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Abstract. We address the problem of categorizing turn-taking interactions be-
tween individuals. Social interactions are characterized by turn-taking and arise
frequently in real-world videos. Our approach is based on the use of temporal
causal analysis to decompose a space-time visual word representation of video
into co-occuring independent segments, called causal sets [1]. These causal sets
then serves the input to a multiple instance learning framework to categorize turn-
taking interactions. We introduce a new turn-taking interactions dataset consist-
ing of social games and sports rallies. We demonstrate that our formulation of
multiple instance learning (QP-MISVM) is better able to leverage the repetitive
structure in turn-taking interactions and demonstrates superior performance rela-
tive to a conventional bag of words model.

1 Introduction

The categorization of activities from video data is a long-standing problem in computer
vision, with numerous applications in areas such as video understanding, multimedia
retrieval, and surveillance. Historically, much attention was focused on the activities of
an individual subject, often using simplified video content [2,3]. As a consequence of
improved feature representations [4], there has been significant progress in categorizing
actions using realistic video footage [4,5]. However, the majority of the actions in these
recent datasets still involve a single actor and are of relatively short duration. In this
paper we address the categorization of turn-taking interactions between two or more
individuals over extended time periods. We introduce a novel dataset of turn-taking
activities which includes both YouTube videos of social games between children and
parents as well as sports rallies taken from broadcast footage.

A basic challenge of activity recognition in unstructured real-world footage is the
presence of a wide variety of clutter and distractors. Existing video categorization meth-
ods based on space-time visual words (STVW) encode the video volume holistically,
incorporating all of the detected STVW into a global representation. In reality, an ac-
tivity of interest will occupy only a portion of the video volume, and the motion of the
camera in conjunction with independent background motions will generate numerous
spurious features. This issue is likely to be especially problematic in the case of long
video sequences containing complex activities.

One solution to this problem is to segment the video. Standard approaches to video
segmentation utilize motion and appearance features to segment video into regions or
volumes at the pixel level. In general, however, the automatic segmentation of general
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video content remains challenging. For the case of turn-taking videos, however, we have
recently proposed a segmentation method [1] which groups space-time visual words
(STVW) into non-interacting causal sets based on their temporal co-occurrence. This
segmentation approach is effective in retrieving turn-taking interactions. However, it is
not obvious how to leverage this segmentation for the problem of supervised catego-
rization:

1. The basic segmentation method depends upon the choice of a threshold parame-
ter to identify which words should be grouped together, but it is not clear how to
automatically determine the thresholds for good supervised categorization perfor-
mance.

2. While we have a category label for each video clip, we don’t know which causal sets
contain the activity. For supervised learning, how can we predict category labels
given a segmentation without having labels for the segments?

We demonstrate that both of these challenges can be successfully addressed using a
novel formulation of multiple instance learning (MIL).

In this paper, we develop a general method for categorizing video content which
contains turn-taking activities, and we make three primary contributions. First, we show
that the number of unique causal sets (segmentations) generated by the method of [1] is
linear in the number of STVW, which makes it possible to integrate the search for the
correct thresholds into the model-fitting process. This automates the previously man-
ually search for good thresholds in [1]. Second, we introduce a variation of multiple
instance learning, called QP-MISVM, which can more accurately infer the labels of the
causal sets during learning. Third, we present a novel Turn-Taking Activities dataset,
consisting of 1,096 video clips of social games and sports rallies take from YouTube and
broadcast footage, respectively. This dataset contains a diverse collection of video clips
exhibiting substantial clutter and complex interactions. We experimentally validate our
method against the holistic STVW approach and standard MIL, and we demonstrate
superior performance. We also show state-of-the-art performance on the KTH dataset.

2 Related Work

Recognizing Interactions There has been little prior work in recognizing interactions
between individuals when compared to related areas such as single-person action recog-
nition or human-object interaction recognition. Both [6] and [7] require background
subtraction and rely on tracking of body parts, and use very constrained data. In [8], the
focus is on short, multi-person interactions such as kick or push in uncluttered environ-
ments. The work in [9] uses video sequences from TV shows to recognize two-person
interactions such as hand-shake or high-five. They rely on detection of upper-body and
estimation of head orientation, which can be difficult to obtain in extended activities.
These prior works focus on activities of short duration and don’t contain turn-taking.
Both [10] and [1] focus on turn-taking interactions, but their task is for retrieval and not
categorization.
Multiple Instance Learning (MIL) There has been some recent work in applying MIL
to the detection and recognition of human actions. In [11], MIL is used to learn sign
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language from weakly aligned subtitles. In [12], MIL is used to categorize mouse ac-
tions. [13] and [14] use MIL for feature selection and categorize human actions. In [15],
MIL is used for action detection in crowded scenes where candidate detections are
treated as bags of instances. In [16], MIL is used to overcome noisy labels in YouTube
videos for categorization, where the noise comes in incorrectly tagging a video. In this
work, both video metadata (title, keywords, etc.) and visual features are used to obtain
features for MIL. In contrast to this prior work, we use MIL to simultaneously obtain
segmentation labels and categorization in realistic video footage with clutter. To our
knowledge, ours is the first work in using MIL for segmentations in clutter.

3 Activity Categorization Using Causal Sets

Our goal is to categorize activities which contain turn-taking interactions in natural
settings. Since the video sequences of these interactions are obtained from YouTube
(social games) and broadcast footage (sports rallies), they contain a wide variety of
clutter. We use our temporal causal analysis method [1] to compute a scalar measure
of causal influence between each pair of visual words. We demonstrate that the number
of possible unique causal sets is linear in the number of visual words, and this makes
it possible for us to directly search for the correct graph structure without the need for
a pre-defined threshold. In order to leverage the segmentations in categorization, we
formulate the problem in a Multiple Instance Learning (MIL) framework and propose a
novel variation of MIL, called QP-MISVM, which more accurately infers the labels of
causal sets for turn-taking interactions.

3.1 Temporal Causal Analysis

We briefly review the procedure of temporal causal analysis from [1] for an example se-
quence. A video sequence is discretized by extracting space-time interest points [4], and
each interest point p has an associated feature vector fp with two components: position-
dependent histograms of oriented gradients (HoG) and optical flow (HoF) from p’s
space-time neighborhood. We build spatio-temporal visual words by applying k-means
clustering to {fp}’s and assigning each interest point to its closest visual word. An
example sequence of a pattycake game with the visual words overlayed is shown in
Fig. 1. For simplicity of discussion, we have only shown a small subset (five) of the
visual words from the sequence. In addition to the pattycake interaction, the sequence
contains two children in the background who move around independently of the inter-
action, and the visual words corresponding to them are shown in brown and yellow.

(a) Frame 156 (b) Frame 163 (c) Frame 181

Fig. 1. Visual words from a pattycake game. Each color corresponds to a visual word.
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Fig. 2. Point-processes for the visual words in Fig. 1.

Each visual word is represented as a temporal point process by marking the times
of occurrence of the visual word in a video. The point processes corresponding to
the five visual words in the pattycake example are shown in Fig. 2. In this example,
we notice that the processes form three sets based on their temporal co-occurrence:
the cyan-magenta processes (pattycake game), the brown-yellow processes (children in
background), and the orange process (camera motion). A measure of influence between
processes is obtained using a pair-wise test for Granger causality, resulting in a causal
score C(i, j) which encodes influence of process i on process j. Fig. 3(a) shows the
causal score matrix for the point processes in Fig. 2. We notice that the pairwise causal
scores between cyan and magenta and between brown and yellow are high, while causal
scores for the orange process (background) is much lower. To identify the existence of
Granger causality from the causal score matrix, a statistical null-hypothesis test based
on surrogate data is employed to threshold the causal score matrix, resulting in a seg-
mentation of the visual words into causal sets. A set of causal sets generated from a
particular threshold is called a causal collection. The causal collection corresponding
to a threshold at 95% significance level for the pattycake example is shown in Fig. 3(b),
and the overlayed visualization of the causal collection is shown in Fig. 4.

1.94 0.91 0.90 0.44

1.78 0.90 0.93 0.37

0.97 0.95 1.84 0.21

0.88 0.92 1.88 0.27

0.31 0.33 0.28 0.20

C

C

M

M

B

B

Y

Y

O

O

(a) Causal Score Matrix

C

M

B

Y

O

(b) Causal Graph

Fig. 3. Causal analysis of point processes in Fig. 2. In 3(a), causal scores above the threshold are
shown in a lighter color.

(a) Frame 156 (b) Frame 163 (c) Frame 181

Fig. 4. Visualizations of causal sets in Fig. 3(b)
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3.2 Multiple Instance Learning for Causal Sets

The causal sets derived from temporal causal analysis do not naturally lend themselves
to standard supervised learning approaches. Some of the causal sets correspond to the
interaction and the rest to background, but the label for a causal set is unknown during
training as well as testing. The simplest solution is to manually label each of the causal
sets as foreground or background, as was done in [1] for categorization of social games.
However, this approach is cumbersome and does not scale.

We make two observations which enable us to solve this problem. First, we do not
need to obtain labels for all of the causal sets in order to perform categorization. For
each video sequence, if we can find one causal set which contains a good segmentation
of the interaction, which we call the representative set, then the problem is reduced to
that of a standard supervised learning problem. A good segmentation contains most of
the interaction and very little of the clutter. Second, the causal sets can be thought of
as instances in a multiple instance learning (MIL) problem, where the label of the bag
(video) is known but the labels of the instances (causal sets) are unknown. The terms
causal-sets and instances are used interchangeably. In the MIL framework, the labels
for the instances can be automatically inferred from the labels of the bag.

We evaluate two different MIL approaches. First, we use the maximum bag margin
formulation of MIL (MI-SVM) [17] where a single instance is chosen as the represen-
tative instance for the bag. This is useful since we only need to obtain the representative
instance. Second, we use multiple instance learning via embedded instance selection
(MILES) [18] which transforms the multiple-instance problem to that of a standard su-
pervised problem without the need to relate particular instances to their labels. This is
done by mapping a bag into a feature space defined by the instances in the training set.

There are two problems that must be addressed in applying multiple instance learn-
ing to our task. First, the identification of causal sets relies on a choice of threshold,
and we do not know how to choose the threshold for best performance. Second, videos
in natural settings will contain many more negative instances (clutter) than positive in-
stances (interaction). In MI-SVM, the initial average representation of instances in the
bag is not representative of the activity in the video because of high number of negative
instances (clutter). In MILES, the mapping of bag to all the instances in the training set
does not result in a sparse similarity matrix, which MILES relies on, because of high
number of negative instances. In the following sections, we address these concerns.
First, we propose a representation for bags from causal sets to address the challenge
with picking good thresholds. Second, we extend both MI-SVM and MILES to utilize
the turn-taking nature of the activities in selecting relevant instances.

3.3 Bag Representation for Causal Sets

The natural representation of a bag is the video sequence, and the instances within a bag
are the causal sets derived from temporal causal analysis. For the pattycake example in
Fig. 3(b), there are three instances corresponding to the three causal sets: cyan-magenta,
blue-yellow, and orange. These particular causal sets were obtained by thresholding the
causal score matrix at a 95% significance level. A different choice of a threshold value
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Fig. 5. Sensitivity to thresholding.

will produce a possibly different causal collection. Fig. 5 illustrates 3 different causal
collections for the pattycake example with their associated confidence levels.

Without the knowledge of what the particular causal sets represent in a video se-
quence, it is unclear which causal collection produces the correct segmentation of the
video. In general a single choice of significance level (e.g. 95%) will not be appro-
priate for all videos. We need a representation of a bag where the choice of instances
(causal sets) are independent of a threshold value so that at least one of the instances is
guaranteed to contain a good segmentation of the interaction. A naı̈ve choice of a bag
representation that would guarantee this is to include all possible combinations of visual
words as instances, but this will include many noisy instances in the positive bag (e.g.
combination of cyan-orange or magenta-yellow-orange in the pattycake example). An-
other possibility would be to generate all possible subgraphs of the causal score matrix
as the instances of a bag. There are 2k

2

possible subgraphs for a graph with k vertices,
where k is the number of visual words. Even for a small k this is expensive. We make
two key observations that constrain the problem:

Observation 1 For a k × k causal score matrix, we have (k2 − k)/2 threshold values
that affect the partition. In order to change a causal set, it is necessary to remove the
causal links in both directions between two visual words. This requires a threshold
greater than max(C(i, j), C(j, i)).

Then, the number of causal collections for a k × k causal score matrix is (k2 − k)/2
since we can convert the causal score matrix to a symmetric matrix by C(i, j) =
max(C(i, j), C(j, i)) without changing the partition. This is much lower than the num-
ber of possible subgraphs, but the total number of instances in the set of all causal
collections is still high. However, in addition, we observe that:

Observation 2 By organizing threshold values such that threshi < threshi+1, ∀i ∈
{1, ..., k2 − k}, we notice that |Cthreshi+1 | = |Cthreshi | + 1, where Cthreshi is the causal
collection at threshi. Since only one new instance is added for each threshold value,
there will be at most 2k − 1 instances for a k × k causal score matrix.

As a consequence of these observations, it is feasible to exhaustively enumerate the
unique causal sets based on sorting the entires in the causal-score matrix. For the patty-
cake example, the bag representation is:

B = {(C), (M), (B), (Y ), (O), (C,M), (B, Y ),

(C,M,B, Y ), (C,M,B, Y,O)}
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3.4 Feature Representation

For each instance in a bag, we build a spatio-temporal bag-of-features (BoF) represen-
tation by constructing a visual vocabulary with k-means from features sampled in the
training videos. Each feature in a given instance is assigned to its closest vocabulary-
word, and we compute a histogram of visual word occurrences over a space-time vol-
ume corresponding to various spatio-temporal grids, following the procedure in [4].
Then each bag for a video sequence is represented as a set of histograms of visual
words in each causal set for each channel, where each channel is a combination of a
spatial and temporal grid along with either a HoG or HoF descriptor.

3.5 Quasi-Periodic MI-SVM

In the MI-SVM formulation, a classifier is initially trained on the average representa-
tion of all the instances in each positive bag and all of the negative instances in each
negative bag. The margin of the positive bag is defined by the margin of the most pos-
itive instance, and the margin of a negative bag is defined by the margin of the least
negative instance. The instances in the positive bags are evaluated against the learned
decision function, and the instance which maximizes the decision value in each positive
bag is chosen as the new representative instance of the bag. This process is repeated
until convergence, when the assignments of the representative instances do not change.

However, such a representation is not robust when there are many negative instances
in the bag that can skew the initialization. In this section, we extend MI-SVM to lever-
age the repetitive structure in turn-taking interactions, via the notion of quasi-periodicity
from [10]. In the next section, we will extend MILES similarly. We previously used
quasi-periodic scores to retrieve social-games in [1]. The heuristic scoring function de-
scribed in [10] measures the degree of quasi-periodicity in a video sequence by con-
verting each video frame to a symbol and analysing the resulting string pattern. It can
be applied to a single causal set by restricting the analysis to the visual words that the
set contains.

For each instance in a bag, we represent each frame of the sequence by the histogram
of visual words that are contained in the instance, and assign an event label e to each
frame by applying k-means clustering to the histogram representation of frames. For
each event e, we define event information as I(e) = − log|E| p(e), where |E| denotes
the total number of events and p(e) is frequency of e in the sequence. For each pattern,
we compute pattern information I(pat) by computing the sum of unique events u in pat
as I(pat) =

∑
i I(ui). Then, we compute the quasi-periodic score for the pattern as:

G(pat) = I(pat) ∗ (Occur(pat)− 1) (1)

where Occur(pat) is the number of occurrences of pat. We compare the quasi-periodic
scores against a minimum-gain (e.g. min-gain = 1) and only accept patterns which
exceed this measure. The quasi-periodic pattern score for some of the instances in the
pattycake example are: G(pat(C,M)) = 4.80, G(pat(B,Y )) = 3.59, G(pat(C,M,B,Y )) =
4.99, and G(pat(O)) = 0.41.

The quasi-periodic scores by themselves are not enough to discriminate the causal
sets containing an interaction from the causal sets containing background. In many
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Algorithm 1: QP-MISVM
Input: B (set of bags) , X (train data) , Y (train labels)
Output: w,b
/* for instances in positive bags */
foreach c ∈ B+ do

Patc←− GetPat(c)
evaluate G(Patc) from Eq. 1

I ←− instances with G(Patc) > threshold

initialize XI ←−
1

|I|
∑

i∈I Xi

repeat
compute SVM solution w, b for data XI , YI

compute outputs fi =< w,X+,i > + b, ∀i∈I
s(I)←− argmaxi∈I αfi + βG(Pati), ∀i∈I
XI ←− Xs(I)

until selection variables s(I) have not changed ;

videos, background or camera motions recur throughout the sequence, producing natu-
ral repetitiveness (e.g. the (B, Y ) causal set in the pattycake example). These spurious
motion patterns can be segmented from true interactions through temporal causal analy-
sis. But their quasi-periodic scores are above the min-gain and they cannot be identified
as background instances by quasi-periodic analysis alone (e.g. see Figs. 9-14(b)).

We can leverage the quasi-periodic scores in a discriminative framework by biasing
the MI-SVM initialization and update steps with those patterns that have high quasi-
periodic scores. For each instance in a given bag, we compute it’s quasi-periodic score
from Eq. 1. We initialize all the positive bags by averaging over all the instances in the
bag that have their quasi-periodic score above min-gain. This biases the initialization
towards patterns which have repetitive structure. The initialization for the negative bags
is same as the MI-SVM formulation. During each iteration, the representative instance
for the positive bag is chosen as the instance which gives the maximum value for the
linear combination of the learned decision function and the quasi-periodic score:

I∗ = argmax
c∈B

αfc + βG(Patc) (2)

where c is the set of causal sets in the bag B, α and β are the mixing values. In our ex-
periments, α and β are initialized to 0.5. For classification, we use a non-linear support
vector machine with a multi-channel χ2 kernel, similar to [4].

3.6 Quasi-Periodic MILES

In the MILES formulation, each bag is embedded into the instance-space by measuring
the similarity between each instance xk in the training set and a bagBi, and it is defined
by the closest instance in the bag. A bag is then mapped into the instance-space. The
intuition behind this embedding is that if some instance xi achieves high similarity to
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Badminton Table Tennis Tennis Volleyball

Fig. 6. Turn-Taking Interactions Dataset: Sports Rallies

some positive bags and low similarity to some negative bags, then the feature xi is
useful in categorizing the bags. This mapping will result in a sparse embedding since
only certain instances will have high similarity to bags of some category. However,
an issue with such a representation in our task is that there are many more negative
instances than positive instances, and the resulting embedding will not be sparse.

We leverage the quasi-periodic scores to extend MILES for our task. Instead of
using all the instances for embedding a bag, we create a small subset of concept class
instances cm which correspond to instances in the training set which have high quasi-
periodic scores. Then, we embed a bag in the space of this new concept class similarly
as the original definition 1:

s(cm, Bi) = maxjexp

(
−||xij − c

m||2

σ2

)
(3)

and the embedding is now into the smaller concept class space:

B′i = [s(c1, Bi), . . . , s(c
m, Bi)]

T (4)

4 Empirical Evaluation

In this section, we show experimental evaluation of our proposed approaches on 3
different datasets. In addition to our two proposed approaches QP-MILES and QP-
MISVM, we also evaluate several intermediate approaches. We evaluate the perfor-
mance of using QP-Scores alone to choose salient causal groups. That is, we choose
all causal groups in a video which has a QP-score above some threshold. We choose
the threshold empirically during the training and validation stage. Also, we evaluate the
performance of using the standard MI-SVM and MILES algorithms without incorporat-
ing the QP heuristics. Finally, we further consider a baseline approach: a single-instance

1 The pseudocode for QP-MILES is available at http://www.cc.gatech.edu/cpl/
projects/temporalcausality.

http://www.cc.gatech.edu/cpl/projects/temporalcausality
http://www.cc.gatech.edu/cpl/projects/temporalcausality
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Baby Toss Ball Roll Pattycake Peekaboo Tickle

Fig. 7. Turn-Taking Interactions Dataset: Social Games

SVM where all detected interest points are used to generate single feature vector for the
video sequence. The baseline was motivated by [4]. Our goal is to empirically evaluate
each step of our approach and to understand how each element adds to the approach.

4.1 Turn-Taking Interactions Dataset

We introduce a new challenging dataset consisting of two types of turn-taking inter-
actions: social games and sports rallies. These interactions constitute our Turn-Taking
Interactions (TTI) dataset, which has 1,096 video segments in total. We collected social
interactions in 5 different categories from YouTube: baby toss, ball roll, pattycake, peek-
aboo, and tickle. Many of the videos are from home movies of a parent-child interaction
with some child-child and adult-adult interactions. Since the videos were collected in
natural settings, there is considerable intra-class variability in how a particular social
game is played, and this can be seen in the sample frames from the dataset of social-
games in Figs. 7. There are considerable variations in view-points within the same class,
and there is also considerable camera movement and noise from background motion
(see Figs. 10-14).

We also collected video sequences of 4 rally-based sports from broadcast footage. A
video segment is labeled as a rally if the ball passed at least twice between the players.
Sample frames from our dataset of sports-rallies are shown in Fig. 6. The challenge
in the sports rallies is not only the intra-class variation in viewpoint and appearance
of the rally but also the similarity across the rallies in appearance and viewpoint. For
example, many of the tennis and table-tennis rallies have similar appearance. Due to
the nature of broadcast footage, there are also considerable camera movement (panning
and zooming) and scene cuts.

Methods [2] [4] [5] [19] [20] QP-Scores QP-MILES QP-MISVM
Accuracy 71.7% 91.8% 93.8% 94.7% 96.7% 93.5% 94.7% 96.3%

Table 1. KTH Comparisons
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4.2 Results on KTH Human Actions

We evaluated the performance of our method on the KTH actions dataset [2]. While
none of the KTH sequences contain turn-taking interactions, natural repetition occurs
within the sequences (e.g. waving and camera zooming several times), enabling the
use of our method. We follow the experimental setup of [2] for training and testing.
Tab. 1 compares our average class accuracy to previously published results. Overall,
we achieve performance which is consistent with the state-of-the-art. See Tab. 3 for a
detailed comparison of our QP-based approaches, and Fig. 9 for a visualization.

Baseline Hand-Labeled QP-MISVM
Babytoss 45.9% 57.9% 52.4%
Pattycake 49.4% 72.1% 58.1%

Tickle 45.3% 56.8% 47.8%

Table 2. Comparisons between QP-MISVM and hand-labeled segments.

4.3 Results on Manually Hand-Labeled Examples

We now compare the performance of our automated approach to our earlier results
based on hand-labeling. In [1], we presented preliminary categorization results in which
the causal sets corresponding to the interaction were manually identified. These hand-
labeled segments provide the best possible training data for an activity, and their per-
formance can be thought of as an upper-bound for any automated approach. In Table 2,
we compare the performance of QP-MISVM to both the baseline and the hand-labeled
case. We achieve an overall accuracy of 52.8%, while the baseline and hand-labeled
results reported in [1] were 46.8% and 62.3%, respectively.

Baseline MI-SVM MILES QP-Scores QP-MILES QP-MISVM
KTH 91.8% 90.3% 87.0% 93.5% 94.7% 96.3%

Social Games 58.9% 62.2% 53.6% 60.1% 63.4% 71.7%
Sports Rallies 64.1% 70.8% 57.4% 72.8% 70.0% 80.7%

Table 3. Comparisons between different proposed approaches.

4.4 Results on Turn-Taking Interactions

We evaluate our performance in categorizing turn-taking interactions. We split the videos
into equal training and testing sets and adopt a one-against-all approach to multi-class
classification. For the sports rallies, we organize the training set and testing set such that
rallies from the same match do not overlap across the training and testing sets.

Results from our approaches are reported in Table 3. Overall, QP-MISVM achieves
the best performance overall across the dataset. It is clear that adding QP-heuristics
improved performance in both MILES and MI-SVM. However, the performance of
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QP-MILES is close the performance of QP-Scores, and there is not an added benefit
by incorporating the MILES framework. However, QP-MISVM clearly outperforms all
the approaches by a significant margin. The confusion matrices for the QP-MISVM
approach are shown in Fig. 8.

The visualizations from QP-Scores and QP-MISVM are shown in Figs. 10-14. In the
babytoss example, the camera motion generates spurious features on the background,
and in the pattycake example, there are spurious features from both camera motion and
from the two children in the background. For both the tennis and volleyball examples,
the spurious features are generated by panning and zooming of the camera, which is nat-
ural in broadcast footage. The badminton example is particularly challenging because
there is a scene-cut which shows a smash. For all the sequences we see that QP-Scores
discards many of the clutter, but it still contains clutter. This is because the clutter occurs
throughout the video, and thus contain repetitive structure. However, QP-MISVM ex-
tracts visual words that compactly represent the activity and discards most background
clutter.
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Fig. 8. Confusion matrices on Turn-Taking Interactions dataset.

5 Conclusion

We present an approach to categorizing videos of turn-taking activities which leverages
the segmentation from temporal causal analysis. Our approach is based on a variant of
MIL which can automatically label the causal sets as foreground/background while
simultaneously predicting the activity category label. We showed that QP-MISVM
achieves superior performance over the baseline, MI-SVM, MILES, QP-Scores, and
QP-MILES.
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(a) All Visual-Words (b) QP-Scores (c) QP-MISVM

Fig. 9. Handclapping with scale variation

(a) All Visual-Words (b) QP-Scores (c) QP-MISVM

Fig. 10. Babytoss sequence with camera motion

(a) All Visual-Words (b) QP-Scores (c) QP-MISVM

Fig. 11. Pattycake sequence with camera movement and children in the background

(a) All Visual-Words (b) QP-Scores (c) QP-MISVM

Fig. 12. Badminton sequence with scene-cut

(a) All Visual-Words (b) QP-Scores (c) QP-MISVM

Fig. 13. Tennis sequence with camera movement

(a) All Visual-Words (b) QP-Scores (c) QP-MISVM

Fig. 14. Volleyball sequence with camera motion
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