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SUMMARY 

 

Previous neuroimaging and neuropsychological studies showed inconsistent 

findings concerning the involvement of the hippocampal formation in path integration, 

and the current study aimed to clarify this ambiguity. Specifically, this study investigated 

the extent to which the hippocampus proper, the entorhinal cortex, and neocortical 

regions were activated based on the implementation of continuous and configural 

updating strategies (one per participant) when performing a virtual path completion task. 

While configural updating required allocentric encoding of the outbound path’s shape, 

continuous updating required constant tracking of egocentric movements with reference 

to a point of origin. 

Findings from in-lab behavioral testing (Experiment 1) showed that neither 

strategy elicited more accurate path integration performance than the other — and did not 

support previous findings showing that configural updating elicited higher performance 

accuracy when compared with continuous updating (He & McNamara, 2018; Wiener, 

Berthoz, & Wolbers, 2011). Despite these null effects, strategy use was found to be 

moderated by the sex of the participant: male configural updaters outperformed female 

configural updaters on almost all types of path integration errors, and female continuous 

updaters outperformed female configural updaters in terms of distance error measures. 

Arguably, the former findings reflected unique challenges on the part of female 

configural updaters with allocentric perspective-taking in the absence of idiothetic self-

motion cues while the latter findings reflected better spatial processing among female 

participants from an egocentric perspective concomitant with continuous updating 
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strategy use than from an allocentric perspective concomitant with configural updating 

strategy use. 

In Experiment 2, a subsample of the participants who completed Experiment 1 

performed a new set of path integration trials in the fMRI scanner. The activation patterns 

of each strategy group were examined and compared based on whole-brain and region-of-

interest (ROI) analyses, the latter of which encompassed the hippocampus and entorhinal 

cortex. A within-trial ROI analysis of activation patterns showed that continuous updaters 

exhibited significant activation in the left entorhinal cortex based on a contrast of 

activations derived from simple and complex paths [complex > simple] during the 

homebound phase. Marginally significant activations in the left hippocampus in both 

strategy groups were also found based on ROI analysis and the same type of descriptive 

contrast. In each strategy group, within-trial analysis at the whole-brain level further 

showed significant non-contrast-related patterns of activations (in the left parietal cortex) 

and deactivations (in the right medial prefrontal cortex and right lateral temporal lobe) 

during the homebound phase of simple paths. In addition, brain-behavior correlations 

associated individual differences in visual path integration with non-contrast-related 

functional activity changes in the occipito-parietal and inferior frontal regions, but not in 

the hippocampus or the entorhinal cortex.  

Taken together, these fMRI findings suggest that extrahippocampal attentional 

and perceptual processes facilitated visual path integration, and that the entorhinal cortex 

and hippocampus may be more involved in detecting switches in homing decisions or 

responses between paths of varying complexity than in monitoring performance changes 

over a single category of paths. 



 

1 

 

CHAPTER 1 

INTRODUCTION 

 

 When navigating our everyday environments, we rely not just on visible objects 

or landmarks but also on self-motion cues in the form of internal/idiothetic (i.e., 

vestibular and proprioceptive) and/or external/allothetic (i.e., visual and acoustic flow) 

cues to track our current course of travel and compute moment-to-moment changes in 

position and orientation. The process of estimating distance and directional changes 

relative to a starting position and integrating such displacements with self-motion cues to 

compute and update a homing vector is termed path integration (also known as dead 

reckoning) [see, e.g., Gallistel, 1990; Mittelstaedt & Mittelstaedt, 1980, 1982; Müller & 

Wehner, 1988; for reviews, see Etienne & Jeffry, 2004; Loomis, Klatzky, Golledge, & 

Philbeck, 1999; Loomis, Klatzky, & Golledge, 2001; Srinivasan, 2015].  

 Path integration was first postulated to apply to humans by Darwin (1873), who 

documented the remarkable feat of how North Siberian natives charted a course of return 

after meandering through featureless icy plains. Subsequent empirical studies showed 

that this homing ability existed in a wide variety of animals, including insects (e.g., honey 

bees, Saharan desert ants), spiders, birds (e.g., pigeons, geese), and mammals (e.g., 

golden hamsters, gerbils, dogs, humans) [Gallistel, 1990; Mittelstaedt & Mittelstaedt, 

1980, 1982; see Etienne & Jeffery, 2004, Srinivasan, 2015, for reviews of path 

integration in non-human animals; see Loomis et al., 1999, 2001, for reviews of path 

integration in humans]. To date, research on path integration has continued to attract the 

attention of spatial cognition researchers in view of the possibilities it offers for greater 
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insights into the basic processes/mechanisms that are involved in spatial perception and 

cognitive mapping (see, e.g., Burgess, 2014; Hafting, Fyhn, Molden, Moser, & Moser, 

2005; Moser, Kropff, & Moser, 2008).  

 The traditional behavioral paradigm used for studying path integration in humans 

is the path- or triangle-completion task (see, e.g., Klatzky et al., 1990; Loomis et al., 

1993; Fukusima, Loomis, & Da Silva, 1997; Philbeck, Klatzky, Behrmann, Loomis, & 

Goodridge, 2001; Sholl, 1989). The path completion task, originally developed by 

Klatzky et al. (1990), requires a participant, donning blindfolds and headphones, to walk 

two or more straight segments with one or more turns in between under the guidance of 

the experimenter, and to walk back (or point back) to the origin on his/her initiative at the 

end of the outbound journey. Triangle completion is the popular derivative of this path 

completion protocol and refers to participants’ attempts at returning to the origin (or 

pointing toward it) after traversing two straight segments with one turn (i.e., the whole 

trajectory forms a triangle) [Klatzky, Loomis, Beall, Chance, & Golledge, 1998; Loomis 

et al., 1993; Philbeck et al., 2001; Sholl, 1989]. Importantly, the donning of blindfolds 

and headphones throughout the task blocked out visual and auditory cues that could 

facilitate the updating of positional estimates and obliged the participant to attend to 

idiothetic cues from vestibular and proprioceptive systems (e.g., efferent motor 

commands, kinesthetic feedback from the musculature, acceleratory signals from the 

vestibular system) for an online updating of the perceived home or target location. With 

regard to homing responses, participants have been found to commit systematic errors 

that are contingent on path parameters. Such errors refer to overestimating short homing 

distances and small directional turns, as well as underestimating longer homing distances 
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and larger directional turns (Fujita, Klatzky, Loomis, & Golledge, 1993; Loomis et al., 

1993) [see Fig. 1]. These regular patterns of errors have been found in numerous 

path/triangle completion studies conducted in both real-world (e.g., Klatzky et al., 1990; 

Loomis et al., 1993; Sholl, 1989; Philbeck et al., 2001; Wiener, Berthoz, & Wolbers, 

2011) and virtual reality settings (e.g., Adamo, Briceño, Sindone, Alexander, & Moffat, 

2012; Arnold, Burles, Bray, Levy, & Iaria, 2014; Gramann, Müller, Eick, & Schönebeck, 

2005; Harris & Wolbers, 2012; Klatzky et al., 1998; Mahmood, Adamo, Briceno, & 

Moffat, 2009; Wolbers, Wiener, Mallot, and Büchel, 2007).  

 The classical configural encoding model (Fujita et al., 1993) attempted to explain 

these systematic errors of return as arising out of difficulties in generating a configural 

mental representation of the outbound path, and not when participants executed their 

homeward responses. An alternative mathematical model — the leaky path integration 

model (Lappe & Frenz, 2009; Lappe, Jenkin, & Harris, 2007; Lappe, Stiels, Frenz, & 

Loomis, 2011) — proposes that the representation of distance is affected by two 

parameters: a leak rate and a gain rate. The leak rate reflects the extent to which an 

integrated distance estimate decays over the length of locomotion whereas the gain rate 

describes the amount of distance that is added to the integrated distance estimate with 

each single step. When combined, these two parameters can explain the underestimation 

and overestimation of travel distances when combined with relevant distance or 

positional values (see Lappe et al., 2007). Notably, the leak rate tends to become 

progressively larger with longer distances away from home, leading to the 

underestimation of return distance during triangle completion (Harris & Wolbers, 2012). 
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A.  B.  

  
 

Fig. 1. (A) Depictions of the triangular paths used by Loomis et al. (1993). “X” represents the 

origin of travel and the large dots (A, B) represent the termini of the two-legged outbound paths, 

each being 2, 4, or 6 m. The turn varied between 60, 90, and 120 degrees. (B) Average 

performance of Loomis et al.’s (1993) participants. Small dots represent the centroids of the 

stopping points of 37 participants. Most of those centroids did not coincide with the origin of 

travel, indicating the existence of systematic errors. [Adapted from figure 5.3 of Loomis et al. 

(1999). Reproduced with permission.] 

 

1,1 Extant Neuroimaging Studies on Visual Path Integration in Humans 

 

 Over the past decade, there have been a series of neuroimaging studies that 

investigated the neural correlates of human path integration through virtual reality forms 

of the triangle completion task (for fMRI studies, see Arnold et al., 2014; Wolbers, 

Wiener, Mallot, & Büchel, 2007; for EEG studies, see Chiu et al., 2012; Lin, Chiu, & 

Gramann 2015; Gramann, Müller, Schönebeck, & Debus, 2006; Gramann et al., 2010; 

Plank, Müller, Onton, Makeig, & Gramann, 2010). Unlike the behavioral studies on 
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human path integration that excluded the availability of visual cues, participants 

performing virtual triangle completion in neuroimaging experiments receive full 

exposure to visual cues in the form of optic flow at the cost of having no proprioceptive 

or kinesthetic feedback due to the testing constraints of neuroimaging experiments that 

prevent locomotion. Consequently, participants performing triangle completion in virtual 

environments focus primarily on the integration of optic flow information when 

computing their homing responses at the end of outbound paths. Therefore, the 

performance of path integration in virtual reality has been termed visual path integration 

(Gramann et al., 2005).  

 The common feature of all these virtual triangle completion tasks was the 

presentation of open plains (Arnold et al., 2014; Wolbers et al., 2007) [see Fig. 2] or 

passageways (Chiu et al., 2012; Lin et al., 2015; Gramann et al., 2006, 2010; Plank et al., 

2010) [see Fig. 3] that were devoid of any salient landmark or object cues. In such virtual 

environments, the perception of optic flow was rendered through experimentally 

controlled translations and rotations. In a typical path integration trial, the participants 

experienced animated / passive motion either along the outbound path of the triangular 

trajectory (two straight segments with a turn in between, Chiu et al., 2012; Lin et al., 

2015; Gramann et al., 2006, 2010; Plank et al., 2010; Wolbers et al., 2007) or along the 

entire three legs/segments of the triangular trajectory (Arnold et al., 2014). The homing 

responses generally involve: (i) pointing back to the starting position by deflecting the 

joystick (Wolbers et al., 2007), (ii) pressing buttons (e.g., mouse buttons) to adjust 3D 

homing arrows (Chiu et al., 2012; Lin et al., 2015; Gramann et al., 2006, 2010; Plank et 

al., 2010), or (iii) pressing buttons to indicate whether or not they have successfully 
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returned to their starting position (Arnold et al., 2014). As for fMRI-based control trials, 

they varied across studies from animations of travels (pre-configured by the 

experimenter) along one straight path (i.e., a forward translation, Arnold et al., 2014; 

Gramann et al., 2006, 2010; Plank et al., 2010) or along winding paths with turns that 

differed from the turns in the test trials (see Gramann et al., 2006, 2010; Lin et al., 2015; 

Wolbers, 2007).  

 

 
Fig. 2. A ground-level view of the featureless virtual plain used by Wolbers et al. (2007) and a 

schematic diagram of the outbound paths with turns that varied systematically in increments of 

30º from 30º to 120º in both clockwise and anticlockwise directions. Each of the eight outbound 

paths were presented five times. The second segment after the turn was varied in length to keep 

the animation within a suitable temporal range for functional scanning. The participants pointed 

back to the perceived starting position at the end of travel along each outbound path. [Adapted 

from figure 1 of Wolbers et al. (2007). Reproduced in compliance with the terms of Creative 

Commons Attribution License supported by The Journal of Neuroscience and the Society for 

Neuroscience.] 
 

 



 7 

 
Fig. 3. The virtual tunnel task used by Gramann and colleagues showing: (A - C) the first-person 

scenes during a typical tunnel passage along a straight segment along with a schema of the 

allocentric and egocentric return bearings, and (D, E) the two types of homing vectors that can be 

specified based on adjusting the 3D homing arrows at the end of the tunnel passageway. Panels F 

and G show the schematics of the mental representations of the allocentric and egocentric homing 

vectors. [Retrieved from: http://sccn.ucsd.edu/~klaus/images/Description%20Strategy.pdf; 

Reproduced with permission.] 

*To download an animation of a sample virtual tunnel trial with allocentric and egocentric 

homing vectors at the end, please access: http://sccn.ucsd.edu/~klaus/download/tunnel_cat.mpg) 

                      

 

 Distinct types of data analyses were applied to the respective neuroimaging 

studies. In the first fMRI study on visual path integration, Wolbers et al. (2007) 

contrasted functional activity between path integration and control conditions, and 

parametric modulation of brain activity in selected regions by variation in the accuracy of 

homeward pointing responses. The analysis of the functional contrast maps revealed 

activations in the precuneus, subdivisions of the intraparietal sulcus, posterior middle 

temporal gyrus, and superior frontal gyrus. Parametric analysis further revealed negative 

correlations between pointing errors and activations in the right hippocampus and 

bilateral medial prefrontal cortex (BA9) during encoding of the outbound paths across 

subjects.  

 As for the EEG studies on visual path integration, the modes of analyses involved: 

(i) EEG current density reconstruction (Gramann et al., 2006), and (ii) EEG independent 



 8 

component analysis (ICA) – a spatio-temporal filtering method that separates the far-field 

EEG potentials arising from synchronized cellular assemblies into spatially fixed but 

temporally separated processes (Chiu et al., 2012; Lin et al., 2015; Gramann et al., 2010; 

Plank et al., 2010; for details of ICA, see Makeig, Bell, Jung, & Sejnowski, 1996; Onton 

& Makeig, 2006; Onton, Westerfield, Townsend, & Makeig, 2006). Based on these EEG 

analysis techniques, a common set of brain regions was observed to be activated during 

virtual triangle completion across these studies; namely, the precuneus (BA 7), the 

retrosplenial cortex (RSC) [BA 29/30], and the middle frontal cortex/gyrus (BA 6, BA 9). 

The precuneus was demonstrated to be more highly activated [as assessed through EEG 

source density and alpha desynchronization (i.e., decreased oscillation of the alpha 

frequency band, 8 – 13 Hz)] before and during the turning phase(s) of the outbound path 

among participants who preferred an egocentric/body-centered frame of reference for 

estimating their positional changes (“Turners”, see Fig. 3G) in comparison to participants 

who strongly preferred an allocentric/environment-centered frame of reference for 

estimating their positional changes (“Non-turners”, see Fig. 3F) [Chiu et al., 2012; 

Gramann et al., 2006; Lin et al., 2015; Plank et al., 2010]. These findings implicated the 

precuneus as a key site for attending to optic flow and integrating it with egocentric 

positional estimates. Conversely, when Non-turners were compared with Turners, higher 

alpha desynchronization in the right precuneus / posterior parietal cortex has also been 

observed during the turning phase of an outbound route (Lin et al., 2015; Gramann et al., 

2010). This suggests that the right precuneus / posterior parietal cortex could also be 

involved in directing information about egocentric directional changes to the construction 

of an allocentric representation of the outbound path (Lin et al., 2015).  
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 Similarly, alpha desynchronization in the RSC has been shown to be higher in 

Non-Turners than in Turners before and after the turning phase, and alpha power 

increases in the RSC have been shown to be comparatively higher in Turners during the 

turning phase (Lin et al., 2015). Critically, Lin et al. (2015) showed that RSC event-

related spectral perturbations (ERSPs) [i.e., power frequencies of brain waves] during 

separate path integration phases covaried differently with the pointing errors committed 

by Non-Turners. Specifically, Non-Turners’ pointing errors covaried negatively with the 

ERSPs recorded before and after the turn but positively with the ERSPs recorded during 

the turn. Based on these findings, Lin et al. (2015) proposed that the RSC was involved in 

two types of cognitive processes: (i) the integration of ego-motion information with 

allocentric reference frames (e.g., boundaries of the virtual environment) during forward 

translations (before and after the turn), and (ii) the computation and tracking of 

allocentric headings during turns. The second part of their proposal was supported by 

more recent findings showing that the RSC was selectively involved in processing 

rotational changes during virtual motion (Chrastil, Sherrill, Hasselmo, & Stern, 2016). 

 Unlike the precuneus and RSC whose activations are influenced by the type of 

spatial reference frame that one prefers, activation in the middle frontal cortex (BA 6 

and/or BA 9) has consistently been found to occur during the turning phase of the 

outbound path irrespective of the preferred perspective or reference frame [in the form of 

EEG current density, see Gramann et al., 2006; in the form of theta band 

synchronizations (4 – 8 Hz ERSPs), see Chiu et al., 2012; Gramann et al., 2010; Lin et 

al., 2015; Plank et al., 2010]. These findings implicated an essential role of the middle 

frontal cortex in monitoring changes in virtual motion (Gramann et al., 2010; Plank et al., 
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2010). This interpretation aligns with Wolbers et al.’s (2007) view that the medial 

prefrontal cortex is crucially involved in maintaining spatial information in working 

memory for the subsequent computation of homing responses.  

 

1.2 Role of the Hippocampus in Path Integration: Contentious Findings 

 

 The hippocampus is a major component of the medial temporal lobe that has been 

regarded as functionally involved in spatial navigation, particularly in the formation of 

cognitive maps (O’Keefe & Nadel, 1978), as well as in the strategic control of attention 

and memory processing (Anderson, Morris, Amaral, Bliss, & O'Keefe, 2007). Behavioral 

neuroscience studies on the foraging behavior of rats have generally linked the 

hippocampus to path integration (see, e.g., McNaughton et al., 1996; Whishaw, 

McKenna, & Maaswinkel, 1997; Wiener, Korshuno, Garcia, & Berthoz, 1995). Notably, 

Whishaw et al. (1997) argued that one of the specialized functions of the hippocampus 

pertains to coding for idiothetic information (i.e., efferent signals to the musculature, 

afferent proprioception from the muscles and joints) and channeling such information 

toward the optimal processing of allothetic information (i.e., visual, auditory, olfactory 

cues) [see also Whishaw & Tomie, 1996]. Specifically, the relevance of the hippocampus 

for path integration was demonstrated by random and inaccurate homing responses of rats 

with fornix-fimbria lesions (Whishaw & Gorny, 1999; Whishaw, Hines, & Wallace, 

2001; Whishaw & Maaswinkel, 1998; Whishaw & Tomie, 1996). Unlike the control rats 

(with intact hippocampus) who found their way back to home locations under both light 

and dark (or blindfolded) conditions, fornix-fimbria lesioned rats returned home 
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successfully only when allothetic cues were available (e.g., in a lighted room with visual 

cues). More specifically, the fornix-fimbria lesioned rats became disoriented or took 

suboptimal return paths when restricted to idiothetic cues (Whishaw & Gorny, 1999; 

Whishaw et al., 2001), and perseverated in returning, under both light and dark 

conditions, to a refuge location that was used during training (Whishaw & Maaswinkel, 

1998; Whishaw & Tomie, 1996). Overall, these findings gave the earliest support for the 

pertinence of the hippocampus for path integration; ostensibly, lesions to the fornix-

fimbria fibers impaired spatial learning that was attuned to idiothetic signals from the 

vestibular and proprioceptive systems. 

  In humans, Wolbers et al. (2007) demonstrated that pointing errors from the path 

integration trials correlated negatively with activation in the right hippocampus on a trial-

by-trial basis (i.e., better pointing performance was associated with higher hippocampal 

activation across trials). This negative correlation was unaffected by overall performance 

levels and applied to both good and poor path integrators. This finding was interpreted to 

suggest that the hippocampus was involved in integrating distance and direction signals 

for updating the coordinates of the starting position during spatial displacements. Region-

of-interest (ROI) analyses performed by Chrastil et al. (2016) focusing on the 

hippocampus supported this interpretation by showing that bilateral activation in the 

anterior hippocampus (in the same areas as those found by Wolbers et al., 2007) was 

positively correlated with the amount of translations and rotations that were accurately 

encoded during virtual motion episodes.  

 Furthermore, several neuropsychological studies showed that epileptic patients 

with right hippocampal resections demonstrated deficiencies in path integration with 



 12 

regard to estimating (i) the distances from the starting position during blindfolded 

walking (Philbeck, Behrmann, Levy, Potolicchio, & Caputy, 2004) and (ii) the angle-of-

return (i.e., homing direction/vector) during triangle completion (Worsley et al., 2001). In 

addition, recent research on wayfinding (i.e., goal-directed navigation to places that are 

beyond the sensory horizon, see Golledge 1999; see also Wolbers & Wiener, 2014, for a 

review) in virtual environments implicated that the hippocampus was involved in a 

dynamic/continuous tracking of distances to a goal as perceived from the egocentric/first-

person perspective (Howard et al., 2014; Sherrill et al., 2013), and that hippocampal 

activity was influenced by top-down signals from the medial frontal cortex when 

navigating to a previously observed target under the availability of salient optic flow 

information (Sherrill et al., 2015), as well as when making flexible navigational decisions 

at common hallways/intersections (Brown, Ross, Toyne, & Stern, 2012). Altogether, 

these findings support the notion that the hippocampus is a key component for path 

integration and spatial navigation in general.  

 Despite these positive findings, there have been several notable studies that 

argued against the pertinence of the hippocampus for path integration (Alyan & 

McNaughton, 1999; Arnold et al., 2014; Kim, Sapiurka, Clark, & Squire, 2013; Shrager, 

Kirwan, & Squire, 2008). Alyan & McNaughton (1999) showed that 

hippocampectomized rats with lesions in the dorsal and ventral regions of the 

hippocampus could perform a path integration task as well as healthy control rats. 

Likewise, neuropsychological studies involving human subjects showed that memory-

impaired/amnesic patients with lesions in the hippocampus and adjacent regions in the 

medial temporal lobe (MTL) performed as well as healthy control subjects in a 
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blindfolded return-to-origin task (Kim et al., 2013), and in a pointing-back-to-the-start 

task at the end of an outbound path (Shrager et al., 2008). Moreover, a fMRI study by 

Arnold et al. (2014) that required participants to estimate return/homebound path 

distances during virtual triangle completion showcased activations across a wide range of 

brain areas that excluded the hippocampus. The authors attributed the lack of 

hippocampal involvement to the possibility that the hippocampus may be more relevant 

for tracking the starting position prior to return rather than tracking the entire triangular 

route, and that hippocampal activation may be more influenced by directional estimates 

than distance estimates. Regardless of the reason for the absence of hippocampal 

involvement in path integration, these studies all suggested that the hippocampus is not 

essential for determining homing responses, and that extrahippocampal areas and neural 

circuits involved in cognitive control, spatial attention, and working memory (see Arnold 

et al., 2014, for details) are more likely to constitute a neural system that supports path 

integration. 

 

1.3 Taking a Closer Look at the Contentious Findings over Hippocampal     

      Involvement in Human Path Integration 

 

 Due to these contentious findings over the involvement of the hippocampus in 

human path integration, differences in methodology, primarily in terms of experimental 

design and subject characteristics, must be considered. Starting with Arnold et al.’s 

(2014) study, their participants experienced animated motion along all three legs of a 

triangular path and were instructed to decide whether the return path’s distance was more 
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(or less) than its actual distance based on one of two button presses. Unlike the traditional 

triangle completion task which involved either walking or pointing back to the origin, 

each of which generated precise and continuous measures of accuracy, this task consisted 

of a binary decision of the return path distance being matched (or mismatched) with their 

estimated return distance (see Fig. 4). This makes it hard to infer whether or not the 

judgment of the return vector relates to an updating of the starting position relative to 

changes in position and orientation along the outbound path (the first two legs/segments). 

This spatial updating mechanism, characteristic of path integration, was originally 

proposed by Wolbers et al. (2007) to represent the function of the right hippocampus; and 

it is likely that the transformation of the original triangle completion paradigm into a task 

wherein the participant had no control over the trajectory of the return path diminished 

the amount of cognitive effort directed toward the spatial updating of the starting 

position, eventually culminating in the absence of hippocampal activation. Moreover, it is 

unknown if Arnold et al.’s (2014) participants applied a time- or pace counting strategy 

that facilitated their estimations of the return length. Unlike some other studies, which 

implemented steps to deter the use of such an analytical, non-spatial strategy (see, e.g., 

Klatzky et al., 1990; Philbeck et al., 2004), Arnold et al. (2014) did not carry out such 

control procedures, and hence it is unclear whether the wide-ranging activations they 

observed in the frontoparietal network (comprising the medial frontal gyrus, anterior 

cingulate cortex, caudate nucleus, supramarginal gyrus, angular gyrus, superior parietal 

lobule, and right precuneus) reflected the operation of strategies or working memory 

processes that are non-inherently associated with visual path integration. 
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Fig. 4. (A) A first-person view of the featureless virtual plain implemented by Arnold et al. 

(2014) for triangle completion. (B) The participants performed estimations (E) of the return 

distance to the start (S) based on three categories of triangular paths reflecting an overshot, 

undershot, and matching of the estimated end-point in relation to the starting position. The 

participants pressed one of two buttons indicating whether the animated return path’s distance 

matched (or mismatched; either overshot or undershot) their estimated return distance [Adapted 

from figure 1 of Arnold et al. (2014). Reproduced in compliance with the terms of Creative 

Commons Attribution License supported by Frontiers Media SA.]. 

 

 In the two neuropsychological studies that called into question the involvement of 

the hippocampus in path integration (Kim et al., 2013; Shrager et al., 2008), memory-

impaired patients and healthy control subjects were tested under blindfolded condition 

using path integration tasks that required walking back to the starting position after a self-

directed search of target objects (i.e., tiles on the floor) [Kim et al., 2013], and pointing 

back to the starting position after traversing outbound paths with one and two turns 

(Shrager et al., 2008). In view of non-significant group differences in performance, the 

authors of both studies stressed the importance of working memory for carrying out the 

essential spatial computations during path integration and proposed that the MTL may be 

more involved in converting information from spatial perception into long-term memory 

than in processing information directed to path integration per se.  

 However, a more detailed examination of the patient profiles revealed a caveat. 

Although all the patients experienced considerable degrees of hippocampal volume loss 

that reflected an almost complete loss of hippocampal neurons (as stipulated by Kim et 

al., 2013), not everyone experienced lesions to the adjacent entorhinal cortex or 
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subiculum. The entorhinal cortex is a vital subregion of the hippocampal formation that 

was found to contain grid cells with hexagonally arranged firing fields that 

topographically map onto the geometric surface of the environment in both rats (Fyhn, 

Molden, Witter, Moser, & Moser, 2004; Hafting et al., 2005; Moser et al., 2008) and 

humans (Doeller, Barry, & Burgess, 2010; Jacobs et al., 2013). Crucially, these grid-like 

firing patterns were proposed to be coincident with an online computation of positional 

and directional estimates during events involving path integration (Chen, He, Kelly, 

Fiete, & McNamara, 2015), wayfinding (Howard et al., 2014; Spiers & Maguire, 2007) 

and spatial orientation (Chadwick, Jolly, Amos, Hassabis, & Spiers, 2015). Compared 

with severely amnesic patients that have more than 90% reductions in hippocampal and 

parahippocampal volumes [two in Shrager et al.’s (2008) study and one in Kim et al.’s 

(2013) study], three moderately amnesic patients in Shrager et al.’s (2008) study had 

bilateral hippocampal volume reductions of 46%, 48%, and 49%, respectively, while four 

moderately amnesic patients in Kim et al.’s (2013) study had bilateral hippocampal 

volume reductions of 35%, 46%, 48%, and 49%.1 It is vital to note that all moderately 

amnesic patients in both studies did not have large bilateral reduction in the volume of 

the parahippocampal gyrus (which includes the entorhinal cortex in its rostral region; the 

patients had between 5% to 17% reduction in the parahippocampal gyrus in comparison 

to the control mean). Therefore, it is very likely that large parts of the entorhinal cortex in 

these patients remained intact, and that might have enabled them to generate relatively 

                                                 

 

 
1 Interestingly, hippocampectomized rats that demonstrated comparable levels of path integration 

performance as healthy control rats also did not experience extensive damage to their hippocampus, with 

sparing of the dentate gyrus and the CA3 (Alyan & McNaughton, 1999). 
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accurate directional (Shrager et al., 2008) and Euclidean distance-to-goal estimates (Kim 

et al , 2013). More importantly, Shrager et al. (2008) encouraged their participants to 

actively maintain the outbound path in mind during each trial – a strategy-inducing 

procedure that was not attempted in any previous studies on path integration (see, e.g., 

Klatzky et al., 1990, 1998; Loomis et al., 1993, 1998; Philbeck et al., 2001). This led to 

two severely amnesic patients (with an average bilateral volume reduction in the 

hippocampus and parahippocampus that exceeded 90%) and four control participants 

reporting attempts to continuously track their position and update it relative to the starting 

position as they moved. The two severely amnesic patients performed as well as the four 

control subjects when pointing back to their starting positions immediately at the end of 

outbound travel. However, these two patients performed significantly poorer than the 

control subjects after a period of distraction; this suggested the presence of deficits in the 

retrieval of path integration-related spatial information that relied on the integrity of the 

MTL. 

 On the other hand, neuropsychological studies which supported the involvement 

of the hippocampus in human path integration (Philbeck et al., 2004; Worsley et al., 

2001) recruited epileptic patients that experienced resections of the entire entorhinal 

cortex and amygdala, and approximately half (Philbeck et al., 2004) to two-thirds 

(Worsley et al., 2001) of the hippocampus. Apart from the removal of brain areas that 

exceeded the extent of lesioned sites in the memory-impaired patients of Shrager et al. 

(2008) and Kim et al. (2013), Philbeck et al. (2004) and Worsley et al. (2001) also 

recruited relatively more patients that counterbalanced the number of control subjects. 

Worsley et al. (2001) tested 33 patients (16 with right temporal lobectomy; 17 with left 
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temporal lobectomy) versus 16 control participants while Philbeck et al. (2004) tested 18 

patients (10 with right temporal lobectomy; eight with left temporal lobectomy) versus 10 

control participants. In general, the findings showed that epileptic patients with right 

temporal lobectomy were the poorest performers in the path integration tasks. 

Specifically, Philbeck et al. (2004) showed that right temporal lobectomy patients 

overshot the target location — marked by a cone placed five meters away from the 

starting position — to a significantly larger extent than both left temporal lobectomy 

patients and control participants when they had to walk blindfolded to it. Similarly, in a 

triangle completion task, Worsley et al. (2001) showed that right temporal lobectomy 

patients overshot the required return distance and overturned the required angle-of-return 

in magnitudes larger than both left temporal lobectomy patients and control participants. 

Importantly, unlike Shrager et al.’s (2008) protocol, no instructions were given to the 

patients about keeping the outbound path in mind as they walked. Overall, in view that 

both studies (i) tested patients with resections of both the hippocampus and the entorhinal 

cortex, (ii) ensured a balanced ratio of patients and controls, and (iii) avoided the 

induction of specific strategies, one could argue that these findings offer a more 

convincing picture of MTL’s functional role in path integration. 
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1.4 Identifying the Functional Roles of the Hippocampus and Entorhinal Cortex  

      through Differential Path Integration Strategy Use 

 

The extant literature provides evidence both supporting and negating the relevance 

of the hippocampus for human path integration — and raises the question of whether or 

not activation in the hippocampus and the adjacent entorhinal cortex could be induced 

using different path integration strategies. Based on a real-world triangle completion task, 

Wiener et al. (2011) proposed two kinds of path integration strategies: (i) a configural 

updating strategy focusing on encoding the shape of the outbound path and computing 

homeward responses based on the encoded mental image; and (ii) a continuous updating 

strategy focusing on keeping track of the start position at all times along the outbound 

path (i.e., moment-to-moment updating) in order to maintain a constantly updated 

homing vector. Wiener et al. (2011) theorized that these two strategies largely differed in 

terms of the timing of home vector computation. While continuous updating refers to an 

online process whereby the homing vector is computed continuously during navigation to 

the exclusion of a need for visualizing the shape of the outbound path, configural 

updating refers to an offline process whereby the homing vector is computed at the end of 

the outbound path based on an encoded representation of the path.  

To assess the impact of these two forms of spatial updating on real-world path 

integration, Wiener et al. (2011) instructed their participants to apply these two strategies 

in sequence over two counterbalanced blocks of outbound paths — that is, the same 

group of participants were tested in the use of both strategies. The differences in homing 

performance arising from the use of these two strategies were exhibited in terms of head 
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orientation and corresponding path integration errors. When the participants applied 

configural updating, they showed little head movements when traversing both segments 

of the outbound path. By contrast, when they applied continuous updating, they were 

strongly biased to turning their heads in the direction of the starting position as they 

walked along the second segment of the outbound path after the turn. Regardless of the 

length of the outbound path, the participants took longer time in attempting to return to 

the perceived starting position when they applied configural updating than when they 

applied continuous updating. However, path length mattered with regard to distance and 

angular measures. After traversing longer outbound paths (mean length = 15.3 m, mean 

turning angle = 148°), the participants committed lower magnitudes of direction errors, 

distance errors, and homing errors (see Fig. 5, for an illustration of such errors) when 

they applied configural updating than when they applied continuous updating. The 

differences in the commission of errors between the two strategy conditions were 

comparatively smaller after traversals on shorter outbound paths (mean length = 8.3 m, 

mean turning angle = 101°). Overall, these findings showed that the implementation of 

two different path integration strategies generated contrasting patterns of path integration 

performance.  

Recently, a virtual reality study by He and McNamara (2018) incorporated physical 

translations (i.e. updating of scenes in headmounted display with each forward leg 

movement) and extended the differential application of these two strategies to judgments 

of relative directions (JRDs) between virtual objects arranged in a geometrically regular 

layout. Configural strategy users were instructed to visualize the shape of a path that 

bypassed three virtual posts whereas continuous strategy users were instructed to update 
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their position and orientation continuously with respect to a red virtual post appearing 

close to the starting position. Results showed that configural strategy users committed 

significantly fewer errors when their heading directions at the time of pointing were 

aligned with the reference directions/axes of the object array (e.g., North) than when their 

heading directions were misaligned with such reference directions. This behavioral 

pattern did not apply to the continuous strategy users, who demonstrated comparable 

levels of pointing errors regardless of whether or not their heading directions were 

aligned with any reference direction of concern. These findings suggested that configural 

strategy users selected allocentric reference frames to encode the configuration of objects 

and prioritized the retrieval of spatial information organized along the directions of 

reference axes. By contrast, continuous strategy users’ responses suggested that they 

were inattentive to the layout geometry of the virtual objects and that they referred to 

egocentric cues or reference frames when making their pointing responses. 
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Fig. 5. The three error variables used by Wiener et al. (2011) in their real-world triangle 

completion task: (i) direction error — the difference between the expected and actual angle-of-

return; (ii) distance error— the difference between the expected and actual linear distance/path of 

travel; and (iii) homing error — the Euclidean distance between the starting and stopping 

position. [Adapted from figure 1 of Wiener et al. (2011). Reproduced with permission.]   

 

1.4.1 Implications  

In retrospect, by comparing Wiener et al.’s findings with the neuropsychological 

studies conducted by Shrager et al. (2008) and Kim et al. (2013), it seems possible that 

the amnesic patients might have preserved the ability to implement some form of spatial 

strategy resembling Wiener et al.’s (2011) continuous updating strategy. This possibility 

is supported by previous studies (as aforementioned) that implicated the involvement of 

extrahippocampal regions like the middle frontal cortex/gyrus and the precuneus / 

posterior parietal cortex in a dynamic updating of the homing vector when traversing 

virtual outbound paths (Chiu et al., 2012; Gramann et al., 2006; Plank et al., 2010).  
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Moreover, in view that the moderately amnesic patients (Kim et al., 2013; Shrager 

et al., 2008) had largely intact entorhinal cortices, the entorhinal cortex might be another 

region that is involved in continuous updating. This is supported by previous studies 

implicating that the entorhinal cortex is involved in the online computation of: (i) 

Euclidean distances toward distal locations (Howard et al., 2014; Spiers & Maguire, 

2007), (ii) linear/path distances toward a point of origin (Jacob et al., 2017), and (iii) 

intended geocentric directions to target objects (Chadwick et al., 2015). Most probably, 

these online vector computations are dependent on the spatially stable firing patterns of 

entorhinal grid cells (Fyhn et al., 2004; Jacobs et al., 2013; Gil et al., 2018; Hafting et al., 

2005; Stangl et al., 2018). With firing fields that represent the vertices of tessellating 

triangles arranged in a hexagonal lattice, a common spatial metric with the same scale 

and orientation is maintained across the geometric surfaces of different environments 

(Hafting et al., 2005; McNaughton, Battaglia, Jensen, Moser, & Moser, 2006). This 

uniform distribution of firing fields of grid cells can be conceived as neuronal nodes in a 

mapping of topographical space to mediate the continuous/dynamic updating of 

positional or locational changes (McNaughton, Battaglia, Jensen, Moser, & Moser, 

2006). Importantly, the multipeaked firing pattern exhibited by grid cells does not need 

reciprocal inputs from the hippocampus to maintain the number of firing peaks and the 

size/scale of the firing field, implicating that spatial information about self-movements 

can be expressed primarily by the entorhinal cortex (Fyhn et al., 2004). This might 

explain why Shrager et al.’s (2008) amnesic patients (with largely intact entorhinal 

cortices) can perform as well as the control subjects despite experiencing hippocampal 

atrophy. 
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On the other hand, the resection of the medial temporal lobes in the epileptic 

patients (Philbeck et al., 2004; Worsley et al., 2001) might have abolished or complicated 

the use of a path integration strategy resembling Wiener et al.’s (2011) configural 

updating strategy. This could be seen from the finding of Shrager et al.’s (2008) amnesic 

patients being unable to conduct homeward pointing as well as the controls after a period 

of distraction (see Experiment 5, Shrager et al., 2008), which implicated certain deficits 

in forming or accessing offline representations of the outbound paths (e.g., an aerial view 

of the traversed path).  

 

1.5 Study Overview and Hypotheses 

 

In view of these implications and the absence of any neuroimaging study to date 

showing how individual differences in path integration strategy use could influence the 

levels of activity in the hippocampal formation and extrahippocampal regions, the current 

study aimed to investigate the extent to which continuous and configural updating 

strategy use would engage the hippocampal formation, as well as navigationally relevant 

extrahippocampal regions. 

 

1.5.1 Experiment 1  

The current study aimed to apply functional magnetic resonance imaging (fMRI) to 

record and compare the patterns of neural activations in two groups of participants who 

implemented the continuous and configural updating strategies as set forth by Wiener et 

al. (2011). To ensure that the participants received adequate task exposure before 
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undergoing MRI scanning, they began by performing visual path integration in a desert-

like virtual environment devoid of landmarks in the experimental lab. Throughout the 

experiment, the participants were randomly assigned to use either the continuous 

updating strategy or the configural updating strategy. Subjective variables that could 

influence visual path integration performance (e.g., computer experience, inherent 

navigation strategy preferences, spatial anxiety) were assessed using surveys and 

analyzed for potential inclusion as covariates when comparing the performance between 

the two strategy groups (see Methods and Results, for details).  

When performing the path integration task, the two groups of strategy users 

experienced two types of outbound paths in equal proportions: (i) simple paths with one 

turn each, and (ii) complex paths with two turns each (see Methods, for details). The 

differences between configural and continuous updaters in homing performance were 

analyzed as a function of these two types of outbound paths.  

With reference to Wiener et al.’s (2011) findings which showed that a speed-

accuracy tradeoff was induced by configural updating strategy use, it was hypothesized 

that the configural updating strategy users would demonstrate lower magnitudes of 

direction and distance errors, but longer homing latency (i.e., time spent on the 

homebound journey), than continuous updating strategy users overall. It was also 

hypothesized that path integration accuracy (in terms of absolute values) will decline 

among the configural updating strategy users with increases in outbound path complexity 

across three levels, from simple paths (comprising of one turn each) to complex paths 

(comprising of two turns each). This hypothesis pays heed to previous studies which 

showed that the configural encoding of distance and turn values tend to become less 
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precise (or more effortful) with increases in the number of turns and segments (Fujita et 

al., 1993; Harris & Wolbers, 2012; Klatzky et al., 1990; Loomis et al., 1999).  

By contrast, the continuous updating strategy users were not expected to 

demonstrate any significant changes in path integration accuracy (in terms of both 

absolute and signed values) with increasing path complexity. This adheres to Loomis et 

al.’s (1999) notion that a moment-to-moment updating of spatial displacements from the 

starting position should lead to the commission of distance or direction errors of 

relatively equal proportions across outbound paths of varying complexity. Specifically, 

Loomis et al. (1999) postulated that continuous spatial updating would be affected by 

consistent errors in the encoding of outbound distance or turn values, which vary by a 

constant factor/ratio with each footstep or turn, irrespective of outbound path complexity. 

 

1.5.2 Experiment 2 

In the fMRI experiment, the same group of participants who completed the first 

experiment will perform the visual path integration task (with a new set of trials) based 

on an event-related design that seek to differentiate between the cognitive processes 

involved in the outbound and homebound phases of the path integration trials (see 

Methods, for details).  

In view that the entorhinal cortex comprises grid cells (Doeller et al., 2010; Jacobs 

et al., 2013), whose activity potentially contribute to the online computation of variation 

in distances (Hafting et al., 2005; Gil et al., 2018; Jacob et al., 2017; McNaughton et al., 

2006; Stangl et al., 2018) and heading directions (Gil et al., 2018; Stangl et al., 2018), it 

was first hypothesized that continuous updating strategy use would engage the entorhinal 
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cortex during the homebound phase when homing vectors need to be dynamically 

computed.  

Next, it was hypothesized that continuous updating strategy use would engage the 

hippocampus contingent on the recruitment of the entorhinal cortex. This is because the 

entorhinal cortex is directly adjacent to the hippocampus and inputs highly processed 

multisensory information (from the neocortex) to the hippocampus through the perforant 

pathway (Witter et al., 2000; see also Canto, Wouterlood, & Witter, 2008, for a review). 

The perforant pathway has been shown to contribute to the proper functioning of spatial 

working memory (Vago & Kesner, 2008) and long-term spatial memory consolidation 

(Remondes & Schuman, 2004). Critically, afferent signals from the dorsolateral and 

ventromedial bands of the entorhinal cortex converging on the dorsal and ventral layers 

of the hippocampus have been suggested to mediate the functional differences between 

these two hippocampal subregions (Steffenach, Witter, Moser, & Moser, 2005). These 

suggestions align well with recent proposals that the formation and modulation of 

hippocampal place cell activity may be engendered by efferent spatial signals from the 

entorhinal grid and border cells (see Grieves & Jeffry, 2017; Moser, Rowland, & Moser, 

2015; Savelli, Yoganarasimha, & Knierim, 2008; Solstad, Boccara, & Kropff, Moser, & 

Moser, 2008).  

As for configural updating strategy users, it was hypothesized that they would 

engage the hippocampus during the homebound phase. This hypothesis was made with 

reference to previous findings (as aforementioned) which implicated that patients with 

hippocampal atrophy (Study 5, Shrager et al., 2008) and right MTL resection (Philbeck et 

al., 2004; Worsley et al., 2001) experienced difficulties with the processing of distance 
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and direction information. Based on the observation that Shrager et al.’s (2008) patients 

failed to perform as well as the controls after a period of distraction (Study 5, Shrager et 

al., 2008), it is possible that the implementation of an imagery strategy akin to the 

configural updating strategy – which the patients most probably had a deficit in – was 

involved in an offline retrieval of the outbound path. Conceptually, this possibility is tied 

to the classical cognitive map theory (O’Keefe & Nadel, 1978), which proposed the 

hippocampus as the neural substrate for storing an allocentric spatial representation of the 

environment, as well as to numerous empirical findings that posited a pivotal role of the 

hippocampus in cognitive mapping and spatial memory formation (e.g., Bohbot, Iaria, & 

Petrides, 2004; Iaria, Petrides, Guariglia, Ptito, & Petrides, 2007; Harris & Wolbers, 

2014; Schinazi, Nardi, Newcombe, Shipley, & Epstein, 2013; Spiers & Maguire, 2006; 

Whishaw & Tomie, 1996).  
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CHAPTER 2 

EXPERIMENT 1 

METHODS 

 

2.1 Participants 

 

 50 participants [22 females; M (SD) age = 20.53 (3.44); age range: 18 – 38] were 

recruited from Georgia Tech and the wider academic community in Atlanta, GA. All 

were right-handed, had intact vision, and neither had any neurological or psychiatric 

disorders nor MRI contraindications. Before coming to the lab, they were surveyed using 

the Qualtrics survey tool (licensed by GT for campus use; accessible at: 

https://webmasters.gatech.edu/handbook/forms-and-surveys) regarding their physical and 

health conditions, computer experience, and levels of spatial anxiety when navigating 

their everyday environments (see section below, for specifics about the questionnaires 

administered online).  

In the lab, the experimenter assessed the participants’ handedness (Edinburgh 

handedness questionnaire, Oldfield, 1971), visual acuity (Snellen Eye Chart), and 

sensitivity to both color (Ishihara Color Plates Test) and contrast (Mars Letter Contrast 

Sensitivity Test). Table 1 shows the demographic details and survey/pretest measures 

from all participants separated into two strategy groups based on the instructions they 

received. Ratings from self-report items were summed to provide summated scale scores for 

spatial anxiety and computer experience, respectively. Total strategy effectiveness concerned the 
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sum of two ratings obtained from both in-lab practice and test sessions. The two groups did not 

differ significantly on any of these measures (ps > .05).  
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Table 1 

 

Descriptive Statistics of the Demographic and Survey/Pretest Variables of Participants receiving Continuous Updating and Configural Updating 

Strategy Instructions 

 

 

Continuous Updaters (n = 24) Configural Updaters (n =26) 

Difference 

(Continuous – Configural) 

Survey/Pretest variable M (SD) Min. Max. M (SD) Min. Max. M (SE) 95% CI 

Age 21.25 (4.53) 18 38 21.27 (3.65) 18 30 -0.02 (1.16) [-2.35, 2.31] 

Sex (% females) 46 - - 42 - - - - 

Spatial anxiety 20.13 (6.50) 9 33 19.35 (6.44) 9 29 0.78 (1.83) [-2.90, 4.46] 

Computer experience 15.12 (3.38) 9 21 15.97 (3.27) 10 21 -0.84 (0.94) [-2.73, 1.05] 

Ishihara color blindness 13.69 (1.53) 6.5 14 12.92 (2.94) 4 14 0.76 (0.67) [-0.58, 2.11] 

Mars contrast sensitivity 1.86 (0.05) 1.8 1.92 1.85 (0.05) 1.8 1.92 0.01(0.01) [-0.02, 0.03] 

Joystick speed test (s) 66.96 (5.24) 59 78 66.96 (6.51) 57 87 -.003 (1.68) [-3.38, 3.38] 

Total strategy effectiveness 12.50 (3.88) 3 20 12.65 (2.38) 7 18 -.15 (0.90) [-1.97, 1.66] 
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2.2 Online Surveys 

 

 In the online Qualtrics survey, in addition to health-related screening questions 

confirming participants’ eligibility for the fMRI experiment, the participants completed: 

(i) a three-item Computer Experience Questionnaire (CEQ) [Moffat, Hampson, & 

Hatzipantelis, 1998], and (ii) an eight-item Spatial Anxiety Scale (Lawton, 1994).  

 For the CEQ, the participants rated their frequencies of computer usage and 

computer/video game-play on a seven-point Likert scale from “1” (I have never played 

computer games) to “7” (almost everyday) [see Appendix A, for items]. For the Spatial 

Anxiety Scale (Lawton, 1994), the participants rated the amount of anxiety they felt when 

returning to a familiar place, searching for unfamiliar places, and finding shortcuts (see 

Appendix B, for items). A five-point Likert scale was used, ranging from “1” (not 

anxious) to “5” (very anxious). 

Summated scale scores (i.e., sums of ratings from items constituting a 

scale/subscale) from each of the three questionnaires were computed and analyzed for 

consideration as covariates when comparing the path integration performance of the two 

strategy groups (see Results, for details). 

 

2.3 Experimental Stimuli (for both Experiments 1 & 2) 

 

The game engine, Unity Pro v5.0.2 (Unity Technologies, Inc., San Francisco, CA, 

USA), was used to create and animate a desktop virtual environment from the first-person 
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perspective at an eye height of 1.7 m.2 The virtual environment featured a desert with a 

starry night sky (see Fig. 6A). An optimal presentation of optic flow information during 

virtual movements was intended through changes in the uniformity of the sandy, mottled 

ground texture, and the changing locations of the stars during turns.  

The outbound paths were designed using the Unity Animation toolkit and featured 

animations of the outbound journey from the first-person perspective. To eliminate 

potential effects of over-learning or habituation, separate sets of outbound paths were 

used across the three sessions of practice, in-lab behavioral testing, and fMRI scanning. 

In the practice session, directional arrows and a virtual traffic cone designating the 

starting position were presented to familiarize participants with the task demands of the 

subsequent sessions (see Procedure, for details). During the subsequent sessions of in-lab 

testing (Experiment 1) and fMRI scanning (Experiment 2), the trials featured eight 

outbound paths partitioned into two symmetrical sets based on left and right turning 

directions terminating at two ending points with eccentricities (i.e., bearings with a 

starting position as the reference point, as termed by Gramann et al., 2005) of ± 30° and ± 

45° (see Figs. 6C and 6D).3 The allocation of two ending points facilitated the 

computation of turning and distance errors.4 

In each test session, there were equal numbers of outbound paths with single turns 

and double turns (four per each type of path, evenly divided between left and right turns). 

                                                 

 

 
2 One meter corresponds to a displacement of one virtual unit along the Cartesian planes in the Unity game 

engine.  
3 The positive and negative signs denote clockwise and anticlockwise turning, respectively. 
4 In programming terms, having two ending points enables the application of the Boolean function in the 

primary data recording script, which simplifies the computation and recording of the error variables. 
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The paths in the former set were labeled as “simple paths” whereas the paths in the latter 

set were labeled as “complex paths.” The presentation of such complex paths was 

intended to make visual path integration more cognitively demanding (cf. Plank et al., 

2010). As such, a subset of complex paths with turns in opposite directions (paths 2c and 

2d, see Figs. 6C and 6D) was designed with the purpose of eliminating heuristics that 

could affect homing performance in simple paths (e.g., rotating in the same direction as 

that of an observed turn to return to the starting position, see Riecke, 2012). Tables 2 and 

3 show the path parameters (i.e., distances and bearings) of all eight outbound paths that 

were designed for in-lab testing and fMRI scanning, respectively.  

In both experiments, the speed of animated translations along each outbound path 

were maintained at an average speed between 2.0 to 2.5 m/sec — a range that 

approximates brisk walking speeds in the real world. The implementation of this virtual 

walking speed followed previous evidence showing that a close correspondence between 

real world and virtual walking speeds encouraged relatively accurate path integration 

performance in virtual environments (Ellmore & McNaughton. 2004). Crucially, each 

turn of the outbound path was programmed to follow a curved path rather than a sharp 

turn to facilitate a gradual presentation of rotational optic flow. For this purpose, the 

average speed of rotation along the yaw axis was set between 18° to 20° per second. 

Based on these speed settings, during both in-lab testing and fMRI scanning, animations 

of the simple and complex path lasted for eight and 10 seconds, respectively.  

To minimize the chances of participants implementing a time- or pace-counting 

heuristic that could be derived from experiencing relatively consistent movement speeds 

along the various outbound paths, the homebound translational movement speed was set 
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at 3.0 m/sec, while the average speed of rotation along the yaw axis was set at 40° per 

second in all trials. Moreover, to ensure that the two spatial updating strategies are well 

implemented, “catch” trials, which served the purpose of keeping participants focused on 

implementing the prescribed strategy, were added to the in-lab test trials (see Procedure, 

for details). 
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Table 2 

 

Outbound and Homebound Path Parameters for In-lab Behavioral Testing 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. “L” denotes a leftward turn whereas “R” denotes a rightward turn. The positive (+) and (-) signs denote clockwise and anti-clockwise rotations, 

respectively. Homebound allocentric and relative headings specify the orientation of the starting position relative to the ending point of the outbound path with 

reference to North and the relevant egocentric heading, respectively. Allocentric bearings refer to deviations from the Northward axis whereas relative bearings 

refer to deviations from egocentric headings at the ending points of outbound paths. 

 

Outbound path  Homebound path 

Type 

(ID) 

Turning 

direction 

Allocentric 

bearing (°) 

[first turn] 

Allocentric 

bearing 

[second 

turn] 

Length 

of first 

segment 

(m) 

Total 

length 

(m) 

Ending point 

eccentricity 

(°) 

 Euclidean 

distance (m) 

Relative 

bearing (°) 

Allocentric 

bearing (°)  

Simple 

(t1a) 

L -43 – 3.5 12.06 -30   11.20 -167 -210 

Simple 

(t1b) 

R 43 – 3.5 12.06 30  11.20 167 210 

Simple 

(t1c) 

L -62 – 3.5 13.21 -45  11.17 -163 -225 

Simple 

(t1d) 

R 62 – 3.5 13.21 45  11.17 163 225 

Complex 

(t2a) 

L, L -52 -90 6.25 14.74 -45  11.17 -135 -225 

Complex 

(t2b) 

R, R 52 90 6.25 14.74 45  11.17 135 225 

Complex 

(t2c) 

L, R -90 45 6.25 14.26 -45  11.17 -180 -225 

Complex 

(t2d) 

R, L  90 -45 6.25 14.26 45  11.17 180 225 
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Table 3 

 

Outbound and Homebound Path Parameters for Testing in the MRI Scanner 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. “L” denotes a leftward turn whereas “R” denotes a rightward turn. The positive (+) and (-) signs denote clockwise and anti-clockwise rotations, 

respectively. Homebound allocentric and relative headings specify the orientation of the starting position relative to the ending point of the outbound path with 

reference to North and the relevant egocentric heading, respectively. Allocentric bearings refer to deviations from the Northward axis whereas relative bearings 

refer to deviations from egocentric headings at the ending points of outbound paths. 

 

Outbound path  Homebound path 

Type 

(ID) 

Turning 

direction 

Allocentric 

bearing (°) 

[first turn] 

Allocentric 

bearing 

[second 

turn] 

Length 

of first 

segment 

(m) 

Total 

length 

(m) 

Ending point 

eccentricity 

(°) 

 Euclidean 

distance (m) 

Relative 

bearing (°) 

Allocentric 

bearing (°) 

Simple 

(1a) 

L -50 – 5.0 12.68 -30   11.20 -160 -210 

Simple 

(1b) 

R 50 – 5.0 12.68 30  11.20 160 210 

Simple 

(1c) 

L -70 – 5.0 13.91 -45  11.17 -155 -225 

Simple 

(1d) 

R 70 – 5.0 13.91 45  11.17 155 225 

Complex 

(2a) 

L, L -36 -90 5.0 14.40 -45  11.17 -135 -225 

Complex 

(2b) 

R, R 36 90 5.0 14.40 45  11.17 135 225 

Complex 

(2c) 

L, R -80 35 5.0 13.87 -45  11.17 -180 -225 

Complex 

(2d) 

R, L  80 -35 5.0 13.87 45  11.17 180 225 
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A. 

 

B.  

 
C. 

 
D. 
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2.3.1 Data Recording 

In both experiments, the dependent variables representing homing performance 

were the same as those used by Wiener et al. (2011). Navigational error measures were 

recorded when participants pressed a joystick button to indicate their perceived starting 

positions.5 Specifically, path integration / homing performance was assessed in terms of 

five dependent variables: (i) homing distance error: the Euclidean distance between the 

starting and final stopping position in homebound phase (δ, see Fig. 7), (ii) signed 

distance error: signed differences between the linear distance traveled during homing and 

the correct/pre-computed Euclidean distance back to the starting position from the 

stopping position at the end of the outbound path (d1 – d0, see Fig  7), (iii) absolute 

direction error: absolute angular deviations from the correct bearing of the starting 

position at the final stopping position in the homebound phase (|θ1 – θ0|, see Fig. 7), (iv) 

signed direction error: signed angular deviations from the correct bearing of the starting 

position at the final stopping position in the homebound phase (θ1 – θ0), and (v) 

homebound response time: the time taken (recorded to the accuracy of a hundredth of a 

second) to return to the perceived starting position after the offset of the return cue. 

                                                 

 

 
5 All mentions of “navigational errors” in the context of this study refer specifically to distance and 

direction errors committed during visual path integration. They do not refer to errors committed during any 

other type of navigational activity, such as wayfinding, for example.  

Fig. 6. (A) A scene of the featureless virtual environment designed for path completion, along with (B) the one-

second word cue for returning to the starting position at the end of an outbound path. Schematics of the 

animated outbound paths designed for the path integration trials in the (C) in-lab testing and (D) fMRI sessions. 

Simple paths (one turn each; 1a to 1d) are colored in red whereas complex paths (two turns each; 2a to 2d) are 

colored in blue. In both test sessions, paths 2a and 2b represent the unidirectional complex paths (two turns in 

the same direction) whereas paths 2c and 2c represent the bidirectional complex paths (two turns in opposite 

directions). In the fMRI scanning session, the first leg of travel was set at a fixed length (5.0 virtual m) for all 

outbound paths.  
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For signed distance error, positive and negative values indicate, respectively, 

overshot and undershot of the most direct path back to the start. Likewise, for signed 

direction error, positive and negative values indicate, respectively, overshot and 

undershot of the correct angle-of-return to the start. When the overall trajectory of the 

outbound path faced leftward, instances of undershot and overshot were marked, 

respectively, by under-turning and over-turning of the homing vector (aligned with d0 in 

Fig. 7) from the anticlockwise direction. The reverse applied to outbound paths with 

overall rightward trajectory; instances of undershot and overshot were marked, 

respectively, by under-turning and over-turning of the homing vector from the clockwise 

direction. 
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Fig. 7. Schematic showing the computation of the navigational error variables. The outbound path 

is bolded in black while the homebound path is bolded in purple. The star represents the starting 

position, the filled circle represents the terminus of the outbound path, and the white cube 

represents the stopping position. θ0 (smaller angle) represents the pre-computed / correct bearing 

relative to the start and θ1 (bigger angle) represents the bearing relative to the participant’s 

stopping point. |θ1 – θ0| denotes the absolute direction error. θ are Euler angles ranging from 0° to 

360° that registered the moving body (white cube) with respect to the vertical z axis of the xyz 

Cartesian system. The linear distance of the homebound path traversed by the participant is 

denoted by d1. The deduction of d0 from d1 represents the signed distance error. The dashed red 

line (δ) represents the homing distance error. 
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2.4 Procedure 

 

2.4.1 Experiment 1: Strategy Learning and Behavioral Testing 

The participants conducted practice and test sessions in the lab to familiarize 

themselves with the virtual environment and the task of using a specific strategy. 

Throughout the experiment, each participant sat 20 inches in front of a 21-inch LCD 

monitor and used a joystick to control all virtual movements. The on-screen resolution 

was set at 1280 x 960.  

 

2.4.1.1 Joystick Control Practice and Test 

Before commencing the path integration task, each participant practiced controlling 

a joystick for virtual movements. The joystick was MRI-compatible and was used in both 

experiments. Under the guidance of the experimenter, the participants first demonstrated 

competence at using the joystick to control their virtual movements in reaching target 

objects in a virtual arena (see Fig. 8). After that, they traveled down a winding 

passageway in a virtual maze (see Fig. 9A) until they reached a treasure chest (see Fig. 

9B). They were told to reach and make contact with the treasure chest within two minutes. 

The application recorded the total time of travel when they made contact with the object. 

This time was included in the data analysis as “joystick speed test time.” The speed and 

acceleration settings in the virtual maze were kept similar to those in the path integration 

trials. The virtual arena and virtual maze were designed using Unreal Engine v3.0 (Epic 

games, Inc., Cary, NC, USA) and Unity Pro v5.0.2 (Unity Technologies, Inc., San 

Francisco, CA, USA) respectively.
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Fig. 8. A scene from the Unreal virtual arena used for general joystick practice. 

 

A. B. 

  

Fig. 9. Scenes from the Unity virtual maze used for testing joystick control: (A) Opening scene upon maze entry and 

(B) scene upon finding the wooden chest. 
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2.4.1.2 Strategy Manipulation and Physical Practice 

After the joystick practice and control test, the experimenter randomly assigned the 

participants to receive instructions about the continuous updating and configural updating 

strategies respectively. 24 participants (11 females) received continuous updating strategy 

instructions while 26 participants (11 females) received configural updating strategy 

instructions.6 These instructions were analogous to the instructions used by Wiener et al. 

(2011). The random assignment followed an interleaving pattern whereby switches 

between strategy assignment readily occurred after testing one or two participants with 

the same instructions.  

Instructions regarding the continuous updating strategy were as follows: “This 

strategy requires you to monitor your movements with respect to the starting position at 

all times. When observing the path of travel, please keep constant track of your position 

relative to the starting point such that at any time, I can stop you and you can point or 

move directly back to the goal. Do not dwell on any complex homing techniques; just 

experience the motion and know where you are relative to the starting point at all times.” 

The experimenter demonstrated how to implement this strategy by walking forward from 

a fixed starting point in the lab and pointing his arm and fingers straight to the starting 

point before and after making a turn. The participants watched this demonstration from 

the starting point. While traversing the path, the experimenter repeatedly stressed that he 

visualized the starting point as lying behind him and he was constantly updating its 

                                                 

 

 
6 To ensure that males and females were not unevenly distributed between the two strategy instruction 

conditions / groups, a 2 x 2 chi-square test of independence was conducted, showing the non-occurrence of 

uneven distribution, χ2 = .063, p = .802. 
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position as he moved away from it. At the end of this outbound path, the experimenter 

demonstrated walking back to the starting point in a straight line and told the participants 

that this is what they must do when using the joystick to return to the start in the 

upcoming computerized practice.  

After this demonstration, the experimenter told each participant to follow closely 

behind him as he walked out a winding path from the starting point in the experimental 

lab to the entrance of an adjacent storehouse. The outbound path involved three turns, and 

the experimenter told the participants to point back to the starting position before every 

turn, and at the end of the outbound path when the experimental lab was beyond the line 

of sight. At the end of the path, the experimenter told the participants to guide him 

directly back to the starting point.  

In comparison, instructions regarding the configural updating strategy were as 

follows: “This strategy requires you to pay close attention to the forward and turning 

directions of the path traveled. Please visualize and remember the overall shape of the 

traveled path as if you were viewing it from above — that is, from an aerial perspective. 

At the same time, try to estimate the magnitudes of the turns you observed. Please use this 

shape and the turning angles you remembered to estimate the direction and distance back 

to the start after you reached the end of the traveled path.” The experimenter 

demonstrated how to implement this strategy in the lab by traversing two outbound paths 

(with one and two turns respectively) and drawing out their shapes in sequence on a 

white board. The participants viewed each demonstration from the starting point and 

from the same viewpoint as that of the experimenter before he moved forward. This 

ensured that all participants visualized the first path segment in a northbound/upward 
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direction and that they did have to engage extraneous mental rotations to realign the 

experimenter’s forward movements with a northbound reference direction. While 

traversing the path, the experimenter turned slowly and told the participants that he was 

estimating the turning angle and encoding the ensuing shape of the path as he turned and 

walked forward. The experimenter paused at the end of the outbound path and stressed 

that he was retrieving the imagined shape of the outbound path, before walking back to 

the starting point in a straight line. The experimenter also told the participants to continue 

engaging in this retrieval process when controlling the joystick to return to the start in the 

upcoming computerized tasks. 

After this demonstration, each participant followed the experimenter on two 

double-turning complex paths (one with turns in the same direction and one with turns in 

opposite directions) in the lab. Before traversing the paths, the experimenter re-

emphasized the need to visualize the shape of the outbound path from an aerial 

perspective and that they must use this imagined shape to guide their return to the start. 

At the end of each outbound path, the experimenter told each participant to guide him 

back to the start in a straight line and to draw the shape of the outbound path on a piece of 

paper (see Appendix C, for samples). If the participant drew an incorrect shape of any 

outbound path, the experimenter re-walked that path with the participant and instructed 

the participant to make another attempt at drawing its shape. The experimenter only 

continued the experiment when the correct shapes were drawn. Overall, all participants in 

the configural updating condition were prompt at drawing out the shapes of the paths, and 

all these drawings were drawn approximately to scale with respect to the distances and 

turns experienced. 
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2.4.1.3 Path Integration Practice Task  

Upon practicing the strategy in the lab, the participants completed a computerized 

practice task. This practice task ensured that the participants practiced the strategy further 

in a virtual environment and they became familiar with the demands of visual path 

integration before formal testing.  

A total of 24 practice trials was presented. Initially, the first four trials presented 

layouts of the entire path on the floor of the virtual environment from the first-person 

perspective – as marked out by directional arrows and a traffic cone at the starting 

position. The participants were moved passively along the outbound path (see Fig. 10A), 

and upon reaching the end of outbound travel, controlled the joystick to return to the 

starting position by following the homebound arrows. These practice trials were 

completed upon contact with the cone (see Fig. 10B). As the participants performed these 

trials, the experimenter reminded them to keep using the same strategy that they were 

told during the earlier physical practice. They were also told that the visual aids would 

disappear gradually with trial progression. 

The first four trials featured full availability of visual aids: two simple paths with a 

right-angled turn each and running symmetrical to each other, and two complex paths, 

each with an initial right-angled turn, followed by a 45° turn. The two turns of each 

complex path ran in opposite directions and the two complex paths were symmetrical to 

each other.  

The next four practice trials were the same as the first four practice trials except 

that the outbound paths were the only paths marked with arrows. The participants 
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returned to the virtual cone without any arrows marking out the homebound path. In the 

next eight practice trials, all floor arrows disappeared and only the virtual cone was 

present at the starting position; the participants were told to continue applying their 

prescribed strategy when returning to make contact with the cone.  

Finally, in the last eight practice trials, the cone was removed, and the participants 

were told to continue applying their prescribed strategy to return to the starting position. 

All participants were told explicitly that the starting position was in the same location as 

that of the previously observed virtual cone and that they must return to where the virtual 

cone was formerly located in the subsequent practice trials, as well as in the ensuing test 

trials. In these trials, the participants pressed a joystick button to indicate their stops at 

where they perceived the starting position to be. The magnitudes and directions of turns 

in this last block of trials were identical to those in the previous trials but the travelling 

speed during the outbound journey varied along different straight segments and differed 

from the travelling speed during the homebound journey. This served to minimize the use 

of a pace- or time-counting heuristic in the subsequent experimental trials.  

When the participants were performing these trials devoid of any object cues, the 

experimenter paused the task in the middle or after the completion of two randomly 

chosen trials. For the participants in the continuous updating condition, the experimenter 

paused two trials at the end of the outbound paths and told them to point  with their arms 

straightened to the perceived starting position. If any pointing response deviated too far 

from homing vector, the experimenter allowed the participant further attempts on 

subsequent practice trials until he/she exhibited relatively accurate pointing responses 

with lower levels of angular deviation. As for the participants in the configural updating 
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condition, the experimenter paused two trials after completion (i.e., when the fixation 

cross appeared during the ITI), and told them to draw out the shapes of the outbound 

paths on a piece of paper.  

  

Fig. 10. (A) An opening scene of a rightward turning outbound path marked with directional arrows on the 

floor. The participants stayed immobile at the start for three seconds before being passively moved forward. 

(B) View of the traffic cone (marking out the start) as one approaches it at the end of the homebound path. 

Participants made contact with the cone to complete the trial. 
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2.4.1.4 Post-practice Survey 

Upon completion of the practice task, the participants rated their effectiveness of 

strategy use on a 10-point Likert scale (see Appendix D). This scale was adapted from the 

Personal Encoding Preference (PEP) Questionnaire designed by Powell-Moman and 

Hertzog (see Hertzog & Dunlosky, 2004). This self-report effectiveness measure was 

administered in view of the metacognitive impact of personal beliefs or assurances about 

learning, memory, and strategy use on cognitive task performance (Ariel, Price, & 

Hertzog, 2015; Hertzog & Dunlosky, 2004), which encompasses spatial navigation (Ariel 

& Moffat, 2018). To control for the potential effect of personal beliefs about the 

effectiveness of strategy use on path integration performance, the strategy effectiveness 

rating was analyzed for consideration as a covariate when comparing the performance of 

the two strategy groups (see Results, for details).  

 

2.4.1.5 Path Integration Test Session  

In the follow-up testing session, the participants were reminded to continue using 

the strategy that they were instructed on, and that the starting position on all test trials 

was located at same spot as the virtual cone observed during practice. At the start of the 

task and before performing the first trial, the participants stayed immobile at the starting 

position for six seconds with a fixation cross in the middle of the screen.7 This initial 

delay allowed participants to have a quick preliminary assessment of the virtual 

environment before experiencing animated/passive travel on the first outbound path.  

                                                 

 

 
7 This equaled the delay required for the MRI scanner to warm up before the commencement of echo planar 

image (EPI) acquisition, which the participants encountered later in the fMRI session. 
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Each of the eight outbound paths (see Fig. 6C) in the in-lab test trials were repeated 

six times to constitute 48 path integration trials. These trials were randomly arranged and 

evenly divided into two blocks (each with three repetitions of each outbound path) of 24 

path integration trials separated by a pause screen during which the participants were 

given short break of a few minutes. At the end of outbound travel in each trial, the 

participants controlled the joystick to return perceived starting position within a time-

limit of 20 seconds after seeing the one-second “RETURN” cue (see Fig. 6B). After 

reaching the position of choice, the participants pressed a joystick button. Immediately 

upon button press, all virtual movements ceased, and an instantaneous recording of 

homebound response time and homing errors occurred (see Data Recording subsection 

above). 

Among the path integration were four “catch” trials – two per block – that 

contributed to a total of 52 trials. The participants were informed of their inclusion before 

performing the task. These catch trials ensured that the participants were reminded of the 

demands of the prescribed strategy and that they were stay consciously aware of it as they 

performed the path integration trials. In each block, two catch trials appeared at variable 

positions in the trial sequence (one near the front and the other near the end) with 

separate on-screen instructions at the end of outbound paths to the participants in each 

strategy group. The outbound paths that were presented in the four catch trials correspond 

to two simple paths (see Fig. 6C, paths t1b and t1c) and two complex paths (see Fig. 6C, 

paths t2b and t2c). In the continuous updating strategy condition, the participants were 

instructed to turn to face the starting position (see Fig. 11A), whereas in the configural 

updating strategy condition, they were instructed to judge whether or not the nearest 
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angle-of-return to the start was greater than 135° (see Fig. 11B). Specifically, participants 

in the configural updating strategy group pressed the joystick button for a “yes” response 

and waited for the onset of the next trial if they decided on a “no” response. The turning 

response required by a continuous updating catch trial represented a central characteristic 

of continuous updating strategy that involves homeward-pointing directional judgements. 

By contrast, the yes/no response required by the configural updating catch trial 

recognized the fact that configural updating strategy use requires estimating the homing 

direction at the end of the outbound path based on its imagined shape. 

The maximum duration of each trial (path integration and catch trials alike) 

averaged 29 seconds [28 seconds (max.) for simple trials and 30 seconds (max.) for 

complex trials]. The intertrial interval (ITI) was set at two seconds and participants 

viewed a fixation cross in the middle of the opening scene (at the starting position) with 

lights dimmed.8 No virtual movements could be made with the joystick during the ITI. 

 

                                                 

 

 
8 Two seconds correspond to the repetition time (TR) that was implemented in the fMRI experiment.  
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A. 

 
B. 

 
C. 

 
Fig. 11. (A) Messages shown in sample catch trials for participants in the continuous updating 

strategy condition and (B) configural updating strategy condition. The on-screen instruction for 

the continuous updating strategy group appeared for five seconds whereas the on-screen 

instructions for the configural updating strategy group appeared for 10 seconds (due to the 

lengthier text). (C) A one-second “Go” signal appeared after the offset of the on-screen 

instructions in both strategy conditions, to which participants made their responses immediately 

thereafter. This signal served the purpose of disambiguating the latency required for reading 

and comprehending the on-screen text from the latency involved in making the actual 

behavioral response. 



 54 

2.4.1.6 Post-test Survey 

At the end of the test session, the one-item survey about strategy effectiveness was 

re-administered and participants rated how effectively they implemented the prescribed 

strategy across the second block of trials (see Appendix D). The rating was done with 

respect to the second block of trials only in order to minimize potential difficulties with 

recalling the experience of performing the first block of trials on the part of some 

participants. This rating was combined with the practice-based strategy effectiveness 

rating to yield a total strategy effectiveness rating (out of 20) for covariate analysis (see 

Results, for details). 
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CHAPTER 3 

EXPERIMENT 1 

RESULTS 

 

The dependent variables took the forms of mean and random errors committed 

across different outbound path categories. Mean errors referred to the average error 

values in each outbound path category while random errors referred to the standard 

deviations (SDs) of each error type per outbound path category. Random errors were 

included in the data analysis because they offered a more specific measure of homing 

performance by conveying the fluctuations in response consistency across trial repetitions 

(see Wolbers et al., 2007). These error variables were obtained from each participant 

across two sets of outbound path categories: (i) simple paths [4 paths (see Fig. 6C, paths 

t1a – t1d,) x 6 repetitions; 24 trials], and (ii) complex paths [4 paths (see Fig. 6C, paths 

t2a - t2b) x 6 repetitions; 24 trials]. Mean and random errors related to (i) homing 

distance, (ii) signed distance, (iii) absolute direction, and (iv) signed direction were 

recorded from each participant. This resulted in four sets of mean errors and four sets of 

random errors per participant. Together with these error measures, the homebound 

response time was also recorded and analyzed. 

These dependent measures were entered independently into three-way mixed 

ANOVA / ANCOVA models with strategy group (2) and sex (2) as the between-subjects 

independent variables and outbound path category (2) set as the within-subjects 
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independent variable.9 As numerous studies have shown sex differences in both 

navigation strategy use (e.g., Cutmore, Hine, Maberly, Langford, & Hawgood, 2000; 

Dabbs, Chang, Strong, & Milun, 1998; Saucier et al., 2002; Sandstrom, Kaufman, & 

Huettel, 1998; Silverman et al., 2000; Zhong, 2011, 2013; Zhong & Kozhevnikov, 2016), 

and navigational performance (e.g., Sandstrom et al., 1998; Silverman et al., 2000; 

Moffat et al., 1998; Moffat, Zonderman, & Resnick, 2001; Zhong, 2013; Zhong & 

Moffat, 2016), sex was included to assess and control for any potential effect of sex on 

performance between the strategy groups. 

 

3.1 Covariate Selection  

 

To determine the covariate(s) that need to be added to the mixed-model 

ANOVAs, partial correlations – with sex and strategy group effects controlled for – were 

performed between mean errors, random errors, mean response times, and four 

survey/pretest variables composing of: (i) spatial anxiety, (ii) computer experience, (iii) 

joystick speed test time, and (iv) total strategy effectiveness. Table 4 show the partial 

correlations based on the mean errors and mean response times while Table 5 shows the 

partial correlations based on the random errors.  

For each dependent measure, any survey/pretest variable(s) that correlated with it 

at a threshold of p < .05 gained entry as covariate(s) into the ANOVA model involving 

                                                 

 

 
9 Within-subjects differences were analyzed in terms of two broad categories of simple and complex paths 

in order to facilitate the comparisons of behavioral findings between Experiment 1 and 2. 
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that dependent measure. This resulted in the entry of joystick speed test time as a 

covariate in the analyses of (i) homing distance errors (both mean and random), (ii) 

absolute direction errors (both mean and random), and (iii) signed direction random error. 

Along with  joystick speed test time, total strategy effectiveness was added as a second 

covariate in the analyses of (i) absolute direction errors (both mean and random) and (ii) 

signed direction random error. 
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Table 4 

Partial Correlations between Mean Error Measures, Mean Response Time, and Survey/Pretest Measures 

after controlling for Sex and Strategy Group Effects 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  * p < .05 (two-tailed)  
** p < .01 (two-tailed) 

 

 

Table 5 

 

Partial Correlations between Random Error and Survey/Pretest Measures after controlling for Sex and 

Strategy Group Effects 
 

 

 

 

 

 

 

 

 

 

 

 

 

  * p < .05 (two-tailed) 
** p < .01 (two-tailed) 

 

 Spatial anxiety Computer 

experience 

Joystick speed 

test time (s) 

Total strategy 

effectiveness 

Homing distance 

error (virtual m) 

0.06 0.20 0.36* -0.13 

Signed distance 

error (virtual m) 

-0.14 0.05 0.11 0.03 

Absolute direction 

error (°) 

0.11 0.13 0.42** -0.29* 

Signed direction 

error (°)  

0.13 0.10 -0.26 -0.06 

Response Time (s) -0.07 -0.12 0.21 0.06 

 Spatial anxiety Computer 

experience 

Joystick speed 

test time (s) 

Total strategy 

effectiveness 

Homing distance 

error (virtual m) 

0.01 0.14 0.29* -0.16 

Signed distance 

error (virtual m) 

-0.07 0.27 0.07 0.01 

Absolute direction 

error (°) 

0.07 0.17 0.36* -0.40** 

Signed direction 

error (°)  

0.10 0.14 0.43** -0.35* 
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3.2 Mixed-model ANOVAs / ANCOVAs  

 

Findings from the 2 (sex) x 2 (strategy group) x 2 (outbound path category) mixed-model 

ANOVAs / ANOCOVAs were reported below in terms of mean and random errors respectively. 

For ease of discussion, participants instructed on the continuous updating and configural 

updating strategies were hereafter referred to as continuous updaters and configural updaters, 

respectively.  

To assess the hypotheses concerning the different patterns of strategy group differences 

across simple and complex paths, within-subjects effects posed by outbound path category and 

the interactions between outbound path category, strategy group, and sex were examined first – 

followed by between-group effects of sex, strategy group, and the interactions between sex and 

strategy group. All main and interaction effects related to mean and random errors were 

examined at a Bonferroni-corrected p-threshold of .017. This lower alpha level was set to control 

for inflated familywise error rates brought about by the analyses of four variables that constituted 

each error type.10  

 

3.2.1 Within-subjects Main Effects and Interactions 

With regard to all mean and random errors, all within-subjects effects of outbound path 

category did not reach significance (ps > .017). Likewise, there were no significant two-way or 

three-way interactions of outbound path category with strategy group and/or sex (ps > .017).  

                                                 

 

 
10 Due to inconsistent intercorrelations among the mean and random errors, respectively, in which signed errors did 

not correlate highly or significantly with absolute errors, composite error scores were not computed for the mean 

and random errors.  
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There was, however, a significant main effect with respect to response time, F (1, 46) = 

6.04, p = .018, partial η2 = .116, with participants taking slightly more time, on average, during 

homebound travel over simple paths [M (SE) = 9.88 (0.34)] than over complex paths  M (SE) = 

9.60 (0.34)]. This finding can be explained by the fact that the termini of two simple paths (paths 

t1a and tb, see Fig. 6C) were positioned further away from the start as comparted to the termini 

of the complex paths.  

 

3.2.2 Between-group Main Effects and Interactions 

 

3.2.2.1 Mean Errors and Response Time 

There were significant interactions between strategy group and sex with regard to (i) 

homing distance, (ii) signed distance, and (iii) absolute direction mean errors (ps < .017). There 

were no significant interactions associated with signed direction mean error and mean response 

time (ps > .05). Similarly, all main effects concerning strategy group and sex were non-

significant (ps > .017). Table 6 shows a statistical summary of all between-group main and 

interaction effects derived from mean errors and mean response time after controlling for 

relevant covariate effects. 
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3.2.2.2 Random Errors  

There was a significant interaction between strategy group and sex with respect to 

homing distance random error only (p = .016). The interaction effects associated with (i) signed 

distance and (ii) signed direction random errors approximated significance (p ≤ .034). All 

remaining interaction and main effects were either non-significant (ps > .017) or did not 

approach significance (ps > .05). Table 7 shows a statistical summary of all between-group main 

and interaction effects derived from random errors after controlling for relevant covariate effects.
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Table 6 

 

Main, Interaction, and Covariate Effects derived from the Group Variables of Strategy and Sex in terms 

of Four Mean Error Measures and Mean Response Time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. a Controlled for the covariate effect of joystick speed test time.  
b Controlled for the covariate effects of joystick speed test time and total strategy effectiveness. 
* 01 < p < .05 
** p < .01  

 

 Mean measure Strategy Sex Sex x Strategy Joystick speed 

test time 

Total strategy 

effectiveness 

1. Homing distance 

error (virtual m) a 

     

 F (1, 45) 0.37 1.76 10.01** 9.48**  

 p-value .547 .191 .003 .004  

 Partial η2 .008 .038 .183 .182  

2. Signed distance 

error (virtual m) 

     

 F (1, 46) 2.01 0.02 9.05**   

 p-value .163 .885 .004   

 Partial η2 .042 < .001 .164   

3.  Absolute direction 

error (°) b 

     

 F (1, 44) 0.54 3.59 6.86* 10.57** 2.82 

 p-value .466 .065 .012 .002 .100 

 Partial η2 .012 .075 .135 .194 .060 

4. Signed direction 

error (°) 

     

 F (1, 46) 0.74 0.09 0.90   

 p-value .395 .90 .347   

 Partial η2 .016 .002 .019   

5. Response Time (s)      

 F (1, 46) 3.06 0.38 0.99   

 p-value .087 .539 .324   

 Partial η2 .062 .008 .021   
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Table 7 

 

Main, Interaction, and Covariate effects derived from the Group variables of Strategy and Sex in terms of 

Four Random Error Measures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. a Controlled for the covariate effect of joystick speed test time.  
b Controlled for the covariate effects of joystick speed test time and total strategy effectiveness. 
* 01 < p < .05 
** p < .01  

 

 Mean measure Strategy Sex Sex x Strategy Joystick speed 

test time 

Total strategy 

effectiveness 

1. Homing distance 

error (virtual m) a 

     

 F (1, 45) 0.15 3.67 6.28** 9.30**  

 p-value .697 .062 .016 .004  

 Partial η2 .003 .075 .122 .171  

2. Signed distance 

error (virtual m) 

     

 F (1, 46) 1.44 1.29 4.78*   

 p-value .237 .262 .034   

 Partial η2 .030 .027 .094   

3.  Absolute direction 

error (°) b 

     

 F (1, 44) .194 3.80 3.16 7.49** 5.47* 

 p-value .662 .058 .083 .009 .024 

 Partial η2 .004 .080 .067 .146 .111 

4. Signed direction 

error (°) b 

     

 F (1, 44) 0.54 3.02 4.98* 3.44 4.92* 

 p-value .468 .089 .031 .070 .032 

 Partial η2 .012 .064 .102 .071 .101 
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3.2.2.3 Post-hoc Analyses of Strategy x Sex Interactions 

Independent t tests were conducted following the significant strategy x group interactions 

for both mean and random errors. With covariate(s) involved, the group means and standard 

errors in the pairwise comparisons were adjusted for the covariate effect(s). Alpha was 

Bonferroni-corrected to .025 when assessing the significance of each simple main effect.  

Overall, the t tests showed that all significant findings (ps ≤ .025) were derived from two 

types of comparisons – between (i) female continuous updaters and female configural updaters, 

and between (ii) female configural updaters and male configural updaters. Table 8 shows a 

statistical summary of these two comparisons in terms of both mean and random error types for 

each of the four sets of errors. 

Among female participants, configural updaters committed significantly larger mean 

errors than continuous updaters in terms of (i) homing distance (p = .003) and (ii) signed distance 

(p = .006) [see Table 8, Figs. 12A and 12B]. The same group difference approached significance 

with regard to (i) absolute direction mean errors (p = .035) [see Fig. 12C] and (ii) signed distance 

random error (p = .037) [see Fig. 13B]. Additional post-hoc testing showed that this simple 

strategy group effect among female participants was not present with any other differences 

between the same two groups in terms of any survey/pretest variables; these group differences 

were all non-significant [ps > .05].  

Between the sexes, female configural updaters committed significantly larger mean errors 

than male configural updaters in terms of (i) homing distance (p = .003) and (ii) absolute 

direction (p = .003) [see Table 8, Figs. 12A and 12C]. The same significant trends were also 

obtained from the analyses of random errors in terms of (i) homing distance (p = .003) and (ii) 

signed direction (p = .003) [see Table 8, Figs. 13A and 13C]. With regard to signed distance 
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mean and random errors, the performance differences between the sexes were very close to 

significance (ps = .027 for both error types) [see Table 8, Figs. 12B and 13B].  

Additional post-hoc testing involving the survey/pretest variables showed that male 

configural updaters reported higher computer experience [M (SE) = 17.53 (2.39)] than female 

configural updaters [M (SE) = 13.82 (3.16)], t (24) = 3.42, p = .004, M (SE)Difference = 3.72 (1.73). 

This difference did not confound the pre-existing group differences in path integration 

performance as computer experience did not correlate significantly with any mean or random 

error measure among configural updaters [rs (26) > .16, ps > .42]. 

  

3.2.2.4 Catch Trial Performance Difference between Male and Female Configural Updaters 

As male and female configural updaters differed significantly in path integration 

performance, their accuracy scores over the four configural updating catch trials were further 

examined for potential sex and correlational effects. The catch trial accuracy of male configural 

updaters [M (SE) = 3.07 (0.21)] was found to be higher than that of female configural updaters 

[M (SE) = 2.36 (0.31)], but the difference did not reach significance, t (24) = 1.97, M (SE)Difference 

= 0.70 (0.36), p (two-tailed) = .061. Female configural updaters performed above the 50 % 

accuracy mark. Moreover, the mean accuracy scores from all configural updaters did not 

correlate significantly with any navigational error type (both mean and random), either with or 

without the effect of sex controlled for (ps > .05). 
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Table 8 

 

Post-hoc Independent t test Statistics comparing Female Configural Updaters with Female Continuous Updaters and Male Configural Updaters 

 

 

 

 

 

 

 

 

 

 

 

Note. Post-hoc t tests were performed on the corrected means (M) and standard errors (SEs) of the dependent measures, whichever relevant. 

Statistical findings were not presented for absolute direction random error and signed direction mean error due to non-significant strategy x 

sex interactions (ps > .05; as shown in Tables 6 and 7). 
† .025 < p < .05 
* 01 < p < .025 
** p < .01 

 

   Female configural updaters >  

Female continuous updaters 

 Female configural updaters >  

Male configural updaters 

 Measure Error 

type 

M (SE)Difference t (20) p-value 

(two-tailed) 

 M (SE)Difference t (20) p-value 

(two-tailed) 

1. Homing distance error 

(virtual m) 

        

  Mean 4.33 (1.73) 2.51** .003  5.19 (1.60) 3.25** .003 

  Random 1.47 (0.77) 1.93 .068  2.30 (0.72) 3.22** .004 

2. Signed Distance error 

(virtual m) 

        

  Mean 6.67 (2.17) 3.08** .006  4.75 (2.02) 2.36† .027 

  Random 3.35 (1.48) 2.26† .035  3.24 (1.38) 2.35† .027 

3. Absolute direction error (°)         

  Mean 19.48 (2.23) 2.23† .037  24.69 (8.09) 3.27** .003 

4. Signed direction error (°)         

  Random 21.08 (10.19) 2.07 .052  27.20 (9.45) 2.88** .008 
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A. 

 
B. 

 
C. 

 
Fig. 12. Comparisons of continuous and configural updaters categorized by sex based on mean 

errors related to (A) homing distance, (B) signed distance, and (C) absolute direction. 
† .025 < p < .05  
** p < .01 
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A. 

 
B. 

 
C. 

 

 
Fig. 13. Comparisons of continuous and configural updaters categorized by sex based on random 

errors related to (A) homing distance, (B) signed distance, (C) signed direction, Abs. = Absolute. 
† .025 < p < .05  
** p < .01 
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CHAPTER 4 

EXPERIMENT 1 

DISCUSSION 

 

The current experiments investigated differences in visual path integration 

performance based on two different types of spatial strategies and assessed whether these 

strategies could be associated with distinct patterns of performance over simple and 

complex outbound paths. With regard to all mean and random error measures, there were 

no main effects of strategy group, sex, or outbound category, and neither strategy group 

nor sex interacted significantly with outbound path category. However, there were 

significant interactions between strategy group and sex with regard to six error measures: 

homing and signed distance errors (both mean and random), absolute direction mean 

error, and signed direction random error. Post-hoc analyses of these six error measures 

showed that all interactions were mainly characterized by female configural updaters 

exhibiting significant (or marginally significant) and consistently poorer performance 

than male configural updaters. Specifically, in terms of mean errors, female configural 

updaters exhibited larger distance (both homing and signed) and absolute direction errors 

than male configural updaters. In terms of random errors, female configural updaters 

exhibited larger distance (both homing and signed) and signed direction errors than male 

configural updaters. These two sets of findings showed that when compared with male 

configural updaters, the path integration performance of female configural updaters was 

not only poorer on average, but also more inconsistent. 
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It is important to note that these relatively consistent sex differences in path 

integration performance should not be interpreted as an inability or failure on the part of 

female configural updaters at implementing configural updating, since female configural 

updaters demonstrated comparable performance as their male counterparts on the catch 

trials. Instead, these findings could perhaps be best understood with reference to the 

extant literature on sex differences in spatial abilities, which provides numerous cases of 

a male advantage in allocentric spatial processing during navigation. For examples, males 

have been shown to outperform females in finding Euclidean paths or shortcuts to target 

locations (Boone, Gong, Hegarty, 2018; Rahman, Sharp, McVeigh, & Ho, 2017; 

Silverman et al., 2000), in utilizing cardinal/compass directions for spatial orientation and 

wayfinding (Dabbs et al., 1998, Lawton, 1994, 1996; Malinowski & Gillespie, 2001; 

Ward, Newcombe, & Overton, 1986), and in map reading and terrain visualization 

(Malinowski & Gillespie, 2001). Within the context of the current path integration task, 

which presented optic flow in a desert-like virtual environment without any landmarks 

during behavioral testing, it is highly likely that female configural updaters were 

challenged by integrating disparate visual information related to different path segments 

and turns into a coherent allocentric or schematic representation. Notably, this 

interpretation supports previous findings which showed that sex effects concerning 

virtual navigational performance were relatively large and robust, with males 

outperforming females, when there were no landmarks to cue participants about their 

whereabouts or about the goal location (Andersen, Dahmani, Konishi, & Bohbot, 2012). 

Recent findings by Harris, Scheuringer, and Pletzer (2019) also support this view that 

allocentric spatial processing pose challenges for females, such that during wayfinding in 
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a virtual town, the magnitudes of sex differences were larger, with significantly more 

accurate performance for males, when participants were instructed to adopt an allocentric 

Euclidean strategy (i.e., focusing on compass directions and path lengths) as compared to 

an egocentric landmark strategy (i.e., focusing on body-centered turns and salient distal 

landmarks).  

Furthermore, these challenges associated with allocentric imagery and encoding 

might have been exacerbated by the lack of proprioceptive and kinesthetic cues that are 

generally made available through physical locomotion. Such somatosensory information 

has been shown to contribute to path integration by numerous previous studies (e.g., 

Adamo et al., 2012; Chance, Gaunet, Beall, & Loomis, 1998, Klatzky et al., 1990, 1998; 

Kearns, Warren, Duchon, & Tarr, 2002; Loomis et al., 1993, 1999; Philbeck et al., 2001) 

– specifically by supplementing (Adamo et al., 2012; Klatzky et al., 1998; Philbeck et al., 

2001) or dominating over visual information (Kearns et al., 2002) when making homing 

responses of relatively high accuracy. Critically, a recent study by Coutrot et al. (2019) 

comparing path integration performances between real-world and virtual environments 

showed that real-world path integration generated smaller sex effect, supporting the 

current suggestion that an extra availability of idiothetic self-motion cues may help to 

minimize sex differences in path integration. To verify this possibility, it may be 

worthwhile for future studies to expose male and female configural updaters to varying 

amounts of idiothetic self-motion cues – in addition to visual cues.  

In addition to these performance differences between male and female configural 

updaters, there were significant differences between female continuous and configural 

updaters with respect to mean distance errors (both homing and signed). However, unlike 
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the sex differences among the configural updaters, these prominent strategy group 

differences among the female participants did not extend equally well to mean direction 

errors and random errors. Consequently, it cannot be confirmed that continuous updating 

strategy use elicited better performance, in general, than configural updating strategy use 

in the current sample of female participants.  

Nevertheless, it remains possible that continuous updating facilitated the tracking 

of homebound distances and estimations of the starting location in a way that aligned 

with a female preference for egocentric strategies. Such strategies incorporate spatial 

processing from the egocentric (first-person) perspective (Gramann et al., 2005; He & 

McNamara, 2018; Zhong, 2011, 2013; Zhong & Kozhevnikov, 2016) and generally 

concern the execution of repetitive navigational responses at familiar places/locations 

(e.g., Lawton, 1994, 1996; Sandstrom et al., 2002; Zhong, 2011, 2013; Zhong & 

Kozhevnikov, 2016) and attention to salient or goal-relevant landmark cues [e.g., 

Lawton, 1994, 1996; Sandstrom et al., 1998; Saucier et al., 2002; Schmitz, 1999; Zhong, 

2011, 2013; Zhong & Moffat, 2016). In view of such navigational mechanisms, it seems 

conceivable that female participants were better at encoding the starting location and 

initiating repetitive or relatively consistent translational movements back to it from an 

egocentric perspective that was concomitant with continuous updating than from an 

allocentric perspective that was concomitant with configural updating.  

Lastly, within-subjects analysis showed that all participants, regardless of strategy 

group, did not commit more mean or random errors over complex paths than over simple 

paths. For both continuous and configural updaters, these findings highlighted that the 

shape of the outbound path is of minor import in affecting the commission of distance 
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and direction errors. While these null effects supported the hypothesis that continuous 

updaters’ performance would commit errors of relatively equal proportions across 

outbound paths of varying complexity (Loomis et al., 1999), they did not support the 

hypothesis that configural updaters would exhibit poorer performance when transitioning 

from simple paths to complex paths. This suggests that configural updating during visual 

path integration may not be as context-dependent as it was hypothesized to be – as 

inferred from real-world path integration studies that gave participants ready access to 

idiothetic self-motion cues (e.g., Fujita et al., 1993; Klatzky et al., 1990; Loomis et al., 

1999; Philbeck et al., 2001; Wiener et al., 2011). As mentioned above, access to such 

self-motion cues may be a crucial factor that determines how well configural updating is 

implemented. To my knowledge, it is currently unknown as to how idiothetic self-motion 

cues can contribute to configural updating strategy use – in addition to visual cues – 

when traversing paths of varying complexity. Thus, future path integration studies can 

consider investigating how changes in the types and amounts of idiothetic self-motion 

cues could facilitate (or hinder) configural updating strategy use across paths of varying 

complexity. 

In summary, findings from this experiment did not support previous studies 

showing that configural updating strategy use contributed to greater performance 

accuracy over continuous updating strategy use (He & McNamara, 2018; Wiener et al., 

2011). However, sex was found to be a significant moderator of strategy use, suggesting 

that sex differences in egocentric and allocentric spatial information processing are 

important considerations in the implementation of continuous and configural updating 

strategies. 
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CHAPTER 5 

EXPERIMENT 2 

METHODS  

 

5.1 Participants 

 

38 participants (14 females) who completed Experiment 1 [M (SD) age = 20.78 

(3.63); age range: 18 – 38] participated in the fMRI experiment, which occurred directly 

after in-lab testing. There were 19 participants (7 females) in each strategy group. Table 9 

shows the demographic details and survey/pretest measures from these returning 

participants categorized by the two strategy groups they belonged to. The two groups did 

not differ significantly on any of these measures (ps > .05).  
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Table 9 

 

Descriptive Statistics of the Demographic and Survey/Pretest Variables of Continuous and Configural Updaters who underwent fMRI Scanning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Continuous Updaters (n = 19) Configural Updaters (n =19) 

Difference 

(Continuous – Configural) 

Survey/Pretest variable M (SD) Min. Max. M (SD) Min. Max. M (SE) 95% CI 

Age 20.84 (4.40) 18 38 20.74 (2.79) 18 28 0.10 (1.20) [-2.32, 2.53] 

Sex (% females) 37 - - 37 - - - - 

Spatial anxiety 20.53 (6.85) 9 33 18.84 (6.78) 9 29 1.68 (2.21) [-2.80, 6.17] 

Computer experience 15.74 (3.41) 9 21 16.05 (2.74) 11 19 -0.31 (1.00) [-3.02, 3.44] 

Ishihara color blindness 13.61 (1.72) 6.5 14 13.11 (2.69) 5 14 0.50 (0.73) [-0.98, 1.98] 

Mars contrast sensitivity 1.86 (0.05) 1.80 1.92 1.85 (0.05) 1.80 1.92 0.01(0.02) [-0.02, 0.04] 

Joystick speed test (s) 65.89 (4.37) 59 73 65.68 (6.38) 57 78 0.21 (1.59) [-0.02, 0.04] 

Total strategy effectiveness 12.74 (3.60) 3 18 12.95 (2.50) 7 18 -0.21 (1.01) [-2.25, 1.83] 
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5.2 Experimental Design 

 

The path integration trials for the fMRI session featured repeated travel over a 

separate set of eight outbound paths (see Fig. 6D). These new trials were intended to 

ensure that the patterns of neural activations detected would be strategy-specific in nature 

and not be attenuated by over-learning or habituation stemming from exposure to a 

previously learned set of trials. 

As for the fMRI experimental protocol, it followed a compound event-related 

paradigm aimed at separating trials incurring two or more distinct processes/responses 

(e.g., sensory, cognitive, motor) [i.e., compound trials] from trials incurring an initial 

subset of such processes (i.e., partial trials) [see Ollinger, Shulman, & Corbetta, 2001a, 

2001b]. In the context of this experiment, compound trials pertained to the full path 

integration trials (as performed in the lab) that involved both outbound and homebound 

paths, whereas partial trials pertained to the trials that involved the outbound paths only. 

The delineation of these two types facilitating an assessment of the brain regions 

involved in visuospatial processing during both phases of outbound and homebound 

travel. 

The time courses of BOLD responses to the outbound and homebound paths were 

estimated using a General Linear Model (GLM) that made no a priori assumption about 

the shape of the hemodynamic response function (HRF) [Ollinger et al., 2001a, 2001b; 

Shulman et al., 1999; Wheeler et al., 2006]. This GLM involved: (i) varying lengths of 

intertrial intervals (ITIs) [i.e., jittering], which increased the level of accuracy in 

estimating the shape parameters of the HRF through the sampling of more points on the 
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HRF compared with using a fixed-ITI design (see Dale & Buckner, 1997), and (ii) 

mixing of partial and compound trials, which ensured that participants were unable to 

predict the onset of particular trial type. 

Specifically, the ITIs were set to vary between 1 to 3 frames of MR acquisition as 

Monte Carlo simulations performed using measured data from a rapid-event related 

experiment (Ollinger et al., 2001a) have shown that this range elicited relatively low 

mean variance, root-mean-squared error of the variance, and root-mean-squared 

correlations among points in the estimated time courses (Ollinger et al., 2001b). The 

same pattern of results was produced when the fraction of partial trials was kept between 

25% and 40% (Ollinger et al., 2001b). In conjunction, having short ITIs and a moderately 

low partial trial fraction showed that the time courses of BOLD responses to different 

cognitive processes could be differentiated from each other. Consequently, the partial 

trial fraction in this experiment was set at 25%, in consistency with the common practice 

of previous fMRI studies (e.g., Shulman et al., 1999; Wheeler et al., 2006),  

 

5.3 Procedure 

 

5.3.1 Pre-scan Practice in a Mock fMRI Scanner 

 Before entering the fMRI scanner proper, the participants were told to continue 

using the same strategy that they applied previously during in-lab practice and testing. 

They were told that the path integration trials were different from the trials they 

experienced earlier and that the time-limit for making homebound movements was 

shortened from 20 to 10 seconds. This served to avoid excessive signal dropouts over 
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long durations and to insure an acceptable level of signal-to-noise ratio (Murphy, 

Bodurka, & Bandettini, 2007). 

The practice task in the mock scanner featured 16 trials that were mixed based on a 

randomized sequence. The participants experienced four partial trials that presented the 

motion of the outbound journey only over two simple paths (paths 1a and 1d, see Fig. 6D) 

and two complex paths (paths 2a and 2d, see Fig. 6D), and 12 compound trials that 

involved a threefold repetition of the presentation of the same four paths. These 16 trials 

were mixed based on a random sequence. The ITIs featured static scenes (each with a 

fixation cross) identical to those presented during in-lab testing. The ITIs were distributed 

exponentially such that shorter ITIs occurred more frequently than longer ITIs (Dale, 

1999; Wheeler et al., 2006). 60% of ITIs had a delay of one TR, 30% of ITIs had a delay 

of two TRs, and 10% had a delay of three TRs.  

After completing the task, the participants completed a Simulator Sickness 

Questionnaire (SSQ) [Kennedy, Lane, Berbaum, & Lilienthal, 1993]. This served to 

identify any participants who felt dizzy or nauseous following mock scanning and who 

did not want to proceed with fMRI scanning. All participants gave ratings that 

approximated zero on average, indicating the absence of any discomforts, and went on to 

complete their assessment in the fMRI scanner. 
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5.3.2 fMRI Scanning Session 

Before entering the fMRI scanner, the participants were reminded to keep on 

applying the same strategy they applied thus far. In the scanner, they performed two runs 

of 32 path integration trials, each with six partial trials, which made up 25% of the total 

number of trials. During the break between the two runs, the participants were reminded 

again (through the microphone) to consistently apply the same strategy in all trials. In 

each run, the eight partial trials presented passive travel on all the eight outbound paths 

(Fig. 6D) while the remaining 24 compound trials presented each outbound path three 

times, along with the homebound phase. A different random sequence was applied to 

these 32 trials in each run. In total, each participant performed 64 trials: 16 partial trials 

and 48 compound trials.11 The exponential distribution of the ITIs, as well as the 

durations of outbound and homebound travel, were identical to those implemented in the 

mock scanner.  

 

5.3.2.1 Image Acquisition 

Brain images were collected at the Georgia State / Georgia Tech Center for 

Advanced Brain Imaging (CABI) by a 3 Tesla Siemens TIM Trio Magnetic Resonance 

Imaging system (Siemens Medical Solutions, Erlangen, Germany) with a 12-channel 

head coil. Whole-brain structural images were acquired in the sagittal plane using a T1-

weighted multi-echo magnetization-prepared rapid gradient-echo (ME-MPRAGE) 

sequence (TR = 2530 ms, TE1-4 = 1.76 ms - 7.32ms, field of view = 256 mm, voxel size = 

                                                 

 

 
11 Note that the number of compound trials matched the number of path integration trials experienced in-

Experiment 1. 
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1.0 mm x 1.0 mm x 1.0 mm, flip angle = 7°, slice no. = 176; slice thickness = 1.00 mm). 

Whole-brain multiband accelerated echo planar imaging (EPI) with BOLD contrast was 

used to collect functional data in the transverse plane. Images were acquired in 60 

interleaved oblique slices based on a multiband acceleration factor of 2 over two 11.5 

min runs (TR = 2000 ms, TE = 30.0 ms, field of view = 256 mm, voxel size = 2.0 mm x 

2.0 mm x 2.0 mm, flip angle = 77°, slice thickness = 1.00 mm). 
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CHAPTER 6 

EXPERIMENT 2 

RESULTS  

 

Experiment 2 aimed at differentiating the patterns of brain activations between 19 

continuous updaters and 19 configural updaters who completed Experiment 1. No 

participant reported any nausea or dizziness after fMRI scanning and hence data from all 

participants were retained for analyses. As examining sex differences in brain activations 

was not an a priori aim, the behavioral and fMRI analyses below focused on comparing 

the two strategy groups and the two types of path categories (simple versus complex). 

Nevertheless, sex differences among configural updaters, and strategy group differences 

among female participants, were analyzed in order to supplement the corresponding 

significant findings derived from Experiment 1 (see subsection 5.1.3). 

 

6.1 Behavioral Data Analysis 

 

Behavioral performance between continuous updaters and configural updaters 

over simple and complex outbound paths were analyzed in terms of all mean and random 

error types, as well as mean response time. Mixed-model ANOVAs / ANCOVAs were 

conducted with the independent variables set as strategy group (2) and outbound path 

category (2). Behavioral data from equal numbers of simple and complex path trials (n = 

32 per path category) were recorded from participants across both fMRI runs.  
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6.1.1 Covariate Selection  

Similar to Experiment 1, an assessment of potential covariates was performed 

before conducting the mixed-model analysis. After controlling for the effect of strategy 

group, total strategy effectiveness emerged as the only variable exhibiting significant and 

negative partial correlations with the navigational error measures (ps < .05). Specifically, 

it correlated significantly with four error measures: [(i) homing distance mean error [r 

(35) = -.47, p = .004]; (ii) absolute direction mean error [r (35) = -.43, p  = .008]; (iii) 

absolute direction random error [r (35) = -.39, p  = .018]; and (iv) signed direction 

random error [r (35) = -.40, p  = .014]. Consequently, total strategy effectiveness was 

entered as a covariate into the ANOVA models that contained these four error measures 

as dependent variables. 

 

6.1.2 Main Effects of Strategy Group and Path Category 

With alpha set at .017 after Bonferroni-correction for each set of mean and 

random errors, there was a marginally significant strategy group effect with respect to 

signed distance mean error only, F (1, 36) = 4.20, p = .048, partial η2 = .104, with 

continuous updaters [M (SE) = 1.99 (0.64)] committing larger errors than configural 

updaters [M (SE) = 0.13 (0.64)]. As for within-subjects main effects, they were 

significant – with relatively larger errors committed over complex paths – in terms of (i) 

homing distance and (ii) signed distance mean errors [ps < .017 (Bonferroni-corrected)]. 

There was also a marginally significant effect with respect to absolute direction mean 

error, with larger errors committed over complex paths. (p = .027) [see Table 10]. All 
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remaining main and interaction effects related to signed direction mean error, and all four 

random error measures, were not significant (ps > .05).  

Moreover, with alpha set at the default of .05 in the analysis of mean response 

time, there was also a marginally significant strategy group effect, F (1, 36) = 3.30, p 

= .077, partial η2 = .084, with configural updaters [M (SE) = 9.10 (0.34)] taking more 

time than continuous updaters [M (SE) = 8.23 (0.34)] during homebound travel. 

Furthermore, with regard to the ANCOVAs of homing distance and absolute 

direction mean errors that showed significant within-subjects main effects, ANOVAs 

were performed to examine whether these effects remained significant after excluding 

total strategy effectiveness as covariate. These ANOVAs showed that the within-subjects 

effects involving homing distance and absolute direction mean errors remained 

significant (ps < .05) [see Table 10]. These additional statistical tests served the purpose 

of complementing the analysis of fMRI data, which was done without the inclusion of 

any covariates. 

 

6.1.3 Sex Differences in Performance among Configural Updaters 

 As male and female configural updaters differed significantly in path integration 

performance in Experiment 1, the performance differences between them were re-

examined in Experiment 2 with regard to all mean and random error measures after 

controlling for the relevant covariate effect of total strategy effectiveness.  

With alpha set at .025 (Bonferroni-corrected), signed distance random error 

emerged as the only measure that yielded a significant performance difference. 

Specifically, female configural updaters exhibited larger signed distance random errors 
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[M (SE) = 2.85 (1.05)] than male configural updaters [M (SE) = 2.19 (0.61)], F (1, 17) = 

8.89, p = .008, partial η2 = .343.  

The same trend was observed, albeit marginally significant, among configural 

updaters with regard to homing distance random error [females: M (SE) = 2.58 (1.13), 

males; M (SE) = 1.65 (0.49); F (1, 16) = 4.57, p = .048, partial η2 = .222], and absolute 

direction random error [females: M (SE) = 24.19 (15.56), males; M (SE) = 11.25 (5.96); F 

(1, 16) = 4.97, p = .041, partial η2 = .237].  

Sex differences between male and female configural updaters in terms of the 

remaining error types (i.e., all mean errors and signed direction random errors) were all 

non-significant (ps > .05). It is important to note that the null effects derived from mean 

errors could be attributed to low statistical power stemming from a small number of 

returning female configural updaters (n =7).   

 

6.1.4 Strategy Group Differences in Performance among Female Participants 

Among female participants, with alpha set at .025, continuous and configural 

updaters did not differ significantly with regard to any mean or random error measures 

(ps > .025). The same trends applied to male participants (ps > .025). Once more, it is 

worth considering that the non-significant strategy group differences among female 

participants could be related to low statistical power associated with the small sample of 

returning female participants (n = 7 in each strategy group). 
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Table 10 

 

Significant Within-subjects Effects derived from Outbound Path Category in terms of Mean Navigational Errors 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. a Controlled for the covariate effects of total strategy effectiveness.  
b Covariate(s) excluded from analysis. 
c Controlled for the covariate effect of total strategy effectiveness. 

 

 Measure Error type Covariate(s) Simple  

M (SE) 

Complex  

M (SE) 

M (SE) 

Difference 

F-value dferror p-value Partial η2 

1. Homing 

distance 

error 

(virtual m)  

Mean a - 4.92 (0.27) 5.47 (0.31) 0.55 (0.19) 8.67 35 .006 .198 

  Total strategy 

effectiveness 

- - - 10.20 35 .003 .226 

  Mean b - 4.92 (0.30) 5.47 (0.36) 0.55 (0.19) 8.89 36 .005 .198 

2. Signed 

distance 

error 

(virtual m) 

Mean  - 0.82 (0.44) 1.30 (0.49) 0.48 (0.20) 5.82 36 .021 .139 

3. Absolute 

direction 

error (°) 

Mean c - 23.92 (2.21) 27.35 (2.79) 3.43 (1.49) 5.30 35 .027 .131 

  Total strategy 

effectiveness 

- - - 6.73 35 .014 .161 

  Mean b - 23.92 (2.49) 27.35 (2.98) 3.43 (1.47) 5.44 36 .025 .131 
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6.2 fMRI Data Analysis 

 

6.2.1 Preprocessing of Single-subject Data 

fMRI data for all participants were processed and analyzed using the Analysis of 

Functional Neuroimages (AFNI) software package [National Institute of Mental Health, 

National Institutes of Health; available at: https://afni.nimh.nih.gov/download)]. The 

acquired brain images/volumes were first corrected for slice timing correction and 

realigned to the first image. Motion correction then followed by registering (i.e., 

realigning and unwrapping) the BOLD images to the average time-shifted image/volume 

in each run to correct for image distortions caused by susceptibility-by-movement 

interactions (Andersson et al., 2001). Fourier interpolation was applied to the heptic 

degree over two passes to reduce the voxel intensity differences between images to the 

smallest extent. Subsequently, the high-resolution T1 structural image from each 

participant was co-registered to the mean BOLD image created from slice timing 

correction and motion correction using AFNI’s “align_epi_anat.py” script. These co-

registered structural and BOLD images were then spatially normalized into standard 

Montreal Neurological (MNI) space and resampled during normalization to resolutions of 

1 mm3 and 2 mm3 isotropic voxels, respectively, using AFNI’s “@auto_tlrc” program. A 

resolution of 1 mm3 isotropic voxels was set for the structural images to ensure a high-

resolution display of the anatomical regions. The structural images of participants from 

the two strategy groups were averaged, respectively, after normalization to act as 

underlays for displaying overlays of functional images collected from each group. 
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To identify task-related changes in the BOLD signal, the time courses of all trials 

were examined in a whole-brain analysis based on a within-trial model / GLM (Shulman 

et al.,1999) factored by navigational / path integration phase (outbound versus 

homebound) and path complexity (simple versus complex). This engendered four within-

subjects conditions or navigational phases: (i) simple outbound (32 trials), (ii) complex 

outbound (32 trials); (iii) simple homebound (24 trials); and (iv) complex homebound (24 

trials). The delineation of these four phases served the purpose of a fine-grained 

examination of the brain activations unique to each phase.  

More importantly, as the compound/partial trial paradigm makes no a priori 

assumption about the shape of the HRF (Ollinger et al., 2001a, 2001b; Shulman et al., 

1999), the recorded hemodynamic responses were modeled based on tent functions 

specified by AFNI’s “3dDeconvolve” program. Before modelling began, the slice timing 

and motion corrected data was smoothed with a 6 mm FWHM Gaussian kernel. Upon 

executing the tent functions, the HRF shape and magnitude were computed, after 

stimulus onset, through the linear interpolation of hemodynamic responses at arbitrary 

timepoints separated by regular two-second intervals. Each interval spanned one TR.  

From each participant, four sets of stimulus onset times, each referring to the start 

of one of the four navigational phases (as aforementioned), were entered as task 

regressors into the ANOVA model. These temporal regressors were accompanied by six 

motion regressors-of-no-interest that registered noise emanating from excessive head 

motion along the three axes/planes (xyz) of rotation and translation, respectively.  

In addition, there were two general linear tests (GLTs), each under the outbound 

and homebound conditions, respectively, that subtracted simple path parameter estimates 



 88 

from complex path parameter estimates (complex > simple). These GLTs generated 

contrast maps that conveyed the average BOLD signal change occurring within the 

outbound and homebound phases when switching from navigating simple paths to 

navigating complex paths (i.e., when path complexity increased).12 For each participant, 

parameter estimates representing average signal change in each within-subjects condition, 

and from each GLT (i.e., difference scores of parameter estimates), were computed. All 

parameter estimates were converted to percent signal change (PSC) values to ensure 

standardized comparisons at the group level. These PSC values were corrected for the 

extraneous effect posed by the autocorrelation of temporal residuals from regression 

models via AFNI’s “3dREML” program. 

 

6.2.2 Group-level Random Effects Analysis 

 

6.2.2.1 Whole-brain Analysis 

AFNI’s “3dttest++” program was used to examine BOLD signal changes during 

each navigational phase within each strategy group, as well as to compare such signal 

changes between the groups. To correct for multiple comparisons of activated voxels 

across the entire brain volume, cluster thresholding was conducted using AFNI’s 

“3dClustSim” program based on a 10,000 iteration Monte Carlo simulation analysis on 

voxels within the group-level functional brain space (234,146 voxels). AFNI’s 

                                                 

 

 
12 The same type of contrast of activation patterns between outbound and homebound phases (of either 

simple or complex paths) was not performed because the within-trial analysis precludes a contrast of such 

qualitatively different events. 
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“3dFWHMx” program was used to compute the spatial autocorrelation function (ACF) 

parameters (representing the smoothness of the time series noise from all participants) for 

generating the random noise cluster fields spanning across the entire brain volume in the 

Monte Carlo simulation. Based on the analysis, the minimum number of voxels fulfilling 

a voxel-wise/height threshold of 0.01 and a cluster-level/extent threshold of 0.05 was 

found to be 343. This cluster size threshold was applied to all within- and between-

subjects analyses at the whole-brain level. 

 

6.2.2.2 Region-of-interest Analysis 

In addition to the whole-brain analysis, a region-of-interest (ROI) analysis 

centered on the hippocampus proper and the entorhinal cortex was also performed with 

regard to the a priori expectations that the configural updaters and continuous updaters 

would differentially engage these two regions during the homebound phase. The 

Eickhoff-Zilles cytoarchitectonic probability maps/atlases (Eickhoff, Heim, Zilles, & 

Amunts, 2006; Eickhoff et al., 2005), supplied by AFNI’s “whereami” program, was 

used to specify two anatomical regions that circumscribed the hippocampus proper and 

the entorhinal cortex, respectively. The anatomical coordinates of these two ROIs were 

resampled to align with the coordinates of MNI functional space, which were 

standardized across participants. At the group level, whole-brain functional data from 

each participant (normalized into MNI space) were averaged and then circumscribed 

within the anatomical boundaries of these resampled ROIs to allow a close examination 

of activations in the entorhinal cortex and hippocampus.  
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To correct for multiple comparisons, the functional data circumscribed within 

both ROIs from all participants were combined, and cluster thresholded with AFNI’s 

“3dClustSim” program based on a 10,000 iteration Monte Carlo simulation analysis on 

the total number of voxels within the combined ROI volume (1129 voxels). AFNI’s 

“3dFWHMx” program was used to compute the spatial ACF parameters for generating 

the random noise cluster fields specific to the total ROI volume in the Monte Carlo 

simulation. Based on the analysis, the minimum number of voxels fulfilling a voxel-wise 

threshold of p = .01 and a cluster-wise threshold of p = .05 was found to be 23. This 

cluster size threshold was applied to all within- and between-subjects analyses 

encompassing the hippocampus and entorhinal cortex.  

 

6.2.3 Whole-brain and ROI-based Activations and Deactivations in Configural and 

Continuous Updaters 

 

6.2.3.1 Phase-specific Activations and Deactivations (Non-contrast-related)  

Brain activations in each of the four navigational phases and the contrasts 

between complex and simple paths [complex > simple] during the outbound and 

homebound phases, respectively, were examined for each strategy group. The BOLD 

signal derived from each phase pertained to the average signal computed – via linear 

interpolation – after stimulus onset from all signals at regularly spaced timepoints (by one 

TR) spanning across the entire stimulus duration. In each phase, significant brain 

activations and deactivations were determined in relation to a functional baseline that was 
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modeled based on the entire time series, which comprised the onsets and durations of all 

phases (as derived from the temporal regressors).  

As shown in Table 11, there were distinctive phase-specific regions of activation 

and deactivation in each strategy group. Figure 14 shows the sagittal views of some key 

brain regions (mainly in the prefrontal and parietal cortices) that were activated or 

deactivated during the outbound and homebound phases in each group. In both groups, 

the homebound journey experienced after traversing simple outbound paths yielded the 

highest number of activated / deactivated clusters.  

During this simple homebound phase, configural updaters exhibited activations in 

the precuneus (BA 7) [see Fig. 14D] and postcentral gyrus (BA 3) – and deactivations in 

the middle temporal gyrus (BA 21) and inferior medial frontal gyrus (BA 11) [see Fig. 

14C]. Continuous updaters exhibited activation in the inferior parietal lobule (BA 40) 

[see Fig. 14F] and deactivations in the superior temporal gyrus (BA 38; close to the 

temporal pole) and medial frontal gyrus (BA 10) [see Fig. 14E]. The activated and 

deactivated regions during this phase were lateralized to the left and right hemispheres, 

respectively, in both groups.  

In the remaining three phases (i.e., simple outbound, complex outbound, complex 

homebound), only configural updaters exhibited activation in the left temporo-parietal 

junction (TPJ) – located at the posterior end of the middle temporal gyrus (BA 39 / 21) –  

during the outbound phases of both simple and complex paths [see Figs. 14A and 14B]. 

Continuous updaters did not exhibit any significant activations or deactivations in any of 

these three phases in both simple and complex paths.  
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6.2.3.2 Phase-specific Activations (Contrast-related) 

As within-subjects differences in path integration performance were found in 

relation to path complexity, activation patterns from simple paths were contrasted against 

corresponding patterns from complex paths in the outbound and homebound phases, 

respectively, to examine if such behavioral differences were related to differences in the 

magnitudes of brain activations associated with each path type. An examination of these 

[complex > simple] contrasts showed significant activations during the homebound phase 

only (see Table 11). Configural updaters exhibited activation in the right inferior medial 

frontal gyrus (BA 11) [see Fig. 14G] whereas continuous updaters exhibited activation in 

the left entorhinal cortex (BA 28) [see Fig. 14H; see also Fig. 15, for a magnified view]. 

Significant entorhinal activation was found with reference to the minimum ROI cluster 

extent (23 voxels) satisfying the cluster-level threshold.  

Both strategy groups further exhibited activations in the left hippocampus with 

clusters (one per group) that approached the minimum ROI cluster extent (see Fig. 16). 

These ROI-based hippocampal activations reached cluster-level significance (corrected p 

≤ .05) with the height threshold readjusted to a more liberal level of p = .014: 25 voxels 

for configural updaters and 23 voxels for continuous updaters. 

To ensure that the peak voxels of activations observed at the group level resided 

within the anatomical boundaries of the entorhinal cortex and hippocampus in each 

participant, the group-averaged ROI functional data was further overlaid on the 

normalized structural image of each participant. The coordinates of these peak voxels 

were found to fall within the image space of the entorhinal cortex and hippocampus in 

each participant. 
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6.2.3.3 Between-group Comparisons of Whole-brain and ROI-based Activations (Non- 

contrast-related) 

Between-group comparisons were performed to examine the extend to 

magnitudes of differences in brain activations between the two strategy groups. For this 

purpose, non-contrast-related PSC values representing the average BOLD signal specific 

to each of the four navigational phases were compared between the two strategy groups. 

At both the whole-brain and ROI levels of analyses, the comparison of configural 

updaters against continuous updaters in terms of these standardized parameter estimates 

did not reveal any cluster with significant higher (or lower) degrees of activation in the 

navigational phase of both simple and complex paths. 

 

6.2.3.4 Between-group Comparisons of Whole-brain and ROI-based Activations  

(Contrast-related) 

In addition to the between-group comparisons of phase-specific, non-contrast-

related activations, PSC difference scores representing contrast-related activations 

[complex > simple] from both outbound and homebound phase were compared between 

the two strategy groups. At both the whole-brain and ROI levels of analyses, the 

comparison of configural updaters against continuous updaters in terms of these 

standardized difference scores did not reveal any cluster with significant higher (or 

lower) degrees of activation during either the outbound or homebound phase.
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Table 11 

 

Brain Activations / Deactivations in Configural and Continuous Updaters during each Navigational Phase  

Note. TPJ = Temporo-parietal junction; n.s. = non-significant at a voxel-wise threshold of .01 and a cluster-wise threshold of .05. 
a  Cluster-level significance reached with voxel-wise/uncorrected p-value readjusted to .014. 

 

Path type / 

contrast Phase Region BA Side 

Cluster size 

(voxels) x y z T 

Configural Updaters 

        

Simple 

 

 

 

 

Outbound TPJ 39 L 516 -34 -60 24 5.40 

         

Homebound 

 

  

Precuneus 7 L 786 -26 -62 34 5.76 

Middle temporal gyrus 21 R 738 66 -38 -8 -5.45 

Medial frontal gyrus 11 R 586 18 60 -10 -6.84 

Postcentral gyrus 3 L 545 -34 -30 54 5.47 

          Complex Outbound TPJ 39 L 363 -38 -62 28 5.00 

          

Complex > 

Simple 

 

Homebound 

 

 

Medial frontal gyrus 11 R 347 4 50 -18 4.62 

Hippocampus a 

 

L 18 -30 -12 -14 3.89 (n.s.) 

Continuous Updaters 

        Simple 

 

 

 

Homebound 

 

 

 

Medial frontal gyrus 10 R 1811 3 56 18 -6.10 

Inferior parietal lobule 40 L 636 -46 -36 40 5.40 

Superior temporal gyrus (near 

pole) 38 R 548 42 20 -18 -7.66 

          

Complex > 

Simple 

 

Homebound 

 

 

Entorhinal Cortex 28 L 27 -18 -18 -26 4.22 

Hippocampus a 

 

L 17 -24 -12 -20 3.83 (n.s.) 
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Fig. 14. Regions of activation and deactivation in configural and continuous updaters during the outbound and 

homebound phases. In each strategy group, activation images were superimposed on spatially normalized high-

resolution T1-weighted image averaged across all group members. Configural updaters exhibited activations in the 

temporo-parietal junction during the simple (A) and complex (B) outbound phases. During the simple homebound 

phase, both groups exhibited deactivations in the medial frontal gyrus: (C) BA 11 (configural updaters) and (E) BA 

10 (continuous updaters). As regards to activations in the same phase, they occurred in (D) the precuneus (BA 7) 

among configural updaters and in (F) the inferior parietal lobule (BA 40) among continuous updaters. When 

activations from the simple homebound phase were contrasted against activations from the complex homebound 

phase, (G) configural updaters exhibited activation in the inferior medial frontal gyrus (BA 11) while (H) 

continuous updaters exhibited activation in the entorhinal cortex (showing both sagittal and coronal sections).  

Cross hairs were centered on the peak voxel of activation / deactivation in each specified region.  L = left 

hemisphere; R = right hemisphere. 
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Fig. 15. Magnified coronal view of left entorhinal activation in continuous updaters derived from the contrast of 

activations between simple and complex homebound phases [complex > simple].  L = left hemisphere; R = right 

hemisphere. 
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Fig. 16. Marginally significant clusters of activation in the left hippocampus in configural (18 voxels; A) and 

continuous (17 voxels; B) updaters derived from the contrast of activations between simple and complex 

homebound phases [complex > simple]. In each strategy group, activation images were superimposed on 

spatially normalized high-resolution T1-weighted image averaged across all group members. Both sagittal and 

coronal views are shown for each group. Cross hairs were centered on the peak voxel of activation in each 

specified region. L = left hemisphere; R = right hemisphere. 
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6.2.4 Brain-behavior Correlations 

In addition to the within- and between-subjects analyses, the patterns of brain 

activations during the simple and complex homebound phases – from all participants (n = 

38) and each strategy group (n = 19 per group) – were regressed against the navigational 

errors committed during the respective phases. Brain-behavior correlations were analyzed 

separately for simple and complex paths in view of significant within-subjects differences 

in homebound performance between these two path types (see behavioral findings 

above). The full set of eight error variables – homing distance, signed distance, absolute 

direction, and signed direction errors; incorporating both mean and random measures for 

each error type – were applied as parametric regressors.  

In all correlational analyses at both whole-brain and ROI levels, the voxel-wise 

threshold was set at .01. The cluster-level threshold remained at 218 for the whole-brain 

analysis and 23 for the ROI analysis. Tables 12 and 13 list the relevant error measures 

that correlated significantly with the brain regions of concern according to simple and 

complex paths; Table 12 presents all positive correlations while Table 13 presents all 

negative correlations. Figures 17 and 18 show the regions that correlated significantly 

with these navigational error measures during the simple and complex homebound phases 

respectively.  

Across all participants, during the simple homebound phase, larger homing 

distance mean errors were associated with higher activation in the left cuneus (see Fig. 

17A) while larger signed distance random errors were associated with lower activations 

in the right precuneus (see Fig. 17B). During the complex homebound phase, larger 

signed direction random errors were associated with higher activations in the right 
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inferior frontal gyrus (BA 45 / 46) [see Figs. 18C and 18D] while larger absolute 

direction errors were associated with lower activations in the right anterior cingulate (see 

Fig. 18A) and left cuneus (see Fig. 18B).  

Among configural updaters, during the simple homebound phase, larger signed 

direction mean errors were associated with higher activation in the right paracentral 

lobule (BA 4) [see Fig. 17C]. During the complex homebound phase, larger homing 

distance mean errors were associated with lower activation in the left inferior frontal 

gyrus (BA 47) [see Fig. 18E]. 

Among continuous updaters, during the simple homebound phase, larger signed 

distance random errors were associated with lower activation in the right precuneus (see 

Fig. 17D). During the complex homebound phase, larger signed direction mean errors 

were associated with lower activation in the left cuneus (see 18F).  
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Table 12 

 

Positive Brain-behavior Correlations during the Homebound Phases of Simple and Complex Paths 

 

 

 

 

 

 

 

 

 

 
Note. There were no significant regions of activation that correlated positively with any error measures during the complex homebound phase 

among configural updaters and during both simple and complex homebound phases among continuous updaters. 

Path type Performance Measure Region BA Side 

Cluster size 

(voxels) x y z T 

All Participants 

        Simple Homing distance mean error Cuneus 18 L 383 -2 -78 20 3.89 

          

Complex Signed direction random error Inferior frontal gyrus 46 R 650 48 40 6 5.53 

   

45 R 447 40 20 4 4.61 

Configural Updaters 

        Simple Signed direction mean error Paracentral lobule 4 R 349 2 -30 68 7.55 
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Table 13 

 

Negative Brain-behavior Correlations during the Homebound Phases of Simple and Complex Paths 

 

 

 

 

 

 

 
 

Note. There were no significant regions of activation that correlated negatively with any error measures during the simple homebound phase 

among configural updaters. 

 

Path type Performance Measure Region BA Side 

Cluster size 

(voxels) x y z T 

All Participants 

        Simple Signed distance random error Precuneus 7 R 414 14 -48 38 -5.10 

          

Complex Absolute direction mean error Anterior cingulate 32 R 519 4 38 -4 -4.39 

  Cuneus 18 L 429 -10 -82 12 -4.55 

Configural Updaters 

        Complex Homing distance mean error Inferior frontal gyrus 47 L 757 -32 30 -2 -6.67 

Continuous Updaters         

Simple Signed distance random error Precuneus 7 R 387 18 -52 46 -10.55 

          

Complex Signed direction mean error Cuneus 18 L 752 -10 -86 16 -6.68 
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Fig. 17. Significant correlations between different types of navigational errors and the activation patterns from 

all participants, configural updaters, and continuous updaters during the simple homebound phase. In each of 

these three groups, activation images were superimposed on spatially normalized high-resolution T1-weighted 

images averaged across all group members. In all participants, (A) homing distance mean error correlated 

positively with activation in the cuneus (BA 18) while (B) signed distance random error correlated negatively 

with activation in the precuneus (BA 7). (C) In configural updaters, signed direction mean error correlated 

positively with activation in the paracentral lobule. (D) In continuous updaters, signed distance random error 

correlated negatively with activation in the precuneus (BA 7). Cross hairs were centered on the peak voxel of 

correlational strength in each specified region. L = left hemisphere; R = right hemisphere. 
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Fig. 18. Significant correlations between different types of navigational errors and the activation patterns from all 

participants, configural updaters, and continuous updaters during the complex homebound phase. In each of these 

three groups, activation images were superimposed on spatially normalized high-resolution T1-weighted images 

averaged across all group members. In all participants, absolute direction mean error correlated negatively with 

activations in the (A) anterior cingulate and (B) cuneus, while signed direction random error correlated positively 

with activations in the inferior frontal gyrus [(C) BA 46; (D) BA 45]. (E) In configural updaters, homing distance 

mean error correlated negatively with activation in the inferior frontal gyrus (BA 47). (G) In continuous updaters, 

signed direction mean error correlated negatively with activation in the cuneus (BA 18). Cross hairs were centered 

on the peak voxel of correlational strength in each specified region. L = left hemisphere; R = right hemisphere. 
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CHAPTER 7 

EXPERIMENT 2 

DISCUSSION 

 

The current experiment investigated the extent to which the hippocampus and the 

entorhinal cortex were involved in the implementation of configural and continuous 

updating strategies, respectively, during visual path integration. Specifically, it was 

hypothesized that configural updating use would engage the hippocampus proper during 

the homebound phase while continuous updating use would engage the entorhinal cortex 

during the same phase. Based on within-trial analysis that examined brain activations in 

specific navigational phases relative to a functional baseline encompassing the entire time 

series, no significant activation (or deactivation) in either the hippocampus or the 

entorhinal cortex was found during the homebound phase, as well as during the outbound 

phase, in either strategy group. There were also no significant correlations between the 

activity in either region and any type of navigational error committed during simple and 

homebound travels in the entire sample, as well as in each strategy group. Between-group 

comparisons of activation patterns (both contrast- and non-contrast-related) further 

showed that there were no overall differences in functional activity between the strategy 

groups. This supported the non-significant behavioral performance differences between 

them and suggested that neither strategy evoked more neural resources than the other. 

Notwithstanding these non-significant findings, there was significant activation in 

the entorhinal cortex among continuous updaters based on a linear contrast of activation 

patterns from simple and complex paths [complex > simple] during the homebound 



 105 

phase. The same contrast also yielded marginally significant hippocampal activations in 

both strategy groups. Notably, this pattern of hippocampal activation in continuous 

updaters partially supported the hypothesis of coincidental entorhinal and hippocampal 

involvement, which stipulated that hippocampal place cell activity might be modulated 

by efferent entorhinal signals entering through the perforant pathway (Moser et al., 2015; 

Savelli et al., 2008; Solstad et al., 2008). More importantly, the observed pattern of 

entorhinal activation in continuous updaters suggests that the entorhinal cortex was 

actively involved in making homing decisions or responses after detecting changes in 

outbound travel between simple and complex paths. This pattern of entorhinal activation 

could perhaps be best explained by underlying changes in the firing patterns of entorhinal 

grid cells in response to an alteration of homing responses between simple and complex 

paths. Specifically, different outbound trajectories of simple and complex paths might 

have induced a rescaling of the firing fields (or phases) of grid cells, a physiological 

change which manifested itself metabolically as different levels of entorhinal BOLD 

responses during the simple and complex homebound phases (cf. Barry, Hayman, 

Burgess, & Jeffery, 2007; Chen et al., 2015; Fiete, Burak, & Brookings, 2008). Critically, 

this upscaling of homebound-based entorhinal activity when switching from simple to 

complex paths might have also arose from specific attentional demands incurred by the 

instructions on continuous updating strategy use (see General Discussion, for more 

details). 

With these findings in mind, it should be noted that the main differences in brain 

activation patterns between configural and continuous updaters were found not in the 

hippocampal formation but in extrahippocampal regions. When examining the phase-
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specific, non-contrast-related brain activations and deactivations in each strategy group, 

they were found to encompass the medial prefrontal, lateral temporal, and parietal 

cortices. In particular, activations specific to the outbound phase were found in configural 

updaters only and were localized to the left TPJ for both simple and complex paths. It is 

critical to note that the TPJ is a key component of the frontoparietal control network that 

was posited to be centrally involved in the allocation of attentional resources (see, e.g., 

Corbetta & Shulman, 2002; Vincent, Kahn, Synder, Raichle, & Buckner, 2008; Vossel, 

Geng, & Fink, 2014). This network has been shown to be activated during the 

navigational activities of path integration (Arnold et al., 2004; Izen, Chrastil, & Stern, 

2018) and wayfinding (Spreng, Mar, & Kim, 2009), as well as during autobiographical 

and visuospatial planning (Spreng et al., 2009; Spreng, Stevens, Chamberlain, Gilmore, 

& Schacter, 2010). Most probably, TPJ activation in configural updaters during outbound 

travel represented focused attention to salient optic flow information (e.g., rapid changes 

in texture-density gradient of the mottled ground during self-motion) [cf. Cabeza, 

Ciaramelli, Olson, & Moscovitch, 2008; Ciaramelli, Grady, & Moscovitch, 2008] for the 

purpose of integrating such sensory information into a conceivable shape of the outbound 

path. 

Further examination of other parietal regions revealed activations in the precuneus 

among configural updaters and in the inferior parietal lobule among continuous updaters 

during the simple homebound phase. These two parietal regions, like the TPJ, are part of 

the frontoparietal network, with the precuneus being part of a dorsal attention network 

and the inferior parietal lobule being part of a ventral attention network, which also 

comprises the TPJ (Cabeza et al., 2008; Corbetta & Shulman, 2002). Critically, there are 
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functional differences between these two attention networks in relation to the control and 

allocation of attention. Specifically, the dorsal network was proposed to be associated 

with top-down attention driven by self-preparatory goals whereas the ventral network 

was proposed to be associated with bottom-up attention guided by external sensory 

stimuli or retrieved memories of such stimuli/cues (Cabeza et al., 2008; Corbetta & 

Shulman, 2002; Vossel et al., 2014). In lieu of these proposed functions, it is possible that 

precuneus activation in configural updaters reflected some form of top-down attentional 

control concomitant with the central goal of configural strategy use – that is, to return to 

the start with referral to an internal allocentric image of the outbound path. By contrast, 

inferior parietal activation in continuous updaters suggests that they were involved in 

bottom-up attentional processing during the homebound phase – ostensibly guided by 

egocentric perceptual representations of external stimuli observed during outbound travel. 

Conceptually, this interpretation aligns well with the notion of continuous strategy use as 

a dynamic navigational process that requires constant monitoring of ego-motion 

information (Wiener et al., 2011; He & McNamara, 2018).  

Moreover, at the perceptual level, it is worth considering that precuneus activation 

in configural updaters during simple homebound travel might have also represented: (i) 

increased egocentric reference frame use (Chiu et al., 2012; Gramann et al., 2006; Lin et 

al., 2015; Plank et al., 2010; Wolbers, Hegarty, & Loomis, 2008) – putatively directed 

toward encoding multiple egocentric viewpoints or scenes relevant for approximating the 

starting position – or (ii) increased attempts at converting ego-motion information 

experienced during homebound travel into an allocentric format for long-term storage 

and retrieval (Lin et al., 2015; Gramann et al., 2010). Furthermore, with respect to brain-
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behavior correlations, the relevance of the precuneus for making homing decisions and 

responses in continuous updaters could not be eschewed as precuneus activation in 

continuous updaters was found to be negatively associated with individual differences in 

signed distance random error during the simple homebound phase. This negative 

relationship shows that higher precuneus engagement among continuous updaters 

facilitated their consistency of homebound travel over simple paths. Interestingly, it 

suggests that top-performing continuous updaters directed top-down attention toward 

maintaining the consistency of their translational virtual movements when navigating 

simple homebound paths. 

These different group- and individual-based observations of parietal activations in 

the simple homebound phase were accompanied by common patterns of deactivations in 

the medial prefrontal cortex (mPFC) and the lateral temporal lobe in both groups. These 

regions, together with the hippocampus, TPJ / angular gyrus, and the precuneus / 

posterior parietal cortex, constitute key components of the default mode network (DMN), 

which is a set of interconnected brain regions that are suppressed in activity during tasks 

that demand bottom-up attention (see, e.g., Buckner, Andrews-Hanna, & Schacter, 2008; 

Laird et al., 2009; Raichle et al., 2001; Shulman et al., 1997). Deactivations in the mPFC 

and lateral temporal lobe have been previously documented to occur when activation 

patterns elicited by active (i.e., attention-demanding) tasks were compared against those 

elicited by passive control tasks (e.g., viewing a stimulus array without any response) 

[see Shulman et al., 1997]. As the current within-trial analysis presented the activation 

pattern of each navigational phase against the backdrop of a common functional baseline 

that applied to all phases, deactivations in the mPFC and lateral temporal lobe might have 
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occurred as a consequence of (i) attention-demanding processes that were commonly 

engaged by both strategy groups during the simple homebound phase (e.g., attention to 

the magnitudes of turns for estimating the shortest path back to the start), and/or (ii) a 

suspension or attenuation of activity devoted to the processing of redundant visual 

information (e.g., immobile stars in the night sky) during the simple homebound phase 

(cf. Raichle et al., 2001; Shulman et al., 1997; see also, Raichle & Snyder, 2007, for 

similar views). Notably, these two possibilities hint at the potential involvement of 

strategy-invariant processes that could be engaged to similar degrees regardless of the 

strategy-at-hand. 

Thus far, there were no other findings on brain deactivations that paralleled the 

existing findings, and thus it could not be determined as to which of the two possibilities 

was more plausible. Crucially, given the absence of corresponding findings, any valid 

explanation(s) of functional activity changes derived from linear contrasts involving these 

deactivations – which in this experiment, occurred in the form of mPFC activation in 

configural updaters – should also be forestalled. To fully address the implications of these 

patterns of deactivations currently observed, more work on clarifying the relationships 

between deactivations in DMN regions and goal-oriented attention and behavior during 

path integration is definitely needed (see General Discussion, for more details). 

Further examination of the prefrontal activity showed that regions constituting the 

inferior / ventrolateral prefrontal cortex (vlPFC) correlated both positively and negatively 

with navigational errors committed during homebound travel over complex paths. 

Specifically, higher activation in the left vlPFC (BA 47) was associated with improved 

homing performance among configural updaters (i.e., closer proximity to the start) but 
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higher activation in the right vlPFC was associated with poorer homing performance in 

all participants (i.e., greater inconsistency in turning). Previous studies which investigated 

the hemispheric lateralization of vlPFC proposed that the left vlPFC was involved in the 

controlled access to memory and retrieval of contextual details from past events (see 

Badre & Wagner, 2007; Levy & Wagner, 2011, for reviews; see also Cona & Scarpezza, 

2019, for a meta-analysis) and that the right vlPFC was engaged during (i) motor 

inhibition (Aron, Robbins, & Poldrack, 2004), (ii) reflexive reorienting of attention 

(Corbetta & Shulman, 2002; Corbetta, Patel, & Shulman 2008), and (iii) presence of 

response uncertainty (Levy & Wagner, 2011). With reference to these extant views, 

increased left vlPFC activation in configural updaters most probably reflected certain 

intentional efforts at homing vector computation, ostensibly after access to mental images 

that captured the contextual elements (i.e., segments and turns) of complex outbound 

paths (cf. Badre & Wagner, 2007). Increased right vlPFC activation in all participants, on 

the other hand, most probably reflected heightened response uncertainty (Levy & 

Wagner, 2011) in the form of inconsistent homebound heading responses that persisted 

across complex paths – even after repeated exposures to the same paths. Moreover, this 

response uncertainty might have applied only to the complex homebound phase due to 

the perceived difficulty of complex homebound travel.  

In addition, it is worth noting that activations in the anterior cingulate cortex 

(ACC) and cuneus in all participants decreased with increased commission of absolute 

direction mean errors over complex homebound paths. Activations in these two regions 

have been shown to be largely present during attention-demanding path integration 

events involving turning movements (Chiu et al., 2012; Gramann et al., 2006, 2010; Lin 
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et al., 2015; Plank et al., 2010). In view of these previous observations, the current 

findings of increased activation in the ACC and cuneus might have reflected an increased 

expenditure of attentional and working memory resources in a controlled processing of 

rotational optic flow signals (Gramann et al., 2010; Plank et al., 2010), such that all 

rotations made did not deviate drastically from the homebound orientation of an 

estimated homing vector. Lastly, it is important to note that increased cuneus activation 

may not always facilitate homing performance, since it co-occurred with increased 

commission of homing distance mean errors (denoting decreased proximity to the start) 

over simple homebound paths. In the simplest sense, elevated cuneus activation during 

simple homebound travel could represent increased bottom-up attention to optic flow 

information with further displacement from the start. Alternatively, the same increases in 

cuneus activation could be influenced by simultaneous activity changes in other regions 

that were involved in the computation of homebound distances (e.g., left vlPFC and right 

precuneus, as currently observed). To clarify these possibilities, future path integration 

studies can consider investigating the functional connectivity of the cuneus with other 

neocortical regions that have been shown to be associated with distance-related 

responses. 
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CHAPTER 8 

SUMMARY OF MAJOR FINDINGS 

 

The current study acknowledged previous neuroimaging and neuropsychological 

findings showing the inconsistent involvement of the hippocampal formation in visual 

path integration and was conducted with the central aim of clarifying hippocampal 

involvement in visual path integration based on continuous and configural updating 

strategy use. The findings from in-lab testing (Experiment 1) did not support previous 

studies that showed configural updaters to exhibit more accurate path integration (Wiener 

et al., 2011) and target-pointing (He & McNamara, 2018) performance than continuous 

updaters. What Experiment 1 did demonstrate, however, was that the sex of the 

participant moderated strategy use after controlling for all relevant covariate effects. This 

led to two sets of major findings: (i) configural updating led to males outperforming 

females with regard to almost all error types (signed direction mean errors and absolute 

direction random errors excluded), and (ii) continuous updating, not configural updating, 

led to more accurate performance among females. These findings were discussed with 

respect to challenges faced by female configural updaters in abstracting out the shape of 

outbound from access to optical flow alone and potentially better encoding, on the part of 

female continuous updaters, of the starting location and homebound translational 

movements from an egocentric perspective. 

Experiment 2 involved the fMRI scanning of a subsample of the participants who 

completed Experiment 1. Its main aim was to compare the activation patterns between the 

two strategy groups in both hippocampal and extrahippocampal regions. To that end, both 
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whole-brain and ROI (centering on the hippocampus and entorhinal cortex) analyses 

were conducted. An examination of activation patterns unique to the outbound and 

homebound phases of both simple and complex paths revealed three sets of major 

findings: (i) entorhinal activation in continuous updaters based on a contrast of 

activations from the simple and complex homebound phases [complex > simple], (ii) 

relatively distinct non-contrast-related activations in the left parietal cortex in each group 

during outbound and simple homebound travel, and (iii) non-contrast-related 

deactivations in the mPFC and lateral temporal lobe, common to both groups, during the 

simple homebound phase.  

In sequence, these fMRI findings were suggested to reflect: (i) altered grid cell 

firing patterns corresponding with different homing responses associated with simple and 

complex homebound travel (ii) differential allocation of attention through top-down and 

bottom-up mechanisms; (iii) an expenditure of a common pool of attentional resources or 

a temporary suspension of general information processing. Supplementary findings from 

brain-behavior correlations did not show any significant relationships between 

navigational errors (all types) and functional activity changes in the hippocampus or 

entorhinal cortex. Instead, they showed that increased activity in regions involved in 

attending to rotational visual signals (ACC, cuneus) and egocentric spatial processing 

(precuneus) were associated with lower magnitudes of absolute direction mean errors in 

all participants. A hemispheric lateralization of functions in the vlPFC was also suggested 

to explain the varying patterns of path integration accuracy observed between all 

participants and configural updaters. 
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CHAPTER 9 

GENERAL DISCUSSION 

 

In conjunction, the two experiments in the current study were novel for exhibiting 

findings that contradicted expectations. This final chapter shall focus on addressing the 

broader impact of these findings, limitations of the current methodology, and ideas for 

further investigations. 

In both experiments, despite differences in sex ratio, outbound path configuration, 

and time-limit for homebound travel, female configural updaters were found to be less 

consistent in path integration performance than male configural updaters and that the self-

report measure of total strategy effectiveness covaried significantly with direction errors 

(absolute and signed random errors in Experiment 1; absolute mean errors in Experiment 

2). The former findings reinforced the argument that females were less proficient at 

implementing configural updating than males while the latter findings suggest that there 

is a metacognitive component in path integration. In particular, the significant covariate 

effects posed by total strategy effectiveness show that self-perceived strategy 

effectiveness can mediate the effects of learned strategies on direction- or orientation-

related performance during path integration, regardless of the shapes of outbound paths. 

Critically, these findings support the notion that personal beliefs about cognitive 

performance contribute to strategy implementation (Hertzog & Dunlosky, 2004), as well 

as supplemented recent findings showing positive association between confidence of 
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one’s spatial memory and a preference for allocentric navigation strategy (Ariel & 

Moffat, 2018).13 Due to the absence of additional cognitive or metacognitive assessments, 

it is currently unknown as to the exact mechanisms/processes that mediate the 

associations between self-perceived strategy effectiveness and path integration 

directional/orientation performance, and further investigations – involving both 

quantitative/psychometric and qualitative (e.g., interview-based) components – can be 

performed.  

In addition, it is worth noting that the comparisons of the behavioral findings from 

both experiments showed inconsistent patterns of within-subjects effects posed by 

outbound path category. There was a commission of larger distance (both homing and 

signed) and absolute direction mean errors over complex paths than over simple paths in 

Experiment 2 but not in Experiment 1. These differences in behavioral performance 

between the two experiments must be considered in the context of stimuli changes in 

Experiment 2 related to (i) fixing the length of the first path segment, (ii) altering the 

turning angles of the outbound paths, and (iii) truncating the maximum duration for 

response-making from 20 seconds to 10 seconds. Most probably, variations in these 

spatiotemporal factors affected path integration over paths of varying complexity. For 

example, halving the period for response-making might have compelled participants to 

respond faster than usual due to time pressure (Edland & Svenson, 1993), which in turn 

                                                 

 

 
13 Note that the assessment of strategy effectiveness measured in this study should not be seen as equivalent 

to an assessment of confidence of strategy use, owing to the subjective/inferential nature of the strategy 

effectiveness survey. 
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reduced their capacity for efficient attentional control and spatial information processing 

over complex paths (cf. Brunyé, Wood, Houck, & Taylor, 2017). 

Turning to the activation profiles of each strategy groups, the current findings 

showed both similar and different patterns of activations in each group. Particularly 

interesting were the findings on parietal activations during both outbound (in configural 

updaters) and homebound (in both groups) travel, which implicated the dual involvement 

of top-down and bottom-up attention mechanisms in the implementation of each strategy. 

More importantly, these findings suggest that it might have been the specific demands 

evoked by each set of strategy instructions that induced differential attentional processing 

in each strategy group (cf. Berger & Bülthoff, 2009). Based on this notion, it is possible 

that significant activation in the entorhinal cortex [complex > simple] during the 

homebound phase also reflected different levels of attentional processing or control, 

ostensibly with more attentional resources allocated to virtual movements over complex 

homebound paths than over simple homebound paths. At the cellular level, it is unknown, 

however, as to whether these proposed changes in attentional control during continuous 

updating relate to entorhinal grid cell activities coding for real-time changes in position 

and orientation (Barry et al., 2007; Hafting et al., 2005; Gil et al., 2018; Jacobs et al., 

2013; Jacob et al., 2017; Stangl et al., 2018). Thus, further investigations aiming at 

clarifying the nature of such psychophysiological relationships are required. 

Given this potential close coupling of attention and strategy use, it seems 

reasonable to argue that strategy use in the current path integration task largely engaged 

attentional or perceptual processes without an explicit need for hippocampus-dependent 

processes. This interpretation supports similar views endorsed by previous researchers 
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who did not regard hippocampal involvement as necessary for successful path integration 

(Arnold et al., 2014; Kim et al., 2013; Shrager et al., 2008). However, a simplistic notion 

of the hippocampus as being totally irrelevant for path integration must be caveated in 

view of the currently observed hippocampal activations [complex > simple] that 

approximated significance in both strategy groups during the homebound phase. Even 

though these findings were not significant, they showed that hippocampal involvement 

was not confined to the implementation of one spatial updating strategy only. Critically, 

they suggest that the hippocampus has the potential of being involved in an online 

planning or detection of variations in homing responses between simple and complex 

paths. This interpretation supports accumulating evidence proposing that the 

hippocampus was highly involved in the prospective thinking or simulation of goal-

directed behaviors during spatial navigation (see, e.g., Brown, Hasselmo, & Stern, 2014; 

Brown et al., 2016; Spiers, Olafsdottir, & Lever, 2018). Consequently, future studies 

aiming to clarify the connection between the hippocampus and path complexity should 

consider assessing the extent to which hippocampal activity can be parametrically 

modulated by paths of increasing complexity. To ensure a detailed inspection of such 

functional changes, more outbound paths that vary systematically (i.e., on a continuous 

scale) with regard to path segments, lengths, and turn values, would need to be designed. 

Taken together, the fMRI findings from this study suggest that extrahippocampal 

processes related to attention and perception overshadowed hippocampus-dependent 

processes in yielding successful visual path integration performance. Significant patterns 

of activations and deactivations in the association cortex were largely found during the 

simple homebound phase and proposed to represent the attentional and perceptual 
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processes directed to the implementation of each strategy. As these regions constituted 

key components of the default mode and frontoparietal networks, the interaction of the 

functional or neural dynamics between these two networks can be investigated further. 

This recommendation is made with reference to posterior regions constituting both 

networks that are commonly activated during spatial navigation (e.g., precuneus, TPJ, as 

currently observed) [see Spreng et al., 2009]. Alternatively, interconnections between the 

hippocampus and the default mode and frontoparietal networks can also be investigated, 

given recent findings showing that hippocampal activity is modulated by variations in the 

functional activity of the default mode and frontoparietal networks during visual path 

integration (see Izen et al., 2018). For instance, functional connectivity between 

hippocampal and the neocortical regions of these two networks can be examined in the 

context of systematic variation in outbound path complexity, as mentioned above.  

Overall, these recommendations are specified with the intention of rendering a 

better picture of how visual path integration operates, particularly when influenced by 

different strategies. An interactionist account is missing based on the current practice of 

examining brain activations localized to distinct regions, and thus, it is hoped that future 

path integration studies adopting a connectionist approach will be better positioned to 

uncover the intricacies of strategy-specific brain functions.  
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APPENDIX A 

 

Computer Experience Questionnaire (Moffat, Hampson, & Hatzipantelis, 1998) 

 

Online instructions: 

 

The following statements concern your experience with using computers and virtual 

environments. For each statement, choose the best option that is specified by the header. 

 

 

 

 

 

 

1. Please rate the amount of experience you have with using a computer. 

 

2. Please rate the amount of experience you have at playing computer or video games. 

 

3. Please rate the amount of experience you have at playing computer or video games that 

specifically involve navigating through 3D mazes or other 3D environments (e.g., driving 

and flight simulators, Doom, Duke Nukem 3D, Quake, Unreal tournament, etc.) 

1 2 3 4 5 6 7 

I have never 

used a 

computer 

before 

A few 

times in 

my life 

A few 

times per 

year 

Several 

times per 

year 

A few 

times per 

month 

A few 

times per 

week 

Almost 

everyday 



 120 

APPENDIX B 

 

Spatial Anxiety Scale [Lawton, 1994] {Source: Table 2, Lawton (1994)}. 

 

Online instructions (Note: The scale for each item was represented by five stars): 

 

This survey concerns the level of anxiety you feel when moving about in your everyday 

environment.  

 

For each item: 

  

A solitary star = not anxious; 

Two stars = slightly anxious;  

Three stars = moderately anxious; 

Four stars = anxious 

Five stars = very anxious.   

 

1. Leaving a store that you have been to for the first time and deciding which way to turn to 

get to a destination. 

2. Finding your way out of a complex arrangement of offices that you have visited for the first 

time. 

3. Pointing in the direction of a place outside that someone wants to get to and has asked you 

for directions, when you are in a windowless room. 

4. Locating your car in a very large parking lot or parking garage. 

5. Trying a new route that you think will be a shortcut without the benefit of a map. 

6. Finding your way back to a familiar area after realizing you have made a wrong turn and 

become lost while driving. 

7. Finding your way around in an unfamiliar mall. 

8. Finding your way to an appointment in an area of a city or town with which you are not 

familiar. 
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APPENDIX C 

 

Exemplary sketches of two outbound paths walked out physically by a randomly selected 

participant during the practice session. The triangle marks the starting position. The square marks 

the ending position of the outbound journey. Intact lines represent the outbound path while 

dashed lines represent the homebound path. 
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APPENDIX D 

 

Post-practice Survey on the Effectiveness of Strategy Use 

 

 

Regardless of how accurately you got back to the start, please rate how effectively you applied 

the strategy-at-hand toward successful performance in the practice trials. 

 

1 2 3 4 5             6 7 8 9 10 

Least 

effective 

   Moderately 

effective 

   Most 

effective 

 

 

Post-test Survey on the Effectiveness of Strategy Use 

 

 

Regardless of how accurately you got back to the start, please rate how effectively you applied 

the strategy-at-hand toward successful performance in the second set of test trials after the break. 

 

1 2 3 4 5            6 7 8 9 10 

Least 

effective 

   Moderately 

effective 

   Most 

effective 
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