
1. INTRODUCTION 

Modeling fracture propagation in sedimentary rocks 
requires complex coupled constitutive equations to 
account for both intrinsic and stress-induced anisotropy, 
and regularized numerical methods to avoid mesh size 
dependence due to strain softening. Experiments 
revealed that rock maximum axial compressive strength 
is reached when weak planes are either parallel or 
perpendicular to the loading direction, and minimum 
strength is reached when weak planes are orientated 
30∘ − 60∘ with respect to the loading direction (Donath, 
1961; Niandou et al., 1997; Pietruszczak and Mroz, 
2001). In indirect tensile tests, the tensile strength is 
maximum when tensile stress is applied within the weak 
plane, and gradually decreases as the orientation angle 
between the tensile stress direction and the bedding 
plane increases (Mahjoub et al., 2015). State-of-the-Art 
constitutive models are either based on Continuum 
Damage Mechanics (CDM) or Micromechanics. In 
CDM, damage criteria and evolution laws for anisotropic 
materials depend on a second order fabric tensor to 
account for the direction dependency (Pietruszczak et 
al., 2007).  In Micromechanics models, the expression of 
the free energy is obtained by solving a matrix-inclusion 
problem for a given set of crack families. Depending on 
the homogenization scheme, crack interaction may or 

may not be accounted for. Intrinsic anisotropy is 
accounted for by attributing different properties to crack 
families of different orientations (Chen et al., 2012). 
Once implemented in a Finite Element (FE) code, both 
CDM and micromechanics models suffer from mesh 
dependence if strain softening is considered for 
compression/tension. Several localization limiters can be 
used, e.g. the crack band theory, a non-local integration-
based formulation or non-local differentiation-based 
formulation. However, the non-local effects of intrinsic 
anisotropy are usually not accounted for.  

In this paper, we integrate a measure of strain to 
formulate a nonlocal anisotropic damage model for 
sedimentary rock. In Section 2, we present the local 
damage model, which accounts for the confinement 
dependence of the compressive behavior, with a 
compression strength up to one order of magnitude 
larger than the tension strength. The model allows 
predicting stress-induced anisotropy in an initially 
transverse isotropic material. The model is calibrated 
against stress/strain curves obtained during triaxial 
compression tests performed on shale. In Section 3, we 
explain the non-local formulation, which contains two 
internal lengths to represent intrinsic anisotropy. In 
Section 4, three point bending simulation results are 
presented to show that the size of the fracture process 
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response is captured by utilizing four types of equivalent strains, for tension and compression, parallel and perpendicular to the 
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zone is direction dependent, but mesh independent. Note 
that we use Voigt matrix notations throughout the paper. 
Lower cases are used for scalar variables, bold lower 
cases for vectors and bold upper cases for matrices.  

2. LOCAL ANISOTROPIC DAMAGE MODEL 
FOR TRANSVERSE ISOTROPIC MATERIALS  

2.1. Constitutive relationship 
In CDM, the effect of damage is taken into account by 
reducing the values of stiffness. By using strain 
equivalence principle, the nominal stress, & , is related to 
effective stress, &, through 

& = (& ,                                  (1) 

Where ( is the damage operator, which has a diagonal 
form, as follows: 

)** =
+

+,-.
,			1 = 1,2, … ,6                    (2) 

The rock is represented as a transverse isotropic with 
respect to the direction normal to the bedding plane. We 
set the local coordinate system so that direction 1 is 
perpendicular to the bedding plane: 5+ represents 
damage variable in axial direction (perpendicular to the 
bedding), 56, 57 are damage variables in the transverse 
directions (along the bedding), the shearing damage 
variables are expressed as 

58 = 1 − 1 − 56 1 − 57 	
59 = 1 − 1 − 5+ 1 − 57 	
5: = 1 − 1 − 5+ 1 − 56                   (3) 

 

 
Fig. 1. Definition of the intrinsic damage directions in 
transverse isotropic shale, modified from (Bramlette, 1943). 

The transverse isotropic elastic behavior of the material 
depends on five independent parameters 
(<+, <6, =+6, =67, >+6). Using the effective stress concept, 
the compliance matrix can be expressed as: 

S++ = 1/ 1 − 5+ /<+	

S66 = 1/ 1 − 56 /<6 
S77 = 1/ 1 − 57 /<6	
S+6 = S+7 = −ν+6/E6	
S6+ = S7+ = −ν6+/E+	
S67 = S76 = −ν67/E6	
S88 = 2 1 + ν67 / 1 − 58 /E6	
S99 = 1/ 1 − 59 /G+7 
S:: = 1/ 1 − 5: /G+6 

                                                                                   (4) 
In which we used ν+6/E6 = ν6+/E+ to ensure as 
symmetry requirements. In order to distinguish tensile 
and compressive behavior, we distinguish tensile and 
compressive components of damage in each direction 
5*. We consider that the growth of compressive 
(respectively tensile) damage does not influence tensile 
(respectively compressive) damage, which makes it 
possible to capture unilateral effects. Damage 
components take values between 0 (no micro-crack in 
the direction considered) to 1 (no more stiffness in the 
direction considered). 

Two different damage criteria are used to distinguish 
micro-crack propagation in the axial and transverse 
directions, as follows: 

F+ G, H+ = I+
JK − H+	

F6 G, H6 = I6
JK − H6                        (5) 

Where the equivalent strains I+
JK, I6

JK are scalar measures 
of strain defined in the axial and transverse directions 
(detailed below). H+, H6 serve as internal variables and 
control the evolution of damage: they represent the 
largest equivalent strains ever reached during the past 
loading history of the material. Damage can grow only if 
the current stress state reaches the boundary of the 
elastic domain, F* = 0. The consistency conditions are: 

F+ ≤ 0, H+ ≥ 0, H+F+ = 0	
F6 ≤ 0,										H6 ≥ 0,								H6F6 = 0	            (6) 

The equivalent strain will be integrated over a control 
zone to account for non-local damage effects. Three 
types of non-local strain variables were used in previous 
damage models for isotropic materials: the energy 
release rate thermodynamically conjugated to damage 
Antonio and Pijaudier-Cabot, 1994), the average of 
the positive principal strain (Mazars, 1986), and a 
modified von Mises strain (De Vree et al., 1995). A new 
equivalent strain measure is needed to account for the 
direction dependence of transverse isotropic materials. 
Inspired from Hashin’s failure criteria (Hashin, 1980) 
for unidirectional fiber composites, we introduce the 
following strain invariants with respect to the axial 
direction: 

N+ = I++	
N6 = I66 + I77	

N7 =
1

4
I66 − I77

6 + I67
6 	
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N8 = I+6
6 + I+7

6 	
N9 = 2I+6I+7I67 − I66I+7

6 − I77I+6
6      (7) 

Following Hill’s yield theory (Hill, 1948), the most 
general from of a transversely isotropic quadratic yield 
criterion is 

P+N+
6 + P6N6

6 + P7N7 + P8N8 + Q+6N+N6 = 1     (8) 

Note: N9 is omitted because we choose a quadratic yield 
criterion. If the damage criterion is reached along the 
axial direction, this is because either the axial strain I++ 
reaches the initial tensile/compressive I++RS/I++TS strain 
threshold, or because the shear strain invariant reaches 
I+6
US 6. Consequently, we define the equivalent strain for 

tension and compression as 

I+R
JK = I++

6 + (I+6
6 + I+7

6 )
I++
RS

I+6
US

6

 

I+T
JK = I++

6 + (I+6
6 + I+7

6 )
VWW
XY

VWZ
[Y

6
               (9) 

Similarly, the equivalent strains in the transverse 
directions are expressed as 

I6R
JK = N6

6 + N7
6 I66

RS

I67
US

6

+ N8
I66
RS

I+6
US

6

 

I6T
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6
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In which, I66RS, I66TS, I+6US, I67US are initial yield strains in 
tension, compression and shear (the subscripts indicate 
the directions). To close the constitutive formulation, we 
link the internal variable H* to the damage variable 5*. 
Since 5* and H* can only grow monotonically, we 
postulate the damage evolution law in an explicit form. 
In materials exhibiting a brittle behavior in tension, 
damage grows rapidly after the threshold is reached (i.e. 
micro cracks propagate and coalesce fast). To reflect this 
phenomenon, we utilize the following exponential 
function: 

5+R = ] H+ = 1 − exp	(−
aW,VWW

bY

cWW
b )           (11) 

Where d++R  is a material parameter that controls the 
growth rate of damage (i.e. the brittleness of material 
response). Note, damage is considered equal to zero 
when κ+ < I++

RS. Similarly, we express the damage 
growth function in transverse directions as 

g6R = ] H6 = 1 − exp −
κ6 − I66

RS

d66
R 	
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Where x = 0 if x < 0, x = x if x ≥ 0. 	d66R  controls 
the ductility of the response in the transverse directions. 

Unlike in tension, geomaterials in compression exhibit a 
pressure dependent behavior, transitioning from ductile 
to brittle as the confining pressure increases. During 
triaxial compression paths, hardening is often observed 
before the peak and the post-peak softening. In order to 
account for this phenomenon, we formulate the global 
damage evolution function as: 

5+T = ] H+ = exp
lW,mnop,qWW

X

cWW
X / 1 +

exp
lW,mnop,qWW

X

cWW
X                   (13) 

Where r, 	s++T  and d++T  are parameters that represent the 
dependence to the confining pressure, the initiation of 
softening under no confinement and the damage growth 
rate in axial direction, respectively. Similarly, the 
compressive damage evolution law can be expressed as 

g6T = ] H6 = exp
H6 − ηTrp − s66

T

d66
T

/ 1 + exp
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2.2. Calibration of the proposed model 
We calibrated the proposed model against experimental 
stress/strain curves obtained during triaxial compression 
tests performed on Bakken shale samples. We used 
ConocoPhillips rock mechanics dataset (Amendt et al., 
2013). A dedicated MATLAB code employing the 
Interior Point Algorithm was adopted to minimize the 
residual between experimental results and numerical 
predictions.  

Figure 2 shows the calibration of the elastic material 
parameters. Note that only parameters E+, E6, ν+6, ν67 
can be obtained from triaxial compression tests loaded 
perpendicular (axial) and parallel (transverse) to the 
bedding plane. In the absence of shearing stress path 
perpendicular to the bedding, >+6 cannot be obtained. 



 
Fig. 2. Calibration of elastic material parameters. 

 
Fig. 3. Calibration of transverse damage parameters. 

 
Fig. 4. Calibration of axial damage parameters under different 
confinements.  

Figure 3 shows the experimental stress-strain curve 
(marker) and the numerical stress-strain curve after 
calibration (solid line) for an axial loading parallel to the 
bedding under a confinement of 20.7 MPa. The two 

curves match closely for deformation both parallel and 
perpendicular to the loading axis.  The proposed model 
successfully captures the hardening-softening transition. 
Note that in this simulation, the two lateral strain 
components were not the same: we averaged them in the 
figure. Figure 4 shows the experimental stress-strain 
curve (marker) and the numerical stress-strain curve 
after calibration (solid line) for an axial loading 
perpendicular to the bedding plane under confining 
pressures of 6.9 MPa and 20.7 MPa. The model correctly 
predicts the increase of compression strength with the 
increase of confining pressure. Note: the non-smooth 
part on the prediction curve is due to the discontinuous 
experimental total strain used for calibration. The 
calibrated parameters are listed in Table 1. In the 
absence of stress/strain curves for shear and tension 
stress paths, some parameters could not be calibrated. 

Table 1. Calibrated model parameters 

Parameters Units Value 
<+ GPa 35.9 
<6 GPa 37.8 
=+6 - 0.224 
=67 - 0.327 
I++
TS - 4.239×10-4 
s++
T  - 1.266×10-2 

d++
T  - 2.483×10-3 
I66
TS - 4.081×10-4 
s66
T  - 1.131×10-2 

d66
T  - 1.903×10-3 
r MPa-1 2.077×10-4 

 
2.3. Single element simulation 
To test whether the proposed anisotropic damage model 
can predict the variations of compression strength with 
the orientation of the loading relative to the bedding 
plane, a series of uniaxial compression test were 
simulated.  A single cubic element was modeled with the 
calibrated parameters listed in Table 1. We used 
OOFEM, an open source, object oriented FEM software 
(Patzak, 2012). In the following, angles refer to the 
angle between the unit vector normal to the bedding 
plane and the loading axis-x. For simulation with an 
orientation angle different from 0° and 90°, it is 
necessary to assume values for parameters >+6, I+6US,
I67
US, which could not be calibrated from triaxial 

compression tests. We used: >+6 = 14.68>yz, 
I+6
US =2.5×10-4, I67US =2.8×10-4. Displacements are fixed 

at one face of the Finite Element. The opposite face is 
subjected to concentrated forces at the nodes. Stresses 
and strains are calculated at 8 integration points, and 
averaged. 

-2 -1 0 1 2 3 4
Lateral strain,03 <--> Axial strain,01#10-3

0

20

40

60

80

100

120

140
D

ev
ia

to
ric

 s
tre

ss
, <

1-<
3 (M

Pa
)

Experiment-axial
Experiment-transverse
Model Prediction

-0.015 -0.01 -0.005 0 0.005 0.01 0.015
Lateral strain, x <--> Axial strain, z

0

50

100

150

200

250

D
ev

ia
to

ric
 s

tre
ss

,
z-

x
(M

Pa
)

Experiment-20.7 MPa
Model-20.7 MPa

εε

σ
σ

-0.015 -0.01 -0.005 0 0.005 0.01 0.015
Lateral strain,εx <--> Axial strain,εz

0

50

100

150

200

250

D
ev

ia
to

ric
 s

tre
ss

,σ
z-σ

x
(M

Pa
)

Experiment-6.9 MPa
Model-6.9 MPa
Experiment-20.7 MPa
Model-20.7 MPa



 
Fig. 5. Simulations of uniaxial compression tests on a single 
element. Note: the orientation angle represents the angle 
between the unit vector normal to the bedding plane and the 
loading axis-x. 

 
Fig. 6. Evolution of the damage components during the 
uniaxial compression tests simulated on a single element. Note 
when the loading axis-x is neither perpendicular to or parallel 
to the bedding, damage develops in two directions (5+, 56). 

 
Fig. 7. Variation of uniaxial compressive strength (maximum 
stress reached during loading) with respect to the orientation 
of the bedding.  

Figure 5 shows the uniaxial compression resulting stress 
strain curve, which indicates that uniaxial compression 
strength varies depending on the relative orientation of 
the bedding plane and the loading axis. The largest 
compression strength is expected when the sample is 
loaded in the direction normal to the bedding plane, a 
smaller value is expected when the loading axis is in the 
bedding plane; and the smallest value is expected when 
the sample is loaded with an angle to the bedding plane. 
The loading direction relative to the bedding does not 
influence the elastic behavior, because elastic moduli are 
similar in the axial and transverse directions of the 
material. Figure 6 shows that damage only develops in 
direction 1 (perpendicular to the bedding) when the 
loading orientation is 0°, and gradually changes to 
direction 2 (parallel to the bedding) as the loading 
orientation angle increases. Figure 7 provides the 
variations of uniaxial compressive strength (maximum 
stress reached during loading) with the loading 
orientation. Results match existing data for shale 
(Niandou et al., 1997), both in trend and order of 
magnitude.  

Similar to uniaxial compression, uniaxial tension 
strength depends on the orientation of the loading 
compared to that of the bedding plane. Damage 
parameters that could not be calibrated from triaxial 
compression tests are assigned values commonly found 
for rock materials (Table 2). 

Table 2. Assumed model parameters for tension 

Parameters Units Value 
I++
RS - 1.5×10-4 
I+6
US - 1.8×10-4 
d++
R  - 3.0×10-4 
I66
RS  - 2.5×10-4 
I67
US - 2.8×10-4 
d66
R  - 4.0×10-4 

 
Fig. 8. Simulations of uniaxial tension tests on a single 
element. Note: the orientation angle represents the angle 
between the unit vector normal to the bedding plane and the 
loading axis-x. The soil mechanics sign convention is used. 
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Fig. 9. Evolution of damage components during uniaxial 
tensile tests simulated on a single element. Damage 
components change from 5+ to 5+, 56, and to 	56 as the 
orientation angle increases. 

 
Fig. 10. Variation of uniaxial tensile strength (maximum stress 
reached during loading) with respect to bedding orientation.  

Figure 8 shows the uniaxial tensile stress-stain curves 
obtained by single element simulation. The tensile 
strength reaches a maximum for a loading parallel to the 
bedding, and gradually decreases as the orientation angle 
decreases. Figure 9 shows the evolution of the damage 
components during the loading, which all exhibit a rapid 
increase after the yield point is reached. Similar to the 
compressive case, only one damage component is non 
zero when the loading is parallel or perpendicular to the 
bedding, and two damage components develop when the 
orientation angle is { = 40∘. Figure 10 provides the 
variations of uniaxial tensile strength (maximum stress 
reached during loading) with the loading orientation. 
Results match existing results of indirect Brazilian tests 
(Mohamed et al., 2015), both in trend and order of 
magnitude. 

 

3. NONLOCAL IMPLEMENTATION 
3.1. Anisotropic nonlocal formulation 
Physically, the proposed continuum damage model with 
strain softening leads to localized deformation. The 
failure path as well as dissipated energy has no 
convergent solution upon mesh refinement. 
Mathematically, the partial differential equation 
governing quasi-static problems looses ellipticity, which 
makes the boundary problem ill-posed. 

To address these issues, non-local models were proposed  
(Pijaudier-Cabot and Bazant, 1987): the stiffness 
reduction (damage development) at one material point 
not only depends on the mechanical state at the point 
itself, but also relies on the stress-strain value over a 
certain neighboring domain, characterized by an internal 
length. Numerically, the internal state variable H*, which 
was used to calculate the damage value, is replaced with 
a nonlocal state variable H*

|}. It is calculated from a 
spatial averaging of equivalent strain over a 
representative volume ~, as follows: 

IJK � = dS �, ÄÅ IÇÉ Ä Ñ~(Ä)              (15) 

where dS Ö, Ü  is the chosen nonlocal weight function. 
For a uniform field, nonlocal variables should be equal 
to local variables. Thus, the weight functions should 
satisfy the following normalizing condition in an infinite 
medium: 

∫ dS �, Ä ÑÜ = 1                          (16) 
In the vicinity of the boundary of a finite body, it is 
assumed that the nonlocal operator is only defined on the 
part that lies within the solid ~′. The weight function is 
normalized through 

d Ö, Ü = dS �, Ä / dS �, Ä Ñ~′(Ü)Åâ .               (17) 

The exact form of weight function depends on the 
material itself. For an isotropic material, Gaussian 
distribution functions or bell-shaped functions 
depending on the distance � − Ä  are simple and 
powerful tools. Only one coefficient, called internal 
length, is needed to normalize the weight functions; it 
represents the material property and is of the same order 
of magnitude as the maximum size of material 
heterogeneities. For a transverse isotropic material, the 
weight function should be direction dependent.  As 
shown the micro-structure in Figure 1, the field variable 
at a material point should be more influenced by the 
field variable at points located along the bedding that by 
the field variable located at same distance perpendicular 
to the bedding. Figure 11 shows the plots of the weight 
functions chosen to account for different non-local 
effects in directions parallel and perpendicular to the 
bedding. 
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Fig. 11. Weight function chosen in the anisotropic non-local 
damage model. 

The nonlocal influence zone characterized by internal 
length also represents the fracture process zone size 
when modelling fracture propagation. Weak bedding 
planes prevent the process zone to grow when a fracture 
propagates along the weak bedding. As a result, a 
smaller process zone is expected compared with the 
process zone of a fracture propagating perpendicular to 
the bedding plane. Based on these observations, we 
redefine the anisotropic bell-shape weight function as  

αS �, Ä = 1 −
ãW,åW
oW

6
−

ãZ,åZ
çZ

6
6  .        (18) 

Where é+ (respectively, é6) represents the characteristic 
internal length within the weak plane (respectively, 
perpendicular to the bedding), and é+ > é6. The contour 
of weight function in Eq. (18) is an ellipse, as shown in 
Figure 12. 

 
Fig. 12. Contour of the anisotropic bell-shape weight 
functions. 

3.2. Local arc length control 
Due to the nonlocal contributions from the neighbor 
points, the element stiffness matrix does not only depend 
on the state variables calculated at the element node, but 

also the state variables of other nodes surrounding that 
element. Ultimately, the half band size of the global 
stiffness matrix expands. However, this process requires 
sophisticated mathematical manipulations as shown in 
Jirasek and Patzak (2002). It is impossible to obtain an 
analytical expression for the proposed damage model for 
cases 0∘ < { < 90∘, as matrix rotation is involved.  
Instead, the local secant operator was used for 
computation - at the cost of losing quadratic 
convergence rate. However, the positive definite global 
stiffness guarantee global iteration do not stop at early 
stage.  

In our model, the damage evolution is computed in strain 
space in both local and nonlocal approaches, therefore 
the implementation of the anisotropic non-local damage 
model was similar to the implementation of the local 
model: a local iteration scheme, such as a return 
mapping algorithm, is not needed to keep the stress state 
on the yield surface. However, the material softening 
behavior may induce snap-back and snap through 
responses at the global force-displacement level. The 
traditional Newton-Raphson iteration fails to track these 
types of response both if load control or displacement 
control is used. To overcome these issues, an Arc length 
control (Crisfield, 1981) was proposed. It essentially 
adds one macroscopic unknown and one equation, the 
arc length equation. After solving the N+1 equation 
system, the displacement and load level can both 
decrease or increase to keep track of global responses. 
Spherical arc length control or normal plane control are 
the two most commonly used techniques.  We 
implement the local version of the normal plane method 
proposed by May and Duan (1997), in which the 
relative displacement of nodal points of elements in the 
fracture process zone (positive damage value) are taken 
to construct the arc length constraint equation.  

4. NUMERICAL SIMULATION OF 3 POINT 
BENDING  
We carried out numerical simulations of a three-point 
bending test to investigate mode I and mixed mode 
fracture propagation. The domain is a notched beam 
under plane strain condition as shown in Figure 13. The 
normal to the bedding plane is at an angle of 0∘, 45∘, and 
90∘ with respect to the horizontal x-axis.  Figure 13 
shows the geometry and symmetrical boundary 
conditions used in the simulation. We used the material 
parameters listed in Section 2.3, Table 1 and Table 2. 
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Fig. 13. Geometry and boundary conditions of the simulation 
domain. Note: the horizontal direction is the x-axis of the 
domain; the vertical direction is the y-axis of the domain. The 
local-1 axis is perpendicular to the bedding; the local-2 axis is 
parallel to the bedding in the material local coordinate system.  

 

Fig. 14. Local axial damage distribution (vertical cracks) for 
orientation { = 0∘(vertical bedding) after failure (í = 0). 
Damage propagates in mode I. Note only the coarse mesh 
results are presented, as there are no significant differences 
between the two meshes tested. 

 
(a) 

 
(b) 

Fig. 15. (a) Local axial damage (horizontal cracks) 
distribution, (b) Local transverse damage (vertical cracks) 
distribution for orientation { = 90∘ (horizontal bedding) after 
failure (í = 0). Damage propagates in mode I (vertical 
cracks) and II (horizontal cracks due to bedding debonding). 

 
Fig. 16. Local axial damage distribution (crack parallel to the 
bedding) for θ = 45∘. Damage propagates due to the 
debonding of the bedding. Note this simulation stopped before 
failure due to numerical convergence issues. 

Internal lengths r1 (parallel to the bedding) and r2 
(perpendicular to the bedding) were 20mm and 10mm, 
respectively. Two different finite element meshes of 
three-node triangular elements are used for numerical 
analysis. No significant difference was noted between 
the two meshes, which confirms that the non-local 
model avoids mesh dependence. In the following, only 
coarse mesh contour results are presented. Figure 14 
shows that when the bedding is vertical ({ = 0∘), cracks 
are vertical and the damage process zone lies straight up 
above the notch. Results agree well with experimental 
results obtained in isotropic materials: failure is the 
result of pure mode I fracture propagation. When the 
bedding is horizontal ({ = 90∘), both vertical and 
horizontal cracks develop within the fracture process 
zone, as shown in Figure 15. The process zone still 
spreads vertically above the notch, however, the failure 
pattern is mostly due to weak bedding debonding as 
local 5+ > 56. In addition, compared to the damage 
distribution for { = 0∘, the size of the process zone is 
significantly larger due to anisotropic nonlocal effects. 
These observations conform with physical expectations. 
Figure 16 shows local axial damage (cracks parallel with 
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weak bedding) for the case { = 45∘. Even through the 
simulation does not run up to total failure, the failure 
path is still clear: the damage process zone is oriented 
perpendicular to the bedding instead of spreading out 
vertically. 

 
(a) Horizontal stress for { = 0∘ 

 
(b) Horizontal stress for { = 45∘ 

 

 
(c) Horizontal stress for { = 90∘ 

Fig. 17. Horizontal stress distribution after fracture initiates.  

Figure 17 shows the horizontal stress distribution for the 
three cases under study (θ = 0∘, 45∘, 90∘). Intrinsic 
anisotropy has a significant influence not only on the 
damage process zone and the failure mechanism (as 
illustrated in Figure 14-16), but also on the distribution, 
magnitude and concentrations of stresses. Figure 18 
shows the force/displacement curve obtained by 
numerically at the point where the load is applied. No 
mesh dependency is noted, which confirms the 
efficiency of non-local enrichment. The orientation of 
the loading relative to the bedding dictates the global 
response: for { = 0∘ the response is more brittle than for 

{ = 90∘, i.e. less energy is needed to fracture the 
material at { = 90∘. Note for the case of { = 0∘, the 
snap back behavior (decreasing load with decreasing 
displacement) is successfully captured thanks to the arc 
length control method applied locally. 

 

 
Fig. 18. Load-deflection curve of the simulated cases of { =
90∘, 0∘ for different mesh.  

5. CONCLUSION 
A phenomenological nonlocal anisotropic damage model 
is formulated for transverse isotropic brittle materials 
such as sedimentary rocks. Based on the Hashin’s failure 
criteria for unidirectional fiber composites, equivalent 
strains are defined for tension and compression, within 
the bedding plane and perpendicular to the bedding 
plane. Damage propagates when equivalent strains 
exceed a damage variable that plays the role of an 
internal variable. Constitutive equations are proposed to 
relate explicitly this internal variable to the damage 
variable used in the expression of stiffness. The model is 
calibrated against triaxial compression test data, for 
different confinement and loading orientations. Utilizing 
the calibrated parameters along with some assumed 
parameters characterizing tensile damage evolution, we 
simulated uniaxial compression and uniaxial tension 
tests using a single cubic finite element. The variations 
of uniaxial tensile and compressive strengths with the 
orientation of the loading relative to the bedding follow 
the trends and magnitudes noted in experiments. 
Anisotropic non-local equivalent strains were used in the 
formulation to avoid localization and mesh dependence 
encountered with strain softening. Two different internal 
length parameters are used to distinguish the non-local 
effects along and perpendicular to the bedding. An arc 
length control algorithm is used at the global 
displacement-force iteration level to avoid convergence 
issues encountered in the non-local formulation. We 
simulated several cases of three-point bending tests in 
plane strain. The nonlocal approach indeed eliminates 
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mesh dependency. Results show that the orientation and 
size of the damage process zone are direction dependent, 
and that materials with intrinsic transverse isotropy 
exhibit mixed fracture propagation modes except when 
the bedding aligns with the loading direction. Further 
research towards a multiscale hydro-mechanical fracture 
propagation scheme is undergoing (Jin et al., 2017), in 
damaged elements are replaced by a discrete portion of 
fracture modeled with the XFEM, which will allow 
simulating hydraulic fracturing in rocks exhibiting 
porosity at multiple scales. 
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