
COLLEGE OF COMPUTING
GEORGIA INSTITUTE OF TECHNOLOGY
TECHNICAL REPORT: GIT-CC-02-37

DYNAMO Design Guidebook
June 24, 2002

The DYNAMO project is concerned with the assembly of components of interactive
systems. It includes a design method, described in this guidebook, and a set of tools that
support it. The DYNAMO design method starts with a declarative model of the assembly
expressed using a graphical UML CASE tool. From the declarative model, DYNAMO
tools automatically generate C++ wrapper classes that “glue” the components together.
The DYNAMO design method comprises three-phases that refines a conceptual model of
a proposed assembly into interrelated components organized into layered mode compo-
nents. In Phase 0, the environment in which the assembly executes is described in terms
of external actors, the assembly itself, the communication among them, and the behav-
ioral properties that the assembly guarantees to maintain. Phase 1 asks the designer to
partition the assembly into its constituent components and their relationships, assigning
responsibility for external actions and guarantee-maintenance to the components appro-
priately. Finally, Phase 2 asks the designer to layer the constituents as mode components,
where lower-level components communicate status changes upward, and higher-level
components make specific service requests of lower-level components. For each phase,
the guidebook provide a purpose, a diagrammatic representation that describes the re-
sulting design artifact, a set of steps to create that diagram, and a set of guidelines or de-
sign rules for making appropriate design decisions. Each phase is illustrated using the ex-
ample of a simple text browser assembly. At the end of the document, a glossary of all
dynamo-related terms is provided.
Acknowledgements
This guidebook was written by the members of the DYNAMO project at Georgia Tech and
Michigan State University. Authors were Corinne McNeely, Spencer Rugaber, Kurt
Stirewalt, and David Zook.
Effort sponsored by the Defense Advanced Research Projects Agency, and the United
States Air Force Research Laboratory, under agreement number F30602-00-2-0618.

DYNAMO Design Guidebook
Software components are units of software that must be assembled to create a software
system. Components can come from different sources: They may already exist, in either
source or binary form, or they may need to be custom-constructed for the system. How to
assemble these component systems both correctly and efficiently is an important problem
facing software architects today.
The DYNAMO project is concerned with the assembly of components of interactive sys-
tems. It includes a design method, described in this guidebook, and a set of tools that
support it. The DYNAMO design method starts with a declarative model of the assembly
expressed using a graphical UML CASE tool. The abstractness of declarative models
permits concise representations and enables formal reasoning. From the declarative
model, DYNAMO tools automatically generate C++ wrapper classes that “glue” the com-
ponents together. To support efficiency and reuse, components are assembled using a
layered, implicit-invocation architecture called a mode component architecture. A mode
component is a specialized component that alerts its clients when its state changes. Addi-
tionally, the correctness of these generated assemblies can be verified either statically,
using tools such as theorem provers or model checkers, or dynamically, by run-time as-
sertion checking.
The DYNAMO design method comprises three-phases that refine a conceptual model of a
proposed assembly into interrelated components organized into layered mode compo-
nents. In Phase 0, the environment in which the assembly executes is described in terms
of external actors, the assembly itself, the communication among them, and the behav-
ioral properties that the assembly guarantees to maintain. Phase 1 asks the designer to
partition the assembly into its constituent components and their relationships, assigning
responsibility for external actions and guarantee-maintenance to the components appro-
priately. Finally, Phase 2 asks the designer to layer the constituents as mode components,
where lower-level components communicate status changes upward, and higher-level
components make specific service requests of lower-level components.
In the following sections, the designer is walked through the design method. For each
phase, the guidebook provide a purpose, a diagrammatic representation that describes the
resulting design artifact, a set of steps to create that diagram, and a set of guidelines or
design rules for making appropriate design decisions. Each phase is illustrated using the
example of a simple text browser assembly. At the end of the document, a glossary of all
DYNAMO-related terms is provided.

Phase 0
Purpose: To specify the interfaces between the assembly and those aspects of the envi-
ronment with which it interacts.
Representation: The representation produced by Phase 0 is similar to a Data Flow con-
text diagram, expressed however using UML class diagram symbols. The Phase 0 dia-
gram contains one rectangular class icon denoting the assembly and additional rectangles
for each user, system, or data repository (collectively, actors) with which the assembly
interacts. Actors send requests (events) to the assembly, and the assembly responds with

visual feedback (percepts). Actors sending events are connected to the assembly using
directed lines; percepts of external actors are assumed to be visible to the assembly with-
out explicit denotation. Assembly behavior is described by guarantees expressed as natu-
ral language annotations. The annotations can be associated either with event requests or
with the assembly itself by using an undirected dotted line.
Process: Construct a UML diagram describing the assembly, the external actors with
which it interacts, the percepts it provides, the events it responds to, and the properties it
guarantees.

• Use a UML class symbol to denote the assembly as a whole. Give the assembly
an appropriate name.

• Use other class symbols to denote the external actors (users, sensors, data reposi-
tories and other systems) with which the assembly interacts.

• Supply directed lines from external actors into the assembly for each event the as-
sembly responds to. The events should be named and may be parameterized.

• Denote assembly percepts as attributes of the assembly class icon.
• Use natural language to express any guarantees of assembly behavior. There are
two types of guarantees: responses to events and invariants (relationships among
assembly percepts). Guarantees are added to the diagram as text annotations in
note boxes attached via an undirected dotted line to either the event directed lines
(for responses) or to the assembly class rectangle (for invariants).

Guidelines:
• There is often a choice of whether to express a guarantee as an invariant or a re-
sponse. In general, responses should be simple and immediate, for example, indi-
cating what happens to the specific GUI element that a user interacted with. More
elaborate effects on the assembly can usually be more naturally expressed as in-
variants.

• Break guarantees down into simple sentences, one annotation per sentence.
• Guarantees may include but are not limited to naming commitments, constraints
on use, responses to events, invariants, and synchronization properties.

• DYNAMO does not yet support quality-of-service (e.g. performance) guarantees.
• Determine all visible aspects of the GUI that convey meaning to the user and
model them as percepts.

• Percepts that are not explicitly mentioned in the response to an event are assumed
to be unaffected by occurrences of that event unless changes in their values can be
inferred from assembly invariants.

• Percepts are universally visible to all actors including the assembly.
• Events can be thought of as asynchronous and atomic with respect to assembly
behavior.

• No internal state appears in Phase 0 models.
Example: In the following example, the user interacts with a simple text browser assem-
bly consisting of a viewport in which a document is displayed and a scrollbar for control-

ling the lines viewable at any given time. The assembly contains four percepts (the view-
port height, the lines displayed in the viewport, the position of the top of the scrollbar
handle, and the size of the scrollbar handle relative to the size of the scrollbar tray). The
assembly responds to two kinds of user events—resizing the viewport and moving the
scrollbar handle—with the obvious response guarantees. In addition the assembly main-
tains the following invariants.
1. The viewport displays the maximal consecutive subsequence of complete lines from
the document that fit within it.

2. The position of the top of the scrollbar handle relative to the scrollbar tray reflects the
position in the document of the line currently visible at the top of the viewport. That
is, moving the scrollbar handle allows different portions of the document to be dis-
played.

3. The size of the scrollbar handle with respect to the size of the scrollbar tray is equal to
the number of lines visible in the viewport compared to the total size of the document.

Note that to simplify the exposition, we make the following assumptions about the as-
sembly.

• All characters displayed in the viewport have the same point size;
• The viewport width is fixed at a value wide enough to display all characters in the
widest line of the document.

• Other GUI events, such as moving the viewport and resizing the scrollbar have no
effects on the percepts.

• The various ways in which the scrollbar handle can be repositioned (dragging,
clicking, etc.) are combined into a single event.

Diagram:

Explanation: The diagram contains three actors: the TextBrowser in the center, the
User on the left, and the Document in the bottom center. The TextBrowser is the as-

TextBrowser

+height : int
+viewContents : sequence(lines)
+handleSize : int
+handlePosition : int

Document

+contents : sequence(lines)

resizeWindow(newSize : int)

moveHandle(newPosition : int)

{The resizeWindow event
changes the height of the
viewport}

{The moveHandle event
changes the position of
the handle in the scrollbar
tray.}

User

{The size of the scrollbar handle
with respect to the size of the
scrolllbar tray indicates the
portion of the document's lines
visible in the viewport.}

{The position of the top of the
scrollbar handle with respect
to the scrollbar tray reflects
the position in the document
of the top line currently visible
in the viewport}

{The viewport presents the
maximum consecutive
subsequence of whole lines
from the document that fit}

sembly being designed; the User and the Document are external actors. The User is ac-
tive, issuing events to the TextBrowser. The Document is a passive data repository.
The User can initiate two events: resizeWindow and moveHandle. Each is annotated
with a guarantee indicating the User's expectations for what happens to the assembly
when the event is issued. The Document is an external actor with one percept, its con-
tents. It issues no events. The presumption is that the contents are available for use by the
assembly. The TextBrowser assembly itself is at the center of the diagram and contains
four percepts: height, viewContents, handleSize, and handlePosition. The assembly
invariant guarantees are expressed in note boxes on the right-hand edge of the diagram.

Phase 1
Purpose: To refine the Phase 0 assembly into components and to express assembly guar-
antees formally using UML’s Object Constraint Language (OCL). The components must
fit together in such a way that they provide the same behavior and presentation as the as-
sembly described in the Phase 0 diagram.
Representation: The Phase 1 diagram is built using a subset of UML static model fea-
tures. The components are represented as UML classes. The interactions among compo-
nents are denoted with associations. Guarantees are expressed in OCL, either as pre and
post conditions on event-handler methods (for responses), as invariants on the states of
components, or as annotated associations among the components.
Process: Construct a Phase 1 diagram in the following manner.

• Break the Phase 0 assembly into components. Components can denote existing
software from legacy systems, GUI toolkits, middleware, etc., or they may indi-
cate components that are not yet written.

• Assign Phase 0 events and percepts to individual components:
• Provide a method in a component if that component is responsible for han-
dling a given external event.

• Provide an attribute in a component if that component is responsible for a
providing a percept.

• Express Phase 0 guarantees more formally using OCL constraints.
• Response guarantees should be expressed as pre and post conditions on
event-handler methods.

• Maintaining some invariants become the responsibility of a single component.
For such an invariant, annotate the component with an OCL (inv) constraint
that references only to the component's methods or attributes.

• Some invariants describe complex relationships among two or more compo-
nents. In a case such as this, provide an association among the related compo-
nents and annotate it with an OCL (inv) constraint expressing the invariant.

• If necessary iterate the Phase 1 process, refining until all guarantees are ade-
quately expressed.
• During refinement, a percept may be decomposed such that several compo-
nents contribute to providing the information it expresses.

• Likewise, an event handler can delegate parts of its responsibility to subordi-
nate methods.

Guidelines:
• Only those component features (methods and attributes) that are relevant to the
assembly's external behavior (its interface and guarantees) are included in the
Phase 1 diagram, even if more is know about an existing component.
• However, even though event handlers are normally simple and self-contained,
sometimes part of an event response can be naturally delegated to methods in
other existing components. In these cases, the delegatee method may be ex-
plicitly expressed in the appropriate component, the delegator pre and post
conditions can refer to the delegatee, and the delegatee can be annotated with
appropriate OCL (pre and post) constraints.

• In the course of expressing the OCL constraint, they should be given mnemonic
names.

• Sometimes a computation (subexpression) occurs repeatedly in an assembly's
guarantees. In a situation such as this, it can be useful to introduce a new method
into an assembly as an abbreviation for that computation. The method should re-
alize a pure function. That is, it can compute a value, but it should have no side
effects on assembly percepts. The method may be placed in whatever component
seems most natural. If other components are referenced in the computation, they
may be expressed using the OCL navigation syntax in the pre and post conditions.

• Sometimes a percept of an external actor is of interest to an assembly. It may be
useful in situations like this to introduce a component into the assembly that acts
as an interface to that actor, thereby enabling the DYNAMO tools to directly gener-
ate code for ensuring assembly guarantees related to those percepts. Once these
sorts of components have been introduced, there is no longer a need to include
external actors in the Phase 1 diagram.

Example: In the Phase 1 diagram of the text browser, the assembly is broken down into
ViewPort, ScrollBar, and FileManager components. First, Phase 0 events and percepts
are allocated to components. The ViewPort component is responsible for displaying the
Document's contents. Assigned to it are the height, and viewContents percepts and the
resizeWindow event handler. The ScrollBar component interacts with the User actor to
control which lines are actually displayed. The ScrollBar is responsible for the handle-
Position and handleSize percepts and for handling the moveScrollBar event. The File-
Manager component is responsible for interacting with the Document external actor.
The Phase 0 guarantees are expressed with the following OCL constraints.

context ScrollBar::moveHandle(newPosition : int): void
post : handlePosition = newPosition

context ViewPort::resizeWindow(newSize : int) :void
pre : newSize >= 0
post : height = newSize

context displaysDocument inv:
ViewPort:::viewContents =
FileManage::document->subsequence(ScrollBar::handlePosition,
ScrollBar::handlePosition + ViewPort::height - 1)

context scalesHandle inv:
ScrollBar::handleSize = ViewPort::height / FileManager::document->size()

context linesVisible inv:
ViewPort::viewContents->size() =
ViewPort::height.max(FileManager::document->size())

Several more simplifying assumptions have been made to clarify the exposition.
• Attributes of all three components are defined in units of (an integer number of)
lines. For real GUI toolkit components, this might not always be the case. For ex-
ample, the ScrollBar or the ViewPort might be expressed in terms of screen pix-
els. Translations among these units would be straightforward to express in OCL.

• Specific ScrollBar moveHandle events, such as clicking in the tray above the
handle to move the ViewPort contents up by the number of lines that the View-
Port can display, require more elaborate constraints to deal with issues such as
what happens when the currently viewed top line is less than height lines from
the top of the Document. None of these are difficult to express, but they do
crowd the diagram.

• There are some special cases needed to deal with computing the size of the han-
dle. For example, what should be the size of the handle when the document is
empty? These special cases can be included in the OCL using max and min op-
erators.

• Not every position in the scrollbar tray can be occupied by the top of the handle.
That is, because the handle has a non-zero height, that portion of the bottom of the
tray is not available for positioning. And, because the scrollbar's handle changes
size when the viewport is resized, the size of the excluded region changes during
the course of the assembly's execution.

• Because the specification requires that the top line in the ViewPort is fully dis-
played, the ScrollBar handle position computation must result in an integer value.

• In creating the Phase 1 constraints, a potential inconsistency in the Phase 0 guar-
antees becomes apparent. The first guarantee indicates that a maximal subse-
quence of lines is displayed in the viewport. The second guarantee implies that
any line in the document can appear as the top line of the viewport. So what hap-
pens when the scrollbar handle is moved as far as possible downward in the
scrollbar tray. The implication is that the last line of the document should appear
as the top line of the viewport. But then it would be the only line visible, and this
is not a "maximal subsequence" of the document. The problem can be resolved by
interpreting "maximal subsequence" as "maximal possible subsequence from the
top line toward the end of the file". Note that it is possible to build text browsers
in which the user can only scroll downward until the last line of the document ap-
pears as the last line of the file or in which the user can continue to scroll past the

last line in the document so that no lines are visible at all. Detection of inconsis-
tencies such as this should be considered a feature of using formal methods rather
than a problem.

• A related situation arises when a full viewport is enlarged so that there are insuffi-
cient lines remaining in the document to populate it. Some text browsers (such as
Netscape) deal with this situation by repositioning the scrollbar handle in such a
way that the resized viewport is fully populated. Other text browsers (such as
WordPad) treat the situation the same way we do, by leaving the top displayed
line unchanged.

Diagram:

Explanation: The assembly has been broken into three components: ScrollBar in the
upper left-hand corner, ViewPort in the upper right-hand corner, and FileManager in the
bottom center.
The handleSize and handlePosition percepts have become attributes of ScrollBar, and
the moveHandle event handler has been added as a method to Scrollbar. Likewise, the
height and viewContents percepts have been allocated as attributes of ViewPort, and
the resizeWindow event handler has become one of its methods. FileManager contains
one attribute, called document, to serve as a surrogate for the contents of the document
being displayed.
For each of the assembly events, an OCL constraint has been added to the appropriate
event-handler method directly expressing the Phase 0 guarantee. Each of the Phase 0 in-
variants refers to multiple components. One possibility is to select a component to hold
each invariant, using OCL navigation syntax to reference the attributes of the other com-
ponents. Instead, the DYNAMO design method suggests adding associations to the diagram
being constructed. Assignment of invariants to specific components takes place in Phase

ScrollBar

+moveHandle(newPosition : int) : void

+handleSize : int
+handlePosition : int

FileManager

+document : sequence(lines)

ViewPort

+resizeWindow(newSize : int) : void

+height : int
+viewContents : sequence(lines)

{context scalesHandle
inv: ScrollBar::handleSize =
 ViewPort::height /
 FileManager::document->size()}

{context displaysDocument
inv: ViewPort::viewContents =
 FileManage::document->
 subseqence(ScrollBar::handlePosition,
 ScrollBar::handlePosition + ViewPort::height - 1)}

{context linesVisible
inv: ViewPort::viewContents->size()=
ViewPort::height.max(FileManager::document->size())}

linesVisible

scalesHandle

displays
Document

{{context
 ScrollBar::moveHandle(newPosition : int):void
 post: handlePosition = newPosition}
}

{context ViewPort::resizeWindow(newSize : int):void
pre: newSize >= 0
post: height = newSize}

2 of the DYNAMO method, and using associations in Phase 1 reduces the possibility of bi-
asing the decisions that will be made at that time.
Note that two of the associations are ternary (involve three components). DYNAMO has
borrowed the diamond symbol from Entity-Relation diagrams to denote these situations.
Each of the associations is annotated with an OCL constraint to express the relevant
guarantee.
Somewhat subtle is the fact that two of the Phase 0 guarantees have been combined in the
constraint attached to the displaysDocument association. That is, Phase 0 contained one
guarantee that expressed that the viewport displays parts of the document and another
that related the scrollbar position to the top line displayed. These have been combine in
Phase 1 to express the exact lines that are displayed. This can be thought of as a design
refinement, reducing the number of invariants to be maintained thereby also reducing the
complexity of the design.
There is one new invariant added to the diagram on the association linesVisible to deal
with Phase 0 specification inconsistency described above. The new invariant states ex-
actly what to expect when the user has scrolled so that not all of the viewport is used for
displaying lines from the document.

Phase 2
Purpose: To impose a layered, implicit-invocation (mode component) architecture on the
assembly. The components are layered, and the interactions between components are re-
stricted so that a component can only interact with other components in the same or adja-
cent layers. The mode component architecture makes the assembly simpler and more re-
usable by reducing the interactions among the components. The declarative dependencies
expressed non-procedurally in Phase 1 as OCL constraints are reformulated in such a way
that DYNAMO code-generation tools can provide constraint consistency in an efficient way
without requiring any explicit (i.e. hand-coded) intervention in the components.
Representation: The diagram is a UML class diagram. Components are denoted by
classes that reside in hierarchical layers. More than one component can comprise a layer.
A single dashed directed line connects a layer with the layer immediately beneath it in the
hierarchy. It should be interpreted to indicate that the superior component makes use of
the inferior component.
Interactions upward in the hierarchy occur implicitly. That is, if a component is depend-
ent on information in components in the next lower level, changes in the state of those
inferior components are communicated upward without an explicit method call being
made. Elements of state whose changes are communicated implicitly upward are called
status variables.
Interactions downward in the hierarchy, which can be used to request state changes, oc-
cur in a normal call–return fashion. That is, a component can make an explicit request to
a method in a component in the next lower layer. Such explicit requests are called service
calls.
There are no associations in Phase 2 diagrams. Instead, the OCL constraint annotating
each Phase 1 association is replaced by a mode component constraint. A mode-

component constraint uses a restricted form of OCL expression syntax in which the con-
straint takes the form of an equation with a single variable on the left-hand side and a
general OCL expression on the right-hand side. The left-hand side variable must be an
attribute of a component in the superior layer; all other referenced variables must be at-
tributes of variables in components of the inferior layer. The mode-component constraint
is expressed as an annotation on the component to which the left-hand side variable be-
longs. The intended interpretation of a mode-component constraint is that a change to any
variable on the right-hand side causes the value of its expression to be recomputed and
assigned to the variable on the left-hand side.
Process: Construct a Phase 2 diagram in the following manner.

• Components from the Phase 1 diagram are placed in layers. More than one com-
ponent may be in a single layer.

• Component attributes whose values are referenced by components in the superior
layer become status variables. A component’s status variables are only visible to
components in its own layer and in the layer immediately above it in the hierar-
chy.

• Remove associations. This may take place in several ways.
• Ternary (and higher) associations are removed using normal OO design tac-
tics, such as substituting several binary associations or introducing a new ob-
ject (component) to implement the association.

• Each of the remaining binary associations has an annotation indicating an as-
sembly invariant. Reformulate the invariant as a mode component constraint
by algebraically manipulating it.

• If the variables on the right-hand side belong to components in a layer inferior
to the component containing the variable on the left-hand side, then, remove
the association, and place the mode component constraint as an annotation on
the component containing the left-hand side variable of the mode component
constraint.

• If the left-hand side variable belongs to a component in a layer below the layer
containing the components containing the right-hand side variables, then cre-
ate a new method in the lower component. The new method's parameters are
the right-hand side variables; the new method's post condition should indicate
the required update.

• If the invariant is not an equation, it is still possible to designate superior and
inferior components and their associated status variables. In this case, intro-
duce a method in the superior component named update_X, where X is the
name of the superior status variable, and make its pre and post conditions re-
flect the OCL constraint. The DYNAMO compiler will guarantee that the
method will be called whenever the value of X changes.

• The same remedy applies to situations where the OCL is an equation, but the
left-hand side is not a variable, but some derivative of one. An example of this
kind of situation occurs in the example below, where the OCL constraint re-
fers to the size of a collection rather than the collection itself.

• Invariants that are the responsibility of single components in the Phase 1 diagram
are refined in a normal OO manner. That is, the invariant is established when the
component is created, and each method of the component is responsible for
maintaining it.

Guidelines:
• Component layering may be partially determined by the constraints on the asso-
ciations between components. In general, layers should be organized in such a
way that service requests flow downward and status updates flow upward. This
normally means that user events are handled by components at the top of the lay-
ering. As they are handled, service requests are made downward. Then status up-
dates flow upward until percepts at the top of the hierarchy present assembly
status back to the user.

• If a mode component constraint references components in non-adjacent layers, it
becomes necessary to introduction intermediate status variables and services into
the hierarchy to propagate information in a layer-by-layer fashion. Fortunately,
the DYNAMO OCL compiler can infer these intermediate features from the OCL
navigation syntax, so the designer does not have to explicitly introduce them.

• In performing the algebraic manipulation required to transform a Phase 1 OCL
constraint into a mode-component constraint, it may be necessary to break the
constraint into several pieces. In general, a Phase 1 (binary) association invariant
may refer to attributes in multiple components. It is the designer's job to refor-
mulate it into a set of update dependencies. Situations where this is not possible
often indicate design flaws. Even where it is possible, the designer still has to
avoid update loops, in which two components cyclically update each other, po-
tentially leading to infinite loops.

• There are two reasons why an upward service call (denoted by a solid directed
line) might be used instead of an implicit-invocation constraint. First, it may be
desirable to optimize the update the state of a superior component. For example, if
that state is dependent on several status variables in the inferior component, and
those status variables always change together, implicitly causing the update when
either change is inefficient. Instead, just wait until the second variable is changed,
and make an explicit upward call to notify the superior component that it can now
restore the invariant relationship. Second and related, a service call provides a
synchronous way to update a component’s state. If the designer wants to control
when an update is made, implicit invocation does not provide sufficient control.

• Component interactions within a layer are handled in the normal, object-oriented
design fashion.

• For this version of DYNAMO, is assumed that all components within an assembly
share the same thread of control.

Example: In the Phase 2 diagram of the text browser assembly contains three layers:
ViewPort on top, ScrollBar in the middle, and FileManager at the bottom. All of the
Phase 1 attributes are promoted to status variables. Pre and post conditions are added to
describe the services' behaviors.

Phase 1 event-response constraints are suitable for Phase 2 diagrams; so they have been
omitted to simply the diagram.
Diagram:

Discussion:
Both VIEWPORT and SCROLLBAR accept events and display percepts, so either could be
at the top of the hierarchy. VIEWPORT was chosen because VIEWCONTENTS was consid-
ered to be a more important percept than HANDLESIZE. FILEMANAGER, handling no
events, naturally is placed at the bottom of the hierarchy.
The three intercomponent association invariants were converted to mode component con-
straints as follows.

• The DISPLAYSDOCUMENT association invariant becomes a mode component con-
straint responsible for updating the VIEWCONTENTS attribute of ViewPort. Hence,
it is associated with the ViewPort component.

• The LINESVISIBLE association invariant presents a problem: there is no variable to
update. Instead the constraint expresses an invariant that concerns sizes. The in-
variant actually indicates what should happen to VIEWCONTENTS when height
changes. As such, it naturally belongs in VIEWPORT.

• The SCALESHANDLE association invariant uses the HEIGHT attribute of VIEWPORT
and the size of the DOCUMENT attribute of FileManager to reset the SCROLLBAR
HANDLESIZE attribute. Hence, the correct placement is with SCROLLBAR. Because
HEIGHT is an attribute in a superior component, an update method must be intro-
duced into SCROLLBAR. When VIEWPORT::HEIGHT is altered, a call must be
made to the new method to effect the update in HANDLESIZE. The post condition
of the method indicates the desired property.

ScrollBar

+moveHandle(newPosition : int) : void
+update_height(height : int) () : void

+handleSize : int
+handlePosition : int

FileManager

+document : sequence(lines)

ViewPort

+resizeWindow(newSize : int) : void

+height : int
+viewContents : sequence(lines)

{context ScrollBar::update_height
pre: height > 0
post: handleSize = height /
 FileManager::document->size()}

{context displaysDocument
inv: ViewPort::viewContents =
 FileManage.document->
 subseqence(ScrollBar::handlePosition,
 ScrollBar::handlePosition + ViewPort::height - 1)}

{context ViewPort
inv: ViewPort::viewContents->size()=
max(height, FileManager::document->size())

Summary and Status
The DYNAMO project is exploring ways to build assemblies with guaranteed properties.
This guidebook describes how a designer can refine high-level, natural language guaran-
tees into operational constraints that the COGITO compiler can translate into efficient C++
wrapper code. A prototype of COGITO is nearing completion that will allow us to test
both the generality of the approach and the efficiency of the generated code.
Several enhancements are currently being considered. For example, not all guarantees
can naturally be expressed as equations. It is straightforward to compile a guarantee such
as this into a simple method that test the constraint and invokes a run-time exception if it
is violated.
More interesting is the question of how to deal with guarantees that describe synchroni-
zation constraints that cross thread or process boundaries. We are designing a run-time
infrastructure for dealing with status updates that cross these boundaries. The challenge is
provide one with unacceptably compromising performance.

Glossary
• actor: A participant in the environment is which the assembly lives. Actors may be
passive repositories of data or may proactively communicate with the assembly.

• assembly: A collection of software components that comprises a system.
• component: A unit of software assembled with other components to create a larger
system.

• event: An atomic unit of communications, which may carry data.
• guarantee: A description of expected assembly behavior.
• invariant: A property of an assembly or a component that holds between event oc-
currences. Invariants are expressed in terms of relationships among the elements of
the assembly's percepts or component's state attributes.

• mode component: A hierarchical software component whose interface provides a
continuously updated view of its current status.

• mode component architecture: A layered, implicit-invocation architecture where all
associated components are Mode Components

• mode component constraint: A single-assignment OCL expression where the left
hand side contains a single status variable and the right hand side is a formula de-
pendent upon status variables of mode components in an adjacent layer.

• OCL: The Object Constraint Language. Developed to express invariant, pre and post
condition information in UML Diagrams.

• OCL constraint: An OCL expression attached to either a UML class or association.
• percept: Visual feedback; generally an attribute of the assembly that is visible to the
user.

• pre/post conditions: Specific type of OCL expression that defines the behavior of a
component service.

• response: A property of an assembly or a component that holds as the result of the
assembly or component processing an event. Responses are expressed in terms of re-
lationships among the elements of the assembly's or component's state.

• service: An explicitly invoked operation used in Phase 2 diagrams by a component in
an adjacent state to alter a component’s state.

• status variable: A Phase 2 component attribute that provides automatic notification
when its state changes to client components in the adjacent layer.

