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SUMMARY

Frequency scaling in traditional computing systems has hit the power wall

and multicore computing is here to stay. Unlike homogeneous multicores that have

uniform architecture and instruction set across cores, heterogenous multicores have

di�erentially capable cores to provide optimal performance for specialized function-

ality. However, this heterogeneity also translates into di�cult programming models,

and extracting its potential is not trivial. The Cell Broadband Engine by the Sony

Toshiba IBM(STI) consortium was amongst the �rst heterogenous multicore systems

with a single Power Processing Unit(PPU) and 8 Synergistic Processor Units (SPUs).

We address the issue of porting an existing sequential C/C++ codebase on to the Cell

through compiler driven program analysis and pro�ling. Until parallel programming

models evolve, the "interim" solution to performance involves speeding up legacy code

by o�oading computationally intense parts of a sequential thread to the co-processor;

thus using it as an accelerator. Unique architectural characteristics of an accelera-

tor makes this problem quite challenging. On the Cell, these characteristics include

limited local store of the SPU, high latency of data transfer between PPU and SPU,

lack of branch prediction unit, limited SIMDizability, expensive scalar code, etc. In

particular, the designers of the Cell have opted for software controlled memory on its

SPUs to reduce power consumption and to give programmers more control over the

predictability of latency. The lack of a hardware cache on the SPU can create per-

formance bottlenecks because any data that needs to be brought in to the SPU must

be brought in using a DMA call. The need for supporting a software controlled cache

is thus evident for irregular memory accesses on the SPU. For such a cache to result

in improved performance, the amount of time spent in book-keeping and tracking at
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run-time should be minimal. Traditional algorithms like LRU, when implemented

in software incur overheads on every cache hit because appropriate data structures

need to be updated. Such overheads are on o�-critical path for traditional hardware

cache but on the critical path for a software controlled cache. Thus there is a need

for better management of "data movement" for the code that is o�oaded on to the

SPU.

This thesis addresses the "code partitioning" problem as well as the "data move-

ment" problem. We present

GLIMPSES - a compiler driven pro�ling tool that analyzes existing C/C++ code

for its suitability for porting to the Cell, and presents its results in an interactive

visualizer.

Software Controlled Cache - an improved eviction policy that exploits information

gleaned from memory traces generated through o�ine pro�ling. The trace is ana-

lyzed to provide guidance for a run-time state machine within the cache manager;

resulting in reduced run-time overhead and better performance. The design tradeo�s

and several pros and cons of this approach are brought forth as well. It is shown that

with just about the right amount of runtime book-keeping and decision making, one

can get to the di�cult solution space of the right balance to achieve high performance.

xi



CHAPTER I

INTRODUCTION

1.1 Multicore Computing

Traditionally, an increase in performance of computer systems has been achieved

through an increase in processor frequency. The physical size of chips decreased, the

number of transistors on chip increased. Clock speeds increased and heat dissipation

rose to dangerous levels. In a single core, several techniques to improve performance

have been introduced to gain performance, namely superscalar processing, instruction

pipelining, out of order issue and branch prediction. However, once speeding up

processor frequency had hit the power wall, computer architects decided to try a new

approach to improve processor performance, and this led to the advent of multicore

computing. By adding an additional processor, performance can be improved at

modest clock speeds and lower heat dissipation. Thus in a multicore, performance

boost is achieved without running at excessively high clock rates [19].

1.2 Heterogenous Multicores

The debate over whether cores in a multicore environment should be homogeneous or

heterogeneous continues. In a homogenous environment, all cores are all exactly the

same in terms of clock frequency, cache size and functionality. On the other hand, in a

heterogeneous system, each core may have a di�erent function, frequency and memory

model. There clearly a tradeo� between processor complexity and customization.

Homogeneous cores are easier to produce and program, because they have uniform

instruction set and hardware across cores. However, some argue that this might not

be the most e�cient use of multicore technology. In a heterogenous environment, each

1



core can have a speci�c function, and run on its own special instruction set. The large

centralized core can be generic and run the OS, while several cores can be specialized

for di�erent functionality like graphics, audio, �oating point calculations etc. While

this model is more complex, it is argued that its e�ciency, power, and thermal bene�ts

could outweigh its complexity. The Cell Broadband Engine(henceforth referred to as

the Cell) was one of the �rst stable heterogenous multicore systems, with a single

PPU and eight SPUs on a chip. While the work in this thesis is based on the Cell,

it must be noted that the issues addressed here are likely to be encountered in any

heterogenous multicore and the tools and approach described are generic enough to

be extended to other similar environments. [19]

1.3 Programming Model

In May 2007, Intel fellow Shekhar Borkar stated that "The software has to also start

following Moore's Law, software has to double the amount of parallelism that it can

support every two years." Since the number of cores in a processor is set to double

every 18 months, it makes sense that the software running on these cores takes this

into account. Ultimately, programmers need to learn how to write parallel programs

that can be split up and run concurrently on multiple cores instead of trying to exploit

single-core hardware to increase parallelism of sequential programs [19]. The Cell is a

high performance, heterogeneous, parallel architecture that is well suited for a diverse

range of workloads ranging from scienti�c applications to digital home entertainment

applications. It has been reported to be capable of around 230 GFLOPS at 3.2 GHz

for single-precision �oating point operations. However, achieving this computational

throughput requires the programmer to understand both his application and the

architecture thoroughly. There are two possible ways to use a multicore. One way

could be to run a multithreaded program on multiple cores to gain speedup due to

parallelization. However this involves complex programming models. The other way

2



Figure 1: Program Partitioning

is to use the cores as accelerators by pushing o�oading compute intensive code that

optimally uses the capability of the multicores. Until parallel programming models

evolve this approach is more likely to be used and is the model of our focus.

1.4 Challenges

Prototyping large legacy sequential codebases for porting on to the SPEs of the Cell

involves several challenges. The �rst problem is the one of selecting the optimal

partition or set of functions to execute on the PPE and the SPEs. We refer to this

issue as /emphCode Partitioning. An abstract view of partitioning a program on the

function call graph is depicted in Figure 1.

Apart from code, data that is shared between the PPE and the SPEs also needs

to be synchronized automatically. This is the /emphData Movement issue faced

in any distributed-memory architecture and is also not trivial to automate. The

optimal partition to be ported on to the SPU must be identi�ed keeping in mind

the architectural constraints of the Cell and the SPU. These constraints are limited

local store of 256 KB, lack of branch prediction unit on the SPU, and the fact that

it is geared towards vectorizable rather than scalar code. The set of upward exposed

references must be identi�ed and managed appropriately. Function arguments and

3



Figure 2: PPU SPU Communication

returns must be handled using the control block DMA mechanism. This is depicted

in Figure 2

Apart from this, any remote data references must also be managed via DMA

transfers. The data on SPU needs to be 128 byte aligned as well. Thus it is evident

that we need to provide a programmer with tools to understand program behavior,

and quickly construct candidate partitions for the SPE obeying its architectural con-

straints. There is also a need to evaluate and quantify the suitability of a set of

functions to be ported to the SPEs with respect to performance. Once the functions

are ported on to the SPU, there is a need to manage data in a more programmer

friendly manner. The rationale for the architecture of the Cell in terms of power

e�ciency is can be found in [17].

In this thesis, we describe a two-pronged approach to address these problems:

• Porting a legacy codebase - A compiler driven pro�ling tool called GLIMPSES

that enables programmers to understand the static and dynamic behavior of

their programs, quickly construct candidate partitions for the SPEs and evaluate

and quantify the suitability of these partitions for execution on the SPEs. This

4



is meant to solve the code partitioning problem and is described in Chapter 3

• Managing a ported codebase - A Software Controlled Cache for seamlessly man-

aging data transfer between SPUs and PPUs. This is meant to solve the data

movement issue and is described in Chapter 4.

An overview of the Cell provided in Chapter 2.

5



CHAPTER II

THE CELL BROADBAND ENGINE

The Cell Broadband Engine processor by the STI consortium is a novel heterogeneous

multicore architecture. It consists of a single main core called the Power Processing

Engine(PPE) and eight Synergistic Processor Engines(SPE)s. The PPE acts as the

controller that runs the Operating System(OS) and dispatches and manages jobs on

the SPE. The SPE is suitable for compute intensive tasks, o�ers very high processing

power and supports SIMD parallelism. The Cell architecture is designed to be well-

suited for a wide variety of programming models and allows for partitioning of work

between the PPE and the eight SPEs. Figure 3 shows the architecture of the Cell

Processor.

2.1 Power Processor Element (PPE)

The PPE is a Power Architecture based core that acts as the controller for the eight

SPEs. It has control over the SPEs and can start, stop, interrupt and schedule

processes running on the SPEs. Unlike SPEs, the PPE can read and write the main

memory and the local memories of SPEs through the standard load/store instructions.

The PPE works with conventional operating systems that can run on 64-bit PowerPC

processors, while the SPEs are designed for vectorized �oating point code execution.

The PPE contains a 32 KB instruction and 32 KB data Level 1 cache and a 512 KB

Level 2 cache [2].

6



Figure 3: Cell Processor Architecture [15]

Figure 4: Cell SPE Architecture [15]
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2.2 Synergistic Processing Element (SPE)

The SPE is meant to handle the computational workload of the program. Each

SPE is composed of a Synergistic Processing Unit(SPU) and a Memory Flow Con-

troller(MFC). The MFC consists of DMA, MMU and Bus Interface. Each SPE con-

tains a 256 KB embedded SRAM for instruction and data called "Local Storage",

which is visible to the PPE and can be addressed directly by software. Each SPE can

support up to 4 GB of local store memory. The local store does not operate like a

conventional CPU cache since it is neither transparent to software nor does it contain

hardware structures that predict which data to load. The SPU cannot directly access

system memory; the 64-bit virtual memory addresses formed by the SPU must be

passed from the SPU to the SPE memory �ow controller (MFC) to set up a DMA

operation within the system address space. Although the SPEs have Turing complete

architectures, they are not fully autonomous and require initiation from the PPE.

Both the PPE and SPE are RISC architectures with a �xed-width 32-bit instruc-

tion format. The PPE contains a 64-bit general purpose register set (GPR), a 64-bit

�oating point register set (FPR) and a 128-bit Altivec register set. The SPE contains

128-bit registers only. These can be used for scalar data types ranging from 8-bits to

128-bits or for SIMD computations on a variety of integer and �oating point formats.

2.3 Element Interconnect Bus (EIB)

The Cell marries the SPEs and the PPEs via the Element Interconnect Bus(EIB).

The EIB gives access, via fully cache coherent DMA to main memory and external

storage devices. To make the best of EIB and to overlap computation and data

transfer, each of the nine processing elements (PPE and SPEs) is equipped with a

DMA engine. Since the SPE's load/store instructions can only access its own local

memory, each SPE entirely depends on DMAs to transfer data to and from the main

memory and other SPEs' local memories. A DMA operation can transfer either a

8



single block area of size up to 16KB or a list of 2 to 2048 such blocks. One of the

major design decisions in the architecture of the Cell is the use of DMAs as a central

means of intra-chip data transfer, with a view to enabling maximal asynchrony and

concurrency in data processing inside the chip.

9



CHAPTER III

THE GLIMPSES TOOLKIT

3.1 Introduction

GLIMPSES is an acronym for Global Interprocedural Memory and Partition Estima-

tor for SPEs. It is a tool for analyzing legacy sequential codebases for the purpose of

porting them to the SPEs of the Cell[18]. This is a challenging task because of the

novel architectural attributes of the processor and the amount of parallelism available.

GLIMPSES is a compiler-driven pro�ling and visualization framework that enables

Cell programmers to quickly evaluate the static and dynamic behavior of a program

to determine its suitability for execution on the SPEs. With this tool, programmers

can view call graphs, function characteristics such as stack and heap usage and dy-

namic memory reference patterns in an interactive visualizer. We describe the overall

approach used, information that the tool can produce, why this information is useful

for a Cell programmer and how they are represented in the tool.

The �rst version of GLIMPSES was developed by Jaswanth Sreeram. I have worked

on the tool and incrementally added features after the 0.87 release. The parts that

I am speci�cally responsible for have been highlighted. However, for the sake of

completeness, all its features have been described, with appropriate citations where

applicable.

The tool is licensed under an open-source BSD license. It is hosted at http://

sti.cc.gatech.edu/software.html and is available for download at http:

//glimpses.sourceforge.net.

10



3.2 Related Work

There exist several tools for pro�ling applications. Some of these are elaborated

below.

• gprof - The GNU pro�ler gprof [7] is a useful tool for measuring the performance

of a program�it records the number of calls to each function and the amount

of time spent there, on a per-function basis. Functions which consume a large

fraction of the run-time can be identi�ed from the output of gprof. The idea

is that e�orts to speed up a program can concentrate �rst on those functions

which dominate the total run-time.

• Valgrind - Valgrind [13] is an instrumentation framework for building dynamic

analysis tools. There are Valgrind tools that can automatically detect many

memory management and threading bugs, and pro�le programs in detail. Val-

grind can also be used to build new tools. The Valgrind distribution currently

includes six production-quality tools: a memory error detector, two thread error

detectors, a cache and branch-prediction pro�ler, a call-graph generating cache

pro�ler, and a heap pro�ler.

• Pin - Pin [10] is a tool for the dynamic instrumentation of programs. Pin does

not instrument an executable statically by rewriting it, but rather adds the code

dynamically while the executable is running. Pin includes the source code for a

large number of example instrumentation tools like basic block pro�lers, cache

simulators, instruction trace generators, etc. It is easy to derive new tools using

the examples as a template.

• Eclipse PTP - The Eclipse Parallel Tools Platform [12] provides a highly inte-

grated environment for parallel application development.The aim is to provide

a standard, portable parallel IDE that supports a wide range of parallel ar-

chitectures and runtime systems; a scalable parallel debugger; support for the

11



Figure 5: GLIMPSES Tool �ow

integration of a wide range of parallel tools; and an environment that simpli�es

the end-user interaction with parallel systems.

• Intel VTune [6] - The Intel VTune Performance Analyser is a commercial ap-

plication for software performance analysis for x86 based machines [14].

3.3 Approach

GLIMPSES consists of several components: a compile-time instrumentation pass,

post-execution analysis passes and a graphical visualizer[18]. The process of produc-

ing viewable pro�ling information for a program is shown in Figure 5.

A sequential C/C++ program is compiled with the base compiler which is LLVM

[8] in this case. LLVM (Low Level Virtual Machine) is an optimizing compiler that

enables several advanced compiler analysis and optimizations. It is noted that all the

analysis and instrumentation performed in the LLVM compiler for producing traces

can also be added to other compilers i.e. the tool is not dependent on compilation

features present only in the LLVM compiler. LLVM generates a machine independent

bytecode, which its the intermediate representation(IR) on which the instrumentation

12



pass is run. This instrumentation pass takes as input the original bytecode and

produces bytecode in which all the events of interest are instrumented. These are:

• Function entry and exit points

• Loads and Stores

• Dynamic Memory Allocation instructions

The instrumented bytecode is then compiled and linked. On running the new

executable with test input, a trace of the events of interest is generated. This trace is

used by all analysis passes to extract information that is useful to the programmer.

The extracted data is translated into GraphML [5] format which is understood by the

prefuse [11] framework and rendered in the Visualization framework. The feature set

of GLIMPSES is elaborated in Section 3.4. A sample GraphML �le for the Static Call

Graph of a small test application is shown in Appendix C. Each node corresponds

to a single function in the graph, which has various function metrics associated with

it. The edges represent the function calls.

3.4 Features and Visualization Framework

The features of GLIMPSES can be broadly classi�ed into three categories: those that

aid the programmer in understanding the program as a whole, those that aid in un-

derstanding individual functions and those which help in making code partititioning

decisions. This is depicted in Figure 6. Support for features Dynamic Call Graph,

Memory Locality Behavior and Function Metrics- Code Size, Stack Size, Autovector-

izable loops and Branch Density was present in GLIMPSES 0.87. I have been involved

in four releases (GLIMPSES 0.91 - 0.94) and the incremental feature addition that

were involved in these releases. These are highlighted in green in the Figure and elab-

orated in sections that follow. However all features have been described below for the
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Figure 6: GLIMPSES Features

sake of completeness. The use cases for GLIMPSES are depicted with screenshots in

Appendix B

3.4.1 Evaluating the program

3.4.1.1 Function Call Graphs

The function call graph gives the programmer an idea of the overall structure and

caller-callee relationships in the program. We present to the programmer, both the

Static and the Dynamic Call Graph. The Static Call Graph consists of all functions

that are de�ned in the workload, one node per function. The nodes are colored green

or red to distinguish whether it was called during the pro�le run or not. The Dynamic

Call Graph consists of only those functions that were called during the pro�le-run, one

node for each invocation or instance of the called function. They are time-stamped

to indicate the order in which they were called.

3.4.1.2 Function Stepping

To allow for overlaying of the dynamic program run on the Static Call Graph, there

is a feature to allow the programmer to play the actual call sequence that occurred
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during the pro�le run through function stepping.

3.4.1.3 Source Tree

The programmer can view the Source Tree of the program on the left pane of the

visualization framework, which highlights the appropriate �le as and when a certain

function is selected on the Static Call Graph. This feature is useful for a programmer

to go back and edit the �le based on the feedback provided by the tool.

3.4.1.4 Function Search

When workloads are very large, it can be di�cult to locate speci�c functions and

observe their features. Therefore, a search feature is implemented, which will highlight

the desired function on the Source Tree as well as the Static Call Graph if it is present.

3.4.2 Evaluating a function

When the programmer hovers the mouse pointer over any function i.e. a node in the

Static or Dynamic Call Graph, its properties are updated on the function properties

panel on the right.

3.4.2.1 Memory Locality Behavior

[18] Due to the limited size of the local store on the SPEs, understanding the memory

reference behavior of the program can help the programmer in laying out the data

such that it can be e�ciently moved between an SPE local store and local stores of

other SPEs or main memory. Ideally, one would like functions executing on the SPE

to reference a small working set of data, very frequently. If that is not the case then

re-layout of data can reduce both the amount of data that is unnecessarily fetched and

the amount of data that has to be �ushed to main memory in order to bring in new

data into the local store. GLIMPSES can produce three types of locality information

from the dynamic memory reference trace that is produced during execution of the

program. The three types of locality reported are:
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Spatial Locality - This property is a measure of the number of loads to addresses in

a spatial window. It indicates the probability that if a particular word in memory

is brought into the local store, then future loads access the memory line that word

falls in. Thus the higher the spatial locality, the more spatially clustered memory

references are.

Temporal Locality - This property is a measure of the number of loads to the same

address in a time window. Given a load instruction executing at a particular point

in the program, this measure tells us, how many future loads will access this same

memory address. The higher the temporal locality, the more frequently the address

is accessed, and hence the longer it should be kept around in the local store.

Neighbor A�nity - This is a property that combines both spatial and temporal lo-

cality. Speci�cally, neighbor a�nity is the probability that loads that occur during a

window in time, also access memory addresses in a window in memory. It is computed

as follows: Given a load in the trace that is accessing a particular memory address X

and given a window of size d in the trace starting at this load, the neighbor a�nity of

this load is equal to the number of loads in that window that access memory addresses

that are not more than a memory line away from X.

3.4.2.2 Function metrics

The function metrics that are currently being displayed are: Code size: The Code

Cize is simply the number of bytes required to store the code for this function de�ni-

tion on the SPU. Let this be S1.

Used Code Size: When a set of functions are selected, the Used Code Size is the total

code size of only the functions that were called during the pro�le run. Let this be S2.

Code Utilization Ratio: This metric is an indication of the amount of code that was

actually exercised. Thus it can be calculated as S1 / S2.

Stack Size: The Stack Size is the number of bytes of stack space used in the function
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invocation during the pro�le run.

Heap Size: The Heap Size is the number of bytes of heap space that was used in that

function invocation during the pro�le run.

Branch Density : The Branch Density of a function is calculated as the ratio of the

number of branch instructions in the function to the total number of instructions.

Number of Autovectorizable loops : This is simply the number of auto-vectorizable

loops found by the gcc compiler in the given function.

Number of calls : This number is the number of times this function was called during

the pro�le run.

Number of Unsupported Function Calls : This is the number of external unsupported

function calls that are in this function de�nition.

The tool allows the programmer to select more than one function. As new func-

tions are added or removed under the selection, the function properties are appropri-

ately updated to display the e�ective aggregate value. This can help a programmer

understand the e�ect of choosing the set of functions to be ported on the SPE.

3.4.2.3 Utilities

There are several other utility features provided in GLIMPSES to improve the com-

prehension of speci�c functions. These are listed below. When the user right clicks

his mouse on any node in the static call graph, the tool pulls up a context menu

where the user may choose to do one of the following

1. View and Edit source code of the function: GLIMPSES opens up the code for

the function in the emacs editor. This can be very useful for editing source code

as the programmer views its properties.

2. View Control Flow Graph(CFG) for the function: The CFG is generated with

support from LLVM and gives a very good picture of the branching and loop
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structure of the function.

3. View the callers of the function: Upon choosing this option, all functions that

could potentially call the selected function are highlighted in yellow.

4. View the callees of the function: Upon choosing this option, all functions that

the selected function could potentially call are highlighted in yellow.

5. View all functions reachable from the function: Upon choosing this option, all

functions that can be reached through calls from this function are highlighted

in yellow.

6. Select all functions reachable from the function: Upon choosing this option, all

functions that can be reached though calls from this function are highlighted in

deep green and red (depending on whether they were called or not during the

pro�le run respectively) and their function metrics are aggregated and displayed

appropriately.

3.4.3 Evaluating a partition

A key decision a Cell programmer has to make is the partitioning of code between

the SPEs and the PPE. To help the programmer in making this decision, GLIMPSES

has features to analyze the whole program, or observe speci�c functions as described.

It also allows the the programmer to select a set of functions for which he may view

aggregate metrics. The code utilization ratio is also an indication of the amount of

code that might be actually exercised when pushed on to the SPU. The tool can be

used to �lter out bad selections by allowing the user to specify thresholds on each

function metric, weeding out bad selections, and reducing the problem space. Thus a

user could specify that he wants only functions with branch density greater than X,

or code size less than Y or a combination to be displayed.
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Table 1: GLIMPSES Release History

Feature 0.87 0.91 0.92 0.93 0.94

Dynamic Call Graph
√ √ √ √ √

Memory Map
√ √ √ √ √

Function Properties
√ √ √ √ √

Alias Analysis
√ √ √

Static Call Graph
√ √ √

Function Stepping
√ √

Control Flow Graph
√ √

Function Search
√ √

Source Tree
√ √

Callers and Callees
√ √

Subtree
√ √

View/Edit Source
√ √

Unsupported function warnings
√

PowerPC Estimates
√

3.5 Conclusion

3.5.1 Contribution

GLIMPSES is generic tool that allows one interactively analyze and port a legacy

sequential codebase on to the Cell SPU. The architecture of the tool is such that

it can easily be con�gured to extend to any heterogenous multicore. It is modular

enough to allow for variation of the base compiler, or change in metrics to be observed.

The current download size of GLIMPSES from sourceforge is 13.8 MB. This includes

LLVM and prefuse for the Visualizer. When built, its executable size is 200.6 MB. It

can handle very large traces. For the mpeg2dec application, the trace size was 630.2

MB. I have been the developer for the GLIMPSES toolkit through four releases during

August 07 - September 08. These involve incremental feature addition though releases

0.91,0.92, 0.93 an 0.94. The release history with feature sets since GLIMPSES 0.91

has been shown in Table 1. The 0.91 release included several User Interface changes,

but did not add any new features. There have been 190 downloads over the past year

from sourceforge.
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3.5.2 Future Directions

GLIMPSES garnered a lot of interest during the STI Cell Workshop at Georgia Tech

in July 2008. Terrasoft Solutions was interested in a distribution of GLIMPSES for

its version of Yellow Dog Linux. IBM was interested in exploring GLIMPSES as a

plug-in for Eclipse Parallel Tools Platform. These are being investigated. There are

several features could be built into the tool. These are listed below.

• Interprocedural Alias Analysis information for providing for re�ning partition

sets. Such analysis can expose a lot of non-obvious function dependence in-

formation. The aliasing results can be used to estimate a new metric which

indicates the coupling between two functions; Higher the probability of alias-

ing, the more tightly coupled they are, and this would mean that placing these

two functions on di�erent SPUs would be a bad idea as it would introduce

more synchronization overhead. Alias analysis information can also be used for

data pinning and prefetching. With precise function dependence information,

it may be possible for the compiler to outline regions of memory that should be

prefetched before they are actually needed. Macroscopic data structure anal-

ysis can be leveraged to provide smart heap memory allocation on the SPEs

that have been found to be very e�ective in improving performance in pointer-

intensive workloads. Improved and intuitive visualization schemes could be

investigated for the representation of memory access patterns, alias sets and

partitions.

• Integration into the IBM Eclipse Toolkit as a plugin.

• GLIMPSES currently performs estimation on the x86 because of the limitations

of the LLVM compiler that has limited support for PowerPC on Linux. How-

ever there are architectural di�erences between x86(which is a CISC processor)

and Powerpc(which is a RISC processor) and further di�erences between the
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instruction sets on the PowerPC and SPU. GLIMPSES could be installed on the

PowerPC with a di�erent base compiler to provide for more accurate results.

• GLIMPSES could be extended into a more generic tool for the analysis of se-

quential code for any multicore system through the use of machine description

�les provided as metadata, thus providing di�erent perspectives for di�erent

multicores and not limiting itself to the Cell. This can greatly improve its reach

and utility in the future and could be used to solve the computational o�oading

problem for GPUs and DSP co-processors as well.
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CHAPTER IV

SOFTWARE CONTROLLED CACHE

4.1 Motivation

The Cell emphasizes e�ciency, prioritizes bandwidth over latency, and favors peak

computational throughput over simplicity of program code. [2] Though most of the

"horsepower" of the Cell comes from the SPEs, the use of DMA as a method of data

transfer and the limited local memory footprint of each SPE pose a major challenge to

software developers who wish to make the most of its potential. This demands careful

hand-tuning of programs to extract maximal performance from the Cell. Program-

mers have to manage the SPE execution including creation of threads, managing data

transfers and aligning the data on local stores among other issues. The local stores

on the SPEs are limited in size (256 KB) and make it mandatory for a programmer

to manage the local memory space e�ciently and manually. This can severely impact

programmer productivity. DMA transfers and non-local accesses in SPEs can create

a huge performance overhead that can lead to unacceptably slow execution on SPEs.

The Cell is widely regarded as a challenging environment for software development.

IBM provides a comprehensive Linux-based Cell development platform to assist de-

velopers in confronting these challenges through the IBM Cell SDK. The di�cult

programming model of the cell continues to be the main bottleneck to its adoption.

The need for a Software Cache is evident as it can improve application performance

by providing a mechanism to look up data in local storage before attempting a DMA

transfer. This could save program several cycles. There is also a need to provide more

transparent management of this data movement to simplify programming and pave
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Figure 7: The Software Cache ToolChain

the way for wider adoption of the Cell. A Software Cache Toolchain has been de-

veloped at our research group. It is a comprehensive solution that not only provides

a caching mechanism to improve application performance; but also a system that

enhances programmer productivity and code quality. Since it is the infrastructure

upon which my work is built, an overview of the system is elaborated in Section 4.2.

Sections that follow go into the details of my work.

4.2 The Software Cache Toolchain

The Software Cache Toolchain proposes a solution of automatically managing the SPE

local store and also provides a seamless interface for the management of SPE - PPE

interactions for data and code transfers. The solution consists of a compiler-based

pro�ler and analyzer, a single-source compilation system consisting of source-to-source

code generator and a runtime system on SPEs that manages local SPE store and data

spaces. The solution is based on pro�le based analysis that allows understanding

dynamic behavior of the code. A compilation phase called "partitioner" �rst identi�es

the call sites that can be o�oaded to the SPE from a C/C++ source level program and
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then generates the necessary code which manages the PPE/SPE interactions. The

code generator outputs PPE code and SPE code at C/C++ source level. The software

cache is a runtime system that works closely in conjunction with the compiler analysis

and hints generated there from. The phase which generates these hints is called the

"memory analyzer". The generated PPE and SPE code can then be compiled using

the native PS3 gcc compilers. The SPE code is transformed to use "smart pointers"

wherever there exist remote pointer dereferences. The smart pointers are a template

based solution that transparently invoke the routines in the software cache library

to �rst check if the memory reference exists in the local store, and if it does not,

DMA the data into the local store and access it. For the purpose of understanding

the overall motivation of this work, the Paritioner and Memory Analyzer are brie�y

described in Section 4.2.1.

4.2.1 Partitioner and Memory Analyzer

The Partitioner analyzes the source code of a program and generates suitable par-

titions that can be run on the Cell, such that considerable computation is o�oaded

to the SPUs. A partition is de�ned as a subtree of the dynamic callgraph, such that

there is a single entry of control �ow into and out of the partition (through the root

of the partition subtree).

The Partitioner analyzes both the static and dynamic characteristics of the program

sources and attempts to maximize the amount of execution time spent inside the

partition. It considers various characteristics of each callgraph node in the light of

the limitations of the SPU. These are noted below.

• The SPU does not have a hardware branch predictor : This means that code

with heavy branches will su�er slowdown when run on the SPU. Therefore, the

partitioner checks the dynamic conditional and unconditional branch ratio and

will reject those with too high ratios.
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• The SPU has a tight storage constraint : The SPU local store has 256K available

for text, stack, and heap. The software controlled cache that will reside on the

SPU also needs to be accounted for as it will dynamically allocate memory for

the cache. The partitioner uses the pro�ling runs and determines the storage

required.

• The SPU is a 128 bit SIMD processor : Scalar code can lead to frequent loads,

stores and vector shu�es. The partitioner identi�es code that is sure to produce

this type of behavior and requires that they are infrequent.

• The Software cache adds to the slowdown a partition experiences : The over-

head caused by the software cache also needs to be low to allow for improved

performance

The Memory Analyzer works in conjunction with the partitioner to predict the

possible memory allocation and usage for a proposed partition set. It analyzes mem-

ory traces to determine appropriate design parameters for the Software Cache; and

simulates the result for approximate performance statistics. Finally the analyzer

feeds back to the partitioner the estimated slowdown due to the software cache (due

to inherent maintenance overhead and DMA transfer stalls for misses) to improve

partitioning. Through this continuous feedback, it re�nes the partitions, possibly

rejecting some for performance or space constraints.

The Partitioner and Memory Analyzer are treated as a black box for the purpose

of this thesis and is not central to my work. However, the Software Cache Library

and Smart Pointer APIs are used extensively and are described in Section 4.2.2 and

4.2.3. This library is developed by Sunjae Park.

4.2.2 Software Cache Library

The Software Cache is an object based line backed software cache that lies between

the address spaces of the PPU and SPU. As with any subroutine, functions o�oaded

25



on the SPU partition may require certain amount of external data for correct execu-

tion. Simple data can be passed through arguments and explicit DMA, but this can

become complicated with code when there is heavy SPU-PPU interaction through the

use of pointers. The Software Cache accepts PPU addresses and will bring in data

automatically as they are accessed. Coupled with the remote_ptr smart pointer, the

software cache can provide near transparent access from the SPU to the PPU address

space. The smart pointer is explained in Section 4.2.3.

In addition to the DMA overhead, the Software Cache executes as part of the

SPU partition and adds a certain amount of overhead. The Software Cache API acts

as a low-level interface to the Software Cache. In addition, the Software Cache will

automatically handle issues that occur with alignment. A user just needs a pointer

to the PPU address desired, and the size of the object. The use of the remote_ptr

API, which acts as a wrapper around the Software Cache API, is encouraged. The

current implementation of the toolchain assumes that objects brought into the SPU

via this Software Cache API does not exceed the size of a single line.

4.2.3 Smart Pointers

The remote_ptr acts as a wrapper around the Software Cache API and is the recom-

mended way to interact with the software cache. It wraps a remote pointer reference

in a declaration of a template class which in-turn calls Software Cache routines. This

transparent management of data transfer details has various bene�ts:

• Legacy code can be easily ported to the Cell as the Memory Analyzer and

Partitioner analyze code to suggest optimal partitions after analysis in the form

of a Single Source Compilation system.

• The programmer is freed from the task of �nding suitable partitions and also

managing the cache, greatly improving his productivity.
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• A caching mechanism for the SPU improves application performance by saving

DMA transfer cycles in cases where data has already been brought into the local

store.

• The Smart Pointer template based solution abstracts away the details of data

transfer and vastly improves code quality.

A simple example of a program ported to the Cell through the use of the Software

Cache Toolchain as well as a sample Make�le has been provided in Appendix D.

4.3 Cache Eviction

The main contribution of my work is the exploration and implementation of a trace

driven eviction policy built into the Software Cache Infrastructure described in 4.2.2.

To fully understand the mechanism of cache line eviction when a remote pointer is

dereferenced on the SPU, we �rst look at cache eviction in general in Section 4.3.1.

Section 4.3.2 describes the Least Recenty Used (LRU) policy for eviction as it is

one of the most widely implemented eviction policies in hardware and software. The

limitations of LRU are brought forth as well. To be able to compare the newly imple-

mented trace driven eviction policy it is benchmarked against an LRU implementation

in the Performance Evaluation. For the purpose of this thesis, the software controlled

cache is always assumed to be fully associative cache with a con�gurable line size and

number of lines.

4.3.1 Eviction Policy

Figure 8 shows the a cache eviction mechanism for a fully associative cache in general.

When an remote address is dereferenced, the cache manager checks if it exists locally.

If so, it simply retrieves it from there. If it is not found locally, it needs to bring it in.

For this, the cache manager �rst looks up if there is free space in the cache to bring

in the required line. If there is a free line, it can bring it in immediately. If not, a line
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Figure 8: Cache Eviction Policy

is freed by evicting something [and writing back if it is dirty] to make space. What

is evicted depends on the replacement policy used.

4.3.2 LRU Eviction Policy

LRU works on the principle that references that have been most heavily used in the

past few instructions are most likely to be used heavily in the next few instructions too.

While LRU can provide near-optimal performance in theory, it is rather expensive to

implement in practice. There are a few implementation methods for this algorithm

that try to reduce the cost yet keep as much of the performance as possible. The

most expensive method is the linked list method, which uses a linked list containing

all the objects in memory [9]. At the back of this list is the least recently used page,

and at the front is the most recently used references. This is costly because items in

the list will have to be moved about every memory reference. There is considerable

overhead even when there is a cache hit, because the line needs to be pulled out of the

middle of the list and pushed to the back. This overhead can be somewhat minimized

on a miss, by parallely maintaining a hash map of references as well, and looking up

this map to check if the address exists before searching the list. So a linear search

on the list will only be required in the case of a hit. However this is a time-space

tradeo�. While there can be more e�cient ways to do it with hardware support, this
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Figure 9: LRU Cache Eviction

overhead cannot be su�ciently reduced in a software implementation. Apart from the

implementation costs discussed, LRU also tends to degenerate under certain reference

patterns. For instance, with a fully associative cache with N lines, a program with a

loop over N+1 references will continuously su�er cache misses. LRU only works well

when a program adheres to locality of reference, and when past references are a good

indication of future references. In such a set up one can hope that once the cache is

�lled, it will su�er fewer misses.

The overall �ow in of cache replacement (LRU) in the Software Cache Toolchain is

depicted in Figure 9. An LRU List is maintained. When an address is dereferenced,

the cache manager searches through this list to check if it exists locally. If so, it

updates the list by removing this address from its position in the list and re-inserting

it to the rear. If the address does not exist locally, it is brought into the cache by

evicting the line from the front of the stack. Thus there is considerable book-keeping

to be done during run time. Improvements to LRU with the use of additional in-

memory data structures turned out to be infeasible because of the memory restrictions

of the Cell SPU.
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4.3.3 Opportunities for optimization

As discussed, traditional replacement policies like LRU incur a considerable run time

overhead and this must be minimized if we want to extract performance, while still re-

taining the several bene�ts of a software controlled cache. As per Belady's Algorithm

the most e�cient caching algorithm would be to always discard the information that

will not be needed for the longest time in the future. Since it is generally impossible

to predict ow far in the future information will be needed, this is not implementable

in practice. However, in our case, we can leverage memory trace information from

pro�ling to predict possible future references in a long running program to improve

performance. This is an advantage that we get in a software controlled cache as it

is highly recon�gurable and can be hand-tuned. We must keep in mind though, that

while optimizing eviction for performance, the overhead on each reference needs to

be reduced. Again, this �exibility comes in a software controlled environment where

we can specify exactly what we want to track and how.

4.4 Related Work

The IBM Cell SDK 3.0 provides a software cache as a library which can be used by

application programmers. It provides for two modes, a synchronous mode and an

asynchronous mode. The software cache can be con�gured based on Associativity,

Access mode (Read-only or Read-Write), Cache line size, Number of lines and Data

type. The synchronous mode provides the programmer with a set of functions to

access data simply by using the e�ective address. The software cache library performs

the data transfer between the Local Store(LS) of the SPU and the main memory

transparently to the programmer and manages the data that is already in the LS. The

asynchronous interface enables the programmer to hide the memory access latency

by overlapping data transfer and computation. This mode provides a more e�cient

means of accessing the LS compared to the safe mode. The software cache provides
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Table 2: Call Stacks and Instances

Benchmark Total Function Calls Total Unique Call Stacks

grep 1262 256
di� 4307 2623
mpeg2dec 635921 193
awk 9780 113
md5sum 52 24

functions to map e�ective addresses to the LS addresses. The programmer should use

those LS addresses later to access the data, unlike in safe mode where the e�ective

addresses are used. There is also a provision to de�ne multiple caches, each con�gured

di�erently to suit the needs of the programmer. [16] However it must be noted that

while the IBM SDK provides for software cache routines, the instantiation of this

cache and management of data in and out of it need to be explicitly handled by the

application programmer. Our toolchain provides the Smart pointer wrapper that is

a layer on top of the cache which greatly simpli�es its management. Further, it is a

comprehensive single source compilation toolchain that takes in regular C programs

to convert it into Cell compliant code.

4.5 Approach

4.5.1 Concept

The central idea is to exploit memory trace information to be able to make more

informed decisions for eviction during run time. By predicting the references that

might be needed in the future, we could reduce the miss penalty that would su�er the

DMA overhead. Also, since LRU requires active book keeping and tracking, we need

to try to reduce this by tracking less frequently and making the eviction more light

weight. Program behavior is often not a random phenomenon. Memory references

are normally propagate through the stack of function calls.

Table 2 shows the number of call stacks as against the total number of function
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calls in a program. We can see that there are a �xed number of function call stacks

that are repeatedly seen as the program enters and exits the same functions. For such

long running programs that consist of several loops, we can bene�t from aggregating

behavior over multiple call stacks to detect frequent memory accesses. Further it

was found that there were some references that occurred in every instance of the

call stack, and some which occurred in just a few. Ideally, we can bene�t from

full context sensitivity i.e identify the exact instance of function entry or exit and

accordingly evict. However, this approach has its drawbacks

1. Although we can perform any amount of o�ine analysis to get guidance for

each speci�c instance it would need a large amount of information to be loaded

and read during the optimized run, which is expensive.

2. Since the actual program di�ers from the pro�ling run, it is di�cult to keep

track of exact instances i.e. these instances might not actually occur during the

�nal run.

Thus a the middle route was chosen where a program is cognizant of its current call

stack, and looks for guidance for cache management from the results of the pro�ling

and memory trace analysis. This is explained in more detail in Section 4.5.2. Further,

there are several issues to be dealt with. The key questions to be answered are:

• When does eviction make sense and how?

• How do we detect that an object will never be referenced again or that this

address will not be referenced in the near future?

• Which object to evict, and how to mark it for eviction?

• How do we indicate to the cache manager to avoid evicting a certain reference,

or to readily evict it?
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Figure 10: Program as a state machine

Thus the pin and unpin directives were introduced and these have been detailed in

Section 4.5.3

4.5.2 Program as a state machine

The program itself is viewed as a Finite State Machine(FSM) in execution. This idea

is depicted in Figure �refpic:statemachine. The State in this approach is a unique call

stack. A function entry, or exit marks a change in state. However, it must be noted

that a �ag being set or reset within a program, or a combination of these two could

also be a state. We could also allow the programmer to manually specify state change

points.

The idea is to leverage this to use state transitions as decision points for the soft-

ware cache manager, thus shifting the overhead to function entries and exits only, and

avoiding expensive book-keeping for every dereference. Not only does this approach

promise to reduce overhead, it also makes use of memory reference behavior within a

certain calling context.

4.5.3 Pin and Unpin Primitives

To guide the cache manager as to which references to keep in the cache, and which

ones to evict, the pin primitive has been extended in this context. A memory reference

that is heavily referenced in a calling context is marked as "pinned" after it is brought

into the cache. Such a reference will indicate to the cache eviction manager that it

must be retained in the cache as far as possible since it is likely to be referenced in
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the future. Similarly, when the memory reference is unlikely to be referenced in a

calling context it can have its pin �ag removed, to indicate to the cache manager that

it is preferable to evict this one; when looking to make room to bring in another line.

The use of these primitives in conjunction with the state machine model during run

time is explained in Section 4.5.4.4.

4.5.4 Detailed Design

The program is run once in pro�ling mode, where the memory trace is generated, and

analyzed, and a decision �le is generated. The next time it reads from this �le and

runs an optimized run. The three main elements of the design are detailed below.

1. Instrumentation and Memory Trace Generation

2. Memory Trace Analysis

3. Optimized Run

4.5.4.1 Instrumentation and Memory Trace Generation

Trace driven analysis a popular technique for understanding memory behavior. A pro-

gram can be instrumented to obtain the execution trace. They can be instrumented

to log certain instructions - memory references, loads and stores, branches etc. They

can be instrumented either at the source code level, assembly code level or by manip-

ulating the application binary (source code is not required). Popular instrumentation

tools for which APIs are available today are Valgrind, Pin and LLVM. However, after

initial investigation, it was decided to implement a custom made instrumentation.

There are no instrumentation tools that can run on the SPU of the Cell processor.

The unique requirements of the program (instrumentation of the SPU code, logging

remote dereferences only) necessitated the creation of custom instrumentation mech-

anism. Therefore, the instrumentation has been built into the Software Cache itself.
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Changes in API are noted below.

Function Entry and Exit - Two new functions have been introduced that are in-

strumented into the code right after function entry and just before function return

respectively. They mark a state transition during the �nal optimized run, and during

the pro�ling run, they form the new call stack of the function and log into the trace

�le.

Dereferencing a remote PPU address - In a pro�ling run, the dereference function

logs the remote PPU address to the trace �le. A sample trace �le has been shown in

Appendix E.

4.5.4.2 Memory Trace Analysis

The memory trace analyzer assumes a raw trace �le as input. It goes over the trace

to aggregate behavior of memory references over unique call stacks. The detailed

algorithm is as follows.

1. Create Map of references for a given call stack instance

2. Create Map of Maps for a given call stack across instances

3. Aggregate the Maps over di�erent instances

4. Generate the decision �le containing the list of references to be pinned an un-

pinned for each call stack based on reference probabilities.

4.5.4.3 Illustrative Example

1. Generate Memory Trace

Consider the following trace on execution of a program on the SPU. Let the

there be two functions on the SPU foo and b ar. Following is the trace generated.
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The memory references in the virtual address space are actually 64 bit integers.

However, they have been denoted by alphabets for the sake of simplicity in the

example below.

ENTERED FUNCTION:foo

STACK:foo|

A

B

C

A

A

ENTERED FUNCTION:bar

STACK:foo|bar|

A

D

E

F

EXITED FUNCTION:bar

STACK:foo|

G

H

G

A

ENTERED FUNCTION:bar

STACK:foo|bar|

A

E

EXITED FUNCTION:bar
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STACK:foo|

A

G

EXITED FUNCTION:foo

STACK:

Memory Trace Analysis

2. Create Map of references for a given call stack instance The above trace is

analyzed to collapse it into a hash table, with only the unique memory references

as shown below.

ENTERED FUNCTION: [foo]

STACK:foo|

A:3

B:1

C:1

ENTERED FUNCTION: [bar]

STACK:foo|bar|

A:1

D:1

E:1

F:1

EXITED FUNCTION: [bar]

STACK:foo|

G:2

H:1

A:1

ENTERED FUNCTION: [bar]
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STACK:foo|bar|

A:1

E:1

EXITED FUNCTION: [bar]

STACK:foo|

A:1

G:1

EXITED FUNCTION: [foo]

STACK:

3. Create Map of Maps for a given call stack across instances These references are

further collapsed into a hash table with pointers to each hash table so that they

can be aggregated as shown below.

STACK:foo|

-----

Map0

-----

A:3

B:1

C:1

-----

Map1

-----

G:2

H:1

A:1

-----
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Map2

-----

A:1

G:1

STACK:foo|bar|

-----

Map0:

-----

A:1

D:1

E:1

F:1

-----

Map1:

-----

A:1

E:1

4. Aggregate the Maps over di�erent instances After this stage, for each Call Stack,

the hash maps are aggregated over multiple instances to get the probability of

occurence to be used to make pin and unpin decisions. This is shown below.

STACK:foo|

A:100.0%(3,1,1)

B:33.3% (1,0,0)

C:33.3% (1,0,0)

G:66.6% (0,2,1)

39



H:33.3% (0,0,1)

STACK:foo|bar|

A:100.0% (1,1)

D:50.0% (0,1)

E:100.0% (0,1)

F:50.0% (1,0)

5. Generate the decision �le Using the above generated information, the decision

�le is generated. A threshold can be used to specify the probability above which

it must be a pinned reference. In this case, consider the threshold probability

to be 50

foo| :A,G

foo|bar| : A,E

The steps elaborated above to process the trace has been shown in Appendix E

and Appendix E.5.

4.5.4.4 Optimized Run

Changes in API for the optimized run include the addition of new functions as listed

below.

Initializing the Software Cache - A new function to load pro�ling information from

the �le is introduced which is called from the init function during optimized run. In

addition to the initialization of the Software Cache itself, the decision �le is read to

load the pin and unpin references for each call stack into memory, through the use

of a C++ STL Map. The Map uses the callstack string as the key and a structure

with the corresponding in and unpin decisions as its value. for this call stack. This

is loaded into memory so that look up is not expensive during program run. Let us
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call this map the decisionMap.

Function Entry and Exit - The function entry and exit calls behave di�erently during

the optimized run. During the optimized run, these functions �rst create the new call

stack of the program by pushing or popping from the stack respectively. It then looks

up the decisionMap to check if this stack exists i.e It occurred in the pro�le run. If

yes, it loads the unpin decisions and goes through the entries in the cache to remove

any pin �ags on these references.

Dereferencing a remote PPU pointer - During the optimized run, when there is a

true miss, the remote dereference routine, in addition to bringing in the required line,

also checks to see if this reference is meant to be pinned in this context as per the

decisionMap. If so, it sets the pin �ag.

Making a line free - This is the main routine that implements the eviction. There is

an index which keeps track of the last evicted index. This index is �rst incremented,

and if the reference that this index points to is a pinned reference, it is skipped and

index incremented. Basically, a lightweight round -robin policy is implemented, while

avoiding the eviction of a pinned reference as far as possible. The pseudo code is

noted below.

int make_free_line(void) {

index = ++last_evicted_index;

while( reference pointed to by index is a pinned reference)

++index;

if(index == swcache_num_lines)

index = last_evicted_index = 0;

evict_line(index);

return index;

}

This policy is bene�cial in many ways.
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• It uses the knowledge of memory traces to implement an eviction policy that is

closer to optimal than LRU.

• Round robin is very simple and has little overhead on every remote memory

dereference. All that is required needs is a last_evicted_index.

• The space requirement of LRU is circumvented as well.

4.5.5 Analysis and Performance Results

This new approach was benchmarked against the existing LRU implementation on

several hand-written kernels. The nature of the kernels is that they are pointer based

programs which have small dynamic memory allocation but are compute intensive. At

the same time they have high memory to compute ratio, as linked list references are

unpredictable and can only be brought into the cache when they are referenced, unlike

arrays that could be block prefetched. Hence it is important that the DMA overhead

is o�set by the computation speedup. Several larger benchmarks were explored, but

were deemed infeasible at this point due to reasons listed below.

• Use of C++ STL (Map) for implementation leads to code size bloat during link

time. The size of the Software Cache executable with the LRU eviction imple-

mentation using STL list is 60,700 bytes upon making appropriate additions for

the implementation of the run time state machine, which involved an additional

functions and data structures implemented using C++ STL map, the object �le

increased to 292,760 bytes.For the linked list addition example used, the �nal

executable size with the LRU version of the Software Cache is 361786 bytes and

for the new policy it is 822541 bytes.

• In cases where the code compiled, dynamic memory allocation failed either

during initialization of the Software Cache where space was being allocated for
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Table 3: Performance Results: Linked List Addition

Number of Nodes LRU Eviction Policy Trace Driven Eviction Policy

500 0.004866 0.003106
1000 0.009707 0.005133
1500 0.014538 0.007362
2000 0.019347 0.010099

the Software Cache itself, or during the allocation of dynamic data structures

as part of the optimization in the Software Cache or application code.

• While the implementation of a custom map data structure independent of STL

was investigated, it was abandoned in the current implementation of the cache

due to time constraints.

• Another restriction with the current implementation of the Software Cache is

that it does not handle objects that cross line boundaries. This posed a problem

for larger benchmarks.

The benchmarks used are described below and their performance results are tab-

ulated. All benchmarks use a cache with 32 lines and a line size of 512 bytes.

Linked List Addition: This application creates four singly linked lists X,A,B and C

on the PPU and passes the head pointer of all the four to the SPU. The root of

the SPU function is adding(X,A,B,C) which in turn calls functions add(X,A),

add(X,B), add(X,C) in sequence. The function addX adds the two linked lists

passed to it. The performance results are shown in Table 3. The speedup is

evident in Figure 11.

Linked List Addition and Subtraction: This application creates 3 linked lists X, A

and B on the PPU and passes the head pointer of all the three to the SPU.

The root of the SPU function is AddandSub(X,A,B). This function computes
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Figure 11: Linked List Addition Performance Results

Table 4: Performance Results: Linked List Addition and Subtraction

Number of Nodes LRU Eviction Policy Trace Driven Eviction Policy

500 0.001710 0.001561
1000 0.003260 0.002305
1500 0.004905 0.003066
2000 0.006467 0.003861

X-A and X-B.The performance results are shown in Table 4. The speedup is

evident in Figure 12.

Pre�x Sum Computation: This application has a central node which has next and

previous pointers; each pointing to a singly linked list. A top level function

decides whether to traverse to the left or the right, and then the pre�x sum for

each node in the singly list is computed. The performance results are shown in

Figure 12: Linked List Addition Subtraction Performance Results
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Table 5: Performance Results: Pre�x Sum Computation

Number of Nodes LRU Eviction Policy Trace Driven Eviction Policy

500 0.180116 0.086640
1000 0.800603 0.393725

Figure 13: Pre�x Sum Computation Performance Results

Table 5. The speedup is evident in Figure 13.

For number of nodes greater than 1200, a bus error was reported.

Sublist Search: This application takes 2 linked lists to check if one list is the substring

of the other. The root of the SPU function is sublistSearch(X,Y) which checks

if Y is a sublist of X. The performance results are shown in Table 6. The

speedup is evident in Figure 14.

Tree Traversal: This application creates a tree with several nodes, and performs

Table 6: Performance Results: Sublist Search

Number of Nodes LRU Eviction Policy Trace Driven Eviction Policy

500 0.001038 0.001253
1000 0.002045 0.001690
1500 0.002757 0.002026
2000 0.003057 0.002238
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Figure 14: Sublist Search Performance Results

Table 7: Performance Results: Tree Traversal

Number of Nodes LRU Eviction Policy Trace Driven Eviction Policy

500 0.002041 0.001006
1000 0.002445 0.001406
1500 0.003501 0.001581
2000 0.004557 0.002026

inorder traversal of the tree on the SPU. Recursive traversal was not possible

because of limited stack space on the SPU. Inorder iterative traversal was im-

plemented. The performance results are shown in Table 7. The speedup is

evident in Figure 15.

As shown in the graphs, the trace driven approach has a much better performance,

and scales well to large problem sizes. This is due to the reduction in hit overhead as

Figure 15: Tree Traversal Performance Results
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well as smarter eviction. This is shown with an example in Section 4.5.6.

4.5.6 Performance Evaluation

Consider the case of linked list addition. There are 3 linked lists X,A and B created

on the PPU.

List A: A1-->A2-->A3

List X: X1-->X2-->X3

List Y: Y1-->Y2-->Y3

The head of these 3 linked lists are passed to the root function on the SPU. Lets

say this function is called adding. The SPU side code is:

adding(struct node *X, struct node *Y, struct node *A)

{

add(X,A);

add(X,B);

}

Consider a software controlled cache with 4 lines on the SPU. Assume that a line

cannot hold more than one object for the sake of this illustration. Table 8 and Table 9

illustrate the contents of the cache at various points of execution for an LRU eviction

policy. The arrow points to the reference that is Least Recently Used.

X1 ←
A1

X1 ←
A1
X2
A2

X3
A3
X2 ←
A2

Table 8: Cache State Changing during add(X,A) for LRU Eviction

As shown above, during execution of the routine add(X,A) the references X1,A1,

X2, A2, X3 and A3 are accessed in that order by evicting the LRU reference whenever

it did not exist in the cache. During execution of add(X,B) X1,B1,X2,B2,X3,B3 are
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X3 ←
A3
X1
B1

X2
B2
X1 ←
B1

X2 ←
B2
X3
B3

Table 9: Cache State Changing during add(X,B) for LRU Eviction

again brought into the cache in that order. Thus it is observed that it su�ered 8

misses.

Table 10 and 11 illustrate the changing cache contents for the trace driven eviction

policy. It is assumed that pro�ling has indicated that the references in linked list X

have been referenced heavily and have been marked for pinning. The pinned references

in the cache are indicated by a • beside it.

X1 •
A1

X1 •
A1
X2 •
A2

X1 •
X3 •
X2 •
A3

Table 10: Cache State Changing during add(X,A) for Trace Driven Eviction

X1 •
X3 •
X2 •
B1

X1 •
X3 •
X2 •
B2

X1 •
X3 •
X2 •
B3

Table 11: Cache State Changing during add(X,B) for Trace Driven Eviction

As depicted above, in the trace driven policy references X1, A1, X2, A2, X3, A3

are �rst accessed during the execution of add(X,A). On bringing in references X1, X2

and X3 into the cache, they remain in the cache as "pinned" references as suggested by

the decision �le generated at the end of the pro�le run. When add(X,B) is executed,

it looks �rst for X1 and B1. X1 is already in the cache, and A3 is evicted to bring in

B1. Similarly, B2 and B3 are brought into the last cache line. Thus we can see that

it su�ered 4 misses.
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Table 12: LRU Overheads Breakup

Overhead Time in seconds

Compulsory Miss 0.000066
Capacity Miss 0.000052
Hit 0.000036

Table 13: Trace Driven Policy Overheads Breakup

Overhead Time in seconds

Compulsory Miss 0.000056
Capacity Miss 0.000040
Hit 0.000020

The breakup of overheads for LRU have been detailed in Table 12 and those for

the Trace Driven Policy are in Table 13. These have been qualitatively explained

previously.

4.5.7 Design Tradeo�s

4.5.7.1 Solution Space

The solution space for this problem consists of various degrees of tracking. Ideally,

we can perform more rigorous analysis of the memory traces to have more sensitive

run time behavior. For instance:

• We can exploit the call stack further to see how memory behavior changes

with changing call stack. If we have a function, say f that calls g and p or q

conditionally , we could analyze the trace to make decisions at every point, as

to whether a reference X that was pinned at g, is always referenced if it calls

p, and never if it calls q, and so on. In cases where an address is referenced on

and o�, the minimal stack con�guration where a decision can be made could

be computed. This would let us create a probability distribution to continually

build the list of references that need to be pinned. However, this requires
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the maintenance of additional data structures, and is memory intensive. The

computation involved is also an overhead that needs to be o�set by a suitably

predictable long running benchmark.

• Instead of aggregating behavior of call stacks, we can treat each unique func-

tion call as a separate instance. This would provide for more context sensitive

information. However, the number of function calls are normally huge as de-

picted in table. While we can a�ord to perform any amount of o�ine analysis,

such tracking would lead to an overhead during run time and might infact be

unnecessary.

4.5.7.2 Balancing Time and Space Constraints

More rigorous run time analysis might end up being an overhead rather than a ben-

e�t. The limitations of the Cell SPU and its tight memory constraints leaves little

space for storing large dynamic data structures needed for the purpose of analysis.

Therefore, we need to strike a balance and use a light weight eviction policy while still

retaining the bene�ts of memory pro�ling. When compilation was attempted for a

large program, the compiler returned with errors as its object code size exceeded the

local memory of the SPU. This has been shown in Appendex F. Similarly, the use

of this new eviction policy should not increase the number of branches on the SPU.

The SPU performs poorly with code that has a large number of branches because it

lacks a Branch Prediction Unit. In this case, the problem has been overcome by the

usage of branch hints, indicating that a reference is "unlikely" to be pinned, when

the eviction manager checks to see if a reference is pinned before it decides to skip

over to the next index in the cache. Another point is that while providing maximum

�exibility and recon�gurability of the Software Cache, allowing the number or per-

centage of references to be pinned must be controlled. Too many pinned references in

the cache might end up degrading performance as the cache eviction manager would
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continually loop over the cache entries to �nd an unpinned line. In the examples

cited, the percentage of pinned references is limited to overcome this problem.

4.6 Conclusion

4.6.1 Contribution

The main contributions of this work are listed below.

• System to seamlessly converting C code into SPU and PPU code for the Cell.

SPU and PPU side code are generated for the parittions suggested by the

toolchain.

• Novel memory trace analysis with the view of a program as Finite State Ma-

chine, where an o�ine engine generates guidance for run-time state machine

transitions.

• Extension and use of the concept of pin and unpin in this context

• Implementation of a cache eviction policy which interweaves a lightweight round

robin policy with memory trace �ndings.

• Exploration of the solution space of various possibilities to solve the same prob-

lem using memory pro�ling, through partial or full implementations of the same.

These provided useful insights into the constraints of the Cell and the SPU in

particular.

• This implementation signi�cantly reduces overhead in pointer intensive code

due to its irregularity. Array references on the other hand are predictable, and

prefetching can be used to get a speedup.

• Cell does not have many libraries ported on to it. This approach, combined

with GLIMPSES for analyzing program behavior, can be used to port several

existing libraries to be used on the Cell.
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4.6.2 Future Work

Things that need to be explored in the future are:

• Implementation of custom data structures to avoid C++ Standard Template

Library. This could reduce object code size and pave way for storing other data

structures at run time, or allocating more space for the cache itself.

• The current implementation uses a Software Cache which cannot handle an

object spanning a line boundary. This limited the set of benchmarks that this

trace driven policy was tested on. Use of a Cache that could handle such objects

could increase the scope of the project.
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APPENDIX A

LIST OF ABBREVIATIONS

Cell Cell Broadband Engine

STI Sony Toshiba IBM

PPU Power Processor Unit

PPE Power Processor Engine

SPU Synergistic Processor Unit

SPE Synergistic Processor Engine

SIMD Single Instruction Stream Multiple Data Stream

STL Standard Template Library

LRU Least Recently Used

MRU Most Recently Used

RISC Reduced Instruction Set Instruction

API Application Programmer Interface

DMA Direct Memory Access

OS Operating System

FPR Floating Point Unit

EIB Element Interconnect Bus

CFG Control Flow Graph

LLVM Low Level Virtual Machine

CISC Complex Instruction Set Architecture

RISC Reduced Instruction Set Architecture

SDK Software Development Kit

PS3 Play Station 3

API Application Programmer Interface

LS Local Store

STL Standard Template Library
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APPENDIX B

GLIMPSES USE CASES
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Figure 16: GLIMPSES: Editing Source Code

Figure 17: GLIMPSES: Viewing Caller Callee Relationships
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Figure 18: GLIMPSES: Viewing the Control Flow Graph of a function

Figure 19: GLIMPSES: Viewing the Dynamic Call Graph of the program
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Figure 20: GLIMPSES: Viewing all reachable functions

Figure 21: GLIMPSES: Viewing Static and Dynamic Graph
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Figure 22: GLIMPSES: Searching for a function
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APPENDIX C

GLIMPSES SAMPLE XML FILE

<?xml version="1.0" encoding="UTF-8"?>

<graphml xmlns="http://graphml.graphdrawing.org/xmlns">

<graph edgedefault="directed">

<!-- data schema -->

<key id="name" for="node" attr.name="name" attr.type="string"/>

<key id="codesize" for="node" attr.name="codesize" attr.type="string"/>

<key id="stacksize" for="node" attr.name="stacksize" attr.type="string"/>

<key id="brfraction" for="node" attr.name="brfraction" attr.type="string"/>

<key id="avloops" for="node" attr.name="avloops" attr.type="string"/>

<key id="mallocsize" for="node" attr.name="mallocsize" attr.type="string"/>

<key id="external" for="node" attr.name="external" attr.type="int"/>

<key id="hasunsupported" for="node" attr.name="hasunsupported" attr.type="string"/>

<key id="lslimithit" for="node" attr.name="lslimithit" attr.type="string"/>

<key id="calls" for="node" attr.name="calls" attr.type="int"/>

<key id="rank" for="node" attr.name="rank" attr.type="string"/>

<!-- testfgmain-->

<node id="6">

<data key="name">f</data>

<data key="codesize">86</data>

<data key="stacksize">896</data>

<data key="brfraction">0</data>

<data key="avloops">0</data>

<data key="mallocsize"></data>

<data key="external">0</data>

<data key="hasunsupported">0</data>

<data key="lslimithit"></data>

<data key="calls">2</data>

<data key="rank">982</data>

</node>

<node id="2">

<data key="name">g</data>

<data key="codesize">335</data>

<data key="stacksize">1024</data>

<data key="brfraction">0.047619</data>
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<data key="avloops">0</data>

<data key="mallocsize"></data>

<data key="external">0</data>

<data key="hasunsupported">4</data>

<data key="lslimithit"></data>

<data key="calls">2</data>

<data key="rank">2341.0238095</data>

</node>

<node id="0">

<data key="name">main</data>

<data key="codesize">152</data>

<data key="stacksize">512</data>

<data key="brfraction">0.0666667</data>

<data key="avloops">0</data>

<data key="mallocsize"></data>

<data key="external">0</data>

<data key="hasunsupported">2</data>

<data key="lslimithit"></data>

</node>

<node id="4">

<data key="name">test</data>

<data key="codesize">129</data>

<data key="stacksize">128</data>

<data key="brfraction">0</data>

<data key="avloops">0</data>

<data key="mallocsize"></data>

<data key="external">0</data>

<data key="hasunsupported">1</data>

<data key="lslimithit"></data>

<data key="calls">1</data>

<data key="rank">257</data>

</node>

<edge source="0" target="2"></edge>

<edge source="0" target="4"></edge>

<edge source="2" target="6"></edge>

</graph>

</graphml>
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APPENDIX D

PORTING CODE TO CELL

D.1 Original Code

#include <stdio.h>

#include <stdlib.h>

int main()

{

int ret;

a= 5;

b= 10;

ret = find_sum(a,b);

printf("Sum is %d\n", ret);

return 0;

}

int findsum(int a, int b)

{

int sum = a+b;

return sum;

}

D.2 Converted Code

D.2.1 Control Block

#ifndef SIMPLE_COMMON_H

#define SIMPLE_COMMON_H

typedef struct context_block {

int a;

int b;

} context_block __attribute__ ((aligned (128)));

#endif
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D.2.2 PPU Code

PPU CODE: simple.cpp

#include <stdio.h>

#include <stdlib.h>

#include <libspe2.h>

#include "simple_common.h"

#include "prt.ppu.h"

struct context_block ctx __attribute__ ((aligned (128)));

extern spe_program_handle_t findsum_spe_prog;

int main()

{

int ret;

ctx.a= 5;

ctx.b= 10;

ret = prt_run((uint64_t) &ctx, & findsum_spe_prog);

printf("Sum is %d\n", ret); return 0;

}

D.2.3 SPU Code

SPU CODE: findsum.cpp

#include "prt.spu.h"

#include "simple_common.h"

#include "remote_ptr.hpp"

int findsum(int a, int b);

int prt_main(uint64_t ea)

{

//Initialize the software cache

swcache_init(32, 512);

//Wrap the control block pointer into a remote_ptr

remote_ptr<struct context_block> cb(ea);

int idx = findsum(cb->a, cb->b);

//Software cache cleanup

swcache_cleanup();

return idx;
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}

int findsum(int a, int b)

{

int sum = a+b;

return sum;

}

D.2.4 Make�le

CC=ppu-g++

SPU_CC=spu-g++

PPU_EMBEDSPU=ppu-embedspu

PPU_AR=ppu-ar

LIBPRT=../../../libprt

SWCACHE=../../../software_cache

CFLAGS=-I$(LIBPRT)

LDFLAGS=$(LIBPRT)/prt.ppu.o -lspe2 -lpthread

all: simple.cpp partitions.a

$(CC) $(CFLAGS) $(LDFLAGS) simple.cpp partitions.a -o simple

clean:

rm -f *.o *.a simple

partitions.a: findsum-embed.o

$(PPU_AR) -qcs partitions.a findsum-embed.o

findsum-embed.o: findsum.cpp

$(SPU_CC) $(CFLAGS) -I$(SWCACHE) $(LIBPRT)/prt.spu.o $(SWCACHE)/swcache.o findsum.cpp -o findsum

$(PPU_EMBEDSPU) findsum_spe_prog findsum findsum-embed.o
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APPENDIX E

MEMORY TRACE ANALYSIS

E.1 Raw trace

0x100d5980

ENTERED FUNCTION: [findNode|]

STACK:findNode|

0x100d5700

0x100d5780

0x100d5800

0x100d5880

0x100d5900

EXITED FUNCTION: [findNode|]

STACK:

E.2 Extracted Hash Maps of Probabilities

ENTERED FUNCTION: [findNode|]

STACK:findNode|

0x100d5780:1

0x100d5700:1

0x100d5800:1

0x100d5900:1

0x100d5880:1

EXITED FUNCTION: [findNode|]

STACK:

E.3 Combining Maps

===STACK:findNode|===[1 instances ]

Map 0

0x100d5700:1

0x100d5780:1

0x100d5800:1

0x100d5880:1
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0x100d5900:1

E.4 Aggregated Probabilities

[Summary]

Total call stacks : 2

Total unique call stacks : 1

===STACK:findNode|===[1 instances ]

0x100d5700-100% (1,)

0x100d5780-100% (1,)

0x100d5800-100% (1,)

0x100d5880-100% (1,)

0x100d5900-100% (1,)

E.5 Decision File

STACK:findNode| 100d5700,100d5780,100d5800,100d5880,100d5900,
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APPENDIX F

SPU MEMORY CONSTRAINT ERRORS

/usr/lib/gcc/spu/4.1.1/../../../../spu/bin/ld: .text exceeds local store range

/usr/lib/gcc/spu/4.1.1/crtbegin.o: In function ‘__do_global_dtors_aux’:

crtstuff.c:(.text+0xc): relocation truncated to fit: SPU_REL16 against ‘.bss’

crtstuff.c:(.text+0x34): relocation truncated to fit: SPU_REL16 against ‘.data’

crtstuff.c:(.text+0x3c): relocation truncated to fit: SPU_REL16 against ‘.data’

crtstuff.c:(.text+0x54): relocation truncated to fit: SPU_REL16 against ‘.bss’

/usr/lib/gcc/spu/4.1.1/crtbegin.o: In function ‘frame_dummy’:

crtstuff.c:(.text+0x80): relocation truncated to fit: SPU_ADDR18 against ‘.jcr’

crtstuff.c:(.text+0x84): relocation truncated to fit: SPU_REL16 against ‘.jcr’

/usr/lib/gcc/spu/4.1.1/crtbegin.o:(.fini+0x0): relocation truncated to fit: SPU_REL16 against ‘__do_global_dtors_aux’

/usr/lib/gcc/spu/4.1.1/crtend.o: In function ‘__do_global_ctors_aux’:

crtstuff.c:(.text+0x8): relocation truncated to fit: SPU_ADDR18 against ‘.ctors’

/usr/lib/gcc/spu/4.1.1/crtend.o:(.init+0x0): relocation truncated to fit: SPU_REL16 against ‘__do_global_ctors_aux’

/usr/lib/gcc/spu/4.1.1/../../../../spu/lib/crt1.o: In function ‘_start’:

(.text+0x0): relocation truncated to fit: SPU_REL16 against symbol ‘__ea_local_store’ defined in COMMON section in /usr/lib/gcc/spu/4.1.1/../../../../spu/lib/crt1.o

/usr/lib/gcc/spu/4.1.1/../../../../spu/lib/crt1.o: In function ‘_start’:

(.text+0x28): additional relocation overflows omitted from the output

/usr/lib/gcc/spu/4.1.1/libstdc++.a(basic_file.o): In function ‘std::__basic_file<char>::sys_open(int, std::_Ios_Openmode)’:

/root/sdk3.0rebuild/spu-gcc/BUILD/spu-gcc-4.1.1/obj-spu/spu/libstdc++-v3/src/basic_file.cc:212: undefined reference to ‘fdopen’

collect2: ld returned 1 exit status
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