetic coefficients of friction are assumed to be

equal (µ = µs = µk). This simplification of the friction model further reduces the parameter

space that must be investigated.

For a range of friction coefficients µ between 0.1 and 0.9 and mass ratios from 0.1 to 5,

the minimum pendulum angle that leads to cart slip was found. Slip is defined to occur if

the cart velocity exceeds ε = 0.01 m/s. The simulation would only search angles up to 90

degrees, and would return no solution for a given mass ratio and friction coefficient pair if

90 degrees of pendulum swing did not cause slip. Note that this would be an unrealistically

extreme amount of swing anyways and would not be encountered in practice, but for the

purposes of this investigation it was chosen as an artificial upper limit upon which the search

would be abandoned.

Figure 22 shows the resulting minimum pendulum angles that lead to cart slip as a

function of the mass ratio and friction coefficient for L = 3 m. Figure 22(a) shows a 3D

surface of the minimum angle required for slip. Angles below the surface would not lead to

any cart slip for the given friction coefficient and mass ratio pair, while angles at and above

the surface would result in slip. Figure 22(b) shows a side view of Figure 22(a), with the
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minimum angle required for slip plotted vs. mass ratio for selected values of the friction

coefficient. Swing angles above each line would result in slipping for the given amount of

friction. The results in Figure 22 show that the minimum angle required for slip increases as

the friction coefficient increases but decreases as the mass ratio increases. This is expected

behavior given that higher friction coefficients allow the cart to more strongly resist the

backdriving effect of the swinging pendulum, while higher mass ratios result in larger forces

applied by the swinging pendulum to the cart that can overcome the stiction forces and

lead to slip.

2.5.4 Trolley Slip Results Analysis and Discussion

Figure 22 shows that a large portion of the friction coefficients and mass ratios require ex-

tremely large swing angles to cause slip. These angles would not be realistically encountered

during crane operation. Therefore, slip would not likely occur for many combinations of

mass ratio and friction coefficients, particularly as the friction coefficient gets larger (e.g.,

as the braking system is more effective). Also, the model assumes that the suspension cable

is rigid and does not consider that the cable could go slack, which may occur for larger

swing angles.

Payload swing approaching 30 degrees of amplitude can be considered a more realistic

upper bound on extreme swing that could be encountered when operating a crane. Figure 23

shows a 2D plot of the friction coefficient and mass ratio parameter space considered in this

study, with the solid line indicating the transition from the parameter pairs that do not

lead to slip and those that do for up to 30 degrees of payload swing. Mass Ratios and

friction coefficients above the solid line will not lead to cart/trolley slip as long as the

payload swing is ≤ 30 degrees. For mass Ratios and friction coefficients below the solid

line, the cart/trolley can slip if the the payload swing is ≥ 30 degrees. Mass ratios up to 5

require a friction coefficient less than 0.45 for slipping, and this is a relatively low friction

coefficient that should only occur if some debris or a contaminant is present between the

trolley wheel(s) and rail.

For some of the friction coefficients and mass ratios explored in the parameter space,
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Figure 22: Minimum pendulum angle required for cart slip as a function of mass ratio
and friction coefficient (L = 3 m).

no solution (i.e., pendulum swing angle large enough to cause transition from no slip to

slipping) below 90 degrees of pendulum swing was found. This region with no solution

below 90 degrees of swing is also shown in Figure 23. It consists primarily of low mass

ratios where the pendulum is not heavy enough to cause the trolley to slip, and grows wider

to include heavier mass ratios as the friction coefficient increases.
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Figure 23: Transition from no slip to slipping when there is 30 degrees of pendulum
swing as a function of mass ratio and friction coefficient (L = 3 m). The region of the

friction coefficient and mass ratio parameter space where no slipping solution was found is
also shown.

When slipping does occur, it is useful to examine how much the cart/trolley slips. For

the purposes of this discussion, the results from the parameter study with µ = 0.2 will

be examined. While this could be perceived as an abnormally low friction coefficient, it

serves as a useful example of a slipping failure scenario where there is debris or some other

contaminant that significantly lowers the traction of the trolley wheels. Figure 24 shows

the resulting cart response peak-to-peak amplitude for a range of pendulum swing angles

between 5 and 30 degrees and mass ratios from 0.1 to 5. For many of the smaller swing

angles and the lower mass ratios, the cart does not slip and the amplitude is negligible. The

solid line indicates the transition to results that include slip, where cart amplitude values

above this line include responses where the cart slipped. For large enough swing angles

or high enough mass ratios, the cart slips and peak-to-peak slip amplitudes up to 1 m are

predicted by the simulation model.

Figure 24(b) shows the cart amplitude as a function of the mass ratio for selected

pendulum swing angle amounts. The transition point, or lowest mass ratio that results in

cart slip, is indicated for each selected swing angle case. No cart slip was found for any

mass ratio with 10 degrees of swing (or less). However, slipping occurs for high enough
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Figure 24: Maximum residual cart response amplitude as a function of initial pendulum
angle and mass ratio (µ = 0.2 and L = 3 m). The lowest parameter values where slipping

first occurred are indicated on each plot.
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mass ratios as the angle increases. For example, mass ratios above 3.16 lead to trolley slip

with 15 degrees of swing (or more).

Figure 24(c) shows the cart amplitude as a function of the pendulum swing angle for

selected mass ratios. The transition point, or minimum swing angle that causes cart slip,

is indicated for each selected mass ratio case. No cart slip was found for a mass ratio of 0.5

for swing angles up to 30 degrees. (Figure 22(b) predicts that a minimum of 47.8 degrees

of payload swing would be required for slipping at this mass ratio with µ = 0.2.) However,

slipping occurs for the higher mass ratios with large enough pendulum swing angle. For

a mass ratio of 5, slipping occurs with a minimum of 13.6 degrees of payload swing with

µ = 0.2.

2.6 Comparison and Summary of Fundamental Models

Table 2 summarizes the three fundamental models presented in this chapter, showing

schematics and the backdrivable transfer function with a pole-zero plot. Notice that the

pole-zero plots for Models I and II have a similar layout: a double integrator, with a pair

of complex of poles and zeros where the poles have larger imaginary components than the

zeros. Model III has the same pattern but rotated onto the real axis, with a stable real

zero and pole, unstable pole, and non-minimum phase zero. This system can be made con-

ditionally stable with a feedback controller, with one such controller being proposed by the

designers of the Segway [62]. Depending on the design of the feedback controller, some of

the closed-loop poles may be complex and result in underdamped oscillations. This is an

example of a case where the backdrivability may arise from a feedback controller used to

stabilize the system.

These fundamental models of backdrivable flexible systems will be used throughout

the remainder of this thesis. They will be used as example systems for application of

proposed performance metrics for backdrivability, and to evaluate control systems designed

to mitigate the negative effects and performance of backdrivable systems. The contributions

of this chapter include the fundamental models and the classification of types of backdrivable

systems.
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CHAPTER III

PERFORMANCE METRICS FOR BACKDRIVABLE FLEXIBLE

SYSTEMS

This chapter presents performance metrics for determining the degree of backdrivability, or

coupling between rigid and flexible modes, as a function of any key system parameters. A

goal is to develop metrics that identify what conditions or system parameter combinations

a system can be classified as backdrivable. This allows thresholds between ‘backdrivable’

and ‘not backdrivable’, like the one seen in Figure 4, to be defined. To predict the level of

backdrivablity for a given system, the performance metric should capture the impact that

various system parameters have on the degree of coupling or backdrivability between the

rigid and flexible modes. In the case of Figure 4, the mass ratio of the rigid and flexible

elements is the key system parameter that determines the response ratio, or the degree of

backdrivability.

The performance metrics are directed to stable backdrivable flexible systems. For il-

lustrative purposes, the metrics developed in this chapter will be applied to the two stable

models presented in Chapter II. Application of the performance metrics to the unstable

Cart with Inverted Pendulum model will be addressed in Chapter IV after presenting a

stabilizing control system for this model. Because the feedback controller is the source of

flexibility in the stabilized system, whether or not it exhibits backdriving effects depend

on the system and controller parameters. If there are backdriving effects, then the de-

gree of backdrivability also depends on the system and controller parameters. Therefore, it

makes sense to analyze the backdrivability of the Cart with Inverted Pendulum model in

the context of the control system design and discussion.

Two performance metrics are proposed in chapter. The first is based on eigenvectors,

mode shapes, and system response ratios. The second is based on the system open-loop

poles and zeros. The metrics are applied to the stable fundamental models to demonstrate
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and compare the metrics and to evaluate the backdrivability of the fundamental models as

a function of their key system parameters.

3.1 Backdrivable Amplitude Ratio from System Time Response

The amount of backdrivability exhibited by a system can be examined by considering the

time response of the rigid and flexible states. For a given amount of flexible-state oscillation,

a system can be classified as more backdrivable if the corresponding rigid-state oscillation

has large amplitude. In other words, the ratio between the rigid-state and flexible-state

response amplitudes is a useful metric for characterizing the degree of system backdrivability.

For example, consider the time response of the Cart with Pendulum to a bang-bang

command, similar to Figure 7. Figure 25 compares the bang-bang response for two different

pendulum-cart mass ratios m/M with L = 5 m and a command designed to move the cart

1 m. The response with mass ratio m/M = 0.5 is the same as was shown in Figure 7. The

natural frequency of the system with m/M = 1 is higher than the system with m/M = 0.5,

in accordance with (4). The amplitudes of the residual cart and pendulum responses can

be used to assess the system backdrivability for the two mass ratios. The system with

m/M = 0.5 has a cart residual amplitude of 0.17 m and a pendulum residual amplitude of

5.72 deg (0.10 rad), yielding a cart-to-pendulum amplitude ratio of 1.7 m/rad. The system

with m/M = 1 has a cart residual amplitude of 0.21 m and a pendulum residual amplitude

of 4.91 deg (0.086 rad), yielding a cart-to-pendulum amplitude ratio of 2.5 m/rad. Because

a linear model is used, the same amplitude ratio would be obtained regardless of if a free

or forced response is analyzed and independent of the type of command.

Note that the pendulum residual vibration amplitude with m/M = 1 is slightly less

than with m/M = 0.5 even though the residual amplitude ratio is larger. The pendulum

residual amplitude is less because the same switching time and move distance were used

for the bang-bang commands applied to both systems, yet the natural frequency is higher

with the increase in mass ratio. Residual vibration amplitude changing with system natural

frequency and bang-bang command parameters is a well-known behavior [99]. In fact, some

researchers have used this property to generate vibration-free bang-bang commands for

43



0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14

m/M = 0.5 m/M = 1.0

C
ar

t P
os

iti
on

 (m
)

Time (s)

(a) Cart position.

-6

-4

-2

0

2

4

6

0 2 4 6 8 10 12 14

m/M = 0.5 m/M = 1.0

Pe
nd

ul
um

 A
ng

le
 (d

eg
)

Time (s)

(b) Pendulum angle.

Figure 25: Response of Cart with Pendulum fundamental model to a bang-bang
command designed to move the cart 1 m with two different pendulum-cart mass ratios,

m/M = 0.5 and m/M = 1.0.

specified move distances and system frequencies, assuming the command magnitude and

switching times can be freely chosen [79].

The downside of using this approach to determine amplitude ratio and assess backdriv-

ability is that it requires obtaining residual amplitudes from simulated time responses or

from analytic expressions for the time responses of the rigid and flexible states. Obtaining

the time responses through simulation can be a slow approach when there are a variety of

trade studies that may be required to identify the parameters that influence backdrivability

and their relationships to the response ratio. Also, analytic expressions for time responses
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can be unwieldy or difficult to obtain for some systems. Therefore, the amplitude ratio cal-

culated directly from time responses has limited usefulness as a performance metric except

as a brute-force simulation approach. Two alternative performance metrics are proposed in

this chapter.

3.1.1 Amplitude Ratio Comparison Between Nonlinear and Linear Models

Section 2.4 presented the RMSE and amplitude errors between the nonlinear and linear

Cart with Pendulum models to validate the use of the linear model in this thesis. However,

it is also worthwhile to investigate how the cart-to-pendulum amplitude ratio predicted

by the linear and nonlinear models varies to further illustrate when the linear model is a

sufficient approximation for use when studying backdrivable systems.

Figure 26 shows a comparison between the Cart-to-pendulum amplitude ratio from free

responses of the linear and nonlinear models as a function of initial pendulum angle (a)

and mass ratio (b). Figure 26(a) shows that the amplitude ratio is higher for larger mass

ratios, and the amplitude ratio predicted by the linear model does not depend on the initial

pendulum angle as should be expected from a linear model. Figure 26(b) shows that the

amplitude ratio increases quickly as the mass ratio increases for small mass ratios. As

the initial pendulum angle increases, the amplitude ratio predicted by the nonlinear model

decreases and larger error develops between the linear and nonlinear model amplitude ratios

due to deviation from the small-angle approximation. The amplitude ratio predicted by the

linear model serves as an upper bound, or a conservative worst-case estimate, on that from

the nonlinear model response. Also, the amplitude ratio percent error does not depend on

the mass ratio based on the results shown in Figure 17.

3.2 Performance Metric 1 - Eigenvector Response Ratio

3.2.1 Eigenvector Response Ratio Performance Metric Definition

A useful performance metric can be obtained from analysis of eigenvalues and eigenvectors.

Because eigenvectors represent the mode shapes of a system, they capture the relative

steady-state response ratios between the various system states for each mode. By examining

the flexible mode shape(s) of the system, the relative response ratio between the rigid and
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Figure 26: Cart-to-pendulum amplitude ratio as a function of initial pendulum angle
and mass ratio for the linear and nonlinear models (L = 3 m).

flexible element states can be identified without needing to calculate or simulate the time

response of the system.

The state matrix for a generic 4th-order system with a rigid-body mode and one un-

damped flexible mode with state defined relative to the rigid body can be represented in
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the form:

A =




0 1 0 0

0 0 −k1 0

0 0 0 1

0 0 −k2 0




(20)

where the state vector is defined as:

~x =

[
x1 ẋ1 x2 ẋ2

]T
(21)

with x1 and ẋ1 corresponding to the rigid element position or angle and velocity, and x2

and ẋ2 corresponding to the position or angle and velocity of the flexible element.

The eigenvalues of the state matrix (20) are:

λ1,2 = 0, λ3,4 = ±
√
k2i,

The corresponding generalized eigenvectors can be listed as the columns of a matrix that

has the form:

Q =




1 0 R
√

1
k2
i −R

√
1
k2
i

0 1 R R

0 0
√

1
k2
i −

√
1
k2
i

0 0 1 1




,

where R = k1
k2

. While each column/eigenvector is the specific mode shape, the entries in each

row correspond to that state’s contribution to each mode. The third and fourth columns

are the flexible mode shape. The magnitude of the first two rows–which correspond to

the states of the rigid element–are scaled by R relative to the third and fourth rows which

correspond to the states of the flexible element. Therefore, R is defined as the Eigenvector

Response Ratio. This ratio can be calculated for each of the fundamental backdrivable

models presented in Chapter II. The resulting ratio is a function of the relative values of

the system parameters that contribute to the degree of coupling between the rigid and

flexible modes of the system. Therefore, the ratio serves as an effective performance metric

for evaluating the degree of backdrivability as a function of the system parameter values.
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Note that this approach yields an equivalent result to calculating the amplitude ratios

from the system time response, as was considered in Section 3.1. However, neither time

response simulations for a variety of system parameters nor obtaining analytic expressions

for the time responses are required when using the eigenvector analysis approach to obtain

the response ratio performance metric.

3.2.2 Eigenvector Response Ratios of Fundamental Backdrivable Systems

This section derives Eigenvector Response Ratios for the stable fundamental models pre-

sented in Chapter II and shows illustrative results of the ratio magnitude for a range of

system parameters for each model.

3.2.2.1 Cart with Pendulum

Consider a state-space representation of the Cart with Pendulum model from (2):




ẋ

ẍ

θ̇

θ̈




=




0 1 0 0

0 0 −mg
M 0

0 0 0 1

0 0 − (M+m)g
ML 0







x

ẋ

θ

θ̇




+




0 0

1
M 0

0 0

1
ML − 1

mL






u

f


 . (22)

The eigenvalues of the state matrix are:

λ1,2 = 0, λ3,4 = ±
√
− (M +m) g

ML
, (23)

with the corresponding generalized eigenvectors listed as the columns of the matrix:

QI =




1 0 mL
M+m

√
−ML

(M+m)g − mL
M+m

√
−ML

(M+m)g

0 1 mL
M+m

mL
M+m

0 0
√

−ML
(M+m)g −

√
−ML

(M+m)g

0 0 1 1




(24)

The first two rows correspond to the cart position x and velocity ẋ and the last two rows

correspond to the pendulum angle θ and rotation rate θ̇. The ratio between the first and
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Figure 27: Eigenvector Response Ratio of the Cart with Pendulum Model vs. mass ratio
m/M for different pendulum lengths L.

third (or second and fourth) rows gives the Eigenvector Response Ratio performance metric

RI for this model:

RI =
mL

M +m
(25)

Figure 27 shows the Cart with Pendulum Eigenvector Response Ratio for pendulum lengths

L ranging from 0.5 m to 10 m. As the mass of the pendulum relative to the cart increases,

the response ratio increases. Also, increasing the length leads to larger response ratios.

The latter trend occurs because the response ratio is defined for states of cart position and

pendulum angle, and increases in pendulum length for a given pendulum angle correspond

to larger horizontal deflection of the pendulum relative to the cart. This is consistent with

expectations based on conservation of momentum, where for larger pendulum masses and/or

larger amounts of deflection, the cart will have a larger response.

3.2.2.2 Rotary Hub with Flexible Arm

The Eigenvector Response Ratio RII for the Rotary Hub with Flexible Arm model is defined

as the relative response ratio of the hub angle θ1 to the arm angle θ2 in steady state. The

ratio can be calculated using the method in Section 3.2.1 after converting (6) to state-space

form. With the hub modeled as a disk (I1 = 1
2m1L1

2) and the flexible arm modeled as a
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slender rod (I2 = 1
3m2L2

2),

RII =
−2m2L2 (3L1 + 4L2)

3m1L1
2 + 2m2

(
3L1

2 + 4L2
2 + 6L1L2

) (26)

This ratio has a more complex dependence on the system parameters than the ratio for the

Cart with Pendulum given by (25). The ratio depends on the hub and arm masses m1 and

m2, the hub radius L1, and the arm length L2. Figure 28 shows the Rotary Hub Eigenvector

Response Ratio as functions of mass ratio m2/m1 and length ratio L2/L1. The values are

negative here due to the positive directions for the states θ1 and θ2 defined in the model.

The magnitude of the response ratio increases as the mass ratio m2/m1 and length ratio

L2/L1 increase. Smaller relative arm masses and lengths have a smaller impact on the hub

response.

In the limit as the flexible arm gets larger (mass and length) relative to the hub:

lim
m2/m1→∞

RII = − 4L2
2 + 3L1L2

3L1
2 + 4L2

2 + 6L1L2
(27)

lim
L2/L1→∞

RII = −1 (28)

As the arm mass gets larger relative to the hub mass, the ratio depends on the relative sizes.

As the arm gets longer relative to the radius of the hub, the ratio approaches an asymptote

with magnitude 1 independent of the relative masses. For a response ratio with magnitude

1, the responses of both the rigid and flexible elements have equal amplitude.

3.2.3 Eigenvector Response Ratio Discussion

The Response Ratio performance metric can also be applied and validated for more complex

systems with multiple flexible modes. While closed-form expressions of the response ratio

may be obtained for simple models with two degrees of freedom, more complex models will

not easily produce closed-form expressions for the eigenvectors. This requires studying the

eigenvectors and response ratios numerically. However, it is still possible to identify the

response ratio as a function of the relevant system parameters.
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Figure 28: Eigenvector Response Ratio of the Rotary Hub with Flexible Arm model as a
function of mass and length ratios.

3.3 Performance Metric 2 - Complex Pole-Zero Ratio

3.3.1 Complex Pole-Zero Ratio Performance Metric Definition

An additional useful performance metric is based on the relationship between the complex

poles and zeros of the backdrivable system. For a given backdrivable system, the transfer

function between the rigid state and an input (force or torque) applied to the rigid body

can be defined as the backdrivable open-loop transfer function. A backdrivable open-loop

transfer function has a pair of complex zeros in addition to the rigid and flexible mode poles
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for the system. This section uses a relationship between the complex poles and zeros for a

backdrivable transfer function to quantify the degree of backdrivabiltiy of the system.

For the Cart with Pendulum, the backdrivable transfer function is the X(s)/U(s) trans-

fer function given by (3a). Figure 6 showed an illustrative pole-zero plot of (3a) to show

the relative locations of these complex poles and zeros. Studying the Eigenvector Response

Ratio revealed that the payload-cart mass ratio is an important parameter for assessing the

backdrivability of the Cart with Pendulum system. To examine the effect of the mass ratio

on the poles and zeros, Figure 29 shows the imaginary part of the positive complex pole

and zero of (3a) vs. the mass ratio m/M with L = 5 m. The complex zeros of (3a) occur at

±i
√
g/L and do not depend on the mass ratio. As the mass ratio increases, the imaginary

part of the complex pole increases in value and moves further away from the complex zero

along the imaginary axis of the pole-zero plot. This increasing trend for the pole is a similar

pattern to that shown by the Eigenvector Response Ratio in Figure 27.

Based on this analysis and understanding of the behavior of the complex poles and zeros,

a performance metric for backdrivability can be defined. First, the backdrivable transfer

function for the system should be identified based on the definition for the rigid body mode

and the presence of a pair of complex zeros. Then, the Complex Pole-Zero Ratio κ is defined
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Figure 29: Positive complex poles and zeros of Cart with Pendulum X(s)/U(s) transfer
function vs. payload-cart mass ratio m/M (L = 5 m).
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as:

κ =
pi − z11,i

pi
(29)

where pi is the positive complex pole and z11,i is the positive complex zero of the backdrivable

transfer function. The following subsections illustrate application of this metric to the

fundamental models.

3.3.2 Complex Pole-Zero Ratios for Fundamental Backdrivable Systems

This section derives Complex Pole-Zero Ratios for the stable fundamental models presented

in Chapter II and shows illustrative results of the ratio for a range of system parameters

for each model.

3.3.2.1 Cart with Pendulum

For the Cart with Pendulum model, the backdrivable transfer function is X(s)/U(s) given

by (3a). The positive complex pole of (3a) is:

pi = i

√
g

L

(
M +m

M

)
(30)

and the positive complex zero is:

zi = i

√
g

L
. (31)

Substituting (30) and (31) into (29) yields the Complex Pole-Zero Ratio κI for the Cart

with Pendulum model:

κI = 1−
√

M

M +m
(32)

This results in a performance metric that does not depend on the pendulum length because

the definition for the Complex Pole-Zero Ratio uses the complex pole as a normalizing

factor.

Figure 30 shows the Cart with Pendulum Complex Pole-Zero Ratio as a function of the

mass ratio m/M . As the mass of the pendulum relative to the cart increases, the pole-zero

ratio increases. As a performance metric, this suggests that the cart will have a larger

relative response as the mass ratio increases. This is consistent with the results predicted

by the Eigenvector Response Ratio and expectations based on conservation of momentum,
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Figure 30: Complex Pole-Zero Ratio of the Cart with Pendulum Model vs. mass ratio
m/M .

where for larger pendulum masses and/or larger amounts of deflection, the cart will have a

larger response. Also note that the pole-zero ratio and Eigenvector Response Ratio shown

in Figure 27 follow a similar overall trend in terms of their dependence on the mass ratio.

However, the Complex Pole-Zero Ratio for the Cart with Pendulum model is independent

of the pendulum length. Unlike the Eigenvector Response Ratio, it does not matter that

the two system states are cart position and pendulum angle and have different units.

3.3.2.2 Rotary Hub with Flexible Arm

For the Rotary Hub with Flexible Arm model, the backdrivable transfer function is Θ1(s)/T (s)

given by (6a). With the hub modeled as a disk (I1 = 1
2m1L

2
1) and the flexible arm modeled

as a slender rod (I2 = 1
3m2L

2
2), the positive complex pole of (6a) is:

pi = i

√
k
(
3m1L1

2 + 2m2

(
3L1

2 + 4L2
2 + 6L1L2

))

2m2 (2m1 +m2)L1
2L2

2 (33)

and the positive complex zero is:

zi = i

√
3k

4m2L2
2 . (34)
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Substituting (33) and (34) into (29) yields the Complex Pole-Zero Ratio κII for the Rotary

Hub with Flexible Arm model:

κII = 1−

(√
6m1 +

√
3
2m2

)
L1

√
(2m1 +m2)

(
3m1L1

2 + 2m2

(
3L1

2 + 4L2
2 + 6L1L2

)) (35)

This Complex Pole-Zero Ratio has a more complicated dependence on the system param-

eters than the ratio for the Cart with Pendulum given by (32). This resulting dependence

on the hub and arm masses m1 and m2, the hub radius L1, and the arm length L2 is similar

to the Eigenvector Response Ratio (26) for this model. The more complicated relationship

arises due to the rotational dynamics of both the hub and arm and the presence of rigid

bodies rather than the point masses in the Cart with Pendulum model.

In the limit, as the flexible arm gets larger (mass and length) relative to the hub:

lim
m2/m1→∞

κII = 1−
√

3L1

2
√

3L1
2 + 4L2

2 + 6L1L2

(36)

lim
L2/L1→∞

κII = 1 (37)

As the arm mass gets larger relative to the hub mass, the ratio depends on the lengths. As

the arm gets longer relative to the radius of the hub, the ratio approaches an asymptote with

magnitude 1 independent of the relative masses. This behavior is similar to the Eigenvector

Response Ratio for the Rotary Hub with Flexible Arm model.

Figure 31 shows the Rotary Hub with Flexible Arm Complex Pole-Zero Ratio as a

function of the mass ratio m2/m1 and length ratio L2/L1. Figure 31(a) shows that the

pole-zero ratio increases as the mass of the arm relative to the hub increases, with higher

ratios for longer arm lengths relative to the hub radius. Figure 31(b) shows that the pole-

zero ratio also increases as the the length ratio increases. However, the increase can be more

gradual for small mass ratios. As a performance metric, this suggests that the arm can have

a larger impact on the hub as the arm mass increases, and longer arms can exacerbate this

effect. This is consistent with the results predicted by the Eigenvector Response Ratio and

expectations based on conservation of angular momentum, where for larger arm inertias,

the hub will have a larger response. Also, note that the Complex Pole-Zero Ratio and

Eigenvector Response Ratio shown in Figure 28 follow a similar overall trend in terms of
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their dependence on the mass ratio. They differ in sign only due to the choice of positive

direction for the system states, and what really matters is the magnitude of the ratios

themselves.
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Figure 31: Complex Pole-Zero Ratio of the Rotary Hub with Flexible Arm model as a
function of mass and length ratios.
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3.3.3 Comparison of Eigenvector Response Ratio and Complex Pole-Zero Ra-
tio Performance Metrics

One advantage of the Eigenvector Response Ratio as a performance metric is that it has an

inherent, direct relationship with the physical behavior of the system in terms of predicting

the amplitude ratio of the time response. The Complex Pole-Zero Ratio does not have this

same direct connection to the time response behavior. Rather, it provides insight into the

frequency response and, should a feedback controller be applied to the system, the closed-

loop behavior. Another way to visualize the results for the Cart with Pendulum depicted

in Figures 29 and 30 is with Bode magnitude plots for the X(s)/U(s) transfer function

for different mass ratios. Figure 32 shows Bode magnitude plots for four mass ratios, and

illustrates how the resonant peaks arising from the complex poles shift further away from

the complex zero at
√
g/L as the mass ratio increases. A physical interpretation of this

behavior is that the pendulum acts as a vibration absorber for the cart that becomes further

out of tune as the mass ratio increases. Another explanation is that damping the oscillatory

behavior of cart caused by the swinging pendulum would require more control effort as the

mass ratio increases.

Due to its connection to the time response behavior, the magnitude of the Eigenvector
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Figure 32: Bode magnitude plot of Cart with Pendulum X(s)/U(s) transfer function for
a variety of payload-cart mass ratios m/M (L = 2 m, M = 10 kg).
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Response Ratio has physical meaning whereas the Complex Pole-Zero Ratio magnitude does

not. This gives it the advantage of allowing designers to study the impact of the various

configurations on the rigid body state amplitude.

3.4 Summary

This chapter presented two performance metrics for evaluating the degree of backdrivability

as a function of key system parameters. The first metric is based on eigenvector analysis,

and provides a means to assess the relative amplitude ratio between the responses of the

system states. The second metric is defined based on the complex poles and zeros of the

system. As their values become further apart, the oscillation of the flexible mode has a larger

impact on the system response. Both metrics show that changing system parameters, such

as increasing the mass or length of a flexible element, can result in a system that exhibits

larger backdriving effects that may degrade performance.
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CHAPTER IV

CONTROL OF BACKDRIVABLE SYSTEMS

This chapter investigates the control of backdrivable flexible systems. The goal is to improve

response performance of the rigid element, while also reducing residual vibration of the

flexible mode.

We are considering applications where the performance degradation of the rigid element

is caused primarily due to coupling with the flexible mode. Therefore, we seek to develop

control techniques that improve performance by reducing vibration of flexible modes. In-

put shaping is one such technique, and its application to backdrivable flexible systems is

considered in this chapter and throughout the remainder of this thesis.

While input shaping can be used to suppress residual vibration caused by the flexible

mode, it does not provide a direct means to improve transient performance, reject distur-

bances, or eliminate steady-state error. Therefore, input shaping should often be combined

with a feedback controller to improve the performance of the rigid element of the backdriv-

able system.

One such feedback control architecture is illustrated in the block diagram shown in

Figure 33. An input-shaped reference command is used as the feedback controller input.

The controller generates a control effort to move the plant. It is assumed that only the rigid

element states may be measured, and no sensor is available to measure the flexible body

states. The response of the rigid body element may optionally be used as input to a state

estimator to estimate the flexible states if full state feedback is required by the controller,

although this configuration will not be considered in this thesis.

This chapter presents the design process for backdrivable flexible system feedback con-

troller. Then, the controller is combined with an input shaper through use of optimization

to solve for the input shaper parameters and controller gains.

This chapter also addresses control of unstable backdrivable systems, such as the Cart
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Figure 33: Block diagram of combined input-shaping and feedback control for
backdrivable flexible systems.

with Inverted Pendulum model presented in Chapter II. This will illustrate how the addition

of a stabilizing feedback controller can introduce backdriving dynamics to a system. The

feedback controller presented for the Cart with Inverted Pendulum will be studied to gain

insight into the backdriving dynamics of inverted-pendulum transporters, such as was shown

in Figure 3.

4.1 Input Shaping

One technique that is effective at controlling vibration and oscillation is input shaping.

Input shaping strategically modifies a command by convolving it with a series of impulses,

called an input shaper. The resulting command induces little or no residual vibration

[92, 109]. Designing input shapers only requires estimates of the natural frequency and

damping ratio of the undesired vibratory mode. A major advantage of this approach is that

it does not require real-time measurement or estimation of the load states.

Input shaping has proven effective on many kinds of machines, including cranes [112],

robotic arms [9, 27, 67, 83], coordinate measuring machines [49, 106], and satellites [33,

93, 94, 104, 102, 120, 128]. The performance of many of these flexible systems can suffer

due to backdrivability. Because input shaping eliminates residual vibration, it can also

reduce the backdriving effect of the flexible mode on the rigid body or base. In addition,

input shaping does not require measurements of the flexible system states. These properties

make it well-suited for controlling backdrivable flexible systems. Input shaping is chosen

as a primary control method to study in this research because of its proactive suppression

of vibration or oscillation that can prevent the backdriving effect from occurring. Input

shaping is also compatible with feedback controllers that only use partial state feedback of

rigid body motion.
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Input shapers can be designed to suppress multiple flexible modes [46, 95, 97, 103].

Also, many studies of crane operators have shown that input shaping can greatly improve

performance [53, 54]. The primary disadvantages of input shaping are that it cannot reduce

vibration caused by external disturbances, and it introduces a small response lag due to the

method used to form the shaped commands.

Figure 34 illustrates the input-shaping concept. In the top of Figure 34, an impulse is

applied to a flexible system, and induces a lightly-damped response. A similar response

(shown by the dashed line) would result if a second impulse were applied a short time

later. The bottom of Figure 34 shows the response that results from both impulses. The

two responses combine linearly, and the oscillation is eliminated. Furthermore, the two

specially-timed impulses can be convolved with any arbitrary function, and when used in

this way, the resulting function will maintain the oscillation-canceling properties of the

original impulses. The series of impulses is called an input shaper.

Input shapers may have more than two impulses. The transfer function of a generic

input shaper with n impulses is:

Gis(s) = A1e
−t1s +A2e

−t2s + · · ·+Ane
−tns. (38)
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Figure 34: Demonstration of the input-shaping concept using two impulses, where the
vibration caused by the first impulse is cancelled by strategic selection of the amplitude

and time of the second impulse.
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where Ai are the impulse amplitudes, and ti are the time locations of each impulse. Without

loss of generality, the first impulse time is chosen as t1 ≡ 0. The impulse amplitudes and

time locations are designed using the estimated natural frequencies and damping ratios of

the undesired flexible modes. Input shapers can be made robust to errors and changes in

these parameters [92, 125].

Input shapers can be designed using different combinations of performance requirements.

By constraining the impulses to be all positive and the residual oscillation to be zero when

parameter estimates are perfect, a Zero Vibration (ZV) input shaper [109] is obtained. Its

transfer function is:

Gzv(s) = A1 +A2e
−t2s, (39)

where A1, A2, and t2 depend on the natural frequency and damping ratio of the flexible

mode. The ZV shaper amplitudes and times are [109, 98]:



Ai

ti


 =




1
1+K

K
1+K

0 Td
2


 , (40)

where

K = e

(
−ζπ√
1−ζ2

)
. (41)

For descriptions and comparisons of other kinds of input shapers such as Extra-Insensitive

(EI) and Specified-Insensitivity (SI) input shapers, see [125].

To demonstrate the effect input shaping has on suppressing the flexible mode response

and therefore eliminating the backdriving response, a ZV input shaper can be designed for

the Cart with Pendulum fundamental model for the system parameters used previously in

Figure 7 (M = 30 kg, m = 15 kg, and L = 5 m). A frequency of 1.72 rad/s is calculated

for this parameter set using (4), and the system is undamped. With the natural frequency

and damping ratio, the input shaper can be calculated using (40). Figure 35 compares the

system response with and without the ZV shaper. Figure 35(a) shows that the ZV-shaped

bang-bang command moves the cart 1 m, and the cart arrives with zero residual oscillation.

This is due to the input shaper suppressing the oscillation of the pendulum, as shown in

Figure 35(b). Because the pendulum residual oscillation is proactively eliminated by the
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Figure 35: Comparison of the response of the Cart with Pendulum to unshaped and
ZV-shaped bang-bang commands designed to move the cart 1 m.

shaped command, it is not able to backdrive the system.

4.2 Feedback Control

4.2.1 Control of Stable Backdrivable Systems

This section examines feedback control of stable backdrivable systems, and the Rotary Hub

with Flexible Arm fundamental model given by (5) will be studied for demonstration pur-

poses. A PD controller is selected for investigation given its ubiquitous nature, and because

it is effective at meeting performance requirements on standard response characteristics

such as rise time and maximum overshoot with this fundamental model. It is also provides
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an effective form of attitude control for spacecraft, and this application will be investigated

in Chapter VI.

An explicit form of the control system block diagram is shown in Figure 36. The closed-

loop transfer functions between the commanded arm angle θd and the output angles θ1 and

θ2 can be found using block diagram reduction. The Rotary Hub with Flexible Arm model

in (5) was expressed in transfer function form in (6), where the four transfer functions GP11,

GP12, GP21, and GP22 that relate the inputs T and θd to the outputs θ1 and θ2 are defined

as:

GP11(s) =
Θ1(s)

T (s)
, (42a)

GP12(s) =
Θ1(s)

Θd(s)
, (42b)

GP21(s) =
Θ2(s)

T (s)
, (42c)

GP22(s) =
Θ2(s)

Θd(s)
. (42d)

Through block diagram reduction of Figure 36, the closed-loop transfer functions can

be found:

Θ1(s)

Rθ1(s)
=

GC(s)GP11(s)

1 + GC(s)GP11(s)
, (43a)

Θ1(s)

Θd(s)
=

GP12(s)

1 + GC(s)GP11(s)
, (43b)

Θ2(s)

Rθ1(s)
=

GC(s)GP21(s)

1 + GC(s)GP11(s)
, (43c)

Θ2(s)

Θd(s)
= GP22(s)−

GC(s)GP12(s)GP21(s)

1 + GC(s)GP11(s)
. (43d)

The controller is a standard Proportional-Derivative (PD) controller such that GC(s) =

KP + KDs. By substituting the open-loop transfer function expressions (6a), (6b), (6c),

and (6d) into (43b) and (43d) with Rθ1 = 0, the closed-loop transfer functions between the

commanded arm angle θd and the outputs θ1 and θ2 are:
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Figure 36: Block diagram of the hub angle PD controller applied to the Rotary Hub
with Flexible Arm fundamental model.

Θ1(s)

Θd(s)
=

m2

(
L1 + 4

3
L2

)
s2

(2m1+m2)m2L1
2L2

3k
s4 + 4KDm2L2

3k
s3 +

[
4KPm2L2

3k
+ m1L1

2

2L2
+ m2

(
L1

2

L2
+ 2L1 + 4

3
L2

)]
s2 + KD

L2
s + KP

L2

(44)

Θ2(s)

Θd(s)
=

(
m1L1

2

2L2
+ m2L1

2

L2
+ 2m2L1 + 4m2L2

3

)
s2 + KD

L2
s + KP

L2

(2m1+m2)m2L1
2L2

3k
s4 + 4KDm2L2

3k
s3 +

[
4KPm2L2

3k
+ m1L1

2

2L2
+ m2

(
L1

2

L2
+ 2L1 + 4

3
L2

)]
s2 + KD

L2
s + KP

L2

(45)

The following parameter values will be used with this model for the rest of this section:

m1 = 5,000 kg, L1 = 1 m, m2 = 100 kg, L2 = 5 m, and k = 5, 000 N-m/rad. The denomi-

nator in (44) and (45) suggests that the closed-loop modes have a complicated dependence

on the system parameters and controller gains. The behavior of the closed-loop modes must

be understood before designing input shapers for the closed-loop system.

4.2.1.1 Controller Root Loci

Figure 37 shows the loci of the closed-loop poles of (44) and (45) as KP varies and for

selected KD values. Note that these loci are merely the roots of the characteristic equation

1 + GC(s)GP11(s), and are not plotted assuming another feedback loop exists around the

control system. With no derivative gain, the poles remain on the imaginary axis. As

KD increases, the pole on the real axis moves further to the left and the pair of complex

conjugate poles is pulled to the left. For every KD other than zero, there are always at least

two complex conjugate poles, with the other poles either being real or complex conjugates
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depending on the value of KP . At low KD, the complex conjugate poles at low KP have

their imaginary parts grow towards infinity along ±90-degree asymptotes as KP increases.

The other set of poles remains on the real axis at low KP , then breakaway towards the open-

loop zeros of GP11(s) becoming complex at larger KP . Between KD = 5,000 and KD =

10,000, the loci change shape. After this transition occurs and for higher KD, the complex

conjugate poles at low KP move towards the open-loop zeros as KP increases, while the

poles on the real axis breakaway and tend towards infinity along ±90-degree asymptotes.

The breakaway points occur at larger and larger real values as KD increases.

To more closely examine the behavior and loci shape when the shape transition occurs

between KD = 5,000 and KD = 10,000, Figure 38 shows the loci over a smaller range of

KD gains where the transition occurs. This shows how the shape changes as the breakaway

point moves further to the left with increasing KD.

The loci show that the poles have a complex dependance on the KP and KD gains. The

closed-loop system either has two complex conjugate poles and two real poles, or two pairs

of complex conjugate poles depending on the controller gains. For the purposes of designing

a PD controller for this system and combining it with an input shaper, it is also useful to

understand how the frequency and damping ratio of the closed-loop underdamped mode(s)

changes with the gain values. The relationships between the gains and the frequency and

damping ratio of the underdamped mode(s) are shown in the next section.

4.2.1.2 Modal Analysis of Closed-Loop Behavior

Choosing PD controller gains that will be utilized with an input shaper requires under-

standing of the closed-loop modes, in particular the frequency and damping ratio. This

section shows the behavior of the closed-loop modes as a function of the proportional and

derivative gains. The results inform selection of controller gains and give context for the il-

lustrative results shown for the combined input-shaping and PD controller presented later.

This analysis is primarily focused on the underdamped modes because they will be the

primary driver of large overshoot and long settling times, and are suitable for targeted

suppression using input shaping. In this analysis, Mode 1 is defined as the mode with the
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Figure 37: Root loci showing the pole locations as KP varies for selected KD gains.

67



Figure 38: Root loci showing the closed-loop pole locations as KP varies for selected KD

gains around where the transition in loci shape occurs.
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lower natural frequency, and Mode 2 is only shown for controller gain values where it is

underdamped. (This closed-loop system always has at least one underdamped mode.)

The first illustrative results are shown for a derivative gain of 8,100. Figure 39 show

the modes vs KP . For proportional gains less than approximately 3,000, there is only

a single underdamped mode. The second mode has two real roots and is overdamped.

For proportional gains greater than 3,000, all four poles are complex and both modes are

underdamped. The natural frequencies in Figure 39(a) show that, when both modes are

underdamped, the low mode remains near 1 rad/s while the frequency of the high mode

increases. The damping ratios are shown in Figure 39(b), and illustrate that the overdamped

mode for low proportional gain values becomes the mode with lower natural frequency as

the proportional gain increases. Also, the damping ratios of both modes decrease as the

proportional gain increases.

The next illustrative results are shown for a slightly higher derivative gain of 8,800.

Figure 40 show the modes vsKP for this case. Similar results to the previous case occur here,

and for proportional gains less than approximately 3,700, there is only a single underdamped

mode. Again, the damping ratios of both modes decrease as the proportional gain increases.

However, in this case, the low frequency mode continues to have a lower damping ratio

except during a brief transition range around KP ≈ 3,700.

To further examine this transition range, Figure 41 shows the modes vs. KD for KP =

3,700. As the derivative gain is increased, there is a transition from two underdamped modes

to a single underdamped mode with an overdamped mode. For this proportional gain and

derivative gains less than 8,800, there are two underdamped modes. This is consistent

with the results in Figure 39, where there are two underdamped modes for KP > 3,000

with KD = 8,100. For derivative gains greater than 8,800 and proportional gains less than

3,700, there is a single underdamped mode with an overdamped mode. The mode with the

higher frequency has the lower damping ratio. For low derivative gains, the damping ratios

of both modes increase as the gain is increased. After derivative gains around 8,000, the

damping ratio for one mode decreases as the derivative gain increases. The mode with the

lower frequency has a damping ratio that strictly increases until it becomes the overdamped
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Figure 39: Natural frequency and damping ratio of the underdamped closed-loop modes
vs. KP for KD = 8,100.

mode.

Similar patterns exist for proportional gain values greater than the transition range from

Figure 40. Figure 42 shows the modes vs. KD for KP = 3,800. As the derivative gain in-

creases, the modes transition from two underdamped modes to a single underdamped mode

with an overdamped mode. However, in this case, the mode with higher frequency becomes

the overdamped mode. As with the results shown in Figure 41, the single underdamped

mode for larger derivative gains has a damping ratio that decreases as the derivative gain
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Figure 40: Natural frequency and damping ratio of the underdamped closed-loop modes
vs. KP for KD = 8,800.

increases.

It is also worth examining the modal behavior at higher derivative gain values as a

function of a larger range of proportional gain values. The next illustrative results are

shown for a higher derivative gain of 10,000. Figure 43 show the modes vs KP . The

transition from one to two underdamped modes occurs at a higher proportional gains than

for the cases shown in Figures 39 and 40. There is only a single underdamped mode for

proportional gains less than approximately 5,400. At lower proportional gains when there is
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Figure 41: Natural frequency and damping ratio of the underdamped closed-loop modes
vs. KD for KP = 3,700.

a single underdamped mode, Figure 43(b) shows that the damping ratio initially increases

the proportional gain increases. After the transition from one to two underdamped modes,

the damping ratios of both modes decrease as the proportional gain increases.

As the derivative gain increases, the transition to two underdamped modes occurs at

larger proportional gains. Figure 43 show the modes vs KP for KD = 15,000. The transition

from one to two underdamped modes does not occur until KP ≈ 16,600. Again, the damping

ratios of both modes decrease as the proportional gain increases after the transition from
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Figure 42: Natural frequency and damping ratio of the underdamped closed-loop modes
vs. KD for KP = 3,800.

one to two underdamped modes. Moreover, the damping ratio of Mode 1 remains below

0.2 for all proportional gains.

This modal analysis and the results shown in Figures 39-44 have a number of significant

implications. For certain ranges of proportional and derivative gains, there are two pairs

of complex poles or one pair of complex poles and two real poles. As the proportional

or derivative gains change, transitions occur between these two cases. Two underdamped

modes exist for larger proportional gains and lower derivative gains. As the derivative
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Figure 43: Natural frequency and damping ratio of the underdamped closed-loop modes
vs. KP for KD = 10,000.

gain increases to larger values, two underdamped modes only occur for higher and higher

proportional gains. At the lower ranges of proportional and derivative gains, the damping

ratio of Mode 1 increases as the gains increase until a maximum occurs for specific gain

values. However, at higher gains, the damping ratio of the single underdamped mode

decreases as the gains increase. That the damping ratio decreases for increased derivative

gains is surprising and perhaps nonintuitive when compared to traditional PD control design

philosophies. There is a trade-off between having a high-enough damping ratio for one mode
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Figure 44: Natural frequency and damping ratio of the underdamped closed-loop modes
vs. KP for KD = 15,000.

to be overdamped, while not being so high as to lead to further decrease in the damping

ratio(s) of the underdamped mode(s).

4.2.1.3 Sample Step Response

To illustrate the behavior of the closed-loop system for a sample set of PD gains, Figure 45

shows the response of (44) and (45) to a 1 deg step of the commanded arm angle θd with

KP = 2,000 and KD = 10,000. With these gains, the closed-loop system has one pair of
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Figure 45: Sample step response of the closed-loop PD controller for the Rotary Hub
with Flexible Arm model with KP = 2,000 and KD = 10,000.

underdamped poles. The underdamped mode has a natural frequency of 1.3 rad/s and

damping ratio of 0.3. The arm angle has a 2% settling time of 10.3 seconds. The hub angle

θ1 has a peak amplitude of -0.31 deg and takes over 12 seconds to settle.

Further sample time responses of this closed-loop system model are shown in Section 4.3

in the context of the combined input-shaping and feedback control design. Also, Chapter VI

utilizes more examples of the application of this controller for attitude control of a spacecraft.

4.2.2 Control of Unstable Backdrivable Systems

This section will study feedback control of unstable backdrivable systems, using the Cart

with Inverted Pendulum fundamental model given by (8) for demonstration purposes. For

unstable systems such as the Cart with Inverted Pendulum, the feedback controller can

introduce the backdriving flexibility through the changed closed-loop dynamics. The goal

of this section is to analyze the possible system parameter and controller gain combinations

that can lead to backdriving flexibilty in the closed-loop dynamics.

While there are numerous control methods in the literature that stabilize and improve

the performance of inverted pendulum systems, one of the simplest for a Cart with Inverted

Pendulum system is a PD controller applied to the pendulum angle. A block diagram with

state-feedback of the pendulum angle and angular velocity is shown in Figure 46. The input
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Figure 46: Block diagram of the pendulum angle state feedback PD controller applied to
the Cart with Inverted Pendulum fundamental model.

is a reference pendulum angle, which can be used to model rider lean for inverted-pendulum

transporters. The pendulum angle is fed back through a PD state-feedback controller, where

the gains can be selected to stabilize the unstable inverted pendulum plant dynamics. The

system is actuated through a force applied to the cart specified by the controller.

This structure is similar to a controller presented in a paper published by designers of

the Segway [62]. The most significant difference is that the fundamental model focuses

on the planar pitch dynamics and so the controller does not include components for the

transporter turning/yaw dynamics. A PD pendulum angle controller results in marginally

stable cart behavior, but this is acceptable for modeling inverted-pendulum transporters

because the expectation is that the rider controls the overall vehicle position through their

leaning commands.

An explicit form of the control system block diagram is shown in Figure 47. The closed-

loop transfer functions between the reference pendulum angle θd and the output angles

θ1 and θ2 can be found using block diagram reduction. The Cart with Inverted Pendulum

model in (8) was expressed in transfer function form in (9), where the four transfer functions

GP11, GP12, GP21, and GP22 that relate the input u and disturbance f to the outputs x
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Figure 47: Explicit block diagram of the pendulum angle state feedback PD controller
applied to the Cart with Inverted Pendulum fundamental model.

and θ are defined as:

GP11(s) =
X(s)

U(s)
, (46a)

GP12(s) =
X(s)

F (s)
, (46b)

GP21(s) =
Θ(s)

U(s)
, (46c)

GP22(s) =
Θ(s)

F (s)
. (46d)

Through block diagram reduction of the diagram in Figure 47, the closed-loop transfer

functions can be found:

X(s)

Rθ(s)
=

GP11(s)

1 + GC(s)GP21(s)
, (47a)

X(s)

F (s)
= GP12(s)−

GC(s)GP11(s)GP22(s)

1 + GC(s)GP21(s)
, (47b)

Θ(s)

Rθ(s)
=

GP21(s)

1 + GC(s)GP21(s)
, (47c)

Θ(s)

F (s)
=

GP22(s)

1 + GC(s)GP21(s)
. (47d)

The controller is a standard PD controller with GC(s) = KP +KDs. As a reminder, the

pendulum was modeled as a slender rigid rod such that IG = 1
3mL

2. By substituting the

open-loop transfer function expressions (9a) and (9c) into (47a) and (47c), the closed-loop
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transfer functions between the reference angle Rθ and the outputs x and θ are:

X(s)

Rθ(s)
=

4Ls2 − 3g

s2 [(4M +m)Ls2 − 3KDs− 3 ((M +m) g +KP )]
(48)

Θ(s)

Rθ(s)
=

3

(4M +m)Ls2 − 3KDs− 3 ((M +m) g +KP )
(49)

Note that double pole-zero cancellation has occurred at zero in (49).

An equivalent and useful formulation for the closed-loop system can be obtained in

state-space form, where the Cart with Inverted Pendulum model is given by:

~̇x = A~x+ B~u, (50)

where

~x =

[
x ẋ θ θ̇

]T
, (51)

~u =

[
u f

]T
, (52)

A =




0 1 0 0

0 0 − 3mg
4M+m 0

0 0 0 1

0 0 3g(M+m)
(4M+m)L 0



, (53)

and

B =

[
B1 B2

]
=




0 0

4
4M+m − 2

4M+m

0 0

− 3
(4M+m)L

6M+3m
(4M+m)mL



. (54)

where B1 is the first column and B2 is the second column of the input matrix B.

Considering only the cart input u, the system is completely state controllable. The

controllability matrix R for the open-loop system can be formed as:

R =

[
B1 AB1 A2B1 A3B1

]
. (55)
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Substituting the matrices A and B1, (55) can be evaluated as:

R =




0 4
4M+m 0 9mg

(4M+m)2L

4
4M+m 0 9mg

(4M+m)2L
0

0 − 3
(4M+m)L 0 − 9(M+m)g

(4M+m)2L2

− 3
(4M+m)L 0 − 9(M+m)g

(4M+m)2L2
0




, (56)

This matrix has full rank (= 4) for all M > 0, m > 0, L > 0, and g > 0. To show this, the

determinant of (57) is:

det R =
81g2

(4M +m)4 L4
(57)

which is > 0 for all M , m, L, and g. With det R 6= 0, R is full rank and the system is

completely controllable.

A gain matrix K for the PD state feedback controller can be defined as:

K =

[
0 0 KP KD

]
. (58)

Then, the closed-loop state dynamics are described by:

~̇x =
(
A−B1K

)
~x+ B1Rθ + B2f. (59)

The term involving the second column of the input matrix, B2f , can be ignored when

disturbances are not being considered or studied.

Through finding the eigenvalues of
(
A−B1K

)
, the closed-loop poles of this control

system are:

λ1,2 = 0, λ3,4 =
3KD ±

√
9KD

2 + 48M2gL+ 60MmgL+ 48MLKP + 12m2gL+ 12mLKP

2 (4M +m)L
.

(60)

Due to the definition of the positive direction of the system states, both KP and KD must

be negative for the cart position closed-loop transfer function (48) to be marginally stable

and the pendulum angle closed-loop transfer function (49) to be stable. This can be seen

through inspection of (60) with M > 0, m > 0, L > 0, and g > 0, where the requirement

for stability is:

3KD +

√
9KD

2 + 48M2gL+ 60MmgL+ 48MLKP + 12m2gL+ 12mLKP < 0. (61)
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Any right-half-plane poles are purely real if they exist, and (61) can be simplified to show

that the closed-loop system is stable when:

KD < 0 and KP < − (M +m) g. (62)

Note that these requirements for stability do not depend on the pendulum center of mass

height L. There are a pair of complex conjugate poles when:

3KD
2 + 16M2gL+ 20MmgL+ 16MLKP + 4m2gL+ 4mLKP < 0. (63)

With the requirements on KD and KP from (62), (63) can be rearranged as:

KP < −
3KD

2 + 16M2gL+ 20MmgL+ 4m2gL

4 (4M +m)L
. (64)

The system is critically damped when KP is exactly equal to the right-hand side of (64).

Using the result from (64), Figure 48 shows the type of closed-loop poles that occur for

various PD controller gain pairs as a function of the mass ratio. For this and the following

plots, a value of M = 48 kg is used for the cart mass because that is the approximate

weight of a Segway i2 transporter, and riders with different masses are considered using an

illustrative value of L = 0.9 m. Figure 48(a) shows a 3D surface plot of the right-hand side

of (64) as a function of mass ratio and the controller gains. KP and KD gain pairs that

fall on this surface result in a critically damped system. Gain pairs above the surface result

in underdamped closed-loop poles, and gain pairs below the surface result in overdamped

poles. In general, the nonzero poles are underdamped for larger KP and smaller KD, while

overdamped poles occur with smaller KP and larger KD. The surface can be thought of as

the transition between underdamped and overdamped controller gain pairs.

Figure 48(b) shows the controller gain pairs that result in critically damped dynamics for

selected mass ratios. Again, controller gain pairs above the curves result in underdamped

poles while gain pairs below the curves result in overdamped poles. The interesting behavior

visible from this 2D view of Figure 48(a) are the intersection and crossover of the critically

damped transition curves for the various selected mass ratios. Higher mass ratios are more

likely to result in underdamped poles for large KP and overdamped poles for small KP .
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Figure 48: Closed-loop pole dynamic characteristics as functions of mass ratio and PD
controller gains (L = 0.9 m, M = 48 kg).

At larger KP values, higher mass ratios require a larger KD than smaller mass ratios for

overdamped poles.

Figure 49 includes lines showing the requirement on KP for stability for the selected

mass ratios based on (62). Small KP gains to the right of these lines result in unstable
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and the minimum KP gain for stability for selected mass ratios (L = 0.9 m, M = 48 kg).

closed-loop behavior. Therefore, the controller is conditionally stable depending on the

value of KP , with the minimum value for stability dependent on the system masses (and

g).

This analysis has shown that KP and KD must be negative for a stable closed-loop

system, and there can be underdamped poles for certain system and control parameter

values. With this understanding, and in light of the requirements for stability in (62), the

closed-loop transfer function for the cart position (48) has a similar form to other stable

open-loop backdrivable systems such as (3a). There are only two differences: the addition

of a damping term, and the zeros are along the real axis, including a non-minimum phase

zero. The combination of two poles at zero along with a possibility for underdamped

poles for certain parameter values is significant in that it suggests the dynamic behavior

can be similar to stable open-loop backdrivable systems, other than the non-minimum

phase behavior. This is an example showing how feedback control systems can introduce

backdriving dynamics, even in the absence of physical flexibility.
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This analysis has several implications for control of inverted-pendulum transporters.

First, the control system is conditionally stable, requiring large enough gains depending on

the transporter and rider masses. If the drive motors are unable to generate large enough

torques to replicate the commanded actuator effort for the higher gains, then the transporter

may lose the ability to effectively balance itself and the rider. Also, the stability and closed-

loop behavior depends on the rider mass, so inverted-pendulum transporters often state

values for maximum rider weights. For example, the Segway i2 manual states a maximum

rider weight of 117 kg (260 lbs) [88]. Assuming the transporter does not adapt its controller

gains based on measuring the rider weight and the gains are fixed, the gain pair could

be such that the controller has overdamped behavior for some riders and underdamped

behavior for others. When the system is underdamped, backdriving behavior can occur. It

would be more effective for an inverted-pendulum transporter to use gain scheduling based

on measured rider mass to keep the closed-loop dynamics the same or similar for every

rider regardless of their mass. For example, pressure sensors on the base could be used to

estimate rider weight when the rider first steps on the transporter, and the controller could

adjust the gains accordingly to maintain the desired closed-loop dynamics.

Due to the use of state feedback, the controller also requires a precompensation gain

to have unity steady-state gain in response to a reference pendulum angle command. The

value of the required precompensation gain Kss can be calculated as:

Kss =
1

GCL2(0)
= KP + (M +m) g (65)

where GCL2(0) is the steady-state gain of (49). Note that for stable KP according to (62),

Kss is strictly negative. The expression for Kss in (65) also implies that the closed-loop

steady-state gain changes with rider mass. Practically, this is not a significant problem

because the nature of an inverted-pendulum transporter and this controller design require

the rider to act as an outer-loop position or velocity controller, and the rider could adjust

their lean commands accordingly. However, it is another example where gain scheduling

based on rider mass could be used to update Kss in addition to KP and KD, providing

more consistent behavior for different riders.
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As an example of the controller performance and these issues, consider the system

response with L = 0.9 m, M = 48 kg, KP = -2,000, KD = -100 for two different rider

masses m = 60 kg and 80 kg. The reference command is a bang-bang rider lean command

with amplitude of 5 degrees. This is meant to model the rider leaning forward 5 degrees

for a period of time to move forward, then leaning back to stop. For this example, the

precompensation gain is calculated using (65) with m = 80 kg. The cart position and

pendulum angle responses for both masses are shown in Figure 50. The reference rider

lean command is also shown. For both of these rider masses and this set of controller

gains, the closed-loop dynamics are underdamped, and pendulum angle oscillation and cart

backdriving occur. Larger angle oscillation and cart backdriving amplitudes occur with

the larger rider mass. However, the larger rider mass results in slightly more closed-loop

damping (a damping ratio of 0.203 for m = 80 kg compared to 0.188 for m = 60 kg). Also,

the total distance traveled is different using the same reference rider lean command due to

the fact that the closed-loop steady-state gain changes with rider mass.

Numerous scenarios encountered in the real world can cause an inverted-pendulum trans-

porter to fail to apply the forces or torques needed to balance the device and rider. These
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Figure 50: Response of closed-loop Cart with Inverted Pendulum controller to a
bang-bang reference pendulum angle command for m = 60 kg and 80 kg (with L = 0.9 m,

M = 48 kg, KP = -2,000, and KD = -100).
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include exceeding the actuator limits due to backdriving pitch oscillation such as occurred

in the example shown in Figure 3, loss of traction, one wheel leaving the ground due to roll

instability, and striking obstacles/bumps/potholes. Appendix A details the many dynamic

hazards of inverted-pendulum transporters. Due to the hazards that arise when attempting

to transport people with these devices, attempting to use the feedback controller presented

in this section for balancing a person is not recommended. The purpose of this section was

merely to illustrate how backdriving dynamics can arise from a feedback control system,

and the Cart with Inverted Pendulum model is fundamentally effective at illustrating this

behavior. The analysis in this section is also useful for explaining some of the dynamic

behavior of inverted-pendulum transporters.

4.3 Combined Input-Shaping and Feedback Control

4.3.1 Overview and Previous Research

Control architectures consisting of a combination of input shaping and feedback control have

been studied previously. Many previous methods first calculate the controller gains, and

then subsequently design the input shaper based on the closed-loop system flexible mode(s).

Xianren and Zhengxian [131] and Mar et al. [58] designed combined input-shaping and PD

control systems for a flexible spacecraft and a double-pendulum crane, respectively. In both

cases, the design was done sequentially – the PD controller was designed based on system

requirements, and then the input shaper was determined based on the closed-loop dynamics.

Magee and Book [57] used input shaping inside a joint angle feedback loop to reduce the

base motion of a flexible micro/macro robotic manipulater. Cannon et al. [14] investigated

the combination of inertial damping and outside-the-loop command filtering with a joint

PD controller for the same flexible micro/macro robotic manipulater. The micro/macro

robot structure has some coupling similarities to backdrivable flexible systems, in the sense

that the micro manipulator can excite and be used to cancel vibration in the macro robot

structure. In both [57] and [14], the input shaping and feedback controllers were designed

separately.

Greater performance may be achieved if the input shaper and controller are design
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concurrently rather than sequentially. For example, Kenison and Singhose [52] studied the

combination of input shaping and PD position control for an inertia plant. The input shaper

impulse sequence and PD gains were chosen with an optimization routine that included step

response constraints on percent overshoot, residual vibration, and controller effort. Huey

and Singhose [44] extended this work with a different optimization approach and compared

the concurrent design methods with sequentially designed-controllers. Banerjee et al. [7]

used optimization to concurrently design a combined input-shaping and PID controller for

a flexible spacecraft. However, flexible coupling or backdriving effects between the rigid

body and flexible arms were not included in the model, and the method required solving

the system differential equations for each parameter set considered by the optimization

routine. Fujioka and Singhose [30, 31] studied the combination of input shaping and model

reference control for a double-pendulum crane where the two techniques work together to

yield improved state tracking, oscillation suppression, and control effort reduction. Also,

Schmidt et al. [87] developed a combination of linear-quadratic regulator feedback control

with input shaping to achieve crane payload tracking control for an autonomous surface

vehicle pick-up operation. Their controller uses switching logic based on the retrieval stage

and system state to combine the input shaper with the feedback loop.

Another controller architecture that has been studied has input shaping inside the feed-

back loop. This is sometimes known as closed-loop signal shaping [43, 45]. While this

method has advantages such as rejection of sensor noise due to the shaping filter [45], sta-

bility concerns that arise due to the time delay introduced to the feedback loop by the

shaping process must be addressed [43]. For this reason, closed-loop input shaping will not

be the focus in this thesis.

The concurrent design of combined input-shaping and PD control studied by Kenison

and Singhose [52] investigated the controller stability in the presence of unmodeled modes.

While the analysis used a system model similar to the fundamental structure of backdrivable

flexible systems, the flexible mode was not accounted for during the controller design and

optimization process.
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Figure 51: Block diagram of combined input-shaping and PD control for backdrivable
flexible systems.

This section presents a concurrently-designed input shaping and PD controller for back-

drivable flexible systems. This controller structure is represented with the block diagram

shown in Figure 51. Advantages of this approach include not requiring sensors or an esti-

mator for the flexible states. The controller only utilizes measurements of the rigid states,

which are assumed to be readily available in most applications. Optimization is used to

solve for the input shaper impulse sequence amplitudes and times and PD gains that mini-

mize the time of the final impulse. The presence of an input shaper allows the PD controller

to provide a more aggressive rise time or error regulation without the associated increases

in overshoot and settling time. The goal is to illustrate improved response performance of

the rigid element while also reducing residual vibration of the flexible mode.

The Rotary Hub with Flexible Arm model will be utilized here to demonstration the

design process and performance of combined input-shaping and PD control for backdrivable

flexible systems. The closed-loop feedback controller for this system was developed and

some of its key characteristics were presented in Section 4.2.1. Understanding of the closed-

loop behavior, in particular the modal characteristics, is critical to designing the combined

controller.

4.3.2 Sequential Design Example

A sequentially designed controller and input shaper is presented in this section. The feed-

back controller for the Rotary Hub with Flexible Arm model is used as the demonstration

system. As with Section 4.2.1, the following parameter values are used with the closed-loop

system (72), and (74) for the rest of this section: m1 = 5,000 kg, L1 = 1 m, m2 = 100 kg,

L2 = 5 m, and k = 5, 000 N-m/rad.

Suppose that the sample closed-loop response shown previously in Figure 45 sufficiently
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satisfies all performance requirements should the damped residual oscillation of the arm be

suppressed. To achieve this, an input shaper may be included with the controller. The

input shaper should be designed using the closed-loop natural frequency and damping ratio

for this controller gain pair (1.3 rad/s and 0.3, respectively). A ZV shaper that suppresses

this vibration can be designed using (40), yielding the following impulse sequence:



Ai

ti


 =




0.732 0.268

0 2.53 s


 . (66)

Including this input shaper with the controller improves the response by removing the

damped residual vibration of the arm. This can be seen in Figure 52, where the original

unshaped response with the feedback controller only is compared to the response obtained

by including the shaper in (66) with the control system. The 2% settling time of the arm

is improved from 10.3 s to 2.96 s, and the peak amplitude of the hub response is reduced

from -0.31 deg to -0.22 deg.

This sequential design process could be performed again by updating the controller gains,

then redesigning an input shaper that suppresses vibration of the closed-loop underdamped
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mode(s). It can be repeated until further performance improvements are obtained or to sat-

isfy other requirements for the response characteristics. Suitable performance for a given

application could be obtained through such trial-and-error tuning of the controller gains

followed by updating of the input shaper based on the closed-loop underdamped modes.

However, the closed-loop dynamics of backdrivable flexible systems are complicated, and

Section 4.2.1 demonstrated that some traditional characteristics and behaviors of PD con-

trollers do not apply to backdrivable systems. This can make traditional trial-and-error

controller tuning tedious and inefficient.

4.3.3 Concurrent Design Through Optimization

As discussed in Section 4.3.1, a more sophisticated approach than sequential design is to

select the input shaper and PD controller parameters concurrently through an optimization

routine with constraints on overshoot, residual vibration, and control effort. However, the

transition points between the two closed-loop mode cases (two pairs of complex poles vs.

one pair of complex poles and two real poles) illustrated in Figures 39-44 make optimization

challenging.

The optimization method presented in the section seeks to simultaneously solve for im-

pulse amplitudes and times of the input shaper and the PD controller gains. This achieves

the objective of concurrently designing both components of the controller for the backdriv-

able flexible system.

4.3.3.1 Optimization Objective Function and Constraints

This section describes the optimization objective function and constraints. While many of

the traditional input shaping constraints are required, some additional constraints on the

rigid body motion/state are included to improve the overall performance of the system.

The constraints on the rigid body state are similar to those used by Kenison and Singhose

[52] when designing the concurrent input shaping and PD controller for an inertia plant.

The optimization seeks to solve for the following vector of control parameters:

~z =

[
KP KD A1 ... Ai ... An t1 ... ti ... tn

]T
, i = 1, . . . , n (67)
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subject to the objective function and constraints described in this section. A1 through An

and t1 through tn are the input shaper impulse amplitudes and times, respectively, and n

is the total number of impulses in the input shaper. Therefore, the size of the vector ~z is

(2n+ 2)× 1.

Input shapers may be designed using different combinations of performance require-

ments. For example, one set of constraints consists of requiring zero residual vibration at

the time of the last impulse and restricting the steps to be positive. The residual vibra-

tion resulting from a sequence of impulses divided by the vibration resulting from a single,

unity-magnitude impulse is given by [92]:

V = e−ζωntn

√√√√
[

n∑

i=1

Aie
ζωnti cos

(
ωn
√

1− ζ2ti
)]2

+

[
n∑

i=1

Aie
ζωnti sin

(
ωn
√

1− ζ2ti
)]2

(68)

where ωn and ζ are the natural frequency and damping ratio of the flexible mode. When V

is set to zero, (68) results in a zero residual vibration constraint. For the combined input-

shaping and PD controller for backdrivable flexible systems, the natural frequency and

damping ratio of the closed-loop system depend on the controller gains. The constraints to

require positive impulses that sum to 1 are:

0 < Ai < 1, i = 1, . . . , n,

A1 +A2 + · · ·+An = 1.

(69)

Due to the transcendental nature of (68), there are multiple solutions that yield zero

residual vibration. There is often a desire to make the solution time optimal subject to

the zero residual vibration and amplitude constraints, and in this case the input shaper

duration must be as short as possible. The time optimality objective function is:

min(tn). (70)

Also, a constraint of t1 ≡ 0 is used to assist with (70).

By seeking a solution with two steps (n = 2), assuming an undamped flexible mode,

and solving the above optimization problem (68)-(70), the ZV shaper described by (39)-(41)

is obtained. Input shapers that are robust to uncertainty or error in the modeled natural
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frequency may also be designed. One such input shaper is the Zero Vibration and Derivative

(ZVD) shaper, which adds a constraint requiring that the derivative of (68) equal zero at

the design natural frequency [92]. However, robust input shapers will not be considered

here, and a two-impulse shaper is designed for combination with the PD feedback controller

for backdrivable flexible systems.

To also improve performance of the rigid body mode, additional constraints are required.

Three additional constraints based on step response characteristics are included to optimize

the combined controller. The first constraint limits the peak overshoot of the rigid body

state to below a specified level Mp,tol:

Mp,x ≤Mp,tol (71)

where Mp,x is the overshoot of the rigid body state in response to step controller input. For

Rotary Hub with Flexible Arm, this corresponds to the peak hub amplitude following an

arm angle step command.

The second response characteristic constraint is the settling time of the flexible mode

state, in this case the arm angle. It is desirable to have the arm angle within the 2% settling

envelope at the same time as or before the time of the final impulse. This constraint can

be written as:

ts,θ ≤ tn (72)

where ts,θ is the settling time of the flexible mode state. This constraint is important and

necessary because the two-impulse shaper can only suppress the vibration from a single

mode1, and it is possible for the closed-loop system to have two underdamped modes as

shown in Section 4.2.1. Because the optimization is looking for a solution that satisfies (70),

this constraint also has a secondary effect of producing a fast settling time.

The third and final response characteristic constraint is a limit on the maximum control

effort. From Figure 36, the control effort is the hub torque T . With Rθ1 = 0, the hub torque

1The second mode can also be suppressed by chance if it happens to have a similar frequency and damping
ratio as the first mode, or if the second mode frequency is an odd multiple of the first mode frequency.
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is the output of the PD controller:

T (t) = −KP θ1(t)−KDθ̇1(t). (73)

The constraint can then be written as:

max (|T (t)|) ≤ Umax (74)

where Umax is the maximum allowable control torque. A constraint of this form can be

necessary to prevent actuator saturation.

The step response constraints in (71), (72), and (74) are evaluated by finding the shaped

step response of the linear closed-loop system (44) and (45), where a one degree step com-

mand is shaped using the input shaper defined in the solution vector. This is repeated for

each update to the solution vector during the optimization routine.

4.3.3.2 Optimization Results

The optimization problem in Section 4.3.3.1 can be solved using a nonlinear optimization

routine to find the two-impulse input shaper and controller gains that satisfy the constraints.

However, the transition between the two closed-loop mode cases (two pairs of complex poles

vs. one pair of complex poles and two real poles) at various combinations of control gains

make the optimization sensitive to the initial guess.

It is possible for the initial guess and/or potential solutions found by the optimization

to fail to satisfy all of the constraints. Such infeasible solutions are much more likely to

cause the optimization to fail with stricter constraint values. To address this, a multi-level

optimization approach is utilized [80, 81]. A solution is first sought with relatively relaxed

constraints. Once a solution is found, the constraints are reduced by a small amount and

the optimization is solved again using the previous solution as the initial guess. The system

parameters and initial constraint values used are listed in Table 3.

For the Rotary Hub with Flexible Arm model, the most challenging constraint is the

peak hub amplitude constraint (71). Due to conservation of angular momentum, the hub

always moves in response to arm motion. It is up to the controller to correct this, and

any solution found must not violate the control effort constraint (74). Therefore, a relaxed

93



Table 3: System parameters and optimization constraints.

Parameter Value

m1 5,000 kg

L1 1 m

m2 100 kg

L1 5 m

k 1 N-m/rad

Umax 75 N-m

Mp,tol 0.1 deg

value of Mp,tol = 0.1 deg is used for the initial iteration. This value is then reduced until

the optimization cannot find a solution.

With input shaping, the settling time and overshoot constraints can be satisfied even

with lower closed-loop damping ratios. In fact, the combined controller can perform better in

these cases, particularly when the other mode is overdamped. The modal results illustrated

in Figures 43 and 44 show that one underdamped mode with a low damping ratio occurs

at higher KD and for relatively lower KP . Therefore, an initial guess of KP = 7,000 and

KD = 18,000 is used. The closed-loop frequency and damping ratio for these gains are used

to calculate a ZV shaper using (40) to serve as the initial guesses for the shaper amplitudes

and times. Table 4 summarizes the parameters used for the initial guess.

The optimization is solved, yielding a solution that satisfies the constraints. Then, the

value of the hub amplitude constraint Mp,tol is reduced a small amount, and the optimization

is solved again. The results from each iteration of this process are shown in Table 5. The

multi-level optimization approach allows for the hub amplitude to be steadily reduced while

also satisfying the baseline optimization constraints. For each solution, the arm 2% settling

Table 4: Initial solution guess for first iteration of multi-level optimization (iteration 0).

Parameter Value

KP 7,000

KD 18,000

A1 0.62

A2 0.38

t1 0

t2 2.67 s
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time is less than the shaper duration tn, satisfying (72). The control effort is less than 75

N-m, satisfying (74). The optimization was not able to find a solution that satisfied the

constraints on the 12th iteration. By then, the hub amplitude constraint had been reduced

to 0.03 deg. The solution found on the previous iteration is accepted instead, resulting in

a peak hub amplitude of 0.035 deg.

The evolution of selected parameters over each iteration are plotted in Figure 53, where

(a) shows the updates to the hub amplitude constraint as it is reduced following each

iteration, and (b) and (c) show the PD controller gains and input shaper impulse amplitude

solutions, respectively, from each iteration. Note that the initial guess (iteration 0) does

not satisfy the hub amplitude constraint, but this does not prevent the first iteration of the

optimization from finding a solution. With a relaxed value of the hub amplitude constraint

enforced by the multi-level approach, the first iteration has many feasible solutions to search

in the solution space nearby to the initial guess.

Examining the solution from each iteration reveals other interesting results. To achieve

the smaller peak hub amplitudes, the PD gains had to be increased as shown in Figure 53(b).

The modal analysis results in Figures 39-44 showed that higher KD gains result in lower

damping ratios. The lower closed-loop damping ratio can then be handled by the input

shaper. This is reflected in the input shapers found for the later iterations, where the

shaper becomes more and more symmetric with the impulse amplitudes becoming closer in

value as shown in Figure 53(c). Also, increasing KD allowed for KP to increase as well while

keeping only a single underdamped mode for the input shaper to suppress. The higher KP

and KD together then allowed for the controller to respond more quickly to the hub angle

error, resulting in the decreasing peak hub amplitude possible with each iteration.

Note that the maximum control effort listed in the final column of Table 5 changes very

little through each iteration. Even though the gains increase as the peak hub amplitude is

reduced as shown in Figure 53(a) and Figure 53(b), the maximum control effort actually

drops slightly. This occurs because the higher gains allow the controller to respond more

quickly before the hub angle error grows larger. The smaller hub angle error balances out

the larger gain values in (73). Another way to view this is that the 1 deg arm command
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Figure 53: Multi-level optimization iteration results for selected parameters.
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causes a certain amount of momentum transfer to hub, and approximately 53 N-m of peak

torque is required to correct the hub angle back to the zero reference with the system inertias

used.

Figure 54 shows the time response and control effort using the input shaper and control

gains found in the 1st iteration. The time response using no shaper but the same controller

gains is also shown for comparison purposes. The shaped hub and arm responses shown
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Figure 54: Time response and control effort using the results from the solution of the 1st

iteration.
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in Figure 54(a) satisfy the response constraints listed in Table 3. Also, the control effort

shown in Figure 54(b) is greatly reduced from the unshaped case, and its maximum value

satisfies (74).

Figure 55 shows the time response and control effort using the input shaper and control

gains found in the final successful iteration. Again, the time response using no shaper but

the same controller gains is also shown for comparison purposes.
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Figure 55: Time response and control effort using the results from the solution of the
final successful iteration.
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Figure 56 compares the results from the first and final iterations. Figure 56(a) shows that

the iteration process has allowed the optimization to find a controller and input shaper that

results in a peak hub amplitude that is 65% less than the solution from the initial iteration.

Also, the arm angle settles more quickly using the solution from the final iteration. However,

the arm has a slightly longer rise time because the amplitude of the first impulse is less for

the final iteration solution. The peak hub amplitude is significantly reduced compared to
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Figure 56: Comparison of the time responses and control effort using the solutions of the
first and final successful iterations.
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Table 6: Combined input-shaping and PD controller solution found from the final
successful iteration of the concurrent design optimization.

Parameter Value

KP 30,869

KD 44,964

A1 0.54

A2 0.46

t1 0

t2 2.635 s

the first iteration due to the significantly higher gain values. Yet, Figure 56(b) shows that

there is no significant increase in the required control effort for the reasons explained above.

The PD gains and input shaper from the final successful iteration are listed in Table 6.

4.3.3.3 Comparison Between Results from Sequential and Concurrent Designs

An important outcome of the concurrent design optimization process is that it yields an in-

put shaper and controller gains that are substantially different from those obtained through

a sequential design process without requiring any tedious gain tuning. In addition, the

multi-level optimization approach yields results that satisfy constraints on the hub back-

driving response. Figure 57(a) compares the results from the concurrent design to those

from the sequential design that were previously shown in Figure 52. The response with the

concurrently designed controller has a peak hub amplitude that is 84% less than that of

the sequentially designed controller. By choosing to solve for a two-impulse input shaper,

the optimization approach favors a solution where the closed-loop dynamics have a single

underdamped mode. Coupled with the constraint to have an arm angle settling time that

is at least as fast as the time of the final input shaper impulse, the optimization yields an

arm angle 2% settling time of 2.30 seconds for the concurrently designed controller com-

pared to 2.96 seconds for the sequentially designed controller. Figure 57(b) also shows a

comparison between the hub control effort required for both controllers. Both controllers

require a similar maximum control effort, with the concurrent design control effort rising

and returning to zero more quickly due to the higher gains.
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Figure 57: Time response and control effort comparison between the results from the
sequential and concurrent controller designs.

4.4 Summary

This chapter presented control techniques for backdrivable flexible systems. Input shaping

was shown to be an effective technique because it cancels the vibration or oscillation caused

by the flexible mode, preventing backdriving effects proactively. Also, PD controllers were

designed for the Rotary Hub with Flexible Arm and Cart with Inverted Pendulum models.

Analysis of the controller for the latter model showed how backdriving dynamics could
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arise from feedback control. Also, the PD controller for the Rotary Hub with Flexible Arm

was combined with input shaping. Using optimization and a concurrent design process, a

combined input-shaping and PD controller was developed that reduces the maximum hub

amplitude error caused by backdriving effects, slews the flexible arm with little residual

vibration and fast settling time, and satisfies a control effort constraint. The concurrent

design process yields a combined input-shaping and PD controller that is substantially

different from controllers that may be obtained with a typical sequential design.
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CHAPTER V

CONTROL OF BACKDRIVABLE SYSTEMS WITH DISCRETE

ACTUATORS

In this chapter, input-shaped stepping sequences are developed. These input-shaped step-

ping sequences address challenges of discretized amplitude to be compatible with stepper

motors, and robustness to modeling error in the fundamental flexible mode. While dis-

cretization and robustness are challenges that have been addressed before when designing

input shapers [65, 80, 82, 111], most previous approaches have not directly considered cases

where all shaper amplitudes must be positive and constant, or applied input shaping tech-

niques to designing stepper motor stepping sequences. Also, the step sequences can be

configured to reduce backdriving effects on the rigid body motion by giving a feedback

controller more time to regulate the error while still eliminating residual vibration.

Some current techniques for stepper motors on spacecraft use vibration-limiting stepping

profiles [10, 51, 76], however they are not very robust to modeling error or uncertainty in

the natural frequencies of vibration of the appendages. Other input shaping techniques

considered for stepper motors are applicable to larger slewing distances, and shape the

stepping rate or break the maneuver into slewing pulses devised with duration proportional

shaper impulse amplitudes [26]. The methods discussed here meant for shorter-distance

slewing of stepper motors and are also compatible with other types of on-off actuators, such

as relays and thrusters.

5.1 Constant-Amplitude Input Shaping for Stepper Motors

5.1.1 Input-Shaped Step Sequences

As discussed in Chapter IV, input shaping is a command-filtering method that limits un-

wanted vibration [92, 109, 110]. While traditional input-shaping techniques were developed

using series of impulses, input-shaped commands may also be constructed from a series of

steps, such as the output from stepper motors. An example of this step-shaping is shown in
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Figure 58: Creating an input-shaped step sequence by combining two step commands.

Figure 58. In the top plot, the Step 1 command is applied to a flexible linear system, and

the system vibrates in response. A similar result would occur should the Step 2 command

be issued a short time later. The bottom of Figure 58 shows the response that would result

if the command was the sum of Steps 1 and 2. The system is assumed to be linear and

time-invariant, so by superposition the responses to Steps 1 and 2 combine linearly, and the

residual vibration is eliminated. The step sequence can be considered an input-shaped step

sequence in the sense that it results in zero residual vibration.

Input-shaped step sequences may consist of more than two steps. In the time domain,

a generic step sequence with i steps may be represented as:

IS(t) = A1h(t− t1) +A2h(t− t2) + · · ·+ANh(t− tN ), (75)
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where Ai are the step amplitudes, ti are the time locations of each step, N is the number

of steps, and h(t) is the Heaviside function representing a unity-magnitude step command

beginning at t = 0. Without loss of generality, the first step time is chosen as t1 ≡ 0. The

amplitudes and times of the steps may be written in matrix form as follows:



Ai

ti


 =



A1 . . . Ai . . . AN

t1 . . . ti . . . tN


 . (76)

The step amplitudes and time locations are designed using estimated natural frequencies

and damping ratios of the flexible modes to be suppressed. Input shapers can be made

robust to errors and changes in these parameters [92, 97, 100, 96, 125, 105]. Even in the

face of such modeling errors, input-shaped step sequences that utilize solely positive steps

never excite more vibration than would be caused by not using input shaping.

5.1.2 Design Constraints and Performance Requirements

Input-shaped step sequences use many of the same design constraints as typical input

shapers stated in Section 4.3.3.1. For example, the residual vibration given by (68) can

be constrained to zero or less than some tolerable level.

For stepper motors, the times of each step correspond to when a single step of the

motor should be taken. Each step taken by a stepper motor has the same amplitude, so

each amplitude in an input-shaped step sequence must be equal. For the purposes of input

shaper design, each amplitude can be set equal to 1, and (68) can be normalized by the

number of steps in the sequence. When the desired amount of stepping equals N steps, the

amplitude constraint can be written as

Ai = 1, i = 1, . . . , N. (77)

The amplitudes of the N steps then sum to the number of steps in the sequence. Equation

(68) may still be applied by normalizing by the number of steps. After normalization, the

residual vibration predicted by (68) corresponds to the amount of vibration caused by the

step sequence, divided by the amount of vibration that would be caused by taking all of

the steps at the same time. As a result of this design approach, the resulting input-shaped
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step times may be used with any stepper motor regardless of its step size. Each time in the

sequence corresponds to when the stepper motor should take a single step.

A ZV-shaped step sequence can be formed by converting the impulses in (39) to steps.

The step sequence is:

ZV(t) = h(t) + h(t− t2), (78)

For an undamped flexible mode, the ZV shaper step sequence amplitudes and times are

[109]: 

Ai

ti


 =




1 1

0 Tn
2


 , (79)

where Tn is the vibration or oscillation period. This is the sequence of steps used in Figure 58

to create a command that results in zero residual vibration for a flexible system with a period

of Tn = 1. The undamped ZV shaper given by (79) is a 2-Step input-shaped stepping

sequence for stepper motors, where the stepping times for this sequence are:

[
ti

]
=

[
0 Tn

2

]
. (80)

In actual implementation, these stepping times are rounded to the nearest stepping

period of the stepper motors. This rounding can slightly degrade the vibration-canceling

properties of the input-shaped command, as the rounded stepping times are no longer the

exact ZV input-shaping times.

5.1.3 Vector Diagram Design Approach

Another approach to designing input shapers uses vector diagrams [100]. Each step in the

input-shaped step sequence is represented by a vector on the vector diagram. The amplitude

of each vector equals the magnitude of the corresponding step. The angle of each vector is

determined by the step time, φi = ωnti. The magnitude of the vector sum of these vectors

is proportional to the residual vibration that would result from applying the step sequence

to a flexible system with natural frequency ωn. Figure 59 shows the vector diagram for a

generic two-step sequence. The first step has magnitude A1 and zero angle, and the second

step has magnitude A2 and angle ωnt2. The vector sum of the two vectors representing
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the steps is shown in the figure as
∑ ~A. The magnitude of this vector equals the residual

vibration caused by this two-step sequence for a flexible mode with natural frequency ωn.

When t2 = π
ωn

, the input shaper is a 2-Step (Undamped ZV) shaper. Figure 60 shows

the vector diagram for this input shaper. Note that the vector magnitudes are equal to A

here because the 2-Step shaper can be applied to step sequences with any arbitrary step

size, as long as the size of both steps are the same. The vector sum of these two vectors

is the zero vector. Therefore, this step sequence will result in zero residual vibration for a

flexible mode with natural frequency ωn.

5.1.4 Robust Stepping Sequence Design Using Vector Diagrams

An input-shaped stepping sequence that is more robust to frequency modeling error may

be designed by including additional steps in the sequence. One such sequence consists of

four steps given by:



Ai

ti


 =




1
4

1
4

1
4

1
4

0 Tn
2

3Tn
2 2Tn


 . (81)

This step sequence is suitable for implementing with discrete actuators because the

amplitudes are equal. To implement this step sequence using stepper motors, the stepping

A1

A2
ωnt2 ΣA

Figure 59: Example vector diagram for a two-step impulse sequence.
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A
A

ωnt2 =π ΣA=0

Figure 60: Vector diagram for a 2-Step (undamped ZV) input shaper.

A
ωnt2 =π

ΣA=0

AA
ωnt3 =3π ωnt4 =4π

A

Figure 61: Vector diagram for a 4-Step impulse sequence.

times are: [
ti

]
=

[
0 Tn

2
3Tn
2 2Tn

]
. (82)

Note that in actual implementation these stepping times must be rounded to the stepper

motor’s stepping period.

The fact that this step sequence suppresses vibration with period Tn can be seen using

a vector diagram analysis (with ωn = 2π
Tn

), assuming unrounded stepping times. The vector

diagram for the step sequence given by (82) is shown in Figure 61. Note that the vector

magnitudes are equal to A here because the 4-Step shaper can be used as stepping sequences

for a stepper motor with any step size.
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Figure 62: 4-step vibration cancellation when there is a frequency error of 5%.

The effectiveness of this stepping sequence at limiting vibration introduced by natural

frequency modeling error is demonstrated in Figure 62 for a 5% frequency modeling error.

In the top plot, a 2-Step command is applied to a flexible linear system. Due to the 5%

frequency error, the vibration is not completely eliminated following the 2-Step command.

A similar result would occur should an identical 2-Step command, representing steps 3 and

4 of the 4-Step sequence, be issued a short time later. The bottom of Figure 62 shows the

response that would result if the command was the sum of both 2-Step commands. The

responses to the two commands combine, and the residual vibration caused by the command

is less than what would be caused by either of the individual 2-Step commands on their

own.
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Figure 63: Comparison between sensitivity curves for 2-Step and 4-Step shaping
sequences.

As is demonstrated in the time responses shown in Figure 62, the stepping sequence

given by (82) provides additional robustness over the 2-Step sequence. Figure 63 shows

sensitivity curves for the 2-Step and 4-Step sequences. Sensitivity curves are traditionally

used to illustrate input shapers’ robustness to error in the flexible mode natural frequency.

The sensitivity curve plots the residual vibration (as a percentage of the vibration caused by

a step command with magnitude equal to the total number of steps) given by (68) versus

the actual frequency of the flexible mode. The 4-Step sensitivity curve is wider around

the modeled frequency, ω
ωn

= 1. Note that these robustness predictions are theoretical in

nature - effects such as nonlinearities and gyroscopic effects in spacecraft motions are not

accounted for in (68), which is used to plot sensitivity curves.

The step sequence described by (82) is equivalent to convolving together two ZV input

shapers, one with duration Tn/2 and the other with duration τTn/2, where τ = 3. Figure 64

shows the convolution process between two generic ZV shapers. The two shapers ZV1 and

ZV2 shown have durations T1 and T2, respectively, and the shaper impulses have constant

amplitude A. This convolution yields step sequence times of:

[
ti

]
=

[
0 T1 T2 T1 + T2

]
. (83)
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Figure 64: Convolution between two ZV shapers with constant amplitude impulses.

Letting T1 = Tn/2 and T2 = τTn/2, the first ZV shaper targets the natural frequency

through Tn while the parameter τ acts like a normalized period, or duration, for the second

ZV shaper. These definitions may be used to re-parameterize the convolved ZV-ZV sequence

given by (83) as: [
ti

]
=

[
0 Tn

2 τ Tn2 (τ + 1)Tn2

]
. (84)

The value of τ can be varied to obtain an infinite number of 4-Step sequences with different

durations and robustness characteristics. This allows the designer to select the overall

duration of the shaper while still targeting a specific frequency for cancellation based on

Tn. Note that letting τ = 3 recovers (82).

Solutions with τ < 3 have a shorter duration than the 4-Step sequence given in (82). In

most cases, it is advantageous for the shaped sequence to be as short as possible, while still

satisfying the robustness requirements. However, there are cases where the steps need to

be further separated in time. This can be the case when slewing a flexible appendage on a

spacecraft. Appendage slewing backdrives the main body of the spacecraft due to angular

momentum conservation, causing a rigid body pointing error which must be corrected by

the spacecraft attitude control system. By keeping the steps further separated, the attitude

control system has time to correct the rigid body pointing error before the next step is

taken. This is a case where the minimum time requirement of (70) is not as significant

as other design requirements. The application of the input-shaped stepping sequences for

slewing the flexible appendages of spacecraft is discussed further in Chapter VI. The input-

shaped step sequences will be shown to reduce backdrivability by limiting vibration and

allowing the attitude control system to more effectively correct the pointing error resulting

from angular momentum conservation.
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5.1.5 Robustness Study

One way of analyzing the robustness of a shaping sequence is the 5% insensitivity. This is

defined as the frequency range containing the design frequency where the residual vibration

is suppressed below 5% of the unshaped value. The 5% insensitivity for the 4-Step sequence

in (84) for an undamped system as a function of τ is shown in Figure 65. Using τ = 3 such

as in (82) gives a 5% insensitivity of 0.167, while τ = 1 is equivalent to a ZVD shaper.

The solutions that correspond to local maxima around these values, such as at τ =

0.753, correspond to Extra-Insensitive (EI)-style shaping sequences. EI shapers have larger

insensitivities to a specified amount of tolerable residual vibration Vtol, such as 5% [100, 104].

An example sensitivity curve for an EI input shaper is shown in Figure 66, along with the

sensitivity curve for the 4-Step sequence with τ = 0.753. The 5% insensitivities of the

two shapers are labeled. While the 4-Step sequence has a wider insensitivity (0.47) than

the standard undamped EI shaper for Vtol = 5% (0.40), the 4-Step sequence insensitivity

range is not centered at the design frequency, as is the case for the standard EI shaper.

However, this 4-Step sequence is 12.4% faster than the standard EI shaper. It also retains

the advantage of being compatible with stepper motors because each impulse or step is kept

equal. This trade-off comes at the cost of the off-centered insensitivity range. However, this
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Figure 65: 4-Step sequence 5% insensitivity vs. normalized period for an undamped
system.
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Figure 66: Sensitivity curve comparison for a standard undamped EI input shaper and
an EI-style 4-Step sequence.

result can be advantageous if the designer has additional a priori information suggesting

that the frequency is more likely to increase from the design value, such as from fuel burn-off

or changing configurations of a robotic arm or spacecraft appendage.

Also, this result implies the shaper duration is selectable through the τ parameter. The

step sequence timing can be configured to work together with a feedback controller to reduce

backdrivability, assuming some loss of insensitivity is acceptable.

In cases where additional frequency modeling error bias may occur, these 4-Step se-

quences provide designers with options for accounting for this behavior. The example of an

increase in frequency was discussed above, and there also may be design scenarios where

the frequency may be more likely to decrease. The normalized frequency values where the

sensitivity curve crosses the 5% residual vibration values, or the upper and lower boundaries

of the 5% insensitivity range, as a function of the normalized period are shown in Figure 67.

This is another useful way of representing the insensitivity values shown in Figure 65. How-

ever, this variation gives the designer insight into which choice of normalized period gives

a 4-Step sequence most suitable for a predicted frequency modeling error range.

The shaped stepping sequence given by (84) can be further generalized as convolution of

two ZV shapers. The convolution of two generic constant-amplitude ZV shapers was shown
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Figure 67: Upper and lower frequency values for the 5% insensitivity range for 4-Step
sequences as a function of the normalized period.

in Figure 64. Introducing two normalized shaper duration parameters τ1 and τ2, the shaper

durations can be defined as:

T1 = τ1
Tn
2

(85a)

T2 = τ2
Tn
2

(85b)

This defines the shaper durations as proportional to Tn/2 through the τ1 and τ2 parameters.

Substituting the shaper durations (85a) and (85b) into (83) yields stepping sequence times

of: [
ti

]
=

[
0 τ1

Tn
2 τ2

Tn
2 (τ1 + τ2)

Tn
2

]
. (86)

When neither τ1 and τ2 are odd integers, the ZV shapers will not specifically target the

natural frequency. However, due to the wider shape of the convolved sensitivity curves, the

natural frequency may be included in the 5% insensitivity range for certain values of τ1 and

τ2. Letting τ1 = τ and τ2 = 1 yields the normalized sequence in (84).

Figure 68 shows the 5% insensitivity for the generalized 4-Step sequence in (86) for an

undamped system with period Tn as a function of the normalized shaper durations τ1 and

τ2. The insensitivity is zero when the frequency range with ≤ 5% residual vibration does

not include the natural frequency ωn, and these regions of zero insensitivity can be seen in
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Figure 68: 4-Step sequence 5% insensitivity vs. normalized shaper durations τ1 and τ2
for an undamped system with period Tn.

the plot. On the other hand, certain values of τ1 and τ2 yield 4-Step shapers with larger

insensitivity similar to Figure 65. These regions occur when τ1 or τ2 are approximately (but

not necessarily strictly equal to) an odd integer, and the insensitivity is highest when both

τ1 or τ2 are close to odd integers. The results shown in Figure 65 are captured here, and

can be obtained by slicing the surface along τ2 = 1 and letting τ1 = τ .

5.2 Residual Vibration of Constant-Amplitude Input Shapers Combined
with Underdamped PD Controllers

Choosing control gains for a constant-amplitude input shaper combined with a PD controller

requires a shift from traditional PD controller design methodology. A previous concurrent

design approach for a single mass system under input-shaped PD control used optimization

to pick the best combination of PD control gains and input shaper parameters subject to

constraints on overshoot and actuator effort [52]. However, in that paper, the amplitude of

the input shaper impulses were allowed to vary. When the additional constraint of constant
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amplitudes is introduced along with damping through the derivative gain, the residual

vibration generally cannot be completely eliminated.

To illustrate this, consider PD position control of a single mass. The closed-loop transfer

function is [52]:

X(s)

U(s)
=

KDs+KP

ms2 +KDs+KP
. (87)

Figure 69 shows the input-shaped step response of (87) for one set of system parameters,

where the input shaper is a 2-Step ZV shaper with constant amplitudes. The first step

begins to move the mass but results in some overshoot in the underdamped closed-loop

system. The second step has the correct amplitude to cancel undamped vibration caused

by the first step. However, the vibration has already begun to decay due to the damping

effect from the derivative gain. The second step cancels this vibration but also causes some

extra vibration that cannot be eliminated. Even the addition of more steps would have no

benefit due to the constant amplitude constraint. This effect of causing extra, noncancelable

vibration would continue with any additional steps.

The magnitude of this effect depends on the damping ratio, which in this case is a

function of the derivative gain relative to the mass and proportional gain. Figure 70 shows
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Figure 69: Step response of a mass under PD control with a constant amplitude ZV
shaper (m = 1, KP = 1, KD = 0.5).
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(for m = 1, KP = 1).

the normalized residual vibration and maximum overshoot resulting from a constant am-

plitude 2-Step input shaper applied to the mass under PD control for a range of damping

ratios. The normalized residual vibration is defined as the amount of vibration caused by

the 2-Step command at the time of the second step normalized by the vibration caused by

taking both steps at the same instant (i.e., as an unshaped single step). The maximum

overshoot amplitude is calculated for a 2-Step command with total amplitude of 1. For an

undamped system, there is zero residual vibration because the 2-Step sequence is identi-

cal to an undamped ZV shaper and satisfies the zero residual vibration constraints for the

system.

The residual vibration amplitude increases as the damping ratio increases. This occurs

because the vibration caused by the first step decays more rapidly, and the second step

introduces a relatively large amount of excess, noncancelable vibration as the damping

ratio increases. The maximum overshoot illustrates that increased residual vibration is

balanced by increased exponential decay as the damping increases. Also, the overshoot is

small for low damping ratios where the constant amplitude input shaper is working most

effectively. For damping ratios approaching 1, the system still exhibits some overshoot due

to the transient numerator dynamics in (87).
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This effect suggests that the proposed constant-amplitude input shaper may be most

effective when combined with a PD controller with relatively low derivative gains. Any

increase in overshoot that would otherwise be caused by lowering the derivative gain would

be prevented by residual vibration suppression from the input shaper. However, the behav-

ior of the closed-loop poles of backdrivable systems such as (44) and (45) as a function of

the proportional and derivative gains is more complicated than for a single mass under PD

control. Understanding the behavior of closed-loop modes, such as was presented in Sec-

tion 4.2.1.2, can inform the controller gain selection and constant-amplitude input shaper

design for the closed-loop system.

5.3 Summary

This chapter presented a method for designing constant-amplitude input shapers using vec-

tor diagrams. The constant-amplitude input shapers also have selectable duration, specified

based on the τ parameter in (84). The resulting shaper’s robustness to frequency error varies

depending on this parameter. These constant-amplitude input shapers can be applied to

design constant-amplitude stepping sequences, which can be useful for stepper motors that

drive flexible elements such as the appendages of spacecraft. Chapter VI illustrates this

through a demonstrative application involving a flexible spacecraft. The 4-Step shaper is

used to design stepping sequences to slew the stepper motor-driven flexible appendages of

a spacecraft while also limiting backdriving effects on the main spacecraft body.
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CHAPTER VI

DEMONSTRATIVE APPLICATION: SPACECRAFT FLEXIBLE

APPENDAGE STEPPER MOTOR CONTROL

Many spacecraft use stepper motors to slew flexible appendages, such as observation or

transmitting equipment and solar arrays. An example of a flexible spacecraft is shown in

Figure 71. The vibration of the flexible appendages such as solar arrays and reflectors can

cause backdriving disturbance torques on the main spacecraft body (or bus) that result

in spacecraft pointing error. Pointing error arises from the rigid-body response of the

spacecraft due to conservation of angular momentum as the appendages are slewed and any

vibration of the flexible appendages that acts to backdrive the bus. Limiting pointing error

is critical when the spacecraft must keep observation or transmitting equipment pointed

in the correct direction. For example, for a spacecraft in a circular geosynchronous orbit

observing or transmitting to a location on the Earth, 0.1 degrees of bus pointing error

corresponds to approximately 62 km of error on Earth’s surface. Because the appendages

are driven by stepper motors, angular position commands are discretized in amplitude and

time (based on maximum stepping rate), which can increase the control complexity.

In the case of solar arrays, the arrays are often moved slowly to track the Sun during

orbit. For example, on a spacecraft in a geosynchronous orbit the solar arrays need only

be slewed at an average rate of 15 degrees per hour, and very few steps may be taken at

any one time depending on the design of the appendage actuator. This makes design of

short-distance stepping sequences important. This differs from the focus on a stepping rate

that exists in other stepper motor command generation problems.

An additional concern is that the vibration control techniques used on spacecraft should

be robust to modeling error or uncertainty in the natural frequencies of vibration of the

appendages. Input shaping techniques designed for flexible spacecraft applications include

designing fuel-efficient thruster commands [102, 129] and deflection-limiting commands that
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Figure 71: Spacecraft with flexible appendages1.

limit transient deflection in addition to eliminating residual vibration [8, 82, 107]. Input

smoothing methods have been used to develop shaped angular acceleration profiles for

flexible spacecraft attitude maneuvers [42]. Adaptive input shaping for spacecraft flexible

appendages has also been studied to address cases where significant appendage configuration

changes are expected [18, 19]. These two papers assume strain gauges or other sensors are

available to measure the vibratory response so that the controller may update the ZV shaper

impulses.

Some current techniques for stepper motors use vibration-limiting stepping profiles with

characteristics similar to ZV input shaping [10, 51, 76] , however they are not very robust to

modeling error or uncertainty in the natural frequencies of vibration of the appendages. Do-

herty and Tolson [26] used input shaping techniques to develop robust, multi-mode stepping

profiles. Their technique splits each impulse into a stepping rate command, with the dura-

tion proportional to the amplitude of the impulse. This is an effective approach for cases

where hundreds of steps need to be taken. Use of the robust 4-Step constant-amplitude input

1Image Source: SSL. (2014). “DIRECTV 14”, Date Accessed: March 5, 2014, Available: http://sslmda.
com/html/satexp/directv14.html.
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shapers developed in Chapter V can provide increased robustness to appendage frequency

modeling errors for short-distance slewing maneuvers, while also reducing backdriving ef-

fects on the bus.

This chapter investigates attitude control and appendage stepping for a spacecraft with

one flexible appendage driven by a stepper motor. Station-keeping and planar motion are

considered, and the Rotary Hub with Flexible Appendage fundamental model serves as a

dynamic model of the spacecraft and appendage. The constant-amplitude input shapers

developed in Chapter V are used to generate appendage stepping commands, and their

performance at reducing backdrivability is demonstrated and evaluated.

6.1 Attitude PD Controller Combined with Constant-Amplitude Input
Shaping

Most spacecraft utilize an attitude control system to regulate the bus angle and reduce

pointing error. For this chapter, the simple PD controller presented in Section 4.2.1 is

applied to study and control the planar backdriving dynamics of a spacecraft with a flexible

appendage. The model parameters are m1 = 5,000 kg, L1 = 1 m, m2 = 100 kg, L2 = 5 m,

and k = 5, 000 N-m/rad, which were the same used previously in Chapter IV.

A block diagram of the controller is shown in Figure 72. The Attitude PD Controller acts

on the error between the reference attitude and the current attitude, producing a command

that acts on the spacecraft via the torque T . An Appendage Command Generator produces

the stepping command θd for the flexible appendage stepper motor. This model assumes

perfect measurement of the bus angular states (θ1 and θ̇1), and the feedback controller does

+ 
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Rigid States 
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Figure 72: Block diagram of the flexible spacecraft attitude control system.
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not utilize measurement of the flexible appendage states (θ2 and θ̇2). For the purposes of

this chapter, the spacecraft is in a station-keeping mode and the reference attitude is zero.

The modal behavior of the closed-loop Rotary Hub with Flexible Appendage model with

PD controller was studied in Section 4.2.1.2. Understanding the modal behavior is critical

for the purposes of combined the constant-amplitude input shapers presented in Chapter V

with a PD feedback controller used to control the spacecraft attitude. The bifurcation or

transition behavior between ranges with two underdamped modes and one underdamped

mode with an overdamped mode should be accounted for during input shaper design. The

trends in the damping behavior of the two modes is also significant and can pose challenges

for constant-amplitude input shapers. The 4-Step input shaper is designed to target a single

underdamped mode.

Also, as was shown in Section 5.2, constant-amplitude shapers cannot completely elim-

inate the residual vibration of systems with damping ratios greater than zero, and this

effect worsens as the damping ratio increases. Therefore, when combined with the attitude

PD controller, the constant-amplitude input shapers presented in Chapter V work most

effectively with controller gains where the damping ratios of any underdamped modes are

smallest. It also may be advantageous to select controller gains that give only a single un-

derdamped mode; however, this should be balanced with controller gains that give modes

with low damping ratios. The effectiveness of the 4-Step constant-amplitude input shaper

combined with the attitude PD controller for a variety of controller gains is evaluated in

the next section.

6.2 Results

6.2.1 Performance Evaluation of Combined PD Controller and Constant Am-
plitude 4-Step Input Shaper

In this section, the 4-Step constant-amplitude input shaper developed in Chapter V is

combined with the attitude PD controller and spacecraft model discussed in Sections 4.2.1

and 6.1. Simulations are used to compare the combined input shaping and PD controller to

unshaped PD control alone, and to evaluate the behavior and performance of the combined

controller for a variety of control parameters. Results are shown for illustrative controller
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gains selected based on the analysis in Section 4.2.1.2. For each case, the command is a

1 degree step in the appendage angle, such as may be implemented using stepper motors.

Unshaped and 4-Step shaper results are shown for each case, with the 4 steps for the

unshaped command taken all at once. The 4-Step input shaper is designed for the closed-

loop mode with the slowest frequency with τ = 0.753, assuming that the controller and

system parameters are known precisely to facilitate fair comparison of different controller

gain pairs. The normalized shaper duration of τ = 0.753 is chosen for evaluation here

because it gives the largest/widest 5% insensitivity as was shown in Figure 65.

The first illustrative results use KP = 3700 and KD = 4000. The flexible spacecraft

response to the unshaped and 4-Step shaped appendage commands is shown in Figure 73.

The unshaped command moves the appendage to the 1 deg. setpoint more quickly, but the

peak amplitude of bus response is four times as large. The bus also has a longer settling

time. There is clear two-underdamped-mode behavior, with the higher mode being most

noticeable in the unshaped bus response. While both modes have a similar damping ratio,

as was shown in Figure 41, the higher mode decays more quickly. The peak bus response

amplitude with the 4-Step shaper is 0.12 degrees at 2.20 s.
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Figure 73: Flexible spacecraft response with attitude PD controller and constant
amplitude shaping for KP = 3, 700 and KD = 4, 000.
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The second illustrative results also use KP = 3,700 with KD increased to 8,800. The

flexible unshaped and shaped spacecraft responses with these gains are shown in Figure 74.

Both unshaped and shaped responses have low bus and appendage settling times. Again, the

unshaped command moves the appendage more quickly but causes a larger peak amplitude

in the bus response. This is just beyond one of the transition points identified in Figure 41,

so a single underdamped mode dominates the response. This derivative gain is high enough

for one mode to be overdamped yet still low enough for the underdamped mode to have

a higher damping ratio and thus a small settling time. The peak bus response amplitude

with the 4-Step shaper is 0.08 degrees at 4.47 s.

The third illustrative results continue to use KP = 3,700 with KD increased further to

20,000. Based on the modal analysis, for these gains the underdamped mode should have

significantly lower damping. The flexible unshaped and shaped spacecraft responses with

these gains are shown in Figure 75. The unshaped response illustrates the low damping and

long settling time of the underdamped mode. However, the shaped response has significantly

lower overshoot and appears to settle more quickly. This behavior occurs because the

constant-amplitude input shaper is effective at targeting the low-damping underdamped
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Figure 74: Flexible spacecraft response with attitude PD controller and constant
amplitude shaping for KP = 3,700 and KD = 8,800.

125



-0.2

-0.1

0

0.1

0.2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20

Bus (Unshaped)
Bus (4-Step, τ = 0.753)

Appendage (Unshaped)
Appendage (4-Step, τ = 0.753)

B
us

 R
es

po
ns

e 
(d

eg
)

A
ppendage R

esponse (deg)

Time (s)

Figure 75: Flexible spacecraft response with attitude PD controller and constant
amplitude shaping for KP = 3,700 and KD = 20,000.

mode. For this set of gains, the constant amplitude input shaping gives favorable results

relative to the unshaped case. The peak bus response amplitude with the 4-Step shaper is

0.045 degrees at 4.32 s.

The fourth illustrative results now use a lower proportional gain of KP = 2, 000 for the

same derivative gain from the second case, KD = 8, 800. Based on the modal analysis in

Figure 40, there should be a single underdamped mode with slightly less damping than in

the second case. The unshaped and shaped responses are shown in Figure 76. The peak bus

response amplitude with the 4-Step shaper is 0.11 degrees at 4.17 s. The responses are not

significantly different from the second case, however the bus response has a larger amplitude.

This is most apparent in the shaped bus response around 4 s, where the amplitude is

approximately 36% larger.

The final illustrative results examine a larger proportional gain of KP = 20,000 for the

same derivative gain from the second and fourth cases, KD = 8,800. Based on the modal

analysis in Figure 40, there should be two underdamped modes, with the lower frequency

mode having a much lower damping ratio. The unshaped and shaped responses are shown

in Figure 77. The unshaped response illustrates the low damping and long settling time of
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Figure 76: Flexible spacecraft response with attitude PD controller and constant
amplitude shaping for KP = 2,000 and KD = 8,800.
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Figure 77: Flexible spacecraft response with attitude PD controller and constant
amplitude shaping for KP = 20,000 and KD = 8,800.

the lower underdamped mode. The second mode is not apparent in the unshaped response

due to its higher damping ratio. The shaped response has significantly lower overshoot and

both the bus and appendage settle more quickly. As with the third illustrative case, this

behavior occurs because the constant-amplitude input shaper is effective at targeting the
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low-damping underdamped mode. The only residual behavior that remains is that of the

second mode, which has relatively little impact because it is much more damped and has a

higher frequency. The peak bus response amplitude with the 4-Step shaper is 0.052 degrees

at 6.20 s. This is another example of gain pairs where the constant amplitude input shaping

gives favorable results relative to the unshaped case.

An obvious advantage of the 4-Step sequence is that it can be easily calculated for any

vibration period using (82). The designer does not need to solve an optimization problem

to find the appropriate stepping sequence. However, it does not specifically target any

other vibratory modes, and may not provide as much robustness as could be obtained

from using a solution found using optimization. Also, it is designed sequentially, rather

than concurrently, with the attitude PD controller. This requires the designer to have a

detailed understanding of the modal behavior of the closed-loop system, as was illustrated in

Section 4.2.1.2. With the objective of reducing pointing error, the case shown in Figure 75

for KP = 3,700 and KD = 20,000 yields the best response.

6.2.2 Effect of Constant-Amplitude Input Shaper Duration on Bus Response
Amplitude

The results in the previous section all used τ = 0.753 for the 4-Step constant-amplitude

shaper. This section examines the effect of varying the 4-Step shaper duration on the peak

amplitude of the bus response. In essence, with the goal of reducing the backdriving effect

on the bus angle to limit point error, the shaper duration can be varied through the τ

parameter to give the controller more time to correct any error before taking subsequent

steps.

An example where this occurs is the case that was shown in Figure 76 with KP = 2,000

and KD = 8,800. The bus response reaches two local minima between 2 and 5 seconds,

with the second having a larger amplitude. This happens because the stepping sequence is

not giving the attitude controller enough time to correct the initial bus pointing error. This

effect can be reduced by increasing the length of the shaper to give the attitude controller

more time to respond.

To demonstrate this, Figure 78 compares the response with those same controller gains
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Figure 78: Flexible spacecraft response with attitude PD controller and constant
amplitude shaping for KP = 2,000 and KD = 8,800 with τ = 0.753 and τ = 3.

between using τ = 0.753 and τ = 3 to design the 4-Step shaper. For τ = 3, the peak bus

response amplitude is 0.084 degrees at 2.24 s, or a 31% reduction from using τ = 0.753.

This comes at the cost of slowing down the appendage stepping duration, but does not

require changing the controller gains.

To fully explore the effect of the 4-Step shaper duration on peak bus response amplitude,

Figure 79 shows the peak bus response amplitude as a function of the normalized duration

τ of the 4-Step shaper for KP = 2,000 and KD = 8,800. At low τ , the amplitude is largest

because the steps are taken quickly with the attitude controller having little time to correct

the pointing error. At larger τ , the attitude controller has enough time between pairs of

steps to correct the pointing error, and the amplitude reaches a minimum where further

increases in stepping duration do not provide any benefit. Between approximately τ = 0.5

and 1.5, the behavior is more interesting. There is a local minimum at τ = 0.6, then the

amplitude increases before dropping to the minimum at τ = 1.43.

To illustrate the behavior with these different durations, Figure 80 compares the time

response using the 4-Step shaper with τ = 0.753 and τ = 0.6. The peak bus response

amplitude is 0.096 degrees at 3.91 s. This is only a 14% reduction from using τ = 0.753,
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Figure 79: Peak bus response amplitude as a function of the 4-Step shaper normalized
duration.
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Figure 80: Flexible spacecraft response with attitude PD controller and constant
amplitude shaping for KP = 2,000 and KD = 8,800 with τ = 0.753 and τ = 0.6.

but it also comes with the benefit of a faster appendage stepping time.

Figure 81 compares the time response using the 4-Step shaper with τ = 0.753 and τ =

1.43. The peak bus response amplitude is 0.084 degrees at 2.24 s for a 31% reduction from

τ = 0.753, or the same as with τ = 3. However, this stepping sequence is 63% faster than

the sequence using τ = 3.
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Figure 81: Flexible spacecraft response with attitude PD controller and constant
amplitude shaping for KP = 2,000 and KD = 8,800 with τ = 0.753 and τ = 1.43.

The designer can choose τ = 0.6 if they are willing to sacrifice some peak amplitude

for a faster shaper duration, or choose to minimize the peak amplitude at the minimum

duration of τ = 1.43. However, Figure 65 shows that choosing either of these durations

comes at the cost of robustness to frequency error in the form of the 5% insensitivity. At

these τ , the 4-Step shaper loses most of its robustness gains over a standard ZV or 2-Step

shaper. Similar behavior and results can be obtained for other combinations of controller

gains.

6.2.3 Discussion

The results that were shown in Section 6.2.1 for various gains and the concurrent design

optimization in Section 4.3 show that the bus response is reduced as the derivative gain is

increased. A large derivative gain should be selected because this yields a lower damping

ratio according to the modal analysis in Section 4.2.1.2. The constant-amplitude shapers

limit oscillation most effectively when there is a single underdamped mode with a closed-

loop damping ratio as low as possible. However, in the presence of actuator limits or other

concerns that may limit gain selection, the constant-amplitude shaper duration can be

increased to achieve the minimum bus response possible with the selected controller gains.
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6.3 Summary

This chapter considered a flexible spacecraft as a demonstrative application that shows the

importance of understanding backdrivable flexible systems, and to illustrate how the meth-

ods presented in this thesis can be applied to improve performance of a base experiencing

backdriving effects. The Rotary Hub with Flexible Arm fundamental model was used as a

model of a planar spacecraft with one flexible appendage. The performance of the 4-Step

constant-amplitude input-shaping technique for stepper motors developed in Chapter V

was investigated using the flexible spacecraft model. Also, the modal behavior of the PD

hub angle controller studied in Section 4.2.1 was analyzed to inform the design of constant-

amplitude input shapers and assist with gain selection for attitude control of the flexible

spacecraft. It was shown that the 4-Step technique limits vibration most effectively for PD

controller gain values that would otherwise lead to poor settling times and large overshoot.

Also, the selectable duration of the 4-Step constant-amplitude shapers can be leveraged to

design stepping sequences that reduce the peak bus pointing error.
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CHAPTER VII

DEMONSTRATIVE APPLICATION: INPUT-SHAPING AND

MODEL-FOLLOWING CONTROL OF HELICOPTERS WITH

SUSPENDED LOADS1,2

When a heavy load is suspended from a helicopter, excessive load swing degrades helicopter

control due to backdriving effects. This chapter examines the benefits of combining input

shaping and Model-Following Control (MFC) to improve performance when carrying a

suspended load.

MFC architectures are used in modern helicopter flight control systems to make the

helicopter respond like a prescribed model. For example, the Boeing Company used a control

law architecture consisting of model-following control on several programs in the 1980’s and

1990’s, including the V-22 and RAH-66 [55]. On its own, MFC can be ineffective when

carrying a suspended load because excessive load swing degrades tracking of the prescribed

model dynamics and thus control of the helicopter. Therefore, reducing load swing improves

tracking of the prescribed model and increases safety and productivity. By combining input

shaping with MFC, helicopter payload swing is reduced and tracking of the prescribed model

is improved.

The effectiveness of input shaping at suppressing suspended load oscillation is demon-

strated using experimental results from model radio-controlled helicopter testbed. Then,

the design of an attitude-command flight control system that combines input shaping and

MFC is illustrated using dynamic models of a Sikorsky S-61 helicopter. Simulation results

1James Jackson Potter contributed significantly to this chapter. The work in this chapter was partially
funded by the Vertical Lift Consortium (VLC) under agreement 2012-B-13-T3.1-A01, entitled Handling
Qualities Requirements and Flight Control Concepts for Future Vertical Lift. Also, the author wishes to
thank Dr. Mark Costello for providing some initial references related to model-following control.

2The results for the combined Input-Shaping and Model-Following Controller have been published in the
AIAA Journal of Guidance, Control, and Dynamics [2].
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(a) Helicopter delivering cargo to a
remote base camp location3.

(b) Helicopter delivering supplies to a stranded cruise
ship4.

Figure 82: Helicopters shown carrying suspended loads and delivering supplies and cargo
to remote areas.

are shown for lateral and longitudinal repositioning movements. These results show that ap-

plying input shaping to simulated pilot commands greatly improves helicopter performance

when carrying a suspended load.

7.1 Background

A helicopter can be used as a “flying crane” by hanging a load (often called a suspended

load or sling load) from cables attached to the helicopter. A flying crane is extremely

versatile, and photographs of some example applications are shown in Figure 82. It can

be used to transport timber during remote logging operations, deliver power transmission

towers to their installation locations, deliver equipement to remote camps such as shown

in Figure 82(a), rescue people stranded in otherwise inaccessible areas, and even deliver

food and supplies to disabled cruise ships, as shown in Figure 82(b). These are just a few

examples of tasks that are too expensive, too slow, or physically impossible to perform with

3Photo Credit: Captain Budd Christman, NOAA Corps, “Bell UH-1H N56RF at Cape Douglas sling-
loading camp equipment for shore camp.,” National Oceanic and Atmospheric Administration. Flying with
NOAA Collection, Image ID: fly00518. Available: https://www.photolib.noaa.gov/htmls/fly00518.htm.

4Photo Source: Gregory Bull. “Navy helicopter drops supplies onto the Carnival Splendor off Mexico’s
Baja Peninsula,” Associated Press, 11 November 2010. Appears in: Gene Sloan, “On disabled cruise ship,
a ‘nightmare’,” USA Today, page FA.
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Figure 83: Lateral load oscillation caused by a lateral helicopter move.

other types of vehicles.

Unfortunately, the suspended load is a swinging pendulum that adversely affects control

of the helicopter due to backdriving effects. This makes efficient and accurate transfer of

the load difficult. In fact, accidents can be caused by violent suspended load swing [122].

The helicopter becomes particularly difficult to control when carrying heavy loads [39].

Figure 83 shows the lateral load oscillation during and following a simulated near-hover

lateral move performed by a helicopter carrying a heavy suspended load. The load oscillates

with a large amplitude and slow period. The load suspension point is below the helicopter’s

center of gravity, so the tension in the suspension cable produces an oscillating torque about

the helicopter’s center of gravity as the load swings. This is a backdriving effect known as

load-attitude coupling.

A plot of the pilot’s attitude command and the resulting helicopter roll attitude during

and following the lateral move is shown in Figure 84. Due to load-attitude coupling, the load

swing causes residual roll attitude oscillations that have an amplitude of nearly 2 degrees.

Residual attitude oscillations larger than 0.5 degrees are considered excessive for any type

of maneuver [124]. This attitude backdriving makes the helicopter difficult to control, and

the load swing slows down load transfer operations.

Guidelines for suspended load operations suggest that the best way for a pilot to regain
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Figure 84: Helicopter roll attitude response to a pilot’s attitude command when carrying
a heavy suspended load.

control when load swing becomes too large is to slow down the helicopter [122, 13]. By

trying to actively cancel this swing, the helicopter pilot may actually amplify the problem

if his or her control inputs are not in the correct phase relative to the swing [13]. In cases

where the swing amplitude becomes extreme and the pilot has difficulty stabilizing the load,

the pilot may elect to jettison the load to regain control of the helicopter [122]. Additionally,

the suspension cable can get tangled with objects on the ground. This can cause dangerous

situations that result in damage to the cargo and helicopter, or injury to the pilot and crew.

The safety of sling-load operations would be improved significantly by reducing load swing

and its effects on the helicopter body.

Reducing load swing would also increase productivity during load transfer operations.

Once a load is positioned above its desired location, it cannot be safely deposited until the

swing amplitude settles below an acceptable level or workers on the ground wrestle it to a

stop. Keeping the swing at a low amplitude would allow the pilot to transfer and deposit

loads more quickly and safely.

Several strategies have been proposed for reducing suspended load swing. Some control

136



strategies include an actuated suspension point or some other form of active load stabiliza-

tion [108]. Dukes states that an actively-controlled, moving suspension point could be an

effective way of damping the load swing [28, 29]. However, retrofitting existing heavy-lift

helicopters with moving suspension points would be costly compared to small modifications

to the digital fight control system. Other proposed control strategies rely on feedback of

the suspended load states [11, 47, 69]. Such control algorithms have shown promise because

they also allow for control of external disturbances, but they require real-time measurement

of the suspension cable angle, which is rarely available in current practice.

7.2 Backdrivability of Helicopters Carrying Suspended Loads

This section evaluates the pitch and roll backdrivability of a sample helicopter with sus-

pended load dynamic model as a function of the load-helicopter mass ratio. A planar,

nonlinear model of a helicopter with a suspended load was developed and experimentally

verified on a radio-controlled helicopter in [75]. To study the effects of load-attitude back-

driving, this model is linearized about hover. Then, the backdrivability of the linearized

model is quantified using the Eigenvector Response Ratio performance metric presented

in Section 3.2. This section focuses on the effect of suspended load mass on load-attitude

backdrivability, although the effects of other parameters could also be studied using the

model presented.

Figure 85 shows a schematic diagram of the planar helicopter with suspended load from

[75]. The system states are the helicopter horizontal position x, helicopter attitude θ, and

suspended load swing angle β. The helicopter has mass M and inertia IG. The suspended

load has mass m and suspension length L, and is suspended from a point located a distance

dS directly below the helicopter center of mass G. The model uses a quasistatic rotor

assumption, which assumes that control inputs cause instantaneous changes in the rotor

disk angle α, so α can be used as an input to the model. The thrust T produced by the rotor

is also an input, but when linearizing about hover the thrust is set to a constant equilibrium

thrust value equal the combined weight of the helicopter and load, Teq = (M + m)g. The

rotor hub is located a distance dH directly above the helicopter center of mass G. The kα
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Fig. 4. Thrust command voltage versus rotor thrust force.

The resulting measurements of thrust voltage VT and corre-
sponding thrust force T are shown in Fig. 4. The third-order
curve fit in the figure yielded an R2 value of 0.99. Note that
below approximately 1.2 V, no positive thrust was produced.
To minimize vertical force on the guide rails, VT is calculated
by setting T equal to the combined weight of the helicopter,
pivoting base, and suspended load.

III. DYNAMICS

In this testbed, the helicopter motion is limited to pitch rota-
tion and longitudinal translation. This type of constraint matches
simplifying assumptions that are commonly made for helicopter
dynamic models. It is often assumed that the helicopter has a
heading-hold controller to prevent yaw rotation and a height-
hold controller to prevent vertical translation [18]. Additionally,
for helicopters near hover, lateral and longitudinal dynamics ex-
perience reduced cross coupling, and are often treated separately
for controller design and stability analysis [18].

For dynamic model formulation, researchers often propose a
model structure based on their knowledge about the system and
the level of complexity required to address their research ques-
tions, and then use experimental data to choose the unknown
values inside the structure [5], [7]. This paper will take a similar
approach. The model structure is most similar to those presented
in [3] and [18].

A. Model Definition

Fig. 5 shows a planar sketch of the helicopter pinned through
its center of gravity, G, to a horizontally sliding cart. The heli-
copter’s horizontal location is x(t), and its pitch angle is θ(t).
The suspended load has swing angle β(t) relative to vertical. A
thrust force T (t) is produced by the rotor disk, and the angle of
the thrust vector relative to the helicopter is α(t).

In the proposed model, the main rotor disk angle is specified
by α —the rotor disk is not modeled as a separate rigid body. It
is further assumed that the rotor disk angle α can change instan-
taneously. This assumption (called the quasistatic rotor assump-
tion [18]) is commonly used because for most helicopters, the
main rotor’s flapping response is fast relative to the helicopter’s
gross motion and the pilot’s control inputs. To capture the effect
of rotor stiffness, a torsional spring with stiffness kα is attached
from the helicopter to the rotor disk [18], [19]. When the rotor

Fig. 5. Dynamic model of helicopter and load.

Fig. 6. Coordinate frames.

disk rotates relative to the helicopter, a torque is applied to the
helicopter equal to kαα.

The helicopter has mass M and rotational inertia IG about
point G, and the load has mass m. A damper on the helicopter’s
position x(t), with coefficient cx , captures the translational
damping effects of air resistance and friction of the rolling carts.
A rotational damper on helicopter pitch angle θ(t), with coeffi-
cient cθ , captures rotational damping effects on the helicopter. A
suspension cable of length ℓ connects the load to the helicopter.
In helicopter-body-fixed coordinates, the load suspension point
is a distance dS below the helicopter’s center of gravity, and the
rotor thrust force is applied a distance dH above the helicopter’s
center of gravity. It is assumed that the suspension cable is in-
extensible, the load has no rotational inertia (it is a point mass),
and aerodynamic effects on the load are negligible.

B. Equations of Motion

Two reference frames are shown in Fig. 6: An inertial frame
with unit vectors Î , Ĵ , and K̂, and a frame attached to the
helicopter with unit vectors î, ĵ, and k̂. The distance between
the helicopter center of gravity, G, and the suspension point, S,
is defined as

r⃗S/G = dS (−ĵ). (1)

The distance between the helicopter center of gravity and point
H is defined as

r⃗H/G = dH ĵ. (2)

The generalized coordinates are q1 = x, q2 = θ, and q3 = β.
Lagrange’s equations are given by

d

dt

(
∂T
∂q̇j

)
− ∂T

∂qj
+

∂V
∂qj

= Qj , j = 1, 2, . . . , N (3)

L

Figure 85: Schematic diagram of the planar helicopter with suspended load dynamic
model [75].

parameter was included in [75] to model rotor stiffness effects. The model also includes

linear damping on the helicopter position and angle, represented by cx and cθ, respectively.

A state-space version of this model linearized about hover is given by:




ẋ

ẍ

θ̇
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


= A0




x

ẋ

θ

θ̇

β

β̇




+ B0α, (88)

where
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(89)

and

B0 =


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. (90)

Analysis in [75] showed that this dynamic model has a pole at the origin corresponding

to the rigid-body motion, a negative real pole corresponding to the short-term pitch mode, a

pair of complex underdamped poles corresponding to the long-term longitudinal oscillation

mode, and a second pair of complex underdamped poles corresponding to the load oscillation

mode.

By numerically solving for the eigenvectors of (89), the response ratio magnitude be-

tween the helicopter attitude and load swing angle for the load oscillation mode shape can be

found to quantify the degree of load-attitude backdrivability. The magnitude is considered

here because the mode shapes have complex amplitudes due to the presence of damping.

While the model was applied to the helicopter longitudinal direction in [75], it can also be

used to model motion in the lateral direction by replacing IG with an inertia value corre-

sponding to the helicopter roll axis. Studying load-attitude backdrivability about both the

pitch and roll axes is important because the inertia values about those axes are different.

Most helicopters have significantly lower roll inertia than pitch inertia, and are therefore

more susceptible to attitude backdriving about the roll axis.
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Table 7 summarizes the sample parameters used for this backdrivability study. The

parameters were selected to be representative of a full-scale helicopter. This study focuses

on the effects of the load-to-helicopter mass ratio m/M , so the suspended load mass is

varied while the other parameters are held constant. Also, two representative values of

200,000 kg-m and 50,000 kg-m are considered for the helicopter inertia IG to evaluate and

compare backdrivability about pitch and roll axes, respectively.

Figure 86 shows the response ratio magnitudes of the load oscillation mode eigenvector

as a function of the load-helicopter mass ratio using the representative pitch and roll inertias.

Both response ratios increase as the mass ratio increases. However, the roll response ratio

is between 3.6 and 4 times as large as the pitch response ratio, depending on the mass ratio.

Practically, these response ratios allow thresholds of tolerable attitude response am-

plitudes to be defined. For example, if 10 degrees of load swing can be expected during

operation and attitude oscillations above 2 degrees are considered intolerable (or a response

ratio of 0.2), then the minimum mass ratio that requires addressing backdriving effects can

be identified. Figure 87 shows the pitch and roll amplitude that would result if there is 10

degrees of load swing. A threshold of 2 degrees of attitude amplitude is shown, and the mass

ratios that result in attitude oscillations above 2 degrees in the pitch and roll directions are

indicated. For this sample system configuration, mass ratios above 0.22 result in at least 2

degrees of pitch backdriving. However, mass ratios above only 0.047 are required to result

Table 7: Summary of planar helicopter with suspended load model parameters for
load-attitude backdrivability study.

Parameter Value

M 15,000 kg

IG (pitch) 200,000 kg-m2

IG (roll) 50,000 kg-m2

cx 1,000 N-s/m

cθ 3,000 N-m-s/rad

kα 300 N-m/rad

dH 2.5 m

dS 1 m

m Varied

L 15 m
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Figure 86: Pitch and roll load-attitude backdrivability.
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Figure 87: Load oscillation mode pitch and roll backdriving amplitude resulting from 10
degrees of load swing amplitude.

in at least 2 degrees of roll backdriving when 10 degrees of load swing results from helicopter

motion. If such conditions could occur during externally-loaded operation, the backdriving

load swing dynamics should be controlled or otherwise mitigated. The remainder of this

chapter presents control techniques that mitigate the load swing and resulting backdriving

effects.
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7.3 Input Shaping for Helicopters Carrying Suspended Loads

The application of input shaping to helicopters carrying suspended loads has been consid-

ered in previous research [1, 11, 69, 74]. Bisgaard et al. [11] used a state estimator to measure

the natural frequency of the suspended load oscillation. They then used this measurement

to adaptively update an input shaper to prevent oscillation at the measured natural fre-

quency. Ottander and Johnson [69] combined input shaping with delayed feedback control

of the payload swing angle. This controller allowed the payload to more accurately track

a desired trajectory. Load swing caused by helicopter motion was reduced through input

shaping, and external disturbances were canceled using feedback of the load swing angle.

Both studies proposed and implemented a vision system to measure the load swing, which

would increase complexity and cost.

Potter et al. [74] experimentally verified a simple model of the suspended load oscillation,

and used the model to test via simulation the effectiveness and robustness of various types

of input shapers. Adams et al. [1] also demonstrated the effectiveness of input shaping

control on an experimental radio-controlled helicopter flying in a motion-capture room.

7.3.1 Input Shaping on the Planar Experimental Radio-Controlled Helicopter

An experimental radio-controller helicopter has been used to demonstrate the effectiveness

of input shaping at suppressing suspended load oscillations and reducing the load backdriv-

ing effects on the helicopter. The experimental setup that is discussed in this section is the

Planar Experimental Radio-Controlled Helicopter (PERCH) [75].

A photograph of PERCH is shown in Figure 88. The experimental setup consists of an

E-flite Blade 400 RC helicopter attached to a frame. The frame pivots about two carts that

roll on the two guide rails. The helicopter is only able to pitch and translate forwards and

backwards. The guide rails restrict motion in the lateral, yaw, and heave directions. A hard

stop is positioned at the ends of each guide rail to stop the helicopter. A suspended load is

attached to the helicopter. The colored circles are used to extract the helicopter attitude

from videos of experimental trials using a MATLAB image processing program.
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Figure 88: Photograph of the Planar Experimental Radio-Controlled Helicopter
experimental setup.

A schematic diagram of PERCH is shown in Figure 89. Rather than directly transmit-

ting operator commands to the helicopter using the transmitter, the commands are sent

to an Arduino UNO microcontroller that can modifiy the operator’s commands. The com-

mands are sent from the microcontroller to the helicopter via a secondary signal-sending

transmitter. This setup allows an operator to fly the RC helicopter using the primary

transmitter, and input shaping may be applied to the operator’s commands using the

microcontroller.

The mass of the helicopter and its frame is 1.28 kg. The mass of the cart on each guide

rail is 0.41 kg. The mass of the suspended load is 0.54 kg and the suspension cable length

is 1.83 m. Due to the hard stops and the length of the guide rails, the usable workspace is

2.03 m long.

By constraining the angular motion of the helicopter to the pitch direction only, this

experimental setup slightly changes the dynamics of the helicopter. In an unconstrained

helicopter, pitching forward is accompanied by downward motion. This occurs because
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Figure 89: Schematic diagram of the Planar Experimental Radio-Controlled Helicopter.

the increase in pitch angle leads to a decrease in the vertical component of the thrust

vector. The smaller vertical force does not fully support the weight of the helicopter, so

pitching forward leads to a small downwards acceleration. When carrying a suspended

load, this downward acceleration of the helicopter causes effects similar to a pendulum

with a vertically accelerating suspension point. The accelerating suspension point affects

the natural frequency load swing. This coupling between the pitch and vertical motions

is small compared to the helicopter pitch and suspended load swing dynamics for small to

moderate pitch angles. By allowing the helicopter to pitch and translate in the longitudinal

direction, the experimental setup captures many of the important backdriving dynamics,

such as attitude coupling between the load and helicopter, and allows these effects to be

rigorously studied.

A ZV input shaper for the PERCH setup was designed using natural frequency and

damping ratio estimates. To perform unshaped and input-shaped trials, a human operator

flew the helicopter from one position to another on the guide rails. The helicopter’s collective

pitch input was set at the same level for all trials such that the rotor thrust balanced the
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weight of the helicopter and the load.

Figure 90 shows the payload and helicopter responses for unshaped and ZV input-

shaped commands. The helicopter responses are shown in Figure 90(a). In the unshaped

response, the load oscillation significantly backdrives the helicopter following the move.

This backdriving is not seen in the ZV-shaped response because the oscillation of the load

was suppressed by input shaping. The ZV-shaped helicopter response is slightly slower.

This is due to the scaling of the command by the impulses resulting in less acceleration.

Figure 90(b) shows a plot of the suspended load oscillation relative to the helicopter. The

use of the ZV input shaper significantly reduces the amount of payload swing caused by

the helicopter motion. The peak-to-peak residual oscillation amplitude is reduced from

approximately 50 cm to 2.5 cm.

7.4 Input Shaping Combined with a Helicopter Flight Control System

Input shaping alone is not sufficient for effective control of a helicopter carrying a sus-

pended load. Rather, it should be combined with a feedback controller. Effective design of

a helicopter’s flight control system is critical to the overall performance of the aircraft. De-

sign requirements such as ADS-33E-PRF [124] provide specifications on aircraft response

characteristics that affect handling qualities ratings. While ADS-33E-PRF is a military

specification, such design requirements give flight control designers guidance on response

types favored by pilots. Stability augmentation systems and high authority control augmen-

tation systems assist pilots in maneuvering their aircraft by stabilizing aircraft response,

adding damping to oscillatory aircraft modes, and/or introducing different flight character-

istics such as altitude or heading holds [48, 55, 78]. When carrying a heavy suspended load,

the pilot’s control task can be challenging despite the assistance of these control systems

[122, 39, 13].

While a helicopter’s control system would most likely be designed for unloaded flight,

mission scenarios where the helicopter needs to carry a suspended load would require a

different control system to achieve effective performance. Being able to activate an input-

shaping algorithm that is compatible with the baseline flight controller for the unloaded
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Figure 90: Comparison of unshaped and ZV input-shaped experimental (a) helicopter
and (b) payload responses for the Planar Experimental Radio-Controlled Helicopter.

helicopter would be simpler than having an entirely different flight control system designed

specifically for loaded flight.

To be effective at preventing suspended load oscillations, the input-shaping technique

must be well-integrated with the rest of the helicopter’s flight control system. Done properly,

this would combine the features of helicopter flight control systems listed above with the

suspended load oscillation prevention characteristics of input shaping. The most straight-

forward location for the input shaper in the controller is immediately after the pilot inputs

have been received by the digital flight control system. Such a combination of input shaping
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with a common flight control architecture will be investigated in this chapter.

Because input shapers are designed to suppress motion-induced residual oscillation,

they will not decrease oscillation induced by external disturbance forces, such as wind

gusts. Suppressing disturbance-induced swing requires feedback of the load states or an

estimation technique that can accurately predict the load swing caused by a measured wind

gust. Although it can be effective to combine input shaping with cable-angle feedback

control [69, 47], this chapter focuses on eliminating load swing solely caused by helicopter

motion by combining input shaping and model-following control.

The MFC architecture combines feedforward and feedback control. The feedback con-

troller is used to stabilize the helicopter system and determines the error dynamics of the

model tracking. The feedforward controller uses model-inversion techniques to cancel the

undesired helicopter dynamics. However, tracking of the prescribed model may be signif-

icantly degraded when the helicopter is carrying a suspended load, particularly when the

load is heavy relative to the weight of the helicopter. One way to improve helicopter per-

formance would be to replace the original feedforward model with one that accounts for

the sling-load dynamics. A drawback of this method is that the feedback portion of such

a controller would require real-time measurement of the load position or angle. The load

swing is assumed to be unmeasured in this chapter.

In the rest of this chapter, a near-hover attitude-command model-following controller is

designed for a Sikorsky S-61 helicopter with and without a suspended load using linearized

dynamic models of this helicopter obtained from previous studies [37, 35]. Simulation results

are used to demonstrate the controller’s effectiveness on the unloaded helicopter. Next, this

controller is applied to the loaded helicopter, and large load oscillations are shown to occur.

These oscillations can be dangerous depending on the mission scenario and degrade model

tracking performance due to coupling between the load and helicopter fuselage. Additional

results show that adding input-shaping to the controller i) reduces swing of the suspended

load and ii) improves helicopter tracking of the prescribed model, particularly once the

pilot’s commands are completed, by reducing the backdriving effect on the helicopter.

An additional novelty in the proposed approach is that input shaping integrates well with
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the concept of specifying a desired model. MFC is used as the underlying control because it

provides good performance for the baseline helicopter dynamics. While certain performance

is desired for the helicopter motion, designers (and pilots) also want the load motion to be

critically damped, so input shaping is added to reduce suspended load oscillation. In a way,

the input shaping control element is a form of implicit model-following control to achieve

damped load motion. The input shaper is essentially part of the prescribed model, which

can be referred to as an input-shaped prescribed model. Combining these two relatively

simple and commonly used control methods provides a unique solution to this challenging

control problem.

Section 7.4.1 describes dynamic models of the helicopter. The MFC architecture is

described in Section 7.4.2. Section 7.4.3 details the MFC implementation and presents

simulation results using the controller on unloaded and loaded Sikorsky S-61 helicopter

models. Section 7.4.4 shows how the input-shaping technique may be combined with a MFC

to improve helicopter performance when carrying a suspended load. Section 7.5 discusses

why the approach presented in this chapter is effective, and why input shaping and model-

following control complement one another when applied to helicopters carrying suspended

loads.

7.4.1 Helicopter Dynamic Models

Designers of helicopter flight control systems often use helicopter models linearized about

a given flight condition. These models can be obtained or improved using flight-test data

[38, 40, 118]. One such model of a Sikorsky S-61 helicopter in near-hover operation was

investigated by Hall and Bryson [37]. Gupta and Bryson [35] combined Hall and Bryson’s

helicopter model with a linear model of a suspended load to yield a linearized, near-hover

model of a Sikorsky S-61 carrying a suspended load. The mass of the helicopter is 13, 228 lb,

the suspended load is 4, 409 lb, and the suspension cable length is 65.6 ft mounted 4.9 ft

below the helicopter center of mass [35].

The unloaded and loaded Sikorsky S-61 models are state-space models of the form:

~̇x = A~x+ B~u, (91)
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Both models use a quasistatic representation of the rotor dynamics [37, 35].

Both the unloaded and loaded models only incorporate the longitudinal and lateral

motion of the helicopter. Therefore, it is assumed that the helicopter has well-performing

heading-hold and altitude-hold controllers that maintain a constant direction and vertical

position. Because the models are linearized, effects such as air drag on the helicopter

and load are weakened by the linearization. The models also neglect the effects of wind

and changes in atmospheric properties. While wind acts as a disturbance on helicopters

and suspended loads, this chapter focuses only on the effects of helicopter motion on the

suspended load.

7.4.1.1 Unloaded Sikorsky S-61 Model

Figure 91 shows a sketch of the unloaded helicopter. The state and input vectors are defined

as:

~x =

[
θH θ̇H ẋH φH φ̇H ẏH

]T
, (92)

~u =

[
θs θc

]T
. (93)

By appropriately scaling the input matrix B, the input vector given by (93) becomes

identical to the rotor tilt angles [37] and is given by:

~u =

[
θR φR

]T
, (94)

Figure 91: Helicopter without sling load.
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With all units in ft, sec, and rad, the state equation for the unloaded S-61 model is [37]:

~̇x =




0 1 0 0 0 0

0 −0.415 0.00338 0 0.318 0.00116

−32.2 4.70 −0.0198 0 −1.02 −0.0059

0 0 0 0 1 0

0 −1.23 0.00415 0 −1.58 −0.0124

0 −1.02 0.0059 32.2 −4.70 −0.0198




~x+




0 0

6.27 0.295

−32.2 −0.977

0 0

−1.08 23.1

−0.977 32.2




~u. (95)

7.4.1.2 Loaded Sikorsky S-61 Model

Gupta and Bryson [35] modified the unloaded Sikorsky S-61 model in (95) to include sus-

pended load dynamics. Figure 92 shows a sketch of the loaded helicopter. The helicopter

state and input vectors for the loaded model are defined as:

~x =

[
θH θ̇H xH ẋH xL ẋL φH φ̇H yH ẏH yL ẏL

]T
, (96)

~u =

[
θR φR

]T
. (97)

Figure 92: Helicopter with suspended load.
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With all units in ft, sec, and rad, the state matrix A for the loaded S-61 is [35]:

A =



0 1 0 0 0 0 0 0 0 0 0 0

−2.25 −0.415 −0.032 0.003 0.032 0 0 0.318 0 0.001 0 0

0 0 0 1 0 0 0 0 0 0 0 0

−43.6 4.69 −0.164 −0.020 0.164 0 0 −1.02 0 −0.006 0 0

0 0 0 0 0 1 0 0 0 0 0 0

2.41 0 0.491 0 −0.491 −0.003 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 −1.23 0 0.004 0 0 −8.28 −1.58 0.117 −0.012 −0.117 0

0 0 0 0 0 0 0 0 0 1 0 0

0 −1.02 0 0.006 0 0 43.6 −4.69 −0.164 −0.020 0.164 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 −2.41 0 0.491 0 −0.491 −0.003



,

(98)

and the input matrix B is [35]:

B =




0 8.38 0 −42.98 0 0 0 −1.43 0 −1.30 0 0

0 0.393 0 −1.30 0 0 0 30.70 0 42.98 0 0




T

(99)

Figure 93 shows the magnitude plot for the lateral rotor tilt angle to the roll attitude,

φH(s)/φR(s). A significant notch is seen in the magnitude at the load swing frequency of

approximately 0.9 rad/s. This notch is a result of the backdriving load swing dynamics

and is indicative of degraded control when the pilot’s command has components around the

load swing frequency.

7.4.1.3 Eigenvalue and Eigenvector Analysis of Sikorsky S-61 Models

The unloaded and loaded Sikorsky S-61 models are open-loop unstable. This makes it

difficult to simulate their time responses to evaluate the open-loop performance of the

aircraft in unloaded and loaded configurations. Instead, it can be useful to plot the pole

locations for each model. This is typically done to enable identification of various aircraft

flight modes since each flight mode is associated with an eigenvalue or pole [70]. This
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Figure 93: Bode magnitude plot for the loaded Sikorsky S-61 model.

analysis can be performed with uncoupled longitudinal and lateral helicopter models, and

it is often simpler to analyze the uncoupled models [70]. However, in this thesis the coupled

models will be studied. This analysis method is similar to the Eigenvector Response Ratio

performance metric presented in Chapter III.

The poles can be found by calculating the eigenvalues of the models’ A matrices. Each

real eigenvalue or pair of complex conjugate eigenvalues corresponds to a flight mode of the

helicopter [70]. As was discussed in Chapter III, the eigenvectors corresponding to each

mode can be used to determine what model states are most affected by the mode. Each

row of an eigenvector corresponds to one state from the model. States related to each flight

mode have a larger magnitude in their row of the eigenvector. By determining the states

that have the largest contribution in a given eigenvector, the helicopter’s flight modes can

be identified.

Table 8 shows the eigenvalues and eigenvectors of the unloaded Sikorsky S-61 A matrix

given in (95). The flight mode that corresponds to each real eigenvalue or complex conju-

gate pair is labeled at the top of the table. As an example of how the flight modes were

determined, note that the value of the third row of the Long Term Longitudinal Oscillation

Mode eigenvectors is 0.8717. This value is larger than the other elements of those eigenvec-

tors. It is also larger than any of the elements in the third row of the other eigenvectors.
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The third row corresponds to the longitudinal velocity state, ẋH . This suggests that the

mode represented by these two eigenvectors is related to the longitudinal motion of the heli-

copter. Because the corresponding eigenvalues are 0.1092±0.3635i, this mode is oscillatory.

Its oscillatory nature and its relation to the longitudinal motion of the helicopter give the

Long Term Longitudinal Oscillation Mode its name. This mode is also referred to as the

long phugoid or long-period phugoid mode [70]. Note that this mode is also unstable.

A plot of the real and imaginary parts of the eigenvalues of the unloaded model is shown

in Figure 94. The mode names are labeled for each real eigenvalue or complex conjugate

pair. The source of the real, negative-valued Short Term Pitch Mode is the rotor pitch

damping [48]. The Long Term Longitudinal Oscillation Mode corresponds to the unstable

oscillation caused by the coupling of the helicopter pitch and longitudinal velocity [48]. The

instability results from coupling between the pitch moments caused by longitudinal velocity,

or speed stability, and the component of the helicopter weight force acting on the helicopter

in the longitudinal direction due to the pitch angle [48].

The Roll Mode is a result of rotor roll damping [48]. The Roll Mode is faster than the

Short Term Pitch Mode because the helicopter, like most traditional single-rotor helicopters,
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Figure 94: Eigenvalues of the unloaded Sikorsky S-61 model from [37].
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has a smaller moment of inertia about the roll axis than the pitch axis. The Lateral

Oscillation Mode is unstable as a result of the rotor dihedral effect [48]. The instability

of the Lateral Oscillation Mode is more objectionable to pilots than the instability of the

Long Term Longitudinal Mode because it has a higher frequency [48]. This means that it

is important for the flight controller to stabilize this mode.

While resources such as Johnson [48] and Padfield [70] present detailed discussions of

flight modes for unloaded helicopters with a variety of rotor configurations, not much work

has been done on identifying or labeling flight modes of a helicopter with a suspended load.

The following analysis identifies flight modes of the loaded Sikorsky S-61. This analysis will

show that poles, and therefore the behavior of the flight modes, change significantly when

the helicopter is carrying a suspended load.

Table 9 shows the eigenvalues and eigenvectors of the loaded Sikorsky S-61 A matrix

given in (98). The flight mode that corresponds to each real eigenvalue or complex conjugate

pair is labeled above each eigenvalue and eigenvector. Also, a plot of the real and imaginary

parts of the eigenvalues is shown in Figure 95.

The first two modes listed in Table 9 result from the relationships between the helicopter
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Figure 95: Eigenvalues of the loaded Sikorsky S-61 model from [35].
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attitudes, attitude rates, and translational velocities. The eigenvectors of the first mode

have strong contributions from the roll rate and lateral velocity, and the mode is oscillatory.

Similarly, the eigenvectors of the longitudinal mode have strong contributions from the pitch

rate and longitudinal velocity, and the mode is also oscillatory. As a result, the first two

modes are labeled the Roll and Pitch Oscillation Modes, respectively.

The eigenvectors of the third mode have the largest contributions from the helicopter

longitudinal and lateral translational motion. The entries in the eigenvectors in the rows

related to the helicopter longitudinal and lateral positions are approximately 90 degrees out

of phase. This suggests an exchange of energy between the longitudinal and lateral degrees

of freedom indicative of coupling between the two directions. For this reason, this mode is

labeled the Longitudinal-Lateral Coupling Mode.

The eigenvectors of the fourth mode suggest backdriving coupling effects occur between

the lateral helicopter and load translational motion. This mode has a complex conjugate

pair of eigenvalues that have a positive real part, suggesting that the mode is unstable.

Similarly, the eigenvectors of the fifth mode suggest backdriving between the longitudinal

helicopter and load translational motion. This mode is also unstable because it has a

complex conjugate pair of eigenvalues that have a positive real part. These modes were

labeled Lateral and Longitudinal Load-Aircraft Coupling Modes. Note that the lateral mode

is further from the origin, indicating that the lateral motion occurs at a higher frequency

and will diverge more quickly than the longitudinal mode. The presence of these modes

agree with the observation of Hoh et al. [39] that there is strong coupling between the load

oscillation and the helicopter translational degrees of freedom. Hoh et al. also showed that

the strength of this coupling effect has a strong influence on the pilot’s controllability of the

helicopter, and therefore, on the handling qualities of the helicopter.

The final two modes correspond to the helicopter and load moving together in the

longitudinal and lateral directions as if they are one rigid body. They appear in the loaded

model due to the integration of the helicopter and load longitudinal and lateral velocities

to calculate the helicopter and load positions.
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7.4.2 Model-Following Control

Model-Following Control has become an attractive control technique for helicopter flight

controllers. MFC is an effective and viable control architecture because the aircraft response

can be specified via a prescribed model to achieve favorable aircraft performance and the

architecture is well-suited for full authority fly-by-wire control systems [55].

MFC for aircraft first appeared in the literature in the 1960’s and 1970’s. Murphy

and Narendra [66] adjoined a model that approximates the pilot’s inputs to the helicopter

equations of motion, and then used optimal control to design a regulator that would track

the model response. Winsor and Roy [130] used a combination of partial state feedback and

feedforward compensation to achieve good tracking of the prescribed model. More recently,

Trentini and Pieper [119] designed a model-following controller for a helicopter in hover

to meet handling qualities requirements using an optimal control design approach. MFC

has also been synthesized with other types of controllers to achieve better performance in

difficult flight conditions or for specific missions, such as gust rejection during shipboard

operations [41].

There are two main types of MFC. Implicit MFC uses optimal control to design a

feedback controller that yields a closed-loop control system whose dynamics match the

dynamics of the prescribed model [130]. The prescribed model itself does not appear in

the control law directly; its output is only used in an optimal control performance index

used to calculate feedback controller gains [119, 121]. Explicit (or real) MFC uses the

prescribed model directly in the control system, typically as a feedforward compensator

[116, 68, 119, 63]. The control law in explicit MFC is typically constructed using feedforward

of the prescribed model states and a feedback controller that uses plant-state feedback

[130, 121].

Explicit model-following controllers incorporate real-time measurement of the model

tracking error, allowing the controller to reject disturbances and to correct the aircraft

trajectory in the presence of modeling errors [68, 130]. In addition, explicit MFC can be

implemented with partial state feedback and effective model tracking can still be achieved

[130]. Most importantly, the feedback stabilization can be designed independently from the
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feedforward compensator and prescribed model [55]. For these reasons, explicit MFC was

selected for the baseline helicopter flight controller implemented in this chapter.

The implemented controller combines feedforward and feedback control. A state feed-

back controller is used to stabilize the helicopter system. Also, the state feedback control

enables the error dynamics of the model tracking to be specified. Based on the recom-

mendation of Tyler [121], the feedback controller is designed as a regulator independent

from the rest of the controller using only the helicopter plant model. The regulator is de-

signed using the pole placement state feedback technique. The feedforward controller uses

model-inversion techniques to cancel the undesired helicopter dynamics.

However, tracking of the prescribed model is significantly degraded when the helicopter

is carrying a suspended load. One way to improve helicopter performance when carrying a

suspended load would be to replace the original feedforward model with one that accounts

for the sling-load dynamics. A drawback of this method is that the feedback portion of

such a controller would require real-time measurement of the sling load position or angle,

which is almost never available in practice. This section investigates an alternative way

to improve system performance without measurements of the load states by adding input

shaping to the controller.

7.4.2.1 Controller Description

Figure 96 shows the block diagram of an explicit model-following controller. The structure

of this controller is similar to that presented by Osder and Caldwell [68] and Landis et al.

[55]. The pilot command is used as the input to a prescribed model GM . The rest of the

controller is designed to force the output ~x of the helicopter plant GP to track the prescribed

model output ~xM . Generally, helicopters have one or more unstable modes, so a feedback

controller is used to stabilize GP . The feedback element also enables the controller to reject

disturbances that would otherwise degrade the model tracking [68]. Also, the feedback GFB

determines the error dynamics of the model tracking. The feedforward control GFF is then

selected to cancel undesired helicopter dynamics using model inversion techniques.
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Figure 96: Block diagram of an explicit model-following control structure.

7.4.2.2 Theoretical Model-Following Controller Performance

Steady-State Performance

If the feedforward control GFF equals the inverse of the helicopter plant, G−1P , then the

helicopter output ~x asymptotically tracks the model output ~xM . The asymptotic model

tracking can easily be shown from the block diagram in Figure 96 using block diagram

reduction [68]. The control law which provides asymptotic tracking is given by:

~u = GFF~xM + GFB

(
~xM − ~x

)
, (100)

where GFF = G−1P .

Model Tracking Error Dynamics

It can be shown that the design of the feedback controller determines the dynamic

characteristics of the model tracking error. First, the helicopter plant is defined as:

~̇x = A~x+ B~u, (101)

and the prescribed model is defined as:

~̇xM = AM~xM + BM~r. (102)

The model tracking error is given by:

~e = ~xM − ~x. (103)
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Assuming that all of the helicopter states are measurable, full state feedback may be

selected for the feedback controller. Full state feedback calls for feedback control of the

form ~u = −K~x, where K is a constant state-feedback gain matrix. Therefore, GFB from

Figure 96 equals the gain matrix K. The control law in (100) can be rewritten as:

~u = ~uD + K
(
~xM − ~x

)
. (104)

Recall that the feedforward block is chosen to be an inverted model of the helicopter plant.

A state space representation of the helicopter plant model to be inverted is given by:

~̇xD = AD~xD + BD~uD. (105)

In practice, this model will not perfectly represent the helicopter. An expression for ~uD is

obtained by solving (105) for ~uD, or:

~uD = B†D

(
~̇xD −AD~xD

)
, (106)

where B†D is the pseudoinverse of BD and ~xD is the input to the model inverse, which

equals the prescribed model output ~xM shown in Figure 96. The pseudoinverse is required

because B is usually not a square matrix.

Substituting the plant inverse given in (106) into (104), and setting ~̇xD = ~̇xM and

~xD = ~xM , the control law can be written as:

~u = B†D

(
~̇xM −AD~xM

)
+ K

(
~xM − ~x

)
. (107)

To analyze the dynamics of the model tracking error, an expression for the derivative of

~e must be found. Taking the derivative of (103) and substituting (102) and (101) for ~̇xM

and ~̇x gives:

~̇e = AM~xM + BM~r −A~x−B~u. (108)

Substituting (107) into (108) yields:

~̇e = AM~xM + BM~r −A~x−B
[
B†D

(
~̇xM −AD~xM

)
+ K

(
~xM − ~x

)]
. (109)

If the model inversion is exact, or equivalently AD = A and BD = B, then (109) simplifies

to:

~̇e = AM~xM + BM~r − ~̇xM +
(
A−BK

)(
~xM − ~x

)
. (110)
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Recognizing that ~xM − ~x = ~e and AM~xM + BM~r = ~̇xM , (110) reduces to:

~̇e =
(
A−BK

)
~e. (111)

This result shows that the eigenvalues of (A−BK) determine the dynamics of the model

tracking error, ~e = ~xM − ~x, and designing a controller for the model tracking error reduces

to the regulator design problem, as discussed by Tyler [121]. Therefore, using techniques

such as pole placement to calculate a state feedback gain K allows the designer to specify

the model tracking error dynamics.

7.4.3 Near-Hover Attitude-Command Model-Following Controller

This section presents the design of a near-hover attitude-command model-following con-

troller for the unloaded Sikorsky S-61 helicopter model discussed in Section 7.4.1. The

unloaded S-61 model is used for designing the feedback controller gains, and only the atti-

tude states and translational helicopter velocities are used for feedback. The model inversion

is constructed using the unloaded model, which only requires the specified attitudes and

velocities as inputs to the inverted model. The inversion of the unloaded model leads to

full cancellation of the dynamics of the unloaded helicopter plant.

However, when the helicopter carries a suspended load, the model inversion cancels the

baseline helicopter dynamics but not the additional dynamics introduced by the presence

of the suspended load. The controller no longer completely cancels the dynamics of the

plant, so error between the actual output and the prescribed model develops. Note that

the loaded helicopter is simulated using the model of the load-carrying Sikorsky S-61 from

Gupta and Bryson [35] and discussed in Section 7.4.1.

7.4.3.1 Feedback Controller Design Using Unloaded S-61 Model

The model tracking performance can be specified by selecting eigenvalues of A−BK that

give suitable model tracking error dynamics, and the pole placement technique may be used

to calculate K. The selected eigenvalues are 0.8± 0.4i, −4.0± 4.6i, −4.0, and −28.0. Using
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the unloaded Sikorsky S-61 A and B matrices results in the following gain matrix:

K =




22.60 2.735 −0.4642 1.464 −0.1871 0.2352

1.339 0.1425 −0.0163 2.083 0.2455 0.0551


 (112)

The feedback controller could be designed using other techniques, but the pole placement

technique proves simple and effective.

7.4.3.2 Prescribed Models

The prescribed model GM determines how the designer intends the helicopter to respond to

pilot commands. A model that yields the desired helicopter performance should be selected.

However, the model should not be too aggressive. An overly-aggressive model will lead to

commands that the helicopter actuators cannot produce. When the actuators cannot faith-

fully produce the commanded inputs, the helicopter will not follow the trajectory specified

by the prescribed model.

A third-order model was selected that prescribes the desired helicopter attitude and

attitude rate. This third-order model is a series combination of an underdamped second-

order model and a first-order lag. The first-order lag is included to account for actuator

dynamics, and effectively smooths the plant command, ensuring that the command can be

produced by the helicopter rotor. The majority of the dynamics at the time scale of gross

helicopter translation and attitude response is prescribed by the second-order underdamped

model.

The prescribed third-order pitch and roll model is given by:

~̇xM =




0 1 0

0 0 1

−ω2
nτ −

(
ω2
n + 2ζωnτ

)
− (2ζωn + τ)



~xM +




0

0

1



~r (113)

~yM =



ω2
nτ 0 0

0 ω2
nτ 0


 ~xM

The pilot’s attitude command is the input ~r to this model. Note that this model was

designed to have a steady-state gain of unity, although this can be changed depending on

the application and the source of the pilot’s attitude command.
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There are two of these third-order models in the control system, one each for the lon-

gitudinal and lateral channels. Each model is applied independently to the pilot’s attitude

command in that channel. The same first-order time constant, natural frequency, and

damping ratio are used in the two models to give similar characteristics to the pitch and

roll attitude responses.

The model parameters were selected to yield a damping ratio of 0.707 because this

provides a good balance between fast rise time and low overshoot. A settling time ts of

2.5 seconds was selected. Using this damping ratio and settling time, the natural frequency

was found using the approximation:

ts ≈
4

ωnζ
(114)

Solving (114) with the selected damping ratio and settling time resulted in a corresponding

natural frequency of 2.26 rad/s.

A first-order time constant of 0.125 seconds was selected. This time constant was slow

enough to ensure that the helicopter rotor could respond to the commanded rotor tilt

angles, while not significantly altering the performance characteristics prescribed by the

second-order model.

The pitch and roll prescribed models are solved in real time by the controller, and

both models output desired attitude and attitude-rate trajectories, ~yM . The result is pitch

attitude, pitch rate, roll attitude, and roll rate trajectories prescribed by the models. Be-

cause the helicopter velocities are also needed to form the full state vector for inverting the

unloaded model, the measured velocities of the plant are used. The attitude trajectories

are combined with the measured longitudinal and lateral velocities to form the complete

helicopter state vector. This state vector can be interpreted as the desired state trajectory.

7.4.3.3 Simulation Results and Controller Performance

Unloaded S-61 Performance

To evaluate the performance of this controller for the unloaded Sikorsky S-61 helicopter,

a simultaneous pitch and roll maneuver was simulated. The pilot attitude command was

designed to move the helicopter in both the longitudinal and lateral directions to a target
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location, starting and stopping in hover. The attitude command has a maximum amplitude

of 7.16 degrees, and this can be considered a small-to-moderate amplitude command.

Figure 97(a) shows the pilot command, the resulting response of the prescribed model,

and the helicopter attitude response for the pitch channel. The pitch attitude tracks the

prescribed model almost perfectly. Figure 97(b) shows the pilot command, the resulting

response of the prescribed model, and the helicopter attitude response for the roll channel.

As in the pitch channel, the roll attitude tracks the prescribed model almost perfectly. The

controller also minimizes the coupling between the longitudinal and lateral motion of the
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Figure 97: Pilot Command, Prescribed Model Response, and Helicopter Attitude
Response in (a) the Pitch Channel and (b) Roll Channel and for the Unloaded Sikorsky

S-61
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helicopter.

If the control effort required to execute this maneuver is too fast or has too large of

an amplitude, then the quasistatic rotor assumption used in the modeling process may be

inadequate for approximating the rotor dynamics. In other words, the commanded rotor

disk angle may require the helicopter rotor to tilt faster than it can. Because the Sikorsky S-

61 dynamic models do not fully model the rotor behavior or account for actuator limitations,

the commanded rotor disk tilt angles need to be analyzed to verify that they are feasible.

Due to the larger inertia of the helicopter about the pitch axis, it is expected that the

command in the longitudinal channel will need to have a higher magnitude to produce the

required forces and moments for prescribed model tracking and, therefore, the limits of the

rotor are most likely to be exceeded in the longitudinal channel.

To investigate these actuator dynamics, the commands sent to the helicopter plant in the

longitudinal and lateral directions are shown in Figure 98. As expected, the longitudinal

command is more aggressive than the lateral command because the pitch inertia of the

helicopter is larger than the roll inertia. Therefore, a larger-magnitude command is needed

to accelerate the pitch states at the same rate as the roll states, as required by the prescribed

models.

To verify that the control system requests feasible main rotor tilt angles, the commanded

rotor disk angles must be further examined. The response of the rotor to control inputs
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Figure 98: Longitudinal and lateral rotor disk angles for the unloaded Sikorsky S-61.
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occurs on the same time scale as the rotor rotation rate. The time to half amplitude of the

rotor tilt is on the order of 0.05 seconds [48], and the time constant of the rotor response

is typically one quarter to one half of the rotor rotation period [78]. Half of the rotor

rotation period for the Sikorsky S-61 main rotor is approximately 0.15 seconds [37]. The

longitudinal command generated by the controller requires a rotor response with a time to

half amplitude of approximately 0.4 seconds, which is almost three times slower than the

rotor capability. Also, the maximum amplitude of the command is only 1 degree, which is a

small rotor tilt angle. These results suggests that the controller is requesting feasible rotor

tilt angles.

Loaded S-61 Performance

The performance of the load-carrying Sikorsky S-61 helicopter was investigated using

the same controller and pilot commands as for the unloaded helicopter in the previous

section. For feedback, the controller still uses only the unloaded helicopter states (pitch

and roll attitudes and attitude rates, and longitudinal and lateral translational velocities).

Measurements of the load states are not used by the controller.

Figure 99 shows the pilot command, the resulting response of the prescribed model, and

the helicopter attitude response for the pitch and roll channels. The response in the pitch

channel is shown in Figure 99(a). The pitch attitude tracking of the prescribed model is

not significantly affected by the addition of a suspended load. This is due to the large pitch

inertia of the helicopter resisting the moment applied by the swinging suspended load.

The response in the roll channel is shown in Figure 99(b). The roll attitude does not

track the model response very well, particularly following the completion of the command.

Following the command, there are residual roll attitude oscillations that have an amplitude

of nearly 2 degrees. These oscillations are caused by the tension in the suspension cable

supporting the load applying an oscillatory torque about the helicopter center of gravity as

the load swings. In this sense, the load is acting like a disturbance applied to the helicopter.

According to ADS-33E-PRF design requirements [124], residual attitude oscillations

larger than 0.5 degrees are considered excessive for any type of maneuver. As seen in

Figure 99(a), the pitch attitude residual oscillation amplitude is less than 0.5 degrees, and
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Figure 99: Pilot command and attitude response for the loaded Sikorsky S-61.

remains within ADS-33E-PRF requirements. However, the residual roll attitude oscillation

amplitude is nearly 2 degrees, so it does not satisfy ADS-33E-PRF requirements.

Figure 100 shows the longitudinal and lateral load oscillation caused by the helicopter

motion. The 65.6 ft suspension cable leads to a large-amplitude, low-frequency response

of the load. The peak-to-peak amplitude of the load oscillation in both the pitch and roll

directions is nearly 55 ft. This amount of load swing could be dangerous and hard for the

pilot to control following the maneuver. It would also increase the time it takes for the pilot

to set down the load, as he or she would have to wait for the load oscillation to damp out
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(a) Longitudinal load swing.
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(b) Lateral load swing.

Figure 100: Suspended load swing in the (a) longitudinal and (b) lateral directions.

or actively move the helicopter to cancel out the swing before setting the load down.

The amount of residual attitude and load oscillation is dependent on properties of the

pilot’s commands, such as move distance and velocity. This means the amount of residual

oscillation will vary depending on the pilot’s commands, making the oscillations hard for

the pilot to predict and thus difficult to control.

7.4.4 Combining Input-Shaping and Model-Following Control

The model-following controller does not address the load oscillation nor its disturbance-like

effects on the model tracking error. To reduce the load oscillation, input shaping is added

to the model-following controller. The model-following controller block diagram with input
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shaping is shown in Figure 101. Input shaping is added to the controller between the pilot

command and the prescribed model.

Effectively, this implementation builds input shaping into the prescribed model, and

the model output is an input-shaped command that does not excite suspended load swing.

The order of the input shaper and the prescribed model in the controller does not matter

because input shapers and the chosen prescribed model are linear.

7.4.4.1 Input Shaper Design

To design an input shaper, the natural frequencies and damping ratios of the oscillation in

the longitudinal and lateral directions are required. The log decrement method was applied

to the data shown in Figure 100 to determine the natural frequency and damping ratio. The

longitudinal load oscillation has a frequency of 0.907 rad/s and a damping ratio of 0.001.

The lateral load oscillation has a frequency of 0.869 rad/s and a damping ratio of 0.007.

The frequency is slightly different in the two directions because it mildly depends on the

helicopter inertia, which is significantly different about the pitch and roll axes. Also, the

lower inertia in the roll direction means that the backdrivability is higher.

It is worth noting here that the natural frequency and damping ratio are also partially

influenced by the feedback control. The feedback controller tries to drive the model tracking

error to zero. However, the load acts like a disturbance on the helicopter motion, as can be

seen in Figure 99, because the load is coupled with the helicopter attitude and translation.

This disturbance introduces an error between the trajectory specified by the prescribed

++

Feedforward
Feedback

-1

Input Shaping

+ -

Figure 101: Combined input-shaping and model-following control for the load-carrying
Sikorsky S-61 helicopter.
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model and the actual helicopter states that the feedback controller attempts to eliminate.

The feedback controller affects the load oscillation as the controller attempts to eliminate

the model tracking error. It does so by adjusting the commands sent to the helicopter plant

and therefore affects the motion of the helicopter and the load. This means the poles used

to design the feedback controller and calculate the gain matrix K end up having a small

effect on the motion of the load and its swing frequencies and damping ratio.

A ZV input shaper is selected for use in this model-following controller. The input shaper

amplitudes and times are calculated from the load swing natural frequencies and damping

ratios. A separate input shaper is used for the longitudinal and lateral load oscillations

because their frequencies are somewhat different.

7.4.4.2 Simulation Results and Controller Performance with Input Shaping

Figure 102 shows the input-shaped pilot command, the resulting response of the prescribed

model, and the helicopter attitude response for the pitch and roll channels with input shap-

ing added to the model-following controller. The pitch response is shown in Figure 102(a).

The pitch attitude tracking of the prescribed model is not as significantly affected as the

roll channel by the addition of a suspended load, as was shown in Figure 99. Adding input

shaping to the controller improves the tracking by reducing the small residual pitch attitude

oscillations.

The real benefit, in terms of the attitude response, of adding input shaping to the

controller is in the roll dynamics. The roll response is shown in Figure 102(b). The roll

attitude tracking of the model response is greatly improved with input shaping added to

the controller. As a result, the ADS-33E-PRF requirements for residual attitude oscillation

amplitude are satisfied. With the residual attitude oscillations reduced, the addition of

input shaping to the controller should make the response of the helicopter more predictable

to the pilot.

Figure 103 compares the longitudinal and lateral load oscillation caused by the helicopter

motion with and without input shaping. Input shaping significantly reduces the residual

load oscillation in both the longitudinal and lateral directions. Note that there is a still

171



-8
-6
-4
-2
0
2
4
6
8

0 5 10 15 20 25 30 35

Pilot Command
Model Response
Helicopter Response

Pi
tc

h 
A

ng
le

 (d
eg

)

Time (seconds)
(a) Pitch channel.

-8
-6
-4
-2
0
2
4
6
8

0 5 10 15 20 25 30 35

Pilot Command
Model Response
Helicopter Response

R
ol

l A
ng

le
 (d

eg
)

Time (seconds)
(b) Roll channel.

Figure 102: Pilot command and attitude response for the loaded Sikorsky S-61 with
input shaping added to the model-following controller.

some transient swing that occurs during the command.

The effectiveness of input shaping is even more clear when looking at the load oscillation

in two dimensions. Figure 104 shows the two-dimensional load oscillation. The oscillation

is measured relative to the position of the helicopter, so it is what the pilot would see when

looking down on the load. The small amount of swing that occurs in the ZV-shaped case

is the transient oscillation.

When using input shaping, the helicopter comes to rest over the desired position at

the end of the maneuver because the residual load swing is eliminated. Figure 105 shows

the helicopter’s position in the horizontal plane as the maneuver is executed with and
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(a) Unshaped and ZV-shaped longitudinal load swing.
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(b) Unshaped and ZV-shaped lateral load swing.

Figure 103: Unshaped and ZV-shaped suspended load swing in the (a) longitudinal and
(b) lateral directions.

without input shaping. Figure 105(a) shows the helicopter traveling in the longitudinal

and lateral directions during the maneuver. Figure 105(b) shows the helicopter’s position

at the end of the maneuver. In the unshaped case, the residual load swing back drives

the helicopter, backdriving the helicopter around the desired position. In the input-shaped

case, the helicopter comes to rest over the desired position. This occurs because the residual

load swing has been eliminated, so the load does not backdrive the helicopter at the end

of the maneuver. Because input shaping significantly reduces the residual load oscillation

and results in the helicopter coming to rest over the desired position, it should decrease the
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Figure 104: Unshaped and ZV-shaped two-dimensional load oscillation.

time it takes for the pilot to transfer a load from one location to another.

As with the controller for the unloaded helicopter, the control effort required to ex-

ecute the maneuver should be examined. The command sent to the helicopter plant in

the longitudinal and lateral channels is shown in Figure 106 with and without input shap-

ing. Figure 106(a) shows the longitudinal command, and Figure 106(b) shows the lateral

command. When there is no input shaping, the command is oscillatory and has a larger

amplitude compared to the case with input shaping.

Backdriving effects on the helicopter cause error in the model tracking that the feedback

controller tries to correct. This corrective action causes the command to have a larger

amplitude and to be oscillatory. On the other hand, input shaping proactively eliminates

the load swing before it significantly backdrives the helicopter, causing no need for extra

corrective action from the feedback controller.

7.5 Discussion

While model-following control has been used in helicopter flight controllers since the 1960’s,

the implementation presented here for suspended-load control is unique. A model-following

controller designed for an unloaded helicopter was combined with an input shaper designed

to prevent suspended load oscillation in the longitudinal and lateral directions. The results
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(b) Helicopter position at the end of the maneuver.

Figure 105: Helicopter position during and at the end of the maneuver.

show that the combined controller eliminates oscillations of a suspended load and improves

tracking of the prescribed model by reducing backdriving effects.

This approach is effective because the model-following controller enables the motion of

the aircraft to behave like the desired model, while the input shaper eliminates the unde-

sirable oscillatory dynamics of the suspended load. In effect, an input-shaped prescribed

model is used to achieve the desired helicopter response and critically damped load motion.

By using input shaping to prevent load oscillation, the model-following control design can

be accomplished using a model of the unloaded helicopter, which is much simpler than a
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(a) Longitudinal command.
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(b) Lateral command.

Figure 106: Control effort required by the model-following controller in the (a)
longitudinal and (b) lateral channels for the loaded Sikorsky S-61.

model of a loaded helicopter.

Figure 107 compares the unshaped and input-shaped helicopter roll responses shown in

Figures 99(b) and 102(b). While the unshaped response appears to more closely track the

pilot’s command during the transient motion, it results in residual oscillation of the load

and backdriving of the attitude. The problematic characteristics of the pilot’s command

that result in the residual load oscillation are removed by applying ZV input shaping to

the command. The addition of input shaping results in the ZV-shaped roll response shown

in Figure 107. While the response with input shaping does not follow the pilot’s transient

command as closely, the helicopter completes the maneuver with almost no residual load
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Figure 107: Comparison of unshaped and ZV-shaped helicopter roll responses.

oscillation, as is shown in Figure 103. Preventing suspended load oscillation also improves

the residual helicopter attitude response because the effects of the load on the helicopter

are reduced when the load swing is reduced. As a result, the maneuver is completed with

almost no residual attitude oscillation.

The helicopter’s response to pilot commands should be more predictable because the

pilot does not need to account for the slow-period and large-amplitude load oscillations and

their effects on the helicopter. The transient load oscillations are reduced, and the load

hangs directly below the helicopter when it stops, as shown in Figures 103 and 104. This

should make transferring a suspended load from one location to another safer, faster, and

easier for the pilot. However, the response lag introduced by input shaping could make con-

trol more difficult for pilots. Past research on input shaping and operator learning suggests

that operators are able to modify their control strategy, become accustomed to the response

lag, and improve their overall performance [53, 54]. To fully analyze the effectiveness of the

proposed control scheme, piloted evaluations and feedback must be obtained using piloted

flight simulations to determine the handling qualities. Or, full evaluation of ADS-33E-PRF

handling qualities requirements and flight characteristics should be determined to give an

indication of the expected piloted performance. However, piloted evaluations would more

effectively capture the expected learning effects.

Another significant benefit of this controller is that real-time measurement or estimation
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of the suspended load states is not required. Input shaping proactively eliminates the

residual swing of the suspended load, whereas a load-swing feedback controller would have

to respond retroactively to measurements in the suspended load states in order to damp

the load oscillation. The approach presented here simply requires an estimate of the load

oscillation frequency and damping ratio in addition to the unloaded helicopter model.

One limitation of this study was the use of a helicopter model that was linearized

about hover. Therefore, effects such as air drag, which should be incorporated for forward

flight modeling, were weakened by the linearization. The results presented here could be

further verified by using a full nonlinear model to simulate the helicopter plant. In addition,

suspension cable length, load size and shape, helicopter/load mass ratio, and the location

of the suspension point relative to the helicopter center of gravity will affect the natural

frequency and damping ratio of load oscillation. Further studies are required to investigate

the robustness of the input shaping and model-following approach to uncertainty in the

load oscillation frequency and damping ratio. In addition, the effects of disturbances such

as wind on the controller performance should be investigated.

7.6 Summary

Applying input shaping to simulated pilot commands greatly reduced oscillation of a he-

licopter’s suspended load. By proactively eliminating load swing using input shaping, the

helicopter response itself also improved because a swinging load can backdrive the heli-

copter attitude and position. The results showed that input shaping can be combined with

a typical helicopter flight control system to proactively prevent suspended load oscillation

and improve helicopter flight performance by reducing backdriving effects. The unique

approach presented here combines the commonly-used control methods of model-following

control and input shaping in a simple way to address the challenging control problems of

suspended load oscillation and backdriving effects of the load on the helicopter. The com-

bined controller eliminates the slow-period and large-amplitude load oscillations and their

backdriving effects on the helicopter. The transient load oscillations are reduced, and the
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load hangs directly below the helicopter when it stops. This should make transferring a sus-

pended load from one location to another safer, faster, and easier for the pilot, but piloted

simulations should be performed to fully verify this.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

This chapter concludes the thesis by summarizing the methods and contributions, and

proposes topics for future study.

8.1 Conclusions and Contributions

This thesis has clarified the backdriving dynamics that occur in systems with coupling be-

tween a rigid and flexible mode. A method for quantifying the degree of backdrivability was

presented. Then, a method for controlling backdrivable flexible systems was demonstrated

based on decreasing backdriving effects by reducing vibration using input-shaping tech-

niques. Also, it was shown that input shaping can be combined with feedback controllers

to improve the response of the rigid body or base of backdrivable flexible systems, while

also limiting vibration.

Three fundamental models were developed that demonstrate backdriving effects. The

models are i) Cart with Pendulum, ii) Rotary Hub with Flexible Arm, and iii) Cart with

Inverted Pendulum. These models were used to develop two backdrivability performance

metrics based on determining response ratios from mode shapes and complex poles and

zeros. The metrics were applied to these models to evaluate their backdrivability, as a

function of system parameter values. It was shown that increases in mass (or inertia) ratio

of the flexible element relative to the rigid element lead to higher amounts of backdriving.

The Cart with Pendulum model was used to study crane trolley slip while braking.

It was shown that slip should only occur for low braking coefficients of friction (< 0.4),

high payload-to-trolley mass ratios, and large amounts of swing. The Rotary Hub with

Flexible Arm model was used to develop and demonstrate a combination of input shaping

and PD feedback control that reduces vibration of the flexible mode while also improving

performance of the rigid body response through reduced overshoot and control effort. The

closed-loop modal behavior of the PD feedback controller for the Rotary Hub with Flexible
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Arm was studied to inform the design of the combined controller. Also, the Cart with

Inverted Pendulum model was combined with a feedback controller to stabilize the system,

and it was shown that feedback controllers can be a source of backdriving dynamics, in

addition to physical flexibility.

A constant-amplitude input shaping method was developed for backdrivable flexible

systems equipped with stepper motors (or other on-off actuators). The method provides

increased robustness to frequency error, while also allowing the input shaper duration to

be varied to reduce backdriving effects on the rigid body motion. The limitations that

arise due to the constant-amplitude impulses were also shown, with the technique reducing

vibration less effectively as the system damping ratio increases.

Finally, two demonstrative applications were presented. The first was a spacecraft with

flexible appendages driven by stepper motors. Rigid body pointing error caused by back-

driving effects when slewing flexible appendages is an important consideration for attitude

control of flexible spacecraft. It was shown that a combination of PD attitude control and

constant-amplitude shaping is effective at reducing vibration of the appendages and lim-

iting the peak pointing error of the spacecraft main body response. The results showed

that a large derivative gain should be selected because this yields a lower damping ratio

according to the modal analysis of the PD feedback controller, and the constant-amplitude

shapers limit oscillation most effectively when there is a single underdamped mode with a

small closed-loop damping ratio. Additionally, the constant-amplitude shaper duration can

be increased to achieve the minimum bus response possible in cases where the controller

gains cannot be increased further. Increasing the shaper duration can allow the attitude

controller more time to correct pointing error before additional steps are taken, while still

preserving the vibration-reducing effects.

The second demonstrative application focused on helicopters carrying suspended loads.

Backdriving effects due to load-attitude coupling can be a significant concern. Input shaping

applied to an experimental model radio-controlled helicopter carrying a suspended load was

shown to be effective at reducing suspended load swing and backdriving effects on the

helicopter. Then, a combined input-shaping and model-following controller was developed
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and evaluated in simulation using models of a Sikorsky S-61 helicopter. Analysis of the

model eigenvectors showed that the backdriving effects of load-attitude coupling in the

roll direction are more problematic than the pitch direction due to the lower helicopter

inertia in that direction. The simulation results showed that the combined input-shaping

and model-following controller improves performance by proactively eliminating the load

swing, reducing backdriving effects and allowing the helicopter to better track the prescribed

model.

In summary, the following contributions were made:

• Three illustrative and fundamental backdrivable system models that capture key re-

sponse characteristics (Chapter II).

• An explanation of the dynamics of backdrivable flexible systems, using the three

fundamental models to illustrate backdriving effects (Chapters II and III).

• Performance metrics for backdrivability based on determining system response ratios

using mode shapes and based on complex poles and zeros (Chapter III).

• An optimized combination of a two-impulse input shaper and PD control for back-

drivable flexible systems (Chapter IV).

• A constant-amplitude input shaping method for developing stepping sequences for

stepper motors that can also be used to reduce backdriving effects, such as pointing

error in flexible spacecraft attitude control systems (Chapters V and VI).

• Two demonstrative applications that illustrate the combination of input shaping and

feedback control for spacecraft with flexible appendages driven by stepper motors and

helicopters carrying suspended loads (Chapters VI and VII).

8.2 Future Work

The research in this thesis can be expanded in several ways. Other sources of backdrivability

can be studied, such as due to fuel sloshing in spacecraft or in fuel trucks. By developing
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fundamental models of these applications, the backdrivability performance metrics can be

used to study and identify the key system parameters that contribute to backdriving effects.

The crane trolley slipping while braking analysis could be expanded and applied to

inverted-pendulum transporter wheel slip. This would allow for studying the scenarios that

lead to wheel slip. While reduced traction obviously results from lower coefficients of friction

between the wheels and the ground, rider mass and inertia and pitch angle also contribute.

The combined two-impulse input shaping and PD feedback controller optimization could

be expanded to also address robustness concerns. Input shapers are often designed to be

robust to modeling errors in the natural frequency or other system parameters, and con-

straints could be included to enforce vibration reduction over a range of possible frequency

or other parameter error. This requires using additional impulses in the input shaper, and

may require adjustments to the multi-level optimization approach utilized to find solutions.

The combined input-shaping and model following controller for helicopters carrying sus-

pended loads could also be studied with real pilots in flight simulators and, once it is shown

to be safe in the simulators, on actual helicopters carrying suspended loads. This would

allow pilots to evaluate the effectiveness of input shaping combined with the feedback con-

troller in terms of the controllability of the helicopter and assessing the handling qualities.

There is also potential for input shaping to cause pilot-induced oscillations as pilots adjust

to its effects on their commands. However, it has been shown that the oscillations of the

uncontrolled suspended load result in backdriving of the aircraft position and attitude, and

backdriving can also result in pilot-induced oscillations [117]. If there is cause for concern

about input shaping causing pilot-induced oscillations, then pilot simulation studies should

be done to investigate whether the potential for pilot-induced oscillations caused by input

shaping is worse than the potential for those caused by an uncontrolled suspended load

backdriving the helicopter.
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APPENDIX A

HAZARDS OF INVERTED-PENDULUM HUMAN TRANSPORTERS

When a product is a complex dynamic system that interacts directly with a human, en-

gineers must consider the wide range of possible motions and forces that the device could

exert on the human. Such an analysis goes beyond a simple thought exercise and requires

detailed knowledge about the system dynamics and the operating environment. This ap-

pendix presents a list of hazards resulting from such an analysis of inverted-pendulum

human transporters. The list of hazards is constructed by using knowledge of the dynamics

and the mechanical design obtained through simulation and experimentation. However,

the dynamics are so complex that the list is augmented with hazards that are revealed by

studying accident videos posted on the Internet. A full hazard analysis of these failure

modes and scenarios was performed in [101].

A.1 Overview of Inverted-Pendulum Transporters

Inverted-pendulum human transporters are devices that transport one person in a standing

configuration. Figure 108 shows three such transporters: the Segway i167 in Figure 108(a),

the Segway i2 in Figure 108(b), and the Ninebot Personal Transporter in Figure 108(c). The

relatively low-speed (limited to approximately 5.59 m/s = 12.5 mph for the Segway) oper-

ation combined with an electric propulsion system makes two-wheeled inverted-pendulum

transporters potential options for short-distance transportation on city streets, sidewalks,

and inside buildings. The system is composed of mechanical components, sensors, a com-

puterized controller, and a human operator. The device is driven by two wheels that are

placed side-by-side, rather than the standard in-line configuration of bicycles, scooters, or

motorcycles.

Figure 109 shows a schematic diagram of an inverted-pendulum transporter with the

major components and directions labeled. When the operator leans forward, the device
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(a) Segway i167. (b) Segway i2.
(c) Ninebot Personal

Transporter.

Figure 108: Two-Wheeled Inverted-Pendulum Human Transporters.

pitches forward. The machine senses the non-zero pitch angle condition and rotates the

wheels forward in an attempt to get back under the center of gravity and stop the forward

fall. In order to slow the rider down, the machine must first speed up in order to induce

a backward pitch angle. The machine can then apply deceleration torques TL and TR to

slow the wheels down without causing the operator to fall forward, or backward, off of the

device. In order to turn, the wheels rotate at unequal speeds causing the system to yaw,

and travel in an arc. If the system is not translating forward or backward, then the wheels

can rotate in opposite directions to turn the machine in place.

With the side-by-side wheel configuration, the mechanical design of the transporter is

inherently unstable at all speeds. Furthermore, it is not possible for the human operator to

manually balance the machine. The sensors in the device must constantly measure the state

of the machine and feed this information to the computer controller. The controller then

uses this feedback signal to adjust the wheel speeds and maintain the forward/backward

(pitch) falling motion within an acceptable envelope so that the device and rider do not

fall over. Under a range of operating conditions, the system is mechanically stable in the

side-to-side (roll) direction. Therefore, the computer does not attempt to control the rolling
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Figure 109: Schematic Diagram of an Inverted-Pendulum Human Transporter.

motion. In fact, the machine has no physical means to actively control the roll motion.

Given the unstable mechanical design and the complicated sensor and control system,

the machine makes complex and unexpected motions in response to both movements of the

rider and disturbances from the operating environment. Moreover, there are key differences

between inverted-pendulum transporters and other transporters such as bicycles. The bicy-

cle rider is the balancing control system, whereas the inverted-pendulum transporter utilizes

an automated balancing controller. Also, a bicycle rider is able to put his or her feet down

on either side of the bicycle, whereas the large wheels of inverted-pendulum transporters

block the rider from stepping sideways.

A.2 Experimental and Simulation Studies

A.2.1 Experimental Results

It is difficult to accurately simulate the complex dynamic behavior of inverted-pendulum

transporters. Some of the more challenging modeling aspects include: human operator mo-

tions, wheel slip, and external disturbances. Furthermore, it is challenging to experimentally

investigate the behavior of inverted-pendulum transporters in most hazard scenarios due to

the inherent danger. However, by testing such machines with an expert rider and using a
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motion capture system to record its motions, illustrative examples of some hazard events

have been recorded and analyzed [15, 16]. This section describes experimental results that

illustrate the Segway’s response during three example hazard events: roll instability, ob-

stacle collision, and unexpected turns. The experiments led to the discovery of additional

information about these hazard scenarios, such as how they occur and how a rider may

react during the event.

During these experimental tests, a Vicon MX motion capture system was used to mea-

sure the position and orientation of a Segway i167 or i2 in real-time. The motion capture

system consists of twelve MX-3+ cameras connected via two Vicon MX Ultranet HD units

that stream camera data to a computer at 120 frames per second. The cameras tracked

the position of reflective markers attached to the Segway. Vicon iQ version 2.5 software

processed the camera data. The Segway’s orientation, measured with respect to the global

reference frame, was converted to Euler angles defined using the ZYX Tait-Bryan conven-

tion. The resulting position and orientation measurements were recorded. Each MX-3+

camera can record 659x493 grayscale pixels, and position measurements made using this

system have a resolution of approximately 1 mm [127, 126].

A.2.1.1 Roll Instability

An inverted-pendulum transporter can experience roll instabilities when executing a turn.

Figure 110 shows the Segway during a roll instability. One wheel has left the ground, and

the rider is not able to balance the machine laterally.

To investigate the transporter response during turns, a Segway i2 was driven forward

at a constant speed and then a 180-degree left turn was attempted. One might expect any

roll instability to occur with the Segway and rider falling to the outside of the turn and the

inside wheel leaving the ground. This form of roll instability typically happens when the

rider does not lean into the turn. However, in these experiments roll instability occurred

due to the rider overleaning into the turn. Leaning into the turn was necessary during the

experiments to avoid a serious crash. However, in some cases the rider overcompensated

and leaned too far. This resulted in the Segway rolling to the left (into the turn), and the
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Figure 110: Segway roll instability.

right (outer) wheel leaving the ground.

Figure 111 shows the Segway forward speed, yaw rate, and base roll angle during a

roll-unstable turning trial. Figure 111(a) shows the Segway traveling 2 m/s when the turn

was initiated at 0.3 seconds. Figure 111(b) shows the yaw rate increasing as the turn was

executed. When the yaw rate reached approximately 3.25 rad/s at 0.7 seconds, the Segway

base suddenly rolled to the left. This can be seen in Figure 111(c), which shows the roll

angle of the Segway base during the trial. The sudden change in roll angle at 0.7 seconds

corresponds to the right (outer) wheel leaving the ground. The loss of contact between

the wheel and the ground indicates a sudden loss of roll stability as a result of the rider

overleaning into the turn.

The yaw rate began to oscillate as the rider attempted to recover from the instability

while turning on one wheel. In this case, the expert rider was able to recover from the

instability and continue the turn. The pair of smaller increases in roll angle around 1

second correspond to the right wheel bouncing once the right side of the Segway base fell

back to the ground.

These results indicate that rider lean has a significant impact on roll instability. The roll

instability may occur into or away from the turn depending on transporter speed, turning

rate, and the amount of rider lean. Riders do not know the vehicle’s current forward speed
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Figure 111: Segway Forward Speed (a), Yaw Rate (b), and Base Roll Angle (c) during a
roll-unstable turn [15].
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or turning rate as the device does not display this information. While it is clear that there is

an envelope of roll-stable rider lean and an appropriate amount of lean could be determined

from the vehicle’s forward speed and desired turning rate, it is up to the rider to estimate,

and execute, an appropriate amount of lean in real time with no information about the

vehicle speed or turning rate. It is difficult for inexperienced riders to know how much to

lean into a turn without triggering a roll instability to either side, so experience with the

transporter is required for riders to appropriately lean into turns. However, when turns

occur unexpectedly, it is not possible for riders to compensate by intentionally leaning into

them. Unexpected turns may be initiated by the machine (when riders accidentally pull

or twist the handlebars) or the environment (when striking an obstacle). Such events are

presented in Sections A.2.1.2 and A.2.1.3.

A.2.1.2 Obstacle Collision

Figure 112 shows an example response when the right wheel of the Segway hit a brick

(laid flat in its lowest configuration). As shown in Figure 112(a), when the right wheel

hit the bump at 1 second, the Segway’s X-direction (forward) speed was reduced by the

impact. In addition, its Y-direction (side-to-side) and Z-direction (vertical) speeds began

to oscillate in response to the disturbance caused by the bump. Figure 112(b) shows the

corresponding angular responses. The bump caused the Segway to pitch forward due to

the horizontal force applied to the wheels by the bump while the momentum of the rider

continued forward. In addition, the Segway turned toward the obstacle and experienced an

oscillation in the roll direction. This example experimental response shows that the Segway

turns unexpectedly even when it hits a relatively small obstacle.

A.2.1.3 Unexpected Turn when Pulling/Pushing Handlebars

On the Segway i167, the rider uses a twist steering grip to command turning (yawing)

motions. A photo of the twist steer is shown in Figure 113. The rider can accidentally twist

this steering grip when leaning forwards or backwards.

The response of the Segway i167 under these conditions was investigated experimentally.

The expert rider leaned forward and simultaneously twisted the steering grip in the same
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Figure 112: Segway speed and orientation during a single-wheel obstacle collision [15].

direction, which normally commands a left turn. Figure 114 shows the resulting Segway

angular response. The Segway gently pitched forward due to the rider’s forward lean,

but sharply yawed to the left nearly 45 degrees in less than 1/2 seconds due to the sudden

steering grip twist. This sharp turn caused a roll instability, which resulted in the left wheel

of the Segway lifting off the ground and the Segway roll angle increasing to over 13 degrees.

The expert rider (who was expecting the sharp turn) was able to wrestle the Segway back

under control. These dangerous conditions could obviously dislodge an unsuspecting rider

and cause an accident.
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Figure 113: Segway i167 Twist Steering Grip.
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Figure 114: Segway angular response due to unexpected steering grip twist when leaning
forwards [15].

A.2.2 Simulation Results

Some of the known hazards of inverted-pendulum transporters are difficult to safely test

experimentally. Wheel slip is one such hazard. Therefore, numerical wheel slip simulations

were used to study its effects.

A.2.2.1 Wheel Slip

Like any wheeled vehicle, the wheels of inverted-pendulum transporters can lose traction.

When this occurs, the device can make unexpected motions. Slipping at a single wheel is

particularly dangerous because it results in a yaw response that is difficult for the machine
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and rider to control, as was shown in the previous section.

Figure 115 shows simulated yaw rate responses during wheel-slip events. These cases are

based on the right wheel traveling over a medium friction surface with the machine moving

at forward speeds of 1, 1.5 and 2 m/s. Yaw corresponds to turning left or right, with positive

yaw and yaw rate defined as turning to the left. When traveling in a straight line and one

wheel slips, the translational speeds of the wheels become unequal, so the device turns.

When slip occurs at the right wheel, the device turns to the right as can be seen from the

negative yaw rate response in Figure 115. For the case with a forward speed of 2 m/s, the

resulting combination of forward speed and yaw rate caused the device to experience a roll

instability with the right wheel coming off the ground in less than 0.2 s. At this point, the

simulation was terminated because the dynamic model used to perform the simulations did

not model the case of having one wheel off the ground. These simulations and the dynamic

model used to perform them are described in more detail in [15, 16].

A.3 Hazards of the Segway Personal Transporter

Given the numerous complex actions that must be continually performed for inverted-

pendulum human transporters to maintain balance, they have numerous failure modes.

Many failures result in the rider falling off the device. However, other outcomes include:

the device running into the rider after the rider has fallen from or stepped off the device,
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Figure 115: Segway yaw rate response with right wheel slip on a medium friction surface
[15].
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the device running into a nearby pedestrian, or the device damaging property.

A list of hazards was generated by examining the prior art of inverted pendulums,

simulating inverted-pendulum transporter dynamic responses, conducting experiments on

Segways, and examining the history of inverted-pendulum human transporter accidents

available on the Internet (one significant source is YouTube videos). The list of failure

modes is quite extensive, so this list focuses only on the dynamics-related hazards. (Hazards

such as electronic chip failures and loose wires are not directly considered, although they

could cause some of the hazards below.)

1. The device will fall over if the user attempts to mount the device when

it is not turned on. The user will fall off because the transporter has no power to

balance itself. This failure mode was made famous by President Bush in June 2003.

2. The device turns off unexpectedly. If the motors of the machine lose power for

whatever reason, the machine will fall over in a short period of time and there is

nothing the rider can do to balance the machine. The reasons for such a power failure

are numerous. For example, when the battery power runs low, a Segway should sense

this condition and initiate a “safety shutdown” procedure during which the device

makes loud beeping noises, vibrations, and attempts to slow the transporter to a very

low velocity. Under some conditions, the low-battery state is not properly sensed and

the machine turns off quickly–without going through the safety shutdown procedure.

The Segway was recalled in 2003 to fix an issue where the low-battery condition was

not detected properly [22].

3. The performance limits of the motors are exceeded. When a person attempts

to drive a traditional electric scooter (with a front-back inline wheel configuration)

faster than the motor is capable of going, the scooter simply does not respond and

keeps going at its top speed. Unfortunately, inverted-pendulum transporters react

very differently when their motor limits are exceeded. For example, when an operator

leans forward quickly, the center of mass of the person-vehicle system quickly moves

in front of the base. In order to regain balance, the machine must accelerate forward,
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Figure 116: Segway right wheel blocking rider’s foot.

faster than the person, and attempt to position itself out in front of the center of

mass so that the system starts to tip backwards. If the forward pitching angle is too

large, then the motors cannot accelerate the wheels fast enough to regain balance.

In such cases, a Segway shuts off without warning the rider. The control system is

programmed to detect this condition and other conditions that are outside of the

machine’s ability to regain balance.

4. The machine and/or rider experiences a roll instability when making turns.

At certain combinations of speed and turning radii, the device can roll to the side very

suddenly, carrying with it a consequent loss of traction with one of the wheels. Even

if the machine does not roll, the rider can experience a roll instability. Because of the

large wheel hubs, riders cannot move their foot to the side to regain balance as they

lean sideways. Figure 116 shows the right wheel blocking the rider’s right foot as he

tries to quickly step off the device to regain balance.

5. The device makes an unexpected motion because one wheel loses traction.

If a wheel loses traction, then it cannot apply the correct forces to balance the system.

If the wheel spins excessively, then the machine will turn off. Common ways to lose

traction include: one wheel dropping off of a curb or into a pothole, and passing over
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slick surfaces such as ice, sand, wet grass, and mud.

6. The speed limiter1 causes an unexpected motion. Given the unstable mechan-

ical design, the machine must speed up in order to slow down. When the machine

decides that it needs to slow down to maintain the speed limit, the wheels must ac-

celerate so as to move the base out in front of the person. This causes the handlebars

to rotate backwards and push on the rider in an effort to tilt them backward. The

machine can then start to slow the wheels down without pitching the rider off the front

of the machine. This speed-limiting motion is not controlled by the rider. Therefore,

this is an unexpected motion that could destabilize the person. Furthermore, the

command to accelerate the wheels when the speed limiter is first engaged could lead

to wheel slip. The Segway was recalled in 2006 for a stability problem originating

from unexpected motion induced by the speed limiter [23].

7. The machine makes an unexpected motion that causes one wheel to hit

an obstacle. In order to actively balance, the machine makes motions that the

user does not control. These unexpected motions may drive the machine toward an

obstacle. (The machine has no way of knowing that it is heading toward an obstacle.)

If a wheel contacts an obstacle that stops the wheel from moving at its desired speed,

then the machine cannot balance properly. The machine usually turns in the direction

of the obstacle and pitches forward. In order to regain balance, the machine quickly

accelerates off in the new direction. All of this occurs without control input from the

rider. If the forward pitch is significant enough, then the machine will turn off and

fall over without notifying the rider or going through the safety shutdown procedure

(Hazard 3).

8. The machine makes an unexpected turn when the operator pushes or pulls

on the handlebars to accelerate the machine, or balance themselves. These

unexpected turns occur for three main reasons. First, the rider may accidentally twist

the Segway i167 steering grip when pushing or pulling on the handlebars. Second,

1The Segway attempts to regulate its maximum speed by pushing back on the rider with the handle bars.

196



pulling on the handlebars in the sideways direction can generate a torque on the

machine that lifts one of the wheels off the ground, or at least causes it to lose

traction. When one wheel loses traction, the machine turns unexpectedly to the side.

This situation is also represented by the roll instability shown in Figure 110. Third,

the Segway i2 uses a tilting handlebar to induce turns, rather than a twist grip on

the handlebar. Any unintended tilting of the handlebar, especially when the operator

tries to stabilize themselves with the handlebars, will induce an unexpected turn by

the machine.

9. The machine runs into the rider. This can happen if the rider steps off the

device while unintentionally pulling back on the handlebars. This makes the device

go backwards and run into the rider. This can also occur if a surface irregularity

causes the rider to jump or fall off to the front of the device.

10. The machine traps the rider’s legs or feet when stepping off voluntarily,

or when falling off during a low-speed accident. An example of this is shown

in Figure 117. The rider’s right foot is trapped between the wheel and center divider

on the platform while the Segway rotates and the rider has stepped off with the left

foot.

11. The device moves without a rider when in balance mode. If the rider steps

off the device and does not hold it while it is in balance mode, then the device can

Figure 117: Rider’s feet trapped by wheel.
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Figure 118: Segway moving without a rider in balance mode.

start moving. If this happens, then the device might run into, or over, nearby objects

or people. Figure 118 shows a runaway Segway, with the rider chasing after it.

12. The machine cannot balance properly if the rider stands too far away from

the center of the platform. If the rider inadvertently stands near the front of the

platform, then the rider’s center of mass is ahead of the transporter and causes it to

pitch forwards. The rider is not able to pull back enough to counteract the forward

lean, and the transporter races forwards. If the rider stands towards the rear of the

platform, then a similar effects occurs and the transporter races backwards. Because

the rider does not realize they are standing in the incorrect place, they have trouble

regaining control. Many pull back on the handlebars to attempt to stop, which works

on level ground. However, if the transporter is on a slope, then even strongly pulling

back on the handlebars may not be enough to stop the forward motion.

There are several compounding factors that can occur during the above hazards. For

example:

• The machine blocks the rider’s arms during a fall from the device. This can be seen

in Figure 119, where the rider’s arm is blocked from extending out to catch herself.

• The wheels and the handlebars block the rider’s feet and legs when trying to step off

in a hazardous situation.
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Figure 119: Segway handlebar blocking rider’s arm.

Figure 120: Rider in a seated position on the Segway base.

• The rider may trip on or be knocked over by the transporter during or after a hazard

event.

• The hazard may also result in the transporter and/or rider falling from an additional

height, such as off a curb, down a flight of stairs, or over a cliff [20, 64, 113], depending

on the surrounding environment.

• The rider may fall down onto the transporter base in a seated or prone position, as

shown in Figure 120. The device expects to be balancing a standing person, and is

not able to appropriately balance the low center of mass of the seated or prone person.

This often results in the transporter racing forwards or backwards, depending on the

position of the fallen rider on the device.

• The rider’s foot may get trapped or run over by one of the wheels, as shown in
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Figure 117. This may happen as the rider attempts to step off the device when a

hazard occurs.

These compounding factors are likely to increase the severity of an outcome if one occurs

during a hazard event.

A.4 Analysis of Accident Videos on the Internet

In the process of generating the list of inverted-pendulum transporter hazards, a collection

of 43 videos posted to the Internet was analyzed. The videos were used to help identify

hazards and complicating factors. Table 10 shows the number of occurrences of each hazard

in the collection of videos. Note that each video could show instances where more than one

hazard occurred (so the total number of occurrences sums to larger than 43). The frequency

shows how often each hazard appeared in the video collection, and was calculated from the

number of occurrences divided by the number of videos. In many accident videos, the

occurrence of one hazard would trigger others. The videos demonstrated instances where

up to four hazards occurred within a few seconds of each other, or simultaneously. Roll

instability, obstacle collision, loss of traction, and unexpected turns due to pulling/pushing

on the handlebars were the most commonly seen hazards in the videos.

Table 10: Hazard occurrence in 43 accident videos.

Hazard Hazard Description Number of 
Occurrences Frequency

1 Stepping On with No Power 1 2%
2 Unexpected Shut-Off 4 9%
3 Motor Performance Limits Exceeded 9 21%
4 Roll Instability During Turns 17 40%
5 Loss of Traction 11 26%
6 Unexpected Motion due to Speed Limiter 1 2%
7 Obstacle Collision due to Unexpected Motion 16 37%
8 Unexpected Turn when Pulling/Pushing Handlebars 11 26%
9 Device Runs into Rider when Stepping Off 3 7%
10 Feet/Leg Trapping 8 19%
11 Moving without a Rider in Balance Mode 5 12%
12 Standing Off-Center on the Platform 3 7%
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Analysis of the videos was most useful for discovering unexpected hazards and com-

plicating factors associated with inverted-pendulum transporters. Due to the complicated

and unstable motion of the device and the unpredictable response and motion of the rider,

some of the hazards and complicating factors would be difficult to anticipate. For example,

the rider falling into a seated or prone position on the transporter base was a complicating

factor discovered in these videos. Also, many of the videos show significant backdriving of

the transporter base can occur before and during accidents.

It is worth noting that videos posted to the Internet do not give a complete picture of

the hazard probability. If footage is not considered entertaining, then it is less likely to

attract views and thus might not be posted on the Internet. For example, the four most

common hazards shown in the collection of videos–roll instability, obstacle collision, loss of

traction, and unexpected turns due to pulling/pushing on the handlebars–represent cases of

interesting, complex, and/or “entertaining” motion that will attract views on the Internet.

On the other hand, only five videos featured Hazard 11: the transporter moving without a

rider in balance mode. Using the device for a short period of time (or watching others use

it) in everyday environments reveals that Hazard 11 actually occurs more frequently than

this analysis of the videos suggests. In addition, Hazards 6 and 12 can be difficult to detect

in videos. In most cases it is unclear if the speed limiter was engaged, and most videos do

not clearly show the position of the rider’s feet on the platform.
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