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Abstract— Recent research on data streaming algorithms has
provided powerful tools to efficiently monitor various characteris-
tics of traffic passing through a single network link or node. How-
ever, it is often desirable to perform data streaming analysis on the
traffic aggregated over hundreds or even thousands of links/nodes,
which will provide network operators with a holistic view of the
network operation. Shipping raw traffic data to a centralized lo-
cation (i.e., “raw aggregation”) for streaming analysis is clearly
not a feasible approach for a large network. In this paper, we
propose a set of novel Distributed Collaborative Streaming (DCS)
algorithms that allow scalable and efficient monitoring of aggre-
gated traffic without the need for raw aggregation. Our algorithms
target the specific network monitoring problem of finding common
content in the Internet traffic traversing several nodes/links, which
has applications in network-wide intrusion detection, early warn-
ing for fast propagating worms, and detection of hot objects and
spam traffic. We evaluate our algorithms through extensive sim-
ulations and experiments on traffic traces collected from a tier-1
ISP. The experimental results demonstrate that our algorithms can
effectively detect common content in the traffic traversing across a
large network.

I. INTRODUCTION

In recent years, the problem of monitoring and analyzing the
aggregate traffic passing through many high-speed links has
emerged as an important and challenging problem in network
measurement and management. Monitoring the characteristics
of this aggregate traffic is essential for detecting “global” events
that are intrinsically distributed through the network. Examples
of such events range from global top-k traffic sources (global
elephants) to incipient worm infections (involuntarily “popu-
lar” content). It is hard to detect such events using traditional
per-link monitoring mechanisms since the signal is usually too
feeble to be detected locally. Such events may leave indelible
signatures in the aggregate traffic, but only through correlation
of traffic among many links can this signature be revealed.

In this paper, we focus on a specific problem in monitoring
aggregated traffic – detecting common content in the packet-
level traffic across multiple network links. Note that although a
content may be widely spreading across a network, local moni-
toring at a single point in the network might fail to identify such
content since the frequency with which packets containing the
same application layer data pass through any unique monitoring
point (link or node) in a network might not be significant.

We propose a set of novel distributed data streaming algo-
rithms that allow us to perform large-scale distributed measure-
ment on tens of thousands of high-speed links and nodes. Data
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streaming is concerned with processing a long stream of data
items (e.g., packets) in one pass using a small working memory
in order to answer a type of query regarding the stream. The
trick is to remember, in this small memory, information that is
most pertinent for answering the query. Our solution, extends
this data streaming vision to distributed monitoring as follows.
Each link first processes traffic going through it using streaming
algorithms specialized for gathering fragments that may poten-
tially become a part of the signature we are looking for in the
aggregate traffic. These streaming results, which are several or-
ders of magnitude smaller than the original traffic stream, will
be shipped to a data processing center for synthesis and analy-
sis to detect common content. The data processing center needs
to correlate different fragments and identify the common con-
tent signature superimposed with “background noise”. We will
show that this task is very challenging since the signals are so
weak that novel signal processing techniques have to be devel-
oped to magnify and detect it. We demonstrate through exten-
sive simulations and stress tests using traffic traces collected
from a tier-1 ISP that our algorithms are able to detect common
content “planted” in the Internet traffic very effectively. To our
best knowledge, this is the first set of distributed data streaming
algorithms for network monitoring and measurement.

A. Motivations for detecting common contents
Rapid spreading of common content is a daily phenomenon

in today’s Internet. A number of traffic flows carrying the same
application layer data can often be seen along different paths
across a network. Examples of such content include popular
Web pages, “hot” music files, Internet worm/virus files, and
spam emails.
Web browsing. Even with the deployment of Web proxies and
content distribution networks (CDNs), a significant number of
duplicated content (not necessarily from the same URL) are
delivered over the Internet, especially in a flash crowd event.
Detecting common content being transmitted in Web traffic
flows might help network operators to react to such flash crowd
events.
P2P file sharing. P2P file-sharing has become one of the most
popular applications. Content is shared (illegally in most cases)
among all the users. Hot content, e.g., newly released movies,
is likely to be requested by many users. As a result, such con-
tent can be transmitted to many destinations over the Internet,
consuming a large amount of bandwidth. Monitoring common
content delivered to different users can allow us to track illegal
content sharing.
Internet worm/virus. Internet worms (non-polymorphic) and
viruses also have the flavor of widely spreading common con-
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tent1. Identifying common content across multiple links may
help us identify an unknown worm that is in its earlier stage of
propagation. This may potentially win us a couple of critical
hours to effectively control the damage.
Spam emails. Unsolicited email or spam is a significant con-
sumer of network resources. In this case, copies of the same
message are sent to many users simultaneously. Except for the
SMTP header, the body of the messages would be the same in
all the instances. Detecting spam emails would help operators
to set up proper filters to block the unwanted spams.

We concede that illegal or malicious content can easily evade
detection through various obfuscation techniques. For example,
(illegal) P2P content can be encrypted with different keys to
look different in each distance; worms and viruses can change
their content or use encryption; spam emails can have random
gaps between words to fail any string matching effort. We ar-
gue, however, that even in this context our effort serves a pur-
pose for the following reason. First, obfuscation often affects
the effectiveness of the malicious content in terms of propaga-
tion and infection. For example, key distribution required for
encrypting content with different keys in order to evade our de-
tection clearly increases the complexities of such activities; en-
crypted worms and viruses may not work well on systems that
are not equipped with the decryption algorithm and correctly
implementing polymorphic worms might require higher levels
of programming skills. Finally, we expect that, detecting com-
mon content as a well-defined Internet monitoring primitive,
may find new applications in the future Internet.

B. Paper outline
The rest of this paper is organized as follows. In Section II,

we describe an overview of our solution framework and stream-
ing algorithms. We present the algorithm for detecting common
content in a distributed manner in Section III and Section IV.
Evaluation of algorithms using simulations and experiments on
traffic traces collected from a tier-1 ISP is presented in Sec-
tion V. Finally, we present related work in Section VI and con-
clude in Section VII with directions to future work.

II. OVERVIEW

In this section, we give the problem statement and describe
an overview of our solution framework. We then provide an in-
tuitive description of our detection algorithms and discuss some
of the subtleties involved in detecting common content. We
conclude this section with a discussion of the assumptions used
in the rest of the paper.

A. Problem statement
We view an object/file as a string, and say that two ob-

jects/files share the same content if they contain a large com-
mon substring. We consider two cases in Figure 1.
Aligned case. Two instances of objects/files are simply identi-
cal. Same content encountered in Web browsing, P2P file shar-
ing, and some Internet worms such as CodeRed and Slammer
are examples of this category.

1Our solution cannot detect a polymorphic worm which changes its binary
content during infection/propagation.
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THE ALIGNED AND UNALIGNED CASES.

Unaligned case. The common substring starts at different lo-
cations in the object. In other words, there is a variable pre-
fix that precedes the common substring. Many email worm
viruses such as Nimda, Sircam, or Mimail are examples of the
unaligned case. Due to the nature of SMTP, the size of the
application-layer header before the fixed attachment of the con-
tent are variable. For example, the application layer portion of
a worm could contain some information depending on the spe-
cific identities of victims. In a worm propagating as an email at-
tachment, the application layer interpretation of the worm string
is that of an email with one or more attachments. The initial
portion of this string would be the SMTP header for the email
with fields like “From”, “To”, and “Reply-to” that would vary
from one instance of the worm to the other.

In the observed traffic flows, an object is packetized into one
or more IP packets. If these packets are of a fixed size except for
the last packet and this size is the same for two identical objects
A and B, the ith packet of A will have the same payload as the
ith packet of B in the aligned case. Under the same assumption,
packets from two identical objects in the unaligned case will
result in the same packet content under a “shift” according to
the difference in the initial offset.

B. Solution framework

The problem of detecting content that is common across a
large set of nodes is essentially equivalent to detecting com-
mon substrings in the aggregate traffic traversing all of these
nodes. However, traditional string-matching algorithms are too
slow to operate on the immense scale of data flowing through
today’s large networks. In fact, any centralized solution, that
requires all the raw data to be aggregated at one location for
analysis, would be impractical due to the unaffordable logistics
of shipping all the data to a data processing center. For exam-
ple, aggregating 1000 OC-192 ingress links results in an aggre-
gated traffic stream of 10Tbps, which would require doubling
the network capacity just to ship a copy of all the traffic to the
central analysis station. Clearly, any practical solution needs
to be lightweight and distributed. Next, we describe a solution
framework for our solution that fits this bill.

The overall architecture of our solution is shown in Figure 2.
The idea is to use lightweight data-collection modules running
at each monitored link or node to process the cross traffic at line
speeds and produce small digests that can be shipped to a cen-
tral analysis module for further processing. The data collection
modules uses specially designed data-streaming algorithms to
produce succinct digests that are 1000 times smaller than the
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SOLUTION FRAMEWORK.

processed traffic, making it affordable to ship the digests to a
central analysis module. A synthesis algorithm at the analysis
module aggregates these digests and processes them together to
detect common content.

The challenge in this solution framework is to design the lo-
cal streaming algorithms and the data synthesis algorithm in
such a way that the digests they produce contain information,
pertinent to the events we are looking for, with an accuracy
almost as good as obtainable from processing the aggregated
traffic directly. The algorithms to be presented in the following
sections employ sophisticated techniques to extract as much in-
formation as possible from these digests. This approach places
stringent requirements on the design of both modules:
Data collection module. First, the collected data has to be
much smaller than the original raw data size. Our algorithm
is expected to achieve at least three orders of magnitude reduc-
tion on the traffic volume. Second, the collected data has to
contain enough information for accurate analysis of the traffic.
These two are conflicting requirements that are finely balanced
in our design. Third, the data collection mechanism should be
fast enough to keep up with high line speeds of 10 Gbps (OC-
192) or even 40 Gbps (OC-768).
Data analysis module. For continuous monitoring, the data
synthesis algorithm has to be able to process each second’s
worth of traffic in one second. However, since these algorithms
are easily parallelizable, this requirement can be relaxed when
we have tens of CPU’s to use. Within this computational com-
plexity constraint, our algorithms need to identify patterns from
these digests, with both low false positive (report a pattern that
does not actually exist) and low false negative (fail to report a
pattern).

C. Algorithm overview

We provide an intuitive description of our mechanisms here,
deferring a detailed treatment to the next two sections. The
data collection modules collect specially constructed bitmaps,
succinctly preserving signatures of the strings seen in the ac-
tual traffic. The analysis algorithm then tries to discover corre-
lations among the various bitmaps collected at the distributed
monitoring points. We need to find the bitmaps that share ex-
actly the same content signature as well as the signature in these
bitmaps. However, in our formal treatment in section III-B, the
most general form of this problem, finding the largest submatrix

of all ones in a 0-1 matrix, turns out to be NP-hard. The running
time of the best polynomial-time approximation algorithm for
the general problem in the literature [1] can not meet our design
goal. Fortunately, in our special setting, the input of the prob-
lem is not arbitrary, it is the superposition of common content
signature and values of random variables that are approximately
Bernoulli. Exploiting this property of the bitmap-construction
procedure, we design a much more efficient polynomial time
algorithm.

The unaligned case, where different initial offsets can cause
the same piece of content to be packetized differently in individ-
ual instances, turns out to be slightly more complex providing
us the grounds to design more sophisticated detection schemes.
Due to the variable offsets, bitmap construction at data collec-
tion modules needs more complexity to capture signatures of
randomly shifted content. To borrow an analogy from signal
processing, we need to amplify the signal because it is weak-
ened due to the presence of noise (random offsets). We in-
troduce techniques that perform such amplification during data
collection in Section IV.B.

Detecting correlations among such complex bitmaps is also
less straightforward. In section IV-B, we design a novel tech-
nique that uses phase changes in Erdös-Renyi random graphs to
detect such correlations. The phase-change theorem for Erdös-
Renyi random graphs says that if the probability of the existence
of an edge between any two of the n vertices in such a graph
is less than 1

n , then, with high probability, all connected com-
ponents are of size O(log n). However, when this probability
is greater than 1

n , a giant connected component of size Θ(n)
begins to emerge. The design of our detection algorithm lever-
ages this theorem in the following manner. First, the pairwise
correlation among various bitmaps is computed. We then con-
struct a graph with vertices representing bit-vectors and impose
edges between a pair of vertices according to p – an appropri-
ately scaled value of the correlation between the correspond-
ing bitmaps. The scaling factor is chosen in such a way that
the expected value after scaling is below 1

n if there is no com-
mon content. This would result in a graph with small connected
components. However, if common content is present, with the
same scaling coefficient, the value of p increases beyond 1

n for
pairs of nodes where both nodes have seen the common content.
This increase in p is due to the high correlation between bitmaps
collected at two nodes that have both recorded the passage of
the same piece of content. The global effect of this increased
value of p is that the size of the largest connected components
in the Erdös-Renyi random graph becomes much larger than
O(log n), indicating the the presence of common content. As
we show later, this simple test turns out to be miraculously ac-
curate.

Once this Erdös-Renyi test (described in detail in Section IV-
B) indicates the presence of a pattern, we need to identify the
actual nodes that saw the common content. Formally, the gen-
eral problem is equivalent to finding a maximum clique. This
problem is NP-hard and there does not exist any constant factor
approximation algorithm for it [2]. Our graph is mostly the
union of a random graph and some “clique-like” dense sub-
graphs. Using this property, we propose a greedy algorithm
to find most of the vertices in the largest cluster, i.e., the largest
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set of vertices that connect to each other with higher probabil-
ity than 1

n . The algorithm is proven to be stochastically optimal
under a reasonable computational constraint, using stochastic
ordering theory.

D. Assumptions

In the rest of the paper, we assume that common content is
always chopped up into packets of the same size. Our algo-
rithms can be extended to cover the more general case of vari-
able packet-sizes, but we make this assumption for simplicity
of presentation. This assumption is justified by the following
reason. Typically the same application-layer protocol is used to
transmit such common content, e.g., email viruses are always
transmitted over SMTP. If the application runs over TCP, it typ-
ically adopts the standard MSS (Maximum Segment Size). A
recent study of Internet packet size distribution [3] indicates
that there are only 2 popular packet sizes no smaller than 500
bytes: 576 and 1,500 bytes. So in practice, a large portion of
common content will be transmitted over the same packet size.
In this paper, we focus on common content transmitted using
such popular size. We remark that, our algorithms work for
common content transmitted with any packet sizes; however,
they are optimized for the common case.

In addition, our algorithm can be viewed as a clustering algo-
rithm which detects one large cluster in the dataset. This clus-
ter can contain either single common item or multiple common
items. The techniques that are used to separate out sub-clusters
upon detecting a large cluster have been maturely developed.
Thus we will focus on only detecting one large cluster assuming
those techniques can be used on top of our algorithm to report
multiple common content occurring within the same measure-
ment epoch.

III. DESIGN FOR THE ALIGNED CASE

In this section, we describe our distributed streaming algo-
rithm for detecting common content in Internet traffic for the
aligned case, deferring the unaligned case to the Section IV.

A. Distributed online streaming module

Our algorithm for the online streaming module, which bal-
ances two conflicting demands of operational efficiency and
detection accuracy, is illustrated in Figure 3. The data struc-
ture used in the data collection phase of our architecture is ex-
tremely simple – a hashed bitmap, i.e., an array of n bits that
is indexed by a uniform hash function with range equal to the
size of the array. The bitmap is set to all 0’s at the beginning of
a measurement epoch. When a packet arrives, we strip the net-
work and transport layer headers to obtain the application layer
data, represented as a string. The hash function associated with
the bitmap is applied on this string or a part of it2 to produce an
index into the bitmap, and the corresponding bit is set to 1.

The size n of the array is determined such that it holds one
measurement epoch’s traffic for a router running at reference

2Note that range(pkt.content, 0, len) in line 5 of Figure 3 refers to the first
len bytes of the packet content. We hash only packets which actually contain
payloads.

1. Initialization
2. A[i] := 0, i = 1, · · · , n

3. Update algorithm
4. Upon the arrival of a packet pkt
5. index := hash(range(pkt.content, 0, len));
6. A[index] := 1;

Fig. 3
BASIC ALGORITHM FOR UPDATING THE ONLINE STREAMING MODULE.
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speed. Throughout this paper, we are targeting the link speed
of OC-48 (i.e., 2.4 Gbps). We assume a conservative average
packet size of 1,000 bits. Larger packet sizes will clearly serve
to our advantage since there will be fewer packets in a measure-
ment epoch. Running at full capacity, each router line-card will
process at most 2.4 million packets in each one second epoch.
Since putting (ln 2)l random bits into an l bit array will make
the array contains approximately half 1’s and half 0’s (the prop-
erty of Bloom filter [4]), an array of about 4 million bits can fit
about 2,907,269 packets, enough for a little more than 1 sec-
ond’s traffic on an OC-48 link. For this reason we set the width
of the bitmap to 4 megabits.

B. Data analysis module
The data collection algorithm running at each measurement

point converts the packet stream in a measurement epoch into
an n-bit bitmap (i.e., 1×n matrix). Once about half of the n bits
become 1’s, the measurement epoch ends and the bitmap is sent
to the centralized monitoring station for analysis. Bitmaps from
m measurement points will form an m×n matrix. The rows of
the matrix correspond to different routers and the columns cor-
respond to different packets. In this matrix, a 1 in the i-th row
j-th column corresponds to the i-th router seeing a packet that
hashed to the index j. Common content consisting of b pack-
ets that is seen by a routers corresponds to a non-contiguous
submatrix of size a × b in which all entries are 1’s (Figure 4).
However, the reverse is not true as the bitmaps could have false
positive3 (i.e., bits are set to 1’s due to collisions in hashing).
Now our pattern detection problem can be formulated as fol-
lows. Given an m × n 0-1 matrix, we would like to find an
a × b submatrix that are all 1’s, referred to as All-1 Subma-
trix IDentification (ASID) problem. The general case of ASID
problem, unfortunately, is NP-hard.

Theorem 1: The ASID problem is NP-hard.
Proof: The proof is via reduction from the Maximum

Edge Biclique problem. The Maximal Edge Biclique prob-
lem (MBP) is stated as follows. Given a bipartite graph G =

3This effect is accurately captured in our later analysis.
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(V1 ∪ V2, E) and a positive integer K, does G contain a bi-
clique with at least K edges? The MBP problem is known to
be NP-hard [5]. For each node u in V1, we create a router. For
each node v in V2, we create a packet. We index the packets as
1, 2, · · · , |V2|. If node v ∈ V1 sees packet i, we set the bit array
position i to 1. It is easy to see that there is a biclique of size K
in G iff there is a submatrix with K entries and all entries are
1.

Fortunately, our problem of detecting the common content
is more tractable than the general case because the m × n ma-
trix cannot take arbitrary values: each element in the m × n
matrix in our scenario is drawn from a nice probability distri-
bution (Bernoulli in our scenario). Therefore, we are able to
find a polynomial greedy algorithm that identifies such subma-
trix with high probability.

In the following, we first state a naive algorithm to moti-
vate our solution. The complexity of the naive algorithm is
O(n2 log n), where n is the number of columns in a matrix.
This complexity is still way too high since n is typically in the
millions when the link speed is as high as OC-192 and OC-768.
We then propose a refined algorithm of complexity O(n log n)
that has almost the same prediction accuracy as the naive algo-
rithm.

We refer to the bit-wise “AND” of two column vectors,
the result of which is a vector, as their 2-product. Extending
this definition, we refer to the result of bit-wise “AND” of k
columns as their k-product. We omit this 2 or k before the
“product” whenever it is clear from the context. For a given k-
product v, we denote the set of k column vectors that resulted
in v as Av . We refer to the number of 1’s in a column vector v
as its weight (denoted as weight(v)).
The naive algorithm. Our naive algorithm is illustrated in Fig-
ure 5. Recall that the problem of finding a × b all-1 submatrix
is equivalent to find a set of at least b columns such that the
weight of their b-product is no smaller than a. A brute-force al-
gorithm to find these b columns is prohibitively expensive since
it would have to exhaustively try all

(

n
b

)

combinations. Our
naive algorithm, with complexity only O(n2), is to use a greedy
algorithm to find such a × b submatrices with high probability
as follows. We first computes the 2-products for all pairs of
columns, a total of

(

n
2

)

= 1
2n(n − 1) of them. The complexity

of this step is clearly O(n2) bitwise-AND operations on vec-
tors. However, instead of storing all these results, the algorithm
only maintains the heaviest O(n) 2-products as “hopefuls” us-
ing a priority queue of this size. The cost of maintaining this
queue with O(n2) insertions is O(n2 log n). These “hopefuls”
will bit-wise “AND” with all n columns in S1 to result in no
more than O(n2) 3-products, among which the heaviest O(n)
entries are maintained again using a priority queue. This step4

again has complexity O(n2 log n). Then the O(n) heaviest 3-
products will become the “hopefuls” to generate the 4-products
and so on. This iteration process is shown in line 2 through 4 in
Figure 5. We will show next that the number of iterations of this
“hopeful” selection process can be viewed as a constant. There-
fore, the total complexity of the naive algorithm is O(n2 log n).

4Note that in this step we omit all 3-products in which the same column has
appeared more than once.

Initialization
1. Let S1 be the set of column vectors (|S1| = n)

Finding the pattern
2. for ( b′ = 2 ; b′ ≤ num iterations; b′++ )
3. /* num iterations explained later in text */
4. Sb′ = O(n) heaviest vectors among all b′-product

v · w where v ∈ Sb′−1
, w ∈ S1 and w 6∈ Av

5. v = heaviest vector in Snumber iterations

6. If (weight(v) ×b′ is non-naturally-occurring pattern) then
7. output Av

8. Else declare no pattern exist

Fig. 5
NAIVE DETECTION ALGORITHM FOR THE ALIGNED CASE

In line 2 of Figure 5, we set the number of iterations to a
constant num iterations for the simplicity of discussion. In
reality, however, we do not know this number a priori. The ac-
tual number of iterations is determined through a procedure that
checks a termination condition, which we will describe after we
present the refined algorithm. In fact, the actual logic for ter-
mination is as follows. We run the loop up to num iterations
(an upper bound) times. If the termination condition is met,
the loop is terminated prematurely and reports that a pattern is
found. Otherwise, after num iterations iterations, the loop
terminates and reports that there is no pattern. Next, we will
show that this upper bound num iterations needs to be no
more than b + c, where c is a small constant. It can be shown
that for the a×b pattern to be non-naturally occuring 5, b should
be about O(log m), where m is the number of rows (routers).
When m is upper bounded by a constant (say 10,000), we can
view b as a constant. Therefore, we can view the number of
iterations we need as upper-bounded by a constant.

Our Monte-Carlo simulations show that picking O(n) in ev-
ery iteration is sufficient for the pattern to “survive” and be de-
tected by the above algorithm with high probability. We do not
know, however, whether O(n) is necessary. We stick to O(n)
because the first iteration already has complexity O(n2 log n).
Even if we make the “hopeful” list shorter, the asymptotic com-
plexity is not going to drop significantly. Note that, we have
used the O notation for certain parameters in our algorithm.
The constant will be determined by parameter tuning for the
specific setting in practice. Note this tuning is done once and
for all given the number of routers m and the size of the bitmap
n.

Finally, after these iterations, the heaviest product will con-
tain a subset of the pattern with high probability. If this pat-
tern is non-naturally occuring (line 6), we declare that we have
found a part of the pattern and output it (line 7). Otherwise, we
declare that no pattern is found (line 8).
The refined algorithm. The refined algorithm shown in Fig-
ure 6 improves the performance of the naive algorithm. The
tradeoff is that patterns have to be much larger to be detectable.
Our idea is that, instead of searching for the pattern in the orig-
inal matrix, we search for a much smaller subpattern (lines 2 to
5), referred to as a “core”, in a submatrix consisting of a sub-
set of the columns, referred to as S1. This core, if found, will
be used to scan through all the columns not in this submatrix
to help identify the whole pattern (lines 10 through 14). We

5 A pattern is non-naturally occurring if the probability for it to exist in the
data that does not contain any common content is below a threshold ε. More
detail will be given in Section III-C.
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Initialization
1. Let S be the set of column vectors, |S| = n
2. Let S1 be the n′ heaviest column vectors in S

Finding the small subset of the pattern
3. for ( b′ = 2; b′ ≤ num iterations; b′++ )
4. /* num iterations explained later in text */
5. Sb′ = n′/ log n′ heaviest vectors among all b′-product v · w

where v ∈ Sb′−1
, w ∈ S1 and w 6∈ Av

6. Core = heaviest vector in Snumber iterations

7. If (weight(Core) ×b′ is non-naturally-occurring pattern) then
8. go to greedy addition routine
9. declare no pattern exist

Greedy addition of vectors into the pattern
10. thresh = weight(Core) − γ
11. S∗ = ACore

12. ∀w ∈ S, if weight(w · Core) ≥ thresh
13. S∗ = S∗ ∪ w
14. Output S∗

Fig. 6
REFINED DETECTION ALGORITHM FOR THE ALIGNED CASE

choose the heaviest n′ columns to be the submatrix because a
heavier column is more likely to be a part of the pattern. The
value of n′ is determined using the theorem 2 in the following,
the proof of which is omitted for lack of space. The main idea of
this theorem is to ensure that n′, the size of S1, is large enough
such that, with high probability, S1 will contain a subpattern
large enough (a× l) to be non-naturally-occuring in the subma-
trix consisting of columns in S1. In our context, when n is in
the range of millions, we found that n′ only needs to be in the
range of thousands. Therefore, for the range of values of the
parameter n in our mechanism, n′ is O(

√
n), and the overall

complexity of the refined algorithm is reduced to O(n log n).
We have not verified, however, whether n′ is indeed O(

√
n) for

all n. This can be an interesting topic for future research.
Theorem 2: Suppose there is only one pattern of size at least

a× b. Let the number of rows be m and the number of columns
be n. Let w and s be thresholds such that binocdf(w,m, 0.5) =
1 − ε1 and binocdf(s, n, ε1) = 1 − ε2. Here binocdf(x, n, p)
denotes the probability Pr[X ≤ x] where the random vari-
able X follows the binomial distribution with parameter n (the
number of trials) and p (the probability of success for each
trial). Suppose binocdf(w − a,m − a, 0.5) = 1 − ε3 and
binocdf(l, b, ε3) = 1 − ε4. Let S1 be a set of s + b heaviest
columns. In other words, n′ = s + b. Then, the probability that
S1 contains at least l columns belonging to the pattern is at least
1 − ε4 − ε2.

After we get the core, we greedily add more columns into the
witness set S∗ as illustrated in lines 10 to 14 of Figure 6. Since
the core can contain some rows (routers) that are erroneously
identified as belonging to the pattern due to the noise, we define
a threshold thresh = weight(Core) − γ where γ is a tuning
parameter. If a vector v ∈ S−S1 has more than thresh number
of common ones with Core, v will be considered a part of the
pattern. With our typical parameters, setting γ to 2 or 3 will
work very well almost 100% of time.
Termination procedure. Recall that we set the number of
iterations to a constant num iterations for the simplicity of
presentation. We now describe the aforementioned termination
procedure that is used to determine when to stop the iterations
(prematurely) in the naive algorithm (also used in the refined
algorithm). Its basic idea is, for each iteration of b′, the weight
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Fig. 7
weight(Core) AND |S∗| AT EACH STAGE

of the heaviest b′-product will go down almost exponentially at
the very beginning because the rows not contained in the pattern
(noise) will be zeroed out in the b′-product by slightly less than
50% in each iteration. If the matrix contains no pattern, this
exponential decay will continue till the weight becomes zero.
On the other hand, if the matrix indeed contains a pattern, this
“weight loss” will flatten out gradually because the noise by
now is mostly gone and the currently heaviest b′-product ab-
sorbs more and more columns that belongs to the pattern. Fi-
nally at a certain point the “weight loss” becomes exponential
again. This happens when all columns that belong to the pattern
have been absorbed and each absorption of a column that does
not belong to the pattern will again result in slightly less than
50% “weight loss” in each iteration. Our program should ter-
minate right before the second exponentially decreasing trend
starts.

Figure 7 shows how “weight loss” (y-axis) evolves with more
and more iterations (x-axis) in an example instance. In this in-
stance, we used a 1, 000 × 4M matrix, which corresponding to
1,000 routers each generating a bitmap of size 4Mb. We “plant”
a pattern of size 100 × 30 into it. The heaviest 4,000 column
vectors are selected as S1 = S according to Theorem 2, and
the number of columns contained in the pattern and also in S1

is 15. Therefore, our algorithm is supposed to stop at the 15th

iteration, but it does not know this number in advance. We now
show in this instance, our procedure will allow us to find this
number 15. We can see from Figure 7 that the curve takes an
exponential dive at the very beginning, then flattens out, and
finally takes another exponential dive. The second exponential
dive starts right after 15 iterations. Therefore, our procedure
will choose 15 as the right number of iterations by the afore-
mentioned termination criteria.

C. Non-naturally-occurring and detectable thresholds
Upon detecting a “pattern” at the central monitoring station,

we need to determine if this pattern is interesting in the sense
that it is not “naturally occurring”. A pattern is naturally oc-
curring if the probability for it to exist in the data that does not
contain any common content is beyond a threshold ε. Detecting
a naturally occurring pattern is clearly meaningless. For exam-
ple, in the aligned case, the submatrix that we are searching for
has to be “large enough” to “make sense”. If we chose a small
pattern such as 4 × 4 submatrix, there will be lots of them in
the matrix and none of them corresponds to the discovery of
common content.
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In the aligned case, the non-naturally-occurring threshold
can be computed in a straightforward way. Given an m × n
matrix, that contains half 1’s and half 0’s, we would like to find
a and b such that an a×b submatrix of all 1 will not be naturally
occurring in the m × n matrix. Since there are

(

n
a

)(

m
b

)

possi-
ble choices of submatrices, and each matrix has the probability
2−ab to contain all 1’s when there is no common content, we
know by Markov’s inequality that the probability for an a × b
submatrix to naturally occur is bounded by the following prob-
ability:

(

n

a

)(

m

b

)

2−ab (1)

Immediately above the non-natural-occurring threshold
might not be feasible in practice. For example, to detect a sub-
matrix of size 10 × 10 in a 100 × 100 matrix, if we are willing
to try all combinations of rows and columns

(

100
10

)

×
(

100
10

)

, we
will find all such submatrices if there are any. Due to the ran-
domized nature of our solution, correct detection might not be
guaranteed for all submatrices that are above the non-naturally-
occurring threshold. However, we can numerically compute the
probability of missing a submatrix of size a× b. In this manner
we can determine the detectability threshold, such that a subma-
trix larger than this threshold is missed only with probability δ,
where δ is a small constant, say 10−3. The detectability thresh-
old is larger than the non-natural-occurrence threshold, imply-
ing that some submatrices quite unlikely to occur naturally are
still too small to be detected computationally. The gap between
these two thresholds is a function of the computational com-
plexity of the detection algorithms, with smaller and smaller
submatrices being detected as the computational effort devoted
to the detection is increased.

IV. DESIGN FOR THE UNALIGNED CASE

In Section III, we reduced the problem of finding common
content in the aligned case to the problem of finding submatrix
of all 1’s in a large matrix. However, this technique does not
work for the unaligned case. This is because, if we hash the
packet fragment that starts at a fixed offset in a packet, different
routers will sample different fragments of the objects due to the
variable prefix at the very beginning. Even if two routers wit-
nessed a common content, with high probability two different
sequences of hash values will be produced. In this section, we
design a new technique for the unaligned case that solves this
problem.

A. Distributed online streaming module

As discussed in Section II-D we assume that all common
content is transported using a fixed packet size. Suppose the
common content is transmitted over TCP, which typically use
MTU segments of 576 bytes. Each packet includes a 40 byte
header and a 536 byte payload. Then the common content can
have 536 different starting points (0, 1, ..., 535) in the transmit-
ted object modulo 536. If the common content in two objects
seen by two routers has the same prefix length, and the two
routers sample fragments at the same offset, they will obtain
the same fragments. This will produce two identical sequences
of hash values. In the bit locations indexed by these hash values,

1. Initialization
2. Set all bits in Arrays A1, A2, ..., Ak to 0;

3. Update arrays(pkt)
4. for array index := 1 to k
5. bit index := hash(substring(pkt.contents,

offset[array index], 20));
/* hash the 20-byte fragment from the offset

offset[array index] */
6. A[array index][bit index] := 1;
7. end

Fig. 8
OFFSETS SAMPLING ALGORITHM FOR UPDATING THE ONLINE STREAMING

MODULE

the arrays corresponding to both these routers will have value
1. However, the probability that such a match happens is only
1

536 , if the prefix length is distributed uniformly at random in
[0, 535]. Also, even if we are lucky to have such a match, for a
common content that is split into 100 segments, we are looking
at about 100 common 1’s between arrays that are both 131,072
bits wide (to be justified in Section V), assuming we are using
same or similar parameters as in the aligned case. The signal is
too weak to be detected.

Next, we describe our solutions – offset sampling and flow
splitting – to address the above two problems.
Increasing matching probability. To increase the probability
that we are going to have a match, instead of each router taking
a fragment from a fixed location, each router picks a set of k
random offsets chosen beforehand and fixed for a measurement
epoch. For each packet, the router samples a total of k frag-
ments, starting at these offsets. The hash values will be used as
indices to write into k different arrays, one array corresponding
to each offset. Figure 8 shows the offset sampling algorithm.

In general, using k offsets amplifies the probability of hav-
ing a match by approximately k2. Suppose the offsets used by
router 1 are a1, a2, ..., ak and the offsets used by router 2 are
b1, b2, ..., bk. Then ((ai−bj) modulo 536) is a set of k2 random
numbers. Let the common content seen by these two routers
have prefix length l1 and l2, respectively. If ((l1 − l2) modulo
536) matches any of the ((ai − bj) modulo 536), the fragments
taken from segments of contents 1 at offset ai will be the same
as fragments taken from segments of contents 2 at offset bj . In
this case, there will be 1’s in a common set of indices in both
the ith array of router 1 and the jth array of router 2. Since,
given a fixed set of ai and bj , there are about k2 combinations
of i and j, the probability for such a match is increased by k2.
To be accurate, this increase is slightly smaller than k2 due to
some collisions. The probability for two arrays to have such a

match is actually captured by 1 − e
−k2

536 . In general, to achieve
similar matching probability, for large-size packets, we should
use larger value of k. However, since the probability increases
approximately quadraticly with k, the value k only needs to be√

δ times larger when the packet size is δ times larger.
In this paper, we will fix the number of arrays to 10, targeting

the packet size of 536. For packets around 500 bytes in length,
we will use 10 different offsets, one offset per array. For packets
1000 bytes and above, we will use 20 different offsets, two off-
sets per array. We will not perform such operation for packets
smaller than 500 bytes, which we will justify in Section V. This
effectively limits the computational and memory complexity of
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1. Split flow
2. Upon the arrival of a packet pkt
3. group index := hash(pkt.flow label);
4. call Update arrays(pkt) to update all arrays of the
5. group indexed by group index;

Fig. 9
OFFSET SAMPLING PLUS FLOW SPLITTING ALGORITHM FOR UPDATING

THE ONLINE STREAMING MODULE

this operation to 10 bits per 536 bytes of traffic.
Magnifying signal strength. Now the probability of having a
match is increased by k2, but we have to solve the problem of
weak correlation between two matching arrays. We have argued
that it is extremely difficult to identify a match of 100 packet
segments between two 4M bit arrays. To increase the signal
strength, we need to reduce the size of each bit array. Therefore,
we split the overall traffic into multiple group of arrays. Our
scheme requires that packets belonging to the same flow go to
the same array. We use a standard technique of splitting traffic
into groups according to the hash values of their flow labels to
ensure this. Figure 9 shows the flow splitting algorithm. Note
that, there can be multiple instances of the same content passing
through a given router. Flow splitting allows multiple instances
of the same content to be registered in separate bit arrays. This
further increases the signal strength.

In the following analysis, we assume that the original array
size6 is 217 = 131,072 bits (to be justified in Section V). The
overall traffic contained in the big array is split into 128 groups
according to the hash value of their flow labels. Each group has
10 arrays for offset sampling. This results in 1,280 arrays of
1,024 bits each. Such a split magnifies the signal strength by
an order of magnitude. For example, suppose two instances of
a common content are split into 100 packets each. They will
result in 1’s in approximately 100 common indices in the cor-
responding arrays of size 1,024 bits, if there is a match. Such
an increase in the number of 1’s in common locations can be
easily detected.

However, there is a small tradeoff with such flow splitting.
First, we simply have more rows in the matrix to deal with in
the data analysis stage, which increases the computational com-
plexity of the analysis algorithm. Our techniques to alleviate
this can be found in Section IV-D. Second, some flows can be
larger than others, and such burstiness in flow sizes can lead to
more 1’s in the array. However, this turns out to be a minor
issue for two reasons. First, the Zipfian nature of the traffic de-
termines that only a very small number of flows are big enough
to cause this kind of problem. Each of such instances will only
affect one array. Second, the fact that the measurement epoch
is just one-second worth of traffic further limits this burstiness.
Our measurements on tier-1 ISP traffic traces show that such
burstiness causes negligible deviation to our results that assume
perfectly balanced flow splits.

In summary, each router will generate a matrix of 1,024 bits
in width and 1,280 in height7. These matrices will be shipped
to the data analysis center for analysis.

6Note that this is different from the assumed array size of 4 million bits in the
aligned case.

7The height of the matrix can be tuned depending on the speed of the router.

B. Data analysis module
Once matrices are shipped from data streaming modules,

they will be merged vertically to produce a giant (in number of
rows) matrix of 1, 024 columns. The function of the data analy-
sis module is to assist in the detection of common content. We
propose two “tools” in this respect. One answers the question
whether there exists common content or not. The second an-
swers the question which set of routers potentially witnessed
the common content. Both tools can trigger external means
such as packet logging or intrusion detection to find the com-
mon content. Both tools are very useful depending on the ex-
ternal means that are available to ISPs. Our first tool, based on
statistical test on random graphs is extremely accurate. Our sec-
ond tool is a greedy algorithm exploiting the statistical property
in our bitmap construction and outputs a set of routers which
with high probability have witnessed the common content.
Statistical test on random graphs. The common content
detection problem in the unaligned case can be reduced to
the problem of performing statistical test on a random graph
G(n, p). Here G(n, p) denotes a random graph that has n ver-
tices, and the events of any two vertices having an edge between
them are independent and each event happens with probability
p. Each bitmap corresponds to a set of vertices in this graph and
correlations caused by the common content is translated into a
higher probability for some vertices to have an edge between
them than the “background” probability p.

Our statistical test problem is that, given a graph that contains
n vertices, we would like to test whether it is an instance of
Erdös-Renyi (ER) random graph G(n, p1) [6], or there exists
a subset of vertices in the graph such that the probability for
any two vertex to have an edge between them is larger than p1.
We refer to the latter as “preferential attachment”. In statistical
testing, the former is the null hypothesis and the latter is the
alternative hypothesis.

We now show how we convert the matrix to an Erdös-Renyi
(ER) random graph G(n, p1). Consider a 10n × 1,024 matrix,
where the traffic is split into n groups and each group results
in 10 arrays corresponding to 10 different offsets. We convert
this matrix to a graph with n nodes, each node corresponds to
a group. Whether an edge exists between two groups depends
on the maximal number of common 1’s among pairs of rows of
them. The key in transforming this matrix to a random graph
G(n, p1), when there is no preferential attachment, is to keep
the probability of having an edge between two nodes uniform
(= p1). Since the number of 1’s in the rows of different groups
are different, we need to set different thresholds accordingly.
That is, given two rows that belong to two different groups (ver-
tices) A and B containing i and j 1’s respectively, if the number
of indices at which both rows have value 1’s is higher than λi,j ,
we add an edge between A and B. We put at most one edge be-
tween any two vertices. Also we do not establish an edge from a
vertex to itself. Therefore, the resulting graph is a simple graph.

Let X(i, j) be the random variable denoting the number of
common 1’s between two rows that contain i and j 1’s respec-
tively. When there is no “matching” between them, the prob-
ability that the number of common 1’s is greater than λi,j is
given by P [X(i, j) > λi,j ] = 1−

∑λi,j

k=0 P [X(i, j) = k] where
X(i, j) follows a hyper-geometric distribution P [X(i, j) =
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k] =
(i

k)(
N−i

j−k)
(N

j )
(Here the value of N is 1,024). We set a list of

thresholds Λ = λi,j , (0 ≤ i, j ≤ 1, 024) in such a way that the
value of P [X(i, j) > λi,j ] ≈ p∗ for any value of i and j, where
p∗ is defined by the probability of matching between two arrays.
The value of p1, the probability of the existence of an edge be-
tween two groups, can be estimated by p1 ' 1 − (1 − p∗)100.
It is easy to see that, given p1, we can find the list of corre-
sponding threshold λi,j . This completes our transformation of
a given matrix to an Erdös-Renyi random graph G(n, p1) when
there is no “preferential attachment” in the matrix.

We now describe our novel technique for testing the null
hypothesis on whether our constructed graph is an instance
of G(n, p1) against the aforementioned alternative hypothesis.
Our idea is to check whether the size of the largest connected
component in the graph significantly deviates from that is typ-
ical in G(n, p1), based on the following phase transition phe-
nomenon [6] of the Erdös-Renyi random graph. When the prob-
ability p is less than 1

n in a random graph G(n, p), with high
probability, all connected components are of size O(log n).
However, when p is greater than 1

n , a giant connected com-
ponent of size Θ(n) begins to emerge. Although the theory
holds as an asymptotic result when n approaches infinity, for
sufficiently large n, this phase transition phenomenon will be
observed. In our ER test, we tune a set of parameters to keep
the expected p1 below the phase transition threshold. If there is
no “preferential attachment”, the largest connected component
should have an expected size q which is O(log n). However,
if the graph contains significant “preferential attachment”, cer-
tain pairs of nodes will be connected by an edge with proba-
bility much higher than p1. These edges will “merge” multiple
largest connected components in the original graph into a much
larger connected component than q. This simple test turns out
to be miraculously accurate, with very low false positive and
false negative, as we will show in our evaluation.
Detection algorithm - finding the pattern. Our statistical test-
ing algorithm determines whether there are common content in
multiple rows of the matrix, but does not identify these rows.
We now introduce a greedy algorithm that finds a large portion
of these rows with high probability. Note that it is not necessary
to find all the rows; even a subset of all such rows will offer us
enough clue for identifying the common content. Unlike the
aligned case, in general we will not be able to obtain the hash
indices that packet segments of the common content hashed to.
For example, if such common content is a propagating worm,
it does not find the “hashed signature” of the worm. However,
since it identifies the groups that contain the common content,
we believe that information exchange at finer granularity be-
tween involved routers (the subset identified as having seen the
common content) will help identify its signature, using a much
smaller subset of aggregated traffic. Our procedure in finding
these rows consists of three steps.
Step 1: Constructing the graph. We induce a new graph out
of the matrix using a different threshold λ′

i,j . We work with
this new graph rather than the graph used for statistical testing
because the latter graph often does not offer us the best accu-
racy on finding the core. In fact, while the graph for statistical
testing uses λi,j that results in p1 smaller than the phase tran-

1. FindCore(G)
2. construct G′ = (V ′, E′), a duplicate copy of G
3. repeat
4. let v be the vertex in G′ with the smallest degree;
5. delete v and edges incident on v from G′

6. until |V ′| ≤ β
7. define Vcore as the remaining vertices in V ′

Fig. 10
CORE FINDING ALGORITHM FOR THE UNALIGNED CASE

sition threshold 1
n , in this new graph the p1 induced by λ′

i,j is
much larger than 1

n . This step is straightforward and will not be
discussed in detail below.

Ideally, we would like to find the clique (or a dense subgraph
such that almost every node is connected to every other node
in this subgraph) of maximum size in graph G′. However, the
maximum clique problem is NP-hard and can not be approx-
imated within a factor |V |1/2−ε for any ε > 0 in the general
case. However, our problem has nice statistical property that
general polynomial-time algorithm for maximum clique can not
exploit. We next use the property to complete our greedy algo-
rithm.
Step 2: Finding the core. Figure 10 illustrates the procedure
for finding the core. We first copy the original graph G to G′

and perform all the operations on G′ (we will need G in Step
3). We keep deleting the nodes with the smallest degree and
their associated edges from the graph G, until the number of
vertices in this graph becomes β. The remaining vertices are
the core we are looking for, denoted as Vcore. Through Monte-
Carlo simulation, we configure β such that if the number of
vertices containing the common content are beyond a detectable
threshold, with high probability the majority of the vertices in
the core contain the common content we are searching for.
Step 3: Using the core to find the rest. Once we find a core, we
will use the core to find a large portion of the rest of vertices
containing the common content. We denote the set of vertices
in G that are not in the core as Vcore and the graph they induce
as Gcore. Our algorithm removes from Gcore all nodes that
have less than d edges connected to vertices in Vcore and edges
that are incident on them. We denote the resulting graph as H .
We set d such that a large portion of the vertices that have the
common content “survive” and the majority of the other ver-
tices do not. Again, Monte-Carlo simulation allows us to set d
properly given a set of operating parameters. This core contains
a small set of vertices that witnessed the common content with
very high probability. To include more vertices that witnessed
the common content, we run the algorithm FindCore again on
the graph H to obtain a core from H , denoted as V2nd core. Our
final result is the union of two cores Vcore and V2nd core.

This process of core finding could be repeated to obtain more
vertices that contain the common content. However, our ex-
periments suggest that most of the vertices we are looking for
are already in Vcore

⋃

V2nd core and the return is marginal af-
terwards since the remaining graph becomes more “noisy”. In
other words, we will not be able to find more such vertices with-
out causing high false positives.
Our algorithm is stochastically optimal. Our algorithm
shown in Figure 10 for finding the core, is stochastically opti-
mal, under a reasonable computational model, in the following
sense. Among all the algorithms that fall under the computa-



TECHNICAL REPORT, COLLEGE OF COMPUTING, GEORGIA INSTITUTE OF TECHNOLOGY 10

tional model, our algorithm produces a core that has the lowest
average false positive. In other words, the average number of
vertices that do not belong to the core (not containing common
content) is kept to the minimum by our algorithm. This result
is proven using machineries from the stochastic ordering the-
ory [7]. Please see Appendix for details of the proof.

C. Non-naturally-occurring and detectable thresholds

We mentioned before that it only makes sense to detect pat-
terns that are not naturally occurring. The detectable threshold
can be much higher than the non-naturally-occurring thresh-
old. In the unaligned case, the methods for estimating the non-
naturally-occurring threshold and the detectable threshold are
quite different from the ones in the aligned case.

The problem of finding the non-naturally-occurring threshold
in unaligned case can be formulated as follows. For the afore-
mentioned 10n×1024 matrix and a common content that is split
into s packets, we would like to determine the minimum value
for a parameter m, which is the number of nodes in a subgraph.
This parameter m has to satisfy the following two properties.
First, if G does not contain any common content, then there ex-
ists a threshold value d such that the probability for a subgraph
of size m to have more than d edges is very small (e.g., 10−10),
given the probability for two random nodes to have an edge in
the original graph G (p1 as defined above). Second, if G does
contain a pattern of size no less than m, for the same d, the
probability for a subgraph of size m that is a subgraph of the
pattern graph (with edge probability p2 as discussed above) to
have more than d edges is large enough (e.g., > 0.95). These
two requirements correspond to both low false positive and low
false negative. Using Markov’s inequality, given a value d, the
first probability can be bounded by

(

n

m

)

(1 − binocdf(d,m(m − 1)/2, p1)) (2)

The second probability can be computed as

binocdf(d,m(m − 1)/2, p2) (3)

Our goal is to find a minimum m such that there exists at least
one value d such that the first probability is very small and the
second probability is larger than a certain threshold. In statis-
tics, this corresponds to setting a threshold on type-I error and
then trying to minimize type-II error.

To find the smallest possible m, we need to tune both p1 and
d. In other words, when we use a larger p1, d has to be accord-
ingly larger, and vice versa. The nature of the problem suggests
that there is a sweet spot in the middle. Despite our effort, we
do not have any analytical results8 that guide the co-tuning of p1

and d. However, we implemented an efficient numerical anal-
ysis procedures that search for the best combination of p1 and
d in a brute-force way. In Section V, we will show results pro-
duced from this procedure.

As explained before, a pattern that is barely non-naturally-
occurring may not be detectable since the detection algorithm

8The dependence induced by order statistics [7] makes the analysis in-
tractable.

operates under a stringent computational complexity constraint.
In our context, we define a pattern to be detectable as follows.
When we run the algorithm shown in Figure 10 to find a core,
the pattern has to be large enough at the very beginning to pro-
duce a core of size at least β and with high probability this core
contains very few false positive vertices (those that should not
be in the core). This ensures that we will find enough vertices
in the pattern in the third step of our algorithm.

D. Computational complexity
The vast majority of the computational complexity of both

our ER test and the pattern finding scheme comes from com-
puting, for any two rows in the matrix, the number of indices in
which both row have value 1. Other algorithms, mainly manip-
ulating the graph induced from the matrix, have a low complex-
ity of at most O(|E|) (the induced graphs are all sparse graphs
such that |E| is about O(n)). For a matrix with 10n rows, we
need O(100n2) bitwise-AND operations. We will show below
that if we would like to monitor thousands of high-speed links
(e.g., OC-48), we will have an n that is in the order of 100,000.
In this case, 100n2 is 1 trillion operations. We estimated that it
will take a few hours in software implementation. However, the
network generates such a workload every second!

We suggest several possible ways, used alone or in combi-
nations, to cope with this complexity. The first possibility is
that if we are willing to reduce the number of OC-48 links to
be monitored together to hundreds, we automatically reduce the
complexity by about 100 times. However, a large network of-
ten has much more than a few thousands ingress/egress links
to monitor. It is desirable to monitor as many of them together
as possible, to make the probability of detecting a weak (but
potentially interesting) signal higher. The second possibility is
that we can simply sample 10% of the vertices and find a core
only in this subset. Then this core will be used to find other ver-
tices in the pattern, which has O(n) complexity since the core
is relatively small. This reduces the complexity by about 100
times, i.e., each such computation will take a couple of min-
utes. The tradeoff here is that we can only detect patterns that
are several times larger than detectable if we do not perform
sampling. In other words, the sensitivity of the algorithm in de-
tecting patterns goes down. The third possibility is to distribute
the load to a large number of CPU’s. Since this computing job
has no data dependence between any two operations, it is ideal
for massive parallel processing (a.k.a, embarrassingly parallel).
However, a few thousand CPU’s are needed for this gigantic
task, the cost of which is nontrivial. The fourth possibility is
that we design special hardware that can perform tens of thou-
sands of such long (1024 bits) bitwise-AND operations in a sin-
gle cycle. Once this hardware helps us generate the graph, the
rest of our algorithms takes a few seconds. Finally, the fifth pos-
sibility is to sample a small percent of the measurement epochs
for analysis. Hopefully the patterns will span enough epochs to
be detectable even with sampling.

V. EVALUATION

A. The aligned case
We use Monte-Carlo simulation to evaluate the accuracy of

our pattern detection algorithm presented in Section III. The
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problem size we are targeting is as follows. We would like to
monitor 1,000 OC-48 (2.4 Gbps) links simultaneously. As we
explained before, the number of columns in the matrix is 4M.
Therefore, the matrix we are dealing with has the size 1,000 ×
4M.

In our Monte-Carlo simulation, we randomly generate a
1,000 × 4M 2D bitmap in which a bit is set to 1 with probabil-
ity 0.5. Then, we inject an a × b pattern by randomly selecting
a rows and b columns, and setting all intersecting bits to 1’s.

1) Performance of the greedy algorithm: We test how well
our greedy algorithm for core-finding works. Figure 11 shows
the detection ratio, which is the empirical probability of the pat-
tern being detected, obtained from the Monte-Carlo simulation.
Note this value is equal to 1 minus the false negative ratio. We
do not simulate the false positive ratio here since it is extremely
small from the theoretical analysis. Our simulation is repeated
100 times and the values shown in Figure 11 are the average of
the 100 simulations. The three curves in Figure 11 correspond
to a pattern that has 20, 30, and 40 rows (routers) respectively.
The x-axis is the number of rows (routers) and the y-axis is
the detection ratio. These three curves clearly show that the
detection ratio becomes larger when the pattern size becomes
larger. For example, for the target size of 100 × 30 discussed
above, we can successfully detect the pattern with probability
close to 0.988. In other words, if there is a large enough core
that survives the “screening by weight”, our greedy algorithm
will almost never miss it.

2) Non-naturally-occurring and Detectable thresholds:
The non-naturally-occurring threshold curve (lower one) for the
1000 × 4M matrix is shown in Figure 12. The x-axis and y-
axis of the figure correspond to the row size a and column size
b of the all-1 submatrix, respectively. Recall that a corresponds
to the number of routers that have seen the common content
and b corresponds to the size of the common content in number
of packets. Areas lower than (and left to) the non-naturally-
occurring curve represents a × b values that are naturally oc-
curring, and vice versa. Clearly there is an intuitive tradeoff
between a and b. For example, when a is 28, b has to be at least
21 for the pattern to be non-naturally-occurring. On the other
hand, when a becomes 70, b only needs to be no less than 10.

Also shown in Figure 12 is the detectable threshold curves.
Recall that our algorithm first finds a core among the heaviest
4,000 columns, and then uses it to find (most of) the rest of the
columns. We plot the curve in such a way that any pattern of
size combination (a×b) above the curve can be detected with at
least 95% probability. Note that the detectable threshold curve
always lies above the non-naturally-occurring threshold curve,
representing the unfortunate tradeoff between detectability and
the computational complexity (running an quadratic algorithm
on 4,000 columns rather than on 4,000,000 columns). Let us
use the same example a values as above and compare the cor-
responding b values. When a is 25, b needs to be at least 3,029,
which is two orders of magnitude larger than 21. This is be-
cause the signal of 25 1’s in an array of 1,000 bits is so weak
that it has to be “amplified” by 3,029 times! When a becomes
70, the value of b only needs to be 99. But this value is still
about 10 times larger than the non-naturally-occurring thresh-
old (i.e., 10) with the same a value.

We briefly explain the procedure for estimating the afore-
mentioned detectable thresholds using one point on the curve,
(100, 30), as an example. Then, consider how many columns
will be selected when we use 550 as the threshold for the
weight, the number of 1’s in a column. In a column that
does not correspond to a packet in the common content, the
probability that there are more than 550 1’s in this column is
1 − binocdf(550, 1000, 0.5) ≈ 0.00073. There will be on the
average 4M × 0.00073 ≈ 2900 columns that are heavier than
550 and that do not contain common content packets. Since
2, 900 << 4, 000, by large deviation theory, the probability
for the number of such columns to be close to 4,000 (thereby
squeezing out the pattern) is very low. Now in a column that
corresponds to a packet of the common content, the probabil-
ity that its weight is over 550 is about 0.55. So if there are
30 packets that belong to the common content, then probabil-
ity that there at at least 8 packets that survive the “screening
by weight” is 1 − binocdf(7, 30, 0.55) = 0.988. Note that we
choose 8 because the pattern of 30 × 8 is the non-naturally-
occurring threshold in the matrix consisting of the heaviest
4,000 columns. Therefore, we have a detection probability of
about 0.988.

Our Monte-Carlo simulation to evaluate the performance of
the greedy algorithm for several points on the detectability
curve shown in Figure 12 shows that the algorithm works 100%
of time in all cases. Note that there is a positive probability for
this greedy algorithm to fail to find the core. However, this
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probability is simply too small to be reflected in thousands of
repeated trials.

B. The unalgined case
Our mechanism is designed to monitor thousands of OC-

48 (2.4 Gbps) links simultaneously. In the unaligned case,
such monitoring becomes much more difficult compared to the
aligned case. We simplify the problem slightly as follows9.
We assume a minimum packet size of 4,000 bits because the
streaming algorithm will not perform operations on packets
shorter than 500 bytes. We also assume that we are only mon-
itoring no more than 1

8 of the traffic (i.e., about 75,000 packets
from an OC-48 link in each one second measurement epoch
by ignoring flows that are very large (i.e., elephants)10). Since
putting (ln 2)l random bits [4] into an l bit array will make the
array contains approximately half 0’s and half 1’s, an array of
131,072 bits will do. With each row of size 1,024 bits, the traffic
needs to be split into 128 groups, generating 1,280 arrays (rows)
with 10 different offsets. Monitoring 800 such links will result
in 1,024,000 rows in the matrix, which will induce a graph with
102,400 vertices. Hereafter, the matrix we are dealing with is
10n × 1024, where n is 102,400.

1) Erdös-Renyi test: In Section IV, we have discussed the
mechanism of using Erdös-Renyi test to determine the exis-
tence of a common content pattern. In this section, we study
the sensitivity of Erdös-Renyi test in terms of false positive and
false negative probabilities using Monte-Carlo simulations. The
false positive probability is the probability that a random graph
is misinterpreted as a graph with common content pattern. The
false negative probability is the probability that a graph with
common content pattern is considered to be a random graph.

We assume that the common content is packetized into 100
packets. We compute the aforementioned threshold table Λ us-
ing p1 = 0.65/105. Note that the phase transition probability
for an ER random graph of this size is 1.024/105 which is larger
than p1. Then, we run Monte-Carlo simulations by varying the
number of vertices n1 that have seen the common pattern.

Figure 13 shows the cumulative distribution of the size of the
largest connected component, for random graphs and graphs
that have seen a pattern. We observe that the larger the num-
ber of vertices that have seen the pattern, the larger “distance”
between these two CDF curves. If we set the threshold of the
largest component to the same number (i.e., 100), there is al-
most no false positive in deciding the existence of a pattern in
all three cases of n1. However, we observe some false nega-
tive cases. The corresponding false negative probabilities are
16.6%, 5.2%, and 1.0% for n1 = 120, 130, and 140, respec-
tively. Note that some false negative are tolerable since such de-
tection is performed every second. Even if the pattern is missed
in one second, it may be caught in the following seconds. We
can select the size of the largest connected component which
strikes a balance between false positive and false negative prob-
abilities. We also observe that, a pattern of a small number of

9 This simplification will also work for aligned case. However, it is not nec-
essary in the aligned case because its computational complexity is managable.

10 Elephants can be analyzed locally in a very efficient manner using [8], for
example. Our goal here is mainly to detect “a group of mice”; detecting a group
of elephants is clearly an easier problem sidestepping which allows us to focus
our computation and storage resource on the more interesting problem.

# packets Average Average Average
in common n1 core false false

content size negative positive
125 65.3 0.485 0.014

100 144 112.1 0.241 0.025
165 154.4 0.099 0.037
67 35.6 0.481 0.023

110 77 59.3 0.239 0.012
89 81.8 0.096 0.017
44 22.4 0.491 0.001

120 51 38.5 0.249 0.006
57 51.9 0.092 0.002

TABLE I
AVERAGE SIZE OF CORES DETECTED BY GREEDY ALGORITHM

nodes—n1 correlated vertices out of 102, 400 vertices—is very
effective in connecting the smaller connected components in
forming a rather larger one. This shows that the Erdös-Renyi
test is very sensitive in detecting non-naturally occurring pat-
terns.

2) Finding the core using Monte-Carlo simulation: Table
I shows the average size of cores detected by our greedy al-
gorithm. Here we set the value of p1 as 0.8/104, which is
higher value than the one for Erdös-Renyi test (as explained
in Section IV-B), and compute the corresponding threshold ta-
ble Λ′. Given the number of packets in common content in the
first column of the table, three values of n1 in each line shows
the minimum value of n1 to make the average core sizes more
than 50%, 75%, and 90% of n1, respectively. The third and
fourth columns show the average false negatives and false pos-
itives in the detected core. The probabilities of false positives
and false negatives was previously used in evaluating the per-
formance of the statistical test on random graphs that operated
on the entire graph to return a binary (yes/no) answer to the
question of whether or not a pattern existed in the graph. The
detection algorithm, on the other hand, tries to identify the indi-
vidual routers that have seen instances of the common content.
Therefore, the definitions of false positive and false negative are
different. A false positive in this case, corresponds to a router
being mistakenly identified as having seen the common con-
tent, and a false negative correspond to routers that have seen
the common content being missed by the detection algorithm.

There is a clear tradeoff between the size of the common con-
tent and the number of vertices that need to contain it to be
statistically significant. For example, when there are 100 pack-
ets in the common content and 125 vertices in the pattern, the
greedy algorithm will find a core of average size 65.3 (out of
125), which contains 51.5% of the vertices in the pattern. With
144 and 165 vertices, we can increase the size of the core to
75.9% and 90.1% respectively. If the number of packets in the
common content increases to 120, we only need 44, 51, and 57
vertices to get 50%, 75%, and 91% of the cores, respectively.
In all simulation results, we get very small false positive values.

3) Non-naturally-occurring and detectable thresholds: Ta-
ble II shows the size of the non-natural-occurring pattern size
in a graph of 102,400 vertices. For example, if the common
content consists of 100 packets, then a minimum of 95 vertices
should have the common content for the resulting statistical pat-
tern to be meaningful. This size is obtained using the aforemen-
tioned numerical procedure to co-tune the parameters m and d
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Fig. 13
THE EFFECT OF n1 ON THE FALSE POSITIVE AND FALSE NEGATIVE PROBABILITIES IN ERDÖS-RENYI TEST

Common content Minimum
in packets g Size of m

80 297
90 150
100 95
110 62
120 46
130 36
140 28
150 23

TABLE II
EXAMPLES OF BOUND OF NON-NATURALLY OCCURRING CLUSTER

Common content Detectable Average
in packets g threshold m core size

100 150 56
125 80 50
150 50 30

TABLE III
SET OF THRESHOLDS

(the number of edges d in a subgraph with m vertices). Similar
to the aligned case, there is a clear tradeoff between the size
of the common content and the number of vertices that have to
contain it to be statistically significant.

Table III shows the detectable thresholds that can be achieved
by our greedy algorithm. For example, when there are 100
packets and 150 vertices in the pattern, the greedy algorithm
will find a core of average size 56. This core size is decent
enough for us to find a large portion of other vertices in the
pattern. By comparing numbers in Tables II and III, one can
notice that the detectable pattern size is always larger than the
non-naturally-occurring threshold.

4) Stress test using tier-1 ISP trace: In this section, we eval-
uate our algorithms using Internet packet header traces. If the
traffic is evenly split into different groups according to the hash
values of the flow labels, the result should be identical to our
analytical and Monte-Carlo simulation results. However, due to
the burstiness of the traffic, some groups will have more packets
hashed to it and some will have less. We would like to evalu-
ate the impact of this burstiness on the robustness of our greedy
algorithm.

The Internet packet header trace we used in our experiments

was collected at an outgoing link that connects a data center to
a tier-1 ISP’s backbone network. The trace contains a total of
150 million packets, and the traffic load was very bursty.

We generate the 2D-bitmap corresponding to this “bursty
traffic” as follows. Because we do not have traffic traces from
multiple interfaces, we use the traffic segments from the same
trace in different epochs to simulate that. The trace is cut into
segments of certain number of packets each. Each segment cor-
responds approximately to one second worth of traffic. Then we
split each segment into 32 groups according to the hash value of
the flow label. Each group consists of 10 arrays, corresponding
to 10 offsets. A packet that is hashed to a group results in one
bit being put into a random position in each of the 10 arrays.
This captures the burstiness of flow splitting in real-world traf-
fic. In this way, one segment of traffic fills up 320 arrays of size
1,024 to 50%. The next segment will be used to fill 320 new
arrays.

After we generate a 2D-bitmap of size 1,024,000 × 1,024,
we insert patterns of various sizes into it. Since we use the hash
function to generate the content signature, the performance of
our algorithm can be constrained by the randomness of the hash
function and/or the input traffic. We assume that we can use the
fast and efficient hardware implementations of hash function
such as [9]. And our randomness test for the input traffic shows
that the traffic has almost random value of the contents. we
believe that the effect of the hash collision is negligible.

We found that the detectable threshold using this “bursty traf-
fic bitmap” is slightly lower than that obtained through Monte-
Carlo simulation assuming even traffic distribution. For exam-
ple, to find more than 50% of core when there are 100 pack-
ets in the common content, we need about 121 vertices in the
pattern. In comparison, with the same parameters, our Monte-
Carlo simulation suggests that 125 vertices in the pattern are
needed. Clearly, in this case the burstiness comes to our advan-
tage. This is because, due to the Zipfian nature of the Internet
traffic [10], a small number of rows that large flows (small in
number) are mapped to, absorb a large percentage of traffic, so
that the other rows become very lightly loaded. Although sig-
nals contained in the rows that large flows are mapped to are
mostly lost, signals contained in other rows, which is the vast
majority, are amplified.
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VI. RELATED WORK

The most closely related works to ours are [11], [12] in
theoretical computer science and database communities. In
[11], Feigenbaum and Kannan proposed to ship “synopses” of
the raw data from physically separated network elements to
a central operations facility. They presented a space-efficient
one pass algorithm to compute the L1 differences between two
data streams. The method proposed in [11] can be considered
as constructing families of limited-independence random vari-
ables that are range-summable, that is the sum is computable in
polynomial time. In [12], Babcock and Olston proposed tech-
niques to answer top-k queries for values continuously updated
from distributed monitoring stations by compensating the lo-
cal skew with factors that make the local top-k appears as the
global top-k values. This reduces the update that needed to
send to the central station. However, none of these techniques
are applicable in our context.

Previous work in the networking literature has focused on ob-
taining relevant traffic characteristics using Bloom Filter or syn-
opsis data structure from a single router or link [13], [14]. For
example, Estan and Varghese [8] presented algorithms that can
identify and monitor a small number of elephants with a small
amount of fast memory. Algorithms to detect significant flow-
size changes have also been proposed [13], [15], [16]. However,
these techniques can not be applied in our common content de-
tection problem since the “signal” in each local station is too
weak to be detected. We argue that our problem inherently re-
quire a distributed collaborative data streaming approach.

Techniques exploiting properties of specific common content
such as worm have been proposed. These techniques assume a
single observation or vantage point [17], [18], [19]. For exam-
ple, Singh et al. [17] have proposed the EarlyBird system for au-
tomated worm fingerprinting. They use Rabin fingerprints over
a sample of substrings in the packet payload to update a con-
tent prevalence table. When used in conjunction with counts of
source and destination IPs for packets carrying the correspond-
ing content, a comprehensive worm detection solution can be
built. Our work extends the scope of common content detec-
tion techniques using the DCS model, to enable distributed ver-
sions of such single vantage-point solutions. The techniques
required to detect common content from multiple vantage point
with high traffic volume is quite different from theirs. With
the ability to monitor a significantly larger amount of traffic in
a distributed manner, we believe that our common content de-
tection techniques can be used in the next generation of such
detection devices.

There have been studies on identifying similar contents [20],
[21]. Broder et al. [21] proposed similarity metrics to char-
acterize similar contents. Spring and Wetherall [20] used Ra-
bin fingerprint [22] to compute represent fingerprints of each
packet. For redundant traffic between two cache proxies, only
fingerprints are transmitted to reduce bandwidth consumption.
The contents is reconstructed at the other end by searching the
cache indexed by the fingerprints. The bitmap scheme pro-
posed in this paper can be viewed as simple fingerprinting so-
lutions. These similarity metrics and fingerprinting techniques
require more computation and more storage. For future work,

we would like to investigate identifying similar contents wit-
nessed by multiple routers in the network.

VII. CONCLUSION

In this paper, we propose a set of novel data streaming tech-
niques detecting common content in the Internet traffic based
on the digests shipped back to the operation center with three
order of magnitude data reduction from the raw traffic. Our
algorithms exploit the fact that the common content signal is
hidden in the background of random noise. We rigorously for-
mulate our detection problem and present efficient algorithms
to detect aligned and unaligned common content. Our algo-
rithms are shown to be very effective through extensive simu-
lations and experiments on traffic traces collected from a tier-1
ISP.
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VIII. APPENDIX

1. Computational model

One can imagine that the following stochastic game between
two players A and B on a random graph G is played. The graph
G is generated according to a probability distribution that is
agreed upon by both A and B. At the very beginning, the degree
of all the nodes is shown to B, and this is all the information
that B knows. In particular, B is not allowed to peek into the
internal structure such as edge connectivity inside the graph.
B now needs to make a decision on which vertex to delete.
Once this vertex is deleted, A will reveal to B the degree of
all remaining nodes after the deletion. B then has to choose
another vertex to delete, and so on, until there are no more than
β vertices in the graph.

The stochastic rule of this game is closely related to the Prin-
ciple of Deferred Decisions (PDD) [23]. The idea of PDD in
this context is that the entire set of random choices are not made
in advance. Rather, at each step of the game, A fixes only the
random choices that must be revealed to B. At the very begin-
ning, A only commits to the fact that the graph G eventually
revealed to B at the end has the degree sequence that has been
revealed to B. Once a node v is deleted by B, A has to decide
which set of vertices in the remaining graph that v should con-
nect to. Note that this is a random decision that needs to con-
form to the aforementioned probability distribution. The prob-
ability distribution on the set of vertices that v has an edge with
should be identical to the distribution of such a set conditioned
on all that B has known (the degree values of the vertices). In
other words, A is not allowed to lie in the probabilistic sense.

We claim in the next section that if the random graph G is in-
duced from the matrix using a threshold λ and there is common
content in some rows of this matrix, then the greedy algorithm
(removing nodes with the smallest degree) is the stochastically
optimal game strategy B can play in finding the core. Despite
the intuitive nature of this result, its proof is nontrivial.

One may feel that this computational model may be a little
restrictive, since in our problem, we can indeed see the internal
structure of the graph at the very beginning. Our justification
for this model is as follows. Our algorithm needs to operate un-
der a computational complexity constraint (O(E) as discussed
in the next section). Although we can “see” the structure, under
such a complexity constraint, we cannot “see through” it, in the
sense that we will not be able to learn enough from the structure
to help us pick a better choice than if we had not seen it.

2. Proof of the stochastic optimality

Definition 1: A random variable X is said to be stochasti-
cally larger than a random variable Y , written X ≥st Y , if
Pr[X > a] ≥ Pr[Y > a] for all real number a.

Let v1, v2, ..., vl be vertices in the graph G that contain the
common content. Among them, we pick an arbitrary one and
denote it as u. Let du(t, B) be the degree of u after t dele-
tions by an algorithm B. If unfortunately u is picked by B for
removal at time t′, we define du(t, B) = −1 for all t ≥ t′.
Note that du(t, B) is a stochastic sequence. We denote as C
the greedy algorithm.

Theorem 3: For any algorithm B that conforms to the afore-
mentioned computational model, du(t, C) ≥st du(t, B) for all
t.

Its proof is very involved and is omitted here due to the lack
of space. This theorem implies the following important corol-
lary, which is the main result that we would like to prove. Let
N(t, B) be the number of vertices among v1, v2, ..., vl that
“survive” after t deletions by an algorithm B. One can easily
verify that N(t, B) =

∑l
i=1 1du(t,B)≥0.

Corollary 4: E[N(t, C)] ≥ E[N(t, B)] for any t.
Proof: For u = v1, v2, ..., vl, We know that du(t, C) ≥st

du(t, B). By DEFINITION 1, we know that Pr[du(t, C) ≥
0] ≥ Pr[du(t, B) ≥ 0]. Finally by the linearity of expectation,
E[N(t, C)] =

∑l
i=1 E[1du(t,C)≥0] =

∑l
i=1 Pr[du(t, C) ≥ 0]

≥ ∑l
i=1 Pr[du(t, B) ≥ 0] = E[N(t, C)].


