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SUMMARY 

Uncontrolled inflammation is a key factor in multiple disease types, including tissue fibrosis and 

cancers. The underlying mechanisms and treatment of several of these diseases are still unsolved 

medical challenges.  The studies described in this thesis focused on developing novel cell-type and 

tissue-selective anti-inflammation and anti-cancer agents that target microinjuries, fibroblast 

hyperplasia exaggerated extracellular matrix (ECM) deposition and epigenetic dysfunctions.  

Idiopathic pulmonary fibrosis (IPF) is a life-threatening interstitial lung disease (ILD) of 

ambiguous cause. IPF is sustained by inflammation caused by chronic injury that promotes 

inflammatory cytokines release and the accumulation of these cytokines in the bronchial tubes and 

airways. IPF is a chronic and fatal disease that progressively declines the lung function. Till date, 

IPF remains untreatable. The FDA approved drugs - pirfenidone (PFD) and nintedanib – are 

suboptimal in the management of IPF due to their toxic side effects, low potency, cost 

ineffectiveness and minimal beneficial effect on the patients’ survival rate. In chapter 2 of this 

thesis, I described four classes of macrolide-based anti-fibrotic agents (28 final compounds) 

designed to exploit the excellent PK and selective lungs and/or liver tissues distribution activities 

of the macrolide templates to arrive at novel anti-fibrotic agents that may selectively accumulate 

within these tissues. I investigated the effects of these compounds on the viability of four cell lines 

(MRC-5, A549 Hep-G2 and VERO), NF-κB and TGF-β pathways and the levels of fibrosis 

markers (FN-1, MMP-9, COL1A1, α-SMA). A cohort of these compounds elicit anti-proliferative 

and anti-inflammatory effects with potency enhancement as high as 1000-fold relative to the 

standard of care PFD. Based on the data from these experiments, compound 15c was identified as 

a lead based while the next best compounds are 10c, 11c and 20e. 
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Inspired by the study described in chapter 2, I designed and synthesized macrolide (azithromycin 

(AZM) and clarithromycin (CLM)) conjugates of three antioxidants – alpha lipoic acid (ALA), 

fumarate and piperic acid (PIPE) – in chapter 3. After investigation of the cytotoxicity of these 

macrolide-antioxidant conjugates against cancer cells, normal kidney cell line, and fibroblast cell 

line, I observed that most of novel compounds showed significant enhancement (more than 100-

fold) in cytotoxicity and stronger anti-fibrotic effects relative to their unconjugated antioxidants. 

Specifically, ALA derivatives showed strong STAT3 inhibition and extracellular matrix (ECM) 

components production inhibition effects with attenuation of TGF-β stimulation. Fumarate and 

PIPE derivatives also demonstrated strong anti-fibrotic effects and Nrf-2 activation.  

In Chapter 4, I report the discovery that macrolide antibiotic clarithromycin (CLM) undergoes 

tandem dehydration- cyclization-dehydration reactions, involving C-11 and C-12 hydroxyl groups 

and the C-9 keto moiety, to furnish a dihydrofuranyl macrolide AO-02-63. I observed that AO-

02-63 inhibits the activities of prokaryotic and eukaryotic ribosomes and possibly disrupts the 

activity of hnRNPs. AO-02-63 also inhibits the proliferation of all cell lines in the NCI-60 panel 

with low micromolar IC50s and elicits anti-inflammatory activity similar to CLM, although with a 

10-fold potency enhancement. The broad anti-cancer activity of AO-02-63 could be due to its 

inhibition of protein synthesis and mRNA processing, two processes that are vital for the survival 

of cells. 

The potential of STAT3 pathway inhibition as an anticancer and anti-inflammatory strategy is 

under active investigation in preclinical and clinical settings. Chapter 5 of this thesis focused on 

validating our hypothesis that simultaneous STAT3 and histone deacetylase (HDAC) inhibition 

will lead to more durable anti-proliferative effects in STAT3-addicted cancer cells. Toward this 

end, I synthesized 5 pyrimethamine (PYM)-derived compounds and tested them against Hep-G2, 
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A549, VERO, MDA-MB-231, and MCF-7 cell lines. I noticed that these compounds inhibited 

both HDAC and STAT3 pathway intracellularly. Interestingly, compounds 12b and 12c showed 

6- to 10-fold cell-type selectivity for a STAT3-dependent, TNBC cell line MDA-MB-231. In 

Chapter 6, I used an in silico molecular docking tool (Autodock vina) to design three classes of 

PYM derivatives (total of 12 compounds) as putative STAT3 inhibitors that function by blocking 

the DNA binding domain of STAT3.  I synthesized these compounds and profiled their STAT3 

inhibition in a cell free assay. Subsequently, they were analyzed against Hep-G2, A549, VERO, 

MDA-MB-231, and MCF-7 cell line. I found that class II compounds 11b-d showed 100-fold 

enhanced cytotoxicity relative to PYM and are also 100-fold better STAT3 pathway inhibitors. 

Using a p-STAT3 DNA binding assay, I found that the STAT3 inhibition activities of these PYM 

derivatives are largely due to their direct STAT3 DNA binding interruption. These PYM-HDAC 

inhibitors and STAT3 DNA domain inhibitors could be novel anticancer agents that are selective 

for STAT3-addicted cancer cells. 

In chapter 7, I described results from characterization of the anti-proliferative activities and 

mechanism of action of 19 glycosylated HDAC inhibitors (HDACi). I found that these compounds 

are selectively cytotoxic to several HCC cell lines possibly due to GLUT2-mediated uptake with 

lead compound STR-V-53 significantly more selective for HCC cells. In collaboration with the 

Petros Lab at Emory University, we found that STR-V-53 is non-toxic to healthy mice (MTD > 

100 mg/kg) and effectively suppressed tumor growth in orthotopic murine model of HCC. In 

addition, we identified STR-V-165 and STR-I-195 as back-up compounds. Collectively, these 

glycosylated HDACi are promising anti-HCC agents.  
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CHAPTER 1. INTRODUCTION OF THE LINKAGE BETWEEN 

TISSUE INFLAMMATION AND CANCER 

1.1 Introduction : 

Uncontrolled inflammation is a salient factor in multiple disease types, including several chronic 

diseases and cancers. Inflammation can be directly link to tissue injury, fibrosis and necrosis, and 

it can be life threatening.1 In fact, treatment of tissue fibrosis is still an unsolved medical challenge 

as there are currently no tools to effectively overturn the progression of tissue fibrosis and necrosis. 

Idiopathic pulmonary fibrosis, an example of tissue inflammation, remain unsolvable and 

irreversible once diagnosed, with a 5-year survival rate lower than many types of cancer.2 A direct 

connection between inflammation and cancers is that tissue injury, and the concomitantly produced 

inflammatory factors, promote cancer cell growth via dysfunction in chemokines and cytokines 

signaling.3 It is known that some cancer types rely on inflammation signals for their progression, 

angiogenesis, proliferation and survival, invasiveness, and metastasis.4-6 Therefore, targeting 

inflammation is a promising therapeutic option for many types of cancers. However, challenges 

including low potency with poor drug distribution at disease sites, and off-target effects, which 

result in overt toxicity, remain unsolved in anti-inflammation and anti-cancer drug development. 

The studies described in this thesis focused on developing novel cell-type and tissue-selective anti-

inflammation and anti-cancer agents that target microinjuries, fibroblast hyperplasia exaggerated 

extracellular matrix (ECM, mainly collagens) deposition, and epigenetic dysfunctions.  
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1.2 Inflammation and causes. 

Inflammation involves upregulation of pro-inflammatory signals and it serves dual roles in 

biology. Controlled inflammation could protect infection and tissue injury while uncontrolled 

inflammation sustains autoimmunity and malignant transformations.7 Reactive oxidative stress 

(ROS) produced in response to tissue injury, bacteria or virus infections, chemical stimulation, 

hypoxia, or within the tumor microenvironment (TME) can stimulate the tissue epithelial cells.8 

The stimulated epithelial cells further release ROS species and pro-inflammatory cytokines to 

trigger the immune system response.9 The pro-inflammatory cytokines, which include but not 

limited to TGF-β, TNF-α, IL-1, IL-6, IL-8, IL-10,10 bind to their respective receptors and cause 

pro-inflammatory signals within the cell. These signals may induce the activation of inflammation 

pathways such as TGF-β pathway, STAT3 pathway, NF-κB pathway and epigenetic pathways. 

These pathways could promote the expressions of different proteins to either resolve the 

inflammation, or progress the pathogen and cause chronic injury, tissue fibrosis, or tumorigenic 

transformation.11 In some cases, the expressed proteins could be components of the extracellular 

matrix (ECM) that is supposed to heal and repair the tissue.12 However, due to the excess tissue 

damage or injury, ECM production could be out of control.13 The accumulation of ECM causes 

tissue stiffness, necrosis, and dysfunction. In other cases, proteins like anti-apoptotic STAT and 

Bcl-2 family proteins could be activated with the stimulation of cytokines. These proteins could 

induce anti-apoptosis in cells and promote cell proliferation.14 NF-κB pathway could be activated 

by these proteins, resulting in the inhibition of the tumor suppressor p53.15 Therefore, 

inflammation strongly links tumor progression with tissue/cell damage caused by injuries, 

infections, and other stimuli. 
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1.3 Inflammation and Tissue Fibrosis 

Fibrosis is the thickening and scarring of the connective tissues in organs, which could be induced 

by injuries from environmental stimuli, biohazards exposure, radiation, or infection, or could be 

triggered by gene mutation or other unclear intracellular disorder. The abnormally stressed 

microenvironment of the tissue may cause the upregulation of cytokine expression to modulate the 

stage of inflammation. Immunity responses will be triggered to protect the tissue from further 

attacks by the pathogenic sources such as bacteria and virus. However, the process could be 

overregulated when the injuries tend to be continuous over time. For example, liver cirrhosis can 

be triggered by HCV infection.16 Due to the continuous infection and inflammation, immune 

system response augments the process of healing and induce overexpression of ECM. The 

deposition of ECM could thicken the tissue which will deteriorate with sustained inflammation 

and finally induce liver fibrosis. One of my major focus in this thesis is on Idiopathic pulmonary 

fibrosis (IPF), induced by chronic inflammation and for which there is a significant unmet medical 

need. 

1.3.1 Idiopathic pulmonary fibrosis (IPF) 

IPF is the most common and most severe disease type of interstitial lung disease (ILD).17  IPF is a 

chronic and fatal disease which progressively declines the lung function. The cause of the IPF is 

ambiguous, and the disease infects 5 per 10,000 people worldwide.18 In the US, 40,000 patients 

die of IPF every year.19 The prognosis of the IPF is the worst of all ILDs, as its median survival is 

about 2-5 years from diagnosis (Fig. 1.1).20 
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Figure 1.1. The 5-year survival percentage of IPF relative to several types of cancers.2 The data 

suggested that IPF has higher mortality rate than several cancers.20  

1.3.2  IPF Pathogenesis 

The IPF can be related to the excessive accumulation of extracellular matrix (ECM) components. 

Fibronectin, tenascin-C, collagen type I and III are the ECM secreted by fibroblasts in the process 

of fibrosis.21-23 Fibroblast, the most common cell to produce ECM, is activated by cytokines, 

growth factors, and fibrotic factors to continuously generate ECM.  

During IPF, many cells secrete cytokines to activate fibroblasts to become myofibroblasts which 

are key cells that overregulate the ECM remodeling through combination of synthesizing features 

of fibroblasts with cytoskeletal contractile characteristics of smooth muscle cells (α-SMA).24 

During this process, other cells are transformed as well. Specifically, endothelial cell, which lines 

blood vessel, can transform to fibroblasts. Once the endothelial injury occurs, the endothelial cells 

can go under a process call endothelial-mesenchymal transition (EMT) when stimulated by 

inflammatory cytokines such as TGF-β1.
25 The mesenchymal cell is the primitive fibroblast which 

can transition to fibroblast cell and induce the fibrosis. Therefore, the EMT process is one of the 
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major sources of the fibrosis, as it supplies more amounts of fibroblasts and support for the ECM 

production later.  

Lymphocyte can also induce the activation of fibroblast via the Th2 polarized response. The Th2 

(T cell helper 2) response is an immune response against helminths and other extracellular injuries. 

This Th2 polarization is induced by adhesion between endothelial cell and lymphocytes. The 

response secrets pro-inflammatory cytokines IL-4, IL-5, IL-6, IL-10, IL-13 which activate the 

fibroblasts and transform them to the myofibroblasts.26 The next important activation of fibroblasts 

is through the macrophage. The polarization of monocyte turns it into M1 or M2 Macrophage. In 

IPF, M2 macrophage is the major polarized phenotype of macrophage, as the endothelial cell 

injury paracrine the cytokines IL-4, IL-10-IL-13 and TGF-β to the monocytes on the purpose of 

anti-inflammation. However, the M2 macrophage phenotype over-regulates the expression of 

TGF-β signal, connective tissue growth factor (CTGF), platelet-derived growth factor (PDGF), 

epidermal growth factor (EGF) and IL-1α, which continuously activate the fibroblasts and induce 

tissue fibrosis. On the other hand, the M1 macrophage (inflammation phenotype) can also induce 

the EMT by secreting TNF-α, IL-8 and ROS signals to endothelial cell and cause tissue necrosis 

and fibrosis.27 This process is called macrophage to myofibroblast transition (MMT). 

Based on the a forementioned literature observations, the main pathway towards IPF is the 

activation and proliferation of fibroblasts, as the ECM components can only be over-expressed 

when myofibroblasts are formed. Thus, inhibition of the activation and proliferation of fibroblasts 

could be an effective strategy in preventing or slowing fibrosis progression. 

1.4 Inflammation and tumorigenesis  

1.4.1 Cancer types linked to chronic tissue inflammation  
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Several studies have shown that dysregulation of inflammatory signals caused by chronic injuries 

could progress into malignant transformation. For example, chronic liver tissue injury caused by 

hepatitis infection predisposes hepatitis patients to higher risks of cirrhosis and hepatocyte 

carcinoma (HCC). Colitis associated cancer (CAC) is a subtype of colorectal cancer that is known 

to be associated with inflammatory bowel disease (IBD).28 Additionally, IPF patients also have 

higher risks of lung cancer.29, 30  Table 1.1 summarizes inflammation associated cancer types and 

their inducers.   

 

Table 1. 1 Inflammation associated cancer types.31-33 

Inflammation conditions Cancer type Inducer 

Asbestosis   Lung carcinoma Silica 

Chronic Bronchitis Lung carcinoma Silica 

IPF Lung carcinoma Unclear 

Tuberculosis Lung carcinoma Mycobacterium tuberculosis 

Liver cirrhosis HCC Hepatitis infection, alcoholic, 

genetic 

IBD, Crohn’s disease, chronic 

ulcerative colitis  

Colorectal cancer Gut pathogens 
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Table 1.1 continued. 

Chronic gastric inflammation Gastric cancer Helicobacter pylori 

Reflux oesophagitis, Barrett’s 

oesophagus 

Oesophageal carcinoma Gastric acids 

Skin inflammation  Melanoma  UV light 

Chronic pancreatitis 

hereditary pancreatitis 

Pancreatic carcinoma  Alcohol, gene mutation 

Schistosomiasis Bladder carcinoma Gram-uropathogens 

Cervicitis Cervical cancer Human papilloma virus 

chronic prostatitis Prostate cancer Bacterial infection 

Sialadenitis Salivary gland carcinoma Bacterial infection 

Sjögrensyndrome, 

Hashimoto’s thyroiditis 

MALT lymphoma unclear 

Gingivitis, lichen planus Oral squamous cell carcinoma Bacterial infection 

Chronic cholecystitis Gall bladder cancer Bacteria, gall bladder stones 
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Bacterial and virus infections are one cause of chronic tissue injuries. HCC is linked to liver 

cirrhosis that could result from infections by hepatitis virus, including hepatitis B virus (HBV) and 

hepatitis C virus (HCV). The cytokines (TGF-β and IL-6) released as a result of these infections 

activate the hepatocyte stellate cells (HSCs), triggering immune response and inflammation.34 

Also, the failure of anti-viral treatment could induce chronic inflammation and liver tissue fibrosis 

in response to the overexpression of supposedly protective TGF-β. These events ultimately result 

in accumulation of ECM and liver cirrhosis.35 The chronic inflammation triggered ROS production 

is the main cause of genetic mutation, which is responsible for carcinogenic event to take place.36 

Recent studies found that the Helicobacter pylori is the key pathogenic factor for chronic gastric 

inflammation. H. pylori resides in the host for a lifetime as the host’s immune system is incapable 

of clearing could it out. H. pylori infects 50% of the world population and its infection can cause 

the duodenal and gastric ulcer disease.37 H. pylori-infected cells release IL-8, IL-10, TNF-α to 

cause tissue inflammation as superficial gastritis. These cytokines directly stimulate immune cell. 

In addition to contributions from other factors, such as smoking and high salt consumption, chronic 

inflammation caused by H. pylori infection could induce the gastric cancer.38 

Exposure to chemicals is another inducer of chronic inflammation. Lungs tissues are most 

susceptible to the effects of chemical exposure which could cause chronic injuries such as 

Bronchitis and idiopathic pulmonary fibrosis. Smoking, silica exposure, inhalation of hazardous 

chemicals are the major sources of irritants that could cause chronic lung tissues inflammation 

linked to lung carcinoma. The lung tissue injuries induced by these chemical irritants could cause 

integrins αvβ6 and αvβ8 to stimulate and induce overexpression of TGF-β.39 The binding of TGF-

β to TGF-βR in epithelial cells or fibroblasts causes EMT or myofibroblast differentiation40, 41 

which induces an over-expression of ECM and change of metabolism in cells – from aerobic 
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glycolysis to anaerobic glycolysis – to support extra energy for ECM production and migration. 

Stiffness and lung tissue necrosis occur when ECM is overproduced. Lung cancer could be 

triggered in this circumstance.42  

1.5 Major inflammation pathways in tumor progression and tissue fibrosis 

1.5.1 TGF-β pathway and inflammation-induced carcinogenesis 

In current understanding, TGF-β plays a double-edged sword role in inflammation and cancer. In 

case of common acute injury, TGF-β is regarded as an important anti-inflammatory cytokine that 

can protect tissue from injury. It plays an essential role in tissue repair as well. However, TGF-β 

could also be a pro-inflammatory cytokine in the chronic injured condition and tumor 

microenvironment. The activation of TGF-β usually caused by tissue inflammation, ROS up-

regulation, and immune response. TGF-β has three isoforms, which are TGF-β1-3, and TGF-β1 

plays the critical role to induce inflammation.43 In most of cases, TGF-β is secreted by cells in a 

large latent complex (LLC) in which the TGF-β is protected by latency associated peptide (LAP) 

and covalently bond to a family member of the ‘latent TGF-b-binding proteins’ (LTBPs).44, 45 

Upon cleavage, the small latent complex (SLC) will be formed. However, TGF-β needs to be 

activated via the release of LAP. Only a few of cell types can secret the SLC form of TGF-β. And 

the SLC form can be activated by non-integrin activation,45 including  low pH (pH<4),46 protease 

activity (MMPs),47 ROS,48 and thrombospondin-149 (TSP-1) induced LAP transformation.  

Integrin αvβ6 and αvβ8 play roles in TGF-β activation via different mechanism. Specifically, LLC 

form of TGF-β bind to αvβ6 or αvβ8 of the other cell on the membrane. For αvβ6, cell traction and 

pulling induce conformational change in LAP to release the TGF-β in the active form. The integrin 

αvβ8 induces MT-1 MMP into the LAP interaction, and therefore a proteolytical cleavage between 
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LAP and TGF-β.50 The released TGF-β binds to TGF-βRs to induce inflammation pathways. With 

the TGF-β ligand-receptor binding, SMAD2/3, PI3K, JNK and MAPK pathways could be 

activated. SMAD pathway activation induces pro-inflammatory cytokines and ECM production.51 

Activated PI3K pathway induces cell proliferation and invasiveness, while JNK and MAPK 

pathways induce cell stress, inflammation and tissue necrosis;52 The TGF-β activation and 

overregulation could also induce process of EMT through transcriptional regulation and expression 

of Snail families, ZEB families, and bHLH families, 49 which could induce malignant tumor 

growth.53, 54 In addition, Angiogenesis could also be promoted through TGF-β through expression 

of ID-1 and ID-3 in terms of SMADs transcriptional regulation.55, 56 Overall, TGF-β pathway is 

central to the connection between chronic inflammation and tumorigenesis (Fig. 1.2).  
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Figure 1.2. TGF-β pathway in cancer and inflammation.57-59 

The acidic tumor microenvironment promotes TGF-β activation that assists in building fibrosis 

environment around the tumor. Within the microenvironment, cancer-associated fibroblasts (CSF) 

are the major producer of TGF-β cytokines60 that will stimulate excessive ECM deposition and 

form desmoplasia, a term to indicate fibrosis microenvironment around the tumor. Desmoplastic 

reaction shields the tumor from exposure to chemotherapeutic agents and significantly increases 

tumor growth, angiogenesis, and promotes cancer cell invasiveness and metastasis.61 Pancreatic 

and triple negative breast cancers are especially prone to desmoplasia formation.  Once 

desmoplasia is built, it is hard to treat the cancer with small molecule drugs.62-63  
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TGF-β pathway inhibition is a promising strategy for managing/treating fibrosis, inflammation, 

and cancer. Therapeutic targets within the TGF-β pathway includes integrin, TGF-βR, TGF-βR 

kinase, SMAD2/3 phosphorylation , and TGF-β expression. Anti-integrin antibody can block 

integrin αvβ6 binding with LAP-TGF-β and so prevent the release of activated TGF-β. On the 

other hand, MT-1 MMP antibody can also effectively reduce the activation of TGF-β by inhibiting 

the function of αvβ8. The stategiess to inhibit the TGF-βR including ligand traps, TGF-βRI kinase 

inhibitor, TGF-βRII kinase inhibitors. For the TGF-β ligand trap, small molecules such as 

pirfenidone (PFD) and its derivatives have been found to be a ligand for the receptor. PFD has 

been approved by FDA for the treatment of IPF.64, 65 In addition, PFD is also known to be a 

potential anti-tumor agent due to its TGF-β pathway inhibition.66 Peptides probes, which 

demonstrated selective inhibition effects on integrin and TGF-βRs, have been reported.67, 68 For 

Kinase inhibition, selective TGF-βR kinase inhibitors such as SB-431542 and galunisertib have 

shown to potently inhibit both cancer growth and inflammation. On the other hand, inhibition of 

p38 and SMAD phosphorylation, which suppresses TGF-β up-regulation, has been achieved with 

small molecule inhibitors PD169316 and SB203580.69 

1.5.2 TNF-alpha, NF-κB pathway and inflammation 

The transcription factor NF-κB is a regulator of inflammation and immune response. NF-κB 

pathway is crucial to the survival of several cancer cells as it prevents cell death and promote cell 

proliferation by inhibiting the tumor suppressors such as p53. Several pro-inflammatory ligands 

and their receptors (cytokine receptors, pattern-recognition receptors (PRRs), TNF receptor, T-cell 

receptors) activate NF-κB pathway, including TNFR for TNF-α, TLRs for LPS and IL-1β, IL-6R 

for IL-6, etc.21 It has been shown that NF-κB signaling has two separate pathways. The ‘canonical’ 

pathway is stimulated by TNF-α and IL-1 or TLR, to cause induction of IκBα phosphorylation by 
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IKK (Fig. 1.3). IκBα is a protein associated with and inactivated by p50/Rel-A or p50/c-Rel dimers. 

The phosphorylation of IκBα promotes its degradation by ubiquitin-proteasome degradation 

pathway; the consequently released Rel-A/p50 will translocate into the nucleus and promote the 

expression of pro-inflammatory cytokines, anti-apoptosis proteins, chemokines, cell cycle 

regulators. The downstream effect of this signaling cascade is induction of tissue inflammation, 

necrosis, or tumorigenesis. For the other non-canonical NF-κB pathway, the stimulation from LTs, 

CD40L, or  BAFF, causes IKKα activation and the release of the p100/Rel-B dimer into the 

nucleus (Fig.1.3).70 Both pathways are responsible for inflammation, tissue necrosis, and 

tumorigenesis.  

 

Figure 1.3. Cell signaling and pathways of NF-κB-mediated inflammation.70 

Upregulation of NF-κB pathway in several cancer cells promotes proliferation, invasiveness, 

metastasis, and angiogenesis through the expression of NF-κB target genes.71 For example, the 
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expressions of Bcl-2 families of apoptosis regulators,72 caspase-8 inhibitor FLIP73 and VEGF74 are 

regulated by NF-κB. In addition, NF-κB also induces EMT which directly contributes to cancer 

metastasis.75 Thus, a targeted inhibition of NF-κB by pharmacological agents is considered a 

promising cancer therapy strategy. 

Approaches that have been investigated to achieve NF-κB inhibition include receptor inhibition, 

IKK complex inhibition, IκB degradation inhibitor, NF-κB DNA binding inhibitors, NF-κB 

translocation inhibitors, p53 induction, p65 acetylation and Nrf-2 activation. Receptor inhibitors 

such as TNFR inhibitor SGT-11 and IL-6R inhibitor Tocilizumab; IKK inhibitors such as TPCA 

1,76 BOT-64,77 BMS 345541,78 and IMD 035479; IκB degradation inhibitors such as BAY 11-

7082,80 Parthenolide,81 Lactacystin,82 MG-132,83 and MG-115;82, 84 NF-κB DNA binding 

inhibitors such as GYY 413785 and p-XSC,86 are all promising NF-κB pathway inhibitors. In 

addition to these pathway specific agents, NF-κB pathway could also be inhibited by corticosteroid 

Dexamethasone87 and ani-ROS agents such as lipoic acid88 and Dimethyl fumarate.89 

1.5.3 JAK-STAT pathway and inflammation 

Signal Transducer and activator of transcription (STAT) is an essential regulator of inflammation 

signal in the tissue inflammation. STAT family consists of seven sub-members: STAT1, STAT2, 

STAT3, STAT4, STAT5a, STAT5b and STAT6. Each member plays different role in regulating 

inflammation, proliferation, survival, and tumorigenic activities.90 In general, STAT proteins are 

activated through the receptors-ligands (Interleukins, interferon, etc) interaction that stimulates 

Janus kinases (JAKs) phosphorylation. The activated JAKs phosphorylate STAT; the dimerization 

of the phosphorylated STAT (p-STAT) results in the translocation of the p-STAT dimer into the 

nucleus where induces the transcription of STAT-target genes.  
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Figure 1.4. General cellular signaling for STAT protein activation and transcription.91 

Heterodimerization of STAT sub-members occurs in the cell and these heterodimers have different 

cellular activities (Table 1.2). Specifically, STAT1-STAT2 dimer (also STAT1-STAT1 and 

STAT2-STAT2 dimers) induces the transcription of pro-inflammatory and immunoregulation 

genes in interferon stimulated cells in response to virus and bacterial infections;92, 93 STAT1- 

STAT3 dimer induces cytokine production and inflammation or blocks the STAT1-STAT1 

activity. On the other hand, STAT3-STAT3 dimerization induces cell proliferation, anti-apoptosis, 

and invasion. STAT3-STAT3 dimerization (signaling) is upregulated in difficult to treat cancers 

such as the triple negative breast cancer (TNBC),90 HCC; lung, breast, renal, and ovarian cancers, 

and lymphomas, are STAT3-dependent.94-99 STAT3-STAT5 heterodimer also promotes 

inflammation and tumorigenesis (to be discussed more below).  In comparing to others, STAT4 
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may not directly link to inflammation and cancer. Rather, it connects with immune response for 

tissue inflammation. STAT4 could be activated by IL-12, IL-2 IL-23, IL-32, IFN-1, IL-18, IL-21 

and induce tissue inflammation and disease through immune response.100 The known 

inflammatory diseases that can be induced by STAT4 are IBDs, HBV, type-1 Diabetes etc.100 In 

addition to promoting pro-inflammatory cytokines production, STAT5-STAT5 dimer up-regulates 

Akt proteins, p85 and p110 for PI3K pathway to induce tumorigenesis and mutagenesis in several 

cancers including breast cancer, acute myeloid leukemia, prostate cancer and melanoma.101,43 

STAT3-STAT5 could act similarly as inflammation promoter with cytokine activations102 while 

by IL-4 and IL-13 activation of  STAT6 promotes its involvement in inflammatory airway 

hyperresponsiveness,103 eosinophilic infiltration,104 and responses of mast cells.105, 106  

Table 1.2. The possible heterodimers and their inflammation activator and anti-inflammation 

activators.102  
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Among all STAT sub-members, STAT3 is the most important regulator of inflammatory factors 

that feed cancer progression. Specifically, STAT3-mediated up-regulation of anti-apoptotic 

proteins Bcl-2 families and Mcl-1 resists cell death, while its upregulation of Cyclin D1 and c-

Myc causes increase cell proliferation. Over-active p-STAT3 helps cancer cells evade the immune 

system through upregulation of PD-L1 expression.108 In addition, STAT3 enhances cancer cell 

directional migration by regulating Rac1 activity109 while it promotes angiogenesis by 

transcriptionally regulating VEGF activity.110  

Therapeutic agents targeting STAT3 pathway have been well-studied as treatment modalities for 

cancers but none has been approved by FDA. Representative STAT3 inhibitors so far investigated 

include JAK kinase inhibitors, STAT3 SH2 domain phosphorylation inhibitors, nuclear 

STAT protein types Stimulators 
(Inflammation) 

Stimulators 
(Anti-inflammation) 

Heterodimerization 

STAT1 Type I IFN IL-10 STAT2 
 Type II IFN IL-27 STAT3 
 IL-6 IL-35 STAT4 

STAT2 Type I IFN  STAT1 
   STAT6 

STAT3 IL-2 IL-10 STAT1 
 IL-5 IL-27 STAT4 
 IL-6  STAT5 
 IL-23   
 MCSF   
 GCSF   
 Type-I IFN   

STAT4 IL-12 IL-35 STAT1 
 IL-23  STAT3 

STAT5 IL-2-7, IL-9, IL-15  STAT3 
 IL-21   
 M-CSF   
 GM,-CSF   

STAT6 TypeI IFN  STAT2 
 IL-3   
 IL-4   
 IL-13   
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translocation inhibitors, DNA binding domain inhibitors, and transcription inhibitors. JAK kinase 

inhibitors include AZD-1480110; SH2 domain inhibitors include Bt354,111 Osthole,112 and 

KYZ3;113 STAT3 translocation inhibitor; STAT3 DBD inhibitor methylsulfonylmethane114 as the 

VEGF promoter inhibitor, CPA-1, CPA-7115 to prevent DNA binding; Chemical inS3-54A18116 

binds to Cyclin D1 promoter and Salidroside as the MMP-2 promoter inhibitor.117 

 

1.5.4 Arachidonic acid metabolism pathway and inflammation 

Arachidonic acid is a precursor of the metabolite Prostanoids which are the lipid mediators of 

inflammatory response. Prostanoids include prostaglandins (PGs), prostacyclin (PGI), and 

Thromboxane (TX). PGs act as signals for cell-cell communications and control inflammation 

status via intracellular and intercellular signaling. There are types of PGs with different functions. 

For example, Prostaglandin E2 (PGE2) acts as a pro-inflammatory mediator which may trigger 

pain, swelling, redness and other immune responses in the injured region.118 Prostacyclin 

(prostaglandin I2, or PGI) is another prostanoid that prevents platelet formation and attenuate 

vascular contraction.119 Recently, PGI has been shown to be an anti-inflammatory mediator which 

could modulate immune system and attenuate inflammation in tissues.120  On the other hand, 

Thromboxane (TXA2)  acts in the opposite direction as it promotes platelet formation,121 

vasoconstrictor,122 and causes Prinzmetal's angina.123 In addition, TXA2 could promote 

inflammation, progression and metastasis in multiple tumors.124 



44 

 

 

 

Figure 1. 5. COX pathways and following prostaglandin products.125  

Drugs, such as corticosteroid, which inhibit PGE2 receptors, have been found to effectively block 

the inflammation process. Other PG EP4 receptor antagonists like GW627368X,126 CJ-023,423,127 

and AH23848128 have shown promising efficacy in blocking the synthesis of PGE2 or TXA2. 

Enzymes such as cyclooxygenases (COX) that control the metabolism of arachidonic acid have 

attracted attention as therapeutic targets. COX families include COX-1, COX-2, COX-3 and COX-

IV. In this family, COX-1 and COX-2 are the ones that have been well-studied as targets of 

inflammation and cancer treatment. COX-1 is a constitutively expressed enzyme with critical roles 
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in tissue protection such that it guards gastrointestinal tract with synthesis of prostaglandins 

essential for the maintenance of mucosal integrity.129 Recently however, studies found that COX-

1 is over-expressed and highly relevant to the etiology of ovarian cancer. COX-1 intersects 

multiple pro-tumorigenic pathways in high-grade serous ovarian cancer.130 In breast cancer, 

stromal cells demonstrated with a highly overexpressed COX-1 level, which may lead to 

Tumorigenesis.131 In Cervical cancer, highly expressed COX-1 was known to regulate COX-2, 

PGE2 receptors, and angiogenic factors.132 Therefore, inhibition of COX-1 may be a 

chemoprevention strategy for cancers. COX-2 is widely regarded as a destructive enzyme that is 

not active in normal conditions. COX-2 overexpression and high activities are found in injured 

tissues, fibrotic tissues and tumors. COX-2 is known to be highly active in multiple cancers 

including breast,133 prostate,134 and liver cancers.135 COX-2 promotes tumor growth, apoptosis 

resistance, and angiogenesis.136-138 Thus, COX-2 inhibition is favorable in drug discovery for anti-

inflammation and anti-cancer purposes.  

Lipoxygenases (LOXs), a class of iron-containing metalloproteins, are other enzymes that regulate 

the arachidonic acid metabolisms. LOXs catalyze the transformation of arachidonic acid to three 

types of hydroxyeicosatetraenoic acids (HETEs) –5-HPETE or 5-HETE by 5-LOX, 12-HETEs by 

12-LOX, 15-HETEs by 15-LOX. 5-HETE is the precursor of Leukotriene LTA4, which is 

converted to lipid mediators LTB4, LTC4, LTD4, LTE4 that induce asthma and inflammation.139, 140 

Studies have found that 5-HETE and 5-HPETE stimulate the generation of superoxide in human 

neutrophils, and trigger the ROS stress.141 The product LTs are complementary pro-inflammatory 

factors to the PGE2.  Like COX, 5-LOX contributes to tumorigenesis by directly promoting tumor 

cell proliferation, growth, and survival through up-regulation of LTs.142 For example, in a colon 

cancer study, 5-LOX expression was found to be positively correlated with polyp size, 
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intraepithelial neoplasia and adenoma, suggesting that LOX may contribute to the early stage of 

colon cancer.143 On the other hand, 12-LOX expression was found to be correlated with advanced 

stages of prostate cancer,144 and an elevation of urinary levels of 12-HETE has been found prostate 

cancer patients.145 Therefore, LOXs represent another target in arachidonic acid pathway for the 

discovery in anti-inflammation and anti-cancer agents. 

Current strategy for the inhibition of arachidonic acid metabolism pathway focuses on PGs 

receptor inhibition, PGE2 production inhibition, COX inhibition, LOX inhibition. Specifically, 

PGs receptor antagonists have been widely used for anti-inflammation treatment. For example, 

Timapiprant is a prostanoid receptor 2 (DP2) inhibitor that has been used for lung inflammation 

(atopic eosinophilic asthma) and eye allergy;146 Iloprost is a PG receptor inhibitor used for 

treatment of pulmonary arterial hypertension (PAH);147 Fevipiprint is a PG DP2 receptor inhibitor 

currently in Phase III clinical trial (NCT02555683) for the treatment of asthma.148 Bimatoprost is 

a PG analog that acts to prevent the progression of glaucoma and manage the ocular 

hypertension.149 Inhibition of PGE2 production by non-steroidal anti-inflammatory drugs 

(NSAIDs) is also effective, however, several early NSAIDs are non-selective COX inhibitors. For 

example, Ibuprofen, Indomethacin, and Aspirin are NSAIDs with no COX-1/2 selective index.150 

New generation of NSAIDs showing COX-2 inhibition have been developed. For example 

celecoxib is a COX-2 selective inhibitor,150 which is still in use as anti-inflammatory drug for the 

purpose relieving pain,  swelling and rheumatoid arthritis. More recently, LOX inhibitors are 

attracting more attention for application in anti-inflammation and anti-cancer treatment. 5-LOX 

inhibitors include Meclofenamate sodium, Zileuton and Myxochelins/ pseudochelin. 

Meclofenamate sodium effectively suppresses the production of LTD4 via and attenuates 

Asthma.151 Zileuton to downregulates several LTs and is also used for managing asthma.152 
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Myxochelins/pseudochelins are newly discovered 5-LOX inhibitors that significantly suppress  

LTs production as well.153 

1.5.5 Epigenetic pathway 

 

Figure 1.6. HDACs and HATs mechanism of action in chromatin.154 

Histone acetyltransferases (HATs) and Deacetylases (HDACs) are key epigenetic enzymes that 

regulate chromatin dynamics.155 HATs acetylate the lysine residue of histones to generate ‘open’ 

form of chromatin that is accessible to transcription factors. Nuclear HDACs promote the reverse 

reaction to generate restricted chromatin. HDACs deacetylate other nonhistone proteins as well. 

There are eighteen HDAC isoforms grouped into four classes.156 Classes I, II and IV are zinc-

dependent amidohydrolases while class III are NAD+-dependent deacetylases. Class I consists of 

HDACs 1, 2, 3, and 8, which are mostly located in the nucleus; class IIa comprises of HDACs 4, 

5, 7, 9, and they can shuttle between the nucleus and cytoplasm. Class IIb members are HDACs 6 
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and 10, and are found in cytoplasm while the only member of class IV is HDAC 11. Class III are 

Sirtuins, consisting of SIRT1-7.  

Dysfunctions in HDACs activities could promote inflammation and immune response. For 

example, upregulation of HDAC1 and 2 activity stimulates TGF-β pathway, induces EMT,157 

ECM overproduction; and promotes fibroblast-myofibroblast transformation, and cell migration. 

Also, HDACs promote the expression of cytokines such as TNF-α, IL-6, and IL-1β. HDAC3 

specifically recruit the NF-κB/p65 signal through epigenetic regulation of IL-1 expression, and 

thus TNF-α induced inflammation.158, 159 HDAC1 and HDAC2 are evidenced in responsible for 

positive regulation IL-6 and STAT3 induced gene expression.160 Aberrant HDACs activities have 

also be implicated in fibrosis including liver cirrhosis, cardiac fibrosis, pulmonary fibrosis, renal 

fibrosis, and other inflammation diseases.161 HDAC inhibitors (HDACi) MS-275 and TSA 

suppress the TGF-β-mediated MAPK and PI3K pathway inflammation signals with demonstrable 

downregulation of biomarkers of p-ERK and p-Akt.162 TSA also attenuates tissue inflammation 

and prevents further damage.163, 164  HDAC inhibition also regulates the STAT pathway by 

hyperacetylation of STAT proteins.165 Specifically, acetylation of STAT3 accelerates the STAT3 

translocation towards the mitochondria where the acetylated STAT3 bind to E1 subunit of pyruvate 

dehydrogenase (PDH) stimulates the conversion of pyruvate to acetyl coA to increase metabolic 

flux through the TCA cycle that will consequently stimulate energy production via oxidative 

phosphorylation.165 HDAC inhibition can also suppress tissue inflammation through inhibition of 

COX activation and PGE production.166 

The FDA and other non-US regulatory authorities have so far approved five HDACi to treat 

hematological malignancies. Vorinostat (SAHA) is approved for cutaneous T-cell lymphoma.167 

Belinostat, Chidamide, and Romidepsin are approved for peripheral T-cell lymphoma,168-170 while 
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Panobinostat is approved for multiple myeloma171 (Fig. 1.7). The standard pharmacophoric model 

of zinc-dependent HDACi consists of a zinc-binding group (ZBG), a hydrophobic linker, and a 

recognition cap group. Common ZBGs include carboxylic acid, hydroxamic acid, thiol, 

trifluoroketones and benzamide.172 To address the pharmacokinetic and pharmacodynamics issues 

plaguing early ZBGs, there has been sustained interest in identifying novel ZBGs.173 In this regard, 

natural products flavonoids (Genistein, chrysin, etc.) have been reported as HDACi with novel 

ZBGs.174 

 

Figure 1.7. Selected HDACis.  

Other researchers have reported novel ZGs as well.172, 175, 176 These new ZBGs are promising 

templates for the design of new generation of HDACi may possess targeted anti-inflammation and 

anti-cancer activities with reduced systemic toxicity. 
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1.6 Current medical challenges and novel solutions for targeting inflammation pathways: 

1.6.1 Challenges with inhibition of TGF-β pathway  

Inhibition of TGF-β pathway anti-inflammation and anti-cancer treatment strategy has 

encountered several challenges including overt toxicity, off-target effects, and low in vivo efficacy. 

The toxicity that results from TGF-β pathway inhibition is due to the vital multifaceted roles in 

normal biology. TGF-β pathway maintains tissue homeostasis and repair.177 In normal tissue and 

organs, TGF-β promotes tissue regeneration and repair by recruiting stem/progenitor cells.178 In 

another study, TGF-β pathway was shown to induce anti-oxidative effect via suppression of COX-

2 activities in lung cancer cell.179 Thus, inhibition of TGF-β may cause adverse effects.180 Five 

drug candidates targeting the upstream of TGF-β pathway – the integrin inhibition – have been 

studied in the clinic for cancer treatment. Despite of promising data from preclinical animal 

models, the clinical outcomes have not been encouraging. Two trials (NCT01122888, 

NCT02337309) were terminated due to a lack positive outcome and the results from three trials 

(NCT00721669, NCT00284817, NCT00635193) have not disclosed to the public till date.181 Also, 

the integrin mechanism in TGF-β activation and cancer is not fully understood. Even though αvβ6 

Integrin activates TGF-β  pathway and promote tumorigenesis, they seem to suppress pancreatic 

cancer progression.182 So, integrin inhibition as a cancer treatment strategy remains to be clinically 

validated. 

As described in section 1.4.1 above, TGF-β pathway is regulated by several other pathways whose 

individual or collective inhibition could overcome the challenges noted with integrin inhibition. 

Pleotropic small molecules that inhibit cohorts of TGF-β signaling mediators have been 

investigated.  PFD, a notable example that suppresses TGF-β pathway through MAPK inhibition, 
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has been approved by FDA for the management pf IPF.64, 65 The potential of PFD as anti-tumor 

agent is under active investigation.66 However, PFD’s systematic toxicity and low bioavailability 

have limited its efficacy in IPF treatment.  PFD only slows long term IPF progression with 2.47 

years life expectancy extension with no evidence of stopping the disease progression.183 

 

1.6.2 Challenges with NF-κB pathway inhibition 

NF-κB pathway is important for both normal cell and diseased cell regulation and gain of function 

mutations within this pathway is relatively rare.184,185 This has contributed to the low therapeutic 

indices of NF-κB-targeting agents. In addition, not all cancer cells are solely dependent on NF-κB 

for survival, which makes most of NF-κB inhibitors to only suppress cancer cell proliferation but 

not cause cancer cell death. Paradoxically, NF-κB inhibition may even augment the invasiveness 

of certain cancer cells as it has been observed that ovarian cancer cells could become more invasive 

with NF-κB inhibition.186  Also, NF-κB may play very important role in immunity, and NF-κB 

inhibitors could induce the impairment of NF-κB-dependent immune response and 

inflammation.184  

Nrf-2 activation is an alternative approach to achieve NF-κB inhibition.187 Activated Nrf-2 induces 

the transcription of anti-ROS genes such as HO-1, SOD, NQO1, catalase, and other anti-oxidant 

proteins. These proteins effectively suppress the signal of NF-κB and attenuate inflammation 

progression. Most importantly, the Nrf-2 activation does not impair the normal NF-κB pathway in 

the cell, and so effectively reduces inflammation with reduced adverse effects. Nrf-2 activation 

could be achieved through the inhibition of Kelch-like ECH-associated protein 1 (KEAP1). To 

date, known KEAP1 inhibitors, such as dimethyl fumarate (DMF), are electrophilic compounds 
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that form covalent bonds with its cysteine 288 and 289. 89, 188, 189 DMF has been approved for the 

treatment of relapsing multiple sclerosis and psoriasis while clinical trials evaluating its potential 

application in other inflammatory disease and cancer are ongoing.190 Piperic acid and it analog, 

piperine, are another examples of KEAP1 inhibitors whose mechanisms of action have not been 

firmly established.191 The PPA and DMF may work similarly to inhibit the KEAP1 activity. 

However, DMF and PPA lack tissue targeting and are widely distributed in the human body. The 

systemic distribution could be responsible for the adverse effects, such as abdominal pain, 

flushing, diarrhea, nausea, etc, which DMF has elicited in the clinic.192  

 

1.6.3 Challenges with COX/LOX inhibition 

Recent efforts on achieving COX inhibition has mainly focused on COX-2 selective inhibition. 

Celecoxib, a lead FDA-approved COX-2 inhibitor, is being investigated in clinical trials for the 

treatment of several cancer types including head and neck cancer (NCT04162873), bladder cancer 

(NCT02885974), TNBC (NCT04081389), malignant pleural mesothelioma (NCT03710876); 

antiangiogenic therapy for medulloblastoma, ependymoma ATRT (NCT01356290) and others. In 

previous trials, Celecoxib has been studied as a combination therapy to cancer with chemotherapy, 

due to its efficiency of COX-2 inhibition. COX-2 overexpression had been found to increase 

cancer cell drug resistance to chemotherapy, and combination of celecoxib may induce drug 

sensitivity instead. However, in previous clinical trials, HER2 positive breast cancer patients that 

were treated with trastuzumab along with Celecoxib did not experience improved efficacy.193  In 

a colorectal cancer chemoprevention study, cardiovascular risks (heart failure) was observed in 

patients taking high daily dosage of Celecoxib for a period of 3 years.194 Another study also noticed 
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Celecoxib’s cardiovascular risks.195 Valdecoxib, another COX-2 selective inhibitor, was 

voluntarily withdrawn due to the cardiovascular concerns.196   

Although the roles of COX-2 in malignant transformations are well established, COX-1 also plays 

leading roles in tumorigenesis (see section 1.5.4 for details). Unfortunately, COX-1 selective 

inhibitors are few and have yet to be well-studied to decipher the roles of COX-1 in the 

pathophysiology of cancers.197  The traditional NSAIDs COX-1 selective inhibitors encountered 

with elucidating gastrointestinal toxicity, and yet to solve the issue to date.198 Tumor-targeting 

delivery or cell-type selective COX-1 inhibitors could potentially mitigate the GI adversary effect. 

Therefore, there is a significant need for novel COX-1 selective agents.   

 

1.6.4 Challenges with STAT3 inhibition 

Inhibition of multiple effectors, including JAK kinase, SH2 Domain, and DNA binding domain, 

have been investigated for inhibitions in STAT3 pathway.199 However, the FDA has approved 

none of the drugs targeting these effectors.  The failure of current STAT3 inhibitors is largely due 

to toxicity and lack of specificity for STAT3. Despite this frustration, STAT3 still remains a 

valuable target for the discovery of anti-inflammation and anti-cancer drugs. 

 

1.6.5 Challenges with HDAC inhibition: 

Although HDAC inhibition has been clinically validated for the treatment of hematological 

malignancies, it has so far not been effective against solid tumors. The reason for the lack of 
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efficacy of HDACi against solid tumors is not fully understood. However, the fact that most 

HDACi do not accumulate within the tumor interstitium at therapeutically efficacious 

concentrations is a major culprit.154 Additionally, HDAC inhibition elicits a pleiotropic phenotype, 

primarly due to their nonselective inhibition of various HDAC isoforms and possibly other non-

HDAC targets. This non-selectivity causes reduced in vivo potency and toxic side effects. 

Regardless, reactivation of tumor-suppressor genes by HDACi is still currently being pursued as 

a potentially broad cancer treatment option.200  

 

1.7 Solutions investigated in this thesis: 

Inhibition of the major inflammation pathways enumerated herein, as anti-inflammation and anti-

cancer treatment strategy, still has great potential. Targeted inhibition – of tumor/cancer cells, or 

the inflamed tissues – could be a feasible solution to mitigate the off-target toxicity and systematic 

toxicity of drugs inhibiting these pathways. This thesis focused on developing cell- and tissue-

selective anti-inflammatory and anti-cancer agents that have potential to overcome the 

shortcomings of the currently available drugs. 

 

1.7.1 Macrolides as templates for targeted delivery to liver and lung tissues 

Azithromycin (AZM) and clarithromycin (CLM) are two macrolactone antibiotics that is widely 

used to treat upper respiratory tract infections.  AZM and CLM shared similar mechanism of action 

involving selective inhibition of bacterial ribosome to prevent protein synthesis.201  
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AZM and CLM are highly effective in treating upper respiratory tract infections due to their 

outstanding pharmacokinetics (PK) properties and selective distributions to the disease sites. AZM 

and CLM selectively accumulate in lung resident macrophages and other immune cells which may 

accumulate in infectious tissues.202, 203, 204 AZM and CLM also accumulate in the liver tissues as 

well. These macrolides demonstrate more than 100-fold enrichment in these tissues relative to the 

bloodstream.205-207 Evidently, AZM and CLM have intrinsic anti-inflammatory activities. AZM 

facilitates the repair of tissue injury, downregulates leukocytes activities, and the expressions of 

pro-inflammatory cytokines.208-213  CLM attenuates tissue fibrosis progression by downregulating 

the cytokines, and inhibiting the fibroblast migration through downregulation of inflammatory 

product TXA2.
214, 215 Third, AZM has been observed to selectively accumulates internally with 

epithelial cells, fibroblasts, lymphocyte, and hepatocyte.203, 216, 217 These evidences make AZM an 

excellent lung/liver targeting antibiotics with low systematic toxicity. In addition, AZM is well-

tolerated by patients as a result of its safe metabolites.208 Currently, Macroldies have been 

recognized as potential anti-inflammatory candidates in respiratory disease.218 Based on these 

attributes, AZM and CLM are ideal template molecules for the design of liver- and lung-tissues 

targeted anti-inflammation and anti-cancer agents.  

 

1.7.1.1 Macrolide-based anti-fibrotic agents 

As discussed above, PFD, as a TGF-β inhibitor, showed potential and possibility in attenuating 

tissue inflammation. Tissue targeted delivery may overcome challenges associated with PFD 

clinical application, such as off-target effects and systematic toxicity. We hypothesized that 
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integration of PFD-like moiety into AZM and CLM templates would afford novel TGF-β 

inhibiting anti-fibrotic agents that are selectively accumulated in the lungs and liver tissues.  

In Chapter 2, I designed and synthesized four classes macrolide-based PFD-like compounds (total 

of 28 compounds) to test our hypothesis (Fig. 1.8). We found that the selected candidates showed 

significant anti-inflammatory and anti-fibrotic effects that are more than 1,000-fold more potent 

than PFD. Specifically, among five lead agents, compound 15c is one of the most promising 

candidates based on its biological activity and chemical structure. Compound 15c is 10-fold more 

potent in inhibition of NF-κB pathway and 2,500-fold more cytotoxic to MRC5 cells than PFD. 

Also, 15c showed over 1,000-fold more potent TGF-β pathway inhibition and about 1,000-fold 

more potent ECM production inhibition than PFD. From mechanism of action studies, we found 

that 15c derived its bioactivities by targeting pathways responsible for the anti-fibrotic activities 

of PFD and AZM. Collectively, these macrolide-based PFD-like compounds are excellent 

candidates for more in-depth preclinical studies as therapeutic agents for IPF.   
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Figure 1.8. General structures of macrolide-based PFD-like compounds.  

 

1.7.1.2 Macrolide conjugated with anti-oxidants as novel anti-inflammation and anti-cancer 

agents. 

In Chapter 3, to follow-up on the promising anti-IPF activities that were observed with the 

macrolide-based PFD-like compounds, I co-opted AZM and CLM as templates for the design of 

other tissue selective anti-inflammatory drugs. I used R-alpha lipoic acid (ALA), piperic acid 

(PPA), and Fumaric acid (FMA) as a model anti-inflammatory drug in this follow-up project. ALA 

is a well-known anti-inflammation agent that is ubiquitously available in the in biological milieu 

due to its involvement as a co-factor in several metabolic processes. ALA has been touted to 

possess beneficial biological properties including anti-cancer, anti-aging, anti-diabetes and anti-
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HIV activities. The anti-inflammatory activities of ALA have been made evident by its attenuation 

of PI3K/Akt pathway and inhibition of NF-B219 and PDK1.220 PDK1 is a TCA cycle inhibitor 

which switches cell energy production from the mitochondrial respiration into aerobic glycolysis. 

In IPF or during tumor growth, the myofibroblasts or cancer cells sustain reprogramming to the 

glycolytic metabolism by elevating the PDK1.221 Therefore, ALA has potential anti-fibrotic and 

anti-cancer activities. Literature evidence further supporting the bioactivity of ALA include its 

downregulation of Bcl-xL, Mcl-1, Bcl-2, and Bax in breast cancer cells, resulting in cell 

apoptosis.222, 223 However, presumably due to its weak efficacy, ALA has neither been approved 

by FDA, nor successfully used to treat any medical condition. We hypothesized that conjugation 

of ALA to AZM and CLM could enhance its potency and impart on the resulting agents lung tissue 

and liver selective distribution property.    

Subsequently, I further extended this aspect of my research to include PPA and fumarate analogs, 

the two classes of electrophilic agents that act as NF-κB pathway inhibitors and Nrf-2 activators. 

Again, my expectation here is that conjugation of PPA and FMA analogs would enhance their 

potency and furnish lung and liver tissue targeting anti-ROS agents. Toward this end, I designed 

and synthesized 12 macrolide-derived PPA and Fumarate agents. General structures of these 

compounds are shown in Figure 1.10. 
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Figure 1.9. Structures of ALA derivatives investigated. Blue ball indicates macrolides (AZM and 

CLM). The glycosylated side arms desosamine may conjugate with lipoic acid in R position or the 

hydroxyl group with ALA in multiple types of conjugation. We also made de-cladinose derivatives 

(removal of cladinose) to investigate how this modification affects bioactivity of the synthesized 

agents.  

 

Figure 1.10. Structures of macrolide-derived PPA and FMA agents. Blue ball indicates macrolides, 

(AZM and CLM). The sugar moieties desosamine is conjugated with PPA or FMA analogs in 

positions R or the hydroxyl group. We also made de-cladinose derivatives (removal of cladinose) 

to investigate how this modification affects bioactivity of the synthesized agents.  
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In chapter 3, I designed and synthesized three classes (total 12 candidates) of AZM and CLM 

conjugated ALA, PPA, and fumarate derivatives (Fig. 1.9 and 1.10). We observed that these 

compounds have significantly enhanced cytotoxicity against multiple cancer cells and fibroblast 

cell relative to unconjugated antioxidants. In addition, we noted that many candidates showed anti-

fibrotic effects evidenced by the reduction in the ECM production.  We also found that 

representative compounds in this series more potently inhibit STAT3 pathway relative to ALA. 

Targeted STAT3 inhibition is highly desirable as a therapeutic strategy for STAT3-addicted 

cancers such as triple negative breast cancer. To further investigate the electrophilic antioxidants, 

we investigated their effects on Nrf-2 activity and found that they induced Nrf-2 activation, 

evidenced by HO-1 upregulation within 6h of exposure to cells.  Collectively, these data showed 

that macrolide-derived PPA and FMA agents are promising Nrf-2 activators and NF-κB inhibitors. 

1.7.1.3 A Novel anti-cancer macrolide. 

In addition to the richness of their biological activities, several functional groups on macrolides, 

including AZM and CLM, also display unique reactivity, largely due to the unique steric effect of 

their macrolactone moiety. In Chapter 4, we have discovered that CLM undergoes a one-step 

dehydrative cyclization when treated with mildly acidic or neutral dehydration reagents, leading 

to a dihydrofuranyl analog, df-CLM (AO-02-63). This novel compound displayed a drastically 

reduced prokaryotic translation inhibition activity and an occurrence of eukaryotic translation 

inhibition relative to the parent CLM.  
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AO-02-63                                                    clarithromycin 

Figure 1.11 Structure of AO-02-63 and clarithromycin (CLM). 

The new compound showed broad-spectrum anti-cancer activity in NCI-60 panel with low 

micromolar IC50 (~2.5-5µM). Because AO-02-63 induces eukaryotic ribosome activity inhibition, 

we speculated that it could fit into the eukaryotic 80s ribosome exit tunnel, in an analogous manner 

to the interaction of CLM with the exit tunnel of the prokaryotic 50s ribosome, to block protein 

translation. More importantly, we noticed that AO-02-63 inherited the anti-fibrotic effects of CLM 

but with enhanced potency (10-fold enhancement). At 2.5 to 5µM, it repressed the ECM 

production significantly, CLM requires 50 µM to reach the same level ECM production repression. 

In further study, we noticed that AO-02-63 acts similarly to CLM to activate HDAC2 and 

downregulate the acetylation of H4.  

 

1.7.2 Novel STAT3 inhibitors 

The potential of STAT3 pathway inhibition as an anticancer strategy is being actively in 

investigated in preclinical and clinical settings. Recently, pyrimethamine (PYM) was discovered 
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as a dihydrofolate reductase (DHFR) inhibitor which also has STAT3 inhibition activity.224, 225 

PYM has been studied in clinical trials as an agent for leukemia treatment. Though no STAT3 

inhibitor has been approved by the FDA, PYM could be a synthetically tractable template for the 

synthesis of less toxic STAT3 inhibitors since it is approved for the treatment of other human 

diseases such as toxoplasmosis, Isosporiasis, and cystoisosporiasis.226-229 The biological activities 

of PYM is tolerant of modifications at the chloride moiety of PYM. Therefore, modifications of 

this moiety could be pursued to design novel STAT3 inhibitors.  

In Chapter 6, I describe the used of an in silico molecular docking tool (Autodock vina) to design 

three classes of PYM derivatives (total of 12 compounds) as putative STAT3 inhibitors that 

function by blocking the DNA binding domain of STAT3.  I synthesized these compounds and 

profiled for their STAT3 inhibition in a cell free assay. Subsequently, they were analyzed in Hep-

G2, A549, VERO, MDA-MB-231, and MCF-7 cell line. I found that class II compound 11b-d 

showed 100-fold enhanced cytotoxicity relative to PYM. More significantly, they are also 100-

fold better STAT3 pathway inhibitors. As hypothesized, the STAT3 inhibition activities of these 

compounds are largely due to their direct STAT3 DNA binding interruption.  

 

1.7.3 Novel HDAC inhibitors 

To overcome the challenges of HDACi, we have been optimizing the classic three pharmacophoric 

model – Cap group-linker-ZBG – that virtually all HDACi fit into. We have been incorporating 

into HDACi cap group chemotypes that have tissue and/or cell-type selectively. We have 

developed and reported different types of HDACi based on this method.230, 231, 232, 233 In this thesis, 

I developed and/or characterized novel HDACi that are selective for TNBC and HCC. 
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1.7.3.1 Dual-acting STAT3-HDACi based on PYM are selective for TNBC. 

Premised on the well-established role of HDACs in the regulation of STAT3 signaling,234, 235 we 

had earlier hypothesized that simultaneous STAT3 and HDAC inhibition will lead to more durable 

anti-proliferative effects in STAT3-addicted cancer cells. To validate this hypothesis, I synthesized 

5 compounds (Fig. 1.12) and tested them in the same set of cell lines that we tested in chapter 5. 

We noticed that these inhibited both HDAC and STAT3 pathway intracellularly. Interestingly, 

compounds 12b and 12c showed 6- to 10-fold cell-type selectivity for a STAT3-dependent, TNBC 

cell line MDA-MB-231. These data indicate that PYM-HDACi could be the bifunctional agent 

that are selective for STAT3-addicted cancer cells.  

                 

                                         PYM-HDACi derivative                             PYM 

Figure 1. 12. Dual-acting STAT3-HDACi based on PYM. The linker groups are derived from 

methylene or cinnamic groups. 

 

1.7.3.2 Glycosylated HDACi are selective for HCC. 
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Warburg effect is well-known as the main energy supply method for cancer cells. Since cancer 

cells favor metabolism via glycolysis rather than oxidative phosphorylation pathway, sugar up-

take and consumption rate is much higher in cancer cells than normal cell lines. To take an 

advantage to this effect, we hypothesized that integration of glucose or mannose into the surface 

cap group (recognition group) of prototypical HDACi will furnish agents that will be selectively 

up-taken by cancer cells. GLUT2, a glucose transporter that is overexpressed in hepatocyte and 

liver cancer cell lines,236, 237 could facilitate a selective uptake of glycosylated HDACi into HCC 

cells to elicit selective HCC cells toxicity.  

 

D-glucose derivatives                                D-mannose derivatives 

Figure 1.13.  Glycosylated HDAC inhibitors structures. R stands for various types of HDAC 

inhibitors with different types of linkers.  

In Chapter 7, I described results from characterization of the anti-proliferative activities and 

mechanism of action of 19 glucose-, mannose- and desosamine-derived HDACi. We found that 

these compounds are selectively cytotoxic to several HCC cell lines due to GLUT2-mediated 

uptake. Specifically, glucose derivative STR-V-53 is significantly more selective for HCC cells. 

In collaboration with the Petros Lab at Emory University, we found that STR-V-53 is non-toxic 

to healthy mice (MTD > 100 mg/kg) and effectively suppressed tumor growth in orthotopic murine 

model of HCC. In addition, we identified desosamine (STR-V-165) and mannose (STR-I-195) 
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derivatives as back-up compounds. Collectively, these glycosylated HDACi are promising anti-

HCC agents.  

 

1.8 Conclusion 

Inflammation is strongly linked to several serious chronic diseases that remained to be effectively 

managed in the clinic. Death rates from several of these diseases, including IPF, liver cirrhosis, 

gastric inflammation, etc., are very high. There are copious evidences that implicate several of 

these diseases in malignant transformations as key pro-inflammatory signals, including TGF-β 

pathway, NF-κB, STAT pathway, arachidonic acid metabolism, and epigenetic regulations, play 

essential roles in tumorigenesis. Several pharmacological agents that are currently in use for the 

treatments of chronic diseases and tumors are sub-optimal, as most are systemic agents that are 

plagued with overt toxicity and poor distribution at disease sites. In this thesis, I described plausible 

tissue targeted and/or pathways selective approaches may overcome the challenges the current 

agents. Cohorts of compounds disclosed in this work merit further investigation to elucidate their 

potential as new generation of targeted therapeutic agents for the treatment/management of 

fibrosis, inflammation, and cancers. 
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Abstract: 

Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal disease that progressively declines the 

lung function. The FDA approved drugs - pirfenidone (PFD) and nintedanib – are suboptimal in 

the management of PFD largely due to their toxic side effects, low potency, cost ineffectiveness 

and minimal beneficial effect on the patients’ survival rate.  We described herein four classes of 

macrolide-based anti-fibrotic agents designed, using a structure-based approach, from PFD and 

azithromycin and clarithromycin as macrolide templates. These agents are designed to exploit 

the excellent PK and selective lungs and/or liver tissues distribution activities of these macrolide 

templates to arrive at novel anti-fibrotic agents that may selectively accumulate within these 

tissues. We synthesized twenty-eight compounds and tested their effects on the viability of four 

cell lines –MRC-5, A549 Hep-G2 and VERO. We observed that compounds 10c, 11c, 11b, 15c, 

20e inhibited the proliferation of these cell lines with IC50 range of 2.5-10µM. Additionally, 

these compounds potently inhibit NF-κB and TGF-β pathways with potency enhancement as 

high as 1000-fold relative to PFD or the unmodified macrolide templates. Compounds 15c 

showed an optimum inhibition and/or downregulation of the fibrosis markers (FN-1, MMP-9, 

COL1A1, α-SMA) that we investigated at low micromolar IC50. The next best compounds are 

10c, 11c and 20e. Collectively, these compounds are excellent candidates for future preclinical 

studies focused on the evaluation of their potential as tissue-selective anti-fibrotic effects in in 

vivo models of IPF and liver fibrosis.  
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2.1 Introduction 

Pulmonary fibrosis is the thickening and scarring of the connective tissues in the lungs, which 

can be induced by pulmonary injuries and inflammation caused by exposure to chemicals, 

environmental pollutants, smoking, age-related dysfunctions, infections, and other risk factors. 

Idiopathic pulmonary fibrosis (IPF) is the most common interstitial lung disease (ILD).1 IPF is a 

chronic and fatal disease which progressively declines the lung function.2 The cause of IPF is 

ambiguous, and the disease affects 50 per 100,000 people worldwide.3 In the US, the prevalent 

rate of IPF is around 18.2 cases per 100,000 annually, and the incident rate is 5.8 cases per 

100,000.4 In Europe, IPF prevalent rate is around 1.25 to 23.4 per 100,000, and the incidence IPF 

is around 0.22 to 7.4 per 100,000.5 The prognosis of IPF is the worst among ILD, and its median 

survival range from 2-5 years.1 A study has shown the IPF has only 28% 5-year survival rate 

which is much lower than many types of cancers.6, 7 In a 2018 study in UK that analyzed data 

from 2002 to 2012, it was found that IPF incidence rates have increased since 2000 and survival 

remains poor.8  

The pathophysiology of IPF has been well studied. IPF is sustained by inflammation caused by 

chronic injury which promotes inflammatory cytokines release and the accumulation of these 

cytokines in the bronchial tubes and airways. Consequently, epithelial fibroblasts are stimulated 

by these cytokines to induce epithelial-messenchymal transition (EMT),9 resulting in the 

transformation of the fibroblasts to myoblasts overexpressing collagen, actin, fibronectin, MMPs 

and many other profibrotic extracellular matrix (ECM).10 TGF-β pathway activation is one of the 

major initial steps in the progression of fibrosis.11 Studies have shown that TGF-β1 plays 

important roles in activating ECM production,10 EMT,12 crosslinking to other inflammatory 
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pathways including MAPK pathway,13 NF-κB pathway,14 Hippo pathway,15 STAT3 pathway 

activation16, 17 and many others. Typically, NF-kB activation is involved in tissue inflammation 

and necrosis through the transcription of pro-inflammatory cytokines including IL-1, IL-2, IL-6, 

IL-8, IL-12, TNF-α; chemokines including CXCL1, CXCL10, and IL-18; proinflammatory gene 

expression for stimulation of immune cells such as M2 phase polarization of macrophages to 

cause tissue necrosis.18, 19 TGF-β regulated STAT3 activation is essential to IPF via multiple 

mechanisms as well. Upregulation of p-STAT3/STAT3 ratio is required in TGF-β1 stimulation 

to promote EMT transition.20 Inhibition of TGF- downregulates ECM accumulation, attenuates 

tissue fibrogenesis, and prevents further tissue necrosis. Thus, TGF-β is an ideal therapeutic 

target for IPF treatment. 

Efforts at developing small molecules for the treatment of IPF have furnished several clinical 

candidates, targeting several pathways.21 However, only pirfendione (PFD) and Nintedanib have 

been approved by FDA. PFD is widely used by IPF patients as it improves lung function over 

long-term treatments.22, 23 However, the latest survival data revealed that PFD treatment caused 

only a limited improvement in 5-yr survival (55.9%) vs placebo (31.5%).24 This pricy drug (avg. 

92,000 USD/year) does not completely reverse disease progression; and systemic exposure to 

PFD causes adverse drug reactions (ADRs), including severe skin burn-like rash, 

photosensitivity, and gastrointestinal disorders, in treated patients. PFD has a relatively poor 

pharmacokinetic (PK) properties,25 necessitating 3-9 times daily intake of high dosage (600 mg 

to 2.4 g) to maintain effective concentration in patient’s plasma.26 The adverse effects 

experienced by patients on PDF therapy and it’s poor PK properties could be linked to the high 

rate (28.7% ) of therapy discontinuation.27  Efforts have gone into the design of new PFD 

analogs with improved on-target effects and enhanced half-life.28 However, none of these PFD 
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analogs has proven superior so far. Therefore, there is an unmet medical need for effective 

treatment/management modalities for IPF. 

Macrolides azithromycin (AZM) and clarithromycin (CLM) are two macrolactone antibiotics 

that is widely used to treat upper respiratory tract infections.  They shared similar mechanism of 

action with selective target of bacterial protein synthesis by inhibiting the prokaryotic ribosomes 

activity.29 More than selectivity to bacteria, AZM and CLM also perform outstanding 

pharmacokinetics (PK) properties and selective distributions to the disease sites, which could be 

highly effective in treating upper respiratory tract infections. Evidences found that they could 

selectively accumulate in lung resident macrophages and other immune cells which may 

overgrow in infectious lung tissue.30, 31, 32 AZM and CLM also accumulate in the liver tissues as 

well. Compare to the bloodstream, the macrolides showed more than 100-fold enrichment in 

these tissues.33-35 In addition, evidently, AZM and CLM also behave with intrinsic anti-

inflammatory activities. For instance, AZM assistants the repair of tissue injury by attenuating 

the leukocytes activities and the expressions of pro-inflammatory cytokines.36-41  Recently, AZM 

has been observed to selectively accumulates internally with epithelial cells, fibroblasts, 

lymphocyte, and hepatocyte.31, 42, 43 These evidences make AZM an excellent lung/liver targeting 

antibiotics with low systematic toxicity. In addition, AZM is well-tolerated by patients as a result 

of its safe metabolites.36 On the other hand, tissue fibrosis progression could be effectively 

controlled by CLM with downregulating the cytokines and the fibroblast migration through 

downregulation of inflammatory product TXA2.44, 45 Currently, macrolides have been recognized 

as potential anti-inflammatory candidates in respiratory disease.46 Based on these attributes, 

AZM and CLM are ideal template molecules for the design of liver- and lung-tissues targeted 

anti-inflammation and anti-cancer agents.  
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2.2 Results 

2.2.1 Design and molecular docking 

We hypothesized that the integration of PFD-like moiety into AZM and CLM templates would 

afford novel TGF-β inhibiting anti-fibrotic agents that are selectively accumulated in the lungs 

and/or liver tissues. To test our hypothesis, we designed four classes of macrolide-based PFD-

like (macrolide-PFD) compounds with methylene (class I), aryltriazolyl (class II), triazolyl (class 

III) and alkynyl (class IV) linkers connecting the para-position of PFD’s phenyl moiety to the 

amino group desosamine moieties of AZM and ZLM (Fig. 2.1). Our design is based on 

molecular docking analysis of the interaction of PFD with its targets – ALK-5 and MAPK p38. 

We expect that this design approach will furnish macrolide-PFD compounds that optimally 

present the PFD moiety to the active sites of its targets – MAPK p38γ and TGF- receptor ALK-

5 – while minimizing potential steric clash that the macrolide moiety might present if it is in the 

proper distance to the PFD moiety.  PFD is known as a pleiotropic small molecule that could 

inhibit multiple targets of TGF-β1 pathway.  First, PFD is a MAPK p38γ inhibitor and thus the 

macrolide-PFD should maintain the property if the linker design is proper. Also, PFD could be 

the p38α inhibitor, and the docking of PFD derivatives towards p38α has been studied in 

previous study that the PFD moiety of the novel agents interacts with Met-101 and Glu-110.28 In 

addition, PFD is known to be ALK-5 inhibitor in blocking TGF-β ligand binding. ALK-5 

docking of pirfenidone derivatives was also interpreted in previous study that the Pyridone 

moiety is binding into the hydrophobic region of the active site of ALK-5.47  
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Figure 2.1. Designed macrolide-based PFD-like compounds (a). AZM and (b). CLM with four 

types of linkers (highlighted in blue).  

We used molecular docking to obtain preliminary in silico evidence of the accommodation of   

macrolide-PFD compounds at the p38 and ALK-5 active sites and guide the modification to the 

linker regions in order to identify candidates with optimal binding affinities. Molecular docking 

was performed as using Autodock Vina run through PyRx.48 PFD, AZM, CLM and the 

macrolide-PFD compounds (Fig. 2.2) are docked against crystal structures of p-p38γ 

(PDB:1CM8), p38α (PDB: 3HP2), and ALK-5 model (PDB: 5USQ) is gained from Protein Data 

Base (PDB).49 In similar manner to the unmodified PFD, the pyridone moiety of PFD of all 

compounds maintains invariant binding with the active site hydrophobic pocket of the p-p38γ 

interacting with Val-33, Ile-87, Met-109, Phe-111, Met-112, Gly-113, Thr-114, Asp-115, Ala-

160, Leu-170; while the linker and macrolide moiety sterically block the Mg from interacting 



89 

 

with any phosphorylated substance (Fig. 2.3a). However, even though all representative 

candidates’ PFD moiety of also binds to the p38α at the active site interacting with Met-109 and 

Gly-110 (Fig. 2.3b), the binding affinities are not much enhanced compared to p-p38γ (Table 

2.1). In binding to ALK-5 (Fig. 2.4). Among each class, the key difference is in the orientation of 

the macrolide moieties that is influenced by the type and the length of the linker groups. 

Interestingly, we also noticed that these macrolide-PFD compounds bind to p-p38γ and ALK-5 

with significantly increased binding affinities relative to unmodified PFD or AZM/CLM (Table 

2.1, Table S2.1 and S2.2). The docking outputs are described herein for a representative member 

of each class of the macrolide-PFD compounds (11c, 13c, 15c, 20e) that optimally interacts with 

either target based on binding orientation and docking scores.  
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Figure 2.2. AZM representative structures of class I-IV for molecular docking. (a). Structure of 

11c. (a). Structure of 11c. (b). Structure of 13c. (c). Structure of 15c. (d). Structure of 20e. 

a. 
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Figure 2.3. Molecular docking analysis of macrolide-PFD compounds at the active site of p-p38γ 

(1CM8) and p38α (3HP2). (a). 1CM8 interacting with PFD and Macrolide-PFD at the Mg site: (i). 

unmodified PFD trapped into the hydrophobic pocket of the active site. (ii). 11c binds with the 

active site of the p-p38 with hydrogen bonding (Ala-40, Arg-70, and Mg-402) with AZM moiety. 

(iii) and (iv) showed binding orientation of the macrolide-PFD 11c and 13c on the surface of p-

p38 (red indicates hydrophobicity, white indicates hydrophilicity). (v). with no triazole ring, 

compound 15c showed different orientation of binding that the cladinose ring is interacting with 

Glu-74. (vi) and (vii) 15c shares the same orientation as 20e on the binding orientation.  (b). PFD 

and macrolide-PFD binding to p38α at the active site, where the left is the molecular interaction, 

and right is the surface presentation reveals hydrophobic character of the active site of p38. (i) 

PFD is accomodated at p38 active site via crucial H-bonding interaction with MET109 and 

GLY110; right corner – surface presentation reveals hydrophobic character of the active site of 

p38. (ii to v). Representatives 11c, 13c, 15c, and 20e binding to p38.  

a. 
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Figure 2.4 Molecular docking analysis of macrolide-PFD compounds at the active site of ALK-5 

(5USQ). (a) PFD and Representative macrolide-PFD bind to ALK-5. (i). On the left, unmodified 

PFD binds to hydrophobic pocket of ALK binding site.  (ii) Candidate 11c interacts with amino 

acids (Asp-290 and Asp-351) on the surface of the ALK-5 with Hydrogen bonding. (iii). Candidate 

13c interacts with amino acids (Asp-290 and Asp-351) on the surface of the ALK-5 with Hydrogen 

bonding. (iv). Candidate 15c interacts with amino acids (Lys-213) on the surface of the ALK-5 

with Hydrogen bonding. (v). Candidate 20e interacts with amino acids (Ile-211, Asp-290, and Asp-

351) on the surface of the ALK-5 with Hydrogen bonding. (b). (i) the representatives have the 

same binding orientation of unmodified PFD except (ii) compound 20e. 
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 1CM8 (kcal/mol) 3HP2 (kcal/mol) 5USQ (kcal/mol 

11c -9.9 -8.8 -9.2 

13c -10.4 -8.3 -9.2 

15c -9.4 -8.0 -8.5 

20e -9.5 -7.9 -8.7 

PFD -7.6 -7.0 7.6 

AZM -7.4 -5.5 -5.9 

CLM -6.5 -5.1 -5.3 

Table 2.1. The binding score output of the representatives on 1CM8, 3HP2, and 5USQ.  

 

2.2.2 Chemistry: 

Compounds 1a-c, the key intermediates in the synthesis of class I and III compounds were 

synthesized through Cu(I)-mediated coupling of commercially available 5-methyl-2-pyridine and 

bromophenyl alcohols.  Treatment of 1a-c with methanesulfonyl chloride afforded mesylated 

compounds 2a-c. The reaction of 2a-c with sodium azide in DMF at elevated temperatures, 

furnished azide 3a-c (Scheme 2.1). Desmethylclarithromycin 4 and desmethylazithromycin 7, 

the templates for the synthesis of class I compounds was obtained AZM and CLM using 

published protocol.50 The reactions of 4 and 5 with 4-ethynylbenzyl methanesulfonate furnished 

5, 6, 8 and 9, the template compounds for the synthesis of class II and III compounds (Scheme 

2.2).  The copper(I)-catalyzed cycloaddition reaction of azide 3a-c with template macrolides 5, 6, 

8 and 9 facilely furnished class I-II compounds 10a-c, 11a-c, 12a-c and 13a-c (Scheme 2.3a-d). 
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The reactions of 4 and 7 with mesylated compounds 2a-c in a CH3CN/DMSO (2:2ml) co-solvent 

in the presence of Hunig’s base at elevated temperatures furnished class III compounds 14a-c 

and 15a-c respectively (Scheme 2.3e-f). To synthesize class IV compound, the 5-methyl-2-

pyridone was coupled with 1-iodo-4-methoxybenzene using the same condition as in step a of 

Scheme 1 to afford compound 16 which was subsequently demethylated with boron tribromide 

at -30 to 0ºC to give compound 17. Compound 17 was first triflated and then coupled by 

Sonogashira coupling of this triflyl analog with alkynyl alcohols (n = 1-5) gave alcohols 18a-e. 

Mesylation of 18a-e was achieved by reacting with methanesulfonyl chloride and the reaction of 

these mesylates with compound 4 and 7 in a CH3CN/DMSO (2:2ml) co-solvent in the presence 

of Hunig’s base at elevated temperatures furnished class IV compounds 19a-e and 20a-e 

respectively (Scheme 2.4). All compounds were characterized using 1H NMR, 13C NMR, and 

mass spectroscopy prior to biological testing. 

 
Scheme 2.1. Pirfenidone derivative intermediates synthesis process. (a). CuI, 8-

hydroxyquinonine, K2CO3, DMSO, 120°C, 24 h. (b). methanesulfonyl chloride, Triethyl amine, 

DCM, -20°C, 1hr. (c). Sodium azide, DMF, 80°C, overnight. 
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Scheme 2.2. Synthesis of macrolides intermediates. (a) 4-Ethynylbenzyl methanesulfonate, 

Hunig’s base, DMSO, 70°C, 4 h. (b). Prop-2-yn-1-yl methanesulfonate, Hunig’s base, DMSO, 

70°C, 4 h. 
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Scheme 2.3. Synthesis of class I-III macrolide-PFD compounds. (a) 5, CuI, Hunig’s base, THF, 

r.t., overnight. (b) 8, CuI, Hunig’s base, THF, r.t., overnight. (c) 6, CuI, Hunig’s base, THF, r.t., 

overnight. (d). 9, CuI, Hunig’s base, THF, r.t., overnight. (e) 4, Hunig’s base, CH3CN/DMSO 

(2:2ml), 75-80°C, overnight. (f) 7, Hunig’s base, CH3CN/DMSO (2:2ml), 75-80°C, overnight. 

  
 



101 

 

 
 
Scheme 2.4. Synthesis of class IV macrolide-PFD compounds. (a) CuI, 8-hydroxyquinonine, 

K2CO3, Toluene, 120°C, 12 h. (b) Boron tribromide, -20oC to r.t., DCM, MeOH. (c) 

Trifluoromethanesulfonic anhydride, pyridine, DCM, -20°C, 40 min. (d) CuI, Pd[P(C6H5)3]4, 

Hunig’s base, CH3CN, 75°C, overnight. (e) Methanesulfonyl chloride, Et3N, DCM, -20°C, 1 h. 

(f) 4 or 7, Hunig’s base, CH3CN/DMSO, 75-80°C, 24 h.  

 

2.2.3 Cell cytotoxicity study 

As a cost-effective approach to identify lead compounds for intracellular target validation, we 

first screened all of the synthesized compounds, PFD (positive control), template macrolides 
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(AZM and CLM) and combination of PFD and template macrolides against four cell lines: A549, 

VERO, Hep-G2 and MRC-5 in an MTS assay (Tables 2.1-2.4).  

 

Table 2.1. Effect of class I compounds on cell viability. Structures of class I compounds 10a-c and 

11a-c are shown atop of the Table. 

 

 
MRC-5 

(µM) 

VERO 
(µM) 

A549 
(µM) 

Hep-G2 
(µM) 

10a 12.3±1.8 5.1±0.2 11.1±2.7 20.3±1.0 

10b 13.1±1.2 14.2±0.3 35.3±1.5 28.1±1.8 

10c 11.6±0.3 12.4±0.2 10.9±0.4 36.4±6.6 

11a 13.4±0.1 16.2±2.8 18.4±4.4 11.1±0.3 

11b 13.3±0.9 22.6±4.9 15.8±3.0 21.8±0.4 

11c 5.7±0.1 5.9±0.1 5.0±0.2 2.6±0.1 

 

 

 

Table 2. 2. Effect of class II compounds on cell viability. Structures of class II compounds 12a-c 

and 13a-c are shown atop of the Table. 
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MRC-5 

(µM) 

VERO 
(µM) 

A549 
(µM) 

Hep-G2 
(µM) 

12a 102.6±0.8 153.2±19.0 118.3±28.4 116.5±16.0 

12b 84.0±4.5 104.5±20.3 115.9±4.1 121.7±3.7 

12c 32.8±5.1 33.3±1. 9 28.7±3.4 44.8±3.6 

13a 121.0±14.1 121.6±19.4 265.1±4.0 233.6±31.1 

13b 172.1±26.9 150.6±30.6 143.5±24.5 163.4±1.6 

13c 36.1±6.1 53.2±0.1 35.2±5.4 27.7±3.3 

 

 

Table 2. 3. Effect of class III compounds on cell viability. Structures of class III compounds 14a-

c and 15a-c are shown atop of the Table.   

 
MRC-5 

(µM) 

VERO 

(µM) 

A549 

(µM) 

Hep-G2 

(µM) 

14a NI NI NI NI 

14b 119 NI NI NI 

14c 15.7±2.3 19.1±3.7 16.3±1.6 30.9±1.4 

15a 55.8±1.9 47.2±0.4 47.2±5.1 33.0±5.4 

15b 36.1±3.3 30.3±5.2 40.8±4.0 27.2±2.3 

15c 5.9±0.1 23.9±1.7 43.2±5.7 52.2±1.0 
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Table 2.4. Effect of class IV compounds and controls (PFD, AZM, CLM, and combinational 

treatment of PFD+AZM or PFD+CLM) on cell viability. Structures of class IV compounds 19a-e 

and 20a-e are shown atop of the Table 4.   

 
MRC-5 

(µM) 
VERO 
(µM) 

A549 
(µM) 

Hep-G2 
(µM) 

19a 82.6±0.3 55.5±2.6 44.1±10.8 50.7±3.0 

19b NI 130.4±21.2 59.9±0.8 60.9±9.0 

19c 15.2±0.1 55.5±0.4 58.6±1.4 24.0±1.2 

19d 28.9±1.9 24.3±0.1 35.4±2.1 32.0±0.1 

19e 24.2±0.6 13.2±0.7 23.8±2.1 23.7±2.0 

20a 23.3±3.3 71.4±6.3 55.9±6.4 53.4±3.3 

20b 19.1±2.6 28.5±1.8 31.2±4.8 24.8±1.7 

20c 41.7±0.1 36.4±3.8 42.7±8.4 45.2±7.4 

20d 5.5±0.2 16.2±3.1 15.5±1.1 12.7±1.3 

20e 2.2±0.1 4.7±0.3 6.1±0.3 2.8±0.0 

PFD 5302.0±177.9 10788±0.6 5409±241 10920±1090 

AZM 127.0±1.0 222.0±18.1 203.5±4.5 85.3±0.9 

CLM 138.1±1.1 NI NI 130.5±0 

PFD+AZM 54.2±7.2 136.1±2.6 136.4±8.6 102.7±2.6 

PFD+CLM 101.5±0.5 211.7±32.5 NI 96.2±0.0 

 

 

We investigated MRC-5, a lung fibroblast cell line, because it is the well-used cell line for 

evaluating in vitro anti-fibrotic effects of small molecules as it facilitates ECM production and 

cytokine release after TGF-β stimulation.51-54 Additionally, due to strong linkage between 
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progression of IPF and liver fibrosis to lung and liver cancers,55-58 we also tested the effects of 

our compounds against A549 and Hep-G2, lung adenocarcinoma and hepatocellular carcinoma 

(HCC) cell lines respectively. Non-transformed monkey kidney epithelial cells (VERO) were 

used as a representative positive control.  

Against MRC-5 cells, we found that cytotoxicity of the macrolide-PFD compounds generally 

increases with increase in the length of the methylene group of the linker moieties for all 

compound class, with four or five methylene groups being optimum (Tables 2.1-2.4). 

Compounds 19b and 20c are exceptions to this trend. Comparing the template macrolides, we 

found that AZM derivatives are relatively more potent than their CLM congeners for class III 

and IV compounds (Tables 2.3 and 2.4). Relative to PFD, the standard of care for IPF, all of our 

compounds are 100-2,500-fold more potent. The template macrolides AZM and CLM are also 

cytotoxic to MRC-5 cells but they are 5 to 50-fold less potent than our potent compounds 

(compare 14c vs CLM; and 15c, 20e vs AZM). To investigate if simultaneous treatment of PFD 

and template macrolides has comparable effects as the macrolide-PFD compounds, we treated 

cells with combination of equal concentrations of PFD+AZM and PFD+CLM. We found that the 

combinations did not result in significant enhancement of potency relative to AZM and CLM as 

single agents (Table 2.4). These results suggest that macrolide-PFD compounds are significantly 

more potent than their template PFD and macrolides as either single agents or combination 

thereof.  

The methylene linker length-dependency largely holds for the effects of these compounds against 

A549, Hep-G2 and VERO cells. Among the synthesized compounds, we found class III 15c is 4-

9-fold more selective for MRC-5 relative to VERO and the two cancer cell lines tested. This 

suggest that 15c could be a lead candidate for target validation and in vivo efficacy studies.  
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2.2.4 Effect of lead macrolide-PFD compounds on NF-κB pathway 

NF-κB pathway plays essential role in tissue fibrosis as it is stimulated by tissue injury-mediated 

upregulation of pro-inflammatory cytokine TNF-α. The activated NF-κB contributes to 

fibroblast-myofibroblast transformation and induces the active mode of ECM production. It has 

been found that NF-κB controls the tissue inflammation process and affects the behaviors of 

immune system. Thus, inhibition of NF-κB pathway has been found to lead to suppression of 

tissue inflammation. Specifically, parthenolide, a small molecule NF-κB inhibitor, was found to 

be effective in the attenuation of interstitial lung inflammation.59, 60 Also, the NF-κB inhibition 

activity of PFD has been linked to its effect in decreasing the transcriptional activation of the 

iNOS gene promoter to suppress the production of pro-inflammatory NO.61 Thus, it would be of 

value to investigate and compare the effects of macrolide-PFD compounds relative to PFD on the 

NF-κB pathway.   

In collaboration with Jia-Dong Li lab at Georgia State University (GSU), we tested the effects of 

representative compounds (based on cell cytotoxicity) on NF-κB transcriptional activity using an 

NF-κB Luciferase reporter assay (Fig. 2.5). The macrolide-PFD compounds and template 

macrolides AZM and CLM were screened at 5 µM while PFD was screened at 5 and 100 µM in 

PFD. We noticed that PFD showed no inhibition at 5 µM, while at 100 µM it caused a significant 

inhibition NF-κB activity. AZM showed significant inhibition in NF-κB pathway while CLM did 

not inhibit the pathway at 5 µM. Among the macrolide-PFD compounds tested, we found that 

10b, 10c, 12b, 12c, 13a, 15c, 19a, 19d, 20d showed significant NF-κB inhibition at 5 µM.  

Based on these findings, we postulated that AZM template may contribute significantly to the 

strong NF-κB inhibition activity of the AZM-derived macrolide-PFD compounds. In contrast, 
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CLM did not contribute to NF-κB inhibition while its derivatives 10c, 14c, 19d showed 

significant NF-κB inhibition. Therefore, for the CLM-derived macrolide-PFD compounds, the 

PFD moiety may be a significant driver of the NF-κB inhibition activity. Collectively, 

compounds 10c, 15c, 20e are highly interesting candidates as they showed anti-fibrotic and anti-

cancer activities in addition to inhibiting NF-κB transcriptional activity. 

 

 
 

 
 

Figure 2.5.  Effect of tested agents on NF-kB transcriptional activity at 5 µM 
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2.2.5 Effect of macrolide-PFD compounds on Pro-COL1A1 expression 

The ECM contains the essential components that contribute to tissue fibrosis and stiffness. 

Specifically, protein collagen I (COL1A1) is the key protein responsible for fibrosis. In normal 

tissue under ROS and injury, COL1A1 constructs the tissue with scar healing, while in chronic 

injury, the collagen expression turned into a continuous expression which induces tissue fibrosis 

and necrosis. Thus, COL1A1 expression inhibition is one of the direct evidence of tissue fibrosis 

inhibition. PFD, the standard care for IPF showed significant COL1A1 expression inhibition at 

IC50 dosage62. AZM also caused downregulation of COL1A1 at about 100µM range.63 Therefore, 

we investigated if the macrolide-PFD compounds could inhibit the intracellular expression of 

COL1A1. We used a pro-COL1A1 expression ELISA assay kit supplied by Abcam (ab210966). 

Compounds were tested at 1/10th IC50 and IC50, and we observed that they showed concentration-

dependent inhibition. Specifically, compounds 10b, 10c, 11a, 12b, 15c, 14c, 19a, and 20e 

showed effects in this assay as they caused 20-55% downregulation of pro-COL1A1 expression 

at 1/10 IC50 or IC50 concentration after 24 h treatment, whereas PFD to be dosed at 2.5 mM 

concentration to have similar effect (Fig. 2.6). This data suggests that these macrolide-PFD 

compounds could suppress ECM production intracellularly. 
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Figure 2.6. Effect of macrolide-PFD compounds on the production of soluble pro-collagen at 

various concentrations. 

 

2.2.6 Effect of lead macrolide-PFD compounds on TGF-β pathway  

As mentioned previously, TGF-β1 plays a key role in IPF progression. PFD is a TGF-β1 

pathway inhibitor that prevents SMAD2/3-mediated production of ECM and several cytokine 

mRNAs. Since we used in silico tools to design the macrolide-PFD compounds to inhibit TGF- 

receptor ALK-5, we expect that these compounds will inhibit TGF-β1 pathway in analogous 

manner to the template PFD. So, we used a Promega TGF-β1 luciferase reporter assay kit 

(CS2018F03) to examine the effect of our compounds and PFD TGF-β1 activity. We first 

scanned the effect of selected compounds (10a, 11a-b, 20e, PFD, AZM and CLM) at two 

concentrations (1x IC50 and ½ IC50) and found that compound 10a, 20e and PFD showed 

significant TGF-β1 pathway inhibition at these concentrations while other tested compounds, 

including AZM and CLM, did not show TGF-β1 inhibition activity (Fig. 2.6a). Based on this 

data, we then expand this study to probe the dose-dependent effects of more compounds that 
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showed both strong cell cytotoxicity and anti-fibrotic and anti-inflammation effects in MRC-5 

cell. We found that all selected candidates (10c, 11c, 14c, 15c) inhibited the transcriptional 

activity of TGF-β1 with IC50s 5-10 µM, while PFD showed IC50 1.92 mM (Fig. 2.6b).  Through 

the experiment, we confirmed that the representative macrolide-PFD compounds inhibit TGF-β1 

pathway signaling, key intracellular pro-fibrosis pathway, with 200- to 500-fold enhanced 

potency relative to PFD. The TGF-β1 inhibition activity of the macrolide-PFD compounds does 

not come from the macrolide templates since AZM and CLM are devoid of TGF-β1 inhibition 

activity. The TGF-β1 inhibition activity of the macrolide-PFD compounds is exclusively through 

their PFD moiety. Therefore, covalent linkage to macrolides (in the context of the macrolide-

PFD compounds) facilitates the increased TGF-β1 pathway inhibition effect of the PFD moiety. 

 

A. Evaluation of the effects of representative compounds on TGF-β activity at ½ IC50 and IC50 
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B. Dose-dependent effects of representative compounds on TGF-β activity  
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Figure 2.7.  Effect of macrolide-PFD compounds on TGF-β activity using Luciferase Gene-

reporter assay kit. (A) Evaluation of the effects of representative compounds on TGF-β activity at 

½ IC50 and IC50. (B) Dose-dependent effects of representative compounds on TGF-β activity. 

 

 

 

2.2.7 Intracellular target validation study 

We used Western blot analysis to test the effects of the macrolide-PFD compounds on the 

expression status of two main proteins of the ECM components – COL1A1 and α-SMA – in 

order to confirm the contributions of the targets investigated above on their bioactivity. COL1A1 

and α-SMA are proteins essential to the build-up of fibrotic lesion. Previous study on PFD 

showed that it inhibits the expression of COL1A1 at 2.5-5 mM concentration and only minor 

inhibition at 1mM.64, 65 In addition, the effects of drugs on the levels of p-STAT3 proteins is 

indicative of effect on fibrosis and proinflammatory markers.66-68 We chose 10c, 11b, and 11c for 

the first round of Western blot due to their outstanding performance in one or more tests: simulation 
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prediction, cytotoxicity, COL1A1 inhibition scanning, and NF-κB inhibition. We used PFD, CLM, and 

AZM as controls. 

 

 

A. Effects of representative CLM-PFD 10c on intracellular markers of fibrosis and 

inflammation. 
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B. Effects of representative AZM-PFD 11b on intracellular markers of fibrosis and 

inflammation 
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c.  Effects of representative AZM-PFD 11c on intracellular markers of fibrosis and inflammation    
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 d.  Effects of macrolide-PFD compounds 10c, 11b and 11c on TGF-β expression      
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Figure 2.8. Effects of representative macrolide-PFD compounds on the expression status of 

COL1A1 and α-smooth actin, two main proteins of the ECM components and p-STAT3 in MRC-

5 cell after 24 h of treatment. Compounds 10c, 11b, and 11c significantly inhibited the intracellular 

levels of COL1A1 and α-smooth actin and p-STAT3 with or without TGF-β1 stimulation (A-C). 

Compounds 10c and 11b have no effect on TGF-β expression, (D) while the 11c significantly 

upregulate the TGF-β1 expression at 5 µM. 

 

                           DMSO    PFD            10c             DMSO     PFD               11b         DMSO         PFD                 11c                                                

                               1mM    2.   5M                      1mM    2.   5M                   1mM   2.5mM    2.   5M       

                                          

TGF-𝛃         

GAPDH       
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We observed that 10c and 11b showed significant downregulation of COL1A1 at 5 µM (> 50% 

for 10c and >80% for 11b) (Figs. 2.7a-b), while 11c almost eliminated the COL1A1 expression 

at the same concentration (Fig. 2.7c). The template macrolides AZM and CLM have no effect on 

COL1A1 level at 5 µM and, PFD at 1 mM also did not show any significant downregulation on 

COL1A1 expression as well. Moreover, 10c (5 µM), 11b (2.5 µM) and 11c (2.5 µM) showed 

significant p-STAT3 inhibition. It required 1 mM dosage for PFD to achieve comparable p-

STAT3 downregulation activities as these macrolide-PFD compounds (Figs 2.7a-c). These data 

strongly support the potent the anti-fibrotic effects of macrolide-PFD compounds. 

We also investigated effects of all compounds on TGF-β level and found that none shows any 

inhibition of TGF-β1 expression level (Fig. 2.7d). This result is not unexpected since our 

compounds are designed to inhibit TGF-β1 pathway through receptor binding (or SMAD2/3 

transcription), instead of direct downregulation of TGF-β1 expression.  

                                 DMSO      DMSO               AZM                            PFD                                   15c                                          

                                                                     5M         50M    2500M    5000M     1.25M     2.5M      5M          

TGF-                    -               +                 +              +                 +                 +               +                +                 +               

Fibronectin     

MMP-9            

COL1A1           

MMP-2           

a-SMA              

p-ERK1/2         
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Figure 2.9. Compound 15c demonstrates strong anti-fibrosis effect in TGF- stimulated MRC-5 

cell line.  

 

We then expanded our investigation intracellular target validation to include 15c, a lead 

compound which showed selective toxicity to MRC-5 cells. We used significantly higher 

concentrations of the control compounds AZM and PFD than the once we used in the 

experiments described above. We observed that the AZM at 50µM demonstrated anti-fibrotic 

effect with suppression of ECM components COL1A1, α-SMA, and fibronectin (FN-1). Since 

matrix metalloproteinases (MMPs) contribute to ECM decomposition, and upregulation of 

MMPs is a biomarker of inflammation and/or fibrosis, we also tested the effects of 15c on MMP-

2 and 9 expression levels. We observed that AZM upregulates MMP-2 and phosphorylation of 

ERK1/2 while it downregulates MMP-9 significantly. In contrast, PFD significantly 

downregulated MMP-2 at 2.5 or 5 mM, and while it slightly downregulated MMP-9 at 5 mM. 

Interestingly, 15c showed a similar pattern as AZM, significantly upregulating MMP-2 and 

downregulating MMP-9 in a dose-dependent manner (Fig. 2.8). This implies that 15c derives its 

anti-fibrotic effects from a unique combination of the mechanism(s) of the anti-fibrotic activities 

of PFD and AZM. Thus, 15c represents a novel anti-fibrotic and anti-inflammatory agent.  

 

2.3 Conclusion 

Efforts at developing treatment modalities for IPF have focused on three stages of the disease: 

microinjuries, abnormal wound healing process with immune activation, and fibroblast 

hyperplasia exaggerated extracellular matrix (ECM, mainly collagens) deposition mediated by 

transforming growth factor (TGF)-β/Smad signaling.69 The potential of the drivers of the later 
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stage as IPF drug target has been validated with the U.S. Food and Drug Administration (FDA) 

approval of two drugs – PFD and nintedanib – which inhibit IPF progression via distinct 

mechanisms. However, neither drug is optimal for IPF therapy due to their adverse side-effects, 

low potency, cost ineffectiveness (either drug cost over $94,000 per year) and minimal beneficial 

effect on the patients’ survival rate. We have used herein a structure-based approach, which was 

validated by in silico drug design tool (Autodock Vena), to design 4 classes of macrolide-based 

anti-fibrotic agents. These agents are designed to exploit the excellent PK and selective lungs 

and/or liver tissues distribution activities of these macrolide templates to arrive at novel anti-

fibrotic agents that may selectively accumulate within these tissues. We designed and 

synthesized twenty-eight compounds and tested their effects on the viability of four cell lines –

MRC-5, A549 Hep-G2 and VERO. We observed that candidate compounds 10c, 11c, 11b, 15c, 

20e inhibited the proliferation of these cell lines with IC50 range of 2.5-10µM. To investigate 

their cellular targets, we screened selected candidates for their effects on pro-fibrosis and pro-

inflammation NF-κB and TGF-β pathways. We found that these compounds potently inhibit NF-

κB and TGF-β pathways. Relative to PFD or the unmodified macrolide templates, the macrolide-

PFD compounds have much effective anti-fibrotic agents with potency enhancement as high as 

1000-fold. The enhanced potency of the new macrolide-derived compounds is in agreement with 

the results from our molecular docking studies which revealed that these compounds could 

engage in productive interaction with amino acid residues on the outside surface of TGF-

 receptor, ALK-5. Among these macrolide-PFD compounds, 15c showed an optimum inhibition 

and/or downregulation of the fibrosis markers (FN-1, MMP-9, COL1A1, α-SMA) that we 

investigated at low micromolar IC50. The next best compounds are 10c, 11c and 20e. These 
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compounds are excellent candidates for future preclinical studies focused on the evaluation of 

their PK, tissue distribution and anti-fibrotic effects in in vivo models of IPF and liver fibrosis.  

 

 

2.4 Materials and Methods 

2.4.1 Materials  

Analtech silica gel plates (60 F254) were used for analytical TLC while Analtech preparative 

TLC plates (UV 254, 2000 μm) or silica gel (400 Mesh) was used for compound purification. 

NMR spectra were taken onVarian-Gemini 400 MHz and Bruke 700 MHz magnetic resonance 

spectrometer. 1H NMR spectra were recorded in parts per million (ppm) relative to the residual 

peaks of CHCl3 (7.24 ppm) in CDCl3. 
13C spectra were recorded relative to the central peak of 

the CDCl3 triplet (81.5 ppm) were recorded with complete hetero-decoupling. Multiplicities are 

described using the abbreviation: s, singlet; d, doublet, t, triplet; q, quartet; p, pentet; dd: doublet 

of doublet; dt: doublet of triplet; dq: doublet of quartets, m, multiplet; and app, apparent. High-

resolution mass spectra were recorded at the Georgia Institute of Technology mass spectrometry 

facility in Atlanta.  

 

2.4.2 Synthesis 

Compound 1a.69 2-Hydroxy-5-methyl pyridine (1.32 g, 12.1 mmol) was added to potassium 

carbonate (1.67 g, 12.1 mmol), 8-hydroxyquinoline (348 mg, 2.4 mmol) and (4-bromophenyl) 

methanol (4 mL, 4.17 g, 22.02 mmol) in a 100ml round bottom flask with reflux condenser. 

Dimethyl sulfoxide (DMSO) (25 mL) was added into the mixture and purged with argon for 30 
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min. Then, copper(I) iodide (696 mg, 3.66 mmol) was added into the solution. The pressure tube 

was capped after another 15 min of argon purge. The reaction was covered with aluminum foil 

and heated to 120°C with reflux for 24 h. The reaction was cooled to room temperature and the 

resulting green mixture was worked up with DCM (100 mL x 3) with water (150 mL). The 

combined DCM layer was washed with HCl solution (1M, 100 mL) and the green color turned 

back to pale yellow. The aqueous layer also turned yellow. So, more DCM (50 mL x 5) was used 

to extract product in the aqueous layer. The combined DCM layer was dried over Na2SO4, 

evaporated in vacuo to give the crude product as yellow power.  The crude was purified using 

silica gel chromatography (EtOAc: methanol=10:0.7) to furnish 1a as pale yellow solid (2.08 g, 

80%). 1H NMR (400 MHz, CDCl3) δ 7.52 – 7.41 (d, 2H), 7.34 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 

9.7 Hz, 1H), 7.15 – 7.05 (m, 1H), 6.61 (d, J = 9.3 Hz, 1H), 4.71 (d, J = 5.8 Hz, 2H), 2.20 (t, J = 

6.0 Hz, 1H), 2.10 (d, J = 1.1 Hz, 3H). 

 

Compound 1b.69 The reaction of 2-hydroxy-5-methyl pyridine (0.2 g, 1.83 mmol), potassium 

carbonate (0.5 g, 3.6 mmol), 8-hydroxyquinoline (60 mg, 0.423 mmol) and 2-(4-bromophenyl) 

ethanol (0.36 mL, 0.37g, 1.84 mmol) in DMSO, as described for the synthesis of 1a,  furnished 

1b as pale yellow solid (125 mg, 55%). 1H NMR (400 MHz, cdcl3) δ 7.33 (d, J = 4.5 Hz, 3H), 

7.28 – 7.27 (d, J = 2.5 Hz, 1H), 7.25 (d, J = 2.5 Hz, 1H), 7.11 (d, J = 2.5 Hz, 1H), 6.60 (d, J = 

9.3 Hz, 1H), 3.88 (q, J = 6.4 Hz, 2H), 2.91 (t, J = 6.5 Hz, 2H), 2.10 (d, J = 1.1 Hz, 3H). 

 

Compound 1c.69 The reaction of 2-hydroxy-5-methyl pyridine (0.35 mg, 3.21 mmol), potassium 

carbonate (0.500 g, 3.6 mmol), 8-hydroxyquinoline (38 mg, 0.26 mmol) and 4-(4-bromophenyl) 

butanol (0.3mL, 1.37mmol) in DMSO (8 mL), as described for the synthesis of 1a,  furnished 1c 
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as yellow oil (145mg, 41%). 1H NMR (400 MHz, CDCl3) δ 7.45 (d, J = 7.2 Hz, 5H), 7.28 (dt, J 

= 2.7, 1.0 Hz, 1H), 6.78 (d, J = 9.3 Hz, 1H), 3.85 (t, J = 6.6 Hz, 2H), 2.86 (t, J = 7.5 Hz, 2H), 

2.27 (d, J = 1.1 Hz, 3H), 1.94 – 1.86 (m, 2H), 1.79 (t, J = 3.1 Hz, 2H). 

 

Compound 2a. The 1a (2.7 g, 12.6 mmol) was added into anhydrous DCM (50 mL). 

Triethylamine (4 mL, 30.88 mmol) was added and the mixture was purged with argon at -15°C. 

15 min later, methanelsulfonyl chloride (2 g, 20.4 mmol) was added into the solution. The 

reaction ran for 1-2 h until all starting materials have reacted. The solution was worked up by 

adding saturated NaHCO3 solution (30 mL) and the two layers separated. The aqueous layer was 

extracted with (30 mL x 3). The combined DCM layer was washed with brine (30 mL), and dried 

over Na2SO4. The mixture was evaporated off resulting in compound 2a (2.7 g, 10.1 mmol, 81%) 

as yellow liquid. The crude product was used for the next step reaction without purification. 

 

Compound 2b. The reaction of 1b (0.154 g, 0.67 mmol) with methanelsulfonyl chloride (0.147 

g, 1.2 mmol) in anhydrous DCM  (20 mL) and triethylamine (0.17 mL, 1.2 mmol) mixture, as 

described for 2a, furnished 2b (150 mg, 0.53 mmol, 79.1%) as yellow liquid. The crude product 

was used for the next step reaction without purification. 

 

Compound 2c. The reaction of  1c (2 g, 7.8 mmol) with methanelsulfonyl chloride (1.75 g, 16.8 

mmol) in anhydrous DCM solution (30 mL) and triethylamine (2 mL, 15.44 mmol) mixture, as 

described for 2a, furnished 2C (2.1 g, 6.81 mmol, 87.4%) as yellow liquid. The crude product 

was used for the next step reaction without purification. 
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Compound 3a. Compound 2a (600 mg, 2.23 mmol) was dissolved in to DMF (10 mL), NaN3 

(200 mg, 3.08 mmol) was added and the mixture was heated to 80°C for 24 h. The reaction was 

allowed to cool down to room temperature, partitioned between DCM (50 mL) and water (100 

mL) and the two layers separated. The aqueous layer was extracted with DCM (50 mL x 3). The 

combined DCM layer was washed again with water (100 mL x 2), dried over Na2SO4 and 

evaporated off to give 3a (503 mg, 2.13mmol, 95.5% as yellow liquid. 1H NMR (400 MHz, 

CDCl3) δ 7.49 – 7.38 (m, 4H), 7.29 (d, J = 2.6 Hz, 1H), 7.16 – 7.08 (m, 1H), 6.62 (d, J = 9.3 Hz, 

1H), 4.40 (s, 2H), 2.11 (d, J = 1.1 Hz, 3H). 

 

Compound 3b. The reaction of 2b (680 mg, 2.2 mmol) with NaN3 (175 mg, 2.69 mmol) in DMF 

(10 mL), as described for the synthesis of 3a, furnished 3b (405 mg, 1.62mmol, 73.6%) as 

yellow liquid. 1H NMR (400 MHz, CDCl3) δ 7.24 – 7.10 (m, 5H), 7.04 – 6.94 (m, 1H), 6.45 (d, J 

= 9.3 Hz, 1H), 3.42 (t, J = 7.2 Hz, 2H), 2.80 (d, J = 7.2 Hz, 2H), 1.97 (d, J = 1.3 Hz, 3H). 

 

Compound 3c. The reaction of 2c (2.5 g, 6.08 mmol) with NaN3 (700 mg, 10.8 mmol) ) in  

DMF (10 mL), as described for the synthesis of 3a, furnished  3c (1.65 g, 5.9mmol, 97.6%) as 

yellow liquid. 1H NMR (400 MHz, CDCl3) δ 7.27 (m, 5H), 7.10 (m, 1H), 6.60 (d, J = 9.3 Hz, 

1H), 3.56 (t, J = 6.2 Hz, 2H), 2.73 – 2.64 (m, 2H), 2.09 (d, J = 1.1 Hz, 3H), 1.89 – 1.74 (m, 4H). 

 

Compound 4: Clarithromycin (15.00 g, 20.04 mmol) was added to 500 mL round bottom flask 

(RBF). Sodium acetate (14.04g, 171mmol) was added. Then 250 mL methanol with 10mL 

chloroform solvent was added to completely dissolve CLM. The mixture was heated to 80°C 

with addition of water to dissolve NaOAc. The solution was cooled to 60°C and iodine (5.24 g, 

20.60 mmol) was added to the solution in three aliquots in 3 min to ensure no sticky gels formed. 
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The solution turned from cloudy white to dark yellow in 10 min. Sodium hydroxide (1 M, 10 

mL) was added into the solution in the first 10 min. Then the solution was stirred for 30 min. 

Another 2 aliquots of sodium hydroxide (1 M, 10 mL) were added into the solution. The solution 

turned clear and stirred for another 2 h at 60°C. Cool to room temperature, water (500 mL) and 

NH4OH (10 M, 15 mL) were added. Extraction was done using DCM (150 mL X 4). The 

combined DCM solution was washed with ammonium hydroxide (1 M, 200 mL). The aqueous 

layer is extracted with DCM (100 mL x 2). The combined DCM solution was evaporated and the 

product was recrystallized using acetone:NH4OH (15:1, 20 mL) to give 4 (12.5 g, 85%) as white 

powder.  

 

Compound 5. Compound 4 (1 g, 1.3 mmol) and 4-ethynylbenzyl methanesulfonate (280 mg, 

1.33 mmol) were dissolved in DMSO (10 mL). Hunig’s base (0.6mL, 3.25mmol) was added and 

the mixture was heated to 75°C for 4 h. The reaction was partitioned between DCM (50 mL) and 

water (100 mL) and the two layers were separated. The aqueous layer was extracted with DCM 

(50 mL x 3). The combined DCM layer was dried over Na2SO4 and evaporated off. The crude 

was purified using column chromatography eluting with ethyl acetate: hexanes (4:6) to give 

compound 5 (512 mg, 46 %) as pale yellow solid. 

 

Synthesis of 6. The reaction of compound 4 (2 g, 2.6 mmol) with propargyl bromide (376.8mg, 

2.6mmol) in DMSO (10 mL) and Hunig’s base (1.2 mL, 6.5 mmol) at 50°C (note: over 50°C will 

generate multiple byproducts) for 4 h, followed by work up as described for the synthesis of 5, 

furnished a crude product. The crude purified using column chromatography eluting with CHCl3: 

MeOH: NH4OH=20: 1: 0.1 to furnish 6 (650 mg, 34%) as pale yellow solid. 1H NMR (400 MHz, 

cdcl3) δ 7.26 (s, 3H), 5.05 (dd, J = 11.0, 2.5 Hz, 1H), 4.93 (d, J = 4.8 Hz, 1H), 4.46 (d, J = 7.1 
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Hz, 1H), 3.98 (s, 2H), 3.80 – 3.73 (m, 2H), 3.66 (d, J = 7.5 Hz, 1H), 3.53 – 3.45 (m, 1H), 3.40 

(dd, J = 3.9, 2.5 Hz, 2H), 3.33 (d, J = 1.1 Hz, 4H), 3.24 (d, J = 7.4 Hz, 1H), 3.21 (d, J = 2.9 Hz, 

1H), 3.18 (s, 1H), 3.07 – 2.94 (m, 6H), 2.94 – 2.82 (m, 1H), 2.74 – 2.54 (m, 2H), 2.40 – 2.31 (m, 

5H), 2.29 – 2.21 (m, 1H), 2.19 (d, J = 10.3 Hz, 1H), 1.95 – 1.85 (m, 2H), 1.85 – 1.77 (m, 2H), 

1.74 – 1.65 (m, 1H), 1.62 – 1.53 (m, 4H), 1.53 – 1.40 (m, 3H), 1.37 – 1.17 (m, 19H), 1.15 – 1.05 

(m, 16H), 0.84 (t, J = 7.5 Hz, 4H). 

 

 

Compound 7. Azithromycin (15.00 g, 20.05 mmol) was added to 500 mL round bottom flask. 

Sodium acetate (14.04 g, 171 mmol) and 120 mL 80%:20% V/V% methanol:H2O were added. 

The mixture was heated to 50°C. Iodine (5.24 g, 20.60 mmol) was added to the solution in three 

aliquots within 3 min. The solution turned from cloudy white to clear yellow in 10 min. Sodium 

hydroxide (1 M, 10 mL) was added into the solution in the first 10 min. Then the solution was 

stirred for 30 min and another 2 aliquots of sodium hydroxide solution (1 M, 10 mL) were added 

into the reaction. The solution turned clear and was stirred for another 2 h at 50°C. Cool to room 

temperature, the reaction was poured into water (500 mL) and NH4OH (10 M, 15mL) and 

extracted with DCM (150 mL x 4). The combined DCM layer was washed with ammonium 

hydroxide (1 M, 200 mL). The combined DCM layer was dried over Na2SO4 and evaporated. 

The crude solid was in acetone:NH4OH (15:1, 20 mL) to yield 7 as white powder (10.8 g, 73%). 

 

Compound 8. Compound 7 (1 g, 1.3 mmol) and 4-ethynylbenzyl methanesulfonate (280 mg, 

1.33mmol) were dissolved in DMSO (10 mL) and Hunig’s base (0.6 mL, 3.25 mmol). The 

reaction mixture was heated to 75°C for 4 h, cooled to room temperature, partitioned between 

DCM (50 mL) and water (100 mL) and the two layers were separated. The aqueous layer was 
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extracted by DCM (500 mL x 3), the combined DCM layer was dried over Na2SO4 and 

evaporated off. The crude was purified using column chromatography eluting with DCM: 

MeOH: NH4OH=15: 1: 0.1. to give 8 (512 mg, 0.60mmol, 46.3% as pale yellow solid. 

 

Synthesis of 9. The reaction of compound 7 (2 g, 2.6 mmol) and propargyl bromide (376.8 mg, 

2. 6mmol) in DMSO (10 mL) and Hunig’s base (1.2 mL, 6.5 mmol) at 50°C (note: over 50°C 

will generate multiple byproducts) for 2 h, followed by work up 10% methanol in DCM as 

described for the synthesis of 8, furnished a crude product. The crude purified using column 

chromatography eluting with CHCl3: MeOH: NH4OH=10: 1: 0.1 to furnish 9 (710 mg, 34.6%) as 

pale yellow solid. 1H NMR (400 MHz, cdcl3) δ 7.30 – 7.23 (m, 2H), 5.12 (d, J = 7.6 Hz, 1H), 

4.75 (s, 1H), 4.46 (d, J = 7.1 Hz, 1H), 4.26 (s, 1H), 4.05 (d, J = 6.8 Hz, 1H), 3.77 – 3.69 (m, 0H), 

3.63 (d, J = 6.8 Hz, 1H), 3.54 (s, 2H), 3.40 (s, 2H), 3.34 (d, J = 2.3 Hz, 3H), 3.25 (t, J = 8.6 Hz, 

1H), 3.04 (t, J = 9.7 Hz, 1H), 2.73 (s, 1H), 2.24 (s, 1H), 2.15 (d, J = 10.5 Hz, 1H), 1.95 – 1.87 

(m, 3H), 1.79 (t, J = 14.2 Hz, 2H), 1.59 (dd, J = 15.0, 4.6 Hz, 1H), 1.46 (dd, J = 15.8, 8.1 Hz, 

1H), 1.39 – 1.30 (m, 4H), 1.25 (s, 8H), 1.33 – 1.18 (m, 5H), 1.18 (s, 1H), 1.13 – 1.08 (m, 2H), 

1.04 (d, J = 7.8 Hz, 3H), 0.95 (s, 1H), 0.91 (d, J = 7.0 Hz, 2H), 0.87 (d, J = 8.2 Hz, 1H). 

 

Compound 10a. Compounds 3a (60 mg, 0.25 mmol) and 5 (150 mg, 0.178 mmol) were 

dissolved in THF (2 mL) and DMSO (1 mL). Hunig’s base (0.3 mL, 1.77 mmol) was added and 

the mixture was purged with argon for 20 min. CuI (5 mg, 0.03 mmol) was added and the 

reaction mixture was at room temperature overnight. The reaction was partitioned between  

DCM (30 mL) and water (50 mL) and the two layers separated. The aqueous layer was extracted 

with DCM (50 mL); the combined DCM was dried by Na2SO4 and evaporated off. The crude 
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was purified in preparative TLC, eluting DCM:methanol=15:1 to furnish 10a (74 mg, 38%) as 

white powder. 1H NMR (400 MHz, CDCl3) δ 7.79 – 7.74 (m, 2H), 7.73 (s, 1H), 7.33 (d, J = 8.0 

Hz, 2H), 7.30 – 7.23 (m, 4H), 7.11 – 7.04 (m, 2H), 6.59 (dd, J = 9.3, 1.5 Hz, 2H), 5.03 (dt, J = 

11.1, 2.3 Hz, 2H), 4.89 (t, J = 6.2 Hz, 2H), 4.41 (d, J = 7.2 Hz, 2H), 4.34 (t, J = 7.1 Hz, 1H), 4.00 

– 3.93 (m, 2H), 3.81 – 3.68 (m, 4H), 3.63 (dd, J = 11.6, 7.0 Hz, 2H), 3.45 (dd, J = 18.1, 10.4 Hz, 

3H), 3.36 – 3.25 (m, 1H), 3.23 (s, 2H), 3.14 (d, J = 27.8 Hz, 5H), 3.02 (d, J = 3.8 Hz, 5H), 2.88 – 

2.79 (m, 2H), 2.68 (t, J = 7.5 Hz, 1H), 2.55 (d, J = 10.3 Hz, 3H), 2.29 (dd, J = 13.6, 5.1 Hz, 1H), 

2.09 (d, J = 1.3 Hz, 6H), 1.96 – 1.78 (m, 5H), 1.74 – 1.59 (m, 2H), 1.56 – 1.44 (m, 2H), 1.39 (d, 

J = 2.5 Hz, 5H), 1.31 – 1.13 (m, 8H), 1.13 – 1.03 (m, 17H), 0.82 (td, J = 7.5, 1.6 Hz, 6H). 13C 

NMR (101 MHz, CDCl3) δ 220.1, 174.8, 160.8, 160.6, 147.1, 141.8, 140.4, 133.9, 128.2, 127.8, 

126.4, 125.5, 124.8, 120.5, 118.6, 114.2, 113.9, 101.7, 94.9, 79.9, 77.3, 73.2, 71.5, 68.0, 67.6, 

64.6, 62.9, 56.5, 52.6, 49.6, 48.4, 44.2, 44.0, 38.1, 36.2, 35.9, 33.7, 28.7, 20.5, 20.3, 18.8, 17.6, 

17.0, 16.0, 15.0, 14.9, 11.3, 9.6, 8.1. HRMS (ESI) m/z Calcd. for C54H86O16N7 [M+H+]: 

1088.6126, found 1088.6149. 

 

Compound 10b. The reaction of 3b (200 mg, 0.75 mmol), 5 (500 mg, 0.59 mmol), CuI (20 mg, 

0.11 mmol) in THF (2mL), DMSO (1mL) and Hunig’s base (0.3 mL, 1.77 mmol), as described 

for the synthesis of 10a. The product was furnished by column chromatography using solvent 

DCM:MeOH=15:1 to yield 10b (359 mg, 55%) as white powder. 1H NMR (400 MHz, CDCl3) δ 

7.73 (d, J = 7.8 Hz, 2H), 7.64 (s, 1H), 7.36 – 7.18 (m, 8H), 7.05 (d, J = 2.5 Hz, 1H), 6.56 (d, J = 

9.3 Hz, 1H), 5.28 (s, 2H),  5.01 (dd, J = 11.0, 2.3 Hz, 1H), 4.86 (d, J = 4.9 Hz, 1H), 4.61 (t, J = 

7.3 Hz, 2H), 4.39 (d, J = 7.1 Hz, 1H), 3.97 – 3.88 (m, 2H), 3.79 – 3.67 (m, 3H), 3.60 (d, J = 7.1 

Hz, 1H), 3.50 – 3.37 (m, 2H), 3.28 (q, J = 7.1, 5.8 Hz, 3H), 3.17 (s, 1H), 3.09 (s, 3H), 3.01 – 

2.89 (m, 5H), 2.84 (t, J = 8.2 Hz, 1H), 2.55 (d, J = 21.1 Hz, 3H), 2.27 (d, J = 15.2 Hz, 1H), 2.21 
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(s, 3H), 2.13 (d, J = 9.9 Hz, 1H), 2.06 (s, 3H), 1.93 – 1.79 (m, 2H), 1.71 (dt, J = 21.9, 13.4 Hz, 

2H), 1.53 – 1.42 (m, 1H), 1.37 (s, 3H), 1.32 – 1.18 (m, 8H), 1.18 – 1.01 (m, 17H), 0.81 (q, J = 

8.4, 7.4 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 221.1, 175.8, 161.8, 147.4, 142.8, 140.0, 137.3, 

135.1, 129.6, 127.0, 125.8, 121.4, 119.9, 115.2, 102.7, 95.9, 80.9, 78.3, 77.9, 74.3, 72.5, 70.7, 

69.1, 68.6, 65.6, 63.9, 57.6, 51.4, 50.6, 49.4, 45.2, 45.0, 39.2, 39.1, 37.2, 36.9, 36.3, 34.8, 29.7, 

21.5, 21.3, 21.0, 19.8, 18.6, 18.0, 17.0, 15.9, 12.3, 10.6, 9.1. HRMS (ESI) m/z Calcd. for 

C60H88O14N5 [M+H+]: 1102.6322, found 1102.6310. 

 

Compound 10c. The reaction of 3c (200 mg, 0.79 mmol), 5 (500 mg, 0.59 mmol), CuI (20 mg, 

0.11mmol) in THF (2 mL), DMSO (1 mL) and Hunig’s base (0.3 mL, 1.77 mmol), as described 

for the synthesis of 10a. The product was furnished by column chromatography using solvent 

DCM:MeOH=15:1 to yield 10c (453 mg, 68%) as pale-yellow powder. 1H NMR (400 MHz, 

CDCl3) δ 7.82 – 7.75 (m, 2H), 7.73 (s, 1H), 7.33 (d, J = 7.9 Hz, 2H), 7.30 – 7.20 (m, 5H), 7.11 – 

7.05 (m, 1H), 6.58 (d, J = 9.3 Hz, 1H), 5.28 (s, 1H), 5.03 (dd, J = 11.0, 2.2 Hz, 1H), 4.88 (d, J = 

4.8 Hz, 1H), 3.94 (d, J = 20.0 Hz, 1H), 3.81 – 3.69 (m, 3H), 3.61 (d, J = 7.1 Hz, 1H), 3.50 – 3.39 

(m, 2H), 3.30 (dd, J = 10.2, 7.1 Hz, 1H), 3.17 (s, 1H), 3.11 (s, 3H), 3.03 – 2.91 (m, 5H), 2.86 

(dd, J = 9.2, 7.0 Hz, 1H), 2.69 (t, J = 7.5 Hz, 2H), 2.62 – 2.52 (m, 2H), 2.32 – 2.24 (m, 4H), 2.08 

(d, J = 1.1 Hz, 3H), 1.98 (q, J = 7.5 Hz, 1H), 1.92 – 1.84 (m, 1H), 1.84 – 1.74 (m, 1H), 1.74 – 

1.63 (m, 3H), 1.55 – 1.41 (m, 1H), 1.39 (s, 3H), 1.24 (dd, J = 13.2, 6.2 Hz, 6H), 1.16 (d, J = 7.2 

Hz, 2H), 1.11 (dd, J = 6.1, 2.0 Hz, 15H), 1.06 (d, J = 7.5 Hz, 2H), 0.82 (t, J = 7.4 Hz, 3H). 13C 

NMR (101 MHz, CDCl3) δ 175.8, 161.8, 147.5, 142.6, 141.6, 139.1, 135.4, 129.2, 126.5, 125.7, 

121.3, 119.4, 114.9, 102.7, 95.9, 80.9, 78.3, 75.4, 72.5, 70.7, 69.0, 68.9, 65.6, 50.6, 50.2, 49.4, 

45.6, 45.3, 45.0, 40.4, 39.3, 36.8, 34.8, 31.5, 29.8, 28.0, 21.5, 21.3, 21.0, 19.8, 18.6, 18.3, 18.0, 
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16.8, 16.0, 15.9, 12.3, 10.6. HRMS (ESI) m/z Calcd. for C62H92O14N5 [M+H+]: 1130.6635, found 

1130.6625. 

 

Compound 11a. Compounds 3a (60 mg, 0.25 mmol) and 8 (150 mg, 0.18 mmol) were dissolved 

in THF (2 mL) and DMSO (1 mL). Hunig’s base (0.3 mL, 1.77 mmol) was added and the 

mixture was purged with argon for 20 min. CuI (5 mg, 0.03 mmol) was added and the reaction 

was stirred at room temperature overnight. The reaction was partitioned between DCM (30 mL) 

and water (50 mL) and the two layers separated. The aqueous layer was extracted with DCM (50 

mL); the combined DCM was dried by Na2SO4 and evaporated off. The crude was purified in 

preparative TLC, eluting with DCM: methanol=15:1 to furnish 11a (80 mg, 40%) as white 

powder. 1H NMR (400 MHz, CDCl3) δ 7.71 (d, J = 7.8 Hz, 2H), 7.64 (s, 1H), 7.34 – 7.23 (m, 

4H), 7.21 (d, J = 8.2 Hz, 2H), 7.04 (s, 1H), 6.55 (d, J = 9.3 Hz, 1H), 5.27 (s, 2H),  5.12 (d, J = 

4.8 Hz, 1H), 4.71 – 4.55 (m, 3H), 4.38 (d, J = 7.2 Hz, 1H), 4.19 (t, J = 2.6 Hz, 1H), 4.02 (dq, J = 

12.6, 6.4 Hz, 1H), 3.75 (d, J = 13.1 Hz, 1H), 3.62 (s, 1H), 3.55 (d, J = 7.3 Hz, 1H), 3.44 (q, J = 

13.3, 12.0 Hz, 3H), 3.36 – 3.22 (m, 3H), 3.13 (d, J = 24.8 Hz, 3H), 2.97 (t, J = 9.7 Hz, 1H), 2.72 

– 2.60 (m, 2H), 2.53 (dd, J = 20.6, 8.7 Hz, 2H), 2.26 (d, J = 6.9 Hz, 4H), 2.21 (s, 3H), 2.12 (d, J 

= 10.3 Hz, 1H), 2.05 (s, 2H), 1.99 (q, J = 6.9 Hz, 1H), 1.73 (dd, J = 14.6, 4.9 Hz, 2H), 1.28 (t, J 

= 3.2 Hz, 6H), 1.20 (d, J = 6.2 Hz, 3H), 1.12 (d, J = 7.7 Hz, 5H), 1.09 – 1.01 (m, 5H), 0.99 (d, J 

= 7.5 Hz, 2H), 0.85 (q, J = 7.4, 6.8 Hz, 6H). 13C NMR (176 MHz, CDCl3) δ 179.1, 161.7, 148.2, 

142.9, 141.4, 139.1, 134.9, 129.3, 128.9, 127.4, 125.8, 121.5, 119.6, 115.4, 102.9, 94.4, 83.5, 

78.1, 77.7, 74.1, 73.7, 73.3, 72.8, 70.6, 70.1, 68.7, 65.6, 64.3, 62.6, 57.7, 53.6, 49.4, 45.5, 42.7, 

42.1, 36.9, 36.1, 34.6, 29.6, 27.7, 26.8, 18.1, 17.0, 16.3, 14.5, 11.2, 8.9, 7.1. HRMS (ESI) m/z 

Calcd. for C59H89O13N6 [M+H+]: 1089.6482, found 1089.6474. 
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Compound 11b. The reaction of compounds 3b (65 mg, 0.28 mmol), 8 (150 mg, 0.19 mmol), 

CuI (20 mg, 0.11 mmol) in THF (2 mL),  DMSO (1 mL) and Hunig’s base (0.2 mL, 0.49 mmol), 

as described for the synthesis of 11a, followed by prep TLC eluting with DCM:methanol: 

NH4OH=10:1:0.2, furnished 11b (150 mg, 71%) as white powder. 1H NMR (400 MHz, CDCl3) δ 

7.77 – 7.70 (m, 2H), 7.64 (s, 1H), 7.36 – 7.19 (m, 7H), 7.05 (dd, J = 2.5, 1.3 Hz, 1H), 6.56 (d, J 

= 9.3 Hz, 1H), 5.27 (s, 2H), 5.11 (d, J = 4.8 Hz, 1H), 4.71 – 4.58 (m, 3H), 4.40 (d, J = 7.3 Hz, 

1H), 4.21 (dd, J = 3.9, 2.0 Hz, 1H), 4.14 – 3.96 (m, 1H), 3.77 (d, J = 13.1 Hz, 1H), 3.66 (s, 1H), 

3.57 (d, J = 7.2 Hz, 1H), 3.48 – 3.43 (m, 2H), 3.40 – 3.17 (m, 3H), 3.09 (d, J = 18.3 Hz, 4H), 

2.97 (t, J = 9.8 Hz, 1H), 2.70 (dd, J = 7.5, 3.6 Hz, 2H), 2.62 – 2.50 (m, 2H), 2.34 – 2.20 (m, 7H), 

2.13 – 2.05 (m, 4H), 2.01 (s, 1H), 1.97 – 1.81 (m, 1H), 1.75 (d, J = 14.8 Hz, 2H), 1.55 – 1.39 (m, 

2H), 1.35 (t, J = 7.3 Hz, 1H), 1.28 (d, J = 6.2 Hz, 2H), 1.19 – 1.05 (m, 11H), 1.00 (d, J = 7.5 Hz, 

3H), 0.92 – 0.81 (m, 6H). 13C NMR (101 MHz, CDCl3) δ 161.7, 147.4, 142.8, 140.1, 137.3, 

135.1, 129.6, 129.3, 127.0, 125.8, 121.4, 119.8, 115.1, 102.9, 94.4, 83.5, 78.1, 74.2, 73.7, 72.8, 

70.6, 69.9, 68.7, 65.6, 64.3, 57.7, 51.4, 49.3, 45.4, 42.5, 36.9, 36.3, 34.6, 31.6, 29.7, 27.5, 26.7, 

22.6, 22.0, 21.5, 21.4, 18.1, 17.0, 16.3, 14.6, 14.1, 11.2, 9.0, 7.3. HRMS (ESI) m/z Calcd. for 

C60H91O13N6 [M+H+]: 1103.6639, found 1103.6634. 

 

Compound 11c. The reaction of compounds 3c (200 mg, 0.70 mmol), 8 (150 mg, 0.18 mmol), 

CuI (32 mg, 0.17 mmol) in THF (2 mL) and  DMSO (2 mL) and Hunig’s base (0.5 mL, 2.86 

mmol), as described for the synthesis of 11a, furnished 11c (170 mg, 88%) as white powder. 1H 

NMR (400 MHz, CDCl3) δ 7.76 (d, J = 7.8 Hz, 2H), 7.72 (s, 1H), 7.32 (d, J = 7.8 Hz, 2H), 7.24 

(p, J = 4.5, 3.9 Hz, 5H), 7.07 (s, 1H), 6.57 (d, J = 9.3 Hz, 1H), 5.27 (s, 2H), 5.06 (d, J = 4.8 Hz, 
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1H), 4.66 (d, J = 9.5 Hz, 2H), 4.44 – 4.35 (m, 3H), 4.22 (d, J = 4.4 Hz, 1H), 4.00 (dq, J = 12.4, 

6.4 Hz, 1H), 3.77 (d, J = 13.0 Hz, 1H), 3.68 – 3.56 (m, 2H), 3.47 (q, J = 15.1, 11.4 Hz, 3H), 3.38 

– 3.29 (m, 1H), 3.11 (s, 3H), 3.01 – 2.87 (m, 2H), 2.77 – 2.64 (m, 4H), 2.61 – 2.47 (m, 2H), 2.33 

– 2.20 (m, 8H), 2.12 – 2.02 (m, 4H), 1.96 (q, J = 7.6 Hz, 3H), 1.81 – 1.62 (m, 3H), 1.54 – 1.40 

(m, 2H), 1.36 – 1.25 (m, 8H), 1.22 (d, J = 6.1 Hz, 4H), 1.08 (d, J = 18.8 Hz, 7H), 1.01 (d, J = 7.4 

Hz, 2H), 0.87 (q, J = 7.5, 6.5 Hz, 7H). 13C NMR (101 MHz, CDCl3) δ 179.1, 161.8, 147.5, 142.7, 

141.7, 139.1, 135.4, 129.7, 129.3, 126.5, 125.7, 121.3, 119.5, 115.0, 102.9, 94.4, 83.4, 78.0, 77.7, 

74.1, 73.7, 73.2, 72.8, 70.6, 70.0, 68.7, 65.6, 64.2, 62.7, 57.7, 50.2, 49.3, 45.5, 42.6, 29.7, 28.0, 

27.6, 26.7, 22.0, 21.4, 21.4, 18.1, 17.0, 16.3, 14.5, 11.2, 8.9, 7.1. HRMS (ESI) m/z Calcd. for 

C62H95O13N6 [M+H+]: 1131.6952, found 1131.6942. 

 

Synthesis of 12a.  Compound 3a (105 mg, 0.20 mmol) and 6 (150 mg, 0.2 mmol) were dissolved 

in THF (1 mL).  Hunig’s base (0.1 mL, 0.25 mmol) was added and the mixture was purged with 

argon for 20 min. CuI (10 mg, 0.53 mmol) was added and the reaction was stirred at room 

temperature overnight. The reaction was partitioned between DCM (30 mL) and water (50 mL) 

and the two layers separated. The aqueous layer was extracted with DCM (50 mL); the combined 

DCM was dried by Na2SO4 and evaporated off. The crude was purified in preparative TLC, 

eluting with ethyl acetate:hexanes:MeOH=16:1:1 to furnish 12a (145 mg, 71%) as pale-yellow 

powder. 1H NMR (400 MHz, CDCl3) δ 7.45 (s, 1H), 7.39 – 7.29 (m, 4H), 7.26 (s, 2H), 7.23 (s, 

0H), 7.05 (s, 1H), 6.56 (d, J = 9.3 Hz, 1H), 5.52 (d, J = 1.6 Hz, 2H), 5.01 (dd, J = 11.1, 2.3 Hz, 

1H), 4.87 (d, J = 4.8 Hz, 1H), 4.38 (d, J = 7.2 Hz, 1H), 3.96 (d, J = 8.2 Hz, 2H), 3.80 (d, J = 14.0 

Hz, 1H), 3.74 – 3.59 (m, 4H), 3.52 – 3.43 (m, 1H), 3.28 – 3.15 (m, 5H), 2.99 (s, 4H), 2.87 – 2.77 

(m, 1H), 2.56 (dtd, J = 22.5, 10.4, 7.7, 4.7 Hz, 2H), 2.36 – 2.19 (m, 5H), 2.07 (s, 3H), 1.94 – 1.61 
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(m, 5H), 1.53 (dd, J = 15.2, 5.0 Hz, 1H), 1.36 (s, 3H), 1.31 – 1.12 (m, 12H), 1.11 – 1.00 (m, 

11H), 0.80 (t, J = 7.3 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 220.9, 175.8, 161.6, 146.5, 142.9, 

141.3, 134.8, 128.9, 127.3, 122.4, 121.4, 115.3, 102.8, 96.1, 81.0, 78.3, 77.9, 77.3, 76.6, 74.2, 

72.7, 71.0, 69.0, 68.6, 65.7, 64.1, 53.5, 50.6, 49.3, 48.9, 45.2, 45.0, 39.3, 38.2, 37.2, 36.8, 34.9, 

30.0, 21.4, 21.4, 21.0, 19.7, 18.7, 18.0, 17.0, 15.9, 12.3, 10.6, 9.1. HRMS (ESI) m/z Calcd. for 

C53 H82 O14 N5 [M+H+]: 1012.5853, found 1012.5822.  

 

Synthesis of 12b.  The reaction of compounds 3b (65 mg, 0.26 mmol), 6 (150 mg, 0.2 mmol) 

and CuI (10 mg, 0.53 mmol) in  THF (1 mL) and Hunig’s base (0.1 mL, 0.25 mmol), as 

described for the synthesis of 12a, followed by prep TLC eluting with DCM:MeOH: 

NH4OH=10:1:0.2 furnished 12b (135 mg, 67%) as white powder. 1H NMR (400 MHz, CDCl3) δ 

7.32 – 7.21 (m, 3H), 7.19 (d, J = 8.1 Hz, 2H), 7.06 (s, 1H), 6.56 (d, J = 9.3 Hz, 1H), 5.06 – 4.99 

(m, 1H), 4.88 (d, J = 4.8 Hz, 1H), 4.56 (t, J = 7.3 Hz, 2H), 4.39 (d, J = 7.2 Hz, 1H), 3.96 (d, J = 

9.7 Hz, 2H), 3.72 (d, J = 8.9 Hz, 2H), 3.63 (d, J = 7.2 Hz, 1H), 3.48 (s, 1H), 3.22 (d, J = 4.6 Hz, 

5H), 2.99 (d, J = 11.3 Hz, 6H), 2.59 (d, J = 0.8 Hz, 30H), 2.36 – 2.27 (m, 1H), 2.25 (s, 4H), 2.14 

(d, J = 0.8 Hz, 1H), 2.08 (s, 3H), 1.92 – 1.75 (m, 2H), 1.67 (d, J = 14.5 Hz, 1H), 1.54 (dd, J = 

15.1, 5.1 Hz, 1H), 1.37 (s, 3H), 1.22 (td, J = 15.2, 13.5, 6.9 Hz, 13H), 1.12 – 1.01 (m, 13H), 0.81 

(t, J = 7.3 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 221.1, 175.8, 161.8, 142.8, 140.0, 137.3, 

135.2, 129.6, 127.0, 121.4, 115.2, 102.83, 96.1, 81.1, 78.4, 78.0, 77.2, 76.6, 74.3, 72.7, 70.9, 

69.0, 68.6, 65.7, 63.7, 51.4, 50.7, 49.4, 49.0, 45.2, 45.0, 40.9, 39.3, 39.1, 37.2, 36.6, 36.4, 34.9, 

29.9, 21.5, 21.4, 21.0, 19.7, 18.7, 18.0, 17.0, 16.0, 12.3, 10.6, 9.1. HRMS (ESI) m/z Calcd. for 

C54 H84 O14 N5 [M+H+]: 1026.6009, found 1026.5978. 
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Synthesis of 12c.  The reaction of compounds 3c (150 mg, 0.53 mmol), 6 (80 mg, 0.10 mmol) 

and CuI (9 mg, 0.05 mmol) in THF (2 mL) DMSO (2 mL) and Hunig’s base (0.4 mL, 2.2 mmol), 

as described for the synthesis of 12a, followed by prep TLC eluting with DCM:MeOH: 

NH4OH=10:1:0.2 furnished 12c (85 mg, 79%) as white powder. 1H NMR (400 MHz, CDCl3) δ 

7.43 (s, 1H), 7.32 – 7.15 (m, 5H), 7.08 (td, J = 1.8, 1.1 Hz, 1H), 6.57 (d, J = 9.3 Hz, 1H), 5.02 

(dd, J = 11.1, 2.2 Hz, 1H), 4.89 (d, J = 4.8 Hz, 1H), 4.40 (d, J = 7.1 Hz, 1H), 4.32 (td, J = 7.0, 

1.7 Hz, 2H), 3.96 (s, 1H), 3.83 (d, J = 14.0 Hz, 1H), 3.76 – 3.59 (m, 4H), 3.48 (dd, J = 10.6, 5.7 

Hz, 1H), 3.30 – 3.12 (m, 5H), 3.00 (s, 4H), 2.88 – 2.82 (m, 1H), 2.66 (t, J = 7.5 Hz, 2H), 2.62 – 

2.51 (m, 1H), 2.35 – 2.29 (m, 1H), 2.26 (s, 3H), 2.14 (d, J = 0.8 Hz, 7H), 2.12 – 1.99 (m, 3H), 

1.90 (tt, J = 14.7, 7.0 Hz, 4H), 1.72 – 1.59 (m, 3H), 1.54 (dd, J = 15.1, 5.0 Hz, 1H), 1.38 (s, 3H), 

1.26 (d, J = 6.2 Hz, 3H), 1.23 – 1.14 (m, 8H), 1.11 – 1.02 (m, 12H), 0.81 (t, J = 7.3 Hz, 3H). 13C 

NMR (101 MHz, CDCl3) δ 221.0, 175.8, 161.8, 142.6, 141.6, 139.1, 135.4, 129.2, 126.5, 121.3, 

114.8, 102.7, 96.0, 80.9, 78.3, 78.3, 77.9, 76.5, 74.2, 72.7, 70.9, 69.0, 68.6, 65.7, 64.1, 50.6, 50.1, 

49.3, 45.2, 45.0, 39.3, 39.1, 34.9, 34.7, 30.9, 29.7, 28.0, 21.4, 21.0, 19.7, 18.7, 18.0, 17.0, 15.9, 

12.3, 10.6, 9.1. HRMS (ESI) m/z Calcd. for C56 H91 O13 N6 [M+H+]: 1055.6639, found 

1055.6623. 

 

Synthesis of 13a.  The reaction of compounds 3a (65 mg, 0.27 mmol), 9 (150 mg, 0.2 mmol) 

and CuI (10 mg, 0.53 mmol) in THF (1 mL) and Hunig’s base (0.1 mL, 0.25 mmol), as described 

for the synthesis of 12a, followed by prep TLC eluting with ethyl acetate:hexane:MeOH=16:1:1 

furnished 13a (110 mg, 55%) as pale-yellow powder. 1H NMR (400 MHz, CDCl3) δ 7.47 (s, 

1H), 7.41 – 7.31 (m, 4H), 7.30 – 7.23 (m, 1H), 7.07 (dt, J = 2.1, 1.0 Hz, 1H), 6.59 (d, J = 9.3 Hz, 

1H), 5.28 (s, 1H), 5.15 (d, J = 4.7 Hz, 1H), 4.68 (dd, J = 9.8, 2.6 Hz, 1H), 4.39 (d, J = 7.3 Hz, 
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2H), 4.22 (dd, J = 3.7, 2.0 Hz, 1H), 4.12 – 4.00 (m, 1H), 3.85 (d, J = 13.9 Hz, 1H), 3.72 – 3.62 

(m, 2H), 3.59 (d, J = 7.2 Hz, 1H), 3.55 – 3.46 (m, 1H), 3.35 – 3.26 (m, 1H), 3.24 (s, 3H), 3.02 (d, 

J = 9.4 Hz, 1H), 2.73 – 2.65 (m, 2H), 2.61 (d, J = 5.8 Hz, 1H), 2.55 (d, J = 10.4 Hz, 1H), 2.30 (d, 

J = 15.8 Hz, 7H), 2.16 (d, J = 2.6 Hz, 1H), 2.11 – 2.01 (m, 5H), 1.99 – 1.83 (m, 1H), 1.79 – 1.71 

(m, 2H), 1.56 (dd, J = 15.2, 5.0 Hz, 1H), 1.50 – 1.39 (m, 1H), 1.31 (d, J = 5.5 Hz, 6H), 1.25 – 

1.19 (m, 10H), 1.15 (d, J = 7.5 Hz, 3H), 1.08 (t, J = 3.4 Hz, 6H), 0.99 (d, J = 7.5 Hz, 3H), 0.87 

(q, J = 7.4, 6.8 Hz, 6H). 13C NMR (176 MHz, CDCl3) δ 178.7, 161.6, 142.9, 141.4, 134.9, 128.9, 

127.5, 127.4, 121.5, 115.3, 102.9, 94.6, 83.6, 78.1, 77.8, 74.2, 73.7, 73.5, 73.0, 70.8, 67.0, 69.5, 

68.7, 65.6, 64.5, 53.8, 53.5, 49.4, 49.1, 45.3, 42.2, 36.9, 36.3, 34.7, 31.8, 29.7, 29.3, 27.5, 26.7, 

22.0, 21.6, 21.3, 18.2, 17.1, 16.3, 14.7, 14.1, 11.3, 9.1, 7.4. HRMS (ESI) m/z Calcd. for C53 H85 

O13 N6 [M+H+]: 1013.6169, found 1013.6157.  

 

Synthesis of 13b.  The reaction of compounds 3b (65 mg, 0.24 mmol), 9 (150 mg, 0.2 mmol) 

and CuI (10 mg, 0.53 mmol) in THF (1 mL) and Hunig’s base (0.1 mL, 0.25 mmol), as described 

for the synthesis of 12a, followed by prep TLC eluting with DCM:MeOH:NH4OH=10:1:0.2 

furnished 13b (127 mg, 63%) as white powder. 1H NMR (400 MHz, CDCl3) δ 7.33 (s, 1H), 7.31 

– 7.24 (m, 3H), 7.19 (d, J = 8.1 Hz, 2H), 7.06 (d, J = 2.5 Hz, 1H), 6.56 (d, J = 9.3 Hz, 1H), 5.12 

(d, J = 4.8 Hz, 1H), 5.02 (s, 1H), 4.66 (dd, J = 9.8, 2.6 Hz, 1H), 4.56 (t, J = 7.3 Hz, 2H), 4.38 (d, 

J = 7.2 Hz, 1H), 4.27 – 4.21 (m, 1H), 4.04 (dt, J = 12.4, 6.2 Hz, 1H), 3.81 (d, J = 14.0 Hz, 1H), 

2.76 – 2.62 (m, 1H), 2.59 (d, J = 1.1 Hz, 2H), 2.51 (d, J = 10.3 Hz, 1H), 2.31 (d, J = 15.6 Hz, 

4H), 2.24 (s, 3H), 2.08 (s, 3H), 1.99 (dd, J = 25.6, 8.9 Hz, 2H), 1.80 – 1.69 (m, 2H), 1.54 (dd, J = 

15.2, 5.0 Hz, 1H), 1.43 (ddt, J = 16.8, 14.3, 7.3 Hz, 1H), 1.28 (d, J = 5.7 Hz, 8H), 1.26 – 1.18 (m, 

7H), 1.15 (d, J = 7.4 Hz, 3H), 1.12 – 0.96 (m, 10H), 0.94 – 0.82 (m, 6H). 13C NMR (101 MHz, 

cdcl3) δ 161.7, 142.7, 140.0, 137.2, 135.1, 129.5, 126.9, 121.4, 115.0, 102.9, 78.1, 77.7, 77.4, 



134 

 

77.1, 76.7, 74.2, 73.6, 73.0, 70.8, 68.6, 65.5, 64.0, 51.3, 49.3, 49.1, 45.2, 42.2, 41.0, 36.7, 36.3, 

36.2, 34.7, 27.5, 26.7, 22.0, 21.6, 21.3, 18.2, 17.0, 16.2, 14.6, 11.2, 9.0. HRMS (ESI) m/z Calcd. 

for C54 H87 O13 N6 [M+H+]: 1027.6326, found 1027.6318. 

 

Synthesis of 13c.  The reaction of compounds 3c (100 mg, 0.35 mmol), 9 (50 mg, 0.07 mmol) 

and CuI (10 mg, 0.53 mmol) in THF (1 mL),  DMSO (1 mL) and Hunig’s base (0.1 mL, 0.57 

mmol), as described for the synthesis of 12a, followed by prep TLC eluting with DCM:MeOH: 

NH4OH=10:1:0.2 furnished 13c (58 mg, 85%) as white powder. 1H NMR (400 MHz, CDCl3) δ 

7.45 (s, 1H), 7.32 – 7.20 (m, 7H), 7.11 – 7.07 (m, 1H), 6.59 (d, J = 9.3 Hz, 1H), 5.15 (d, J = 4.8 

Hz, 1H), 4.69 (dd, J = 9.8, 2.7 Hz, 1H), 4.40 (d, J = 7.3 Hz, 1H), 4.34 (td, J = 7.0, 1.2 Hz, 2H), 

4.26 (dd, J = 4.0, 2.0 Hz, 1H), 4.14 – 4.02 (m, 1H), 3.86 (d, J = 13.9 Hz, 1H), 3.75 – 3.58 (m, 

3H), 3.51 (dt, J = 13.8, 6.9 Hz, 1H), 3.33 (dd, J = 10.2, 7.2 Hz, 2H), 3.25 (s, 3H), 3.01 (d, J = 8.8 

Hz, 2H), 2.70 (ddd, J = 19.3, 8.5, 5.7 Hz, 4H), 2.53 (d, J = 9.8 Hz, 1H), 2.30 (d, J = 8.8 Hz, 7H), 

2.18 (d, J = 5.8 Hz, 0H), 2.09 (d, J = 1.1 Hz, 3H), 2.04 – 1.84 (m, 3H), 1.77 (t, J = 11.3 Hz, 2H), 

1.71 – 1.53 (m, 3H), 1.45 (ddd, J = 14.1, 9.7, 7.1 Hz, 1H), 1.31 (t, J = 3.2 Hz, 6H), 1.27 – 1.20 

(m, 8H), 1.17 (d, J = 7.4 Hz, 3H), 1.08 (t, J = 3.4 Hz, 6H), 1.02 (d, J = 7.5 Hz, 3H), 0.89 (td, J = 

7.4, 6.8, 2.6 Hz, 7H). 13C NMR (176 MHz, CDCl3) δ 161.9, 161.8, 149.7, 142.6, 141.7, 139.2, 

135.4, 129.2, 126.6, 121.4, 114.9, 102.9, 94.5, 83.5, 78.2, 77.6, 77.5, 74.2, 73.7, 73.0, 70.9, 68.7, 

65.6, 64.3, 50.1, 49.3, 45.3, 42.4, 36.9, 36.2, 34.8, 30.1, 29.7, 28.0, 27.6, 26.8, 22.0, 21.6, 21.3, 

18.2, 17.0, 16.2, 14.6, 11.3, 9.0, 7.3. HRMS (ESI) m/z Calcd. for C56 H91 O13 N6 [M+H+]: 

1055.6639, found 1055.6629. 

 



135 

 

Synthesis of 14a.  Compounds 2a (60 mg, 0.20 mmol) and 4 (150 mg, 0.20 mmol) were 

dissolved in CH3CN (0.5 mL), DMSO (0.5 mL) and Hunig’s base (0.07 mL, 0.39 mmol). The 

mixture was purged with argon for 20 min, KI (5 mg, 0.03 mmol) was added and the reaction 

was heat to 75ºC overnight covered with aluminum foil. The reaction was quenched with 

Na2S2O3 (10 mL) and  DCM (30 mL). The two layers were separated and the DCM layer was 

washed with water (50 mL). The aqueous layer was back extracted with DCM (50 mL) and the 

combined DCM layer was dried with Na2SO4 and evaporated off. The crude was purified using 

preparative TLC eluting with DCM:MeOH:NH4OH=10:1:0.2 to furnish 14a (15 mg, 7.9%) as 

white powder. 1H NMR (400 MHz, CDCl3) δ 7.47 – 7.38 (m, 1H), 7.36 – 7.31 (m, 1H), 7.30 – 

7.24 (m, 1H), 7.11 (d, J = 1.9 Hz, 1H), 6.61 (d, J = 9.3 Hz, 1H), 5.06 (dd, J = 11.1, 2.3 Hz, 1H), 

4.93 (d, J = 4.8 Hz, 1H), 4.48 (d, J = 7.1 Hz, 1H), 4.06 – 3.91 (m, 2H), 3.79 – 3.74 (m, 2H), 3.68 

(d, J = 7.4 Hz, 1H), 3.57 – 3.43 (m, 1H), 3.40 – 3.30 (m, 1H), 3.27 (s, 2H), 3.20 (s, 1H), 3.07 – 

2.97 (m, 5H), 2.94 – 2.80 (m, 1H), 2.67 – 2.55 (m, 2H), 2.36 (d, J = 15.2 Hz, 1H), 2.25 (s, 2H), 

2.18 (s, 1H), 2.16 – 2.04 (m, 3H), 1.92 (ddd, J = 14.5, 7.4, 2.1 Hz, 1H), 1.87 – 1.68 (m, 1H), 1.66 

– 1.46 (m, 1H), 1.42 (s, 3H), 1.31 (d, J = 6.2 Hz, 2H), 1.28 – 1.17 (m, 10H), 1.18 – 1.08 (m, 

10H), 0.85 (dd, J = 9.6, 5.0 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 175.9, 161.8, 142.7, 135.3, 

130.0, 129.5, 126.6, 121.4, 115.0, 102.7, 96.1, 80.9, 78.4, 77.9, 74.3, 72.7, 71.0, 69.1, 68.7, 65.7, 

57.2, 50.6, 49.5, 45.2, 45.1, 39.2, 37.2, 37.0, 34.9, 30.1, 29.7, 21.5, 21.0, 19.8, 18.7, 18.0, 17.0, 

16.0, 12.3, 10.6, 9.1. HRMS (ESI) m/z Calcd. for C50 H79 O14 N2 [M+H+]: 931.5526, found 

931.5506. 

 

Synthesis of 14b.  The reaction of compounds 2b (60 mg, 0.20 mmol), 4 (150 mg, 0.20 mmol) 

and KI (5 mg, 0.03 mmol) dissolved in CH3CN (0.5 mL), DMSO (0.5 mL) and Hunig’s base 

(0.07 mL, 0.39 mmol),  as described for the synthesis of 14a, followed by prep TLC eluting with 
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DCM:MeOH:NH4OH=10:1:0.2 furnished 14b (11 mg, 5.8%) as white powder. 1H NMR (400 

MHz, CDCl3) δ 7.27 (d, J = 10.8 Hz, 6H), 7.07 (s, 1H), 6.59 (d, J = 9.3 Hz, 1H), 5.08 – 5.00 (m, 

1H), 4.91 (d, J = 4.8 Hz, 1H), 4.43 (d, J = 7.2 Hz, 1H), 3.97 (d, J = 6.5 Hz, 2H), 3.75 (t, J = 4.9 

Hz, 2H), 3.65 (d, J = 7.2 Hz, 1H), 3.48 (s, 1H), 3.31 (s, 3H), 3.18 (s, 1H), 3.02 (s, 5H), 2.87 (t, J 

= 8.1 Hz, 2H), 2.58 (dt, J = 12.1, 6.4 Hz, 1H), 2.35 (d, J = 15.1 Hz, 3H), 2.19 (d, J = 10.5 Hz, 

1H), 2.09 (s, 3H), 1.93 – 1.78 (m, 3H), 1.68 (d, J = 14.7 Hz, 1H), 1.58 (dd, J = 15.1, 4.8 Hz, 1H), 

1.39 (s, 3H), 1.34 – 1.16 (m, 14H), 1.15 – 1.04 (m, 12H), 0.83 (t, J = 7.3 Hz, 4H). 13C NMR (176 

MHz, CDCl3) δ 174.8, 160.8, 141.6, 138.3, 134.2, 128.5, 125.5, 120.4, 113.8, 101.7, 95.1, 79.7, 

77.4, 77.0, 73.3, 71.7, 69.8, 68.0, 67.7, 64.9, 54.3, 49.6, 48.5, 44.3, 44.0, 38.3, 38.2, 36.2, 35.7, 

33.9, 28.7, 20.5, 20.0, 18.7, 17.7, 17.0, 16.0, 14.9, 11.3, 9.6, 8.1. HRMS (ESI) m/z Calcd. for C46 

H81 O16 N4 [M+H+]:  945.5642, found 945.5667. 

 

Synthesis of 14c.  The reaction of compounds 2c (60 mg, 0.16 mmol), 4 (120 mg, 0.17 mmol) 

and KI (5 mg, 0.03 mmol) dissolved in CH3CN (0.5 mL), DMSO (0.5 mL) and Hunig’s base (0.1 

mL, 0.5.8 mmol), as described for the synthesis of 14a, followed by prep TLC eluting with 

DCM:MeOH:NH4OH=10:1:0.2 furnished 14c (19 mg, 12%) as white powder. 1H NMR (400 

MHz, CDCl3) δ 7.27 – 7.23 (m, 6H), 7.09 (d, J = 2.6 Hz, 1H), 6.58 (d, J = 9.3 Hz, 1H), 5.02 (d, J 

= 16.4, 5.2 Hz, 1H), 4.90 (d, J = 4.9 Hz, 1H), 4.42 (d, J = 7.2 Hz, 1H), 4.04 – 3.93 (m, 4H), 3.77 

– 3.70 (m, 3H), 3.64 (d, J = 7.4 Hz, 1H), 3.49 – 3.44 (m, 1H), 3.30 (s, 4H), 3.18 (q, J = 6.3, 5.6 

Hz, 2H), 3.05 – 2.91 (m, 8H), 2.86 (dd, J = 9.2, 7.1 Hz, 1H), 2.72 – 2.48 (m, 6H), 2.35 (d, J = 

15.2 Hz, 1H), 2.21 (d, J = 4.7 Hz, 5H), 2.08 (d, J = 1.1 Hz, 3H), 1.94 – 1.78 (m, 3H), 1.72 – 1.52 

(m, 4H), 1.38 (s, 2H), 1.28 (d, J = 6.2 Hz, 2H), 1.24 – 1.13 (m, 8H), 1.13 – 1.00 (m, 12H), 0.82 

(t, J = 7.4 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 175.9, 161.9, 142.6, 138.9, 135.5, 129.2, 
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126.4, 121.3, 114.9, 102.8, 96.1, 80.7, 78.4, 74.3, 72.7, 70.7, 69.0, 68.8, 65.7, 52.9, 50.6, 49.5, 

45.3, 45.0, 39.2, 37.0, 35.4, 34.9, 29.5, 28.8, 27.9, 21.5, 21.0, 19.8, 18.7, 18.0, 17.0, 15.9, 12.3, 

10.6, 9.0. HRMS (ESI) m/z Calcd. for C53 H85 O14 N2 [M+H+]:  973.5995, found 973.5978. 

 

Synthesis of 15a.  The reaction of compounds 2a (60 mg, 0.20 mmol), 7 (150 mg, 0.20 mmol) 

and KI (5 mg, 0.03 mmol) dissolved in CH3CN (2 mL), DMSO (2 mL) and Hunig’s base (0.07 

mL, 0.42 mmol), as described for the synthesis of 14a, followed by prep TLC eluting with 

DCM:MeOH:NH4OH=10:1:0.2 furnished 15a (10.5 mg, 5.4%) as pale-yellow powder. 1H NMR 

(400 MHz, CDCl3) δ 7.40 – 7.13 (m, 5H), 7.03 (s, 1H), 6.53 (d, J = 9.3 Hz, 1H), 5.12 (d, J = 4.8 

Hz, 1H), 4.63 (d, J = 9.7 Hz, 1H), 4.40 (d, J = 7.4 Hz, 1H), 4.20 (s, 1H), 4.06 – 3.97 (m, 1H), 

3.74 (d, J = 13.4 Hz, 1H), 3.61 (s, 1H), 3.56 (d, J = 7.4 Hz, 1H), 3.44 (t, J = 13.8 Hz, 1H), 3.31 

(dd, J = 17.2, 8.7 Hz, 1H), 3.21 (s, 2H), 3.08 – 3.03 (m, 1H), 2.97 (s, 1H), 2.70 – 2.56 (m, 1H), 

2.55 (s, 3H), 2.48 (d, J = 9.7 Hz, 1H), 2.33 – 2.20 (m, 5H), 2.18 (s, 2H), 2.04 (d, J = 10.4 Hz, 

4H), 1.72 (d, J = 13.9 Hz, 1H), 1.44 (dd, J = 55.6, 15.0, 6.3 Hz, 1H), 1.27 (d, J = 6.4 Hz, 5H), 

1.17 (d, J = 4.4 Hz, 5H), 1.12 (d, J = 7.4 Hz, 2H), 1.06 – 0.91 (m, 7H), 0.82 (q, J = 7.5, 6.4 Hz, 

6H). 13C NMR (176 MHz, CDCl3) δ 161.8, 142.6, 140.1, 139.4, 135.3, 129.4, 126.5, 121.5, 

114.9, 102.9, 94.5, 83.5, 78.2, 74.2, 73.7, 73.00 71.0, 70.0, 68.7, 65.6, 62.5, 57.43, 49.5, 45.3, 

42.3, 41.0, 37.1, 36.2, 34.7, 30.3, 29.7, 27.6, 26.8, 22.0, 21.7, 21.4, 18.2, 17.0, 16.2, 14.6, 11.3, 

9.0, 7.3. HRMS (ESI) m/z Calcd. for C50 H82 O13 N3 [M+H+]:  932.5842, found 932.5824. 

 

Synthesis of 15b.  The reaction of compounds 2b (500 mg, 1.4 mmol), 7 (200.5 mg, 0.28 mmol) 

and KI (40 mg, 0.24 mmol), dissolved in CH3CN (2 mL), DMSO (2 mL) and Hunig’s base (0.5 

mL, 2.92 mmol), as described for the synthesis of 14a, followed by prep TLC eluting with DCM: 

MeOH: NH4OH=10:1:0.2 furnished 15b (12 mg, 1%) as pale-yellow powder. 1H NMR (400 
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MHz, CDCl3) δ 7.37 – 7.13 (m, 5H), 7.07 (d, J = 6.4 Hz, 1H), 6.57 (d, J = 9.3 Hz, 1H), 5.27 (s, 

1H), 5.02 (d, J = 4.8 Hz, 1H), 4.65 (d, J = 9.9 Hz, 1H), 4.42 (d, J = 7.2 Hz, 1H), 4.25 (d, J = 5.2 

Hz, 1H), 4.04 (dq, J = 12.6, 6.3 Hz, 1H), 3.84 (t, J = 6.9 Hz, 0H), 3.68 – 3.59 (m, 2H), 3.47 (dq, 

J = 16.5, 9.1, 7.5 Hz, 1H), 3.30 (s, 2H), 3.21 (dd, J = 10.3, 7.4 Hz, 0H), 3.00 (t, J = 9.8 Hz, 1H), 

2.81 (tq, J = 20.7, 7.0 Hz, 3H), 2.75 – 2.56 (m, 1H), 2.47 (d, J = 11.2 Hz, 1H), 2.39 – 2.15 (m, 

6H), 2.07 (s, 5H), 1.89 – 1.72 (m, 1H), 1.72 – 1.40 (m, 2H), 1.28 (d, J = 6.9 Hz, 5H), 1.25 – 1.12 

(m, 9H), 1.12 – 0.95 (m, 7H), 0.95 – 0.71 (m, 5H). 13C NMR (101 MHz, CDCl3) δ 161.8, 142.5, 

139.2, 135.4, 129.9, 129.5, 126.4, 121.4, 114.8, 102.8, 95.0, 83.7, 78.4, 78.1, 74.3, 73.6, 72.9, 

70.7, 68.7, 65.8, 65.5, 55.3, 53.5, 49.5, 45.1, 42.4, 41.7, 38.6, 36.8, 36.5, 34.9, 29.7, 26.7, 22.0, 

21.6, 21.4, 18.3, 17.0, 16.3, 15.2, 11.3, 9.2. HRMS (ESI) m/z Calcd. for C51 H84 O13 N3 [M+H+]:  

946.5999, found 946.5982. 

 

 Synthesis of 15c.  The reaction of compounds 2c (300 mg, 0.95 mmol), 7 (700 mg, 0.95 mmol) 

and KI (40 mg, 0.24 mmol) dissolved in CH3CN (2 mL), DMSO (2 mL) and Hunig’s base (0.4 

mL, 1.4 mmol), as described for the synthesis of 14a, followed by prep TLC eluting with 

DCM:MeOH:NH4OH=10:1:0.2 furnished 15c (75.8 mg, 9%) as pale-yellow powder. 1H NMR 

(400 MHz, CDCl3) δ 7.31 – 7.23 (m, 6H), 7.12 (s, 1H), 6.60 (d, J = 9.3 Hz, 1H), 5.33 – 5.28 (m, 

1H), 5.05 (d, J = 4.7 Hz, 1H), 4.71 – 4.64 (m, 1H), 4.47 (d, J = 7.2 Hz, 1H), 4.32 – 4.26 (m, 1H), 

4.07 (dt, J = 12.6, 6.3 Hz, 1H), 3.71 – 3.63 (m, 2H), 3.52 (s, 1H), 3.34 (s, 3H), 3.26 (t, J = 8.9 

Hz, 1H), 3.04 (t, J = 9.7 Hz, 1H), 2.85 – 2.77 (m, 2H), 2.62 (s, 7H), 2.50 (d, J = 11.2 Hz, 1H), 

2.34 (s, 3H), 2.23 (d, J = 15.2 Hz, 3H), 2.10 (s, 3H), 2.00 (t, J = 7.2 Hz, 1H), 1.93 – 1.77 (m, 

1H), 1.61 (ddd, J = 30.4, 15.1, 6.6 Hz, 3H), 1.32 (d, J = 6.4 Hz, 6H), 1.26 (s, 4H), 1.12 – 1.03 

(m, 8H), 1.00 – 0.81 (m, 7H).  13C NMR (101 MHz, CDCl3) δ 161.3, 142.0, 138.3, 128.7, 125.8, 
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120.8, 114.2, 102.4, 94.5, 83.3, 77.9, 77.6, 73.8, 73.0, 72.4, 70.1, 68.2, 65.0, 53.0, 48.9, 44.5, 

40.4, 36.0, 34.9, 34.4, 31.1, 29.2, 28.4, 26.2, 22.1, 21.5, 21.1, 20.9, 20.6, 17.8, 16.5, 15.7, 14.7, 

13.6, 10.8, 8.7, 7.2. HRMS (ESI) m/z Calcd. for C53 H88 O13 N3 [M+H+]:  974.6312, found 

974.6288. 

 

Compound 1669. 2-Hydroxy-5-methyl pyridine (500 mg, 4.58 mmol) was added to potassium 

carbonate (900 mg, 6.42 mmol), 8-hydroxyquinoline (220mg, 1.49 mmol) and 4-iodoanisole 

(700 mg, 2.97 mmol) in a round bottom flask. Dimethyl sulfoxide (DMSO) (30 mL) was added 

to the mixture and the mixture was purged with argon for 15 min. Then, copper(I) iodide (250 

mg, 1.49 mmol) was added to the mixture. The pressure tube was capped after another 15 min of 

argon purge. The reaction was covered with aluminum foil and heated to 120°C for 12 h. The 

reaction was cooled to room temperature and the resulting green mixture was worked up as 

described for the synthesis of 1a. The crude was purified using silica gel chromatography eluting 

with EtOAc:methanol=10:0.7 to furnish 16 (510 mg, 52%) as pale-yellow solid. 1H NMR (400 

MHz, CDCl3) δ 7.30 – 7.22 (m, 3H), 7.09 (ddd, J = 2.6, 1.2, 0.7 Hz, 1H), 7.01 – 6.95 (m, 2H), 

6.60 (d, J = 9.6 Hz, 1H), 3.84 (s, 3H), 2.10 (s, 3H). 

 

Compound 17. Compound 16 (500 mg, 2.37 mmol) was dissolved in DCM (10 mL) and the 

solution was purged with argon gas for 15 min and cooled to -30ºC. BBr3 (2 mL) was added to 

the solution dropwisely and stirring continued at -30 ºC for 1 h. The reaction temperature was 

raised to 0oC (ice bath) and stirring continued overnight. MeOH (20 mL) was added dropwisely, 

followed by NaHCO3 to adjust pH to 8-9 and precipitate resulted. The suspension was filtered 

through vacuum and the filtrate was extracted by DCM:MeOH=10:1 (100 mL x 5). The 

combined DCM layer was dried over Na2SO4 and evaporated off to furnish 17 (320 mg, 67%). 
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1H NMR (400 MHz, CDCl3) δ 7.35 (ddd, J = 9.2, 2.6, 0.4 Hz, 1H), 7.16 – 7.11 (m, 1H), 7.04 – 

6.95 (m, 2H), 6.65 (t, J = 9.0 Hz, 3H), 2.12 (d, J = 1.0 Hz, 3H). 

 

Compound 18a. Compound 17 (300 mg, 1.49 mmol) was dissolved in DCM (5 mL) and cooled 

to -10 to -20ºC. Pyridine (0.7 mL, 8.6 mmol) was added to the solution and triflic anhydride 

(0.4mL, 2.38 mmol) was added dropwisely. The reaction was complete within 30 min and 1M 

HCl solution (5 mL) was added to the solution to quench the reaction. Then DCM (30 mL) and 

water (50 mL) were added and the two layers separated. The DCM layer was washed water (30 

mL), dried over Na2SO4 and evaporated off. The crude product (dark yellow solid) was purified 

using column chromatography eluting with neat EtOAc to furnish the triflate intermediate 

product as pale-yellow solid (320 mg, 51%). The intermediate triflate compound (300 mg, 0.9 

mmol) was treated with prop-2-yn-1-ol (100.1 mg, 1.8 mmol), 

Tetrakis(triphenylphosphine)palladium (520 mg, 0.45 mmol) and CuI (85.5 mg, 0.45 mmol) in 

CH3CN (7 mL). The mixture was purged with argon for 5 min and after the addition of Hunig’s 

base (0.7ml, 4mmol), heated to 75ºC and kept stirring overnight. The mixture was filtered 

through celite bed and the filtrate was evaporated off. The crude compound was purified using 

column chromatography, eluting with EtOAc:MeOH=13:1 to furnish 18a (323 mg, 90%) as 

yellow oil.  1H NMR (400 MHz, CDCl3) δ 7.57 – 7.51 (m, 2H), 7.41 – 7.30 (m, 2H), 7.30 – 7.23 

(m, 1H), 7.09 (ddd, J = 2.6, 1.2, 0.8 Hz, 1H), 6.64 – 6.57 (m, 1H), 4.51 (d, J = 6.2 Hz, 2H), 2.11 

(d, J = 1.1 Hz, 4H), 1.88 (t, J = 6.2 Hz, 1H). 

 

Compound 18b. The triflate intermediate (400 mg, 1.2 mmol) was prepared as described for the 

synthesis of 18a. The triflate intermediate was treated with 3-butyn-1-ol (500 mg, 6.84 mmol), 
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Tetrakis(triphenylphosphine)palladium (200 mg, 0.17 mmol) and CuI (33 mg, 0.17 mmol) in 

CH3CN (10 mL). The mixture was purged with argon for 5 min and after the addition of Hunig’s 

base (1mL, 10v/v%), heated to 65ºC and kept stirring overnight. The mixture was filtered 

through celite bed and the filtrate was evaporated off. The crude compound was purified using 

column chromatography, eluting with neat EtOAc to furnish 18b (370 mg, 84%) as yellow oil.  

1H NMR (400 MHz, CDCl3) δ 7.57 – 7.43 (d, J = 8.3 Hz, 2H), 7.40 – 7.29 (d, J = 8.3 Hz, 2H), 

7.26 (d, J = 0.6 Hz, 1H), 7.09 (d, J = 2.3 Hz, 1H), 6.60 (d, J = 9.4 Hz, 1H), 3.83 (q, J = 6.3 Hz, 

2H), 2.71 (t, J = 6.3 Hz, 2H), 2.11 (d, J = 1.1 Hz, 3H), 1.83 (t, J = 6.3 Hz, 1H). 

 

Compound 18c. The triflate intermediate (200mg, 0.58mmol) was prepared as described for the 

synthesis of 18a. The triflate intermediate was treated with pent-4-yn-1-ol (0.135 g, 1.6 mmol), 

Tetrakis(triphenylphosphine)palladium (320 mg, 0.25 mmol) and CuI (68 mg, 0.25 mmol) in 

CH3CN (10 mL). The mixture was purged with argon for 5 min and after the addition of Hunig’s 

base (0.8 mL, 8 v/v%), heated to 65ºC and kept stirring overnight. The mixture was filtered 

through celite bed and the filtrate was evaporated off. The crude compound was purified using 

column chromatography, eluting with neat EtOAc to furnish 18c (150 mg, 97%) as yellow oil.  

1H NMR (400 MHz, CDCl3) δ 7.52 – 7.44 (d, J = 8.3 Hz, 2H), 7.34 – 7.28 (d, J = 8.3 Hz, 2H), 

7.26 (m, 1H), 7.08 (dt, J = 2.7, 1.0 Hz, 1H), 6.60 (d, J = 9.3 Hz, 1H), 3.83 (q, J = 6.0 Hz, 2H), 

2.56 (t, J = 7.0 Hz, 2H), 2.10 (s, J = 1.1 Hz, 3H), 1.87 (tt, J = 7.0, 6.2 Hz, 2H), 1.51 (t, J = 5.4 

Hz, 1H). 

 

Compound 18d. The triflate intermediate (500 mg, 1.5 mmol) was prepared as described for the 

synthesis of 18a. The triflate intermediate was treated with hex-5-yn-1-ol (294 mg, 3 mmol), 
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Tetrakis(triphenylphosphine)palladium (433 mg, 0.375 mmol) and CuI (71mg, 0.375mmol) in 

CH3CN (8 mL). The mixture was purged with argon for 5 min and after the addition of Hunig’s 

base (0.8 mL, 8 v/v%), heated to 65ºC and kept stirring overnight. The mixture was filtered 

through celite bed and the filtrate was evaporated off. The crude compound was purified using 

column chromatography, eluting with neat EtOAc to furnish 18d (400 mg, 95%) as yellow oil.  

1H NMR (400 MHz, CDCl3) δ 7.48 (d, J = 8.6 Hz, 2H), 7.32 – 7.28 (d, J = 8.6 Hz, 2H), 7.29 – 

7.24 (m, 1H), 7.09 – 7.05 (m, 1H), 6.60 (d, J = 9.3 Hz, 1H), 3.73 (s, 2H), 2.48 (t, J = 6.6 Hz, 

2H), 2.14 – 2.03 (m, 3H), 1.80 – 1.65 (m, 2H), 1.28 (d, J = 18.0 Hz, 3H). 

 

Compound 18e. The triflate intermediate (200 mg, 0.58 mmol) was prepared as described for 

the synthesis of 18a. The triflate intermediate was treated with hex-5-yn-1-ol (180 mg, 1.6 

mmol), Tetrakis(triphenylphosphine)palladium (320 mg, 0.25 mmol) and CuI (68 mg, 0.25 

mmol) in CH3CN (10 mL). The mixture was purged with argon for 5 min and after the addition 

of Hunig’s base (0.8 mL, 8 v/v%), heated to 65ºC and kept stirring overnight. The mixture was 

filtered through celite bed and the filtrate was evaporated off. The crude compound was purified 

using column chromatography, eluting with neat EtOAc to furnish 18e (160 mg, 0.54 mmol, 

93.2%) as yellow oil.  1H NMR (400 MHz, CDCl3) δ 7.48 (d, J = 8.6 Hz, 2H), 7.33 – 7.28 (d, J = 

8.6 Hz, 1H), 7.27 – 7.24 (m, 1H), 7.10 – 7.05 (m, 1H), 6.60 (d, J = 9.4 Hz, 1H), 3.69 (q, J = 6.0 

Hz, 2H), 2.44 (t, J = 6.9 Hz, 2H), 2.10 (d, J = 1.1 Hz, 3H), 1.65 (h, J = 6.9 Hz, 4H), 1.69 – 1.51 

(m, 4H). 

 

Compound 19a. Compound 18a (170 mg, 0.7 mmol) was dissolved in DCM (15 mL) and 

triethylamine (360 mg, 3.5 mmol) and stirred at -20ºC. Methanesulfonyl chloride (0.20 g, 3.0 
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mmol) was added slowly to the solution under argon; the reaction was kept stirring for 45-60 min 

and quenched with NaHCO3 (1 mL). The reaction was partitioned between DCM (50 mL) and 

water (50mL) and the two layers separated. The organic layer was washed with water (30 mL), 

dried over Na2SO4 and evaporated off to give a crude mesylated intermediate that was used 

without purification. The mesylated intermediate (85 mg, 0.27 mmol) was dissolved in 

THF/DMSO solution (1:1 mL); and compound 4 (170 mg, 0.26 mmol) and Hunig’s base (0.68 

mL, 4 mmol) were added to the solution. The mixture was heated to 50ºC for 2 h during which 

the starting materials were consumed. The solution was worked up with water (50 mL) and 

chloroform (30 mL x 3). The organic layer was dried over Na2SO4 and the solvent was 

evaporated off. The crude product was purified using preparative TLC plate eluting with 

EtOAc:MeOH=15:1 to furnish 19a as pale-yellow solid (135 mg, 54%). 1H NMR (400 MHz, 

CDCl3) δ 7.52 – 7.44 (m, 2H), 7.35 – 7.28 (m, 2H), 7.27 – 7.22 (m, 1H), 7.07 (d, J = 7.1 Hz, 

1H), 6.58 (d, J = 9.4 Hz, 1H), 5.04 (dd, J = 11.2, 2.3 Hz, 1H), 4.91 (d, J = 4.9 Hz, 1H), 4.47 (d, J 

= 7.2 Hz, 1H), 3.98 (d, J = 11.4 Hz, 2H), 3.74 (q, J = 6.4, 5.3 Hz, 2H), 3.57 – 3.45 (m, 1H), 3.26 

(s, 3H), 3.17 (s, 1H), 3.01 (d, J = 10.6 Hz, 4H), 2.93 – 2.81 (m, 1H), 2.81 – 2.67 (m, 1H), 2.57 

(dt, J = 7.7, 4.1 Hz, 1H), 2.40 (s, 2H), 2.34 (d, J = 15.2 Hz, 1H), 2.19 (d, J = 10.0 Hz, 1H), 2.10 

(d, J = 6.0 Hz, 3H), 1.97 – 1.78 (m, 3H), 1.74 – 1.62 (m, 1H), 1.60 – 1.42 (m, 1H), 1.42 (s, 0H), 

1.38 – 1.32 (m, 1H), 1.29 (d, J = 6.1 Hz, 3H), 1.25 – 1.16 (m, 8H), 1.16 – 1.00 (m, 10H), 0.83 (t, 

J = 7.3 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 175.8, 161.5, 142.7, 140.7, 134.7, 132.4, 126.8, 

126.6, 123.2, 121.5, 115.1, 102.7, 96.0, 87.2, 83.9, 80.8, 78.4, 77.9, 74.2, 72.6, 71.1, 69.0, 68.6, 

65.7, 64.3, 50.6, 49.5, 45.2, 45.0, 44.5, 39.3, 37.2, 35.9, 21.5, 21.0, 19.8, 18.7, 18.0, 17.0, 16.0, 

12.3, 10.6, 9.1. HRMS (ESI) m/z Calcd. for C52 H79 O14 N2 [M+H+]:  955.5526, found 955.5505. 
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Compound 19b. The preparation of mesylated intermediate was as described for synthesis of 

mesylated intermediate to 19a. The prepared intermediate (100mg, 0.32 mmol) was reacted with 

compound 4 (200 mg, 0.28 mmol) in THF/DMSO (1ml:1ml) and Hunig’s base (0.7mL, 7 V/V%) 

at 75-80oC overnight. The work-up procedure was described in synthesis procedure of 19a. The 

crude product was dried and purified through preparative TLC eluting with EtOAc:MeOH=20:1 

to furnish 19b as yellow solid (22 mg, 8%). 1H NMR (400 MHz, CDCl3) δ 7.54 – 7.47 (d, J = 

6.8, 2H), 7.35 – 7.22 (m, 2H), 7.26 (m, 1H), 7.07 (s, 1H), 6.60 (d, J = 9.4 Hz, 1H), 5.04 (d, J = 

9.3 Hz, 1H), 4.92 (d, J = 4.8 Hz, 1H), 4.48 (d, J = 7.1 Hz, 1H), 3.98 (d, J = 7.4 Hz, 2H), 3.87 – 

3.74 (m, 2H), 3.75 (d, J = 4.7 Hz, 1H), 3.66 (d, J = 7.1 Hz, 1H), 3.31 (s, 3H), 3.25 (s, 1H), 3.19 

(d, J = 2.4 Hz, 1H), 3.03 (s, 4H), 2.90 – 2.80 (m, 2H), 2.71 (t, J = 6.3 Hz, 1H), 2.60 (s, 6H), 2.36 

(d, J = 15.3 Hz, 1H), 2.33 (s, 4H), 2.10 (d, J = 1.2 Hz, 4H), 1.86 (dd, J = 26.5, 11.6 Hz, 4H), 1.58 

(dd, J = 15.0, 4.9 Hz, 1H), 1.40 (s, 3H), 1.30 (d, J = 6.2 Hz, 3H), 1.25 (s, 8H), 1.26 – 1.16 (m, 

8H), 1.15 – 1.08 (m, 12H), 0.84 (q, J = 7.6 Hz, 3H). 13C NMR (176 MHz, CDCl3) δ 220.7, 

188.0, 175.4, 164.3, 161.6, 142.7, 140.0, 135.1, 128.7, 127.3, 121.4, 115.1, 102.5, 96.1, 81.9, 

78.3, 78.1, 77.6, 76.7, 74.2, 73.1, 71.8, 69.1, 67.9, 66.2, 58.8, 50.6, 49.6, 45.1, 45.0, 39.1, 38.6, 

37.3, 35.0, 21.5, 20.9, 19.7, 18.7, 18.0, 17.0, 16.1, 12.3, 10.6, 9.9. HRMS (ESI) m/z Calcd. for 

C53 H81 O14 N2 [M+H+]:  969.5682, found 969.5662. 

 

Compound 19c. The preparation of mesylated intermediate was as described for synthesis of 

mesylated intermediate to 19a.The prepared intermediate (75 mg, 0.23 mmol) was reacted with 

compound 4 (200 mg, 0.27 mmol) in THF/DMSO (5:2 mL) and Hunig’s base (0.8mL, 8 V/V%) 

at 75-80oC overnight. The work-up procedure was described in synthesis procedure of 19a. The 

crude product was dried and purified through preparative TLC eluting with EtOAc:MeOH=20:1 
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to furnish 19c as yellow solid (19 mg, 8%). 1H NMR (400 MHz, CDCl3) δ 7.48 (d, J = 8.7, 2.6 

Hz, 2H), 7.32 – 7.21 (m, 3H), 7.06 (s, 1H), 6.59 (d, J = 9.4 Hz, 1H), 5.04 (d, J = 11.1, 2.3 Hz, 

1H), 4.91 (d, J = 4.8 Hz, 1H), 4.46 (d, J = 7.2 Hz, 1H), 4.11 (q, J = 7.1 Hz, 1H), 3.99 (s, 1H), 

3.97 (s, 1H), 3.79 – 3.72 (m, 2H), 3.66 (d, J = 7.2 Hz, 1H), 3.49 (s, 1H), 3.28 (s, 2H), 3.17 (s, 

1H), 3.01 (d, J = 14.2 Hz, 5H), 2.93 – 2.83 (m, 1H), 2.55 (d, J = 9.1 Hz, 2H), 2.48 (d, J = 7.5 Hz, 

2H), 2.35 (d, J = 15.2 Hz, 1H), 2.29 (s, 2H), 2.15 (s, 1H), 2.06 (d, J = 22.8 Hz, 4H), 1.95 – 1.82 

(m, 2H), 1.81 (s, 1H), 1.69 (d, J = 15.7 Hz, 2H), 1.57 (dd, J = 15.2, 4.9 Hz, 1H), 1.39 (s, 3H), 

1.26 (s, 3H), 1.32 – 1.15 (m, 13H), 1.14 – 1.07 (m, 10H), 0.84 (dd, J = 14.8, 7.3 Hz, 6H), 13C 

NMR (101 MHz, CDCl3) δ 221.0, 175.8, 161.7, 142.8, 134.0, 137.3, 135.2, 129.6, 127.0, 121.3, 

115.2, 102.8, 96.1, 81.0, 78.3, 78.0, 76.6, 74.2, 72.7, 70.9, 69.0, 68.5, 65.7, 63.7, 51.4, 50.6, 49.3, 

49.0, 45.2, 45.0, 39.3, 39.1, 37.2, 36.5, 36.3, 34.9, 29.7, 21.4, 21.0, 19.7, 18.7, 18.0, 17.0, 16.0, 

12.3, 10.6, 9.1. HRMS (ESI) m/z Calcd. for C54 H83 O14 N2 [M+H+]:  983.5839, found 983.5817. 

 

Compound 19d. The preparation of mesylated intermediate was as described for synthesis of 

mesylated intermediate to 19a. The prepared intermediate (170mg, 0.54mmol) was reacted with 

compound 4 (370 mg, 0.52mmol) in THF/DMSO (5:1 mL) and Hunig’s base (0.6mL, 8 V/V%) 

at 75-80oC overnight. The work-up procedure was described in synthesis procedure of 19a. The 

crude product was dried and purified through preparative TLC eluting with EtOAc:MeOH=20:1 

to furnish 19d as yellow solid (21mg, 4.1%). 1H NMR (400 MHz, CDCl3) δ 7.47 (d, J = 8.5 Hz, 

2H), 7.30 (d, J = 8.5 Hz, 2H), 7.25 (d, J = 5.0 Hz, 1H), 7.09 – 7.05 (m, 1H), 6.60 (d, J = 9.3 Hz, 

1H), 5.04 (dd, J = 11.1, 2.2 Hz, 1H), 4.92 (d, J = 5.0 Hz, 2H), 4.47 (d, J = 7.2 Hz, 2H), 3.99 (q, J 

= 5.5, 5.1 Hz, 3H), 3.79 – 3.70 (m, 4H), 3.66 (d, J = 7.3 Hz, 1H), 3.50 (s, 2H), 3.31 (d, J = 4.3 

Hz, 6H), 3.02 (d, J = 5.4 Hz, 9H), 2.88 (dd, J = 9.3, 7.1 Hz, 2H), 2.64 – 2.53 (m, 2H), 2.48 – 
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2.25 (m, 9H), 2.11 – 2.05 (m, 5H), 1.94 – 1.79 (m, 4H), 1.74 – 1.48 (m, 2H), 1.39 (s, 3H), 1.33 – 

1.16 (m, 13H), 1.15 – 1.05 (m, 10H), 0.93 – 0.75 (m, 6H). 13C NMR (101 MHz, CDCl3) δ 

221.04, 175.8, 161.6, 142.7, 140.1, 134.9, 132.4, 126.4, 124.1, 121.5, 115.1, 96.1, 78.3, 77.9, 

77.3, 77.0, 76.7, 74.3, 72.7, 70.7, 69.1, 50.6, 49.5, 45.3, 45.0, 39.3, 37.2, 34.9, 31.9, 29.7, 29.4, 

26.1, 22.7, 21.5, 21.4, 21.0, 19.8, 19.3, 18.7, 18.0, 17.0, 16.0, 14.1, 12.3, 10.6, 9.1.. HRMS (ESI) 

m/z Calcd. for C55 H85 O14 N2 [M+H+]:  997.5995, found 997.5977. 

 

Compound 19e. The preparation of mesylated intermediate was as described for synthesis of 

mesylated intermediate to 19a. The prepared intermediate (85mg, 0.236mmol) was reacted with 

compound 4 (230 mg, 0.31 mmol) in THF/DMSO (5:5mL) and Hunig’s base (0.8 mL, 8 V/V%) 

at 75-80oC overnight. The work-up procedure was described in synthesis procedure of 19a. The 

crude product was dried and purified through preparative TLC eluting with 

EtOAc:MeOH=20:1to furnish 19e as yellow solid (11 mg, 5%). 1H NMR (400 MHz, CDCl3) δ 

7.46 (d, J = 8.5 Hz, 2H), 7.28 (d, J = 8.5 Hz, 2H), 7.26 – 7.22 (m, 1H), 7.06 (dt, J = 2.3, 1.1 Hz, 

1H), 6.57 (d, J = 9.3 Hz, 1H), 5.03 (dd, J = 11.1, 2.3 Hz, 1H), 4.90 (d, J = 4.8 Hz, 1H), 4.43 (d, J 

= 7.2 Hz, 1H), 4.04 – 3.93 (m, 3H), 3.78 – 3.71 (m, 2H), 3.64 (d, J = 7.3 Hz, 1H), 3.52 – 3.42 

(m, 1H), 3.31 (s, 4H), 3.24 – 3.16 (m, 2H), 3.02 – 2.93 (m, 6H), 2.62 – 2.51 (m, 2H), 2.40 (t, J = 

7.0 Hz, 2H), 2.35 (d, J = 15.2 Hz, 1H), 2.25 (s, 3H), 2.08 (d, J = 1.1 Hz, 3H), 1.94 – 1.78 (m, 

4H), 1.73 – 1.43 (m, 5H), 1.38 (s, 3H), 1.28 (d, J = 6.1 Hz, 3H), 1.26 – 1.15 (m, 12H), 1.09 (dt, J 

= 7.6, 4.0 Hz, 13H), 0.88 – 0.78 (m, 6H). 13C NMR (101 MHz, CDCl3) δ 175.8, 161.6, 142.7, 

140.0, 134.9, 132.3, 126.4, 124.2, 121.5, 115.0, 102.7, 96.0, 91.4, 80.7, 80.1, 78.3, 77.9, 74.2, 

72.7, 70.7, 69.0, 65.7, 50.6, 49.5, 45.3, 45.0, 39.2, 36.9, 34.9, 31.6, 29.7, 28.5, 26.4, 22.6, 21.5, 

21.0, 19.8, 19.4, 18.7, 18.0, 17.0, 15.9, 14.1, 12.3, 10.6, 9.0. HRMS (ESI) m/z Calcd. for C56 H87 

O14 N2 [M+H+]: 1011.6152, found 1011.6123. 
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Compound 20a. The preparation of mesylated intermediate was as described for synthesis of 

mesylated intermediate to 19a. Subsequently, the mesylated intermediate (85 mg, 0.27 mmol) 

reacted with compound 7 (170 mg, 0.27 mmol) in THF/DMSO (5:5mL) and Hunig’s base (0.68 

mL, 4 mmol) at 50ºC for 2 h. The reaction was worked up with water (50 mL) and chloroform 

(30 mL x 3). The crude product was purified through preparative TLC eluting with 

EtOAc:MeOH=15:1 to furnish 20a as pale-yellow solid (115 mg, 45%). 1H NMR (400 MHz, 

CDCl3) δ 7.52 – 7.46 (m, 2H), 7.36 – 7.29 (m, 2H), 7.25 (d, J = 9.8 Hz, 1H), 7.06 (d, J = 2.6 Hz, 

1H), 6.59 (d, J = 9.3 Hz, 1H), 5.12 (d, J = 4.8 Hz, 1H), 4.82 (s, 1H), 4.68 (dd, J = 9.9, 2.6 Hz, 

1H), 4.47 (d, J = 7.2 Hz, 1H), 4.27 (dd, J = 4.4, 2.0 Hz, 1H), 4.06 (dt, J = 12.5, 6.4 Hz, 1H), 3.68 

(s, 1H), 3.55 (dt, J = 11.0, 7.5 Hz, 1H), 3.28 (s, 4H), 3.21 (s, 1H), 3.02 (t, J = 9.9 Hz, 1H), 2.92 

(s, 1H), 2.81 – 2.63 (m, 3H), 2.53 (d, J = 10.5 Hz, 1H), 2.41 (s, 3H), 2.31 (s, 4H), 2.18 – 2.14 (m, 

3H), 2.09 (s, 3H), 2.08 – 1.95 (m, 2H), 1.87 (ddd, J = 15.6, 9.2, 4.1 Hz, 2H), 1.79 (d, J = 14.6 

Hz, 1H), 1.56 (dd, J = 15.2, 5.0 Hz, 1H), 1.50 – 1.35 (m, 1H), 1.32 (t, J = 3.1 Hz, 6H), 1.26 – 

1.14 (m, 8H), 1.13 – 1.00 (m, 8H), 0.89 (q, J = 7.4, 6.6 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 

178.9, 161.7, 142.8, 140.8, 134.9, 132.5, 126.7, 123.4, 121.7, 115.2, 103.0, 94.7, 87.7, 83.7, 78.3, 

77.9, 77.4, 74.4, 73.8, 73.1, 71.1, 70.2, 68.8, 65.7, 64.6, 62.5, 49.6, 45.4, 44.7, 42.5, 42.2, 36.4, 

36.3, 34.9, 31.2, 31.1, 27.7, 26.9, 22.1, 21.7, 21.5, 18.4, 17.2, 16.3, 14.9, 11.4, 9.3, 7.6.  HRMS 

(ESI) m/z Calcd. for C52 H82 O13 N3 [M+H+]: 956.5842, found 956.5822. 

 

Compound 20b. The preparation of mesylated intermediate was as described for synthesis of 

mesylated intermediate to 19a. Subsequently, the mesylated intermediate (100 mg, 0.32 mmol) 

reacted with compound 7 (200 mg, 0.27 mmol) in THF/DMSO (5:5mL) and Hunig’s base (0.7 
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mL, 4 mmol) at 50ºC overnight. The reaction was worked up as described for 19a. The crude 

product was purified through preparative TLC eluting with EtOAc:MeOH=15:1 to furnish 20b 

as pale-yellow solid (13mg, 0.0134mmol, 4.9%).1H NMR (400 MHz, CDCl3) δ 7.52 (d, J = 8.4 

Hz, 2H), 7.30 (dd, J = 8.6, 2.0 Hz, 2H), 7.26 (d, J = 2.6 Hz, 1H), 7.08 (d, J = 2.5 Hz, 1H), 6.61 

(d, J = 9.4 Hz, 1H), 5.12 (d, J = 4.9 Hz 1H), 5.04 (s, 1H), 4.70 (d, J = 9.8 Hz, 1H), 4.52 (dd, J = 

15.7, 7.3 Hz, 2H), 4.30 (d, J = 4.7 Hz, 1H), 4.23 (d, J = 6.6 Hz, 1H), 4.08 (d, J = 6.6 Hz, 2H), 

3.83 (s, 1H), 3.74 – 3.58 (m, 4H), 3.55 (s, 2H), 3.44 – 3.22 (m, 8H), 3.17 – 2.98 (m, 2H), 2.96 (s, 

2H), 2.86 (d, J = 6.5 Hz, 4H), 2.80 (s, 3H), 2.72 (d, J = 7.5 Hz, 2H), 2.65 – 2.46 (m, 6H), 2.35 (d, 

J = 3.8 Hz, 13H), 2.23 – 1.96 (m, 2H), 1.94 – 1.83 (m, 4H), 1.82 – 1.43 (m, 10H), 1.41 – 1.03 

(m, 10H), 1.02 – 0.69 (m, 6H). 13C NMR (176 MHz, CDCl3) δ 188.1, 164.3, 161.6, 142.7, 140.2, 

135.1, 132.5, 128.8, 127.2, 126.4, 123.9, 121.5, 113.8, 103.2, 95.1, 80.8, 78.2, 77.8, 74.3, 73.3, 

73.0, 68.2, 65.9, 65.6, 52.6, 49.5, 45.1, 41.0, 36.7, 35.9, 34.9, 31.9, 29.7, 27.1, 26.7, 21.6, 18.3, 

17.0, 11.3, 7.7. HRMS (ESI) m/z Calcd. for C53 H84 O13 N3 [M+H+]: 970.4432, found 970.4513. 

 

Compound 20c. The preparation of mesylated intermediate was as described for synthesis of 

mesylated intermediate to 19a. Subsequently, the mesylated intermediate (100 mg, 0.30 mmol) 

reacted with compound 7 (170 mg, 0.23 mmol) in THF/DMSO (5:5mL) and Hunig’s base (0.7 

mL, 4.1 mmol) at 70ºC overnight. The reaction was worked up as described for 19a. The crude 

product was purified through preparative TLC eluting with EtOAc:MeOH=15:1 to furnish 20c as 

pale-yellow solid (15mg, 0.0152mmol, 5.58%). 1H NMR (400 MHz, CDCl3) δ 7.48 (d, J = 8.2 

Hz, 2H), 7.32 – 7.22 (m, 3H), 7.07 (s, 1H), 6.59 (d, J = 9.4 Hz, 1H), 5.10 (s, 2H), 4.68 (s, 1H), 

4.50 – 4.39 (m, 1H), 4.25 (s, 1H), 4.07 (s, 2H), 3.64 (d, J = 7.3 Hz, 3H), 3.53 (s, 1H), 3.36 – 3.28 

(m, 4H), 2.74 (s, 2H), 2.54 (s, 2H), 2.47 (s, 1H), 2.34 (d, J = 13.6 Hz, 6H), 2.29 (s, 2H), 2.14 – 
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2.07 (m, 3H), 2.00 (s, 3H), 1.77 – 1.65 (m, 3H), 1.59 (s, 2H), 1.33 (s, 10H), 1.31 – 1.10 (m, 

13H), 1.08 (d, J = 1.8 Hz, 3H), 1.04 (dd, J = 17.7, 8.5 Hz, 2H), 0.98 – 0.80 (m, 10H). 13C NMR 

(176 MHz, CDCl3) δ 161.6, 142.7, 140.2, 134.9, 132.4, 126.4, 121.5, 115.1, 102.9, 94.6, 78.2, 

74.3, 73.0, 70.6, 65.6, 49.5, 45.3, 42.2, 36.3, 34.7, 31.9, 29.4, 26.7, 22.7, 22.0, 21.6, 21.4, 18.2, 

17.1, 16.3, 14.6, 14.1, 11.3, 9.1, 7.4. HRMS (ESI) m/z Calcd. for C54 H86 O13 N3 [M+H+]: 

984.5712, found 984.5863. 

 

Compound 20d. The preparation of mesylated intermediate was as described for synthesis of 

mesylated intermediate to 19a. Subsequently, the mesylated intermediate (100 mg, 0.32 mmol) 

reacted with compound 7 (170 mg, 0.23 mmol) in THF/DMSO (5:5mL) and Hunig’s base (0.7 

mL, 4.1 mmol) at 50ºC overnight. The reaction was worked up as described for 19a. The crude 

product was purified through preparative TLC eluting with EtOAc:MeOH=15:1 to furnish 20d 

as pale-yellow solid (13mg, 0.0134mmol, 4.9%). 1H NMR (400 MHz, CDCl3) δ 7.47 (d, J = 8.5 

Hz, 1H), 7.29 (d, J = 8.5 Hz, 1H), 7.26 (s, 4H), 7.07 (q, J = 1.5, 1.0 Hz, 1H), 6.59 (d, J = 9.3 Hz, 

1H), 5.10 (d, J = 4.8 Hz, 2H), 4.68 (dd, J = 9.9, 2.6 Hz, 2H), 4.45 (d, J = 7.2 Hz, 2H), 4.29 – 4.26 

(m, 1H), 4.12 – 4.01 (m, 2H), 3.69 (d, J = 1.6 Hz, 2H), 3.67 – 3.62 (m, 3H), 3.47 (q, J = 7.0 Hz, 

2H), 3.32 (d, J = 8.1 Hz, 6H), 3.29 – 3.22 (m, 1H), 3.04 (d, J = 8.4 Hz, 2H), 2.77 (dd, J = 7.5, 4.8 

Hz, 1H), 2.70 (d, J = 6.9 Hz, 1H), 2.51 (d, J = 10.9 Hz, 2H), 2.43 (s, 1H), 2.37 (s, 1H), 2.32 (s, 

8H), 2.25 (d, J = 6.1 Hz, 4H), 2.17 (s, 0H), 2.09 (d, J = 1.1 Hz, 3H), 2.07 – 1.93 (m, 4H), 1.93 – 

1.84 (m, 1H), 1.80 (d, J = 14.6 Hz, 1H), 1.70 – 1.53 (m, 6H), 1.46 (ddd, J = 14.4, 10.0, 7.3 Hz, 

1H), 1.32 (t, J = 3.1 Hz, 8H), 1.28 – 1.15 (m, 13H), 1.13 – 1.01 (m, 10H), 0.89 (td, J = 7.4, 7.0, 

2.0 Hz, 10H). 13C NMR (176 MHz, CDCl3) δ 179.1, 161.8, 142.8, 140.2, 135.1, 132.5, 126.6, 

124.4, 121.6, 115.2, 103.1, 94.6, 91.3, 83.5, 80.2, 78.3, 77.8, 77.6, 74.4, 73.8, 73.6, 73.2, 70.7, 
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70.2, 69.0, 66.2, 65.7, 62.7, 49.6, 45.5, 42.6, 42.4, 36.4, 34.8, 32.1, 29.8, 27.7, 26.9, 26.4, 22.1, 

21.8, 21.5, 19.5, 18.3, 17.2, 16.4, 14.7, 11.4, 9.1, 7.4. HRMS (ESI) m/z Calcd. for C55 H88 O13 N3 

[M+H+]: 998.6312, found 998.6296. 

 

Compound 20e. The preparation of mesylated intermediate was as described for synthesis of 

mesylated intermediate to 19a. [Subsequently, the mesylated intermediate (85 mg, 0.24 mmol) 

reacted with compound 7 (170 mg, 0.23 mmol) in THF/DMSO (5:5mL) and Hunig’s base (0.8 

mL, 4.65 mmol) at 70ºC overnight. The reaction was worked up as described for 19a. The crude 

product was purified through preparative TLC eluting with EtOAc:MeOH=15:1 to furnish 20e as 

pale-yellow solid (13 mg, 5%). 1H NMR (400 MHz, CDCl3) δ 7.48 (d, J = 8.6 Hz, 2H), 7.30 (d, J 

= 8.6 Hz, 2H), 7.26 (m, 1H), 7.07 (d, J = 2.4 Hz, 1H), 6.60 (d, J = 9.5 Hz, 1H), 5.13 (s, 1H), 4.68 

(d, J = 10.5 Hz, 2H), 4.45 (d, J = 7.0 Hz, 1H), 4.29 (s, 1H), 4.07 (s, 1H), 3.70 – 3.61 (m, 2H), 

3.52 (s, 2H), 3.34 (s, 3H), 3.25 (s, 1H), 3.04 (t, J = 9.9 Hz, 1H), 2.86 (s, 1H), 2.81 – 2.64 (m, 

1H), 2.52 (d, J = 10.6 Hz, 1H), 2.41 (t, J = 7.0 Hz, 2H), 2.32 (s, 4H), 2.25 (s, 3H), 2.17 (d, J = 

0.6 Hz, 4H), 2.10 (d, J = 1.1 Hz, 3H), 1.83 (s, 12H), 1.69 – 1.42 (m, 8H), 1.32 (d, J = 5.4 Hz, 

6H), 1.28 – 1.15 (m, 7H), 1.07 (q, J = 7.7, 7.2 Hz, 9H), 0.93 – 0.83 (m, 8H). 13C NMR (176 

MHz, CDCl3) δ 161.7, 142.8, 140.2, 135.1, 132.5, 126.6, 124.4, 121.7, 115.2, 103.1, 94.6, 91.5, 

83.5, 80.1, 78.3, 77.8, 74.4, 73.8, 73.2, 70.7, 65.7, 62.6, 53.4, 49.6, 45.4, 42.4, 36.4, 34.8, 29.8, 

28.7, 27.7, 26.9, 22.2, 21.8, 21.5, 19.5, 18.4, 17.2, 16.4, 14.8, 11.4, 9.1, 7.5. HRMS (ESI) m/z 

Calcd. for C56 H90 O13 N3 [M+H+]: 1012.6468, found 1012.6451. 

 

2.4.3 Cell culture 
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Cell culture and viability assays protocol were described in our previous work. In brief, VERO, 

and A549 cell lines were maintained in Dulbecco’s Modified Eagle Medium (DMEM) (Corning, 

10-017-CV), supplemented with 10% fetal bovine serum (FBS) (Corning, 35-010-CV). MRC-5 

and Hep-G2 cells were cultured in phenol red free Minimum Essential Medium (MEM) 

(Corning, 17-305-CV), supplemented with 10% fetal bovine serum (FBS).  

 

2.4.4 MTS assay 

Cells were seeded into a 96-well plate (2000 counts/100uL) for 24 h prior to treatment and then 

treated with various drug concentrations for 72 h. All drugs were dissolved in medium via 

DMSO solution with DMSO concentration maintained at 1%. The effect of compounds on cell 

viability was measured using the MTS assay (CellTiter 96 Aqueous One Solution and CellTiter 

96 Non-Radioactive Cell Proliferation Assays, Promega, Madison, WI) as described by the 

manufacturer. IC50s were calculated using Prism GraphPad 8. 

 

2.4.5 Anti-inflammatory activity assay (NF-κB inhibition assay) 

NF-κB activity was measured by luciferase assay. BEAS-2B cells were transfected with NF-κΒ 

luciferase reporter construct in pGL3 basic vector 40 h after transfection, the cells were treated 

with drugs for 1 h followed by stimulation with NTHi for 5 h. Then cells were lysed with cell 

lysis buffer (250 mM Tris-HCl (pH 7.5), 0.1% Triton-X, 1 mM DTT) and luciferase activity was 

measured by luciferase assay system (Promega). Relative luciferase activity (RLA) was 

determined using the following equation; RLA = luciferase unit of the cells treated with NTHi 

and drug/ luciferase unit of the cells treated with mock. 
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2.4.6 Human Pro-collagen ELISA kit 

Human pro-collagen ELISA kit was supplied by Abcam (ab210966). Cells were trypsined and 

seeded to 24-well plates with 5*105 cell/well for 2-3 days until confluence reach to 80%. Fresh 

drug solutions at IC50 and 1/10 IC50 concentrations were used to treat cells for 24 h. The assays 

were run in duplicate following the manufacturer’s protocol. In brief, the conditioned medium 

was extracted from the cell plate to the COL1A1 antibody precoated plate with Human Pro-

collagen I alpha 1 capture antibody. After 3 times of wash, a Human Pro-collagen I alpha 1 

detector antibody was incubated into the precoated plate for 2 h. After the addition of the 

developing reagents, the absorbance was read at 450 nm. MTS assay was used to determine cell 

proliferation in order to normalize the collagen expression with cell number. 

 

 

2.4.7 Western blot 

Cells were cultured in 6-well plate with 1*106 cells/well. After 24 h, cells were incubated with 

serum-free MEM 24 h prior to treatment. Then the cells were treated with 50 ng/mL TGF-β with 

or without treatment. PFD, AZM, CLM, and selected compounds 10c, 11b, 11c and 15c were 

independently incubated with the cells for 24 h prior to lysis. Then cells were washed by 1x cold 

PBS and lysed with RIPA buffer containing phosphatase and protease inhibitors under 4ºC. The 

lysates were collected, and the concentrations were normalized using BCA protein quantification 

assay (Biovision, CA, USA). The lysates were mixed with 10% mercaptoethanol Laemmi buffer 

and denatured by heating to 100ºC. The lysates were loaded on to 4-20% Criterion TGX Precast 

Gel and electrophoresed running at 150V for 66 minutes; and transferred to PVDF membrane. 
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The membrane was blocked with 5% BSA in TBST buffer for 1 h. Then the membrane was 

incubated with primary antibody overnight at 4ºC. The Anti-Col1A1(84336), anti-p-STAT3 

(9145), anti-MMP-2 (40994s), anti-Fibronectin (26836s) were purchased from Cell Signal 

Technology®; Anti-α-SMA (ab5694) were from Abcam®; anti-GAPDH (sc-47724) were 

purchased from Santa Cruz®; The membrane is washed with 1x TBST 3 times before secondary 

antibody incubation. The secondary antibody were rabbit IgG 800 and mouse IgG 680 from 

IRDye. After washing again 3 times with TBST, the membrane fluorescence was read using 

Odyssey CLx Imagine System. 

 

2.4.8 Bioassay (TGF-β pathway inhibition) 

The assay kit containing A549 cell engineered with Luciferase reporter gene was provided by 

Promega. The cells were cultured with the provided medium and 10% FBS. Followed 

manusfacturer’s instruction, we seeded the cells into two 96 well plates and followed by 

treatment with 1% DMSO or 1% DMSO solution of candidates.  We investigated multiple 

dosages of selected candidates (10c, 11b, 14c, 15c, and PFD) and scanned the other potential 

candidates by treating for 6 h with TGF-β stimulation (50 ng/mL). The cell medium were 

transferred to a white OptiPlate™ 96-well plate (VWR, 25382-208) and incubated at room 

temperature with 1 mM Luciferin. After 1 min incubation, luminescence was read and data was 

processed by Prism GraphPad 8.  
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Table 2S.1. Docking scores of all candidates on ALK-5 (PDB:5USQ). All candidates showed 

highly enhanced binding affinity on interaction with ALK-5.  

Compound Cal. Binding affinity 

(kcal/mol) 

Compound Cal. Binding affinity 

(kcal/mol) 

10a (n=1) -9.5 19a -8.1 

10b (n=2) -9.6 19b -9.2 

10c (n=4) -9.9 19c -8.7 

11a (n=1) -9.8 19d -8.5 

11b (n=2) -10.2 19e -8.4 

11c (n=4) -9.2 20a -9.2 

12a (n=1) -9.2 20b -8.6 

12b (n=2) -9.1 20c -7.7 

12c (n=4) -9.5 20d -8.2 

13a (n=1) -10.2 20e -8.7 

13b (n=2) -9.6 PFD -7.6 

13c (n=4) -9.2 CLM -5.3 

14a (n=1) -8.4 AZM -5.9 

14b (n=2) -8.5   

14c (n=4) -9.1   

15a (n=1) -7.9   

15b (n=2) -8.3   

15c (n=4) -8.5   

 
 

Table 2S.2. Docking scores of all candidates on p-P38γ (PDB:1CM8). All candidates showed 

highly enhanced binding affinity on interaction with p-P38γ relative to PFD or macrolides.  

Compound Cal. Binding affinity 

(kcal/mol) 

Compound Cal. Binding affinity 

(kcal/mol) 

10a (n=1) -8.9 19a -8.3 

10b (n=2) -10.5 19b -9.0 

10c (n=4) -10.2 19c -9.2 

11a (n=1) -10.5 19d -9.1 

11b (n=2) -10.4 19e -9.5 

11c (n=4) -9.9 20a -10.0 

12a (n=1) -10.2 20b -9.3 

12b (n=2) -9.4 20c -9.0 

12c (n=4) -10.3 20d -9.3 

13a (n=1) -11.1 20e -9.5 

13b (n=2) -10.2 PFD -7.6 

13c (n=4) -10.4 CLM -6.5 

14a (n=1) -7.5 AZM -7.4 

14b (n=2) -8.8   

14c (n=4) -9.3   

Table 2S.2 Continued.   
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15a (n=1) -9.6   

15b (n=2) -8.9   

15c (n=4) -9.4   
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Abstract: 

Antioxidants are widely used as supplements for chronic inflammation and cancer treatment, as 

they were proved to fight against Reactive Oxidation species (ROS) and attenuate tissue 

inflammation progression. α-Lipoic acid (ALA) is regarded as an ideal antioxidant which 

demonstrated promising antioxidation effects with high bioavailability and high dose tolerance. 

The electrophilic antioxidants dimethyl fumarate (DMF) and piperine (PIPE) are also strong 

antioxidants that showed promising progression in cancer treatment by Nrf-2 activation. Through 

the activation, anti-ROS proteins could be induced and prevent ROS-related inflammation in 

cancer and fibrosis. However, none of them was used as a standalone medicine for cancer or 

fibrosis treatment because they lack tumor penetration and tissue accumulation activities. To 

largely enhance the efficacy of the antioxidants, we conjugated them with the macrolides 

azithromycin (AZM) and clarithromycin (CLM) as the lung/liver tissue targeting template. By 

methods of conjugation, we successfully made derivatives on each antioxidant and observed 

significant enhancement in cytotoxicity (from 10 to 100-fold) against cancer cell lines and 

fibroblast. Also, in each antioxidant derivatives, there are selected candidates with strong 

extracellular matrix (ECM) expression inhibition by attenuating the TGF-β stimulation in MRC-5 

cell line. On the side of antioxidation effect, ALA, ACC0NL and APC2NL of the ALA derivative 

revealed STAT3 pathway inhibition. The piperic acid (PPA) derivatives WBC-04-16, WBC-04-

14, and WBC-04-11 showed upregulation of HO-1 expression, an indicator of Nrf-2 activation. In 

addition, the fumarate derivatives ST-01-95 and AO-02-112 also showed similar HO-1 

upregulation effect as PPA derivatives. Collectively, the macrolide-antioxidants with strong 

anticancer and anti-inflammation effect might be potential cancer therapy agents with potential 

tissue targeting effect. 
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3.1 Introduction 

Decades of research has shown strong connection between tumor, tissue injury and inflammatory 

microenvironment. Reactive oxygen species (ROS), which play a key role in cancer and chronic 

inflammatory diseases, strongly promotes the expression of pro-inflammatory cytokines and cause 

tissue fibrosis and tumorigenesis. ROS could also induce the activation of pro-tumor pathways 

including Ras, NF-κB, TGF-β, MAPK etc.1  Studies of anti-inflammation and anti-oxidant drugs 

in cancer treatments have demonstrated promising results. Antioxidants are substances that protect 

human tissues and cells from damages from ROS. The most famous anti-oxidant, Vitamin C, has 

been proven to be protective and/or demonstrate promising efficacious effects against cancers and 

other tissue inflammation by neutralizing the free radicals and strengthen the immune system.2, 3 

Anti-oxidants could also elicit anti-fibrotic effect due to their attenuation of the expression of 

inflammatory cytokines and inhibition of cell proliferation and invasion.4 For example, Alpha R-

Lipoic acid (ALA) has shown adjuvant effect when co-administered with Non-steroid Anti-

inflammation drugs (NSAIDs) or anti-cancer drugs as it could strengthen the anti-inflammation 

effect while protecting the gastrointestinal tract.5-7 The anti-ROS agents Dimethyl fumarate (DMF) 

and Piperine (PIPE) could also be adjuvant of anti-cancer agents as they could regulate cytokine 

production and prevent immune system damage that is caused by chemotherapy.  

ALA is an essential component of several metabolic pathways, including glycolysis. It is widely 

used as a supplement in managing several diseases. In cancer treatment, ALA has shown potential, 

regulating inflammatory mechanism through controlling cytokine signaling pathways such as 

prevention of NF-kB activation8 and quenching reactive oxygen species.9 It also showed STAT3 

pathway (p-STAT3, Bcl-2, Bcl-xL) down-regulation by inhibiting IL-8 expression.10 ALA also 

inhibits hepatic PAI-1 expression in TGF-β pathway, in which it mitigates tissue fibrosis in tumor 
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environment and TGF-β-induced cancer inflammation.11 Due to its inhibitory effect on STAT3 

and TGF-β, ALA also showed strong anti-fibrotic effect, reducing the expression of ECM protein 

fibronectin and p-ERK back to unstimulated level from TGF-β stimulation.12 

Electrophilic anti-ROS agents, including Dimethyl fumarate (DMF) and piperine (PIPE), are Nrf-

2 activators that could induce Nrf-2 gene expression and attenuate ROS by stimulating the 

expression of anti-ROS enzymes. Specifically, DMF and PIPE could induce the expression of 

Heme oxygenase-1 (HO-1) via activation of Nrf-2 gene transcription. HO-1 could degrade Heme 

that is in ‘free’ form (no protein bound) which could cause oxidative stress in cells and tissues.13 

In addition, HO-1 could also attenuate intracellular inflammation that can be caused by stimulation 

of LPS, IL-6, COX-2, TNF-α and other pro-inflammatory cytokines.14 In many inflammation-

linked cancers such as gastric cancer related to Inflammatory bowel disease (IBD), HO-1 could 

protect the intestine with anti-inflammation activity and prevent the tumorigenesis.15 Clinical trials 

evaluating the anti-inflammation potential of HO-1 are ongoing.15 Beside Nrf-2 activation, both 

DMF and PIPE showed pleotropic anti-cancer effects. More specifically, PIPE could induce cancer 

cell apoptosis through PI3K/Akt pathway inhibition or inducing ER stress proteins.16 While DMF 

could target the NF-κB pathway and mitigate cell migration and tumor growth of cutaneous T-cell 

lymphoma (CTCL).17 In fact, DMF has been tested in clinic trials for multiple diseases including 

multiple sclerosis, CTCL, Glioblastoma Multiforme, etc.18 Collectively, these literature 

observations suggest that DMF and PIPE could be potential anti-cancer and anti-inflammation 

agents. 

However, antioxidants, such as ALA, DMF and PIPE, have low potency and they have not been 

approved as standalone agents in cancer therapy. To enhance potency, Structural-Activity 

Relationship studies have been performed on these antioxidants. For example, ALA conjugated 
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with alloxanthoxyletin showed enhanced cell cytotoxicity on A549 cells, causing downregulation 

of  IL-6 expression.19 In another study, forty-six ALA derivatives were designed and synthesized 

for optimized COX-2-selective inhibition.20, 21 In contrast, though DMF and PIPE have been well-

studied for their mechanisms of actions in cancers, not many SAR studies have done. In order to 

increase their cell exposure and tissue-targeting effects, which could result in improved anti-

inflammatory effects, we introduce in this paper macrolide conjugated forms of antioxidants 

(ALA, PIPE, and fumarate). 

Inspired by our previous study on macrolide derivatives of pirfenidone, we designed and 

synthesized azithromycin (AZM) and clarithromycin (CLM) conjugates of ALA, fumarate and 

PIPE. We investigated their cytotoxicity in cancer cells, normal kidney cell line, and fibroblast cell 

line. We observed that most of novel compounds showed significant enhancement in cytotoxicity 

relative to their unconjugated antioxidant. In addition, selected novel candidates from every 

antioxidant agent showed improved anti-fibrotic effects in TGF-β stimulated fibroblast cells. Also, 

these compounds perturb different cellular target to elicit their bioactivities. ALA derivatives 

showed STAT3 pathway inhibition in triple negative breast cancer (TNBC) cell line. Fumarate 

and PIPE derivatives showed significant HO-1 up-regulation.  

 

3.2 Results 

3.2.1 Conjugates Design 

3.2.1.1 Macrolide-ALA Conjugates:  
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We synthesized ten derivatives which link ALA to the macrolide templates through with different 

covalent bonds. We used three different covalent linkage to achieve this conjugation: direct linkage 

to the desosamine OH group via ester bond (Fig. 3.1a), direct linkage to desmethyl-desosamine 

via amide bond (Fig. 3.1b), linkage to desmethyl-desosamine via aryl triazolyl group that contains 

2 or 3 methylene group (Fig. 3.1c). As macrolide templates, AZM and CLM were used. We also 

synthesized analogs lacking the cladinose sugar (Fig. 3.1d) in order to evaluate the consequence 

of this change on the bioactivity of these macrolide-ALA conjugates.  
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Figure 3.1 The designed macrolide-ALA conjugates. (a) Direct linkage of ALA to dimethyl-

desosamine via amide bond. (b) Direct linkage of ALA to desmethyl-desosamine via amide bond. 

(c) Linkage to desmethyl-desosamine via aryl triazolyl group that contains 2 or 3 methylene group. 

(d) Macrolide-ALA conjugates lacking cladinose sugar - derivatives of ester AO-02-45 and AO-

02-41. 

 

To synthesize the target macrolide-ALA conjugates; we first prepared lipoic acid anhydride by 

reacting lipoic acid and EDCI in DCM solution, overnight. The anhydride was then reacted with 

AZM or CLM in DCM, overnight at room temperature to furnish AO-02-41 or AO-02-45 (Scheme 

1).  
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Scheme 1. The synthesis of ester-linked macrolide-ALA conjugates. (1) ALA, EDCI, DCM, rt, 

overnight, 40%. (2) Lipoic anhydride, AZM or CLM, DCM, 48-72h, rt., 12% for AO-02-41, 27% 

for AO-02-45.  

 

Scheme 2. Synthesis of macrolide-ALA conjugates lacking cladinose sugar. (a) 0.25M HCl water 

solution stir for 6h, 70%. (b) 1M HCl stir for overnight. 65%. 

Mild acid treatment of AO-02-41 and AO-02-45 afforded the macrolide-ALA conjugates lacking 

cladinose AO-02-48 and AO-02-47 respectively (Scheme 2).  
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Scheme 3. The synthesis of macrolide-ALA conjugates linked to desmethyl-desosamine via amide 

bond. (a) Desmethyl AZM or desmethyl CLM, ALA, EDCI, DMAP, Hunig’s base, DCM, rt, 

overnight. 80.4% for CC0NL, 83% for AC0NL. 

The synthesis of macrolide-ALA conjugates linked to desmethyl-desosamine (AC0NL and 

CC0NL) was accomplished by reacting desmethyl AZM or desmethyl CLM with ALA and EDCI 

in Hunig’s base (10 v/v%)/DCM mixture in the presence of 0.1 eq (Scheme 3).  
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Scheme 4. The synthesis macrolide-ALA linked to desmethyl-desosamine via aryl triazolyl group. 

(a) 2-Bromoethylamine hydrobromide or 3-bromopropylamine hydrobromide, sodium azide, 

DMF, 90ºC, overnight. (b) ALA, EDCI, DMAP, DMF, overnight. (c). Benzyl alkyne macrolides, 

PCC or PCA, CuI, Hunig’s base, DMSO. THF, rt, overnight. Yields of products are listed in the 

scheme. 

To synthesize the macrolide-ALA linked to desmethyl-desosamine via aryl triazolyl group, 2-

bromoethylamine hydrobromide or 3-bromopropylamine hydrobromide were converted to their 

azido derivatives which were subsequently reacted with ALA by EDCI coupling to furnish the 

azido-ALA compounds C2NL and C3NL. Cu (I) catalyzed Huisgen azide–alkyne cycloaddition 
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reaction between C2NL or C3NL and PCC or PCA, following literature protocol,22 furnished the 

target macrolide-ALA compounds CPC2NL, CPC3NL, APC2NL and APC3NL (Scheme 4).  

 

3.2.1.2 macrolide-PIPE Conjugates: 

 

Figure 3.2. Designed macrolide-PIPE conjugates. (a) Ester-linked macrolide-PIPE conjugates. (b). 

Amide-linked macrolide-PIPE conjugates. 

 

The ester-linked macrolide-PIPE conjugates WBC-04-11 and WBC-04-14 were synthesized from 

piperic acid anhydride as described for the analogous macrolide-ALA conjugates (Scheme 5). 
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Similarly, the amide-linked macrolide-PIPE conjugates WBC-04-15 and WBC-04-16 were 

synthesized from EDCI mediated coupling of Des-CLM or Des-AZM to piperic acid as  described 

the macrolide-ALA congeners (Scheme 6).  

 

Scheme 5. The synthesis of ester-linked macrolide-PIPE conjugates. (a) Piperic acid, EDCI, DCM, 

rt, overnight, 30.6%. (b) AZM or CLM, piperic acid anhydride, DCM, rt, 24 h to 48 h. 25% for 

WBC-04-14, 27% for WBC-04-11. 
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Scheme 6. The synthesis of amide-linked macrolide-PIPE conjugates. (a) Desmethyl CLM or 

Desmethyl AZM, piperic acid, EDCI, DMAP, Hunig’s base, DCM, rt, 6 h to overnight. 94% for 

WBC-04-15, 83% for WBC-04-16. 

 

3.2.1.3 Fumarate derivatives 

In the same conjugation method as ALA and PPA, fumarate derivatives also conjugate in amide 

or ester bond linking with desosamine ring in macrolides. However, due to the cell accessibility 

issue of the methyl fumarate, we also introduce a butyl fumarate derivative to enhance the 

lipophilicity. Thus, we have synthesized eight macrolide derivatives listed in figure 3.3. 
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Figure 3.3. Designed macrolide-fumarate conjugates.  

 

To synthesize the macrolide-fumarate conjugates, we require monomethyl fumarate and 

monobutyl fumarate. The monomethyl fumarate was obtained from commercial source while we 

synthesized the monobutyl fumarate from furan-2,5-dione (maleic anhydride) following a patent 

protocol (Scheme 7).23 All of the macrolide-fumarate conjugates were synthesized  by following 

the same protocol used in making the ALA and PIPE conjugates (Schemes 7-9).  
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Scheme 7. Synthesis of fumarate anhydrides. (a) Monomethyl fumaric acid, EDCI, DCM, 64.4%. 

(b) (i) furan-2,5-dione, butanol, toluene, 70°C, 24 h; (ii) AcCl, toluene, 70°C, 48 h. (c) Monobutyl 

fumaric acid, EDCI, DCM, 54%. 
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Scheme 8. The synthesis of ester-linked macrolide-fumarate conjugates. (a) AZM or CLM, 

monomethyl fumarate anhydride, DCM, rt, overnight. 46.5% for AO-02-113, 25% for AO-02-112. 

(b) AZM or CLM, monobutyl fumarate anhydride, DCM, rt, overnight, 59% for ST-01-95, 50% 

for ST-01-96. 

 

Scheme 9. The synthesis of amide-linked macrolide-Fumarate conjugates. (a) Desmethyl CLM or 

desmethyl AZM, monomethyl fumarate, EDCI, DMAP, Hunig’s base, DCM; 12.5% for WBC-04-

50B, 88% for WBC-04-51. (b)  Desmethyl CLM or desmethyl AZM, monobutyl fumarate, EDCI, 

DMAP, Hunig’s base, DCM, 69% for WBC-04-110, 31% for WBC-04-111. 
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3.2.2 Cell cytotoxicity  

After synthesis, we tested the effects of our Macrolide-antioxidants conjugates on the proliferation 

of MRC-5 (pulmonary fibroblast cell line) and representative cancer cell lines (), using normal 

monkey kidney fibroblast-like cell (VERO) as a control. We used the MTS assay evaluate the 

effects of compounds on cell proliferation.  

 

3.2.2.1 Effects of macrolide-ALA conjugates on cell proliferation 

The macrolide-ALA conjugates, unconjugated ALA and the macrolide templates (AZM and CLM) 

were screened in MTS assay to assess their effects on cell proliferation. All drugs were dissolved 

in 1% DMSO solution and incubated with VERO (monkey kidney fibroblast-like cell), Hep-G2 

(hepatic carcinoma), A549 (pulmonary epithelial carcinoma), MRC-5 (pulmonary fibroblast cell 

line), MDA-MB-231 (triple negative breast cancer cell line), and MCF-7 (ER+ breast cancer cell 

line) at varying doses. The results from these experiments are shown in Table 3.1. 
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Table 3.1. The effects of macrolide-ALA conjugates on cell proliferation. IC50s are given in µM 

concentration. NI: no inhibition up to 500 µM. All data are from two independent experiments. 

NT: not tested. 

 

Hep-G2 

(µM) 

A549 

(µM) 

MDA-MB-231 

(µM) 

MCF-7 

(µM) 

VERO 

(µM) 

MRC-5 

(µM) 

AO-02-41 NI NI 650.9 256.634.7 NI 44.87.1 

AO-02-45 29.54.4 23.00.5 45.01.3 38.20.8 55.82.2 13.40.3 

AO-02-47 221.85.3 NI 414.41.7 477.33.4 NI 262.50.2 

AO-02-48 224.712.8 281.814.2 400.332.4 496.6510.1 273.126.9 143.117 

AC0NL 13.60.06 18.84.1 11.91.7 17.04 24.42.4 20.33.4 

CC0NL NI NI NI NI NI NI 

APC2NL 8.51.0 10.30.9 16.62.3 17.42.8 16.90.4 6.10.3 

CPC2NL 14.40.5 26.90.2 22.40.8 45.8 40.34.9 24.52.6 

DC-APC2NL  57.31.2 58.60 61.23.0 59.76.9 65.012.2 56.11.29 

APC3NL  49.21.4 56.90.8 52.52.8 95.7 68.112.6 51.65.0 

CPC3NL  14.82.1 27.40.4 291.3 285.9 47.76.2 17.90.5 

DC-APC3NL  137.08.9 92.913.3 133.4 165.8 168.319.7 144.83.5 

ALA NI NI NI NI NI NI 

AZM 85.3±0.9 203.5±4.5 128.427.5 271.932.1 222.0±18.1 127±1 

CLM 130.50.2 NI 156.96.2 197.714.7 NI 138.1±1.1 
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From the data of Table 3.1, CLM-based ester linked compound AO-02-41 shows selective toxicity 

to MRC-5 and MDA-MB-231, while the corresponding AZM-based compound AO-02-45 does 

not have such selective toxicity. In general, however, the AZM-based compounds are more 

cytotoxic than the CLM-based compounds. For example, AO-02-41 is less toxic than AO-02-45, 

and APC2NL is more potent than CPC2NL. AC0NL is also widely toxic to all cell lines including 

cancers and fibroblast, while CC0NL is non-toxic to all cells. Analogs lacking the cladinose sugar 

are also significantly less toxic to the cells in both ester- and aryl triazolyl-linked compounds. In 

contrast, the aryl triazolyl-linked compounds are highly cytotoxic to the cells. AZM derivative 

APC2NL has the highest cell cytotoxicity among these compounds, while APC3NL is 5-6 times 

weaker in potency. The length of the methylene linkers also influence potency as we noticed that 

the C2 linked compounds are more potent than C3 linked compounds. Relative to these macrolide-

ALA conjugates, the template CLM and AZM, and the unconjugated ALA elicit weak cell 

cytotoxicity. Collectively, covalent linkage of ALA to AZM and CLM resulted in conjugates 

having significantly increased cytotoxic effects against the tested cell lines. 

 

3.2.2.2 Effects of Macrolide-PIPE conjugates on cell proliferation 

The macrolide-PIPE conjugates, unconjugated piperic acid, piperine and the macrolide templates 

(AZM and CLM) were similarly screened in MTS assay to assess their effects on the proliferation 

of VERO, Hep-G2, A549, MRC-5 cell lines. The results from these experiments are shown in 

Table 3.2. 
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Table 3.2. The effects of macrolide-PIPE conjugates on cell proliferation. IC50s are given in µM 

concentration. NI=no inhibition IC50 up to 500 µM. All data are from two independent 

experiments. 

Compound MRC-5 

(µM) 

A549 

(µM) 

Hep-G2 

(µM) 

VERO 

(µM) 

WBC-04-11  3.78±0.8 15.63±2.6 5.0±0.5 13.19±1.5 

WBC-04-14  7.82±0.7 16.89±0.7 5.59±0.1 20.99±2.3 

WBC-04-15 NI NI NI NI 

WBC-04-16 11.38±0.4 19.56±1.8 10.19±1.9 12.92 

Piperic Acid NI NI NI NI 

Piperine NI NI NI NI 

 

As shown in Table 3.2, piperine and piperic acid are not cytotoxic to any of the tested cell lines. 

Interestingly, WBC-04-11, an AZM derivative, potently inhibits the proliferation of MRC-5 

(IC50=3.78 µM) against fibroblast and Hep-G2 (IC50=5.0µM). The CLM derivative, WBC-04-14, 

has comparable potency as WBC-04-11. The potency enhancement displayed by WBC-04-11 and 

WBC-04-14 is more than 125-fold relative to piperine and piperic acid. Similar to the 

corresponding ALA derivative, the amide-linked CLM-PIPE conjugate WBC-04-15 is non-

cytotoxic to all tested lines up to 500 µM. In contrast, the amide-linked AZM-PIPE conjugate 

WBC-04-16 inhibits the proliferation of all tested cell lines with 10-20 µM IC50 range. 

 

3.2.2.3 Effects of macrolide-fumarate conjugates on cell proliferation 
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The macrolide-Fumarate conjugates and monomethyl fumarate were similarly tested in MTS assay 

to assess their effects on the proliferation of VERO, Hep-G2, A549, MRC-5, MDA-MB-231 and 

MCF-7 cell lines.  

 

Table 3.3. The effects of macrolide-fumarate conjugates on cell proliferation. IC50s are given in 

µM concentration. NI=no IC50 at 500 µM. NT=not tested. All data are from two independent 

experiments. 

 
MRC-5 

(µM) 

A549 

(µM) 

Hep-G2 

(µM) 

VERO 

(µM) 

MDA-MB-231 

(µM) 

MCF-7 

(µM) 

AO-02-112 68.27 284.5 117.7 238.3±29.1 117.9 278 

AO-02-113 88.41 278.5 133.2 219.4±45.8 139.9 127.5±16.5 

WBC-04-51 NT 214 126.5 211.5 NT NT 

WBC-04-50B NT NI NI NI NT NT 

ST-01-95 NI NI NI NI NI NI 

ST-01-96 43.60±8.5 140.9±4.3 63.56±7.7 126.2±2.4 29.6±3.0 50.00±1.5 

WBC-04-110 44.92±0.6 NI 208.9±11.2 68.26±16.8 28.37±3.9 72.26±5.2 

WBC-04-111 78.9±2.6 111.1±4.6 64.9±2.4 97.2±15.5 34.76±2.8 39.27±7.1 

Monomethyl 

Fumarate 

258.9 NT NT 844 NT NT 

 

We found that for either macrolide template, the methyl fumarate derivatives are generally less 

potent than the butyl fumarate (Table 3.3). Specifically, the monomethyl fumarate compound AO-

02-112 is less toxic than butyl fumarate derivative ST-01-96. This could possibly be to the 

increased the cell penetration and/or increased target-binding affinity afforded by the butyl group. 

As we observed for the ALA and PIPE conjugates, the amide-linked CLM-methyl fumarate 
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conjugate WBC-04-50B is not cytotoxic to the tested cell lines up to 500 µM. Interestingly, unlike 

WBC-04-50B, we found that the amide-linked CLM-butyl fumarate conjugate WBC-04-111 is 

cytotoxic to all tested cell lines. Lastly, we found that monomethyl fumarate shows no inhibition 

against the tested cell lines up to 500 µM except for MRC-5 against which it elicits growth 

inhibition at IC50=258.9 µM. This data suggests that AZM and CLM conjugation augments the 

anti-proliferative activities of piperine/piperic acid.  

 

3.2.3 Anti-fibrotic effects macrolide-antioxidant conjugates 

Tissue fibrosis is usually closely linked with inflammation and tumorigenesis. Typically, TGF-β 

stimulation could strongly induce ROS progression intracellularly. The cell stress induced by the 

upregulated levels of ROS could increase the expression of the components of the extracellular 

matrix (ECM), cause cytokine storm and immune response. Antioxidants, such as ALA and 

electrophilic anti-ROS agents PIPE and DMF could effectively attenuate TGF-β-induced tissue 

inflammation in fibrosis and cancer.11, 24-27 In the introduction and chapter 2 of this thesis, I showed 

that macrolides possessed intrinsic anti-fibrotic and anti-inflammation activities. It is likely that 

the macrolide-antioxidant conjugates described herein would retain the anti-fibrotic and anti-

inflammation activities of the template macrolide.  

To investigate the anti-fibrotic activities of these Macrolide-antioxidant conjugates, we probed 

their effect on the expression of major components of ECM (COL1A1 and α-SMA) in TGF-β 

stimulated MRC-5 cells. Also, we tested for their effects on p-STAT3 levels as another biomarker 

of TGF-β stimulation.  
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3.2.3.1 Macrolide-ALA conjugates showed strong anti-fibrotic effects. 

APC2NL Western blot data 

a.                                                              DMSO                     ALA                      APC2NL                      

                                                                                    250uM   500uM     2.5uM     5uM                         

                               TGF-             -            +           +           +             +             +          

COL1A1                      

-SMA                        
GAPDH                       
 
 
 

CPC2NL & AO-02-41Western blot data  

                   DMSO            CPC2NL             DMSO             AO-02-41 
                                                          2.5uM            5uM                                               2.5uM                  5uM   

COL1A1      

-SMA        

GAPDH        
 
                              DMSO                  ALA               AO-02-41 
                                                                                                            

TGF-                        −                   +                 +                 +                 +              + 

COL1A1.      

a-SMA.        

p-STAT3      

T-STAT3      

GAPDH        
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b. AO-02-45 Western blot data                                                      

                                                      DMSO        Pirfendione.           AO-02-45                               
                                                                             1mM           3.12uM      6.25uM          

COL1A1                         
p-STAT3 (TYR705).    

T-STAT3                       
p-P38                           

T-p38                           

-SMA                         

GAPDH                        
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Figure 3.4. Anti-fibrotic effects of Macrolide-ALA conjugates. MRC-5 cells (1*106cells/well) 

were stimulated by TGF-β after 24 h serum starvation in FBS-free medium. The cells were treated 

with 0.1% of DMSO or DMSO solution of selected candidates for 24 h. The MRC-5 cells were 

lysed and lysates analyzed by electrophoresis. (a) Gels showing ALA, AO-02-41, APC2NL, and 

CPC2NL. (b) Gels showing pirfenidone and AO-02-45. Quantification of the Western blots data 

probing for the effects of compounds on the ECM expression and STAT3 pathway in MRC-5 cells 

is shown below each gel.  

 

APC2NL, CPC2NL, and AO-02-41 (Fig. 3.4a), and AO-02-45 (Fig. 3.4b) showed strong inhibition 

of COL1A1 and α-SMA at 5 µM, suggesting that these compounds could attenuate tissue fibrosis 

at low concentration. AO-02-41 and AO-02-45 also showed p-STAT3 inhibition and suppression 

of the expression of total STAT3. In later experiment, we also found that these ALA derivatives 

could suppress the expression of STAT3 downstream proteins in a TNBC cell line (See section 

2.4). These data indicate that these ALA derivative could be STAT3 pathway inhibitors for cancer 

therapy. In contrast, ALA at 2.5 and 5 µM did not inhibit ECM production, although at 5 µM it 

suppressed STAT3 phosphorylation. ALA only suppressed ECM components production at 250 

and 500 µM. This indicates that our compounds have improved anti-fibrotic and anti-inflammation 

effects relative to ALA.  
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3.2.3.2 Macrolide-PIPE conjugates showed strong anti-fibrotic effects.                            
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Figure 3.5. Anti-fibrotic effects of Macrolide-PIPE conjugates. MRC-5 cells (1*106cells/well) 

were stimulated by TGF-β after 24 h serum starvation in FBS-free medium. The cells were treated 

with 0.1% of DMSO or DMSO solution of selected candidates for 24 h. The MRC-5 cells were 

lysed and lysates analyzed by electrophoresis. Piperic acid, WBC-04-11 and WBC-04-14 were 

tested. Quantification of the Western blots data probing for the effects of compounds on the ECM 

components expression in MRC-5 cells is shown below the gel.  

  

We found that, at low micromolar concentrations, WBC-04-11 strongly inhibited COL1A1 and α-

SMA expression in MRC-5 cell while WBC-04-14 did not inhibit the ECM production as strongly 

(Fig. 3.5). Although WBC-04-14 was not as potent as WBC-04-11, it is much improved relative 
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to piperic acid which at 10 µM did not show any inhibition in ECM production. Therefore, the 

conjugation piperic acid to AZM and CLM enhanced the anti-fibrotic effect of the template 

macrolides and piperic acid significantly. 

 

3.2.3.3 macrolide-fumarate conjugates showed strong anti-fibrotic effects.                            

a. 

                              DMSO      AO-02-112       WBC-04-51 
                                                                      2.5µM        5µM            2.5µM        5µM 

TGF-b                        -                   +                 +                 +                 +              + 

COL1A1.      

a-SMA.        

GAPDH        
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b. 
                                  DMSO       ST-01-96          WBC-04-111 
                                                                                                                       

TGF-                           −                      +                +                   +                  +                    + 

COL1A1         

a-SMA.          

GAPDH          
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Figure 3.6. Anti-fibrotic effects of macrolide-fumarate conjugates. MRC-5 cells (1*106cells/well) 

were stimulated by TGF-β after 24 h serum starvation in FBS-free medium. The cells were treated 

with 0.1% of DMSO or DMSO solution of selected candidates for 24 h. The MRC-5 cells were 

lysed and lysate analyzed by electrophoresis. (a) Gels showing methyl fumarate derivatives AO-

02-112, WBC-04-51. (b) Gels showing the butyl fumarate derivatives ST-01-96 and WBC-04-

111. Quantification of the Western blots data probing for the effects of candidates on the ECM 

expression in MRC-5 cells is shown below the gel. 

 

We observed that both the ester and amide forms of the methyl fumarate compounds – AO-02-112 

and WBC-04-51 – significantly inhibited the ECM production (Fig. 3.6).  However, the butyl 

fumarates did not have the same pattern. While the ester analog, ST-01-96, showed significant 

COL1A1 downregulation, the amide compound WBC-04-111 showed no inhibition of ECM 
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production. This data indicates that the mode of conjugation could significantly influence the anti-

fibrotic and cytotoxic properties of the fumarate derivatives.  

In summary, the macrolide-conjugated derivatives of ALA, PIPE and fumarate showed 

significantly enhanced anti-fibrotic effects, as they potently attenuate the TGF-β-induced cellular 

expression of ECM components. Additionally, the ALA derivatives also inhibit the STAT3 

pathway at very low concentration range (2.5-5 µM). These compounds are good candidates for 

future evaluation in in vivo models of tissue fibrosis and chronic inflammation. 

 

3.2.4 Investigation of the mechanisms of the antiproliferative effects of macrolide-antioxidant 

conjugates. 

To effectively investigate the new agents’ eligibility in cancer therapy, we performed mechanistic 

studies to probe their potency in anti-cancer activities. In this chapter, we tested STAT3 pathway 

inhibition studies on MDA-MB-231 cell line with ALA derivatives, as previous studies imply a 

STAT3 pathway inhibition, and TNBC MDA-MB-231 is a STAT3-dependent cell line that may 

be sensitive to STAT3 inhibition. On the other hand, we tested HO-1 regulation studies in 

electrophilic agents fumarate and PIPE derivative, as they were known as Nrf-2 activators to 

attenuate ROS in cancer cells and fibroblast to prevent tissue inflammation.  

 

3.2.4.1 ALA derivatives showed STAT3 pathway inhibition 
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Figure 3.7. Anti-cancer effects of ALA and its derivatives towards MDA-MB-231. MDA-MB-231 

cell line (1*106cells/well) was incubated in DMEM until 80% confluency. The cells were serum 

starved for 24 h prior to drug treatment. In day 2, MDA-MB-231 were treated by 0.1% DMSO or 

DMSO solution of ALA, AO-02-45, APC2NL, AO-02-41, AC0NL, CLM, and AZM. 

 

From the Western blot data for MRC-5, we noticed that the models can reduce p-STAT3 and T-

STAT3 expression significantly. As we know the TNBC, MDA-MB-231cell line, is highly 

dependent on STAT3 pathway for its proliferation and survival. Therefore, the Western blot has 

studied on MDA-MB-231 expression on p-STAT3, T-STAT3, BCl-2, and Bcl-xL with treatment 

on selected candidates. We selected AO-02-45, APC2NL, AC0NL, AO-02-41 as our candidates, 

as AO-02-41 is selective to MRC-5 and MDA-MB-231 in MTS assay, and compound AO-02-45 

and APC2NL is critically effective on MRC-5 anti-fibrosis effect. We also tested AC0NL because 
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the amide conjugate may stabilize the conjugate more than ester. In this study, we found that 

the L at  does not show significant p-STAT3, T-STAT3, Bcl-xL, and Bcl-2 down-

regulation in MDA-MB-231. However, the AO-02-41 shows significant Bcl-xL and p-STAT3 

down-regulation at  but it does not show any effect on Bcl-2 and T-STAT3 regulation. 

Nonetheless, compound AO-02-45 and APC2NL show significant down regulation on both Bcl-

2 and Bcl-xL. As we expected, compound AO-02-45 and APC2NL are both very outstanding in 

inhibition of p-STAT3 and T-STAT3 in both MDA-MB-231. This may cause the cell death 

eventually. Last, AC0NL is an interesting candidate that it showed no significant downregulation 

on Bcl-xl and Bcl-2, while it upregulates the p-STAT3 and down regulate the T-STAT3 with a 

dose-dependent manner. This unexpected result may indicate that the amide linker of ALA shares 

difference in mechanism of action. 

 

3.2.4.2 PPA and Fumarate derivatives showed HO-1 upregulation 

Since PPA and Fumarate have been recorded as Nrf-2 activator and upregulate the HO-1 

expression in cells to attenuate the ROS stress in cancer and fibrosis, we investigated the novel 

macrolide derivatives of PPA and Fumarate against HO-1 regulation by immunoblotting. In brief, 

we used the MRC-5 cell as the source of HO-1 in western blot, as lung fibroblasts EMT are 

responsible for fibrosis and tissue inflammation in response of ROS. To perform the unbiased 

experimental data, we chose not to stimulate the cells with cytokines because cells could response 

in upregulation of HO-1 to against cytokine storm, which may falsely affect our results. Therefore, 

MRC-5 was starved with serum-free medium for overnight prior to the drug treatment. In figure 

3.8, we observed that PPA, and AZM at 10µM slightly upregulated the HO-1, but not statistically 
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significant. CLM, on the contrary, did not upregulate the HO-1 at all. As expected, WBC-04-16, 

WBC-04-14, and WBC-04-11, the novel derivatives of PPA, induced significant HO-1 

upregulation after 6 h treatment. We also observed a HO-1 restoration after 24 h treatment (data 

not shown). All these indicate that both AZM or CLM conjugated derivatives of PPA could 

upregulate the HO-1 at 5 µM or 2.5 µM, which implies a strong enhancement in Nrf-2 activation.  
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Figure 3.8. The HO-1 is upregulated by the macrolide derivatives of PPA, but not Macrolide alone 

or PPA alone. MRC-5 cells (1*106cells/well) were starved by 24 h with FBS-free medium. The 

cells were treated with 0.1% of DMSO or DMSO solution of selected candidates or antioxidant 

PPA and group of Macrolides for 24 h. The MRC-5 cells were lysed and loaded for electrophoresis. 

The immunoblots were shown with anti-body detection. (a). cropped bands of HO-1 and GAPDH 

after treatment of PPA (10µM), AZM and CLM (5 and 10 µM), WBC-04-16 (5 and 10µM), WBC-

04-14 (5 and 10µM), and WBC-04-11 (2.5 µM). (b) Quantification of the Western blots data 

probing for the effects of candidates on the ECM expression in MRC-5 cells. 

 



261 

 

a. 

                                        DMSO            ST-01-96               WBC-04-111              DMSO  MMF       AO-02-112         AO-02-113 

                                                          2.5mM       5mM        2.5mM        5mM                     10mM    5mM    10mM     5mM     10mM 

HO-1                     

GAPDH                

 

b. 

D
M

S
O
 g

ro
up

S
T-0

1-
96

 5
M

S
T-0

1-
96

 1
0

M

W
B
C
-0

4-
11

1 
5

M

W
B
C
-0

4-
11

1 
10

M

0

50

100

150

200

250

HO-1 expression

R
e

la
ti

v
e
 p

e
rc

e
n

ta
g

e
 o

f 
H

O
-1

**

NSNS

   

D
M

SO

M
M

F 1
0

M

A
O
-0

2-
11

2 
5

M

A
O
-0

2-
11

2 
10

M

A
O
-0

2-
11

3 
5

M

A
O
-0

2-
11

3 
10

M

0

50

100

150

200

250

HO-1 expression

R
e
la

ti
v
e
 H

O
-1

 e
x
p

re
s
s
io

n
 % * *

NS

NS

 

Figure 3.9. (a). Cropped bands for treatment with DMSO or 0.1% DMSO solution of ST-01-

96,WBC-04-111, AO-02-112, AO-02-113. (b). Quantification of the Western blots data probing 

for the effects of candidates on the HO-1 upregulation in MRC-5 cells. 

 

On the other hand, Fumarate derivatives also showed significant HO-1 upregulation with treatment 

towards MRC-5. First of all, monomethyl furmaric acid (MMF) at 10µM significantly up-regulate 

the HO-1 expression. ST-01-96 and AO-02-112, the ester conjugated AZM derivatives of methyl 

or butyl fumarate, also showed similar upregulation pattern as MMF.  The HO-1 expression was 

up-regulated by ST-01-96, and AO-02-112 after 6 h treatment. However, surprisingly, WBC-04-
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111, the butyl fumarate amide conjugation of CLM did not upregulate HO-1 at all. Interestingly, 

the AO-02-113, which is monomethyl fumarate ester conjugation of CLM, showed restoration 

effect in 10µM with 6 h treatment. This indicates that the CLM might not be the ideal template for 

fumarate conjugation on sustaining the HO-1 upregulation. Collectively, both fumarate and PPA 

demonstrated significant HO-1 upregulation after conjugating with macrolides on the desosamine 

region, which remains or enhances the electrophilic anti-oxidants Nrf-2 activation activity. 

 

3.3 Conclusion:  

Anti-oxidants Lipoic acid, and electrophilic anti-ROS agents Piperine and Dimethyl fumarate are 

proved to have effective therapeutic output to tissue inflammation and fibrosis. Due to the 

understanding of the linkage between tissue inflammation and cancer, studies of anti-cancer 

activities on these antioxidants were elucidated. ALA have been found to have strong anti-cancer 

effects on regulation of oncogenic STAT3 pathway and tumor metabolism. DMF and PIPE also 

regulates Nrf-2 activation against cancer inflammation. Therefore, they were considered as 

potential anti-cancer drugs. However, due to their low potency and off-target biodistribution, these 

anti-oxidants were not broadly use as standalone therapy for any certain types of cancer. In this 

chapter, by the inspiration of Macrolide-PFD model in chatper 2, we conjugate the macrolides to 

these antioxidants in desosamine ring. After design and synthesis, we tested cytotoxicity against 

Hep-G2, A549, MDA-MB-231, MCF-7, VERO, and MRC-5 cell lines, and observed that many 

candidates are more than 100-fold enhanced in cytotoxicity on cancer cells. Later, we found that 

all three types of Macrolide-antioxidants are showing strong anti-fibrosis effect on downregulation 

of ECM components COL1A1 and α-SMA. Subsequently, we investigated the target validation on 
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the antioxidant derivatives. Typically, ALA candidates showed outstanding STAT3 pathway 

inhibition in downregulating p-STAT3, T-STAT3, Bcl-xL and Bcl-2 against MDA-MB-231 cell 

line. The HO-1 downregulation was induced by piperic acid derivatives and fumarate derivatives, 

which implies that the compounds remains Nrf-2 activation activity as PPA and DMF. 

Collectively, the conjugated novel agents of antioxidants strongly improved in their cytotoxicity 

and maintained the functions of the antioxidant moiety in anti-inflammatory, anti-fibrosis, and 

anti-cancer activity. 

 

3.4 Materials and methodology 

3.4.1 Materials:  

Analtech silica gel plates (60 F254) were used for analytical TLC while Analtech preparative TLC 

plates (UV 254, 2000 μm) or silica gel (400 Mesh) was used for compound purification. NMR 

spectra were taken onVarian-Gemini 400 MHz and Bruke 700 MHz magnetic resonance 

spectrometer. 1H NMR spectra were recorded in parts per million (ppm) relative to the residual 

peaks of CHCl3 (7.24 ppm) in CDCl3. 
13C spectra were recorded relative to the central peak of the 

CDCl3 triplet (81.5 ppm) were recorded with complete hetero-decoupling. Multiplicities are 

described using the abbreviation: s, singlet; d, doublet, t, triplet; q, quartet; p, pentet; dd: doublet 

of doublet; ddd, doublet of doublet of doublet; dt: doublet of triplet; dq: doublet of quartets, m, 

multiplet; and app, apparent. High-resolution mass spectra were recorded at the Georgia Institute 

of Technology mass spectrometry facility in Atlanta.   
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3.4.2 Synthesis: 

3.4.2.1 ALA derivatives: 

Lipoic acid anhydride: 

Lipoic acid (400mg, 1.94mmol) was dissolved into DCM (10 mL) with EDCI (1.2g, 7.74mmol). 

The solution was stirred for overnight with Ar protection. The solution was washed by water (30 

mL) and extracted by DCM (20 mL) for four times so that remaining EDCI could be removed. 

The extracted organic solution was evaporated by vacuum and the crude product was yielded in 

yellow oil (160mg, 0.78mmol, 40.0%). This product is ready to use for next reaction without 

purification. 

 

AO-02-41 

Azithromycin (400mg, 0.54mmol) was mixed with the Lipoic acid anhydride (100mg, 0.26mmol) 

in DCM. The solution was stirred for overnight under Ar protection. The solution was washed by 

water (50 mL) and extracted by DCM (30 mL) twice. The organic solution was collected and 

evaporated to dryness by vacuum. The crude product was purified through Preparative TLC plate 

with solvent system DCM:MeOH=15:1. The final product was yielded as pale-yellow solid (60mg, 

0.063mmol, 11.8%). 1H NMR (400 MHz, cdcl3) δ 4.99 (d, J = 10.9 Hz, 1H), 4.87 (d, J = 4.9 Hz, 

1H), 4.67 (dd, J = 10.4, 7.5 Hz, 1H), 4.52 (d, J = 7.4 Hz, 1H), 3.98 – 3.83 (m, 2H), 3.69 (d, J = 8.1 

Hz, 2H), 3.51 (dt, J = 20.9, 7.1 Hz, 2H), 3.42 (dd, J = 11.1, 6.0 Hz, 1H), 3.31 (s, 4H), 3.23 – 3.02 

(m, 3H), 3.02 – 2.85 (m, 6H), 2.79 (p, J = 7.8 Hz, 1H), 2.50 (t, J = 9.8 Hz, 2H), 2.45 – 2.36 (m, 

1H), 2.36 – 2.07 (m, 12H), 1.84 (ddt, J = 21.2, 14.3, 6.9 Hz, 4H), 1.72 – 1.49 (m, 10H), 1.43 (h, J 
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= 8.3, 7.6 Hz, 3H), 1.32 (s, 4H), 1.28 – 0.95 (m, 27H), 0.94 – 0.68 (m, 7H). 13C NMR (101 MHz, 

cdcl3) δ 175.6, 172.2, 100.4, 95.8, 80.4, 78.3, 78.0, 76.5, 74.1, 72.8, 71.5, 69.0, 68.2, 65.8, 63.7, 

56.5, 50.4, 49.4, 45.2, 40.6, 40.3, 38.9, 38.4, 37.2, 34.7, 34.4, 28.6, 24.7, 21.5, 19.8, 18.6, 17.9, 

16.1, 12.3, 10.6, 9.0. HRMS (ESI) m/z Calcd. C46 H82 O14 N S2 [M+H+]: 936.5171, found 

936.5149. 

 

AO-02-45 

Azithromycin (400mg, 0.54mmol) was mixed with the Lipoic acid anhydride (100mg, 0.26mmol) 

in DCM. The solution was stirred for overnight under Ar protection. The solution was washed by 

water (50 mL) and extracted by DCM (20 mL) twice. The organic solution was collected and 

evaporated to dryness by vacuum. The crude product was purified through Preparative TLC plate 

with solvent system DCM: MeOH=10:1. The final product was yielded as pale-yellow solid 

(62mg, 0.061mmol, 26.6%).  1H NMR (400 MHz, cdcl3) δ 5.10 (d, J = 4.8 Hz, 1H), 4.72 (dd, J = 

10.6, 7.5 Hz, 1H), 4.64 (dd, J = 9.9, 2.7 Hz, 1H), 4.49 (d, J = 7.6 Hz, 1H), 4.19 (dd, J = 4.2, 2.0 

Hz, 1H), 4.12 – 3.89 (m, 1H), 3.66 – 3.57 (m, 1H), 3.57 – 3.40 (m, 3H), 3.33 (s, 2H), 3.23 – 3.03 

(m, 2H), 2.99 (d, J = 8.0 Hz, 1H), 2.74 – 2.60 (m, 2H), 2.60 – 2.35 (m, 3H), 2.36 – 2.07 (m, 10H), 

2.04 – 1.92 (m, 2H), 1.93 – 1.75 (m, 3H), 1.62 (dd, J = 28.4, 20.5, 13.7, 5.1 Hz, 6H), 1.43 (tdd, J 

= 15.8, 9.3, 6.1 Hz, 3H), 1.36 – 1.09 (m, 14H), 1.04 (d, J = 7.1 Hz, 4H), 0.96 – 0.66 (m, 6H). 13C 

NMR (101 MHz, cdcl3) δ 178.7, 172.2, 100.6, 94.4, 82.9, 78.1, 74.2, 73.6, 73.0, 71.5, 70.0, 68.2, 

65.5, 63.9, 62.4, 56.5, 49.4, 45.2, 42.0, 40.7, 40.2, 38.5, 36.2, 34.7, 30.1, 28.6, 27.5, 26.6, 24.6, 

21.9, 21.6, 21.2, 18.2, 16.2, 14.6, 11.2, 8.9, 7.3. HRMS (ESI) m/z Calcd. C46 H85 O13 N2 S2 [M+H+]: 

937.5488, found 937.5445. 
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AO-02-47 

AO-02-41 (25mg, 0.026mmol) was dissolved into the 1N HCl (15 mL) and stir for 20 h under 

room temperature. The solution was washed by water and use DCM (25 mL) to extract the 

cladinose. The aqueous layer was basified to pH=8-9 by sat. NaHCO3 and then use DCM to extract 

the final product. The organic layer was collected and evaporated to dryness. To purify the product, 

the preparative TLC plate was used with condition DCM:MeOH=12:1 and the pure product was 

yielded as white solid (13mg, 0.017mmol, 65.3%). 1H NMR (400 MHz, cdcl3) δ 5.12 (dd, J = 11.2, 

2.4 Hz, 1H), 4.99 – 4.85 (m, 1H), 4.82 (d, J = 7.4 Hz, 1H), 3.90 (s, 1H), 3.83 – 3.66 (m, 4H), 3.58 

– 3.49 (m, 1H), 3.44 – 3.28 (m, 2H), 3.22 (d, J = 8.3 Hz, 2H), 3.20 – 3.03 (m, 3H), 3.03 – 2.93 (m, 

2H), 2.90 (s, 4H), 2.75 (s, 8H), 2.63 (dq, J = 10.3, 6.6 Hz, 2H), 2.55 – 2.39 (m, 3H), 2.39 – 2.24 

(m, 2H), 2.19 (dt, J = 12.9, 4.9 Hz, 2H), 2.14 – 1.98 (m, 1H), 1.98 – 1.82 (m, 3H), 1.67 (dddd, J = 

18.5, 16.1, 13.9, 9.2 Hz, 6H), 1.59 – 1.36 (m, 6H), 1.36 – 1.24 (m, 7H), 1.24 – 0.97 (m, 19H), 0.88 

(d, J = 7.4 Hz, 3H), 0.79 (t, J = 7.3 Hz, 3H).13C NMR (101 MHz, cdcl3) δ 174.9, 173.0, 98.4, 81.5, 

74.1, 69.7, 68.9, 67.6, 63.2, 56.5, 49.7, 45.5, 44.1, 40.3, 38.5, 37.4, 35.6, 34.7, 28.9, 24.0, 20.8, 

19.3, 17.9, 16.3, 15.5, 12.6, 10.4, 8.4. HRMS (ESI) m/z Calcd. C38 H68 O11 N S2  [M+H+]: 

778.4228, found 778.4193. 

 

AO-02-48 

AO-02-45 (50mg, 0.053mmol) was dissolved into the 0.25 N HCl (10 mL) and stir for 20 h 

under room temperature. The solution was washed by water and use DCM (25 mL) to extract the 
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cladinose. The aqueous layer was basified to pH=8-9 by NaOH and then use DCM to extract the 

final product. The organic layer was collected and evaporated to dryness. With the TLC and 

staining, we observe that a new lower spot showed up as the final product. The pure product was 

yielded as white solid (29mg, 0.037mmol, 70.4%). 1H NMR (400 MHz, cdcl3) δ 4.75 – 4.54 (m, 

1H), 3.78 – 3.58 (m, 2H), 3.54 (dd, J = 19.5, 13.2 Hz, 2H), 3.30 – 2.95 (m, 2H), 2.82 – 2.55 (m, 

2H), 2.46 (dq, J = 12.3, 6.3 Hz, 1H), 2.30 (d, J = 48.4 Hz, 6H), 2.00 (d, J = 38.8 Hz, 1H), 1.90 

(dt, J = 13.8, 6.9 Hz, 2H), 1.79 – 1.33 (m, 14H), 1.33 – 1.17 (m, 7H), 1.17 – 0.99 (m, 4H), 0.99 – 

0.73 (m, 6H).13C NMR (101 MHz, cdcl3) δ 177.4 , 172.2, 99.9, 86.2, 78.4, 77.8, 74.2, 73.1, 71.6, 

68.9, 63.5, 62.4, 56.5, 43.9, 41.3, 40.7, 38.5, 36.9, 35.9, 34.7, 34.3, 30.5, 28.7, 26.1, 24.7, 21.3, 

21.1, 20.8, 16.1, 11.0, 7.6. HRMS (ESI) m/z Calcd. C38 H71 O10 N2 S2 [M+H+]: 779.4545, found 

779.4516. 

 

 

AC0NL 

Des-AZM (180mg, 0.245mmol) was mixed with Hunig’s base (0.5 mL) in 5 mL DCM solution 

with stirring. ALA (100mg, 0.485mmol) was mixed with EDCI (200mg, 1.29mmol) in another 5 

mL DCM solution. After 5 minutes stirring with Argon, the ALA solution was added to the Des-

AZM solution dropwisely with stirring, and DMAP (10mg, 0.082mmol) was added afterwards. 

The reaction was stirred for 24 h at room temperature with protection of Argon gas. The solution 

was washed by 100 mL water and extracted by DCM (30 mL). Then, the organic layer was washed 

again by water (100 mL) and extracted with 50 mL DCM. The organic layer was combined and 

evaporated by vacuum. The crude product was purified by Prep TLC with solvent condition as 
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EtOAc: MeOH=13:1. The final product was yielded in yellow foam (166mg, 0.203mmol, 83%). 

1H NMR (700 MHz, CDCl3) δ 5.11 (d, J = 3.1 Hz, 1H), 4.78 – 4.74 (m, 1H), 4.72 – 4.66 (m, 1H), 

4.49 (dd, J = 15.9, 7.3 Hz, 1H), 4.19 (dt, J = 6.6, 3.3 Hz, 1H), 4.07 (td, J = 9.8, 4.9 Hz, 1H), 3.68 

(s, 1H), 3.62 – 3.55 (m, 2H), 3.38 (s, 2H), 3.34 (s, 1H), 3.17 (tdd, J = 7.9, 5.3, 2.7 Hz, 1H), 3.14 – 

3.02 (m, 3H), 2.91 (s, 2H), 2.83 (s, 1H), 2.74 – 2.67 (m, 1H), 2.58 – 2.51 (m, 1H), 2.51 – 2.42 (m, 

3H), 2.41 – 2.29 (m, 2H), 1.97 – 1.86 (m, 2H), 1.77 – 1.56 (m, 5H), 1.47 (dd, J = 19.4, 12.9, 9.9, 

6.3, 2.6 Hz, 3H), 1.37 (s, 2H), 1.34 (d, J = 6.3 Hz, 3H), 1.27 – 1.14 (m, 8H), 1.11 (d, J = 7.9 Hz, 

3H), 1.04 – 0.94 (m, 5H), 0.88 (t, J = 7.4 Hz, 3H). 13C NMR (176 MHz, CDCl3) δ 174.3, 103.5, 

94.9, 84.2, 78.0, 78.0, 77.3, 76.90, 74.5, 74.2, 73.9, 73.1, 71.6, 70.9, 69.3, 69.1, 68.4, 65.9, 62.3, 

62.0, 57.5, 56.6, 53.9, 49.5, 42.3, 40.3, 38.5, 36.6, 36.4, 35.8, 34.8, 34.1, 33.8, 33.2, 31.9, 31.7, 

29.7, 29.40, 29.10, 26.9, 26.4, 25.3, 25.0, 24.8, 24.7, 22.6, 22.6, 22.1, 21.6, 21.6, 21.4, 21.3, 21.0, 

20.9, 20.7, 18.1, 16.5, 14.7, 14.1, 11.2, 9.4, 7.5. HRMS (ESI) m/z Calcd. C45 H82 O13 N2 S2 [M+H+]:  

923.5331, found 923.5334. 

 

CC0NL 

Des-CLM (180mg, 0.245mmol) was mixed with Hunig’s base (0.5 mL) in 5 mL DCM solution 

with stirring. ALA (100mg, 0.485mmol) was mixed with EDCI (200mg, 1.29mmol) in another 5 

mL DCM solution. After 5 minutes stirring, the ALA solution was added to the Des-CLM solution 

dropwisely with stirring, and DMAP (10mg, 0.082mmol) was added afterwards. The reaction was 

stirred for 24 h at room temperature with protection of Argon gas. The solution was washed by 

100 mL water and extracted by DCM (30 mL). Then, the organic layer was washed again by water 

(100 mL) and extracted with 50 mL DCM. The organic layer was combined and evaporated by 
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vacuum. The crude product was purified by Prep TLC with solvent condition as EtOAc: 

hexane=8:2. The final product was yielded in yellow foam (186mg, 0.197mmol, 80.4%). 1H NMR 

(700 MHz, CDCl3) δ 5.03 (dd, J = 11.4, 3.9 Hz, 1H), 4.90 (dt, J = 8.4, 3.9 Hz, 1H), 4.68 – 4.61 

(m, 1H), 4.49 (dd, J = 7.4, 2.5 Hz, 1H), 4.00 (q, J = 7.4 Hz, 1H), 3.95 (d, J = 4.9 Hz, 1H), 3.74 – 

3.69 (m, 2H), 3.68 – 3.61 (m, 2H), 3.55 (q, J = 7.0 Hz, 1H), 3.34 – 3.27 (m, 3H), 3.19 (d, J = 6.0 

Hz, 1H), 3.15 (dt, J = 11.7, 6.4 Hz, 0H), 3.09 (ddd, J = 11.1, 7.1, 3.6 Hz, 1H), 3.00 (d, J = 3.4 Hz, 

3H), 2.96 (d, J = 7.1 Hz, 1H), 2.88 (d, J = 2.8 Hz, 2H), 2.84 (h, J = 8.1, 7.5 Hz, 1H), 2.80 (d, J = 

3.2 Hz, 1H), 2.59 – 2.52 (m, 2H), 2.44 (dp, J = 12.5, 6.4, 4.7 Hz, 1H), 2.36 – 2.17 (m, 4H), 1.89 

(qd, J = 17.3, 13.9, 5.3 Hz, 1H), 1.79 – 1.51 (m, 0H), 1.50 – 1.41 (m, 2H), 1.39 (d, J = 3.2 Hz, 

2H), 1.28 (d, J = 5.7 Hz, 2H), 1.25 – 1.13 (m, 3H), 1.14 – 1.08 (m, 8H), 1.05 – 0.98 (m, 3H), 0.81 

(dt, J = 10.6, 5.2 Hz, 3H). 13C NMR (176 MHz, CDCl3) δ 220.8, 175.6, 174.3, 103.5, 96.2, 82.1, 

76.6, 74.2, 72.8, 71.8, 69.0, 68.3, 65.7, 56.4, 53.7, 50.6, 49.4, 45, 40.2, 39.2, 38.8, 37.2, 35.7, 34.7, 

33.8, 29.5, 29, 24.7, 21.4, 21, 19.6, 18.5, 17.9, 16, 12.3, 10.5, 9.5. HRMS (ESI) m/z Calcd. 

C45H79O14NNaS2 [M+Na+]: 944.4834, found 944.4843. 

 

C2NL 

2-bromoethan-1-aminium bromide (500mg, 2.44mmol) mixed with NaN3 (400mg, 5.88mmol) in 

DMF (20 mL). The solution was heated to 80°C for overnight. The solution was not washed 

because water could be miscible to the product. DMF was evaporated with high temperature water 

bath and vacuum. The remained DMF solution of intermediate was used directly to couple with 

ALA so the final product C2NL could be formed. In brief, ALA (200mg, 2.32mmol) dissolved 

with DCM (20 mL) with EDCI (400mg, 2.11mmol) and DMAP (50mg, 0.41mmol). The solution 
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stirred for 30 minutes and the DMF solution of intermediate was added to the reaction. The solution 

stirred in room temperature for 1 hour and the product was made as C2NL linker. The crude 

product was washed by water (50 mL) and extracted by DCM (30 mL) for 3 times. Then, the 

product was purified by EtOAc to gain pure C2NL as liquid (188mg, 0.681mmol, 29%). 1H NMR 

(400 MHz, cdcl3) δ 4.12 – 4.02 (m, 1H), 3.69 – 3.55 (m, 2H), 3.48 (s, 3H), 3.42 (d, J = 0.5 Hz, 

3H), 2.94 (dtd, J = 13.1, 6.6, 5.4 Hz, 1H), 2.80 (t, J = 7.5 Hz, 2H), 2.39 (dq, J = 12.7, 6.9 Hz, 1H), 

2.24 – 2.03 (m, 6H), 1.97 (ddd, J = 13.5, 8.7, 5.4, 2.6 Hz, 2H). 

 

C3NL 

3-bromopropan-1-aminium bromide (400mg, 1.83mmol) mixed with NaN3 (200mg, 3.07mmol) 

in DMF (10 mL). The solution was heated to 80°C for overnight. The solution was not washed 

because water could be miscible to the product. DMF was evaporated with high temperature water 

bath and vacuum. The remained DMF solution of intermediate was used directly to couple with 

ALA so the final product C2NL could be formed. In brief, ALA (400mg, 1.94mmol) dissolved 

with DCM (20 mL) with EDCI (1g, 5.26mmol) and DMAP (60mg, 0.49mmol). The solution 

stirred for 30 minutes and the DMF solution of intermediate was added to the reaction. The solution 

stirred in room temperature for 1 hour and the product was made as C3NL linker. The crude 

product was washed by water (50 mL) and extracted by DCM (30 mL) for 3 times. Then, the 

product was purified by EtOAc to gain pure C3NL as liquid (450mg,1.65mmol, 85%). 1H NMR 

(400 MHz, cdcl3) δ 3.59 (dq, J = 8.5, 6.4 Hz, 1H), 3.44 – 3.36 (m, 2H), 3.23 – 3.08 (m, 3H), 3.01 

(s, 3H), 2.94 (s, 3H), 2.47 (dtd, J = 13.0, 6.6, 5.4 Hz, 1H), 2.33 (t, J = 7.5 Hz, 2H), 1.99 – 1.80 (m, 

2H), 1.77 – 1.61 (m, 3H), 1.49 (ddd, J = 8.8, 7.6, 5.6, 2.8 Hz, 2H). 
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CPC2NL 

The PCC (50mg, 0.06mmol) mixed with C2NL linker (50mg, 0.18mmol) and dissolved in 

THF/DMSO solution (1:1 mL). The CuI (10mg, 0.05mmol) was added to the solution. The 

solution was purged with Argon and stirred for 5 minutes. Hunig’s base (0.2 mL) was added to the 

solution. Then, the solution was stirred for overnight to complete the reaction. To remove Copper, 

the NH4OH (1M, 30 mL) was poured to the DCM mixture of reaction solution. After 2 extractions, 

the DCM layer was collected and evaporated to dryness. The crude product was purified by DCM: 

MeOH=15:1 in Preparative TLC. The final product is yellow solid (60mg, 0.053mmol, 90%). 1H 

NMR (700 MHz, CDCl3) δ 7.71 (t, J = 4.1 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 4.98 (dd, J = 11.0, 

2.3 Hz, 1H), 4.84 (d, J = 4.6 Hz, 1H), 4.50 – 4.45 (m, 2H), 4.37 (d, J = 7.2 Hz, 1H), 3.92 – 3.85 

(m, 2H), 3.79 – 3.75 (m, 2H), 3.75 – 3.68 (m, 2H), 3.68 (dd, J = 9.4, 1.4 Hz, 1H), 3.60 – 3.54 (m, 

1H), 3.48 – 3.36 (m, 2H), 3.28 – 3.23 (m, 1H), 3.13 – 3.06 (m, 5H), 3.02 (dt, J = 11.1, 6.9 Hz, 1H), 

2.96 (s, 2H), 2.95 – 2.90 (m, 1H), 2.83 – 2.78 (m, 1H), 2.54 – 2.48 (m, 1H), 2.36 (dtd, J = 13.1, 

6.7, 5.3 Hz, 1H), 2.30 – 2.22 (m, 1H), 2.19 (s, 2H), 2.11 (td, J = 7.3, 1.3 Hz, 2H), 1.88 – 1.74 (m, 

5H), 1.66 – 1.50 (m, 7H), 1.47 – 1.34 (m, 2H), 1.34 (s, 3H), 1.21 (d, J = 6.1 Hz, 4H), 1.18 (d, J = 

5.9 Hz, 10H), 1.12 (d, J = 7.3 Hz, 3H), 1.08 – 1.03 (m, 11H), 1.02 (d, J = 7.6 Hz, 3H), 0.84 – 0.79 

(m, 3H), 0.81 – 0.75 (m, 6H).13C NMR (176 MHz, CDCl3) δ 174.8, 172.3, 146.6, 128.4, 124.8, 

119.4, 101.7, 94.9, 79.9, 77.3, 76.9, 75.6, 73.2, 71.5, 69.8, 68.0, 64.7, 63.2, 56.5, 55.3, 49.6, 48.6, 

48.4, 44.2, 39.2, 38.2, 37.4, 36.2, 35.9, 35.2, 33.5, 30.9, 30.6, 28.7, 27.8, 24.2, 21.7, 20.5, 20.0, 

18.8, 17.6, 17.0, 15.0, 14.9, 13.1, 11.3, 9.6, 8.1. HRMS (ESI) m/z Calcd. C56 H92 O14 N5 S2 

[M+H+]: 1122.6077, found 1122.6064. 
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APC2NL 

The PCA (50mg, 0.06mmol) mixed with C2NL linker (50mg, 0.18mmol) and dissolved in 

THF/DMSO solution (2:2 mL). The CuI (10mg, 0.05mmol) was added to the solution. The 

solution was purged with Argon and stirred for 5 minutes. Hunig’s base (0.4ml) was added to the 

solution. Then, the solution was stirred for overnight to complete the reaction. To remove 

Copper, the NH4OH (1M, 30ml) was poured to the DCM mixture of reaction solution. After 2 

extractions, the DCM layer was collected and evaporated to dryness. The crude product was 

purified by DCM: MeOH=9:1 in Preparative TLC. The final product is pale-yellow solid (46mg, 

0.041mmol, 80%). 1H NMR (700 MHz, CDCl3) δ 8.03 (s, 1H), 7.83 – 7.73 (m, 3H), 7.38 (d, J = 

7.8 Hz, 2H), 6.09 (t, J = 6.0 Hz, 1H), 5.12 (d, J = 5.0 Hz, 1H), 4.75 – 4.64 (m, 2H), 4.61 – 4.52 

(m, 2H), 4.45 (d, J = 7.3 Hz, 1H), 4.27 (dd, J = 4.4, 2.0 Hz, 1H), 4.11 – 4.03 (m, 1H), 3.91 – 3.77 

(m, 3H), 3.77 – 3.59 (m, 3H), 3.59 – 3.45 (m, 4H), 3.45 – 3.32 (m, 2H), 3.26 (d, J = 14.9 Hz, 

1H), 3.24 – 3.13 (m, 4H), 3.10 (dt, J = 11.1, 6.9 Hz, 1H), 3.02 (t, J = 9.7 Hz, 1H), 3.00 – 2.83 

(m, 6H), 2.83 – 2.66 (m, 3H), 2.62 (ddd, J = 13.6, 10.3, 3.8 Hz, 1H), 2.55 (d, J = 11.7 Hz, 2H), 

2.44 (dtd, J = 13.1, 6.6, 5.3 Hz, 1H), 2.34 (d, J = 6.9 Hz, 4H), 2.29 (d, J = 26.8 Hz, 4H), 2.19 (td, 

J = 7.4, 1.4 Hz, 2H), 2.16 – 1.96 (m, 5H), 1.96 – 1.85 (m, 3H), 1.85 – 1.73 (m, 3H), 1.73 – 1.60 

(m, 5H), 1.56 (dd, J = 15.3, 5.1 Hz, 2H), 1.52 – 1.37 (m, 5H), 1.37 – 1.30 (m, 8H), 1.30 – 1.22 

(m, 8H), 1.22 – 1.13 (m, 7H), 1.11 (d, J = 8.8 Hz, 6H), 1.05 (d, J = 7.5 Hz, 4H), 1.01 – 0.78 (m, 

9H). 13C NMR (176 MHz, CDCl3) δ 178.8, 173.4, 162.5, 147.7, 139.3, 129.3, 129.3, 125.7, 

120.4, 102.9, 94.6, 83.7, 78.1, 77.9, 77.2, 77.0, 76.9, 74.3, 73.7, 72.9, 70.8, 68.7, 65.5, 64.6, 57.7, 

56.4, 49.6, 49.4, 45.2, 42.3, 42.1, 40.2, 39.2, 38.5, 37.0, 36.5, 36.3, 36.2, 34.7, 34.6, 31.4, 29.8, 
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29.7, 29.7, 29.4, 28.8, 27.5, 26.8, 25.3, 22.7, 22.0, 21.5, 21.4, 21.3, 18.2, 16.2, 14.8, 11.3, 9.1, 

7.5. HRMS (ESI) m/z Calcd. C56 H95 O13 N6 S2 [M+H+]: 1123.6393, found 1123.6383. 

 

CPC3NL 

The PCC (50mg, 0.06mmol) mixed with C3NL linker (100mg, 0.35mmol) and dissolved in 

THF/DMSO solution (2:1 mL). The CuI (20mg, 0.05mmol) was added to the solution. The 

solution was purged with Argon and stirred for 5 minutes. Hunig’s base (0.3 mL) was added to 

the solution. Then, the solution was stirred for overnight to complete the reaction. To remove 

Copper, the NH4OH (1M, 30 mL) was poured to the DCM mixture of reaction solution. After 2 

extractions, the DCM layer was collected and evaporated to dryness. The crude product was 

purified by DCM: MeOH=15:1 in Preparative TLC. The final product is yellow solid (40mg, 

0.035mmol, 58.9%). 1H NMR (700 MHz, CDCl3) δ 8.23 (s, 1H), 8.05 – 7.68 (m, 3H), 7.38 (d, J 

= 7.7 Hz, 2H), 6.05 (t, J = 6.6 Hz, 1H), 5.06 (d, J = 11.0 Hz, 1H), 4.92 (d, J = 5.1 Hz, 1H), 4.70 – 

4.34 (m, 3H), 4.08 – 3.87 (m, 2H), 3.87 – 3.67 (m, 3H), 3.65 (d, J = 7.3 Hz, 1H), 3.48 (dd, J = 

18.1, 9.5 Hz, 2H), 3.41 – 3.25 (m, 3H), 3.25 – 2.81 (m, 12H), 2.59 (dq, J = 19.1, 11.4, 9.0 Hz, 

2H), 2.50 – 2.06 (m, 8H), 2.06 – 1.62 (m, 12H), 1.56 – 1.33 (m, 7H), 1.33 – 1.01 (m, 29H), 0.87 

(dt, J = 27.8, 7.1 Hz, 5H). 13C NMR (176 MHz, CDCl3) δ 175.8, 161.6, 147.8, 129.4, 125.8, 

120.0, 102.8, 96.0, 80.9, 78.3, 78.3, 77.9, 77.2, 77.0, 76.9, 74.3, 72.5, 70.8, 69.1, 68.7, 65.7, 64.0, 

57.6, 50.6, 49.4, 47.6, 45.3, 45.1, 39.3, 39.1, 37.2, 36.9, 35.1, 34.8, 30.1, 29.7, 29.5, 21.5, 21.3, 

21.0, 19.8, 18.7, 18.0, 16.0, 14.1, 12.3, 10.6, 9.1. HRMS (ESI) m/z Calcd. C57 H94 O14 N5 S2 

[M+H+]: 1136.6233, found 1136.6259. 
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APC3NL 

The PCA (50mg, 0.06mmol) mixed with C3NL linker (100mg, 0.35mmol) and dissolved in 

THF/DMSO solution (2:1 mL). The CuI (20mg, 0.05mmol) was added to the solution. The 

solution was purged with Argon and stirred for 5 minutes. Hunig’s base (0.3 mL) was added to 

the solution. Then, the solution was stirred for overnight to complete the reaction. To remove 

Copper, the NH4OH (1M, 30 mL) was poured to the DCM mixture of reaction solution. After 2 

extractions, the DCM layer was collected and evaporated to dryness. The crude product was 

purified by DCM: MeOH=10:1 in Preparative TLC. The final product is yellow solid (33mg, 

0.028mmol, 48.6%). 1H NMR (700 MHz, CDCl3) δ 8.25 (d, J = 1.6 Hz, 1H), 7.97 – 7.68 (m, 

3H), 7.38 (d, J = 7.9 Hz, 2H), 6.07 (t, J = 6.2 Hz, 1H), 5.32 (s, 1H), 5.15 (d, J = 4.9 Hz, 2H), 

4.71 (dd, J = 9.9, 2.7 Hz, 1H), 4.60 – 4.36 (m, 3H), 4.26 (dd, J = 3.9, 2.0 Hz, 1H), 4.06 (dq, J = 

8.9, 6.2 Hz, 2H), 3.82 (d, J = 13.0 Hz, 1H), 3.77 – 3.58 (m, 3H), 3.58 – 3.43 (m, 4H), 3.41 – 3.25 

(m, 4H), 3.25 – 2.86 (m, 7H), 2.84 – 2.47 (m, 7H), 2.47 – 2.16 (m, 14H), 2.16 – 1.87 (m, 7H), 

1.87 – 1.59 (m, 4H), 1.59 – 1.41 (m, 3H), 1.41 – 0.99 (m, 17H), 0.99 – 0.79 (m, 9H). 13C NMR 

(176 MHz, CDCl3) δ 178.9, 161.8, 147.8, 139.1, 129.4, 129.3, 125.8, 120.0, 102.9, 94.5, 83.6, 

78.1, 77.7, 77.2, 77.0, 76.8, 74.2, 73.7, 73.6, 72.9, 70.7, 70.1, 68.7, 65.9, 65.6, 64.4, 62.5, 57.7, 

49.3, 47.6, 45.3, 42.3, 42.3, 40.3, 36.9, 36.2, 35.1, 34.6, 31.9, 30.1, 29.7, 29.7, 27.6, 26.8, 22.7, 

22.0, 21.5, 21.4, 21.3, 18.2, 16.2, 15.3, 14.8, 14.6, 14.1, 11.3, 9.0, 7.3. HRMS (ESI) m/z Calcd. 

C57 H97 O13 N6 S2 [M+H+]: 1137.6550, found 1137.6565. 

 

3.4.2.2 Piperic acid derivatives: 
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Piperic acid anhydride 

Piperic acid (400mg, 1.83mmol) was dissolved into DCM (10 mL) with EDCI (1137mg, 

7.34mmol). The solution was stirred for overnight with Ar protection. The solution was washed 

by water (30 mL) and extracted by DCM (20 mL) for four times to ensure all EDCI could be 

removed. The extracted organic solution was evaporated by vacuum and the crude product was 

yielded in yellow solid (235mg, 0.562mmol, 30.6%). This product is ready to use for next reaction 

without purification. 

 

WBC-04-11 

Azithromycin (170mg, 0.23mmol) was mixed with the piperic acid anhydride (235mg, 0.56mmol) 

in DCM. The solution was stirred for overnight under Ar protection. The solution was washed by 

water (50 mL) and extracted by DCM (20 mL) twice. The organic solution was collected and 

evaporated to dryness by vacuum. The crude product was purified through Preparative TLC plate 

with solvent system DCM:MeOH=10:1. The final product was yielded as pale-yellow solid (58mg, 

0.061mmol, 26.6%). 1H NMR (700 MHz, CDCl3) δ 7.41 (dd, J = 15.2, 10.8 Hz, 1H), 7.01 (d, J = 

1.6 Hz, 1H), 6.93 (d, J = 8.0 Hz, 1H), 6.87 – 6.77 (m, 2H), 6.72 (dd, J = 15.5, 10.9 Hz, 1H), 6.01 

(s, 2H), 5.95 (d, J = 15.2 Hz, 1H), 5.09 (d, J = 4.8 Hz, 1H), 4.92 (q, J = 10.0, 9.5 Hz, 1H), 4.69 (d, 

J = 9.6 Hz, 1H), 4.63 (d, J = 7.5 Hz, 1H), 4.25 (d, J = 5.2 Hz, 1H), 4.07 (dt, J = 12.2, 6.1 Hz, 1H), 

3.68 (s, 1H), 3.62 (d, J = 7.1 Hz, 1H), 3.57 (t, J = 9.6 Hz, 1H), 3.50 (q, J = 7.0 Hz, 2H), 3.43 (s, 

3H), 3.40 – 3.33 (m, 1H), 3.08 (t, J = 8.3 Hz, 1H), 2.77 – 2.69 (m, 3H), 2.52 (d, J = 11.9 Hz, 1H), 

2.38 (d, J = 15.0 Hz, 4H), 2.34 (s, 4H), 2.18 (d, J = 10.2 Hz, 1H), 1.94 – 1.85 (m, 2H), 1.71 (d, J 

= 14.6 Hz, 1H), 1.62 (dd, J = 15.2, 5.3 Hz, 2H), 1.45 (tdd, J = 13.8, 8.2, 4.9 Hz, 2H), 1.42 – 1.36 
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(m, 2H), 1.36 – 1.32 (m, 6H), 1.31 – 1.26 (m, 9H), 1.26 (s, 2H), 1.25 – 1.18 (m, 8H), 1.12 (tq, J = 

15.2, 6.8 Hz, 4H), 1.05 (s, 4H), 0.95 (d, J = 6.8 Hz, 3H), 0.94 – 0.82 (m, 9H). 13C NMR (176 MHz, 

CDCl3) δ 178.4, 166.0, 148.6, 148.3, 139.9 130.6, 124.7, 123.6, 122.9, 109.2, 105.8, 101.4, 101.3, 

100.8, 94.8, 83.3, 78.1, 77.2, 77.0, 76.8, 74.3, 73.8, 73.1, 71.6, 70.1, 68.2, 65.9, 65.7, 63.8, 49.4, 

45.1, 42.0, 41.6, 40.8, 36.5, 34.9, 31.9, 31.2, 29.7, 29.4, 27.3, 26.6, 22.7, 22.0, 21.7, 21.6, 21.2, 

18.3, 18.3, 16.2, 15.3, 15.1, 14.1, 11.3, 9.3, 7.6. HRMS (ESI) m/z Calcd. C50 H81 O15 N2 [M+H+]: 

949.5631, found 949.5605. 

 

WBC-04-14 

Clarithromycin (100mg, 0.13mmol) was mixed with the piperic acid anhydride (200mg, 

0.48mmol) in DCM. The solution was stirred for overnight under Ar protection. The solution was 

washed by water (50 mL) and extracted by DCM (20 mL) twice. The organic solution was 

collected and evaporated to dryness by vacuum. The crude product was purified through 

Preparative TLC plate with solvent system DCM:MeOH=10:1. The final product was yielded as 

pale-yellow solid (30mg, 0.032mmol, 24.6%).1H NMR (700 MHz, CDCl3) δ 7.41 (dd, J = 15.2, 

10.8 Hz, 1H), 7.01 (d, J = 1.7 Hz, 1H), 6.93 (dd, J = 8.0, 1.8 Hz, 1H), 6.85 – 6.77 (m, 2H), 6.72 

(dd, J = 15.6, 10.8 Hz, 1H), 6.01 (s, 2H), 5.93 (d, J = 15.2 Hz, 1H), 5.31 (s, 1H), 5.04 (dd, J = 11.0, 

2.4 Hz, 1H), 4.94 (d, J = 4.9 Hz, 1H), 4.88 (dd, J = 10.6, 7.5 Hz, 1H), 4.64 (d, J = 7.4 Hz, 1H), 

4.02 (dq, J = 8.8, 6.2 Hz, 1H), 3.98 (s, 1H), 3.78 – 3.74 (m, 1H), 3.74 (d, J = 1.7 Hz, 1H), 3.63 (d, 

J = 6.9 Hz, 1H), 3.53 (ddd, J = 10.8, 6.2, 1.9 Hz, 1H), 3.44 (s, 3H), 3.20 (s, 1H), 3.07 (d, J = 9.0 

Hz, 1H), 3.02 (s, 3H), 2.97 (tt, J = 7.0, 3.9 Hz, 1H), 2.87 – 2.80 (m, 1H), 2.70 (d, J = 12.4 Hz, 1H), 

2.58 (dtd, J = 13.6, 7.0, 2.1 Hz, 1H), 2.41 – 2.36 (m, 1H), 2.30 (s, 6H), 2.24 – 2.18 (m, 1H), 1.94 
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– 1.86 (m, 1H), 1.86 – 1.80 (m, 1H), 1.79 – 1.74 (m, 1H), 1.69 (dd, J = 14.8, 11.7 Hz, 1H), 1.62 

(ddd, J = 14.8, 6.3, 3.7 Hz, 2H), 1.44 (dtd, J = 14.2, 7.2, 4.3 Hz, 2H), 1.38 – 1.32 (m, 3H), 1.31 (d, 

J = 8.3 Hz, 5H), 1.26 (dd, J = 12.6, 4.9 Hz, 6H), 1.21 (dd, J = 7.3, 3.9 Hz, 4H), 1.15 (d, J = 7.0 

Hz, 3H), 1.14 – 1.08 (m, 7H), 0.88 (d, J = 7.5 Hz, 3H), 0.83 (t, J = 7.4 Hz, 3H). 13C NMR (176 

MHz, CDCl3) δ 175.7, 166.0, 148.6, 148.33, 144.7, 134.0, 130.5, 124.6, 122.9, 120.9, 108.6, 105.8, 

101.4, 100.8, 95.8, 95.8, 80.6, 78.4, 78.1, 77.9, 77.2, 77.0, 76.6, 74.2, 72.9, 72.8, 71.6, 69.1, 68.2, 

65.9, 65.8, 63.6, 53.4, 50.4, 49.5, 49.3, 45.2, 45.0, 40.8, 39.1, 38.7, 37.3, 34.9, 31.0, 29.7, 21.6, 

21.3, 21.0, 19.9, 18.7, 17.9,16.0, 12.3, 10.6, 9.2. HRMS (ESI) m/z Calcd. C50 H78 O16 N [M+H+]: 

948.5315, found 948.5293. 

 

WBC-04-15 

Des-CLM (200mg, 0.273mmol) was mixed with Hunig’s base in 5 mL DCM solution with stirring. 

Piperic acid (75mg, 0.34mmol) was mixed with EDCI (210mg, 1.35mmol) in another 5 mL DCM 

solution. After 5 minutes stirring, the piperic acid solution was added to the Des-CLM solution 

dropwisely with stirring, and DMAP (10mg, 0.082mmol) was added afterwards. The reaction was 

stirred for 24 h at room temperature with protection of Argon gas. The solution was washed by 

100ml water and extracted by DCM (30 mL). Then, the organic layer was washed again by water 

(100 mL) and extracted with 50ml DCM. The organic layer was combined and evaporated by 

vacuum. The crude product was purified by Prep TLC with solvent condition as EtOAc: 

MeOH=20:1. The final product was yielded in yellow foam (240mg, 0.257mmol, 94%). 1H NMR 

(700 MHz, CDCl3) δ 7.46 (dd, J = 14.5, 10.1 Hz, 1H), 7.01 (s, 1H), 6.92 (d, J = 8.0 Hz, 1H), 6.82 

– 6.79 (m, 2H), 6.77 (d, J = 10.4 Hz, 1H), 6.41 (d, J = 14.6 Hz, 1H), 6.00 (s, 2H), 5.32 (d, J = 1.8 
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Hz, 1H), 5.08 (d, J = 10.8 Hz, 1H), 4.95 (d, J = 5.1 Hz, 1H), 4.76 (td, J = 11.9, 4.1 Hz, 1H), 4.56 

(d, J = 7.1 Hz, 1H), 4.05 (q, J = 7.1, 6.6 Hz, 1H), 3.99 (s, 1H), 3.77 (d, J = 8.6 Hz, 2H), 3.73 – 

3.69 (m, 1H), 3.69 (s, 1H), 3.39 (d, J = 11.0 Hz, 4H), 3.21 (s, 1H), 3.06 (s, 4H), 3.04 – 2.98 (m, 

4H), 2.95 (s, 1H), 2.89 (q, J = 7.7 Hz, 1H), 2.73 (d, J = 4.6 Hz, 1H), 2.61 (dq, J = 13.9, 7.5, 6.6 

Hz, 2H), 2.39 (d, J = 15.1 Hz, 1H), 2.01 – 1.94 (m, 1H), 1.94 – 1.89 (m, 1H), 1.81 (t, J = 13.4 Hz, 

1H), 1.72 (d, J = 18.3 Hz, 2H), 1.69 – 1.59 (m, 3H), 1.56 – 1.45 (m, 2H), 1.44 (s, 3H), 1.34 (d, J 

= 6.1 Hz, 3H), 1.30 – 1.21 (m, 10H), 1.19 – 1.13 (m, 9H), 1.08 (dd, J = 22.7, 7.6 Hz, 3H), 0.86 (t, 

J = 7.4 Hz, 3H). 13C NMR (176 MHz, CDCl3) δ 220.9, 175.7, 168.6, 148.3, 148.2, 143.8, 139.3, 

130.8, 125.0, 122.8, 119.9, 108.5, 105.7, 103.7, 101.3, 96.2, 82.1, 78.5, 78.3, 78.0, 77.2, 74.2, 72.8, 

72.1, 69.1, 68.4, 65.8, 54.4, 53.4, 50.7, 49.5, 45.2, 45.0, 39.2, 38.9, 37.3, 35.8, 35.01, 29.8, 21.6, 

21.1, 21.0, 19.7, 18.7, 18.0, 16.0, 12.3, 10.6, 9.5. HRMS (ESI) m/z Calcd. C49 H75 O16 N Na 

[M+Na+]: 956.4978, found 956.4958. 

 

WBC-04-16 

Des-AZM (180mg, 0.245mmol) was mixed with Hunig’s base (0.5 mL) in 5 ml DCM solution 

with stirring. Piperic acid (85mg, 0.39mmol) was mixed with EDCI (200mg, 1.29mmol) in another 

5 ml DCM solution. After 5 minutes stirring, the Piperic acid solution was added to the Des-CLM 

solution dropwisely with stirring, and DMAP (10mg, 0.082mmol) was added afterwards. The 

reaction was stirred for 24 h at room temperature with protection of Argon gas. The solution was 

washed by 100ml water and extracted by DCM (30 mL). Then, the organic layer was washed again 

by water (100 mL) and extracted with 50ml DCM. The organic layer was combined and evaporated 

by vacuum. The crude product was purified by Prep TLC with solvent condition as EtOAc: 
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MeOH=13:1. The final product was yielded in yellow foam (190mg, 0.203mmol, 83%). 1H NMR 

(700 MHz, CDCl3) δ 7.46 (dd, J = 14.6, 9.4 Hz, 1H), 7.00 (d, J = 12.1 Hz, 1H), 6.92 (d, J = 8.2 

Hz, 1H), 6.82 – 6.77 (m, 2H), 6.77 – 6.73 (m, 1H), 6.42 (d, J = 14.6 Hz, 1H), 6.00 (s, 2H), 5.32 

(d, J = 1.7 Hz, 1H), 5.05 (dd, J = 18.2, 4.7 Hz, 1H), 4.79 (td, J = 11.6, 4.1 Hz, 1H), 4.69 (d, J = 

10.2 Hz, 1H), 4.56 (dd, J = 25.0, 7.3 Hz, 1H), 4.25 (d, J = 5.7 Hz, 1H), 4.14 – 4.08 (m, 1H), 3.72 

– 3.67 (m, 2H), 3.52 – 3.48 (m, 2H), 3.41 (s, 2H), 3.37 (s, 1H), 3.08 (q, J = 9.9 Hz, 1H), 3.03 (s, 

2H), 2.95 (s, 1H), 2.80 (d, J = 14.2 Hz, 2H), 2.73 (t, J = 6.8 Hz, 1H), 2.68 – 2.65 (m, 1H), 2.55 (t, 

J = 10.5 Hz, 2H), 2.36 (d, J = 3.7 Hz, 3H), 2.08 (t, J = 11.8 Hz, 1H), 2.05 – 2.00 (m, 2H), 1.90 

(dq, J = 15.0, 7.6 Hz, 1H), 1.81 – 1.67 (m, 3H), 1.61 (dd, J = 15.1, 5.4 Hz, 1H), 1.58 – 1.47 (m, 

2H), 1.38 – 1.34 (m, 6H), 1.32 – 1.20 (m, 13H), 1.12 (d, J = 6.7 Hz, 3H), 1.09 (s, 3H), 1.04 (d, J 

= 7.3 Hz, 2H), 1.01 (d, J = 7.8 Hz, 1H), 0.93 (dt, J = 24.4, 7.3 Hz, 6H). 13C NMR (176 MHz, 

CDCl3) δ 178.5, 168.3, 148.3, 148.2, 143.5, 139.0, 130.9, 125.2, 122.7, 120.2, 108.5, 105.7, 103.7, 

101.3, 95.3, 85.2, 78.7, 78.1, 77.2, 77.0, 76.9, 74.5, 74.3, 73.5, 73.0, 71.8, 70.1, 68.4, 65.9, 65.8, 

62.2, 54.5, 53.4, 49.5, 45.0, 42.3, 41.1, 35.8, 35.0, 29.8, 27.3, 26.7, 22.0, 21.7, 21.1, 18.3, 16.2, 

15.3, 15.3, 11.2, 9.6, 7.6. HRMS (ESI) m/z Calcd. C49 H79 O15 N2 [M+H+]:  935.5475, found 

935.5466. 

 

3.4.2.3 Fumarate derivatives: 

Methyl fumarate anhydride: 

Monomethyl fumaric acid (929mg, 5.47mmol) was dissolved into DCM (25 mL) with EDCI 

(630mg, 3.28mmol). The solution was stirred for overnight with Ar protection. The solution was 

washed by water (30 mL) and extracted by DCM (25 mL) for four times to ensure all EDCI could 
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be removed. The extracted organic solution was evaporated by vacuum and the crude product was 

yielded in yellow solid (458mg, 3.52mmol, 64.4%). This product is ready to use for next reaction 

without purification. 

 

Butyl fumarate anhydride23 

Furan-2,5-dione (1.5g, 15.3mmol) was mixed with butanol (7.5 mL) and dissolved in Toluene (7.5 

mL). The solution was heated to 70°C for 24 h. Then, the intermediate product was gained after 

evaporation of toluene. The crude product was purified by Column chromatography to gain 2.26g. 

The intermediate (1.57g) was dissolved into Toluene (7.5 mL) with addition of Acetyl chloride 

(100µL, 0.28mmol) and heated to 70ºC again for 48 h. The product was gained and worked up 

with EtOAc (25 mL) and water (50 mL). The organic layer was separated and washed by water 

(30 mL) again. The organic layer was collected and dried by Na2SO4 and vacuum evaporation. The 

crude product was purified by column with solvent condition of EtOAc:hexane:MeOH=4:1:0.5. 

The final product was yield as white solid (1.40g, 8.23mmol, 53.8%) 

 

AO-02-112 

Azithromycin (500mg, 0.67mmol) was mixed with the fumaric anhydride (10 mL, 1.05mmol) in 

DCM (5 mL). The solution was stirred for overnight under Ar protection. The solution was 

washed by water (50 mL) and extracted by DCM (30 mL) twice. The organic solution was 

collected and evaporated to dryness by vacuum. The crude product was purified through 

Preparative TLC plate with solvent system DCM:MeOH=14:1. The final product was yielded as 
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pale-yellow solid (147mg, 0.017mmol, 25%). 1H NMR (700 MHz, CDCl3) δ 6.86 – 6.78 (m, 

2H), 5.29 (s, 1H), 4.96 (s, 1H), 4.84 (dd, J = 10.7, 7.5 Hz, 1H), 4.67 – 4.64 (m, 1H), 4.61 (d, J = 

7.5 Hz, 1H), 4.18 (d, J = 5.6 Hz, 1H), 4.03 – 3.98 (m, 1H), 3.79 (s, 4H), 3.67 (s, 2H), 3.67 – 3.62 

(m, 1H), 3.63 (s, 1H), 3.61 – 3.57 (m, 1H), 3.53 (s, 1H), 3.34 (s, 3H), 3.03 (t, J = 9.3 Hz, 1H), 

2.75 (s, 3H), 2.68 (d, J = 12.6 Hz, 1H), 2.48 – 2.45 (m, 2H), 2.35 – 2.25 (m, 1H), 2.23 (s, 6H), 

1.95 (s, 1H), 1.89 (s, 1H), 1.85 (ddd, J = 14.1, 7.4, 2.3 Hz, 1H), 1.76 – 1.71 (m, 1H), 1.66 (d, J = 

14.7 Hz, 1H), 1.58 (dd, J = 15.1, 5.1 Hz, 1H), 1.45 (ddt, J = 17.2, 14.4, 7.2 Hz, 1H), 1.33 (dd, J = 

12.8, 11.1 Hz, 1H), 1.32 – 1.26 (m, 6H), 1.25 (s, 3H), 1.23 (s, 2H), 1.23 – 1.18 (m, 5H), 1.11 (s, 

3H), 1.09 (d, J = 8.0 Hz, 0H), 1.02 (s, 3H), 0.92 (d, J = 7.1 Hz, 3H), 0.87 (t, J = 7.5 Hz, 3H), 

0.79 (d, J = 7.6 Hz, 3H). 13C NMR (176 MHz, CDCl3) δ 178.1, 165.6, 165.3, 163.9, 134.5, 

133.4, 132.8, 100.4, 95.2, 83.7, 78.7, 78.0, 77.4, 77.3, 77.1, 76.9, 74.4, 73.6, 73.0, 72.8, 70.5, 

68.3, 65.6, 63.6, 53.5, 52.3, 52.3, 49.4, 44.8, 42.0, 40.7, 36.6, 35.0, 30.3, 27.1, 26.5, 22.0, 21.6, 

21.6, 21.2, 18.4, 18.3, 16.3, 15.5, 11.2, 9.6. HRMS (ESI) m/z Calcd. C43 H76 O15 N2 [M+2H+]:  

431.2695, found 431.2696. 

 

AO-02-113 

Clarithromycin (500mg, 0.67mmol) was mixed with the fumaric anhydride (10 mL, 1.05mmol) 

in DCM (5 mL). The solution was stirred for overnight under Ar protection. The solution was 

washed by water (50 mL) and extracted by DCM (30 mL) twice. The organic solution was 

washed one more time with brine (30ml) and collected and evaporated to dryness by vacuum. 

The crude product was purified through Preparative TLC plate with solvent system 

DCM:MeOH=16:1. The final product was yielded as pale-yellow solid (273mg, 0.31mmol, 
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46.5%). 1H NMR (700 MHz, CDCl3) δ 6.79 (s, 2H), 5.26 (s, 1H), 4.98 (dd, J = 11.1, 2.4 Hz, 1H), 

4.88 – 4.85 (m, 1H), 4.78 (dd, J = 10.7, 7.4 Hz, 1H), 4.58 (d, J = 7.4 Hz, 1H), 3.96 – 3.90 (m, 

1H), 3.91 (s, 1H), 3.77 (s, 3H), 3.70 – 3.65 (m, 2H), 3.57 (d, J = 6.8 Hz, 1H), 3.49 (dqd, J = 12.1, 

5.9, 1.9 Hz, 1H), 3.33 (s, 3H), 3.17 (s, 1H), 3.00 (t, J = 9.1 Hz, 1H), 2.95 (s, 3H), 2.91 (tt, J = 

6.9, 3.3 Hz, 1H), 2.76 (dq, J = 9.4, 7.3 Hz, 1H), 2.68 – 2.62 (m, 1H), 2.54 – 2.47 (m, 1H), 2.33 – 

2.26 (m, 2H), 1.85 (dqd, J = 15.1, 7.5, 2.2 Hz, 1H), 1.80 – 1.70 (m, 2H), 1.64 – 1.53 (m, 2H), 

1.51 (dd, J = 14.8, 2.1 Hz, 1H), 1.40 (ddq, J = 14.4, 11.1, 7.2 Hz, 1H), 1.32 (s, 3H), 1.31 – 1.25 

(m, 1H), 1.26 – 1.22 (m, 6H), 1.19 (d, J = 6.1 Hz, 3H), 1.14 (d, J = 7.4 Hz, 3H), 1.06 (dd, J = 

17.2, 7.1 Hz, 6H), 1.05 (s, 3H), 0.77 (t, J = 7.3 Hz, 6H). 13C NMR (176 MHz, CDCl3) δ 175.7, 

165.5, 163.9, 134.1, 133.0, 100.2, 95.8, 80.5, 78.2, 78.0, 77.8, 77.3, 77.1, 76.9, 76.6, 74.1, 72.8, 

72.6, 69.1, 68.1, 65.8, 63.4, 53.5, 52.3, 50.4, 49.5, 45.1, 44.9, 40.6, 38.9, 38.6, 37.2, 34.9, 30,3, 

21.4, 21.2, 21.0, 19.8, 18.6, 17.8, 16.1, 15.9, 12.2, 10.5, 9.3. HRMS (ESI) m/z Calcd. C43 H73 O16 

N [M+H+]:  860.5002, found 860.5005. 

 

ST-01-95 

CLM (235mg, 0.321mmol) was mixed with butyl fumarate anhydride (182mg, 0.977mmol) and 

dissolved in DCM (10 mL) at room temperature for 24 h. The reaction was stopped by adding sat. 

NaHCO3 (30ml) and extracted by DCM (40 mL). Then, the organic layer was washed 2 more times 

with sat. NaHCO3 (30 mL). Subsequently, the organic layer was washed again with brine (25 mL) 

and dried by Na2SO4 and vacuum evaporation. The product was purified by column with gradience 

of solvent system DCM: MeOH=20:1 to 16:1. The product was yielded in white foam (170mg, 

0.188mmol, 58.7%).  1H NMR (700 MHz, CDCl3) δ 6.80 (s, 2H), 5.00 (dd, J = 11.0, 2.5 Hz, 1H), 
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4.88 (d, J = 5.2 Hz, 1H), 4.79 (dd, J = 10.8, 7.4 Hz, 1H), 4.59 (d, J = 7.5 Hz, 1H), 4.18 (td, J = 6.7, 

2.6 Hz, 2H), 3.98 – 3.92 (m, 2H), 3.72 – 3.68 (m, 2H), 3.59 (d, J = 6.9 Hz, 1H), 3.49 (ddt, J = 12.2, 

8.0, 3.8 Hz, 1H), 3.34 (s, 3H), 3.04 – 2.99 (m, 1H), 2.97 (s, 3H), 2.94 (d, J = 7.3 Hz, 1H), 2.81 – 

2.74 (m, 1H), 2.63 (td, J = 11.5, 4.2 Hz, 1H), 2.53 (ddt, J = 14.1, 8.9, 4.5 Hz, 1H), 2.33 (d, J = 

15.1 Hz, 1H), 2.26 (dd, J = 7.7, 4.2 Hz, 1H), 2.21 (s, 6H), 1.87 (dqd, J = 15.1, 7.5, 2.4 Hz, 1H), 

1.79 (q, J = 7.5 Hz, 1H), 1.74 – 1.69 (m, 1H), 1.63 (dt, J = 17.3, 8.8 Hz, 3H), 1.60 – 1.51 (m, 2H), 

1.46 – 1.39 (m, 2H), 1.39 – 1.36 (m, 2H), 1.28 – 1.21 (m, 8H), 1.20 (d, J = 6.1 Hz, 3H), 1.16 (d, J 

= 7.3 Hz, 3H), 1.12 – 1.08 (m, 5H), 1.07 (s, 5H), 0.93 (t, J = 7.5 Hz, 3H), 0.79 (dt, J = 7.6, 3.7 Hz, 

6H). 13C NMR (176 MHz, CDCl3) δ 175.7, 165.2, 164.0, 133.9, 133.5, 100.3, 95.9, 80.5, 78.3, 

78.1, 77.8, 77.3, 77.1, 76.9, 76.6, 74.1, 72.8, 72.7, 69.1, 68.2, 65.8, 65.2, 50.4, 49.5, 45.1, 45.0, 

40.6, 39.0, 38.7, 37.2, 34.9, 30.1, 19.8, 19.1, 18.7, 17.9, 16.1, 15.9, 13.6, 13.4, 12.3, 10.6, 9.3. 

HRMS (ESI) m/z Calcd. C46 H79 O16 N [M+H+]:  902.5472, found 902.5475. 

 

ST-01-96 

AZM (240mg, 0.321mmol) was mixed with butyl fumarate anhydride (182mg, 0.977mmol) and 

dissolved in DCM (6 mL) at room temperature for 24 h. The reaction was stopped by adding sat. 

NaHCO3 (30 mL) and extracted by DCM (40 mL). Then, the organic layer was washed 2 more 

times with sat. NaHCO3 (30 mL). Subsequently, the organic layer was washed again with brine 

(25 mL) and dried by Na2SO4 and vacuum evaporation. The product was purified by column 

with gradience of solvent system DCM: MeOH=10:1 to 8:1. The product was yielded in white 

foam (145mg, 0.16mmol, 49.8%). 1H NMR (700 MHz, CDCl3) δ 6.83 (d, J = 2.3 Hz, 2H), 5.24 

(td, J = 6.0, 3.0 Hz, 1H), 5.15 (d, J = 4.9 Hz, 1H), 4.89 – 4.82 (m, 1H), 4.68 (dd, J = 9.9, 2.8 Hz, 
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1H), 4.58 (d, J = 7.5 Hz, 1H), 4.28 (ddd, J = 13.7, 6.7, 4.4 Hz, 1H), 4.21 (dd, J = 5.9, 3.4 Hz, 

2H), 4.20 – 4.17 (m, 1H), 4.15 (ddd, J = 12.0, 6.0, 3.4 Hz, 1H), 4.06 (dq, J = 9.5, 6.2 Hz, 1H), 

3.63 (d, J = 1.3 Hz, 1H), 3.57 (d, J = 7.3 Hz, 1H), 3.53 (qd, J = 6.1, 1.9 Hz, 1H), 3.38 (s, 3H), 

3.05 (t, J = 9.3 Hz, 2H), 2.67 (qd, J = 7.5, 4.2 Hz, 3H), 2.53 (dd, J = 11.8, 2.2 Hz, 1H), 2.39 – 

2.33 (m, 1H), 2.33 – 2.30 (m, 3H), 2.24 (s, 5H), 2.17 (dd, J = 10.8, 3.9 Hz, 1H), 2.09 – 2.05 (m, 

2H), 2.05 – 1.95 (m, 3H), 1.89 (dtd, J = 15.2, 7.6, 4.9 Hz, 2H), 1.76 (ddd, J = 13.0, 4.4, 2.0 Hz, 

1H), 1.70 – 1.63 (m, 3H), 1.60 (dd, J = 10.7, 4.6 Hz, 2H), 1.49 (d, J = 2.7 Hz, 1H), 1.44 – 1.38 

(m, 3H), 1.33 (d, J = 6.2 Hz, 4H), 1.32 – 1.20 (m, 20H), 1.17 (t, J = 8.3 Hz, 5H), 1.10 – 1.01 (m, 

6H), 0.95 (t, J = 7.4 Hz, 4H), 0.92 – 0.85 (m, 8H), 0.80 (d, J = 7.6 Hz, 3H). 13C NMR (176 

MHz, CDCl3) δ 178.80, 172.9, 170.5, 170.5, 170.1, 165.3, 164.0, 134.1, 133.4, 100.5, 94.4, 83.0, 

78.1, 77.4, 76.9, 74.4, 73.1, 72.7, 70.1, 69.1, 68.3, 65.2, 63.6, 62.0, 52.3, 49.5, 45.2, 42.2, 41.9, 

40.7, 36.2, 34.1, 34.0, 31.7, 30.3, 29.2, 27.5, 26.6, 25.3, 24.8, 22.6, 20.9, 19.1, 18.2, 16.2, 14.6, 

13.7, 11.2, 9.11, 7.2. HRMS (ESI) m/z Calcd. C46 H82 O15 N2 [M+H+]:  903.5788, found 

903.5798. 

 

WBC-04-50B 

Monomethyl fumaric acid (100mg, 0.77mmol) was dissolved in DCM (10 mL) with EDCI 

(250mg, 1.3mmol). The solution was stirred for 5-10 minutes with Argon protection. Then, Des-

CLM was added to the solution and stirred at room temperature for overnight. The solution was 

washed by water (50 mL) with two times extraction of DCM (15 mL). The organic layer was 

combined and evaporated to dryness. The crude product was purified by Preparative TLC with 

solvent condition EtOAC:MeOH=20:1.5. The final product was yielded as yellow solid (81mg, 

0.096mmol, 12.5%).  1H NMR (700 MHz, CDCl3) δ 7.47 (dd, J = 65.4, 15.4 Hz, 1H), 6.77 (dd, J 
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= 68.4, 15.4 Hz, 1H), 5.08 (dd, J = 11.2, 8.6 Hz, 1H), 4.94 (t, J = 6.1 Hz, 1H), 4.59 – 4.54 (m, 1H), 

4.02 (dt, J = 8.9, 5.4 Hz, 1H), 3.98 (s, 1H), 3.90 – 3.74 (m, 6H), 3.73 – 3.66 (m, 2H), 3.42 (ddd, J 

= 17.0, 10.3, 7.2 Hz, 1H), 3.35 (d, J = 16.8 Hz, 3H), 3.21 (d, J = 5.8 Hz, 1H), 3.10 – 3.06 (m, 1H), 

3.05 (s, 5H), 3.03 – 2.97 (m, 1H), 2.95 (s, 1H), 2.92 – 2.85 (m, 1H), 2.64 – 2.60 (m, 1H), 2.60 – 

2.55 (m, 1H), 2.39 – 2.32 (m, 2H), 2.01 – 1.89 (m, 2H), 1.83 – 1.78 (m, 1H), 1.78 – 1.74 (m, 1H), 

1.69 – 1.62 (m, 2H), 1.62 – 1.58 (m, 1H), 1.56 – 1.45 (m, 2H), 1.42 (d, J = 10.9 Hz, 3H), 1.32 (dd, 

J = 11.2, 6.3 Hz, 3H), 1.28 (d, J = 10.1 Hz, 3H), 1.27 – 1.24 (m, 4H), 1.22 (dt, J = 5.7, 4.2 Hz, 

4H), 1.20 – 1.17 (m, 1H), 1.15 (dd, J = 8.0, 6.4 Hz, 9H), 1.05 (dd, J = 17.7, 7.6 Hz, 3H), 1.01 – 

0.96 (m, 2H), 0.90 (d, J = 6.8 Hz, 1H), 0.88 – 0.82 (m, 3H). 13C NMR (176 MHz, CDCl3) δ 220.8, 

175.6, 166.2, 135.7, 134.4, 131.9, 131.3, 129.8, 120.7, 103.4, 102.6, 96.2, 82.2, 81.8, 79.5, 78.5, 

78.2, 77.9, 77.0, 74.3, 74.2, 72.9, 71.1, 69.8, 69.1, 68.4, 68.0, 66.1, 65.9, 58.2, 54.5, 52.2, 52.1, 

50.7, 50.6, 49.5, 49.3, 48.6, 45.1, 45.0, 39.1, 38.8, 38.6, 37.3, 36.5, 35.5, 35.0, 34.4, 34.1, 30.1, 

29.7, 28.3, 27.3, 23.1, 21.6, 21.3, 21.1, 19.7, 18.6, 18.0, 17.8, 16.1, 16.0, 16.0, 12.4, 10.6, 9.9. 

HRMS (ESI) m/z Calcd. C42 H71 O16 N Na [M+H+]:  868.4665, found 868.4637. 

 

WBC-04-51 

Monomethyl fumaric acid (30mg, 0.23mmol) was dissolved in DCM (4 mL) with EDCI (200mg, 

1.04mmol). The solution was stirred for 5-10 minutes with Argon protection. Then, Des-AZM 

(200mg, 0.272mmol) was added to the solution and stirred at room temperature for overnight. The 

solution was washed by water (50 mL) with two times extraction of DCM (15 mL). The organic 

layer was combined and evaporated to dryness. The crude product was purified by Preparative 

TLC with solvent condition EtOAC:MeOH=20:1.5. The final product was yielded as yellow solid 
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(170mg, 0.20mmol, 87.7%). 1H NMR (700 MHz, CDCl3) δ 7.46 (dd, J = 67.1, 15.4 Hz, 1H), 6.74 

(dd, J = 72.7, 15.4 Hz, 1H), 5.01 (s, 1H), 4.74 – 4.66 (m, 2H), 4.56 (t, J = 7.7 Hz, 1H), 4.18 (dt, J 

= 27.1, 6.3 Hz, 2H), 4.06 (td, J = 8.9, 6.3 Hz, 1H), 3.89 – 3.81 (m, 1H), 3.80 (s, 2H), 3.78 (s, 2H), 

3.75 – 3.68 (m, 2H), 3.68 – 3.60 (m, 7H), 3.45 (dq, J = 13.2, 7.0 Hz, 1H), 3.36 (s, 2H), 3.32 (s, 

1H), 3.07 (dd, J = 15.2, 6.6 Hz, 1H), 3.03 (s, 2H), 2.94 (s, 2H), 2.78 (td, J = 6.9, 2.9 Hz, 1H), 2.63 

– 2.52 (m, 2H), 2.36 (s, 2H), 2.35 – 2.29 (m, 2H), 2.13 – 1.97 (m, 5H), 1.88 (tdq, J = 10.3, 7.3, 

3.4, 2.7 Hz, 1H), 1.76 – 1.64 (m, 3H), 1.59 (tt, J = 10.1, 4.7 Hz, 2H), 1.54 – 1.44 (m, 3H), 1.32 

(dd, J = 11.4, 7.3 Hz, 7H), 1.30 – 1.17 (m, 22H), 1.17 (s, 1H), 1.14 – 1.10 (m, 3H), 1.07 (d, J = 3.1 

Hz, 3H), 1.02 – 0.92 (m, 9H), 0.89 (h, J = 4.2, 3.7 Hz, 7H). 13C NMR (176 MHz, CDCl3) δ 177.0, 

176.6, 173.3, 171.0, 170.5, 170.1, 166.2, 166.1, 165.7, 135.8, 134.6, 131.1, 130.9, 129.7, 129.5, 

103.5, 102.9, 95.4, 85.5, 79.5, 78.9, 77.8, 74.3, 73.4, 71.4, 71.0, 70.0, 68.4, 66.1, 62.3, 62.3, 62.0, 

58.4, 54.64, 52.2, 52.0, 49.4, 45.1, 42.3, 40.9, 38.9, 36.5, 35.5, 34.9, 34.1, 31.9, 29.7, 28.3, 27.1, 

26.1, 25.3, 24.8, 22.6, 21.3, 20.7, 19.7, 18.9, 18.2, 17.8, 16.2, 15.3, 14.1, 14.1, 13.7, 11.2, 9.9, 9.7, 

7.6. HRMS (ESI) m/z Calcd. C42 H75 O15 N2 [M+H+]:  847.5162, found 847.5139. 

 

WBC-04-110 

Monobutyl fumaric acid (100mg, 0.58mmol) was dissolved in DCM (5ml) with EDCI (400mg, 

2.1mmol). The solution was stirred for 5-10 minutes with Argon protection. Then, Des-CLM 

(180mg, 0.24mmol) was added to the solution and stirred at room temperature for overnight. The 

solution was washed by water (100 mL) with two times extraction of DCM (50 mL). The organic 

layer was combined and evaporated to dryness. The crude product was purified by Preparative 

TLC with solvent condition EtOAC:hexane=7:3. The final product was yielded as white solid 

(140mg, 0.167mmol, 69.3%).  1H NMR (700 MHz, CDCl3) δ 7.44 (dd, J = 71.3, 15.4 Hz, 1H), 



287 

 

6.75 (dd, J = 65.1, 15.4 Hz, 1H), 5.07 (ddd, J = 11.2, 5.9, 2.4 Hz, 1H), 4.93 (t, J = 4.6 Hz, 1H), 

4.69 (ddd, J = 12.5, 10.8, 4.4 Hz, 1H), 4.55 (dd, J = 9.9, 7.2 Hz, 1H), 4.19 (dt, J = 19.1, 6.7 Hz, 

2H), 4.01 (dt, J = 8.9, 5.7 Hz, 1H), 3.96 (s, 1H), 3.77 – 3.73 (m, 2H), 3.73 – 3.64 (m, 2H), 3.41 

(dddd, J = 15.0, 11.2, 7.4, 4.6 Hz, 1H), 3.35 (s, 2H), 3.32 (s, 1H), 3.19 (d, J = 5.5 Hz, 1H), 3.10 – 

3.00 (m, 5H), 2.99 (s, 1H), 2.94 (s, 1H), 2.87 (pd, J = 7.2, 3.5 Hz, 1H), 2.63 – 2.54 (m, 1H), 2.44 

– 2.40 (m, 1H), 2.38 – 2.29 (m, 1H), 2.00 – 1.88 (m, 2H), 1.82 – 1.75 (m, 1H), 1.75 – 1.68 (m, 

2H), 1.68 – 1.63 (m, 3H), 1.60 (ddd, J = 15.1, 4.8, 1.9 Hz, 2H), 1.55 – 1.44 (m, 2H), 1.41 (d, J = 

11.4 Hz, 4H), 1.34 – 1.19 (m, 12H), 1.17 – 1.11 (m, 7H), 1.04 (dd, J = 18.5, 7.5 Hz, 3H), 0.95 

(td, J = 7.4, 3.9 Hz, 3H), 0.84 (td, J = 7.4, 1.7 Hz, 3H). 13C NMR (176 MHz, CDCl3) δ 220.7, 

175.6, 166.2, 165.8, 135.5, 134.1, 131.8, 130.3, 103.5, 102.6, 96.0, 82.2, 81.8, 78.5, 78.1 76.7, 

74.2, 72.9, 71.7, 71.2, 69.1, 68.4, 68.0, 66.0, 65.0, 58.2, 54.5, 50.6, 49.4, 45.0, 39.2, 38.6, 37.3, 

36.5, 35.5, 35.0, 30.6, 30.1, 21.5, 21.0, 19.8, 19.1, 18.6, 18.6, 18.0, 16.0, 13.7, 12.4, 10.6, 9.9, 

9.6. HRMS (ESI) m/z Calcd. C45 H77 O16 N [M+H+]:  888.5315, found 888.5337. 

 

WBC-04-111 

Monobutyl fumaric acid (100mg, 0.58mmol) was dissolved in DCM (5 mL) with EDCI (400mg, 

2.1mmol). The solution was stirred for 5-10 minutes with Argon protection. Then, Des-AZM 

(180mg, 0.24mmol) and DMAP (45mg, 0.36mmol) was added to the solution and stirred at room 

temperature for overnight. The solution was washed by water (100 mL) with two times extraction 

of DCM (50 mL). The organic layer was combined and evaporated to dryness. The crude product 

was purified by Preparative TLC with solvent condition EtOAC:MeOH=10:1. The final product 

was yielded as white solid (65mg, 0.075mmol, 31.3%).  1H NMR (700 MHz, CDCl3) δ 7.45 (dd, 
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J = 78.0, 15.4 Hz, 1H), 6.74 (dd, J = 74.1, 15.4 Hz, 1H), 5.26 (dp, J = 10.1, 5.2 Hz, 1H), 5.13 (t, J 

= 5.4 Hz, 1H), 4.85 (p, J = 6.3 Hz, 1H), 4.72 (td, J = 11.9, 4.5 Hz, 1H), 4.29 (td, J = 6.9, 4.6 Hz, 

1H), 4.23 – 4.13 (m, 4H), 4.07 (ddd, J = 13.3, 9.4, 6.4 Hz, 1H), 3.68 (s, 1H), 3.64 (t, J = 6.1 Hz, 

1H), 3.45 (tt, J = 12.6, 6.5 Hz, 1H), 3.39 (s, 1H), 3.34 (s, 1H), 3.07 (t, J = 8.9 Hz, 1H), 3.03 (s, 

2H), 2.94 (s, 1H), 2.77 – 2.69 (m, 2H), 2.59 (d, J = 13.3 Hz, 1H), 2.39 – 2.26 (m, 5H), 2.10 – 2.05 

(m, 4H), 2.04 (s, 2H), 1.99 (p, J = 8.3 Hz, 1H), 1.90 (dtt, J = 11.9, 7.6, 3.9 Hz, 1H), 1.74 – 1.63 

(m, 4H), 1.60 (td, J = 9.6, 9.0, 4.5 Hz, 2H), 1.51 (q, J = 8.0, 6.8 Hz, 3H), 1.40 (tt, J = 7.5, 3.9 Hz, 

2H), 1.36 – 1.33 (m, 5H), 1.26 (d, J = 7.5 Hz, 13H), 1.20 (d, J = 7.5 Hz, 3H), 1.13 (d, J = 7.1 Hz, 

2H), 1.09 (s, 2H), 1.01 – 0.92 (m, 8H), 0.88 (q, J = 7.4 Hz, 5H). 13C NMR (176 MHz, CDCl3) δ 

173.35, 173.0, 170.5, 170.1, 166.3, 165.8, 135.8, 134.3, 131.6, 130.2, 103.2, 102.7, 94.8, 84.5, 

77.9, 77.5, 77.2, 76.9, 74.5, 74.2, 73.6, 73.1, 71.3, 70.9, 69.1, 68.7, 68.4, 68.1, 65.9, 64.9, 62.30, 

62.0, 58.4, 54.6, 49.5, 45.3, 41.9, 36.3, 35.5, 34.7, 34.0, 31.7, 30.6, 29.5, 29.0, 27.3, 26.6, 25.3, 

22.6, 22.1, 21.6, 21.3, 20.7, 18.9, 18.1, 16.3, 14.7, 14.1, 13.7, 11.2, 9.7, 9.5. HRMS (ESI) m/z 

Calcd. C45 H80 N2 O15 [M+H+]:  889.5631, found 889.5624. 

 

3.4.3 Cell culture 

The cell culture and viability assay protocol were described in our previous work. In brief, VERO, 

A549, MDA-MB-231 cell lines were maintained in Dulbecco’s Modified Eagle Medium (DMEM) 

(Corning, 10-017-CV), supplemented with 10% fetal bovine serum (FBS) (Corning, 35-010-CV). 

MCF-7 cell line was maintained in Dulbecco’s Modified Eagle Medium (DMEM) (Quality 

Biological, 112-132-101). MRC-5 and Hep-G2 cells were cultured in phenol red free Minimum 
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Essential Medium (MEM) (Corning, 17-305-CV), supplemented with 10% fetal bovine serum 

(FBS). 

 

3.4.4 MTS assay 

Cells were seeded into a 96-well plate (2000 counts/100uL) for 24 h prior to treatment and then 

treated with various drug concentrations for 72 h. All drugs were dissolved in medium via DMSO 

solution with DMSO concentration maintained at 1%. The effect of compounds on cell viability 

was measured using the MTS assay (CellTiter 96 Aqueous One Solution and CellTiter 96 Non-

Radioactive Cell Proliferation Assays, Promega, Madison, WI) as described by the manufacturer. 

IC50s were determined using Prism GraphPad 8. 

 

3.4.5 Western blot 

The Western blot protocol was described in our previous work.28 In brief, MRC-5 cells were 

seeded into 6-well plate at 1*106/well in MEM for 24 h after which the cells were starved in serum-

free MEM for another 24 h. For STAT3 experiment, MDA-MB-231 cells (1*106/well) were seeded 

to the 6-well plate in DMEM with 24 h starvation. Various concentrations of selected candidates 

solutions in DMSO were added to the cell culture such that the final DMSO level is 0.1%. For 

anti-fibrosis experiment, the cells were stimulated with 50ng/well of TGF-β cytokine in MEM 

(VWR 10208-658). Cells were treated for 24 h, washed with cold PBS, and lysed with RIPA buffer 

(120 L) (VWR, VWRVN653-100ML) buffer containing phosphatase inhibitor (Fisher Thermo, 

A32957) and protease inhibitor (Fisher Thermo, A32955). The cell lysates were scraped, collected, 
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and vortexed for 15s followed by sonication for 60s. The lysate was then centrifuged at 14000x 

rpm for 10 min and the supernatants were collected. The total protein concentration was 

determined using a BCA protein assay kit (BioVision, K813-2500). Based on the results from the 

BSA assay, the lysates were diluted to make equal protein concentration and 20-40 g of each 

lysate was loaded to each well of the TGX MIDI 4-20% gel (Biorad, cat. 5671093) and ran at 

150V for 70 min. The gel was then transferred on to the Turbo PDVF membrane (Biorad, 1704273) 

and after blocking with 5% BSA for 1-2 h, the membrane was incubated overnight with primary 

antibodies Anti-Col1A1(84336), anti-p-STAT3 (9145), anti-T-STAT3 (79D7), anti-HO-1 (5853S) 

were purchased from Cell Signal Technology®; Anti-α-SMA (ab5694) were from Abcam®; anti-

GAPDH (sc-47724), Bcl-2 (sc-7382), Bcl-xL (sc-8392) were purchased from Santa Cruz®. The 

second day, the membrane was washed with TBST for 3x5 min; secondary antibody (LiCOR) was 

added, and the membrane was incubated with agitation for 1 h. After washing with TBS-T 3x5 

mins, bands were quantified using Odyssey CLx Image system. Quantification was evaluated by 

using Prism GraphPad 8. 
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APC3NL (1H NMR) 
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AO-02-41 (1H NMR) 
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AO-02-41 (13C NMR) 
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AO-02-45 (1H NMR) 
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AO-02-45 (13C NMR) 
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AO-02-47 (1H NMR) 
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AO-02-47 (13C NMR) 
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AO-02-48 (1H NMR) 
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AO-02-48 (13C NMR) 
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AO-02-11 (1H NMR) 
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AO-02-11 (13C NMR) 
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WBC-04-14 (1H NMR) 
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WBC-04-14 (13C NMR) 

 

 

 

 

 

 

 

 



319 

 

WBC-04-15 (1H NMR) 
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WBC-04-15 (13C NMR)
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WBC-04-16 (1H NMR) 
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WBC-04-16 (13C NMR) 
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ST-01-95 (1H NMR) 
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ST-01-95 (13C NMR) 
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ST-01-96 (1H NMR) 
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ST-01-96 (13C NMR) 
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WBC-04-50B (1H NMR) 
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WBC-04-50B (13C NMR) 
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WBC-04-51 (1H NMR) 

 

 

 

 

 

 

 

 



330 

 

WBC-04-51 (13C NMR) 
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WBC-04-110 (1H NMR) 
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WBC-04-110 (13C NMR) 
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WBC-04-111 (1H NMR) 
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WBC-04-111 (13C NMR) 
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Figure 3S.1. Both ALA and AO-02-41 do not change Cell cycle progression. The cells were treated 

with DMSO or drugs for 24h before cell cycle analysis. (A). The DMSO group; (B). The ALA 

60 (C) AO-02-41  (D). AO-02-41  
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Abstract:  

Clarithromycin (CLM) is an antibiotic in clinical use for the treatment of respiratory tract bacterial 

infections. CLM derives its antibacterial effects from selective inhibition of prokaryotic ribosome. 

We have discovered that CLM undergoes tandem dehydration- cyclization-dehydration reactions, 

involving C-11 and C-12 hydroxyl groups and the C-9 keto moiety, to furnish a dihydrofuranyl 

macrolide AO-02-63. We elucidated the structure of AO-02-63 using mass spectroscopy, NMR, 

and X-ray crystallography. Using a combination cell free protein translation and pull-down assays, 

we found that this novel macrolide inhibits the activities of prokaryotic and eukaryotic ribosomes 

and possibly disrupts the activity of hnRNPs. We observed that AO-02-63 inhibits the proliferation 

of all cell lines in the NCI-60 panel with low micromolar IC50s. The broad anti-cancer activity of 

AO-02-63 could be due to its inhibition of protein synthesis and mRNA processing, two processes 

that are vital for the survival of cells. Furthermore, AO-02-63 elicits anti-inflammatory activity 

similar to CLM, although with a 10-fold potency enhancement. This work unveils yet another layer 

of the rich biological activities of macrolide antibiotics.  
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4.1 Introduction: 

Clarithromycin is a synthetic erythromycin derivative with broad antibacterial activities.  

Erythromycin (ERM), azithromycin (AZM) and clarithromycin (CLM) are a class of macrolide 

antibiotics (Fig. 4.1) which have been in use for several years for the treatment of respiratory tract 

infections. Macrolides derive their antibacterial activities from the inhibition of prokaryotic 

translation by blocking the nascent peptide exit tunnel.1-3 Over the past 20 years, macrolides have 

also been shown to have other non-antibiotic properties.4, 5 For example, they have demonstrated 

anti-inflammatory and immunomodulatory effects that make them promising candidates for the 

management of diseases of chronic airway inflammation.4 AZM and CLM have shown improved 

pulmonary function, and decrease morbidity and mortality in patients with diffuse panbronchiolitis 

(DPB).5  

CLM, like AZM and ERM, consists of a highly hydroxylated macrolactone ring and two 

monosaccharide (desosamine and cladinose) moieties. The contribution of these moieties to the 

overall prokaryotic ribosome selectively has been extensively investigated using biochemical and 

structural biology tools. Prior X-ray structures have revealed few insights that may explain the 

contributions of each of these moieties to the preferential binding of macrolides to the prokaryotic 

ribosomes exit tunnel.  What is clear so far is that a narrow variation in the size of the macrolactone 

ring and removal of the cladinose ring, followed by esterification or the oxidation of the unmasked 

secondary hydroxyl group to ketone, are compatible with selective prokaryotic translation 

inhibition.6,7 However, the desosamine moiety is less tolerant of most modifications. Prior 

structural studies have revealed that the 2’-OH of desosamine invariantly forms H-bond with N1 

of A2058 (E.coli numbering).1, 2, 8 A recent study has revealed new insights about the role of water-

mediated H-bond in the crucial interactions of the desosamine moiety with A2058 and the 
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phosphate backbone of G2505.9 Given the indispensability of the desosamine group to binding, 

most efforts at optimization of macrolides have been on the macrolactone moiety of macrolides. 

These have resulted in clinically useful synthetic macrolides with improved pharmacokinetic 

profiles (CLM, AZM, Roxithromycin and Dirithromycin), broader spectrum ketolides showing 

enhanced potency against some macrolide-resistant bacteria (Telithromycin) and other more 

potent macrolides in preclinical investigations.10-17  

 

Figure 4.1. Structures of representative clinically useful macrolide antibiotics, new macrolide 

(AO-02-63) and EM201. 

 

CLM was inspired by the need to improve the acid stability of ERM. Under mild acid conditions, 

ERM undergoes degradation reactions due to the reactivity of its C-6 and C-12 hydroxyl groups. 
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One of the well-characterized products of CLM acid instability is EM201, a dihydrofuran 

compound that results from a dehydrative-condensation reaction between its C-6 hydroxyl and the 

C-9 keto groups.18, 19 Despite the fact that the desosamine moiety is unaffected, EM201 is devoid 

of antibacterial activity.18 Methylation of the C-6 hydroxyl precluded EM201 formation from ERM 

and also attenuated the reactivity of C-12 hydroxyl group, as the resulting CLM is significantly 

more acid stable. It is not clear why the C-12 hydroxyl group of CLM is not as reactive under the 

conditions the caused ERM degradation. However, it is known that several functional groups on 

macrolides display unique reactivity, largely due to the steric effect of their macrolactone moiety. 

We have discovered that CLM undergoes dehydrative cyclization, mediated by its C-12 hydroxyl 

group, when treated with isoniazid under mildly acidic condition, leading to a dihydrofuranyl 

compound AO-02-63 (Fig. 4.1). We found that, unlike EM201, AO-02-63 retained then 

prokaryotic translation inhibition activity of ERM/CLM. Interestingly, AO-02-63 inhibit 

eukaryotic ribosome translation with micromolar IC50 (28 M) while CLM lacks eukaryotic 

translation inhibitory activities at concentrations >250 M.  More importantly, AO-02-63 inhibits 

the proliferation of all cell lines in the NCI-60 panel with low micromolar IC50.  CLM also has 

anti-inflammatory anti-fibrosis effects.20,21, 22 We observed that the anti-inflammatory effect AO-

02-63 is enhanced10-fold relative to CLM. Collectively, this data suggests that AO-02-63 is a 

promising anti-cancer, anti-inflammatory agent that may partly derive its bioactivity from the 

inhibition of eukaryotic ribosome translation.   

 

4.2 Result and Discussion: 

4.2.1 Chemistry 
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EM201 is easily formed from ERM exposure to glacial acetic acid under ambient conditions.23 

However, we found that CLM is recalcitrant to ethanolic acetic acid even under refluxing condition 

for an extended period. We exposed CLM to basic conditions – ethanolic solution of pyridine or 

ethanolic solution of isonicotinic acid hydrazide (isoniazid) – and found it to be stable to these 

reagents. As a result, none of these conditions could convert CLM into new compounds. However, 

interestingly, we found that co-treatment of isoniazid and acetic acid in DMF or ethanol at 100-

120oC for 72 h resulted in a new UV active product (Scheme 1) which was isolated by column 

chromatography. The structure of the new product was determined, by selective cladinose 

hydrolysis reaction to furnish DC-63 (scheme 4.1), 1H- and 13C-NMR, and high-resolution mass 

spectrometry, to be that of dihydrofuranyl compound AO-02-63 (Scheme 4.1). We also found that 

N-desmethyl CLM (DM-CLM) could be similarly converted to the desmethyl analog of AO-02-

63 (DM-63). Subsequently, the identity of AO-02-63 was confirmed using single crystal X-ray 

diffraction analysis (Figure 4.2). Evidently, CLM undergoes tandem dehydration- cyclization-

dehydration reactions similar to those proposed in Figure 4.3 to furnish AO-02-63. The first 

dehydration reaction will be facilitated by base deprotonation of the alpha proton at C10 which 

result in the acid catalyzed loss of the C-11 hydroxyl group as water. The nucleophilic attack of 

the C-12 hydroxyl at C-9 keto group should result in a hemiketal that undergoes the second 

dehydration, leading to AO-02-63.  

If the mechanism we proposed in Figure 4.3 holds, we postulated that CLM should similarly react 

with reagents that promote dehydration of secondary alcohols. We observed that Burgess reagent, 

a strong dehydration reagent; more facilely facilitate the conversion of CLM to AO-02-63 in 

similar yield with a shorter time.  
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Subsequently, we synthesized alkyne analog of AO-02-63 (AC4-63) and the corresponding CLM 

analog (AC4-CLM) for pulldown experiment in our subsequent target validation studies (described 

later).  

 

Scheme 4.1. Synthesis of AO-02-63 and its analogs. 
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Figure 4.2. X-ray structure of the AO-02-63  
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Figure 4.3. Proposed mechanism of the conversion of CLM to AO-02-63 by Isoniazid with 1V/V% 

Acetic acid. 

 

For the pulldown experiments, we synthesized a Pegylated-azido biotin (Azido-biotin) through 

EDCI coupling biotin and 1-azido-PEG (n=7)-amine as described in Scheme 4.2. The Azido-biotin 

was clicked with AC4-63 or AC4-CLM, via Cu(I) promoted Huisgen cyclization reaction to 

furnish the biotinylated derivatives of AO-02-63 and CLM (Scheme 4.3) then we subsequently 

used for the pulldown experiments. 
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Scheme 4.1. Synthesis of Azido-biotin. 
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Scheme 4.2. Synthesis of biotinylated derivatives of AO-02-63 and CLM. 

 

4.2.2 Effects of AO-02-63 on the prokaryotic and eukaryotic protein translation  

The dehydrative-condensation reaction between its C-6 hydroxyl and the C-9 keto groups of CLM, 

which resulted in EM201, abolished the antibacterial activity. To investigate if AO-02-63 will be 

befallen with a similar fate, we investigated its effects on the translation activities of prokaryotic 

and eukaryotic ribosomes. We used CLM and Puromycin, which inhibits the prokaryotic and 

eukaryotic ribosomes, as positive controls. We observed that AO-02-63 potently inhibits the 

prokaryotic ribosome activity with IC50=2.87 µM which is about 4-fold weaker than that of CLM 

(IC50=0.74 µM) (Fig. 4.4). This suggests that AO-02-63, unlike EM201, could retain the anti-

bacterial activity of the parent CLM. We confirmed that AO-02-63 has antibacterial activity 

against B. subtilis, a non-lethal bacterial strain that is susceptible to CLM as well (Fig. 4.5). 

Interestingly, AO-02-63 also inhibits the eukaryotic ribosome activity with IC50=28.4 µM, quite 

in contrast to CLM, which lacks eukaryotic translation inhibitory activities at concentrations >500 

M. The control compound Puromycin inhibits eukaryotic ribosome activity with nanomolar IC50 

(Fig. 4.4A). This result suggests that AO-02-63 could inhibit the proliferation of transformed 

eukaryotic cells, akin to other eukaryotic ribosome inhibitors, including the control compound 

Puromycin (discussed later). 

To elucidate the potential intracellular targets of AO-02-63, we used Biotin-63 and Biotin-CLM 

for pulldown experiments on Hep-G2 cell lysate. In brief, Hep-G2 cells were lysed using ultrasonic 

probe and incubated with DMSO, Biotin-63, or Biotin-CLM with or without competition with AO-
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02-63 or CLM, respectively. The mixture was incubated with Avidin magnetic beads and the 

pulled beads were washed by TBS buffer, and eluted by the elution buffer (Thermo Scientific 

21028). The eluate proteins were neutralized by NaOH and denatured by RIPA buffer (VWR 

97063-270), ran through gel electrophoresis and silver stained before mass spectroscopy analysis. 

Silver staining revealed that the protein bands pulled-out by Biotin-63 and Biotin-CLM are similar 

but not identical in size (Figure S4.1). The background signals are different from the bands from 

the experiments with Biotin-63 and Biotin-CLM. Moreover, the competition experiments with 

unmodified AO-02-63 and CLM eliminated almost all bands. Collectively, these data suggest that 

most of the pulled proteins are unlikely due to non-selective adsorption to the Avidin beads.  
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Figure 4.4. Translation inhibition of AO-02-63 and control inhibitors. (A). Eukaryotic translation 

inhibition of AO-02-63, Puromycin, and CLM. (B) Prokaryotic translation inhibition on CLM and 

AO-02-63. Inhibition was calculated through luminescence. Quantifications and % of 

luminescence were obtained from independent duplicate experimental data. 

 

B 
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Figure 4.5. AO-02-63 inhibits the growth of B. subtilis in disk diffusion test (disk diffusion assay).  

 

Subsequently, using mass spectrometry on the pulled proteins and fragmentation data analysis 

based on Peptide Spectral Matches (PSMs) with human protein database, we found that AO-02-

63 pulled-down several eukaryotic ribosomal proteins (40s and 60s ribosomal proteins) that are 

unique compare to Bitoin-CLM group and Biotin only group (Table 4.1). We set the lower 

boundary of PSM score as 20 because it would be more informative to compare proteins in higher 

PSM score. In Table 4.2, we listed all the of ribosomal proteins that Biotin-63 group pulled down 

with their PSM scores and sequence. The other major translational protein pulled down by AO-

02-63 is the heterogeneous nuclear ribonucleoproteins (hnRNP), a series of RNA-binding protein 

which plays critical roles in RNA metabolism including RNA splicing, transcription, mRNA 
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stability and translation initiation.24 The expression of hnRNPs are upregulated in several cancers 

such as A2/B1 and knockdown of hnRNPs in MDA-MB-231 cells decreases cell viability.25, 26 

Additionally, disruption of the hnRNP U-actin complex, by a noncoding RNA H19, results in the 

inhibition of RNA Pol II-mediated transcription.27 The inhibition of the eukaryotic ribosome 

activity and the possibility of the disruption of the function of hnRNPs strongly suggests that AO-

02-63 could have broad anticancer activity.  

Table 4.1. Major proteins pulled down by Biotin-63, Biotin-CLM, and Biotin only ranked by mass 

spectroscopy and human protein database analysis. Note that the unrelated pollution including 

keratin, actin, tubulin, myosin or cellular skeletal proteins were removed in all groups in the table. 

Also, the common proteins that appeared in both Biotin-63 group and Biotin-CLM group were 

also removed. The ranking is listed from the highest PSM score to 20. 

PSM # Biotin-63 PSM # Biotin-CLM PSM # Biotin only 

110 40S ribosomal protein S3  202  Alpha-1,4 glucan 

phosphorylase   

23 Protein S100-

A8  

58 Trifunctional enzyme 

subunit beta, mitochondrial  

172  MYH11 protein  22 Protein S100-

A9  

51 Nucleolin  131  Filamin-A      

51 Phosphoenolpyruvate 

carboxykinase [GTP], 

mitochondrial  

122  Nebulin    

42 40S ribosomal protein S18  120  Tropomyosin alpha-1 

chain   

  

39 60 kDa heat shock protein, 

mitochondrial  

116  Creatine kinase M-type     

39 Elongation factor Tu, 

mitochondrial  

116  Filamin C     

36 Heterogeneous nuclear 

ribonucleoproteins C1/C2  

110  Glyceraldehyde-3-

phosphate dehydrogenase    

  

35 Aldehyde dehydrogenase X, 

mitochondrial  

107 Sarcoplasmic/endoplasmic 

reticulum calcium ATPase 

1  

  

35 40S ribosomal protein S19  94  Tropomyosin 1 (Alpha), 

isoform CRA_f 

  

29 40S ribosomal protein S3a  91  Beta-enolase     

28 60S ribosomal protein L23a  84  Desmin     

28 40S ribosomal protein S25  83  Fructose-bisphosphate 

aldolase   

  

25 T-complex protein 1 subunit 

eta  

77  Tropomyosin beta chain     
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Table 4.1 continued 

25 40S ribosomal protein S4 69  MYBPC1 protein   

24 Heterogeneous nuclear 

ribonucleoprotein U  

69  Nebulin    

24 60S ribosomal protein L7a 69  Pyruvate kinase PKM    

23 Galectin-3-binding protein  62  ATP-dependent 6-

phosphofructokinase  

  

23 40S ribosomal protein S10  56  Tropomyosin alpha-3 

chain 

  

23 60S ribosomal protein L13  55  Alpha-enolase    

22 60S ribosomal protein L36  55  Fructose-bisphosphate 

aldolase A 

  

  54  Troponin T3, fast skeletal 

type  

  

  53  Pyruvate kinase     

  51  Glycogen phosphorylase, 

brain form    

  

  50  Glucose-6-phosphate 

isomerase  

  

  50  Serum albumin     

  48  Phosphoglucomutase-1    

  47  Heat shock cognate 71 

kDa protein  

  

  42  Phosphoglycerate kinase 

1   

  

  42  Calcium-transporting 

ATPase   

  

  39  POTE ankyrin domain 

family member I    

  

  38  Transgelin      

  36  Myoglobin     

  32  Calsequestrin    

  32  Calponin-1    

  32  Alpha-crystallin B chain    

  32  Troponin I2, fast skeletal 

type  

  

  32  L-lactate dehydrogenase 

A chain 

  

  31  Carbonic anhydrase 3    

  30  Gamma-enolase      

  29  Triosephosphate 

isomerase 1   

  

  28  Malate dehydrogenase, 

mitochondrial   

  

  28  Heat shock 70 kDa 

protein 1B  
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Table 4.1 Continued 

  27  Talin-1     

  27  Myomesin-1     

  27  Phosphoglycerate mutase   

  26  Vimentin    

  26  Hemoglobin subunit beta     

  24  Plectin    

  24  Heat shock protein beta-1     

  23  Creatine kinase S-type, 

mitochondrial  

  

  23  Hemoglobin subunit 

alpha  

  

  22  Cysteine and glycine-rich 

protein 1  

  

  21  Aconitate hydratase, 

mitochondrial 

  

  21  Creatine kinase B-type     

  21  14-3-3 protein zeta/delta      

  20  14-3-3 protein epsilon    

  20  Glyceraldehyde-3-

phosphate dehydrogenase, 

testis-specific 

  

 

Table 4. 2 All ribosomal proteins pulled down by Biotin-63 based on mass spectroscopy and 

human protein database analysis. The first ranking is 40s ribosomal proteins, the second ranking 

is 60s ribosomal proteins, and the third ranking is hnRNPs.                                    

PSM # 
Biotin-63 

Protein 

Accession code 

Peptide sequence hit 

40s Ribosomal proteins   

110 40S ribosomal protein S3 Q3T169 ELAEDGYSGVEVR 

42 40S ribosomal protein S18 Q3T0R1 AGELTEDEVER 

35 40S ribosomal protein S19 P39019 ALAAFLK 

29 40S ribosomal protein S3a P61247 NCLTNFHGMDLTR 

28 40S ribosomal protein S25 P62851 LNNLVLFDK 

25 40S ribosomal protein S4 F1MJH2 VNDTIQIDLETGK 

23 40S ribosomal protein S10 F6U211 DYLHLPPEIVPATLR 

20 40S ribosomal protein S13 Q56JX8 GLTPSQIGVILR 

17 40S ribosomal protein S8 Q5E958 LTPEEEEILNK 

17 40S ribosomal protein S11 P62280 ILSGVVTK 

15 40S ribosomal protein S5 Q5E988 WSTDDVQINDISLQDYIAVK 

13 40S ribosomal protein S6 E1BG13 DIPGLTDTTVPR 

12 40S ribosomal protein S24 E7ETK0 TTPDVIFVFGFR 

11 40S ribosomal protein S7 P62081 VETFSGVYK 
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Table 4.2 continued 

10 Ubiquitin-40S ribosomal protein S27a P62979 ECPSDECGAGVFMASHFDR 

9 40S ribosomal protein S20 Q3ZBH8 VCADLIR 

9 40S ribosomal protein S27 H0YMV8 LVQSPNSYFMDVK 

8 40S ribosomal protein S16 Q3T0X6 GPLQSVQVFGR 

8 40S ribosomal protein S30 A0A3Q1LRQ8 IIAVSFPSTANEENFR 

5 40S ribosomal protein S9 B5MCT8 LFEGNALLR 

5 40S ribosomal protein S29 A0A087WTT6 YGLNMCR 

4 40S ribosomal protein S15 K7EM56 EAPPMEKPEVVK 

2 40S ribosomal protein S26 F1MB60 NIVEAAAVR 

60s Ribosomal proteins   

28 60S ribosomal protein L23a J3KTJ3 ECADLWPR 

24 60S ribosomal protein L7a Q2TBQ5 AGVNTVTTLVENK 

23 60S ribosomal protein L13 F1MK30 VATWFNQPAR 

22 60S ribosomal protein L36 J3QSB5 YPMAVGLNK 

19 60S ribosomal protein L3 P39872 HGSLGFLPR 

18 60S ribosomal protein L24 C9JXB8 VELCSFSGYK 

18 60S ribosomal protein L27 P61353 VYNYNHLMPTR 

18 60S ribosomal protein L27a E1BE42 TGAAPIIDVVR 

17 60S ribosomal protein L6 Q58DQ3 VLATVTKPVGGDK 

12 60S ribosomal protein L18a M0R117 DLTTAGAVTQCYR 

11 60S ribosomal protein L4 P36578 QPYAVSELAGHQTSAESWGTGR 

11 60S ribosomal protein L13a P40429 YQAVTATLEEK 

11 60S ribosomal protein L12 P30050 IGPLGLSPK 

11 60S ribosomal protein L26 P61257 HFNAPSHIR 

10 60S ribosomal protein L11 P62913 YDGIILPGK 

9 60S ribosomal protein L23 P62829 NLYIISVK 

8 60S ribosomal protein L14 E7EPB3 LVAIVDVIDQNR 

7 60S ribosomal protein L28 H0YMF4 NCSSFLIK 

7 60S ribosomal protein L19 P84098 LLADQAEAR 

6 60S ribosomal protein L9 P32969 KFLDGIYVSEK 

6 60S ribosomal protein L35a P18077 DETEFYLGK 

6 60S ribosomal protein L7 P18124 IALTDNALIAR 

6 60S ribosomal protein L21 P46778 KGDIVDIK 

5 60S ribosomal protein L29 P47914 LAYIAHPK 

5 60S ribosomal protein L34 P49207 IVYLYTK 

5 60S ribosomal protein L36a Q3SZ59 HFELGGDK 

4 60S ribosomal protein L10 F8W7C6 GAFGKPQGTVAR 

4 60S ribosomal protein L32 F8W727 GQILMPNIGYGSNK 

4 60S ribosomal protein L30 Q3T0D5 VCTLAIIDPGDSDIIR 

4 60S ribosomal protein L37a Q3MIC0 TVAGGAWTYNTTSAVTVK 

3 60S ribosomal protein L35 Q56JY1 DETEFYLGK 

2 60S ribosomal protein L38 J3QL01 YLYTLVITDK 

Heterogeneous nuclear ribonucleoproteins   

36 Heterogeneous nuclear ribonucleoproteins C1/C2 G3V4M8 SDVEAIFSK 

24 Heterogeneous nuclear ribonucleoprotein U Q00839 FIEIAAR 

19 Heterogeneous nuclear ribonucleoprotein A0 F6RSR1 LFVGGLK 

15 Heterogeneous nuclear ribonucleoproteins A2/B1 P22626 LFVGGIK 

1 Heterogeneous nuclear ribonucleoproteins K Q3T0D0 IITITGTQDQIQNAQYLLQNSVK 

1 Heterogeneous nuclear ribonucleoproteins M P52272 AAGVEAAAEVAATEIK 
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4.2.3 Anti-cancer effects of AO-02-63 

Encouraged by the eukaryotic ribosome inhibition and the possibility of the disruption of the 

function of hnRNPs by AO-02-63, we tested its effects and those of its analogs on the growth of 

selected cancer cell lines: breast (MCF-7 and MDA-MB-231), lung (A549), and liver (Hep-G2). 

cancer cell lines. Healthy monkey kidney epithelial cell line (VERO) was used as a control. 

Excitingly, we observed that AO-02-63 and its desmethyl analog (DM-63) potently inhibit the 

proliferation of all the cell lines tested. Further alteration to AO-02-63, including alkylation on the 

desosamine sugar (AC4-63) and cladinose sugar removal (DC-63 and DC-AC4-63), severely 

attenuated cell cytotoxicity (Table 4.2).  As expected, CLM is minimally toxic to all tested cell 

lines.  

To obtain further information about the broadness of the cytotoxic activity of AO-02-63, we 

screened it in the NCI-60 panel. In a 5-dose IC50 study, we observed that AO-02-63 inhibits the 

proliferation of all cell lines in the NCI-60 panel with low micromolar IC50 (Fig. 4.5). The broad 

anti-cancer activity of AO-02-63 could be due to its inhibition of protein synthesis and mRNA 

processing, two processes that are vital for the survival of cells. 

 

 

 

 



355 

 

Table 4. 3.  Cell growth inhibitory activity (IC50 in M) of AO-02-63 in selected cancer and healthy 

cell lines. NI: No inhibition up to 500 µM. NT: not tested. 

 Hep-G2 

(µM) 

A549 

(µM) 

MDA-MB-231 

(µM) 

MCF-7 

(µM) 

VERO 

(µM) 

AO-02-63 3.930.08 7.640.26 4.290.22 6.830.86 4.030.73 

DM-63 3.250.75 5.750.96 4.280.72 4.240.35 4.741.01 

DC-63 47.592.43 55.680.38 57.586.08 70.425.18 47.793.04 

AC4-63 11.641.54 27.118.09 13.391.17 13.250.5 16.263.36 

DC-AC4-63 64.109.61 56.777.76 NT 93.583.73 38.35.2 

CLM 130.50.56 NI 150.7±0.51 177.50±5.4 NI 
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Figure 4. 6. Cell growth inhibitory activity (GI50 in M) of AO-02-63 in NCI-60 panel. (a). Graphs 

of GI50 Data presented for the 5-dose GI50 study. (b). The detail growth inhibition curves of each 

cell type were presented. 

 

4.2.4 Anti-inflammation effect of AO-02-63 

A non-antibiotic property of CLM is its attenuation of ECM production and inflammation. To 

investigate if AO-02-63 retains the anti-inflammatory effects of CLM, we probed its effects on 

several markers of inflammation in TGF-β stimulated fibroblast cell line MRC-5 and lung cancer 

cell A549. We noticed that CLM significantly downregulates the fibronectin 1 (FN-1), collagen 1 

(COL1A1) and alpha smooth muscle actin (α-SMA) at 50 µM. Interestingly, AO-02-63 induced a 
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similar effect at 5 µM (Fig. 4.7), suggesting that AO-02-63 could be about 10-fold more potent 

than CLM. We also found that both CLM and AO-02-63 upregulated the expression of MMP-2 in 

dose-dependent manner. CLM has been shown to induce a similar effect in a previous study.28 

Both compounds have no significant effect on p-ERK1/2 levels (Fig. 4.7). This data is in agreement 

with the previous observation on CLM.29 Collectively, this data indicates that AO-02-63 acts 

similarly as CLM, although 10-fold more potent, to attenuate inflammation and could suggest that 

they share the same or common mechanisms of action 
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Figure 4.7. Anti-inflammation effect of AO-02-63 based on inhibition of ECM components 

production. MRC-5 cells were starved for 24 h before treatment of 0.1% DMSO, solutions of CLM 

and AO-02-63 in DMSO. TGF-β cytokine was added after 5 mins incubation. (a) Cropped gels 

indicating the levels of target proteins. (b) Quantification of target proteins expression. (Bars show 

mean plus standard deviation; statistic was performed via Ordinary One-way ANOVA compare 

with control group, *P<0.0332; **P<0.0021; ***P<0.0002; ****P<0.0001).  

A less explored mechanism of anti-inflammatory activity of CLM is its upregulation of HDAC 2 

activity, which has been suggested to overcome the inflammation-induced NF-κB activation.30, 31  

Additionally, HDAC2 upregulation suppresses the expression of inflammatory genes.31-33  We 

used immunoblotting on A549 cell lysates to investigate the effects of AO-02-63 and CLM on the 

levels of Ac-H4, a marker of the intracellular activity of class I HDAC such as HDAC 2. We used 

the levels of acetylated -tubulin (Ac--tubulin), a marker of class IIb HDAC activity, to obtain 

an indication of selectivity.  We observed that the HDAC6-regulated α-tubulin was not affected 

by the treatment of cells with AO-02-63 or CLM. However, the level of Ac-H4 was attenuated 

when cells were treated with low concentrations of AO-02-63 (7.5 M) and CLM (75 M). This 

data implies that AO-02-63 and CLM upregulate HDAC 2 activity, resulting in hypoacetylated 

H4. Surprisingly however, we noticed an upregulation of Ac-H4 levels when the cells were treated 

with higher concentrations of AO-02-63 (15 M) and CLM (150 M).  The reason for the 
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compensatory effect of higher drug concentrations is not clear to us. It is important to emphasize 

that even at these higher concentrations, the level of Ac-H4 is significantly lower (>70%) relative 

to the DMSO control (Fig. 4.8).  
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Figure 4. 8. Effects of AO-02-63 and CLM on intracellular HDAC2 activity. A549 cells were 

treated with 0.1% DMSO, DMSO solutions of AO-02-63 (7.5 and 15µM) and CLM (75 and 

150µM). (a) Cropped gels indicating the levels of target proteins. (b) Quantification of target 

proteins expression. (Bars show mean plus standard deviation; statistic was performed via 

Ordinary One-way ANOVA compare with control group, *P<0.0332; **P<0.0021; ***P<0.0002; 

****P<0.0001).  

4.3 Conclusion: 

We have discovered that CLM undergoes tandem dehydration- cyclization-dehydration reactions, 

involving C-11 and C-12 hydroxyl groups and the C-9 keto moiety, to furnish a dihydrofuranyl 
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compound AO-02-63.  The structure of AO-02-63 was confirmed by mass spectroscopy, NMR, 

and X-ray crystallography. This novel macrolide inhibits the activities of prokaryotic and 

eukaryotic ribosomes and possibly disrupts the activity of hnRNPs. These attributes may 

significantly contribute to the broad cytotoxic effects of AO-02-63 against cancer cell lines in the 

NCI-60 panel. Furthermore, AO-02-63 elicits anti-inflammatory activity like CLM, with 10-fold 

enhancement. This work unveils yet another layer of the rich biological activities of macrolide 

antibiotics. The potential of AO-02-63 as anti-cancer and an anti-inflammation agent and its 

mechanism(s) of action merits additional studies in the future. 

4.4 Material and Methods 

4.4.1 Synthesis: 

AO-02-63: Clarithromycin (1.00g, 1.34mmol) mixed with isonicotinic acid hydrazide (550mg, 

3.64mmol) and dissolved in 15 mL ethanol in a 50 mL pressure tube. The mixture was stirred and 

heated up to 120°C with Argon protection. Subsequently, 1V/V% acetic acid (0.45 mL) were 

added drop-wisely. The milky solution turned into clear followed by capping. The reaction 

processed for 72 h and the solution turned into yellowish. The reaction was terminated by cooling 

down and partitioned with sat. NaHCO3 (50 mL) and DCM (50 mL).  The DCM layer is separated 

and collected. Then, the DCM (50 mL x2) were added to extract the crude product from the 

aqueous layer and combined. NaSO4 was added to the organic extraction followed by the vacuum 

evaporation. A yellow foam of crude product was gained and furnished by column 

chromatography with gradient solvent system: ethyl acetate: hexane: TEA=10:2:0.5 to 10:1:1. The 

pure product gained in white foam (550mg, 0.77mmol), with yield of 57.80%.  
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Alternatively, Clarithromycin (250mg, 0.34mol) mixed with Burgess reagent (160mg, 0.67mmol) 

and dissolve in 8 mL ethanol in a pressure tube. The mixture stirred and heated up to 120°C. Argon 

was purged and 1V/V% acetic acid (0.1 mL, 1.7mmol) were added. The milky solution turned into 

clear followed by capping. The reaction processed for 24 h and the solution turned into yellowish. 

The reaction was terminated by cooling down and partitioned with sat. NaHCO3 (50 mL) and DCM 

(50 mL).  The DCM layer is separated and collected. Then, the DCM (50 mLx2) were added to 

extract the crude product from the aqueous layer and combined. NaSO4 was added to the organic 

extraction followed by the vacuum evaporation. A yellow foam of crude product was furnished by 

column chromatography with gradient solvent system: ethyl acetate: hexane: TEA=10:2:0.5 to 

10:1:1. The pure product gained in white foam (130mg, 0.183mmol), with yield of 53.82%. 

1H NMR (400 MHz, cdcl3) δ 5.69 (s, 1H), 5.01 (dd, J = 10.6, 2.9 Hz, 1H), 4.85 (d, J = 4.6 Hz, 1H), 

4.39 (d, J = 7.2 Hz, 1H), 4.11 (d, J = 10.0 Hz, 1H), 3.98 (dd, J = 9.4, 6.2 Hz, 1H), 3.47 (d, J = 8.7 

Hz, 1H), 3.29 (s, 3H), 3.15 (s, 3H), 3.05 – 2.95 (m, 2H), 2.79 – 2.53 (m, 1H), 2.55 – 2.42 (m, 1H), 

2.37 – 2.23 (m, 8H), 2.06 (s, 5H), 1.64 (s, 4H), 1.54 – 1.47 (m, 1H), 1.44 – 1.36 (m, 1H), 1.32 (s, 

3H), 1.30 – 1.26 (m, 6H), 1.22 (t, J = 3.0 Hz, 6H), 1.12 (d, J = 7.1 Hz, 3H), 0.99 (d, J = 7.5 Hz, 

3H), 0.88 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, cdcl3) δ 175.6 154.3, 135.6, 129.8, 103.8, 96.0, 

87.7, 84.3, 81.3, 80.5, 78.1, 72.5, 71.2, 68.8, 65.4, 65.0, 49.4, 47.4, 45.5, 40.5, 39.2, 36.9, 34.9, 

29.0, 25.8, 24.6, 24.1, 21.6, 21.4, 19.5, 18.4, 16.7, 15.7, 10.6, 9.0. HRMS (ESI) Calcd for C38 H66 

O11 N [M+H+] 712.4630, found 712.4624.  

 

DC-63: AO-02-63 (100mg, 0.148mmol) added into a NH4Cl aqueous solution (10 mL) with pH=5. 

The solution was stirred with reflux for 4-6 h and all solids dissolved into the aqueous solution. 
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By check the TLC plate, we confirmed the de-cladinose reaction is complete. The crude product 

was extracted by DCM (30 mL) with sat. NaHCO3 (20 mL). The organic layer were washed one 

more time with brine (10 mL) and followed by drying with NaSO4. The organic extraction was 

evaporated and purified through column chromatography with solvent system: DCM: 

MeOH=15:1. The product is white solid (33.6mg, 0.061mmol, 41.2%). 1H NMR (400 MHz, cdcl3) 

δ 5.80 (d, J = 1.7 Hz, 1H), 5.10 (dd, J = 11.3, 2.4 Hz, 1H), 4.42 (d, J = 7.6 Hz, 1H), 3.99 – 3.81 

(m, 1H), 3.68 (d, J = 2.2 Hz, 1H), 3.54 (ddd, J = 10.9, 6.2, 2.0 Hz, 1H), 3.29 – 3.19 (m, 1H), 3.16 

(s, 3H), 2.77 (d, J = 14.2 Hz, 1H), 2.50 (ddt, J = 13.6, 10.9, 5.4 Hz, 2H), 2.25 (s, 6H), 2.03 (d, J = 

1.5 Hz, 3H), 1.97 (d, J = 14.2 Hz, 1H), 1.90 (d, J = 1.1 Hz, 3H), 1.81 (td, J = 7.4, 6.9, 1.6 Hz, 1H), 

1.75 – 1.56 (m, 2H), 1.53 – 1.45 (m, 1H), 1.42 (s, 3H), 1.33 – 1.28 (m, 2H), 1.28 – 1.23 (m, 7H), 

1.20 (d, J = 6.8 Hz, 3H), 0.95 (d, J = 6.6 Hz, 1H), 0.93 – 0.79 (m, 11H). HRMS (ESI) Calcd for 

C30 H52 O8 N [M+H+] 554.3687, found 554.3670. 

 

DM-CLM: Clarithromycin (10.00g, 13.4mmol) dissolved in 150 mL methanol with 10 mL 

chloroform. Sodium Acetate (8.8g, 107.3mmol) were added into a mixture of methanol: 

water=50:10 mL in another beaker and stirred until complete dissolve. Then two solutions 

combined and stir in 60°C oil bath until the mixture turned clear. Then, 3 aliquots of Iodine were 

added with increment of 5 min. The solution turned dark red. After 10 min reaction, 30 mL of 1M 

NaOH were prepared, and 10 mL was injected into the solution. The solution turned less dark, and 

another injection of 10 mL is followed. After 30 min, the third injection of NaOH was processed 

and the solution turned clear. The solution continues to react in the next 1-3 h until TLC indicated 

the completion. Then let the solution cooled to room temperature and followed with one injection 

of sat. NH4OH to quench the reaction. The solution was washed with sat. Na2S2O3 solution (100 
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mL) and extracted by DCM (150 mL x2). The organic layer was washed again with water and 

brine, dried by NaSO4 and vacuum evaporation. The crude product is yellow oil. To purify the 

product, a solution of Acetone: NH4OH= 40:1 mL solvent system added to the oil and stirred in 

ice bath. The white product crushed out in 10 minutes. Then, with vacuum filtration, the white 

pure product DM-CLM was yield (6.8g, 9.29mmol, 69.32%). 

 

DM-63: procedure identical to the synthesis process of AO-02-63 on the top. DM-CLM (1.00g, 

1.37mmol) mixed with isonicotinic acid hydrazide (550mg, 3.64mmol) and dissolve in 15 mL 

ethanol in a pressure tube. The mixture stirred and heated up to 120°C. Argon was purged and 3% 

acetic acid (0.45 mL) were added. The milky solution turned into clear followed by capping. The 

reaction processed for 72 h and the solution turned into yellowish. The reaction was terminated by 

cooling down and washed with sat. NaHCO3. The DCM (100 mL x2) were added to extract the 

crude product and NaSO4 was added to dry up the organic extraction. The vacuum evaporation 

gave us a yellow foam of crude product. To purify the compound, column chromatography was 

applied with gradient solvent system: ethyl acetate: TEA=10:0.5 to 10:1. The pure product gained 

in white foam (515mg, 0.74mmol), with yield of 54.01%. 1H NMR (700 MHz, CDCl3) δ 5.71 (d, 

J = 1.8 Hz, 1H), 5.02 (dd, J = 10.7, 2.9 Hz, 1H), 4.86 (d, J = 4.7 Hz, 1H), 4.42 – 4.37 (m, 1H), 

4.06 (d, J = 10.2 Hz, 1H), 4.00 – 3.97 (m, 1H), 3.54 (ddd, J = 11.4, 6.2, 2.0 Hz, 1H), 3.47 (d, J = 

8.3 Hz, 1H), 3.28 (d, J = 1.0 Hz, 3H), 3.15 (d, J = 1.0 Hz, 3H), 3.08 – 2.89 (m, 2H), 2.78 – 2.70 

(m, 1H), 2.65 – 2.54 (m, 1H), 2.45 (s, 3H), 2.32 (d, J = 15.2 Hz, 1H), 2.15 – 2.01 (m, 3H), 1.99 (s, 

3H), 1.74 – 1.66 (m, 1H), 1.58 – 1.45 (m, 2H), 1.45 – 1.38 (m, 1H), 1.32 (s, 3H), 1.28 (dt, J = 4.2, 

1.9 Hz, 6H), 1.25 – 1.21 (m, 6H), 1.12 (d, J = 7.1 Hz, 3H), 0.96 – 0.92 (m, 3H), 0.92 – 0.86 (m, 

3H). HRMS (ESI) Calcd for C37 H64 O11 N [M+H+] 698.4474, found 698.4460. 
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AC4-CLM: DM-CLM (80mg, 0.115mmol) dissolved in DMSO (5 mL) with a mixture of hex-5-

yn-1-yl 4-methylbenzenesulfonate (200mg, 0.79mmol). Hunig’s base (0.5 mL, 10V/V% of 

solvent) were added into the solution and heated to 75°C for overnight. By checking TLC plate 

with Anisaldehyde staining, a new spot showed in a higher Rf. The reaction was quenched by 

cooling down to room temperature and washed with water (100ml) and extraction by DCM (50 

mL). The solution was dried by NaSO4. The vacuum evaporation gave out a yellow oil of crude 

product. To purify the compound, column chromatography was applied with gradient solvent 

system: ethyl acetate: hexane=8:2. The pure product gained in white foam (70mg, 0.086mmol, 

with yield of 74.8%. 1H NMR (400 MHz, cdcl3) δ 5.09 – 5.00 (d, 1H), 4.92 (d, J = 4.8 Hz, 1H), 

4.44 (d, J = 6.8 Hz, 1H), 3.99 (s, 2H), 3.79 – 3.73 (m, 2H), 3.68 – 3.62 (m, 6H), 3.52 – 3.41 (m, 

1H), 3.32 (s, 4H), 3.25-3.16 (m, 2H), 3.05-2.81 (m, 7H), 2.87 (d, J = 9.1 Hz, 2H), 2.62 (s, 4H), 

2.60-2.56 (m, 2H), 2.36 (d, J = 15.2 Hz, 2H), 2.21 (m, 6H), 1.97 – 1.81 (m, 5H), 1.70 (d, J = 13.5 

Hz, 2H), 1.62 – 1.52 (m, 6H), 1.50 – 1.43 (m, 2H), 1.40 (s, 4H), 1.30 (d, J = 6.2 Hz, 4H), 1.25 (s, 

6H), 1.21 (dd, J = 8.7, 6.6 Hz, 8H), 1.15 – 1.06 (m, 13H), 0.84 (t, J = 7.3 Hz, 3H). 

 

AC4-63: DM-63 (80mg, 0.115mmol) dissolved in DMSO (5 mL) with hex-5-yn-1-yl 4-

methylbenzenesulfonate (400mg, 1.58mmol). Hunig’s base (0.5 mL, 10V/V% of solvent) were 

added into the solution and heated to 75°C for overnight. The reaction was quenched by cooling 

down to room temperature and washed with water (100 mL) and extraction by DCM (50 mL). The 

solution was dried by NaSO4. The vacuum evaporation gave out a yellow oil of crude product. To 

purify the compound, column chromatography was applied with gradient solvent system: DCM: 
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MeOH=10:1 The pure product gained in white foam (55mg, 0.069mmol), with yield of 60.1%. 1H 

NMR (700 MHz, CDCl3) δ 5.69 (s, 1H), 5.00 (ddd, J = 10.6, 3.0, 1.2 Hz, 1H), 4.85 (d, J = 4.7 Hz, 

1H), 4.40 (dd, J = 7.2, 1.2 Hz, 1H), 4.12 (d, J = 10.0 Hz, 1H), 3.98 (dt, J = 12.3, 6.3 Hz, 1H), 3.46 

(dd, J = 14.3, 7.4 Hz, 2H), 3.31 – 3.24 (m, 4H), 3.15 (d, J = 1.2 Hz, 3H), 3.00 (d, J = 14.6 Hz, 1H), 

2.68 (t, J = 7.9 Hz, 1H), 2.62 (tt, J = 9.2, 6.6 Hz, 1H), 2.55 (dd, J = 12.6, 7.0 Hz, 1H), 2.48 (s, 1H), 

2.38 (dd, J = 12.5, 7.3 Hz, 1H), 2.35 – 2.31 (m, 2H), 2.25 – 2.18 (m, 5H), 2.07 – 2.02 (m, 6H), 

1.78 – 1.40 (m, 22H), 1.31 (s, 3H), 1.29 – 1.24 (m, 9H), 1.24 – 1.19 (m, 7H), 1.11 (d, J = 7.2 Hz, 

4H), 1.00 (dd, J = 7.5, 1.3 Hz, 3H), 0.88 (td, J = 7.4, 1.2 Hz, 4H). HRMS (ESI) Calcd for C43 H72 

O11 N [M+H+] 778.5100, found 778.5072 

DC-AC4-63 

Compound 1: Octaethylene Glycol (200mg, 0.54mmol) mixed with Tosyl Chloride (400mg, 

2.1mmol) and Triethylamine (375mg, 3.71mmol) in 10 mL DCM. The reaction was stirred at room 

temperature for overnight. The solution was dried via vacuum evaporation and obtained a yellow 

oil of crude product. Subsequently, Column chromatography was applied with gradient solvent 

system: ethyl acetate: MeOH=10:1 to furnish the final product in clear oil (305mg, 0.46mmol), 

with yield of 85.2%. The intermediate has been used directly to the next step. 

 

Compound 2: The compound 2 (300mg, 0.45mmol) was mixed with sodium azide (400mg, 

6.15mmol) and dissolved in 10 mL DMF. The solution was heated to 70 Cº for overnight. In the 

second day, the solution was dried by vacuum evaporation and obtained a yellow oil of crude 

product. The crude product was used directly for the next step. 
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Compound 3: all the Compound 3 (180mg, 0.43mmol) was dissolved in ether (10 mL) and mixed 

with triphenyl phosphine (106mg, 0.405mmol). The solution was stirred at room temperature with 

argon protection for 5 minutes. A 5% (V/V%) HCl solution (10 mL) was added into the solution 

and kept stirring for overnight. The next day, aqueous layer was separated from the solution and 

basified by ammonia chloride (1M, 5 mL). The basic aqueous solution was extracted by 

DCM:MeOH (10:1) solution three times. The organic layers combined and evaporated to dryness 

and yielded yellow oil of crude product (145mg, 0.37mmol, 91.4%). This crude product is used 

directly to the next reaction. 

 

Azido-Biotin: Biotin (240mg, 0.98mmol) were mixed with dicyclohexylcarbodiimide (200mg, 

0.97mmol) for 10 minutes, then N-chlorosuccinimide (130mg, 1.02mmol) were added to the 

solution. The solution was protected by argon and stirred for overnight. The solution became 

cloudy with accumulation of white precipitates. The solution added with ether and filtered. The 

filtrate solution was dried by vacuum evaporation and obtained a yellow solid of crude product 

(320mg, 0.95mmol). The crude product (135mg, 0.4mmol) was mixed with Compound 4 

(145mg, 0.37mmol) in 5 mL DMF and stirred for overnight. The gained Compound 5 was dried 

by vacuum evaporation and obtained a white solid. The solid was washed by ether (10 mL) for 5 

times. The solid was filtered and gained with 92mg (0.15mmol, 40%). 1H NMR (400 MHz, 

cdcl3) δ 4.56 – 4.48 (m, 2H), 4.32 (ddd, J = 8.5, 6.4, 3.6 Hz, 2H), 4.10 (s, 9H), 3.75 – 3.59 (m, 

15H), 3.50 – 3.33 (m, 4H), 3.26 – 3.12 (m, 2H), 3.02 – 2.89 (m, 2H), 2.93 – 2.81 (m, 4H), 2.79 – 

2.71 (m, 2H), 2.72 (s, 2H), 2.66 (td, J = 7.1, 4.2 Hz, 2H), 1.92 – 1.82 (m, 2H), 1.85 – 1.67 (m, 
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4H), 1.70 – 1.63 (m, 2H), 1.67 – 1.55 (m, 2H), 1.58 – 1.41 (m, 2H), 1.44 – 1.23 (m, 2H), 1.22 – 

1.02 (m, 2H). 

 

 

Biotin-63: Compound 5 (30mg, 0.48mmol) add to THF:DMSO (1ml:1ml) solution with AC4-63 

(28mg, 0.35mmol) and CuI (5mg, 0.026mmol) was added before purged with Ar. The solution 

temperature went down as evaporation processes. Then 10V/V% Hunig’s base was added and the 

color of the solution turned into dark green. The reaction was capped and stirred for overnight. In 

TLC plate in new spot in lower Rf generated which indicates the triazole formation. The reaction 

was quenched by adding NH4OH (1M, 20ml) solution. The solution was extracted by 50ml DCM. 

The solution was dried by NaSO4 and vacuum evaporation. A yellow oil of crude product was 

gained. To purify the compound, column chromatography was applied with gradient solvent 

system: DCM: MeOH: NH4OH=8:1:0.1. The pure product gained in clear oil (8.2mg, 

0.0058mmol) with yield of 14.1%. 1H NMR (400 MHz, cdcl3) δ 7.53 (s, 0H), 5.71 (d, J = 16.5 Hz, 

1H), 5.00 (dd, J = 10.7, 2.8 Hz, 1H), 4.84 (d, J = 4.5 Hz, 1H), 4.55 – 4.40 (m, 2H), 3.90 – 3.82 (m, 

1H), 3.67 – 3.52 (m, 15H), 3.50 – 3.32 (m, 2H), 3.27 (d, J = 3.0 Hz, 2H), 3.14 (s, 2H), 2.81 – 2.70 

(m, 2H), 2.62 (d, J = 0.4 Hz, 21H), 2.08 – 2.00 (m, 4H), 1.67 (td, J = 14.0, 13.4, 6.7 Hz, 4H), 1.49 

– 1.40 (m, 1H), 1.40 – 1.19 (m, 12H), 1.11 (d, J = 7.1 Hz, 2H), 0.97 (d, J = 7.7 Hz, 1H), 0.87 (t, J 

= 7.3 Hz, 2H). HRMS (ESI) Calcd for C69 H119 N7 O20 S [M+2H]2+ 699.4575, found 699.9193. 
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Biotin-CLM: Compound 5 (10mg, 0.0161mmol) add to THF: DMSO (1ml:1ml) solution with 

AC4-CLM (37mg, 0.474mmol) and CuI (5mg, 0.026mmol) was added before purged with Ar. 

The solution temperature went down as evaporation processes. Then 10V/V% Hunig’s base was 

added and the color of the solution turned into dark green. The reaction was capped and stirred 

for overnight. In TLC plate in new spot in lower Rf generated which indicates the triazole 

formation. The reaction was quenched by adding NH4OH (1M, 20ml) solution. The solution was 

extracted by 50ml DCM. The solution was dried by NaSO4 and vacuum evaporation. A yellow 

oil of crude product was gained. To purify the compound, column chromatography was applied 

with gradient solvent system: DCM: MeOH: NH4OH=8:1:0.1. The pure product gained in white 

solid (3.6mg, 0.0025mmol) with yield of 15.6%.  1H NMR (400 MHz, cdcl3) δ 7.65 (s, 0H), 5.05 

(d, J = 10.9 Hz, 1H), 4.91 (d, J = 4.1 Hz, 1H), 4.52 (t, J = 4.9 Hz, 2H), 4.35 – 4.23 (m, 1H), 4.15 

(ddd, J = 12.1, 6.1, 2.1 Hz, 1H), 3.95 (s, 1H), 3.86 (t, J = 5.3 Hz, 2H), 3.77 – 3.72 (m, 2H), 3.66 

– 3.59 (m, 22H), 3.55 (t, J = 5.1 Hz, 2H), 3.47 (q, J = 7.0 Hz, 6H), 3.31 (s, 2H), 3.02 (s, 4H), 

2.80 (d, J = 12.2 Hz, 4H), 2.32 (td, J = 7.7, 4.9 Hz, 2H), 2.23 (t, J = 7.2 Hz, 2H), 2.09 – 2.04 (m, 

3H), 2.04 (d, J = 3.5 Hz, 2H), 1.91 (dd, J = 12.3, 7.8 Hz, 3H), 1.74 (s, 4H), 1.67 (q, J = 7.8 Hz, 

3H), 1.59 (dd, J = 11.8, 7.0 Hz, 4H), 1.56 – 1.40 (m, 8H), 1.37 (s, 4H), 1.30 – 1.15 (m, 15H), 

1.12 (d, J = 5.5 Hz, 6H), 1.04 (d, J = 7.6 Hz, 2H), 0.92 – 0.81 (m, 7H). HRMS (ESI) Calcd for 

C69 H123 N7 O22 S [M+H]+ 1434.8515, found 1434.8495 

 

4.4.2 Cell culture and viability assay.  

MDA-MB-231, VERO, and A549 cell lines were maintained in Dulbecco’s Modified Eagle 

Medium (DMEM) (Corning, 10-017-CV), supplemented with 10% fetal bovine serum (FBS) 

(Corning, 35-010-CV). MCF-7 cells were cultured in phenol red free Minimum Essential Medium 
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(MEM) (Corning, 17-305-CV), supplemented with 10% fetal bovine serum (FBS). Cells were 

seeded into a 96-well plate (2000 counts/100uL) for 24 h prior to treatment and then treated with 

various drug concentrations for 72 h. All drugs were dissolved in DMEM/DMSO with DMSO 

concentration maintained at 1%. Every drug was tested repeatedly with 8 dosage in triplicate. The 

effect of compounds on cell viability was measured using the MTS assay (CellTiter 96 Aqueous 

One Solution and CellTiter 96 Non-Radioactive Cell Proliferation Assays, Promega, Madison, WI) 

as described by the manufacturer. IC50s were determined using Prism GraphPad 8. 

 

4.4.3 X-ray crystallography: 

Single colorless block crystals of AO-02-63 were chosen from the sample as supplied. A suitable 

crystal with dimensions 0.56 × 0.44 × 0.38 mm3 was selected and mounted on a loop with 

paratone oil on a XtaLAB Synergy-S diffractometer. The crystal was kept at a steady T = 105(8) 

K during data collection. The structure was solved with the ShelXT34 solution program using dual 

methods and by using Olex235 as the graphical interface. The model was refined with ShelXL 

2018/334 using full matrix least squares minimisation on F2. 

 

4.4.4 Translation Inhibition Assay: 

Rabbit reticulocyte lysate system (Promega L4960). The assay was performed by following the 

manual instruction. In brief, lysate mixed with a self-prepared amino acid master mix with RNAsin 

and aliquots 12.5µL to 12x4 0.2ml centrifuge tubes. Compound AO-02-63 were prepared into 11 

concentration (13, 6.5, 3.25, 1.625, 0.8125, 0.406, 0.205, 0.103, 0.0508, 0.0254, 0.0127mM) points 
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with DMSO while puromycin was prepared into 8 points starting from 325 to 1.3µM with 2-fold 

dilution increment. 0.5µL DMSO solution of drug was added to the aliquots so that the final 

concentration of AO-02-63 diluted to 500 to 0.05 µM and puromycin to (12.5 to 0.05 µM). 2 

aliquots were treated with only DMSO as a negative control. The solutions incubate in 37°C for 2 

h and cool to ice bath to quench the reaction. A pre-made 1M potassium luciferin substrate solution 

was aliquoted 70µL to 12x4 wells of the luminescence white 96-well plate. Then the 10µL lysate 

were added to the wells. Plate was shaken in room temperature for 1 minute to 5 minutes prior to 

screen. The Luminescence signal were detected and the data analyzed by Prism GraphPad 8. 

E. coli S30 Extract System for Circular DNA (Promega L1020). The assay was performed by 

following the manual instruction. In brief, S30 extract, S30 premix, amino acids, and pBESTluc 

circular DNA were thawed on ice. Master Mix (MM) was created by combining 180 µL S30 

premix, 135 µL S30 extract, 95 µL nanopure water, and 40 µL amino acid mix for a total volume 

of 450 µL. One tube of MM was sufficient for each compound run at 10 concentration points with 

3 vehicle controls. CLM and AO-02-63 were serially diluted in DMSO so that the 8 concentration 

points ranged from 520 µM to 00208µM by 5-fold dilution. The pBESTluc provided in the kit was 

dilutes from 10 µL to 54.4 µL with 1x TE buffer. 12.5 µL of MM were aliquoted to a 0.2 mL 

centrifuge tubes, followed by 0.5 µL compound addition, which made final concentrations as 20 

µM to 1.08nM.  The tubes were then mixed gently by pipetting. The tubes were held at room 

temperature for 20 minutes after which 0.4 µL pBESTluc was added. After brief mixing, the tubes 

were incubated at 37o C for 60 min. The tubes were put on ice for a 5-minute inactivation period. 

After gentle mixing by pipette, 10 µL were aliquoted to a white half-volume 96-well plate 

(supplied by Greiner). 70 µL 1mM luciferin solution was added to each well, and the plate was 
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read for luminescence after a 1-5 minutes shaking period. Luminescence was normalized to DMSO 

controls. Data was processed with Graphpad Prism 8. 

 

4.4.5 Pull-down assay and Mass spectroscopy:  

Hep-G2 cells (1*10^6 cell/plate ) with 3 plates were washed by 1X cold PBS, scratched, and 

collected into a 1.5ml centrifuge tube with 1ml of 1X PBS stored in -80°C. After one freeze thaw, 

the cells were sonicated with a probe sonicator. The lysate was gained and aliquoted to 10 test 

tubes with 100µL on each. Every five tubes are distributed to control group, Biotin-63 group, 

Biotin-63 with AO-02-63 competition, Biotin-CLM, and Biotin-CLM with CLM competition. 

Each tube added 1 µL of DMSO or DMSO solution of compounds. For Biotin-63 and Biotin-

CLM, the final concentrations are 500µM, and for the competition group, a 1 µL DMSO solution 

of a mixture of 500µM Biotinylated compound and 500µM competitor was added. The compounds 

incubated in the lysate for 1 h prior to the pull-down. Streptavidin Bead (Thermo Fisher; cat. 

88817) were washed by 1x PBS 3 times prior to use. A magnetic stand is applied to immobilize 

the beads. After drug incubation, the lysates were added into the beads and incubated in a 

centrifuge tube rotator at room temperature for another 2 h. The lysates were removed from the 

beads from magnetic stands. The beads were washed gently by adding 1X PBS 3 times. Then, an 

elution process is performed by adding 50 µL pH=2 elution buffer (Thermo Fisher. 21028) on each 

tube and pipetting thoroughly for 5-10 minutes. The eluents were removed from beads and the pH 

will be adjusted to 7.5 by adding appropriate amount of 5M NaOH determined by pH paper. The 

pull-down proteins were denatured followed by Western blot process: added 50µL 2x Laemmli 

buffer and heated to 100°C for 5 minutes, each lysate was loaded to each well of the TGX MIDI 
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4-20% gel (Biorad, cat. 5671093) and ran at 150V for 70 mins. The gel was collected, washed by 

water, and deactivated by 10% alcohol. Then, followed by instruction of Pierce™ Silver Stain for 

Mass Spectrometry kit (Thermo Fisher 24600), we gained the proteins bands. On the other hand, 

whole cell lysate, pull-down lysates and background lysates were sent to the Mass spectroscopy 

core and analyzed by Dr. David Smalley and Hyojung Kim in Georgia Institution of Technology.  
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4.6 Supporting Information 

 WCL WCL wash Wash (AO-

02-63) 

Wash (CLM) DMSO group Biotin-63 63 

Competition 

Biotin-CLM CLM 

Competition 

 

Figure S4. 1. Gel with silver staining after pulldown assay. WCL: The Whole cell lysate group; 

WCL wash: Unbounded protein group of DMSO treated group; Wash (AO-02-63): Unbounded 

protein group of 1% DMSO solution of AO-02-63 incubated with Streptavidin bead in WCL; 

Wash (CLM) unbounded protein group of 1% DMSO solution of CLM incubated with Streptavidin 

in WCL; DMSO group: The bounded proteins of streptavidin beads in DMSO treated group; 

Biotin-63 group: bounded proteins of streptavidin beads in 1% DMSO solution of Biotin-63 treated 

group; 63 Competition group: bounded protein group of AO-02-63 co-incubated with Biotin-63 in 

WCL and streptavidin group;  Biotin-CLM group: bounded proteins of streptavidin beads in 1% 

DMSO solution of Biotin-CLM treated group; CLM Competition group: bounded protein group 

of CLM co-incubated with Biotin-CLM in WCL and streptavidin group;   
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Table S4. 1. Compare of PSM scores on top ribosomal proteins pulled down by Biotin-CLM and 

Biotin-63. 

Protein name Sequence Biotin-CLM 

(PSM#) 

Biotin-63 

(PSM#) 

40S ribosomal protein S3 ELAEDGYSGVEVR 11 110 

40S ribosomal protein S18 AGELTEDEVER 5 42 

40S ribosomal protein S19 ALAAFLK 6 35 

40S ribosomal protein S3a NCLTNFHGMDLTR 2 29 

40S ribosomal protein S25 LNNLVLFDK 2 28 

40S ribosomal protein S4 VNDTIQIDLETGK 9 25 

60S ribosomal protein L23a ECADLWPR 6 28 

60S ribosomal protein L7a AGVNTVTTLVENK 10 24 

60S ribosomal protein L13 VATWFNQPAR 5 23 

60S ribosomal protein L36 YPMAVGLNK 7 22 

 

AO-02-63 
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AO-02-63 (13C NMR) 

 

 

 

 

 

 

 

 

 



379 

 

DC-63 

 

DM-63 

 



380 

 

AC4-63 

 

AC4-CLM 

 



381 

 

Azido biotin 
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Biotin-CLM 
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Pyrimethamine derivatives as Novel Anti-cancer agents 

In this thesis, we discovered two types of pyrimethamine (PYM) derivatives. PYM is a pleiotropic 

and polypharmacophore small molecule that revealed strong STAT3 pathway inhibition. As 

mentioned in the introduction section 1.6.2 and 1.6.3a, we designed the type I STAT3 inhibitor as 

PYM-HDACi and type II as novel pyrimethamine derivatives based on Structure-Activity 

Relationship (SAR) study. On purpose of detailed explanation, we divided type I and II into two 

separate topics Chapter 5 and 6. In these two chapters, we will fully demonstrate the rationale of 

design, procedures in synthesis, and biological activities of these STAT3 inhibition small 

molecules.  
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Abstract:  

Signal transducer and activator of transcription 3 (STAT3) is an oncogenic transcription factor 

which has been recognized as a promising cancer therapeutic target. Small molecule 

pyrimethamine (PYM) is a known direct inhibitor of activated STAT3 and it is currently under 

clinical trial. Also, histone deacetylase (HDAC) inhibition has been shown to indirectly attenuate 

STAT3 signaling through inhibition of STAT3 activation. Herein we described the design and 

biological profiling of two classes of PYM-conjugated HDAC inhibitors (HDACi).  We 

observed that the class I PYM-HDACi compounds 12a-c potently inhibited HDACs 1 and 6 in 

cell free assays while a lead class II PYM-HDACi compound 23 showed a strong HDAC 6 

selective inhibition. In a cell-based assay, 12a-c are preferentially cytotoxic to MDA-MB-231, a 

TNBC cell line that is highly STAT3-dependent, while 23 showed no such selective toxicity. 

Subsequent target validation studies revealed that a representative class I PYM-HDACi 

compound 12c elicited a signature of HDAC and STAT3 pathway inhibition intracellularly. 

Collectively, these data suggest that PYM-HDACi compounds are promising leads to develop 

targeted therapy for TNBC. 

 

Key words: Triple Negative Breast Cancer, Pyrimethamine, HDAC inhibitor, STAT3 pathway 
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5.1 Introduction: 

Pyrimethamine (PYM) (Figure 5.1) is an FDA approved drug which, due to its perturbation of the 

functions of several intracellular targets, has found use for the management of various human 

diseases including toxoplasmosis and malaria.1,2 PYM has also been used in chemotherapy along 

with other drugs such as proguanil for few decades.3 PYM’s anti-parasitic activity originates from 

its ability to specifically bind and inhibit dihydrofolate reductase (DHFR, 5,6,7,8-tetrahydrofolate: 

NADP+ oxidoreductase, EC 1.5.1.3) in Plasmodium falciparum and other protozoa.4 DHFR is 

critical for folate metabolism and has been a drug target for fungal, protozoal and bacterial 

infections and cancer. DHFR facilitates an NADPH-dependent reduction of dihydrofolate to 

tetrahydrofolate, a cofactor necessary for the biosynthesis of thymidylate, purine nucleotides, and 

many other essential amino acids required for protein, RNA, and DNA synthesis.5 DHFR 

inhibition by antifolate compounds interferes with these pathways, resulting in cell cycle arrest 

and cell death.6 

 

 

Figure 5. 1. Structure of pyrimethamine. 

PYM is also an inhibitor of STAT3 (Signal transducer and activator of transcription 3) 

transcriptional function.7 STAT3 is a member of STAT proteins comprising of seven sub-family 

members (STAT1, 2, 3, 4, 5a, 5b, 6).8 STAT3, an oncogenic transcription factor with critical role 

in the signaling of a number of cytokines and growth factors, confers resistance to apoptosis in 

various cell types9 and is activated in many cancers including triple-negative breast cancer 
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(TNBC), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL) and small 

lymphocytic lymphoma (SLL).10,11 

STAT3 activation through its tyrosine phosphorylation by JAK (Janus kinase) or IL-6 signaling 

cascade12 enhances its dimerization and translocation from cytoplasm to nucleus where it can bind 

to certain DNA sequences and regulate genes expression involved in various cellular processes. 

Tyrosine phosphorylation is not the only way to activate STAT3. It can be activated through other 

processes such as serine phosphorylation, acetylation, methylation, and glutathionylation.13,14 

Once STAT3 is activated, it enhances various cell processes such as cell proliferation, 

differentiation, survival, and angiogenesis that contribute to malignant transformation and 

progression in many cancers such as breast, ovary, and prostate.15 Although STAT3 also has non-

transcriptional responsibilities, such as regulation of mitochondrial function, most of its oncogenic 

activities are related to its gene regulation in the nucleus.16 

Activation of STAT3 is tightly regulated in normal conditions; however, in cancer, it is highly 

activated and leads to malignant cancer cells phenotype.17 Therefore, inhibiting STAT3 activation 

is a promising strategy for cancer therapy, as several cancer types depend on activated STAT3 for 

their survival. In fact, PYM is currently in phase I/II clinical trials as a standalone agent for the 

treatment of relapsed CLL and SLL (ClinicalTrials.gov Identifier: NCT01066663). Interestingly, 

however, it has been observed that STAT3 inhibitors exhibit a synergistic effect with other 

therapeutic agents in inhibiting tumor stem cells, leading to improved therapeutic indices for these 

agents.18 

Histone deacetylase (HDAC) enzymes are a class of proteins that play an important role in 

regulating STAT3 activation.19 HDACs, along with histone acetyltransferase (HAT), control gene 

expression, chromatin condensation and play an essential role in transcriptional activation by 
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regulating acetylation state of histone proteins.20 In addition to histones, the expression levels and 

acetylation status of several non-histone proteins, including transcription factors (E2F, STAT3, 

P53, NF-ҝB), estrogen receptor (ERα), androgen receptor (AR), α-tubulin, and chaperons 

(HSP90), are regulated by HDAC and HAT activity.21 Due to their critical roles in regulating a 

wide range of cellular pathways, HDACs are considered as promising drug discovery targets, and 

their inhibition has emerged as a potential strategy in treating various diseases including 

neurological diseases, malaria, leishmania and cancer.22 To date, there are four US FDA approved 

HDAC inhibitors (HDACi), namely, SAHA (suberoylanilide hydroxamic acid, vorinostat) 

approved in 2006 for relapsed and refractory cutaneous T-cell lymphoma (CTCL),23 romidepsin 

(FK228) approved in 2009 for relapsed/refractory peripheral T-cell lymphoma,24 belinostat 

(PXD101) approved in 2014 for relapsed/refractory peripheral T-cell lymphoma,25 and 

panobinostat (LBH589) approved in 2015 for treating acute myeloma (Figure 5.2).26 Chidamide 

(CS055) is another HDACi which is approved in China for treating relapsed/ refractory peripheral 

T-cell lymphoma. Chidamide is in phase II clinical trials in the US.27 Inhibition and knockdown 

of class I HDACs have been shown to result in inhibition of STAT3 activation, through 

upregulation STAT3 Lys685 acetylation and attenuation of STAT3 Tyr705 phosphorylation, 

resulting in the inhibition of the survival of p-STAT3-positive lymphoma (DLBCL) cells.28 

Therefore, targeting STAT3-positive cancer cells with HDACi is another potentially viable 

therapeutic option for managing these tumors. Inhibition of STAT3 pathway has been mediated 

by HDACi SAHA through the acetylation on bromodomain protein 4 (BRD4) to down-regulate 

Leukemia Inhibitory Factor Receptor (LIFR).29  
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Figure 5.2 Structures of approved HDACi. 

 

We hypothesized that designed multiple ligands comprising PYM and HDAC inhibition 

chemotype would integrate direct STAT3- and HDAC-inhibition within a single molecular 

template. These PYM-HDACi compounds are anticipated to be efficient inhibitors of proliferation 

of tumors which are exquisitely dependent on STAT3 signaling pathway. Herein we demonstrate 

that PYM-HDACi compounds inhibit representative HDACs, downregulate the expression of 

selected STAT3 target proteins and are selectively cytotoxic to MDA-MB-231, a triple-negative 

breast cancer (TNBC) cell that is highly dependent on STAT3 Pathway for its proliferation and 

metastasis. 

 

5.2 Results and discussion 

5.2.1 Design of PYM-HDACi compounds 
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The three-motif HDACi pharmacophoric model consists of a recognition cap group, linker group, 

and zinc-binding group (ZBG) (Figure 5.3).30 PYM structure closely resembles the HDACi aryl-

derived cap group. Our molecular docking analysis (discussed below) suggested that the PYM 

halogen group could be replaced by the HDACi linker and ZBG groups without significantly 

impacting STAT3 binding. Interestingly, the substitution of the PYM halogen group with alkyl, 

aryl, and ring systems have been shown to be compatible with its biological activities.31 Based on 

these observations, we designed two classes of PYM-HDACi compounds using PYM as a 

surrogate for HDACi cap group. The restriction on the length of the linker group of class I 

compounds is based on our previous study which revealed that five and six methylenes are an ideal 

length for linker group for aryl triazolyl HDACi which inspired the design of this class of 

compounds.22 Relatedly, the linker group of class II compounds is based on a similar moiety in the 

approved HDACi belinostat and panobinostat.    
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Figure 5.3. (a) Pharmacophoric model of HDACi using SAHA as a prototypical HDACi. (b) 

Structures of the designed two classes of PYM-HDACi compounds.  

5.2.2 Molecular docking study  

We first performed an unbiased molecular docking, using AutoDock Vina,32 to determine the 

potential docking poses of PYM on the structure of STAT3 (PDB ID: 1BG1). The docking outputs 

revealed that PYM binds to two pockets (P1 and P2) within the DNA binding domain (DBD) and 

one solvent-exposed, shallow pocket (P3) between the connector (a part of DBD) and the SH2 

domains of STAT3 (Figure 5.4). Although PYM is accommodated through stabilizing H-bonding 

and hydrophobic interactions with key residues within P1, P2 and P3, the binding energies of PYM 
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at the three sites revealed a strong preference for P2. In P1 and P2, the halogen moiety of PYM is 

oriented in regions adjoining solvent-accessible grooves/sub-pockets which could potentially 

accommodate the substitution of the halogen by the HDACi linker and ZBG groups of the designed 

PYM-HDACi compounds (Figure 5.3). Conversely, in P3, the halogen moiety of PYM is tucked 

into a shallow pocket, an orientation which may necessitate an extensive change in the binding 

orientation for the PYM-HDACi to be accommodated at this location. Subsequent docking of a 

representative class I PYM-HDACi compound B revealed that it adopts similar docking poses as 

PYM at P1 and P2. At P3, however, the phenylpyrimidinediamine end of B is forced out into the 

protein surface to accommodate its HDAC inhibition moiety. Interestingly, B binds to P1 and P2 

with enhanced binding affinities relative to PYM (Figure 5.4). This observation strongly suggests 

that the replacement of the PYM halogen group by the designed HDAC inhibiting moieties is 

compatible with the STAT3 binding attributes of PYM at P1 and P2. 

 

 

 

a 
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Figure 5.4. Molecular docking of PYM and class I PYM-HDACi compound B to STAT3 

(PDB:1BG1). (a) The 4 domains of the STAT3 – 4-Helix bundle (blue), −barrel (red),  connector 

(green) and SH2 (yellow) domains. Docked poses of PYM and class I compound B at P1 (bi-ii), 

P2 (ci-ii) and P3 (di-ii). The binding energies of PYM at P1, P2 and P3 are -5.6kcal/mol, -

6.4kcal/mol and -6.0kcal/mol respectively, while B bound to P1, P2 and P3 with binding energies 

of -9.2kcal/mol, -9.3kcal/mol and -7.3kcal/mol, respectively. Note that the binding of compound 

B to P1 could be potentially stabilized by H-bonding interactions with Ser-381, Asn-420, His-437, 

Thr-440, and Glu-455. In P2, compound B could form stabilizing H-bonding interactions with 

bi bii 

di dii 

ci cii

` 

P1 

P2 

P3 
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Asp-334, Ile-467, Cys-468, Asn-472 and Asp-566. In P3, compound B could form H-bonding 

interactions with Gln-524, Glu-582 and Tyr-584. 

 

To confirm that the PYM could act as a surrogate for HDACi cap group, we performed molecular 

docking analyses to interrogate the interaction between the designed PYM-HDACi and selected 

HDAC isoforms. We observed that, in addition to engaging in stabilizing H-bonding interaction 

with enzymes’ outer rim residues, class I compounds B and C adopt poses that may allow effective 

chelation of zinc ion in the active sites of HDAC 1 and HDAC 6 (Figures 5.5 and 5.6). In both 

HDAC 1 and HDAC 6, class I compound B shows strong evidence of zinc ion chelation in the 

pocket. Presumably due to its flexible linker, class I compound B is able to facilely access the 

pockets of both enzymes, allowing efficient chelation of the active site zinc ion which is a key 

driver of HDAC 1 binding by both classes of compounds. Relative to class II compounds D and 

E, the hydroxamate group of B seems to be positioned to allow a more efficient zinc ion chelation 

at HDAC 1 active site. The somewhat less optimal zinc ion chelation by D and E could be partially 

compensated by the possibility of formation of − interaction with rings of Phe-155 and Phe-210 

(Figure 5.5). Nevertheless, the rigidity of D and E constrained their phenylpyrimidinediamine 

moiety to be presented on HDAC 1 surface where there is no obvious prospect for stabilizing 

interactions. In contrast, the flexibility of the alkyl linker of B allows its phenylpyrimidinediamine 

moiety to be tucked into a hydrophobic patch on HDAC 1 surface where it is further stabilized by 

a hydrogen bonding interaction with Glu-203. This in silico observation suggests that compound 

B could be better accommodated at HDAC 1 active site than D and E. Interestingly, the extra 

benzene ring of class II compound E is able to overcome the deficiency of class II compound D 

as it enables better zinc ion chelation and optimal binding within hydrophobic regions at outer rims 

guarding the active sites of HDAC 6. Specifically, compound E could potentially form two 
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− interactions with Phe-202 and Trp-261 while compound D docked poses could only support 

one − interaction with Phe-202. Also, compound B could form H-bonding with the amide 

backbone of Ser-259 at the enzyme rim. The extra interactions displayed by B and E could confer 

on them better binding affinities for HDAC 6 relative to compound D. 

  

     

 

      

ai aii 

bi bii 

aiii 
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*Note that the red portion of the protein surface indicates hydrophobic and white area indicates the 

hydrophilic areas. 

Figure 5.5. Docked poses of PYM-HDACi at the active sites of HDAC 1 (PDB:5ICN). Grey sphere 

represents zinc ion in the active site of HDAC isoform. (ai-iii) Docked pose of class I compound 

B on HDAC 1. (bi-ii) Overlay of the docked poses of class II compounds D (in purple) and E (in 

grey) on HDAC 1. The compounds are accommodated at enzyme’s active site through a 

combination of zinc chelation, H-bonding and hydrophobic interactions.  

 

      

 

ai aii 
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Figure 5.6. Docked poses of PYM-HDACi at the active sites of HDAC 6 (PDB:5G0G). Grey 

sphere represents zinc ion in the active site of HDAC isoform. (ai-iii) Docked pose of class I 

compound B on HDAC 6. (bi-iii) Overlay of the docked poses of class II compounds A (color in 

light pink) and B (color in cyan) on HDAC 6. The compounds are accommodated at enzyme’s 

active site through a combination of zinc chelation, H-bonding and hydrophobic interactions. 

*Dotted lines indicate interatomic distance for H-bonding and stacking interaction. 

 

Based on evidence from the previous molecular docking analysis on human DHFR (hDHFR),33 it 

seemed that the replacement of the halogen group of PYM may not be compatible with DHFR 

binding. Nevertheless, we docked these compounds against the structure of hDHFR (PDB code 

1U72). We observed that the PYM moiety of the PYM-HDACi compounds bind hDHFR with 

similar orientation as PYM (Figure 5.S1). However, the PYM-HDACi compounds’ 

bi bii 

biii

u 
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pyrimidinediamine head does not gain access into the hDHFR binding pocket as efficiently as 

PYM, largely due to the interruption caused by their HDACi moiety. This result suggests that the 

docked poses of PYM-HDACi may not be favorable thus making DHFR inhibition a less likely 

attribute of the PYM-HDACi compounds.  

 

5.2.3 Chemistry  

To synthesize the class I PYM-HDACi compounds, 4-bromophenyl acetonitrile 1 was reacted with 

ethyl propanoate 2 under basic condition to yield β-ketonitrile34 3 which was then converted to the 

methoxyphenol 5 using trimethyl orthoformate 4.35 Pyrimidine ring was formed through 

cyclization reaction of 5 with guanidine hydrochloride to afford compound 6.31 Boc protection of 

amine36,37 groups of 6, to give 7, followed by sonogashira reaction with trimethylsilylacetylene 8 

resulted in compound 9.38 Trimethylsilyl group was removed using potassium carbonate to afford 

alkyne 10. Subsequently, copper (I) catalyzed azide-alkyne-cycloaddition (AAC)39 reaction 

between alkyne 10 and compounds 11a-c,40 followed by removal of trityl- protecting group 

resulted in the final class I compounds 12a-c. Control compound 12d was similarly synthesized  

from Boc deprotected compound 10a and azido ester 11d (Scheme 5.1). 
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Scheme 5.1. (a) Potassium tert-pentylate 25% in toluene,THF, rt, 20 min, 90%; (b) 6 h, neat 

reaction 120 °C, 53%; (c) Guanidine hydrochloride, NaHCO3, DMSO, 100 °C, 6 h, 72%; (d) 

Boc2O, THF, DMAP, 45 °C, THF, 86%; (e) Hunig’s base, Pd(PPh3)4, acetonitrile, CuI, 75 °C, 

overnight; (f) K2CO3, MeOH, 0 °C, 2 h, 36% (e and f); (g) CuI, Hunig's base, rt, overnight; (h) 

TFA, DCM, rt, 2 h, 84-88% (g and h). 
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To synthesize the monophenyl class II PYM-HDACi compound, a Heck reaction was performed 

on intermediate 6 with methyl acrylate 13.41 After the Boc protection to give intermediate ester 15 

which was subsequently converted to carboxylic acid 16 using sodium hydroxide.42 The desired 

hydroxamic acid compound 18 was synthesized through the coupling of carboxylic acid 16 and O-

trityl hydroxylamine 17 followed by trityl deprotection (Scheme 2).40       

 

 

Scheme 5.2 . (a) Tri-O-tolyl phosphine, Pd(OAc)2, TEA, DMF, 120 °C, overnight, 55%; (b) 

Boc2O, THF, DMAP, 45 °C, THF, 56%; (c) NaOH, H2O, Dioxane, 20 °C, 12 h, 60%; (d) EDCI, 

HOBT, DCM, rt, 6 h; (e) TFA, DCM, rt, 2 h, 24% (d and e). 

 

To synthesize the biphenyl class II PYM-HDACi compound, a Suzuki coupling reaction of Boc 

protected intermediate 7 with 4-hydroxyphenyl boronic acid furnished compound 19 which was 

converted to triflate compound 20 using standard protocol. Suzuki coupling between compound 

20 and potassium vinyl trifluoroborate furnished aryl vinyl compound 21. Cross metathesis 

reaction of 21 with N-(trityloxy)acrylamide using Hoveyda-Grubbs 2nd generation catalyst43 

afforded compound 22 which upon treatment with TFA and TIPS furnished the desired class II 

compound 23 (Scheme 3).  
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Scheme 5.3. (a) 4-hydroxyphenyl boronic acid, Pd(PPh3)4, Cs2CO3, 80 oC, 4 h, 81%; (b) 

Trifluoromethanesulfonic anhydride, pyridine, -20 oC, 1 h, 77%; (c) Pd(PPh3)4, Potassium vinyl 

trifluoroborate, Cs2CO3, DMF, 80 oC, 4 h, 90%; (d) Hoveyda-Grubbs 2nd generation catalyst, N-

[Tris(hydroxymethyl)-methyl]acrylamide, DCM, 33oC, overnight, 33%; (e) TFA, TIPS, rt, 2 h, 

80%. 

5.2.4 HDAC inhibition study  

PYM-HDACi compounds were tested against HDAC isoforms 1, 6 and 8. These compounds 

inhibited the HDAC isoforms tested with IC50s ranging from low nanomolar to micromolar. 

Specifically, class I compounds 12a-c broadly inhibited HDACs 1 and 6 but are less potent against 

HDAC 8 (Table 5.1). Within this class, there is a linker length dependency in HDAC 1 and 6 

inhibition potency which optimal for compound 12b. The monophenyl class II compound 18 is a 

relatively weaker HDACi which displayed the strongest inhibitory effect towards HDAC 6. The 

inclusion of an additional phenyl ring, however, broadened and enhanced potency as the biphenyl 

class II compound 23 inhibited both HDAC 6 (Table 5.1). This HDAC inhibition pattern is in 

agreement with the predictions from the in silico docking study shown in Figures 5.5 and 5.6.   
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Table 5.1: HDAC inhibition activities of PYM-HDACi compounds (IC50 in µM).a 

     Compound HDAC1 

(µM) 

HDAC6 

(µM) 

HDAC8 

(µM) 

12a 0.26 0.046  2.8  

12b 0.045  0.017  0.78  

12c 0.21 0.021 NTb 

18 2.2  0.40  1.8  

23 3.7 0.073 NT 

SAHA 0.042  0.034  2.8  

aPerformed through contractual agreement with BPS Bioscience. bNT: Not Tested. 

 

5.2.5 Anti-proliferative activity 

The PYM-HDACi compounds were tested against three transformed and one normal cell lines 

with SAHA, an FDA approved HDACi, as a positive control. The chosen transformed cell lines 

were lung (A549), ER-positive (MCF-7) and TNBC (MDA-MB-231) breast cancer cell lines, 

while monkey kidney epithelial cell (VERO) was selected as the nontransformed cell line. Our 

choice of the transformed cell lines is informed by the STAT3 pathway dependency of these cell 

lines. TNBCs, which account for 20% of all breast cancer incidence, lack Estrogen Receptor (ER), 

Human Epidermal Growth Factor receptor 2 (HER2), and Progesterone Receptor (PR).44 TNBCs 

are characterized by high metastasis, chemo-resistance, and poor prognosis with a lower five-year 

survival rate relative to all the other non-TNBCs.45 Currently, there are no efficient targeted 



404 

 

treatment options for TNBC. Therefore, identification of new drug candidates for TNBC is 

urgently warranted.   

STAT3 plays a critical role in TNBCs, as it regulates several genes vital to cell survival, 

metastasis, and invasiveness.46 Constitutive activation of STAT3 in MDA-MB-231 cells 

promotes cell survival by regulating the expression of Bcl-2, Bcl-xL, Survivin, cyclin D1, c-

Myc, and Mcl-1.47 Conversely, A549 and MCF-7 cell lines have very low levels of constitutively 

active STAT3.48-53Due to their combined effect on inhibition of STAT3 pathway, PYM-HDACi 

compounds are expected to be more cytotoxic to STAT3-dependent cells such as MDA-MB-231 

while somewhat less toxic to cell lines, such as A549 and MCF-7, with low levels of 

constitutively active STAT3. 

We observed that the two classes of the PYM-HDACi compounds have distinct effects on the 

viability of the cell lines tested. Class I compounds 12a-c showed preferential cytotoxicity to the 

STAT3-dependent MDA-MB-231 cells with linker-length-dependent potency that also closely 

tracks with their HDAC inhibition potency. Specifically, compound 12a is only cytotoxic to MDA-

MB-231 with an IC50 of 38.38 ± 1.0 M. In addition to being more potent than 12a against MDA-

MB-231, compounds 12b and 12c are also cytotoxic toward A549 and MCF-7 cells. However, 

12b and 12c displayed >3-5-fold selectivity for MDA-MB-231 relative to the other tested cell lines 

(Table 5.2).  By testing the intermediate ester 12d, we subsequently confirmed that the 

modification that we introduced did not abolish the independent antiproliferative effect of PYM. 

In fact, compound 12d is 2.5-4.6-fold more potent than PYM against the two cell lines for which 

PYM IC50s were measurable within the concentration range we used (Table 5.2).   

Presumably, due to its poor HDAC inhibitory activity and/or high hydrophilicity (CLogP = 0.877) 

which may negatively impact cell penetration, compound 18 did not show anti-proliferative 

activity towards all the cell lines tested. The additional phenyl ring in compound 23, which resulted 

in the enhancement of its HDAC6 inhibition activity relative to 18 and higher hydrophobicity 
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(CLogP = 2.765), also results in it having broad antiproliferative activities against the tested cell 

lines. However, 23 displayed little or no cell line selectivity (Table 5.2) which suggests that its 

antiproliferative activity may be largely due to HDAC inhibition. Although all the PYM-HDACi 

compounds are less potent relative to SAHA, the control HDACi, the selectivity of the class I 

compounds 12a-c toward STAT3-dependent MDA-MB-231 suggest the contribution of the 

inhibition of STAT3 pathway to the anti-proliferative activities of these compounds since most 

non-targeted HDACi are incapable of tumor cells selectivity, a cause of their off-target toxic 

effects.20 Interestingly, a combination therapy experiment whereby we used fixed concentration of 

of PYM (100 M, approx ½ IC50 against MDA-MB-231  cells) and varying the concetrations of 

SAHA showed only slight to moderate improvements in the potency, relative to SAHA as a 

standalone agent, against all cell lines tested, including the non-transformed Vero cells. This 

combination did not result in MDA-MB-231 cell-selectivity that we noticed in the designed 

mutiple ligands PYM-HDACi 12b and 12c. 

 

 

Table 5. 2. Anti-proliferative activity of PYM-HDACi compounds (IC50 in µM).  

Compound A549 
(µM) 

MCF-7 
(µM) 

MDA-MB-231 
(µM) 

VERO 
(µM) 

12a NI NI 38.4± 1.0 ND 

12b 65.5 ± 4.6 57.3 ± 3.4 12.2 ± 2.2 40.3 ± 3.6 

12c 88.4 ±10.5 83.3 ± 15.5 21.4 ± 3.7 NI 

12d 113.8 ± 4.0 96.6 ± 6.9 94.9 ± 9.7 112.7 ± 8.2 

18 NI NI NI ND 

23 10.0 ± 1.9 9.3 ± 1.6 5.4 ± 1.2 6.9 ± 0.4 

PYM NI 453 238 NI 

SAHA 15.7 ± 1.0 3.5 ± 0.05 3.4 ± 0.2 4.5 ± 0.7 

PYM + SAHA 10.2 ± 0.9 2.3 ± 0.46 1.9 ± 0.5 1.3 ± 0.1 

 
*Each value is obtained from a duplicate of three simultaneous experiments. NI: No Inhibition. ND: Not Determined 

at a maximum concentration of 100 µM. Comb. means SAHA with variable concentration combined with 100M 

PYM 
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5.2.6 Intracellular target validation 

To determine the contributions of HDAC and STAT3 pathway inhibition to the antiproliferative 

activities of PYM-HDACi compounds, we used immunoblotting to investigate the MDA-MB-

231 cells response to one of the lead compounds 12c using SAHA and PYM as positive controls 

for HDAC and STAT3 inhibition respectively. For HDAC inhibition, we monitored histone 4 

(H4) and tubulin acetylation states as markers for HDACs 1 and 6 intracellular inhibition 

activities, respectively.54,55 GAPDH expression was used as a protein loading control. When 

exposed to the cells at ½-IC50, IC50 and 2x-IC50, 12c induced accumulation of acetylated H4 and 

acetylated tubulin. Similarly, SAHA at 1.5 induced H4 and tubulin hyperacetylation (Figure 

5.7). PYM has no effect on the acetylation status of tubulin and H4. This result strongly suggests 

that the PYM-HDACi 12c inhibits these HDACs intracellularly, an attribute which contributes to 

their antiproliferative activity. 
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Figure 5. 7. The Western blot analysis. (a) Immunoblotting of the acetylation status of tubulin and 

H4 of MDA-MB-231 treated with DMSO, PYM, SAHA, and 12c for 4 h. Cells were serum-starved 

24 h prior to the treatment. Acetylated −tubulin and acetylated H4 are upregulated by SAHA and 

12c but not PYM. (b) Quantification of acetylated −tubulin and acetylated H4 obtained by 

averaging data from two independent experiments. (Bars show mean plus standard deviation; * P 

< 0.05; ** P < 0.0021;***P<0.0002) 

 

 To elucidate the effect of the PYM-HDACi compounds on the STAT3 pathway, we 

probed the effects of 12c, SAHA and PYM on the intracellular expression of STAT3, p-STAT3, 

p38, p-p38, Bcl-2, and Bcl-xL. Bcl-2 and Bcl-xL are anti-apoptotic genes whose expressions are 

upregulated by constitutive activation of STAT3.56-58 Conversely, inhibition of STAT3 

upregulates the intracellular level of p-p38.59-61 As stated earlier, HDACi inhibits STAT3 

pathway through direct downregulation of p-STAT3. The exact mechanism of the inhibition of 
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the STAT3 pathway by PYM has not been fully elucidated. However, it has been recently shown 

that PYM is a direct inhibitor of STAT3 transcriptional activity as PYM could upregulate p-

STAT3 cellular levels while downregulating the expression of p-STAT3 target genes, including 

Bcl-2 and Bcl-xL, in TNBC cell lines.62 We observed that 12c (at 1/4th-, ½- and 1x-IC50) and 

SAHA (at 1/4th- and ½-IC50) caused concentration-dependent upregulation of p-p38 and 

downregulation of Bcl-xL in MDA-MB-231 cells. Within this concentration range, 12c slightly 

downregulates Bcl-2 levels while SAHA caused no statistically relevant changes to the 

intracellular levels of Bcl-2. PYM (at 50 µM and 100 µM) has a similar effect as SAHA, causing 

concentration-dependent upregulation of p-p38 and Bcl-xL and no effect on Bcl-2 levels (Figures 

5.8a and 5.8b). Interestingly, the effects of 12c and PYM on p-STAT3 levels are closely aligned 

as they both caused upregulation of p-STAT3 while SAHA cause a slight downregulation of p-

STAT3. The observed PYM-induced upregulation of p-STAT3 is in agreement with a previous 

observation.62 To further confirm this effect on STAT3 pathway, we investigated the effects of 

12c, SAHA and PYM on the intracellular levels of the cyclin D1, a downstream protein of 

STAT3 pathway.47 We observed that cyclin D1 is significantly downregulated with 12c, SAHA 

and PYM at approx. ½ - and 1x-IC50 concentration (Figures 5.9a and 5.9b). Collectively, this 

data suggests that the intracellular inhibitions of HDACs and the STAT3 pathway contribute to 

the anti-proliferative activity of the PYM-HDACi compounds 12c.  However, the mechanism of 

STAT3 pathway inhibition of 12c is distinct from that of prototypical HDACi and very similar to 

that of STAT3 inhibitor template PYM. This distinction could be the basis for the TNBC cell 

selectivity of the PYM-HDACi.  

a. 

                                  DMSO        PYM                         12c                              SAHA 

                                                        50µM      100µM       5µM     12.5µM      25µM        0.8µM      1.6µM 
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Figure 5.8. (a) Western blot analysis of the effects of compounds on the STAT3 pathway in MDA-

MB-231 cells. Cells were serum-starved for 24 h prior to treatment with the tested agents such that 
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the final DMSO content in the media is 0.1%. Cells were treated with the tested agents for 24 h. 

Images show the effects of DMSO, PYM, 12c and SAHA on the intracellular levels of selected 

STAT3 pathway markers. (b) Quantification of the Western blots data probing for the effects of 

PYM, SAHA, and 12c on the STAT3 pathway in MDA-MB-231 cells. (Bars show mean plus 

standard deviation; * P < 0.05; ** P < 0.0021; ***P<0.0002). 
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Figure 5.9. Western blot analysis of Cyclin D1 expression level after treatments. (a) Crops of bands 

of Actin and Cyclin D1, and (b) quantification of the Western blots data revealed the effects of 

12c on the cyclin D1 expression MDA-MB-231 cells. Experimental conditions are the same for 

the data shown in Figure 5.8. (Bars show mean plus standard deviation; * P < 0.05; ** P < 

0.0021;***P<0.0002; ****P<0.00001).   
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5.2.7 Flow Cytometry for Cell Cycle Analysis. 

We then performed cell cycle analysis to determine the effects of PYM-HDACi 12c, 12b and 

SAHA on MDA-MB-231 cell cycle distribution. We observed that the effects of 12c (12.5 and 

25 M), 12b (15M) and SAHA (5 M) on cell cycle are very similar as they induced 

significant G2 phase arrest (Figure 5.10 and Figure 5S.2). Previous studies have shown that 

SAHA caused G2 arrest when exposed to breast cancer cells at concentrations above 3.0 μM63. 

The G2 cell cycle arrest induced by these compounds suggests that in addition to their 

cytotoxicity effects, they also induce MDA-MB-231 cell apoptosis. 

A. 

 
B. 



412 

 

 
 
C. 

 
D. 
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Figure 5.10.  Effect of (a) DMSO control, (b) 12c (12.5M), (c) 12c (25M),  and (d) SAHA 

(5M) on MDA-MB-231 cell cycle progression.   

 

5.3 Conclusion 

We disclosed in this study two classes of dual-acting compounds designed to inhibit HDACs and 

the STAT3 pathway. We observed that the class I PYM-HDACi compounds 12a-c potently inhibit 

HDACs 1 and 6 in cell-free assays and are preferentially cytotoxic to MDA-MB-231, a TNBC cell 

line that is highly STAT3-dependent. Moreover, target validation studies revealed that a 

representative compound 12c elicited a signature of HDAC and STAT3 pathway inhibition 

intracellularly. In addition, 12b and 12c show significant selective cell cytotoxicity to TNBC. 

Overall, these compounds show promise as leads to develop targeted therapy for TNBC.  

 

 

5.4 Experimental section 

5.4.1 Materials and methods 

4-Bromophenyl acetonitrile, ethyl propionate, O-tritylhydroxylamine, methyl acrylate, were 

purchased from Sigma-Aldrich. Trimethylsilylacetylene was purchased from Alfa Aesar. All 

commercially available starting materials were used without purification. Reaction solvents were 

high performance liquid chromatography (HPLC) grade or American Chemical Society (ACS) 

grade and used without purification. Analtech silica gel plates (60 F254) were used for analytical 

TLC, and Analtech preparative TLC plates (UV 254, 2000 µm) were used for purification.  UV 

light and anisaldehyde/iodine stain were used to visualize the spots.  200-400 Mesh silica gel was 

used in column chromatography. Nuclear magnetic resonance (NMR) spectra were recorded on a 
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Varian-Gemini 400 MHz, Bruker 500 MHz or 700 MHz magnetic resonance spectrometer.  1H 

NMR Spectra were recorded in parts per million (ppm) relative to the residual peaks of CHCl3 

(7.24 ppm) in CDCl3 or CHD2OD (4.78 ppm) in CD3OD or DMSO-d5 (2.49 ppm) in DMSO-d6. 

13C spectra were recorded relative to the central peak of the CDCl3 triplet (77.0 ppm) or CD3OD 

septet (49.3 ppm) or DMSO-d6 septet (39.7 ppm) and were recorded with complete hetero-

decoupling. Original ‘fid’ files were processed using MestReNova LITE (version 5.2.5-5780) 

program. High-resolution mass spectra were recorded at the Georgia Institute of Technology 

mass spectrometry facility in Atlanta.  

 

2-(4-Bromophenyl)-3-oxopentanenitrile (3). To a solution of 4-bromophenyl acetonitrile 1 (1.4 

g, 7 mmol) in THF (10 mL), potassium tert-pentylate 2 (25% in toluene) (12.2 mL, 21 mmol) 

was added dropwise, followed by addition of ethyl propionate. The reaction mixture was stirred 

for 20 min, and then neutralized (approx. pH=7) with 1N HCl to. Water (5 mL) and EtOAc (10 

mL) were added and the two layers separated. The organic layer was washed with water (10 mL) 

and brine (10 mL) and dried over Na2SO4. The crude was purified by column chromatography on 

silica gel, eluting with hexane: EtOAc 4:1, to furnish compound 3 (1.6 g, 90%) as yellow oil. 1H 

NMR (400 MHz, CD3OD) δ 7.62 – 7.53 (m, 2H), 7.49 – 7.41 (m, 2H), 2.71 – 2.55 (m, 2H), 1.31 

– 1.23 (m, 3H). 13C NMR (101 MHz, CD3OD) δ 173.5, 132.1, 131.9, 130.9, 130.0, 129.0, 120.0, 

119.4, 85.6, 28.8, 11.2. HRMS (ESI) m/z Calcd. for C11H10NO Br [M+H+]: 250.9946, found 

250.9946. 

 

2-(4-Bromophenyl)-3-methoxypent-2-enenitrile (5). A mixture of compound 3 (3.1 g, 12.5 

mmol) and trimethyl orthoacetate 4 (12.3 mL, 96.5 mmol) was heated at 107 °C for 6 h. 
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Dichloromethane (DCM) (15mL) was added and the mixture was washed with water (15 mL), 

NaHCO3 (15 mL), and brine (15 mL). The organic layer was dried over Na2SO4 and the crude 

was purified by column chromatography on silica gel, eluting with hexanes:EtOAc 3:1, to 

furnish compound 5 (1.1 g, 33%) as yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.57 – 7.35 (m, 

4H), 2.77 (q, J = 7.6 Hz, 2H), 1.32 – 1.26 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 173.1, 131.4, 

130.8, 129.8, 120.7, 119.7, 91.5, 56.4, 24.1, 12.8. HRMS (ESI) m/z Calcd. for C12H12NO Br 

[M+H+]: 265.0102, found 265.0103. 

 

  

5-(4-Bromophenyl)-6-ethylpyrimidine-2,4-diamine (6). A mixture of compound 5 (846 mg, 3.2 

mmol), sodium hydrogen carbonate (588 mg, 7mmol) and guanidine hydrochloride (668 mg, 7 

mmol) in dry DMSO (10 mL) was heated at 100 °C for 5 h. To the reaction was added 10% 

MeOH in DCM (30 mL) and the mixture was washed with water (3× 15 mL) and brine (15 mL) 

The organic layer was dried over Na2SO4, concentrated and the concentrate was purified by 

precipitation with EtOAc to furnish compound 6 (670 mg, 72%) as a white powder. 1H NMR 

(400 MHz, CD3OD) δ 7.62 (d, J = 8.5 Hz, 2H), 7.16 (d, J = 8.5 Hz, 2H), 2.22 (q, J = 7.6 Hz, 

2H), 1.03 (t, J = 7.6 Hz, 3H). 13C NMR (126 MHz, DMSO-d6) δ 166.8, 162.6, 162.4, 135.9, 

133.4, 132.3, 121.0, 105.9, 49.1, 27.9, 13.7. HRMS (ESI) m/z Calcd. for C12H14N4Br [M+H+]: 

293.0396, found for 293.0399. 

 

Di-tert-butyl (5-(4-bromophenyl)-6-ethylpyrimidine-2,4-diyl)bis((tert-butoxycarbonyl) 

carbamate) (7). Compound 6 (104.4 mg, 0.3 mmol) and DMAP (4.3 mg, 0.03 mmol) were 

dissolved in THF (5 mL) and flushed with argon. Boc2O (622.7 mg, 2.8 mmol) was added to the 

solution and thereaction was stirred overnight at 40 °C. The mixture was partitioned between 
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water (15 mL) and DCM (25 mL), the organic layer was separated, washed with brine (15 mL) 

and dried over Na2SO4.  The crude was purified on preparative TLC eluting with hexanes:EtOAc 

4:1 to yield compound 7 (204 mg, 86% conversion) as a yellow oil. 1H NMR (400 MHz, CDCl3) 

δ 7.56 – 7.48 (m, 2H), 7.14 – 7.03 (m, 2H), 2.59 (q, J = 7.5 Hz, 2H), 1.42 (s, 18H), 1.31 (s, 18H), 

1.13 (t, J = 7.5 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 173.9, 158.6, 157.4, 150.3, 149.8, 132.0, 

131.7, 130.8, 128.3, 122.6, 83.5, 83.1, 28.4, 27.9, 13.0. HRMS (ESI) m/z Calcd. for 

C32H46O8N4Br [M+H+]: 693.2494, found 693.2493. 

 

 Di-tert-butyl (6-ethyl-5-(4-((trimethylsilyl)ethynyl)phenyl)pyrimidine-2,4-diyl)bis((tert-

butoxycarbonyl)carbamate) (9). Compound 7 (315 mg, 0.4 mmol), Pd(PPh3)4 (26 mg, 0.02 

mmol), and CuI (8.6 mg, 0.04 mmol) were dissolved in acetonitrile (5 mL) under argon. 

Trimethylsilylacetylene 8 (0.1 mL, 0.9 mmol) was added, followed by Hunig’s base (0.2 mL, 0.9 

mmol). The reaction mixture was heated at 75 °C overnight.  The mixture was partitioned 

between water (15 mL) and DCM (25 mL). The organic layer was separated, washed with brine 

(5 mL) and dried over Na2SO4. Crude product 9 was used in the next step without purification.  

 

Di-tert-butyl (6-ethyl-5-(4-ethynylphenyl)pyrimidine-2,4-diyl)bis((tert-

butoxycarbonyl)carbamate) (10). Potassium carbonate (74 mg, 0.5 mmol) was added to a 

solution of crude compound 9 (190 mg) in methanol (3 mL). The reaction mixture stirred for 2 h 

at room temperature. The mixture was partitioned between water (10 mL) and DCM (20 mL). 

The organic layer was separated, washed with brine (10 mL), and dried over Na2SO4. The crude 

was purified on preparative TLC eluting with hexanes:EtOAc:Ether 8:1:1 to furnish compound 

10 (93 mg, 36% overall yield two steps starting from 7) as a white powder. 1H NMR (400 MHz, 
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CDCl3) δ 7.57 – 7.49 (m, 2H), 7.25 – 7.18 (m, 2H), 3.14 (s, 1H), 2.61 (dt, J = 7.5, 6.0 Hz, 2H), 

1.45 (s, 18H), 1.34 (s, 18H), 1.17 (q, J = 7.6 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 173.8, 

158.7, 157.1, 150.9, 150.0, 134.0, 132.3, 129.5, 128.8, 122.4, 83.8, 83.5, 83.1, 78.4, 28.5, 27.7, 

13.0. HRMS (ESI) m/z Calcd. for C34H47O8N4 [M+H+]: 639.3388, found 639.3382. 

 

6-ethyl-5-(4-ethynylphenyl)pyrimidine-2,4-diamine (10a). Potassium carbonate (37 mg, 0.25 

mmol) was added to a solution of crude compound 9 (95 mg, 0.13mmol) in methanol (3 mL). 

The reaction mixture stirred for 2 h at room temperature. The mixture was partitioned between 

water (10 mL) and DCM (20 mL). The organic layer was separated, washed with brine (10 mL), 

and dried over Na2SO4. The crude was purified on preparative TLC eluting with 

hexanes:EtOAc:Ether 8:1:1 to furnish compound 10 (63 mg, 0.098mmol, 75%) as a white 

powder. The product was added to TFA (2 mL) for a neat deprotection of the Boc group at 

ambient temperature for 4-8h. The TFA solution was neutralized with sodium bicarbonate and 

the mixture partitioned between water (30 mL) and DCM (50 mL). The two layers were 

separated, the organic layer was dried over Na2SO4 and the solvent evaporated off. The crude 

product was purified by column or prep-TLC, eluting with DCM: MeOH=10:1, to give 10a as 

solid, 19 mg (0.08mmol, yield 81%). 1H NMR (400 MHz, DMSO-d6) δ 7.51 (d, J=8.3 Hz, 2H), 

7.19 (d, J=8.3 Hz, 2H), 4.22 (d, J = 0.8 Hz, 1H), 2.09 (q, J = 7.5 Hz, 2H), 1.17 – 0.73 (t, J=7.6 

Hz 3H). HRMS (ESI) m/z Calcd. for C14H14N4 [M+H+]: 239.1287, found 239.1291 

 

 

6-(4-(4-(2,4-Diamino-6-ethylpyrimidin-5-yl)phenyl)-1H-1,2,3-triazol-1-yl)-N-

hydroxyhexanamide  (12a). Compound 10 (41 mg, 0.06 mmol) and 4-azido-N-
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(trityloxy)hexanamide 11a (32 mg, 0.08 mmol) were dissolved in anhydrous THF (5 mL) and 

purged with argon for 15 min. Copper (I) iodide (6 mg, 0.03 mmol) and Hunig’s base (0.02 mL, 

0.1 mmol) were added,  the mixture was purged with argon for additional 15 min and stirring 

continued for approx. 12 h. The reaction was partitioned between DCM (20 mL) and sat. NH4Cl/ 

conc. NH4OH (4:1) (15 mL) and the two layers separated. The organic layer was washed with 

sat. NH4Cl/ conc. NH4OH (4:1) (2 x 15 mL), sat. brine (15 mL), dried over Na2SO4 and the 

solvent was evaporated off. The crude was then dissolved in DCM: TFA (1: 0.2 mL) 

andtriisopropyl silane was added dropwise until the color transformed from dark yellow to pale 

yellow. TLC indicated the complete consumption of the starting material after 1 h. Solvent was 

evaporated off and the crude product was purified by precipitation in EtOAc to give the title 

compound (23 mg, 88%) as a pale yellow solid. 1H NMR (500 MHz, CD3OD) δ 8.46 (s, 1H), 

8.02 (d, J = 7.7 Hz, 2H), 7.40 (dd, J = 15.1, 8.0 Hz, 2H), 4.50 (d, J = 6.2 Hz, 2H), 2.42 (q, J = 

7.2 Hz, 2H), 2.21 – 2.04 (m, 2H), 2.02 (s, 2H), 1.71 (s, 2H), 1.41 (s, 2H), 1.21 – 1.12 (m, 3H). 

13C NMR (126 MHz, CD3OD) δ 165.2, 155.5, 154.6, 146.9, 131.6, 130.9, 126.7, 121.4, 108.8, 

71.2, 50.1, 29.8, 29.2, 25.6, 24.6, 23.9, 17.3, 11.8. HRMS (ESI) m/z Calcd. for C20H27O2N8 

[M+H+]: 411.2251, found 411.2246. 

 

7-(4-(4-(2,4-Diamino-6-ethylpyrimidin-5-yl)phenyl)-1H-1,2,3-triazol-1-yl)-N-

hydroxyheptanamide (12b). The reaction of compound 10 (40 mg, 0.06 mmol), 4-azido-N-

(trityloxy)heptanamide 11b (32 mg, 0.08 mmol), copper (I) iodide (6 mg, 0.03 mmol) and 

Hunig’s base (0.02 mL, 0.1 mmol)  in anhydrous THF (5 mL) as described for the synthesis 12a 

furnished the title compound 12b.  1H NMR (400 MHz, CD3OD) δ 8.43 (s, 1H), 7.99 (d, J = 6.4 
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Hz, 2H), 7.37 (s, 2H), 4.47 (s, 2H), 2.39 (s, 2H), 2.19 (d, J = 31.3 Hz, 2H), 1.99 (d, J = 11.8 Hz, 

2H), 1.60 (s, 2H), 1.38 (s, 4H), 1.14 (d, J = 6.1 Hz, 3H). 13C NMR (126 MHz, CD3OD)  

δ 164.9, 155.4, 154.8, 146.7, 131.4, 130.9, 130.6, 126.5, 121.4, 108.8, 50.1, 29.8, 29.4, 28.1, 

26.1, 25.0, 23.7, 23.0, 11.8. HRMS (ESI) m/z Calcd. for C21H29O2N8 [M+H+]: 425.2408, found 

425.2402. 

 

8-(4-(4-(2,4-Diamino-6-ethylpyrimidin-5-yl)phenyl)-1H-1,2,3-triazol-1-yl)-N-

hydroxyoctanamide (12c). The reaction of compound 10 (110 mg, 0.16 mmol), 4-azido-N-

(trityloxy)heptanamide 11c (100 mg, 0.22 mmol), copper (I) iodide (20 mg, 0.1 mmol) and 

Hunig’s base (0.2 mL, 1.17 mmol)  in anhydrous THF (5 mL) as described for the synthesis 12a 

furnished the title compound 12c. 1H NMR (700 MHz, DMSO-d6) δ 12.40 (s, 1H), 10.31 (s, 

1H), 8.66 (s, 1H), 8.14 (s, 1H), 7.95 (d, J = 8.0 Hz, 2H), 7.61 (s, 2H), 7.33 (d, J = 7.9 Hz, 2H), 

6.87 (s, 1H), 2.25 (q, J = 7.6 Hz, 2H), 1.88 (dt, J = 24.4, 7.2 Hz, 4H), 1.45 (t, J = 7.5 Hz, 2H), 

1.24 (d, J = 17.7 Hz, 6H), 1.13 – 0.75 (m, 5H). 13C NMR (176 MHz, DMSO) δ 169.5, 164.6, 

155.2, 154.7, 146.3, 131.5, 130.9, 126.5, 122.1, 108.5, 65.4, 50.0, 32.6, 30.1, 28.9, 28.5, 26.2, 

25.5, 24.1, 18.3, 15.6, 13.1. HRMS (ESI) m/z Calcd. for C21H29O2N8 [M+H+]: 439.2564, found 

439.2558. 

 

Ethyl 8-(4-(4-(2,4-diamino-6-ethylpyrimidin-5-yl)phenyl)-1H-1,2,3-triazol-1-yl)octanoate (12d). 

A mixture of compound 10a (20 mg, 0.084 mmol), ethyl 8-azidooctanoate 11d (50 mg, 0.11 

mmol), copper (I) iodide (5 mg, 0.026 mmol) and Hunig’s base (0.2 mL, 1.17 mmol)  in 

anhydrous THF (3 mL) was purged with argon for 15 min and the reaction was kept stirring for 

approx. 12 h. The reaction was partitioned between DCM (20 mL) and sat. NH4Cl/ conc. 
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NH4OH (4:1) (15 mL) and the two layers separated. The organic layer was washed with sat. 

NH4Cl/conc. NH4OH (4:1) (2 x 15 mL), sat. brine (15 mL), dried over Na2SO4 and the solvent 

was evaporated off. The product was purified by prep-TLC plate with EtOAc:MeOH=9:1. 1H 

NMR (700 MHz, chloroform-d) δ 7.92 (d, J = 8.2 Hz, 2H), 7.81 (s, 1H), 7.32 (d, J = 8.2 Hz, 2H), 

5.00 (s, 2H), 4.65 (s, 2H), 4.43 (t, J = 7.2 Hz, 2H), 4.13 (q, J = 7.1 Hz, 2H), 2.34 (q, J = 7.6 Hz, 

2H), 2.29 (t, J = 7.5 Hz, 2H), 2.11 – 2.06 (m, 1H), 2.05 (s, 1H), 1.98 (t, J = 7.2 Hz, 2H), 1.63 (p, 

J = 7.4 Hz, 3H), 1.38 (q, J = 3.8 Hz, 4H), 1.34 (td, J = 6.5, 2.4 Hz, 1H), 1.31 – 1.22 (m, 7H), 

1.09 (t, J = 7.5 Hz, 3H). 13C NMR (176 MHz, CDCl3) δ 173.7, 162.3, 147.2, 131.1, 130.3, 126.5, 

119.5, 107.9, 76.9, 60.2, 50.4, 34.2, 30.3, 28.8, 28.7, 28.0, 26.3, 24.8, 14.3, 13.4. HRMS (ESI) 

m/z Calcd. for C21H29O2N8 [M+H+]: 452.2768, found 452.2758. 

 

 

(E)-Methyl 3-(4-(2,4-diamino-6-ethylpyrimidin-5-yl)phenyl)acrylate (14). Compound 6 (90 mg, 

0.3 mmol), methyl acrylate 13 (0.09 mL, 0.9 mmol), TEA (0.1 mL, 0.8 mmol), and tri-O-

tolylphosphine (28 mg, 0.09 mmol) were dissolved in DMF (3 mL). The reaction mixture was 

purged with argon for 15 min, then Pd (OAc)2 (10.3 mg, 0.05 mmol) was added, and the mixture 

was heated at 120 °C overnight.  The reaction was partitioned between water (10 mL) and DCM 

(10 mL). The organic layer was separated, washed with brine (5 mL), and dried over Na2SO4. 

Solvent was evaporated off and the crude was purified on preparative TLC eluting with 

EtOAc:hexanes:NEt3 10:1:0.5 to yield compound 14 (50 mg, 55%) as a pale yellow powder. 1H 

NMR (400 MHz, CD3OD) δ 7.74 (d, J = 8.2 Hz, 3H), 7.32 (d, J = 7.7 Hz, 2H), 6.60 (d, J = 16.2 

Hz, 1H), 2.38 – 2.21 (m, 2H), 1.10 (t, J = 7.4 Hz, 3H). 13C NMR (126 MHz, CD3OD) δ 167.4, 
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164.1, 157.7, 144.1, 134.6, 134.2, 130.9, 128.7, 118.6, 107.9, 70.3, 51.1, 31.8, 29.2, 25.4, 12.0. 

HRMS (ESI) m/z Calcd. C16H19O2N4 [M+H+]: 299.1503, found 299.1503. 

 

(E)-Methyl 3-(4-(2,4-bis(bis(tert-butoxycarbonyl)amino)-6-ethylpyrimidin-5-yl)phenyl)acrylate 

(15). Compound 14 (27 mg, 0.09 mmol) and DMAP (1.1 mg, 0.009 mmol) were dissolved in 

THF (3 mL) and flushed with argon. Boc2O was added to the solution and the mixture was 

stirred overnight at 40 °C. The reaction was partitioned between water (10 mL) and DCM (20 

mL) and the organic layer was separated, washed with brine (10 mL), and dried over Na2SO4.  

Solvent was evaporated off and the crude was purified on preparative TLC eluting with 

hexanes:EtOAc 3:1 to yield compound 15 (35 mg, 56%) as a white solid. 1H NMR (400 MHz, 

CD3OD) δ 7.77 (s, 1H), 7.74 (d, J = 7.0 Hz, 2H), 7.34 (dd, J = 17.5, 8.2 Hz, 2H), 6.63 (dd, J = 

16.1, 10.6 Hz, 1H), 3.80 (s, 3H), 2.80 – 2.57 (m, 2H), 1.48 (s, 18H), 1.35 (d, J = 4.3 Hz, 18H), 

1.19 (t, J = 7.5 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 173.8, 167.3, 158.6, 157.4, 150.9, 149.8, 

143.8, 135.3, 134.5, 129.8, 128.0, 118.7, 82.2, 81.3, 70.4, 51.9, 51.8, 29.7, 29.0, 28.6, 28.2, 28.0, 

27.9, 27.8, 27.7, 13.2, 12.9. HRMS (ESI) m/z Calcd. C36H51O10N4 [M+H+]: 699.3600, found 

699.3595. 

 

(E)-3-(4-(2,4-Bis(bis(tert-butoxycarbonyl)amino)-6-ethylpyrimidin-5-yl)phenyl)acrylic acid 

(16). Compound 15 (60 mg, 0.08 mmol) was dissolved in 1,4-dioxane (3 mL) and added 

dropwise to an aqueous solution (3 mL) containing hydroxylamine (6 mg, 0.2 mmol) and sodium 

hydroxide (10.2 mg, 0.2 mmol) at room temperature and stirred for 12 h. The mixture was 

concentrated under vacuum to remove organic solvent. The aqueous solution was adjusted to 

pH=1 with 1N HCl. The resulting precipitate was collected by filtration and dried to give 
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compound 16 (35 mg, 60%) as a pale yellow solid. 1H NMR (400 MHz, CDCl3) δ 7.70 (s, 1H), 

7.60 – 7.52 (m, 2H), 7.27 (d, J = 5.2 Hz, 1H), 7.22 (d, J = 8.1 Hz, 1H), 6.54 (s, 1H), 2.62 (dq, J = 

15.2, 7.5 Hz, 2H), 1.51 (d, J = 15.4 Hz, 6H), 1.50 – 1.44 (m, 12H), 1.32 (s, 18H), 1.24 (d, J = 3.9 

Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 174.3, 158.9, 158.2, 157.6, 156.7, 150.7, 150.5, 150.0, 

130.0, 129.5, 128.8, 128.1, 125.5, 81.5, 29.7, 29.0, 28.6, 28.3, 28.0, 27.8, 27.7, 13.1, 12.9. 

HRMS (ESI) m/z Calcd. C35H49O10N4 [M+H+]: 685.3443, found 685.3434. 

 

(E)-3-(4-(2,4-Diamino-6-ethylpyrimidin-5-yl)phenyl)-N-hydroxyacrylamide (18). Compound 16 

(35 mg, 0.05 mmol), EDCI (9.5 mg, 0.05 mmol) and HOBT (6.9 mg, 0.05 mmol) were dissolved 

in DCM (3 mL) at 0 °C. After stirring at 0 °C for 15 min, O-tritylhydroxylamine (20.6 mg, 0.07 

mmol) and Hunig’s base (0.03 mL, 0.15 mmol) were added, and the mixture stirred for 12 h at 

room temperature. The reaction was partitioned between water (10 mL) and DCM (20 mL) and 

the organic layer was separated, washed with brine, and dried over Na2SO4.  Solvent was 

evaporated off, the crude was dissolved in DCM: TFA (1: 0.2 mL) and triisopropyl silane was 

added dropwise until the color transformed from dark yellow to pale yellow. TLC indicated a 

complete consumption of the starting material after 1 h. Solvent was evaporated off and the 

crude product was purified by precipitation with EtOAc to give the title compound (3.6 mg, 

24%) as a pale yellow solid.  1H NMR (500 MHz, CD3OD) δ 7.75 (d, J = 7.4 Hz, 2H), 7.66 (d, J 

= 15.6 Hz, 1H), 7.37 (d, J = 6.9 Hz, 2H), 6.59 (d, J = 15.3 Hz, 1H), 2.38 (d, J = 7.4 Hz, 2H), 1.15 

(t, J = 7.3 Hz, 3H). 13C NMR (126 MHz, CD3OD) δ 171.8, 165.2, 158.0, 155.3, 144.8, 135.7, 

130.7, 128.7, 120.4, 29.6, 27.2, 23.9, 12.0. HRMS (ESI) m/z Calcd. C15H18O2N5 [M+H+]: 

300.1455, found 300.1451. 
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Di-tert-butyl (6-ethyl-5-(4'-hydroxy-[1,1'-biphenyl]-4-yl)pyrimidine-2,4-diyl)bis(tert-

butoxycarbonylcarbamate) (19). Compound 7 (500 mg, 0.72 mmol) was mixed with iodo phenol 

(200 mg, 0.91 mmol), copper (I) iodide (20 mg, 0.105 mmol), and Tetrakis(triphenylphosphine) 

palladium (0) (83 mg, 0.072 mmol) in a pressure tube. Acetonitrile (5 mL) was added to dissolve 

the solids; the reaction tube was filled with argon and heated to 75°C for 10 min. Hunig’s base 

(0.5 ml, 2.92 mmol) was added and the reaction was stirred at 75oC overnight. Solvent was 

evaporated off and the crude was purified on silica gel eluting with EtOAc:hexanes 1:1 to furnish 

compound 19 (401 mg, 77.7%) as a pale yellow solid. 1H NMR (400 MHz, CDCl3) δ 7.69 (d, J = 

8.5 Hz, 2H), 7.62 (d, J = 8.7 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H), 7.04 (d, J = 8.7 Hz, 2H), 2.82 (q, 

J = 7.9 Hz, 2H), 1.67 (s, 8H), 1.59 (s, 14H), 1.46 (s, 14H), 1.32 (t, J = 7.5 Hz, 3H). 

 

4'-(2,4-Bis(bis(tert-butoxycarbonyl)amino)-6-ethylpyrimidin-5-yl)-[1,1'-biphenyl]-4-yl 

trifluoromethanesulfonate (20). 

Compound 19 (200 mg, 0.28 mmol) was dissolved into DCM (10 mL). To the solution was 

added pyridine (0.7 mL, 8.66 mmol) and the mixture cooled to -20°C for 10 min with stirring 

under Argon. Trifluoromethanesulfonic anhydride (0.3 mL, 1.78 mmol) was added dropwise to 

the mixture with stirring which continued for 30 min. The reaction was quenched with water 

(100 mL) and DCM (30 mL) was added. The two layers were separated, the organic layer was 

dried over Na2SO4 and solvent was evaporated off to furnish compound 20 (211mg, 0.252mmol) 

as yellow solid. Compound 20 was analytically pure and used for the next reaction without 

purification.  1H NMR (400 MHz, CDCl3) δ 7.62 (d, J = 3.2 Hz, 2H), 7.59 (d, J = 2.9 Hz, 2H), 

7.33 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.8 Hz, 2H), 2.70 (q, J = 7.9 Hz, 2H), 1.59 (s, 8H), 1.48 (s, 

14H), 1.35 (s, 14H), 1.20 (t, J = 7.5 Hz, 3H). 
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Di-tert-butyl (6-ethyl-5-(4'-vinyl-[1,1'-biphenyl]-4-yl)pyrimidine-2,4-diyl)bis(tert-

butoxycarbonylcarbamate) (21). Compound 20 (200 mg, 0.24 mmol) and potassium 

vinyltrifluoroborate (130mg, 0.97mmol) were dissolved in DMF (20 mL). 

Tetrakis(triphenylphosphine) palladium (0) (80 mg, 0.07 mmol) and Cesium carbonate (315 mg, 

0.96 mmol) were added to the mixture and the reaction heated to 80°C for 5 min. Subsequently, 

water (1 mL) was added dropwise into the mixture with stirring until the solution turned clear. 

Stirring continued at 80°C and the reaction was complete after 3 h.  The solution was cooled 

down and partitioned between water (100 mL) and DCM (30 mL). The two layers were 

separated and the aqueous layer was extracted with DCM (30mL). The combined organic layers 

was washed with water (100 mL), dried over Na2SO4 and solvent was evaporated of in vacuo. 

The mixture was purified with column chromatography with ethyl acetate: hexane=2:3. The 

furnish compound 21 was gained (120mg, 70 %) as yellow liquid.  1H NMR (400 MHz, CDCl3) 

δ 7.66 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 8.3 Hz, 2H), 7.53 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 8.4 Hz, 

2H), 6.79 (dd, J = 17.6, 10.9 Hz, 1H), 5.83 (d, J = 17.6 Hz, 1H), 5.32 (d, J = 11.6 Hz, 1H), 2.74 

(t, J = 7.9 Hz, 2H), 1.51 (s, 18H), 1.37 (s, 18H), 1.23 (t, J = 7.5 Hz, 3H). 

 

(E)-Di-tert-butyl (6-ethyl-5-(4'-(3-oxo-3-((trityloxy)amino)prop-1-en-1-yl)-[1,1'-biphenyl]-4-

yl)pyrimidine-2,4-diyl)bis(tert-butoxycarbonylcarbamate) (22). Compound 21 (100 mg, 0.14 

mmol), N-[Tris(hydroxymethyl)methyl]acrylamide (56 mg, 0.17 mmol) and Hoveyda-Grubbs 

2nd generation catalyst (10 mg, 0.016 mmol) was added to the reaction flask and the mixture was  

dissolved in  DCM (10 mL). The reaction mixture was heated under Argon atmosphere at 33°C 

overnight. The solution was evaporated and the crude was purified by preparative TLC eluting 
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with EtOAc:hexane 1:1 to furnish compound 22  (35mg , 23 %) as white solid. 1H NMR (400 

MHz, CDCl3) δ 7.79 (d, J = 8.8 Hz, 2H), 7.73 (d, J = 8.3 Hz, 2H), 7.63 – 7.25 (m, 21H), 2.80 (q, 

J = 7.9 Hz, 2H), 1.60 (s, 18H), 1.47 (s, 18H), 1.35 (t, J = 7.5 Hz, 3H). 

 

(E)-3-(4'-(2,4-Diamino-6-ethylpyrimidin-5-yl)-[1,1'-biphenyl]-4-yl)-N-hydroxyacrylamide (23). 

Compound 22 (35 mg, 0.032 mmol) was cooled to 0°C and mixed with TFA (2 mL) as a neat 

reaction. The solution was stirred at room, triisopropylsilane (0.3-0.5 mL) was added until the 

bright yellow color vanished and stirring continued for 2 h. The solvent was evaporated by 

Rotovap and the residue was dried using high vacuum. The dried residue was washed by 

titurated with diethyl ether and a brown solid which crashed out was filtered to furnish 

compound 23 (8.8 mg, 72 %). 1H NMR (400 MHz, DMSO-d6) δ 10.81 (s, 1H), 9.09 (s, 1H), 8.32 

(s, 1H), 7.84 (d, J = 22.8 Hz, 3H), 7.69 (s, 1H), 7.52 (d, J = 15.8 Hz, 1H), 6.52 (d, J = 15.8 Hz, 

1H), 2.25 (q, J = 7.7 Hz, 2H), 1.07 (t, J = 7.5 Hz, 3H). 13C NMR (176 MHz, DMSO-d6) δ 163.1, 

158.4, 158.2, 140.6, 139.8, 138.2, 134.7, 131.6, 128. 7, 127.9, 127.5, 119.7, 118.7, 108.3, 79.6, 

24.2, 13.1.  HRMS (ESI) m/z Calcd. C21H22O2N5 [M+H+]: 376.1751, found 376.1768. 

 

5.4.2 Cell culture and viability assay 

MDA-MB-231, VERO, and A549 cell lines were maintained in Dulbecco’s Modified Eagle 

Medium (DMEM) (Corning, 10-017-CV), supplemented with 10% fetal bovine serum (FBS) 

(Corning, 35-010-CV). MCF-7 cells were cultured in phenol red free Minimum Essential 

Medium (MEM) (Corning, 17-305-CV), supplemented with 10% fetal bovine serum (FBS). 

Cells were seeded into a 96-well plate (2000 cells/100uL) for 24 h prior to treatment and then 

treated with various drug concentrations for 72 h. All drugs were dissolved in DMSO/DMEM 
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with DMSO concentration maintained at 1%. The effect of compounds on cell viability was 

measured using the MTS assay (CellTiter 96 Aqueous One Solution and CellTiter 96 Non-

Radioactive Cell Proliferation Assays, Promega, Madison, WI) as described by the manufacturer. 

IC50s were determined using Prism GraphPad 8. 

 

5.4.3 In vitro HDAC inhibition assay.  

In vitro HDAC inhibition assay was performed through contractual agreement with BPS 

Bioscience.  

 

5.4.4 Western blots analysis.   

MDA-MB-231 cells were seeded into 6-well plate at 1*106/well in DMEM for 24 h after which 

the cells were starved in serum-free DMEM for another 24 h. Various concentrations of SAHA, 

PYM and 12c solutions in DMSO were added to the cell culture media such that the final DMSO 

level is 0.1%. Cells were treated for 24 h, washed with cold PBS, and lysed with RIPA buffer 

(110l) (VWR, VWRVN653-100ML) buffer containing phosphatase inhibitor (Fisher Thermo, 

A32957) and protease inhibitor (Fisher Thermo, A32955). The cells were scraped and the lysate 

was collected and vortexed for 15s followed by sonication for 60s. The lysate was then 

centrifuged at 14000 rpm for 10 min and the supernatants were collected. The total protein 

concentration was determined using a BCA protein assay kit (BioVision, K813-2500). Based on 

the results from the BSA assay, the lysates were diluted to make equal protein concentration and 

20-40g of each lysate was loaded to each well of the TGX MIDI 4-20% gel (Biorad, cat. 

5671093) and ran at 150V for 70 mins. Subsequently, the gel was transferred on to the Turbo 
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PDVF membrane (Biorad, 1704273) and after blocking with 5% BSA for 1-2 h, the membrane 

was incubated overnight with Ac-Tubulin (Santa Cruz, sc-23950), Ac-H4 (Santa cruz, sc-

515319), Bcl-2 (Santa Cruz, sc-7382), Bcl-xL (Santa Cruz, sc-8392), and p-STAT3/STAT3 

(Cellsignal, D3A7/D1B2J) antibodies. The second day, the membrane was washed with TBST 

for 3x5 min. Secondary antibody (Immunoreagents, part. IR2173) was added and the membrane 

was incubated with agitation for 1 h. Bands were quantified using Odyssey CLx Image system. 

 

5.4.5 Flow cytometry 

MDA-MB-231 cells (5*106) were seeded to 10 cm plate with DMEM for 24 h prior to drug 

treatment.  Cells were treated with DMSO (control) and DMSO solutions of SAHA (5) and 

12b (15) such that the final DMSO level is 0.1%, for another 48 h. Cells were trypsinized 

and washed with cold 1X PBS solution twice. Subsequently, cells were collected using 1x PBS 

buffer and fixed overnight at -20oC using 70% ethanol. Cells were then washed, centrifuged and 

re-suspended in 1X PBS; and the suspension was treated with 200ug/mL RNase for 30 min. 

Then cells were treated with 50ug/mL PI staining at room temperature for 30 mins. The cell 

cycle was analyzed with BD FACS Aria Illu analyzer and the data was processed using FlowJo. 
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Figure 5S.1. Docking outputs of PYM and class I compound B and class II compound E on hDHFR 

(PDB:1U72). Docked pose of PYM (ai-aii) on hDHFR shows that PYM could potentially form H-

bonding interactions with ILE-7, VAL-115, and TYR-121 (3.3Å, 3.8Å, 3.0Å, respectively). Class 

I compound B (bi-biii) adopts docked orientation which potentially enables its pyrimidinediamine 

head to engage in H-bonding interactions with ALA-9 and GLU-30 (3.3Å, 3.4Å, respectively) 

while its hydroxamate moiety forms H-bonding with THR-56, GLY117, and SER-119. Similarly, 

class II compound E (ci-ciii) adopts docked orientation which potentially enables its 

pyrimidinediamine head to engage in H-bonding interactions with ALA-9 and GLU-30 (3.3Å, 

3.4Å, respectively).  The pyrimidinediamine head of both PYM-HDACi compounds does not gain 

access into the hDHFR binding pocket as efficiently as PYM (biii and ciii).  

 

 

 

 

 

 

 

 

 

 

 

ci 

 

ciii 

 

cii 

 



435 

 

Docking on 12d 

 
 

 
 

Figure 5S.2. The docking of 12d on the DBD region of STAT3 protein. (a). The pink chemical is 

the 12d interacting in the DBD region with Binding affinity -7.5kcal/mol. (b). The green chemical 

is the 12b overlapping with the 12d compound in the same region.  
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12b Flow Cytometry for cell cycle arrestment. 

We performed cell cycle analysis to determine the effects of PYM-HDACi 12b and SAHA on 

MDA-MB-231 cell cycle distribution. We observed the effects of 12b (15 M) and SAHA (5 

M) on cell cycle. 

 

Figure 5S.3.  Effect of (a) DMSO control, (b) SAHA and (c) 12b on MDA-MB-231 cell cycle 

progression.   
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Abstract:  

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that promotes 

the expression of oncogenes essential for tumor survival. Pyrimethamine (PYM) is a known 

STAT3 inhibitor that suppresses the proliferation of some cancer cells through downregulation of 

the expression of STAT3 downstream proteins. In this paper, we have used structure-based tools 

to design three classes of novel PYM-based compounds. Relative to PYM, several of these 

compounds more potently inhibited the proliferation of the tested cancer cell lines (A549, Hep-

G2, MCF-7, MDA-MB-231) with VERO as a non-transformed control cell line. Representative 

compounds are able to distinguish between cancer cell lines that are highly dependent on STAT3 

signaling (MDA-MB-231 and Hep-G2) relative to those with low levels of constitutively active 

STAT3 (A549 and MCF-7). Intracellular target validation studies revealed that a cohort of these 

compounds down-regulate the STAT3 downstream proteins Cyclin D1, Bcl-2 and Bcl-xL. 

Additionally, further mechanistic studies strongly suggest that the inhibition of STAT3 binding to 

its DNA target is a key contributor to the anti-cancer activities of these PYM-based compounds. 

Specifically, compounds 11b and 11d more strongly inhibited the interaction of p-STAT3 to its 

target DNA relative to PYM. Collectively, these data showed that 11b and 11d are promising lead 

STAT3 DBD inhibitors for further preclinical evaluation as therapeutic agents for STAT3-

dependent cancers.   

 

 

 



472 

 

Graphical Abstract 

  

Keywords: STAT3 protein, DNA binding domain, pyrimethamine, molecular docking, STAT3 

pathway downstream proteins, cancer therapy, SAR, novel STAT3 inhibitors, transcription factor. 
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6.1 Introduction 

Signal Transducer and Activator of Transcription 3 (STAT3) is a transcriptional factor that plays 

important role in cancer cell proliferation, survival, migration, angiogenesis, invasiveness, and 

anti-apoptosis. As part of normal biology, the activity of STAT3 is tightly regulated. However, 

dysfunction in STAT3 regulation results in its persistent upregulation in many cancers, including 

breast, ovary, and prostate cancers. The constitutive activation sustains the oncogenic activities1-3 

of STAT3 in several of these cancers although others have reported tumor suppressor roles for 

STAT3 in other cancer as well.4 

Cytosolic STAT 3 is activated through phosphorylation by cell-surface associated Janus Kinases 

(JAKs) in response to stimuli by oncogenic cytokines.3, 5 The phosphorylated STAT 3 undergoes 

dimerization at the SH-2 domain6 and translocates to the nucleus and becomes a part of complex 

of transcription factor promoting the expression of oncogenes essential for tumor survival7. Due 

to a better understanding of its molecular mechanism, efforts at targeting STAT3 pathway for 

therapy development include inhibition of JAK1/2, SH2 domain and nuclear translocation of 

STAT3. These efforts have furnished several lead candidates some of which are currently in 

clinical trials.3, 8, 9 Specifically, JAK1/2 inhibitor AZD1480, shown to inhibit the proliferation and 

immunity of the Hodgkin Lymphoma in preclinical characterization, has gone through Phase I 

clinical trial (NCT01112397) and discontinued for further development due to severe adverse 

effects with unclear dose-limiting toxicity.10, 11 Also, OPB-51602 and OPB-31121 are two small 

molecules SH2 domain inhibitors in early stage of clinical trials.12 However, excessive toxicity, 

off-target effects and poor pharmacokinetics profiles are major barriers to the clinical progression 
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of these compounds.13 Other STAT3 inhibitors have been or currently being investigated in various 

preclinical and clinical settings.3, 14, 15 However, none has received FDA approval due to their 

limited efficacy and toxic side effects.9, 16  

Although the STAT3 DNA binding domain (DBD) is considered an undruggable target due its less 

pronounced 3-dimensional architecture, inhibition of STAT3 by targeting its DBD could be 

another option for regulating STAT3 pathway. In this regard, it has been shown that platinum (IV) 

compounds CPA-1, CPA-7, and platinum tetrachloride significantly disrupt the DNA binding 

activity of STAT3 and inhibit the growth of STAT3-dependent tumor cells.17 Unfortunately, these 

platinum (IV) compounds have very poor STAT3 selectivity and have not been considered for 

further development.18  More recently, other groups have reported structurally distinct small 

molecules that could target STAT3 DBD.19, 20 Using virtual screening tools, Huang et al identified 

inS3-54 as STAT3 DBD inhibitor showing good STAT3 selectivity and promising anticancer 

activities in vitro and in vivo.19 Additionally, Lim et al found that at high milimolar concentrations, 

methylsulfonyl-methane (MSM) is able to suppress the growth MDA-MD-231 cells in vitro and 

in vivo by attenuating the STAT3 and STAT5b pathways. MSM acts through the inhibition of the 

binding of STAT3 and STAT5b to the promoter regions of VEGFR and IGF-1R respectively.21  

Pyrimethamine (PYM) is an FDA approved polypharmacology drug which intracellular targets 

include STAT3. Its STAT3 inhibition activity is the basis for the evaluation of PYM in clinical 

trials for the treatment of relapsed CLL and SLL (ClinicalTrials.gov Identifier: NCT01066663).  

We recently disclosed PYM conjugated histone deacetylase inhibitors (HDACi) which, relative to 

PYM, more potently inhibited STAT3 pathway and proliferation of representative STAT3-

dependent cancer cells.22 Despite their inhibition of the expression of intracellular markers of 

STAT3 pathway, these PYM-HDACi did not suppress STAT3 activation, suggesting that they 
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may act as direct inhibitors of activated STAT3 (p-STAT3). Through the molecular docking 

analyses, we have found that these PYM-HDACi could potentially bind to two possible locations 

within STAT3 DBD. Inspired by this work, we designed three classes of PYM compounds to 

further investigate the structure activity relationship (SAR) of PYM-STAT3 DBD interaction. We 

disclosed herein the identification of a cohort of novel PYM-based compounds that, relative to 

PYM, more potently inhibited STAT3 signaling and the growth of STAT3-dependent MDA-MB-

231 and Hep-G2 cells.  We provided evidence which strongly suggest that the inhibition of STAT3 

binding to its DNA target is a key contributor to the anti-cancer activities of these PYM-based 

compounds.  

6.2 Results and Discussion 

6.2.1 Design of PYM-based Novel STAT3 inhibitors and Molecular docking 

In our previous work, we conducted an unbiased docking analyses on STAT3 protein (PDB:1BG1) 

with Autodock Vina23 and noticed that PYM and representatives PYM-HDACi bound to 3 

locations (P1-P3) within STAT3, where P1 and P2 are in the DBD domain. Specifically, PYM, 

PYM-HDACi and WBC-04-82, an analog of PYM-HDACi lacking the HDAC inhibition moiety 

(Fig. 6.1A), showed preferential binding towards the DBD area (P1 and P2) of STAT322   In P1, 

the docked poses are stabilized by H-bonding between the pyrimidine moiety of PYM and Gly-

419, and the triazole group and Asn-420 of STAT3. In P2, PYM interacts through H-bonding with 

His-332 and Lys-573, while the triazole ring with Leu-467. Each position also has tunnel lined by 

hydrophobic residues that allows additional stabilizing hydrophobic interactions. Hydrophobic 

residues at P1 are Val-375, Ala-376, Ala-377, Leu-378, Val-490 and Leu-438; while Met-470, 

Pro-471 and Ile-467 contributed to the hydrophobicity at P2.  However, the tunnel in P1 is 
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somewhat less hydrophobic as it has hydrophilic residue (Lys-488) guarding its solvent expose 

end.  

Using this observed pattern, we designed three classes of new PYM compounds (I-III) in order to 

gain in-depth insights into the SAR of their interaction at these two positions within the STAT3 

DBD (Fig. 6.1B). In class I compounds, PYM moiety is connected to a methylene linker with a 

terminal 1-methyl piperazine moiety. With this design, we envisioned that the methylene group 

could fit the hydrophobic tunnel, projecting the piperazine moiety out into the solvent exposed 

region at the end of the tunnel.  To design class II compounds, we replaced the methylene moiety 

in class I compounds with 4,4’-Oxybis phenyl group capped with various moieties having varying 

degree of hydrophilic/hydrophobic properties. We envisioned that, relative to the flexible 

methylene moiety, the more rigid 4,4’-Oxybis phenyl group could better fit the hydrophobic 

channels in the DBD. To design class III compounds, the methylene moiety in class I compounds 

is substituted with a benzyl group functionalized at the para position with an ureido group. We 

expect the ureido group to provide additional stabilizing interaction with the tunnels residue 

without unduly perturbing the overall hydrophobic character of the linker group. 
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Figure 6.1. (a) Structures of pyrimethamine (PYM), representative PYM-HDACi and WBC-04-

82. (b) General structures of the designed three classes of STAT3 DBD inhibitors based on PYM 

moiety. 

Subsequently, molecular docking analysis gave credence to our design. Specifically, a 

representative compound 11b, binds to P1 and P2 and have improved docking scores relative to 

PYM and WBC-04-82 (Figs. 6.2A-C, Table 6.S1). Specifically, in P1, the pyrimidine moiety of 

11b is bound within a basic hydrophilic pocket (lined by Arg-417 and Arg-423) where it is engaged 

in hydrogen bonding interaction with Cys-418 and Asn-420. The oxybis phenyl group of 11b is 

encased in hydrophobic tunnel formed by Ile-368, Ala-376, Ala-377, Leu-378, Lys-383, Leu-438, 

and Val-490. The pyrrolidine moiety of 11b is oriented into a pocket comprising of both 

hydrophilic (Lys-370, Thr-440 and Lys-488) and hydrophobic (Leu-438) residues (Figs. 6.2A and 

2B1-2). At P2, the pyrimidine moiety of 11b forms hydrogen bonding with Asp-566 within a 

hydrophilic binding pocket that also contains His-332, Arg-335 and Lys-573 (Fig. 6.2C1). The 

oxybis phenyl group of 11b is accommodated within a tunnel through a combination of 
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hydrophobic interaction with Cys-468, Pro-471 andVal-563, and possibly hydrogen bonding 

between its ether moiety and Asn-472 and Lys-615 (Fig.6.2C2). The pyrrolidine moiety is buried 

in a partially hydrophobic/hydrophilic pocket formed by Ile-431, Val-432 and Thr-433.  However, 

11b seems to slightly prefer binding pocket P1. This inference is supported by the fact that the 

docking scores of 11b at P1 and P2 are -10.6 kcal/mol and -9.1 kca/mol, respectively. Regardless, 

both positions may provide ideal binding pockets for 11b and other agents disclosed herein.  

 

 

 

 

P1 
P2 

A 



479 

 

     

 

Figure 6.2. In silico interrogation of the interaction of 11b with the STAT3 DBD (PDB:1BG1): 

(a) Docked poses of 11b within the P1 and P2 binding pockets of STAT3 DBD. The docking 

scores of 11b at P1 and P2 are -10.6 kcal/mol and -9.1 kca/mol, respectively. Binding orientations 

and interactions of the pyrimidine (b1) and oxybis phenyl (b2) moieties of 11b within in P1. 

Binding orientations and interactions of the pyrimidine (c1) and oxybis phenyl (c2) moieties of 

11b within in P2. 

6.2.2 Chemistry. 

The syntheses of class I-III compounds followed the reaction routes shown in schemes 1-4. 

Alkynyl-PYM (compound A) (Fig. 6.3), a key intermediate in each scheme, was synthesized as 

we described in our previous work.22 The azido acids 2a-c were synthesized from 1a-c following 

B1 B2 

C1 C2 
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published procedures.24, 25 EDCI coupling between 2a-c and methylpiperazine furnished azido 

methylpiperazine amides 3a-c. Copper(I)-catalyzed cycloaddition reaction26 between azides 3a-c 

terminal alkyne compound A furnished the target class I compounds 4-c (Scheme 6.1).  

To synthesize alcohol- and amine-based class II, 4,4’-Oxybis benzoic acid 5 was reduced to 

alcohol 6 using NaBH4 and BF3 etherate in THF. Monotosylation to give 7 was accomplished using 

tosyl chloride and trimethylamine (TEA) in dichloromethane (DCM) solution. Treatment of 7 with 

NaN3 in DMF resulted in compound 8 which was subsequently converted to the mesylate 9 by 

reaction with mesyl chloride and TEA in DCM at -20°C. The reaction of compound 9 with 

pyrrolidine, piperidine, and 1-methylpiperazine resulted in azido-amine 10a-c respectively.  

Copper(I)-catalyzed cycloaddition reaction between azides 8 or 10a-c and terminal alkyne 

compound A furnished the target alcohol- and amine-based class II compounds 11a-d (Scheme 

6.2). To synthesize the amide-based class II, azide 8 was subjected to mild oxidation using Burgess 

Reagent and DMSO27 to give aldehyde 12. Pinnick oxidation28 of 12 using sodium chlorite, sodium 

phosphate monobasic, 2-methyl-2-butene in tert-butanol furnished the corresponding carboxylic 

acid 13. EDCI coupling between 13 and pyrrolidine, piperidine, and 1-methylpiperazine resulted 

in azido amide 14a-c.  Copper(I)-catalyzed cycloaddition reaction between 14a-c and terminal 

alkyne compound A furnished the target amide-based class II compounds 15a-c (scheme 6.3).  

The synthesis of class III compounds started with p-nitrobenzyl alcohol which was subjected to 

catalytic hydrogenation to give aniline 16. Reaction of 16 with diphenylphosphoryl azide (DPPA), 

DBU in THF followed by NaN3 gave azido compound 17.  Treatment of 17 with 

carbonyldiimidazole (CDI) in followed by the addition of piperidine, aniline, benzyl amine 

resulted in urea 18a-c. Copper(I)-catalyzed cycloaddition reaction between 18a-c and terminal 

alkyne compound A furnished the target class III compounds 19a-c (scheme 6.4).   
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Fig. 6.3. Structure of compound A. 

 

Scheme 6.1: Synthesis of class I compounds 4a-b. (a) KOH, THF, r.t., overnight; 94% (b) NaN3, 

DMF, 90oC, overnight; (c) EDCI, HOBt, DCM, Hunig’s base, 1-methylpiperazine, r.t., overnight; 

yields listed above. (d) Compound A, CuI, Hunig’s base, DMSO and THF, Argon, r.t., overnight. 

Yields listed above. 
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Scheme 6.2: Synthesis of class II compounds 11a-d. (a) NaBH4, BF3 etherate, THF, overnight; 

84.1% (b) TsCl, TEA, THF, DCM, r.t., overnight; 41.4% (c) NaN3, DMF, 120°C, overnight; 74.6% 

(d) Mesyl chloride, Hunig’s base, 0oC to r.t. 2-3 h; (e) Pyrrolidine or piperidine or 1-

methylpiperazine, DMSO, r.t., overnight; yields of products listed above. (f) Compound A, CuI, 

Hunig’s base, THF, DMSO, Argon, r.t., overnight. Yields listed above. 
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Scheme 6.3: Synthesis of class II compounds 15a-c. (a) Burgess reagent, DMSO, r.t. overnight; 

73.6% (b) NaClO2, t-BuOH, NaH2PO4, 2-Methyl-2-butene, r.t., 4h; 46.9%. (c) EDCI, DMAP, 

Hunig’s base, pyrrolidine or piperidine or 1-methylpiperazine, r.t., overnight; yields listed above. 

(d) Compound A,  CuI, Hunig’s base, THF, Argon, 35 C, 6 h. Yields listed above. 

  

Scheme 6.4: Synthesis of class III compounds 19a-c. (a) Pd/C, H2, ethyl acetate, r.t.; 24 h; 97.9% 

(b) DPPA, THF, r.t., overnight; (c) NaN3, DMF, 80C, overnight; 45.8% (d) CDI, DCM, Argon, 
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24 h; (e) Dropwise addition of amines (piperidine, aniline or benzyl amine), r.t., 24 h; yields listed 

above (f) Compound A, CuI, Hunig’s base, THF, Argon, 35C, 6 h. Yields listed above. 

 

6.2.3 Cell Cytotoxicity  

As a cost-effective approach to identify lead compounds for intracellular target validation, we first 

screened all of the synthesized compounds against five cell lines: A549 (lung adenocarcinoma), 

VERO (kidney epithelial cell), Hep-G2 (hepatocellular carcinoma), MDA-MB-231 (triple 

negative breast adenocarcinoma), and MCF-7 (ER+ breast adenocarcinoma) (Table 6.1). We used 

PYM and WBC-04-82 as controls. We observed that class I compound 4a, which has improved 

docking scores relative to PYM and WBC-04-82 (Table 6.S1), has slightly enhanced cytotoxicity 

against all cell lines except A549. Also, 4a, analog with a longer linker (C8) is more potent than 

the shorter linker (C6) compound 4c, suggesting a better fit of the C8 to the hydrophobic tunnel of 

the STAT3 DBD.  

The class-II compounds 11a-d and 15a-c are more cytotoxic than the class I compounds against 

all tested cell lines. The enhanced potency of class II compounds is in overall agreement with the 

docking scores (Table 6.S1) for these compounds and could be due to the entropic advantage of a 

more rigid linker that is also better accommodated with the DBD tunnel. Within this group 

however, amine-based compounds 11b-d are 3-12-fold more potent than the alcohol compound 

11a while the introduction of amide moiety in 15a-c has deleterious effects on potency. The 

attenuation of the potency of 15a-c relative to 11b-d, despite their comparable docking scores, 

could be due to the negative impact of the loss of basic functional group in 15a-c on cell 

penetration. Compounds 11c-d are the most potent among class II compounds and are 1.5 to 4-
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fold more cytotoxic to STAT3-dependent MDA-MB-231 and Hep-G2 compare to A549 cells that 

are less reliant of the STAT3 signaling.  

The class III compounds showed limited cytotoxicity against the tested cell lines except for 19a 

which is only slightly more potent than class I compounds. The poor cell activity of these 

compounds is unexpected given that their docking scores are identical to those of class II.  We do 

not have experimental data that may explain this disparity; it may however be connected with the 

reduction in cell permeability potentially caused by the ureido moiety of these compounds.29  

Table 6. 1. Cytotoxicity of the Novel PYM-derivatives. 

                                                                                                           

 

ID Structures of R group Cytotoxicity IC50s (µM) 

  Hep-G2 MDA-MB-

231 

MCF-7 A549 VERO 

Wbc-04-82 

 

NT 95.5±9.3 96.6±6.8 113.8±4.0 112.7±8.2 

4a 

 

48.8±7.4 63.8±9.3 90.1±6.3 327.0±23.0 87.1±1.9 

4b 

 

85.5±3.3 75.8±2.4 95.6±4.4 NI NI 

4c 

 

NI NI NI NI NI 

11a 
 

14.8±1.4 17.3±0.9 19.5±4.3 86.4±9.6 76.4±13.0 

11b 
 

4.5±0.4 2.83±0.9 4.8±0.1 14.9±2.0 8.2±1.0 
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Table 6.1 continued. 

11c 
 

1.9±0.5 2.0±0.2 3.2±0.8 8.0±1.0 6.5±0.8 

11d 

 

2.0±0.4 2.5 ±0.1 3.3±0.8 9.0±1.8 6.4±1.3 

15a 

 

11.3±0.8 9.9±0.6 7.5±0.4 29.3±3.9 NI 

15b 

 

15.0±0.1 15.1 ±1.7 8.7±0.6 35.5±0.3 35.6±8.3 

15c 

 

14.0±0.1 38.8±0.1 28.5±3.2 NI NI 

19a 

 

25.4±0.3 35.4±2.4 20.2±1.1 NI 37.3±1.6 

19b 

 

NI NI NI NI NI 

19c 

 

NI NI NI NI NI 

PYM  NT 238 453 >500 >500 

 

6.2.4 Intracellular target validation 

Based on the cell growth inhibition data described above, we selected 11b-d and 15a for further 

mechanistic study aimed at determining the contribution of the contribution of STAT3 pathway 

inhibition to the anti-proliferative activities. We used immunoblotting method to investigate the 

effects of these compounds on the expression status of Bcl-xL, Bcl-2, p-STAT3/T-STAT3 and 

Cyclin D1, key down-stream proteins of STAT3 pathway.  Actin was used to control for protein 

loading in this experiment. One of the mechanisms of STAT3 activation is by phosphorylation of 
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a critical tyrosine residue (Tyr 705), resulting in the dimerization of p-STAT3 to form a 

transcriptionally active complex at the promoter regions of STAT3 target genes.  We observed 

upregulated levels of p-STAT3 and increase in p-STAT/T-STAT3 ratios in cells treated with PYM 

and our compounds. Conversely, 11b-d and 15a (5 M and10 M) showed concentration-

dependent down regulation of the STAT3 down-stream proteins Bcl-xL, Bcl-2, and Cyclin D1. 

PYM at100 M caused the down-regulation of these STAT3 target proteins as well (Fig. 6.3). 

These observations matched our previous results on PYM and PYM-HDACi22 and they suggest 

that the anti-proliferative activities of PYM and compounds 11b-d and 15a are not due to the 

inhibition of STAT3 activation. It is plausible that these compounds are direct inhibitors of p-

STAT3, which function by blocking the STAT3 DBD as suggested by our in silico docking 

analyses, thereby preventing the binding of p-STAT3 to its target DNA.  

                                                    DMSO                 PYM                         11c                                11d                             DMSO          PYM                  15a                             11b 

                                      100                                                                      100                            

p-STAT3            
T-STAT3            
Actin                 

Cyclin D1          
Bcl-xL                 
Bcl-2                  
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Figure 6.3. Western blot data of the effect of selected compounds on STAT3 signaling.  MDA-

MB-231 cell line was seeded to the 6-well plates and serum starved for 24 h when confluency is 

around 80%. The cells were treated with 0.1% DMSO as control, PYM 100  b, 11c, 11d 

and 15a at 5  and 10 M for 24 h. The cells were harvested and lysed before blotting. (Bars 

show mean plus standard deviation; Statistic Calculation was performed via Ordinary One-way 

ANOVA compare with control group, *P<0.0332; **P<0.0021; ***P<0.0002; ****P<0.0001). 

 

6.2.5 STAT3 DNA binding inhibition 

To obtain experimental indication of the binding of our compounds to p-STAT3, we performed p-

STAT3 DNA binding assay using kit supplied by AVIVA (cat. OAKG00467) on PYM and 
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representative compounds 11b-d and 15a. In brief, we lysed MDA-MB-231 cell line and collected 

the nuclear supernatant which was incubated with compound PYM (dosed at 50, 125, 250, 312.5, 

and 625 μΜ; and compounds 11b-d and 15a (dosed at 0.313, 1.25, 5, 12.5 and 25 μΜ) for 1.5 h 

in a 96-well plate pre-coated with p-STAT3 oligonucleotide ligand. We also added 1/10, 1/20, and 

1/40 dilution of the positive control which was provided in the kit to prove the eligibility of the 

kit. The buffer was removed, and each well was washed with a washing buffer.  Subsequently, the 

residual p-STAT3 bound to the oligonucleotide in each well was determined by adding primary 

and secondary antibodies along with developing buffer to generate colorimetrical signal at 490 nm 

as recommended by the supplier.   
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Figure 6.4. DNA binding of p-STAT3 was inhibited by the novel STAT3i. (i) Positive and negative 

controls revealed evidence of binding specificity. (ii) Control STAT3 inhibitor PYM inhibits 

STAT3-oligonucleotide interaction. MDA-MB-231 cell nuclear fraction was used as a source of 

p-STAT3. DMSO lane shows 1% DMSO treatment with no inhibitor to the well. The attenuation 

of DNA binding in the presence of wild-type oligo indicates competition between the immobilized 

and free p-STAT3 oligos.  

i ii 
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Fig. 6.6. Evidence for direct interaction of DMSO, PYM, 11b-d and 15a with dimerized p-STAT3. 

MDA-MB-231 cell nuclear fraction was used as a source of p-STAT3. Data for the quantification 

of % of STAT3 binding rate were obtained by replicated data from two independent experiments. 

We first confirmed the specificity of the immobilized DNA oligo for p-STAT3 using serial dilution 

of MDA-MB-231 cell nuclear fraction that revealed p-STAT3 binding to the immobilized oligo 

(Fig. 6.5 (i)). Further, specificity was further confirmed from a competition which revealed that 

free p-STAT3 oligo effectively competes with the immobilized oligo for p-STAT3 binding (Fig 

6.5 (ii)).  Subsequently, we observed that PYM at 312.5-625 M caused about 50% reduction in 

the levels of bound p-STAT3, while at 125µM and 50µM, PYM has no effects on bound p-STAT3. 

Lead compounds 11b-d and 15a displayed dose-dependent inhibition of p-STAT3 DNA binding 

that is 10-25 more potent than that of PYM based on concentration range tested. This data strongly 

suggests that PYM and our compounds 11b-d and 15a could inhibit the STAT3 pathway through 

direct binding to the p-STAT3 DBD domainwith our compound 11b-d and 15a showing improved 
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DBD inhibition activity. The stronger inhibition of p-STAT3 direct DNA interaction by 11b-d and 

15a most likely contributes to their enhanced anti-proliferative effects.  

 

6.2.6 Cell cycle analysis by flow cytometry 

We used flow cytometry analysis to determine the effects of PYM and representative lead 

compound 11c on the cell cycle progression of MDA-MB-231 cells. Prior to the analysis, cells 

were treated with DMSO (control group), PYM (100 M) and 11c (at IC50 (2.5 M) and 2X IC50 

(5 M)) for 48 h. Relative to the DMSO control, we observed that PYM and 11c induced 

significant S-phase cell cycle arrest (Fig. 6.6). This data matches prior observation by others about 

the effect of PYM on adrenal gland carcinoma cell NCI-H295R.30 The S-phase arrest caused by 

PYM and 11c indicates the transcription was inhibited and thus initiating cell apoptosis. A similar 

effect on cell cycle has been observed for other STAT3 inhibitor exposed to MDA-MB-231 cell 

line, in which the S-phase arrest caused downregulation of mRNA of STAT3 down-stream 

proteins including cyclin D1.31 

 

A 

B 
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Figure 6.5. Cell Cycle arrest analysis. MDA-MB-231 were treated with (a) 0.1% DMSO or 0.1% 

of DMSO solution of (b) Pym (100 ), (c) 11c (2.5 ) and (d) 11c (5 ) for 48 h. 

6.3 Conclusion  

We have identified a class of novel PYM-based STAT3 inhibiting compounds that, relative to 

PYM, more potently inhibited the proliferation of the tested cancer cell lines.  Representative 

compounds are able to distinguish between cancer cell lines that are highly dependent on STAT3 

signaling (MDA-MB-231 and Hep-G2) relative to those low levels of constitutively active STAT3 

(A549 and MCF-7). Intracellular target validation studies strongly suggest that the inhibition of 

C 

D 
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STAT3 binding to its DNA target is a key contributor to the anti-cancer activities of these PYM-

based compounds. Specifically, compounds 11b-dand 15a potently down-regulate the STAT3 

downstream proteins Cyclin D1, Bcl-2 and Bcl-xL and strongly inhibited the interaction of p-

STAT3 to its target DNA relative to PYM. Because the human dihydrofolate reductase (hDHFR) 

is another potential of PYM, we probed for the effects of 11b-d and 15a on hDHFR activity and 

found that, up to 10x IC50 concentrations, 11b-d and 15a did not elicit any DHFR inhibition effect 

(Fig. 6.S3 and 6.S4). This data further suggest that STAT3 DBD inhibition could be the leading 

cause of cell cytotoxicity. Collectively, 11b-d and 15a are promising lead STAT3 DBD inhibitors 

for further preclinical evaluation as therapeutic agents for STAT3-dependent cancers.  

 

6.4  Material and Methods 

6.4.1 Materials:  

Analtech silica gel plates (60 F254) were used for analytical TLC while Analtech preparative TLC 

plates (UV 254, 2000 μm) or silica gel (400 Mesh) was used for compound purification. NMR 

spectra were taken onVarian-Gemini 400 MHz and Bruke 700 MHz magnetic resonance 

spectrometer. 1H NMR spectra were recorded in parts per million (ppm) relative to the residual 

peaks of CHCl3 (7.24 ppm) in CDCl3 or CHD2OD (4.78 ppm) in CD3OD or DMSO-d5 (2.49 ppm) 

in DMSO-d6 or HOD (3.63 ppm) in D2O. 13C spectra were recorded relative to the central peak of 

the CDCl3 triplet (81.5 ppm), CD3OD (52.4 ppm), or the DMSO-d6 septet (39.7 ppm) and were 

recorded with complete hetero-decoupling. Multiplicities are described using the abbreviation: s, 

singlet; d, doublet, t, triplet; q, quartet; p, pentet; dd: doublet of doublet; dt: doublet of triplet; dq: 

doublet of quartets, m, multiplet; and app, apparent. High-resolution mass spectra were recorded 
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at the Georgia Institute of Technology mass spectrometry facility in Atlanta. The purity of all 

tested compounds was established by HPLC to be >95%. HPLC analyses were performed on a 

Beckman Coulter instrument using a Luna®  5µm C-18 column 100 Å (100 mm × 4.6 mm), eluting 

with solvent A (0.1% formic acid−water) and solvent B (0.1% formic acid−acetonitrile) at a 

gradient of 5−100% over 24 min, with detection at 254 nm and a flow rate of 0.5 mL/min. Sample 

concentrations were 250 μM – 1 mM, injecting 20 μL. Compounds 4a-c, 11b-d, 15c were acidified 

using 5-10% formic acid before running the solution of each sample by HPLC. Intermediates 2b-

c were synthesized as previously reported.32, 33   

Cell lines including Hep-G2, A549, MDA-MB-231, MCF-7, and VERO were purchased from 

ATCC (Manassas, VA). MDA-MB-231, VERO, and A549 cell lines were maintained in 

Dulbecco’s Modified Eagle Medium (DMEM) (Corning, 10-017-CV), supplemented with 10% 

fetal bovine serum (FBS) (Corning, 35-010-CV). MCF-7 cells were cultured in phenol red free 

Minimum Essential Medium (MEM) (Corning, 17-305-CV), supplemented with 10% fetal bovine 

serum (FBS). For Western blot, Bcl-2 (sc-7382) and Bcl-xL (sc-8392) anti-bodies were purchased 

from Santa Cruz; p-STAT3/STAT3 anti-bodies were purchased from Cellsignaling 

(D3A7/D1B2J), Cyclin D1 anti-body was purchased from Cell Signaling (92G2), Actin was 

purchased from Sigma-Aldrich (A2066-100UL). Secondary antibodies – anti-mouse conjugated 

to IRDye680, and goat anti-rabbit conjugated to IRDye800 – were obtained from LI-COR 

Biosciences, Lincoln, NE. CellTiter 96 Aqueous One Solution Cell Proliferation assay (MTS) kit 

was purchased from Promega (G3581). The STAT3 assay kit (OKAG00467) was purchased from 

AVIVA while Propidium Iodide (P4170-25MG) was from Sigma-Aldrich. 
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6.4.2 Synthesis 

8-Azidooctanoic acid (2a). Compound 1a (100 mg, 0.46 mmol) dissolved into ethanol (10 mL). 

Crushed KOH (85 mg, 1.52 mmol) was added to the solution and the mixture was stirred at 55ºC 

for 2-4 h during which TLC using ethyl acetate showed complete of reaction. The reaction was 

acidified with 1N HCl (30 mL) and extracted with dichloromethane (DCM) (2x50 mL). The 

organic layer was washed with brine (50 mL) and dried with Na2SO4. Solvent was evaporated to 

furnish 2a as liquid, 80 mg (yield 94.0%). 1H NMR (400 MHz, CDCl3) δ 3.25 (t, J = 6.9 Hz, 2H), 

2.35 (t, J = 7.5 Hz, 2H), 1.75-1.50 (m, 4H), 1.51 – 1.13 (m, 6H). 

 

8-Azido-1-(4-methylpiperazin-1-yl)octan-1-one (3a). 2a (80 mg, 0.43 mmol) dissolved in 

anhydrous DCM (3 mL) to which EDCI (150 mg, 0.78 mmol) and HOBt (120 mg, 0.78 mmol) 

were added. In another flask, 4-methylpiperazine (100 μL, 0.9 mmol) was dissolved in DCM (5 

mL) and Hunig’s base (0.3 mL). Both solutions were stirred at room temperature (rt) for about 5 

min and then combined. The reaction was stirred overnight at rt over argon atmosphere during 

which TLC (DCM: MeOH=10:1) indicated complete consumption of 2a. The reaction was poured 

into saturated NaHCO3 (30 mL) and extracted with DCM (2x30 mL). The organic layer was 

extracted with saturated brine (50 mL), dried with Na2SO4 and the solvent evaporated off. The 

crude was purified by column chromatography, eluting with DCM: MeOH=10:1 to give 3a as 

yellow liquid, 65 mg (yield 55.8%). 1H NMR (400 MHz, CDCl3) δ 3.61 (dd, J = 6.2, 4.1 Hz, 2H), 

3.52 – 3.38 (m, 2H), 3.22 (t, J = 6.9 Hz, 2H), 2.36 (dt, J = 10.1, 5.1 Hz, 4H), 2.28 (s, 5H), 1.66-

1.51 (m, 4H), 1.41 – 1.28 (m, 6H).  
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7-Azido-1-(4-methylpiperazin-1-yl)heptan-1-one (3b). To a solution of compound 2b (130 mg, 

0.82 mmol) in DCM (3 mL) was added EDCI (300 mg, 1.57 mmol) and HOBt (270 mg, 2 mmol). 

In another flask, 4-methylpiperazine (200 μL, 1.80 mmol) was dissolved in DCM (3 mL) and 

Hunig’s base (0.3 mL). Both solutions were stirred at rt for about 5 min and then combined. The 

reaction was stirred overnight at rt over argon atmosphere. The reaction was worked-up as 

described above for 3a and the crude product was purified by column chromatography, eluting 

with ethyl acetate: hexanes 3:7 to give 3b as yellow liquid, 162 mg (yield 78%). 1H NMR (400 

MHz, CDCl3) δ 3.63 (t, J = 5.2 Hz, 2H), 3.47 (t, J = 5.1 Hz, 2H), 3.28 (dd, J = 7.4, 6.3 Hz, 2H), 

2.45 – 2.28 (m, 9H), 1.72 – 1.57 (m, 4H), 1.50 – 1.36 (m, 2H). 

 

6-Azido-1-(4-methylpiperazin-1-yl)hexan-1-one (3c). To a solution of compound 2c (100 mg, 0.63 

mmol) in DCM (3 mL) was added EDCI (170 mg, 0.89 mmol) and HOBt (150 mg, 1.11 mmol). 

In another flask, 4-methylpiperazine (100 μL, 0.90 mmol) was dissolved in DCM (3 mL) and 

Hunig’s base (0.5 mL). Both solutions were stirred at rt for about 5 min and then combined. The 

reaction was stirred overnight at rt over argon atmosphere. The reaction was worked-up as 

described above for 3a and the crude product was purified by column chromatography, eluting 

with ethyl acetate: hexanes 3:7 to give 3c as yellow liquid, 80 mg (yield 52.4%). 1H NMR (400 

MHz, CDCl3) δ 3.63 (t, J = 5.2 Hz, 2H), 3.47 (t, J = 5.1 Hz, 2H), 3.28 (dd, J = 7.4, 6.3 Hz, 2H), 

2.45 – 2.28 (m, 9H), 1.72 – 1.57 (m, 4H), 1.50 – 1.36 (m, 2H). 

 

8-(4-(4-(2,4-Diamino-6-ethylpyrimidin-5-yl)phenyl)-1H-1,2,3-triazol-1-yl)-1-(4-methylpiperazin-

1-yl)octan-1-one (4a). Compound A (25 mg, 0.10 mmol), 3a (30 mg, 0.11 mmol) and CuI (10 mg, 
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0.05 mmol) were dissolved in THF (3 mL) and DMSO (2 mL). The mixture was stirred at rt under 

argon for 10 min, Hunig’s base (0.5 mL, 2.90 mmol) was added and the reaction was stirred 

overnight. The reaction was quenched with 5% aqueous NH4OH (0.1 mL) and poured into sat. 

NH4Cl and 10% NH4OH (50 mL) and extracted with DCM (2x30 mL). The two layers were 

separated, the organic layer was washed with saturated brine (30 mL) and dried with Na2SO4. 

Solvent was evaporated off and the crude was purified using preparative TLC, eluting with ethyl 

acetate: MeOH 9:1 to furnish 4a as pale yellow solid, 35 mg (yield 66.7%). 1H NMR (700 MHz, 

DMSO-d6 + D2O) δ 8.56 (s, 1H), 7.88 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 8.2 Hz, 2H), 4.39 (t, J = 

6.9 Hz, 2H), 3.38 (td, J = 6.2, 5.4, 2.8 Hz, 4H), 2.27 – 2.22 (m, 4H), 2.20 (t, J = 5.2 Hz, 2H), 2.13 

(d, J = 3.8 Hz, 5H), 1.85 (p, J = 7.1 Hz, 2H), 1.43 (p, J = 7.5 Hz, 2H), 1.28 (q, J = 7.4 Hz, 2H), 

1.26 – 1.18 (m, 5H), 0.96 (t, J = 7.5 Hz, 3H). 13C NMR (176 MHz, DMSO-d6 + D2O) δ 171.4, 

167.0, 162.4, 162.2, 146.6, 135.7, 131.6, 130.0, 126.2, 121.7, 106.7, 55.2, 54.7, 50.0, 46.0, 45.3, 

41.3, 32.6, 29.9, 28.9, 28.5, 27.9, 26.1, 25.1, 13.6. HRMS (ESI) Calcd for C27H40N9O [M+H+]: 

506.3350, found 506.3335. HPLC retention time: 2.9 min. 

 

7-(4-(4-(2,4-Diamino-6-ethylpyrimidin-5-yl)phenyl)-1H-1,2,3-triazol-1-yl)-1-(4-methylpiperazin-

1-yl)heptan-1-one (4b). The reaction of compound A (20 mg, 0.08 mmol), 3b (80 mg, 0.32 mmol) 

and CuI (10 mg, 0.05 mmol) in THF (2 mL), DMSO (1 mL) and Hunig’s base (0.5 mL, 2.90 

mmol), followed by purification as described for the synthesis of 4a, furnished  4b as pale yellow 

solid, 25 mg (yield 60.6%). 1H NMR (700 MHz, DMSO) δ 8.55 (s, 1H), 7.89 (d, J = 8.2 Hz, 2H), 

7.24 (d, J = 8.1 Hz, 2H), 4.39 (t, J = 6.9 Hz, 2H), 4.01 (q, J = 7.1 Hz, 1H), 3.39 (dt, J = 10.5, 5.5 

Hz, 4H), 2.28 – 2.23 (m, 4H), 2.21 (t, J = 5.2 Hz, 2H), 2.18 – 2.12 (m, 5H), 1.91 – 1.81 (m, 2H), 

1.48 – 1.41 (m, 2H), 1.29 (dd, J = 11.2, 4.3 Hz, 2H), 1.26 – 1.19 (m, 2H), 1.16 (t, J = 7.1 Hz, 2H), 
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0.95 (t, J = 7.5 Hz, 3H).13C NMR (176 MHz, DMSO-d6 + D2O) δ 171.5, 162.5, 158.6, 146.6, 

138.1, 131.6, 130.0, 126.2, 121.8, 106.8, 55.2, 54.6, 50.0, 45.9, 45.2, 41.2, 32.5, 29.9, 28.4, 27.8, 

25.9, 25.0, 13.6. HRMS (ESI) Calcd for C26H37N9O [M+H+]: 492.3193, found 492.3179. HPLC 

retention time: 2.8 min. 

 

6-(4-(4-(2,4-Diamino-6-ethylpyrimidin-5-yl)phenyl)-1H-1,2,3-triazol-1-yl)-1-(4-methylpiperazin-

1-yl)hexan-1-one (4c). The reaction of compound A (50 mg, 0.21 mmol), 3c (150 mg, 0.67 mmol) 

and CuI (10 mg, 0.05 mmol) in THF (3 mL), DMSO (2 mL) and Hunig’s base (0.5 mL, 2.90 

mmol), followed by purification using preparative TLC (CHCl3:MeOH 9:1) as described for the 

synthesis of 4a, furnished 4c as pale yellow solid, 45 mg (yield 44.9%). 1H NMR (700 MHz, 

DMSO-d6 + D2O) δ 8.56 (s, 1H), 7.88 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 8.2 Hz, 2H), 4.39 (t, J = 

6.9 Hz, 2H), 3.39 (t, J = 4.5 Hz, 4H), 2.31 – 2.20 (m, 4H), 2.19 (t, J = 5.2 Hz, 2H), 2.13 (d, J = 7.5 

Hz, 5H), 1.86 (p, J = 7.1 Hz, 2H), 1.50 (p, J = 7.6 Hz, 2H), 1.30 – 1.19 (m, 2H), 0.95 (t, J = 7.5 

Hz, 4H). 13C NMR (176 MHz, DMSO-d6 + D2O) δ 171.3, 167.1, 162.2, 146.6, 135.7, 131.6, 130.0, 

126.2, 122.2, 106.7, 55.2, 54.7, 49.9, 45.9, 45.2, 41.3, 32.5, 29.8, 27.9, 25.9, 24.6, 13.6. HRMS 

(ESI) Calcd for C25H36N9O [M+H+]: 478.3021, found 478.3037. HPLC retention time 2.3 min. 

 

4,4’-Oxybis benzyl alcohol (6). To a solution of 4,4’-Oxybis(benzoic acid) (2 g, 7.75 mmol) in 

THF (25 mL) was added boron trifluoride etherate (4 mL, 32.3 mmol) and the resulting mixture 

was stirred for 5 min. NaBH4 (1.18 g, 32 mmol) was added in 4 aliquots to avoid excessive 

bubbling and the reaction was stirred at rt overnight. The reaction was quenched with CH3OH (10 

mL) and 5% NaHCO3 (100 mL) was added. The mixture was extracted with DCM (2x50 mL) and 



499 

 

the DCM extract was washed with saturated brine (50 mL) and dried over Na2SO4. Solvent was 

evaporated off to furnish 6 come as white solid, 1.50 g (yield 84.1%).1H NMR (400 MHz, CDCl3) 

δ 7.28 (d, J=6.0Hz, 4H), 6.93 (d, J=8Hz,4H), 4.61 (d, J = 5.5 Hz, 4H), 1.57 (t, J = 5.9 Hz, 2H). 

 

(4-(4-(Azidomethyl)phenoxy)phenyl)methanol (8). To a stirring solution of compound 6 (1.5 g, 

6.52 mmol) in DCM (20 mL) and triethylamine (1.0 mL, 7.77 mmol) was added tosyl chloride 

(2.3 g, 12.20 mmol) and the resulting mixture was stirred at rt overnight. The reaction was 

partitioned between water (80 mL) and DCM (2x50 mL) and the two layers separated. The organic 

layer was washed with saturated brine (50 mL) and dried with Na2SO4. Solvent was evaporated 

off and the crude purified by column chromatography, eluting with ethyl acetate: hexanes 1:2 to 

give the mono-tosylated compound 7 as white paste, 1.03 g (yield 41.1%).Compound 7 (1 g, 2.68 

mmol) was dissolved into DMF (10 mL), NaN3 (1 g, 15.6 mmol) was added into the solution and 

the mixture was stirred overnight at 80°C. The reaction was poured into water (100 mL) and 

extracted with DCM (50 mL). The organic layer was extracted with water (4x50 mL) and dried 

over Na2SO4. Solvent was evaporated to furnish 8 as yellow liquid, 510 mg (yield 74.6%). 1H 

NMR (400 MHz, CDCl3) δ 7.29 (d, J=16Hz 4H), 7.21 (dd, J=8.8Hz 4H), 6.94 (dd, J=4.6 Hz, 4H), 

4.62 (d, J = 4.6 Hz, 2H), 4.25 (s, 2H). 

 

4-(4-(Azidomethyl)phenoxy)benzyl methanesulfonate (9). Compound 8 (510 mg, 2 mmol) was 

dissolved in DCM (5 mL) and Hunig’s base (1 mL, 5.74 mmol) was added. The solution was 

cooled to -20°C on dry-ice bath with ethylene glycol and purged with argon. Mesyl chloride (500 

mg, 5.1 mmol) was added drop wisely, the solution was allowed to warm to rt and stirred for 2-3 
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h. The reaction was quenched with 5% NaHCO3 (1 mL). Water (30 mL) was added, the mixture 

was extracted with DCM (2x50 mL) and the organic layer was dried with Na2SO4. Solvent was 

evaporated off to give 9 which was used for the next reaction without further purification.   

 

1-(4-(4-(Azidomethyl)phenoxy)benzyl)pyrrolidine (10a). Compound 9 (133 mg, 0.40 mmol) was 

dissolved in DMSO (5 mL) and pyrrolidine (1 mL, 12.2 mmol) was added and stirring continued 

overnight. The reaction was partitioned between water (20 mL) and DCM (40 mL) and the two 

layers separated. The organic layer was washed with saturated brine (50 mL) and dried with 

Na2SO4. Solvent was evaporated and the crude was purified by column chromatography, eluting 

with CHCl3: MeOH 15:1 to furnish 10a as yellow solid, 100 mg (yield 82.5%). 1H NMR (400 

MHz, CDCl3) δ 7.68 – 7.40 (d, J = 8.6, 2H), 7.34 – 7.14 (d, J = 8.5, 2H), 6.94 (td, J = 8.8, 1.7 Hz, 

4H), 4.27 (d, J = 1.5 Hz, 2H), 4.08 (d, J = 1.5 Hz, 2H), 3.09 (d, J = 6.5 Hz, 4H), 2.12 – 1.81 (m, 

4H). 

 

1-(4-(4-(Azidomethyl)phenoxy)benzyl)piperidine (10b). The reaction of 9 (133 mg, 0.40 mmol) 

with piperidine (1 mL, 11.7 mmol) in DMSO (5 mL), followed by purification as described for the 

synthesis of 10a, furnished 10b as yellow solid, 130 mg (yield 100%). 1H NMR (400 MHz, CDCl3) 

δ 7.41 (d, J = 8.5 Hz, 2H), 7.28 – 7.23 (m, 2H), 6.96 (ddd, J = 13.3, 8.6, 0.9 Hz, 4H), 4.28 (s, 2H), 

3.76 (s, 2H), 2.68 (s, 4H), 1.76 (p, J = 5.7 Hz, 4H), 1.49 (p, J = 7.0, 6.2 Hz, 2H). 

 



501 

 

1-(4-(4-(Azidomethyl)phenoxy)benzyl) 4-methyl piperazine (10c). The reaction of 9 (133 mg, 0.40 

mmol) with 4-methyl piperazine (1 mL, 8.46 mmol) in DMSO (5 mL),  followed by purification 

as described for the synthesis of 10a, furnished 10c as dark yellow oil, 60mg (yield 44.5%). 1H 

NMR (400 MHz, CDCl3) δ 7.26 (ddt, J = 8.0, 5.1, 2.4 Hz, 4H), 7.12 – 6.82 (m, 4H), 4.29 (s, 2H), 

3.51 (s, 2H), 2.60 (s, 8H), 2.41 (s, 3H). 

 

(4-(4-((4-(4-(2,4-Diamino-6-ethylpyrimidin-5-yl)phenyl)-1H-1,2,3-triazol-1-

yl)methyl)phenoxy)phenyl)methanol (11a). Compound A (45 mg, 0.19 mmol), 8 (70 mg, 0.22 

mmol) and CuI (20 mg, 0.11 mmol) were dissolved in THF (3 mL) and DMSO (2 mL). The 

mixture was stirred at rt under argon for 10 min, Hunig’s base (0.5 mL, 2.90 mmol) was added 

and the reaction was stirred overnight. The reaction was quenched with 5% aqueous NH4OH (0.1 

mL) and poured into sat. NH4Cl and 10% NH4OH (30 mL) and extracted by DCM (2x50 mL). 

The two layers were separated, the organic layer was washed with saturated brine (50 mL) and 

dried with Na2SO4. Solvent was evaporated off and the crude was purified using preparative TLC, 

eluting with CHCl3: MeOH 8:1 to furnish 11a as yellow solid, 30 mg (yield 28.9%). 1H NMR (700 

MHz, CDCl3 + CD3OD) δ 8.03 (s, 1H), 7.90 (d, J = 7.7 Hz, 2H), 7.34 (d, J = 2.6 Hz, 4H), 7.31 (d, 

J = 7.6 Hz, 2H), 7.00 (dt, J = 8.1, 3.9 Hz, 4H), 5.60 (s, 2H), 4.61 (s, 2H), 2.30 (t, J = 7.6 Hz, 2H), 

1.07 (t, J = 7.5 Hz, 3H). 13C NMR (176 MHz, CDCl3) δ 170.6, 166.6, 159.6, 151.5, 140.9, 138.4, 

134.0, 133.6, 133.1, 132.5, 130.5, 123.1, 122.6, 67.6, 57.6, 33.4, 31.3, 16.8. HRMS (ESI) Calcd. 

for C28H28N7O2 [M+H]+ 494.2299, found 494.2287. HPLC retention time: 13.8 min. 
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6-Ethyl-5-(4-(1-(4-(4-(pyrrolidin-1-ylmethyl)phenoxy)benzyl)-1H-1,2,3-triazol-4-

yl)phenyl)pyrimidine-2,4-diamine (11b). The reaction of compound A (45 mg, 0.19 mmol), 10a 

(70 mg, 0.22 mmol) and CuI (20 mg, 0.11 mmol) in THF (3 mL), DMSO (2 mL) and Hunig’s base 

(0.5 mL, 2.90 mmol), followed by purification using preparative TLC (CHCl3:MeOH 9:1) as 

described for the synthesis of 11a, furnished  11b as pale yellow solid, 70 mg (yield 65.7%). 1H 

NMR (700 MHz, CDCl3 + CD3OD) δ 8.05 (dd, J = 18.2, 10.0 Hz, 1H), 7.93 – 7.87 (m, 2H), 7.53 

(dd, J = 18.4, 9.9 Hz, 2H), 7.40-7.25 (m, 4H), 7.06-6.93 (m, 4H), 5.61 (s, J = 18.5, 9.9 Hz, 2H), 

3.79 (s, 2H), 2.77 – 2.61 (m, 4H), 2.29 (q, J = 17.2, 7.0 Hz, 2H), 1.88 (dt, J = 16.7, 8.3 Hz, 4H), 

1.06 (dt, J = 17.0, 7.5 Hz, 3H).  13C NMR (176 MHz, CDCl3 + CD3OD) δ 171.0, 166.5, 165.0, 

161.7, 160.2, 151.5, 138.5, 135.0, 133.9, 133.7, 133.4, 130.4, 124.4, 122.9, 111.6, 63.3, 57.6, 33.4, 

31.5, 26.9, 16.9. HRMS (ESI) Calcd for C32H35N8O [M+H+]: 547.2928, found 547.914. HPLC 

retention time: 2.9 min. 

 

6-ethyl-5-(4-(1-(4-(4-(piperidin-1-ylmethyl)phenoxy)benzyl)-1H-1,2,3-triazol-4-

yl)phenyl)pyrimidine-2,4-diamine (11c). The reaction of compound A (45 mg, 0.19 mmol), 10b 

(70 mg, 0.22 mmol) and CuI (20 mg, 0.11 mmol) in THF (3 mL), DMSO (2 mL) and Hunig’s base 

(0.5 mL, 2.90 mmol), followed by purification using preparative TLC (CHCl3:MeOH 9:1) as 

described for the synthesis of 11a, furnished 11c as pale yellow solid, 60 mg (yield 54.7%). 1H 

NMR (700 MHz, CDCl3 + CD3OD) δ 8.00 (s, J = 2.5 Hz, 1H), 7.90 (dd, J = 8.1, 1.9 Hz, 2H), 7.44 

– 7.23 (m, 6H), 7.01 (ddt, J = 26.9, 8.5, 2.0 Hz, 4H), 5.60 (s, 2H), 3.60 (s, 2H), 2.54 (s, 4H), 2.30 

(t, J = 7.5 Hz, 2H), 1.66 (p, J = 5.6 Hz, 4H), 1.50 (q, J = 6.0 Hz, 2H), 1.07 (t, J = 7.2 Hz, 3H). 13C 

NMR (176 MHz, CDCl3) δ 170.9, 166.5, 164.9, 161.7, 160.2, 151.5, 138.4, 135.4, 135.0, 134.0, 
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133.7, 133.3, 130.5, 123.0, 122.8, 66.4, 57.8, 33.4, 31.4, 28.8, 27.5, 16.8. HRMS (ESI) Calcd for 

C33H37N8O  [M+H+]: 561.3085, found 561.3065. HPLC retention time: 2.9 min. 

 

6-Ethyl-5-(4-(1-(4-(4-((4-methylpiperazin-1-yl)methyl)phenoxy)benzyl)-1H-1,2,3-triazol-4-

yl)phenyl)pyrimidine-2,4-diamine (11d). The reaction of compound A (45 mg, 0.19 mmol), 10c 

(74 mg, 0.22 mmol) and CuI (20 mg, 0.11 mmol) in THF (3 mL), DMSO (2 mL) and Hunig’s base 

(0.5 mL, 2.90 mmol), followed by purification using preparative TLC (CHCl3:MeOH 9:1) as 

described for the synthesis of 11a, furnished  11d as pale yellow solid, 60 mg (yield 54.9%). 1H 

NMR (700 MHz, DMSO-d6 + D2O) δ 8.64 (s, 1H), 7.89 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 8.7 Hz, 

2H), 7.28 (d, J = 8.5 Hz, 2H), 7.24 (d, J = 8.2 Hz, 2H), 7.00 (d, J = 8.7 Hz, 2H), 6.94 (d, J = 8.5 

Hz, 2H), 5.62 (s, 2H), 3.40 (s, 2H), 2.32 (s, 8H), 2.17 – 2.05 (m, 5H), 0.95 (t, J = 7.5 Hz, 3H). 13C 

NMR (176 MHz, DMSO-d6 + D2O) δ 162.3, 157.3, 155.6, 147.1, 135.8, 134.0, 131.6, 131.3, 

131.0, 130.3, 129.8, 126.2, 122.0, 119.1, 108.4, 106.6, 61.8, 55.0, 52.8, 46.1, 27.9, 13.6. HRMS 

(ESI) Calcd for C33H38N9O [M+H+]: 576.3194, found 576.3175. HPLC retention time: 2.8 min. 

 

4-(4-(Azidomethyl)phenoxy)benzaldehyde (12). A mixture of compound 8 (26 mg, 0.10 mmol) and 

Burgess reagent (48.5 mg, 0.20 mmol) in DMSO (0.5 mL) was stirred at rt overnight during which 

TLC (ethyl acetate: hexanes 1:2) showed a complete consumption of 8. The reaction was 

partitioned between water (3x30 mL) and DCM (3x25 mL) and the two layers were separated. The 

organic layer was dried with Na2SO4, solvent was evaporated off to give 12 as yellow liquid (19 

mg, 0.074mmol, yield 73.6%). 1H NMR (400 MHz, CDCl3) δ 9.93 (s, 1H), 7.86 (d, J=8.8Hz, 2H), 

7.37 (d, J = 8.4 Hz, 2H), 7.09 (dd, J = 10.5, 8.4 Hz, 4H), 4.37 (s, 2H). 



504 

 

 

4-(4-(Azidomethyl)phenoxy)benzoic acid (13). A solution of NaClO2 (22.2 mg, 0.25 mmol) and 

NaH2PO4·H2O (36.8 mg, 0.31 mmol) in water (1.9 mL) was added drop-wisely at rt into a stirring 

mixture of 12 (19 mg, 0.08 mmol) and 2-methyl-2-butene (0.45 mL) dissolved in tert-butanol (0.9 

mL). The reaction was stirred for at rt for 1 h after which more water (0.9 mL) was added. Stirring 

continued at rt for another hour. The reaction was partitioned between water (2x30 mL) and ethyl 

acetate (2x30 mL) and the two layers were separated. The organic layer was dried with Na2SO4, 

solvent was evaporated off to give 13 (9.5mg, 0.035mmol, 47%) which was used without further 

purification. 1H NMR (400 MHz, CD3OD) δ 8.01 (d, J = 8.9 Hz, 2H), 7.40 (d, J = 8.5 Hz, 2H), 

7.04 (dd, J = 31.7, 8.7 Hz, 4H), 4.92 (s, 2H). 

 

(4-(4-(Azidomethyl)phenoxy)phenyl)(pyrrolidin-1-yl)methanone (14a). To a solution of compound 

13 (20 mg, 0.07 mmol) in anhydrous DCM (3 mL) was added EDCI (70 mg, 0.37 mmol) and 

DMAP (20 mg, 0.16 mmol) and stirring continued for about 5 min. To this mixture was added a 

solution of pyrrolidine (50 µL, 0.61 mmol) in anhydrous DCM (2 mL) and Hunig’s base (0.5 mL) 

and stirring continued overnight during which TLC (ethyl acetate:hexanes 7:3) indicated a 

complete consumption of 13. The reaction was partitioned between saturated NaHCO3 (20 mL) 

and DCM (30 mL) and the two layers were separated. The organic layer was dried with Na2SO4 

and solvent evaporated off. The crude was purified by column chromatography eluting with ethyl 

acetate:hexanes 1:1 to furnish 14a as white solid, 11 mg (yield 48.8 %). 1H NMR (400 MHz, 

CDCl3) δ 7.51 – 7.36 (d, 4H), 7.30 (d, J = 8.4 Hz, 2H), 7.19 – 7.10 (m, 2H), 7.07 – 6.83 (m, 4H), 

4.62 (s, 2H), 3.58 (t, J = 6.9 Hz, 2H), 3.41 (t, J = 6.6 Hz, 2H), 1.96-1.73 (m, 4H). 
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(4-(4-(Azidomethyl)phenoxy)phenyl)(piperidin-1-yl)methanone (14b). The reaction of 13 (20 mg, 

0.07 mmol), piperidine (50 µL, 0.51 mmol), EDCI (70 mg, 0.37 mmol), DMAP (20 mg, 0.16 

mmol), Hunig’s base (0.5 mL) in DCM (5 mL), as described for the synthesis of 14a, furnished 

compound 14b as white solid, 13 mg (48.6%). 1H NMR (400 MHz, CD3OD) δ 7.45 – 7.38 (m, 

4H), 7.10 – 7.02 (m, 4H), 4.37 (s, 2H), 3.67 (m, 4H), 1.88 – 1.65 (m, 6H).  

 

(4-(4-(azidomethyl)phenoxy)phenyl)(4-methylpiperazin-1-yl)methanone (14c). The reaction of 13 

(65 mg, 0.22 mmol), 1-methyl piperazine (100 µL, 0.9 mmol), EDCI (140 mg, 0.73 mmol), DMAP 

(20 mg, 0.16 mmol), Hunig’s base (0.5 mL) in DCM (5 mL), as described for the synthesis of 14a, 

furnished compound 14b as white solid, 43 mg (49.5 %). 1H NMR (400 MHz, CDCl3) δ 7.41 (d, 

J = 8.7 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 7.14 – 6.91 (m, 4H), 4.33 (s, 2H), 3.52 (m, 4H), 2.33 (m, 

7H).  

 

(4-(4-((4-(4-(2,4-Diamino-6-ethylpyrimidin-5-yl)phenyl)-1H-1,2,3-triazol-1-yl) methyl) phenoxy) 

phenyl) (pyrrolidin-1-yl) methanone (15a). Compound A (10 mg, 0.04 mmol), 14a (20 mg, 0.06 

mmol) and CuI (5 mg, 0.03 mmol) were dissolved in THF (1 mL) and DMSO (1 mL). The mixture 

was stirred at rt under argon for 10 min, Hunig’s base (0.2 mL, 1.16 mmol) was added and the 

reaction was stirred overnight. The reaction was quenched with 1M aqueous NH4OH (0.1 mL), 

poured into sat. NH4Cl and 10% NH4OH (30 mL), and extracted by DCM (2x50 mL). The organic 

layer was washed with saturated brine (30 mL) and dried with Na2SO4. Solvent was evaporated 
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off and the crude was purified using preparative TLC, eluting with CHCl3: MeOH 9:1 to furnish 

15a as pale yellowish solid, 15 mg (yield 60.5%). 1H NMR (700 MHz, DMSO-d6 + D2O) δ 8.67 

(s, 1H), 7.95 (d, J = 8.2 Hz, 2H), 7.53 (d, J = 8.7 Hz, 2H), 7.42 (d, J = 8.6 Hz, 2H), 7.32 (d, J = 

8.2 Hz, 2H), 7.08 (d, J = 8.6 Hz, 2H), 6.99 (d, J = 8.6 Hz, 2H), 5.65 (s, 2H), 3.40 (dt, J = 31.4, 6.8 

Hz, 4H), 2.23 (q, J = 7.6 Hz, 2H), 1.81 (dq, J = 37.3, 6.8 Hz, 4H), 1.01 (t, J = 7.6 Hz, 3H). 13C 

NMR (176 MHz, DMSO-d6 + D2O) δ 168.3, 158.2, 156.2, 146.8, 132.3, 132.0, 131.5, 130.5, 

129.8, 129.4, 128.7, 126.6, 125.8, 122.3, 120.0, 118.1, 53.0, 49.6, 46.6, 26.4, 24.3, 13.0. HRMS 

(ESI) Calcd for C33H37N8O [M+H+]: 561.2703, found 561.2721. HPLC retention time: 14.2 min. 

 

(4-(4-((4-(4-(2,4-Diamino-6-ethylpyrimidin-5-yl)phenyl)-1H-1,2,3-triazol-1-yl)methyl)phenoxy) 

phenyl) (piperidin-1-yl) methanone (15b). The reaction of compound A (10 mg, 0.04 mmol), 14b 

(10 mg, 0.03 mmol) and CuI (5 mg, 0.03 mmol) in THF (1 mL), DMSO (1 mL) and Hunig’s base 

(0.2 mL, 1.16 mmol), followed by purification as described for the synthesis of 15a, furnished  15b 

as pale yellow solid, 8 mg (yield 46.4%). 1H NMR (700 MHz, DMSO-d6 + D2O) δ 8.57 (s, 1H), 

7.87 (d, J = 7.3 Hz, 2H), 7.41 (d, J = 7.2Hz, 2H), 7.34 (d, J = 8.6, 2H), 7.24 (d, J = 7.3Hz, 2H), 

7.04 (d, J = 8.5, 2H), 6.99 (d, J = 8.5, 2H), 5.60 (s, 2H), 3.64 – 3.23 (m, 4H), 2.11 (q, J = 7.6 Hz, 

2H), 1.56 (q, J = 5.8 Hz, 2H), 1.53 – 1.37 (m, 4H), 0.91 (t, J = 7.6, 3H). 13C NMR (176 MHz, 

DMSO-d6 + D2O) δ 169.5, 162.5, 157.8, 156.3, 147.1, 131.8, 131.6, 131.4, 130.5, 129.7, 129.3, 

126.4, 122.1, 119.9, 118.6, 107.1, 53.1, 48.9, 43.2, 27.9, 25.6, 13.6. HRMS (ESI) Calcd for 

C32H33N8O2 [M+H+]: 575.2855, found 575.2877. HPLC retention time: 14.6 min. 
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(4-(4-((4-(4-(2,4-Diamino-6-ethylpyrimidin-5-yl)phenyl)-1H-1,2,3-triazol-1-yl)methyl)phenoxy) 

phenyl) (4-methylpiperazin-1-yl)methanone (15c). The reaction of compound A (15 mg, 0.065 

mmol), 14c (64 mg, 0.18 mmol) and CuI (10 mg, 0.052 mmol) in THF (1 mL), DMSO (1 mL) and 

Hunig’s base (0.2 mL, 1.16 mmol), followed by purification as described for the synthesis of 15a, 

furnished  15c as pale yellow solid, 25 mg (yield 65.8%). 1H NMR (700 MHz, CDCl3 + CD3OD) 

δ 8.23 (s, 1H), 7.92 (d, J = 7.9 Hz, 2H), 7.43 (dd, J = 11.1, 8.4 Hz, 4H), 7.33 (d, J = 7.9 Hz, 2H), 

7.07 (dd, J = 21.9, 8.2 Hz, 4H), 5.65 (s, 2H), 3.95 – 3.46 (m, 4H), 2.50 (d, J = 69.5 Hz, 4H), 2.35 

(s, 3H), 2.30 (q, J = 7.6 Hz, 2H), 1.07 (t, J = 7.6 Hz, 3H). 13C NMR (176 MHz, CDCl3 + CD3OD) 

δ 174.5, 166.8, 164.3, 162.6, 160.6, 159.3, 151.5, 135.1, 135.0, 134.6, 134.0, 133.9, 133.8, 133.7, 

133.0, 130.4, 123.7, 122.2, 111.6, 64.4, 57.4, 49.1, 33.4, 31.1, 16.8. HRMS (ESI) Calcd for 

C33H36N9O2 [M+H+]: 590.2967, found 590.2986. HPLC retention time: 2.9 min. 

 

4-Aminophenyl ethanol (16). A mixture of 4-nitrobenzyl alcohol (470 mg, 3.07 mmol) and 

Palladium on activated carbon (5%) (100 mg) was charged with hydrogen gas at 1 atmosphere. 

The mixture was stirred at rt for 24 h and filtered over celite bed. The filtrate was evaporated off 

to give 16 as yellow solid, 370 mg (yield 97.9%). 1H NMR (400 MHz, CDCl3) δ 7.22 – 7.08 (m, 

2H), 6.68 (dd, J = 8.4, 2.0 Hz, 2H), 4.55 (d, J = 1.8 Hz, 2H). 

 

4-Azidopmethyl aniline (17). Compound 16 (180 mg, 1.46 mmol) was mixed with diphenyl 

phosphine azide (400 mg, 1.46 mmol) and DBU (220 mg, 1.46 mmol) in anhydrous THF (10 mL). 

The mixture was cloudy at the beginning and turned clear gradually. The solution was stirred 

overnight at rt during which TLC revealed a complete consumption of 16. The reaction was poured 
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into saturated NaHCO3 (30 mL) and extracted with ethyl acetate (2x50 mL). The organic layer 

was dried with Na2SO4 and solvent was evaporated off. The crude product obtained was dissolved 

in DMF (10 mL), NaN3 (200 mg, 3.07 mmol) was added and the mixture was heated at 80°C 

overnight. The reaction was poured into water (200 mL) and extracted with DCM (3x50 mL). The 

organic layer was dried with Na2SO4 and solvent was evaporated off. The crude was purified by 

column chromatography eluting with ethyl acetate: hexanes (gradient of 3:7 to 5:5) to furnish 17 

as reddish liquid, 100 mg (yield 45.8%). 1H NMR (700 MHz, CDCl3) δ 7.13 (d, J = 8.4 Hz, 2H), 

6.70 (d, J = 8.4 Hz, 2H), 4.23 (s, 2H).  

 

N-(4-(Azidomethyl)phenyl)piperidine-1-carboxamide (18a). To a solution of compound 17 (33 

mg, 0.223 mmol) in anhydrous DCM (5 mL) was added carbonyldiimidazole (44 mg, 0.26 mmol) 

and the mixture was stirred at rt overnight. To this mixture was added piperidine (63 mg, 0.51 

mmol) and stirring continued for another 24 h. To the reaction was added 1N HCl (50 mL) and the 

mixture was extracted with DCM (2x50 mL). The organic layer was dried with Na2SO4 and solvent 

evaporated off. The crude was purified by column chromatography eluting with ethyl 

acetate:hexanes (gradient of 3:5 to 5:5) to furnish 18a as white solid, 30 mg (yield 51.9%). 1H 

NMR (400 MHz, CDCl3) δ 7.38 (d, J = 8.5 Hz, 2H), 7.25 – 7.21 (m, 2H), 4.27 (s, 2H), 3.45 (t, J = 

5.2 Hz, 4H), 1.67 – 1.61 (m, 6H).  

 

1-(4-(Azidomethyl)phenyl)-3-phenylurea (18b). The reaction of 17 (33 mg, 0.22 mmol), 

carbonlydiimidazole (44 mg, 0.26 mmol), and aniline (52 mg, 0.51 mmol), followed by 

purification, as described for the synthesis of 18a, furnished compound 18b as white solid, 24 mg 
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(yield 40.3%). 1H NMR (400 MHz, CDCl3) δ 7.40 (d, J=6.8Hz, 2H), 7.38 (s, 1H), 7.36 (d, J = 1.8 

Hz, 2H), 7.36 – 7.33 (m, 2H), 7.29 (d, J = 1.2 Hz, 1H), 4.30 (s, 2H). 

 

1-(4-(Azidomethyl)phenyl)-3-benzylurea (18c). The reaction of 17 (33 mg, 0.22 mmol), 

carbonlydiimidazole (44 mg, 0.26 mmol), and benzyl amine (49 mg, 0.42 mmol), followed by 

purification, as described for the synthesis of 18a, furnished compound 18c as white solid, 36 mg 

(yield 57.5 %).  1H NMR (400 MHz, CDCl3) δ 7.33 – 7.27 (m, 1H), 7.26 (d, J = 5.4 Hz, 5H), 7.18 

(d, J = 8.2 Hz, 2H), 6.99 (d, J = 85.4 Hz, 1H), 4.37 (d, J = 5.8 Hz, 2H), 4.25 (s, 2H). 

 

N-(4-((4-(4-(2,4-Diamino-6-ethylpyrimidin-5-yl)phenyl)-1H-1,2,3-triazol-1-

yl)methyl)phenyl)piperidine-1-carboxamide (19a). Compound A (20 mg, 0.08 mmol), 18a (30 mg, 

0.12 mmol) and CuI (10 mg, 0.05 mmol) were dissolved in THF (3 mL) and DMSO (2 mL). The 

mixture was stirred at rt under argon for 10 min, Hunig’s base (0.5 mL, 2.90 mmol) was added 

and the reaction was stirred at 35-40°C overnight. The reaction was quenched with 5% aqueous 

NH4OH (0.1 mL), poured into sat. NH4Cl and 10% NH4OH (30 mL), and extracted with DCM 

(2x50 mL). The organic layer was washed with saturated brine (50 mL) and dried with Na2SO4. 

Solvent was evaporated off and the crude was purified using preparative TLC, eluting with CHCl3: 

MeOH 9:1 to furnish 19a as pale yellow solid, 20 mg (yield 47.9%). 1H NMR (700 MHz, DMSO-

d6 + D2O) δ 8.59 (s, 1H), 7.90 (d, J = 8.2 Hz, 2H), 7.43 – 7.40 (m, 2H), 7.24 (dd, J = 17.8, 8.5 Hz, 

4H), 5.54 (s, 2H), 3.44 – 3.31 (m, 4H), 2.16 (q, J = 7.5 Hz, 2H), 1.54 (q, J = 6.4 Hz, 2H), 1.49 – 

1.42 (m, 4H), 0.96 (t, J = 7.6 Hz, 3H).  13C NMR (176 MHz, DMSO-d6 + D2O) δ 207.9, 163.0, 

155.4, 146.9, 141.1, 131.5, 130.3, 129.3, 128.6, 126.3, 121.9, 120.1, 107.2, 53.3, 45.1, 31.1, 25.9, 
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24.4, 13.4. HRMS (ESI) Calcd for C27H32N9O [M+H+]: 498.2705, found 498.2724. HPLC 

retention time: 13.4 min. 

 

1-(4-((4-(4-(2,4-Diamino-6-ethylpyrimidin-5-yl)phenyl)-1H-1,2,3-triazol-1-yl)methyl)phenyl)-3-

phenylurea (19b). The reaction of compound A (20 mg, 0.08 mmol), 18b (30 mg, 0.11 mmol)  and 

CuI (10 mg, 0.05 mmol) in THF (3 mL), DMSO (2 mL) and Hunig’s base (0.5 mL, 2.90 mmol), 

followed by purification using preparatory TLC (CHCl3:MeOH:NH4OH 9:1:0.05) as described for 

the synthesis of 19a, furnished  19b as yellow powder, 24 mg (yield 47.5%). 1H NMR (700 MHz, 

DMSO-d6 + D2O) δ 8.58 (s, 1H), 7.88 (d, J = 8.2 Hz, 2H), 7.43 (d, J = 8.5 Hz, 2H), 7.39 (d, J = 

7.6 Hz, 2H), 7.32 – 7.22 (m, 7H), 6.97 (t, J=5.6 Hz, 1H), 5.55 (s, 2H), 2.13 (q, J = 7.5 Hz, 2H), 

0.94 (t, J = 7.5 Hz, 3H). 13C NMR (176 MHz, DMSO-d6 + D2O) δ 152.8, 147.0, 131.6, 129.5, 

129.2, 126.3, 122.6, 121.9, 118.9, 118.8, 53.2, 29.3, 13.6. HRMS (ESI) Calcd for C28H28N9O 

[M+H+]: 506.2387, found 506.2411. HPLC retention time: 14.1 min. 

 

1-Benzyl-3-(4-((4-(4-(2,4-diamino-6-ethylpyrimidin-5-yl)phenyl)-1H-1,2,3-triazol-1-

yl)methyl)phenyl)urea (19c). The reaction of compound A (20 mg, 0.08 mmol), 18c (30 mg, 0.12 

mmol)  and CuI (10 mg, 0.05 mmol) in THF (3 mL), DMSO (2 mL) and Hunig’s base (0.5 mL, 

2.90 mmol), followed by purification using preparatory TLC as described for the synthesis of 19a, 

furnished  19c as yellow solid, 28 mg (yield 64.2%). 1H NMR (700 MHz, DMSO-d6 + D2O) δ 

8.67 (d, J = 1.5 Hz, 1H), 8.60 (s, 1H), 7.90 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 8.6 Hz, 2H), 7.33 – 

7.20 (m, 5H), 6.63 (t, J=5.6 Hz, 1H), 5.54 (s, 2H), 4.27 (s, 2H), 2.16 (q, J=7.5 Hz, 2H), 0.97 (t, J 

= 7.6 Hz, 3H). 13C NMR (176 MHz, DMSO-d6 + D2O) δ 155.6, 146.9, 140.8, 140.6, 131.5, 129.1, 
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128.9, 128.8, 127.5, 127.2, 126.3, 121.9, 118.3, 118.6, 53.6, 48.9, 43.0, 13.5. HRMS (ESI) Calcd 

for C29H30N9O [M+H+]: 520.2548, found 520.2568. HPLC retention time: 13.8 min. 

 

6.4.3  Cell culture and viability assay  

The cell culture and viability assay protocol was as described in our previous work.22 In brief, 

MDA-MB-231, VERO, and A549 cell lines were maintained in Dulbecco’s Modified Eagle 

Medium (DMEM) (Corning, 10-017-CV), supplemented with 10% fetal bovine serum (FBS) 

(Corning, 35-010-CV). MCF-7 cells were cultured in phenol red free Minimum Essential Medium 

(MEM) (Corning, 17-305-CV), supplemented with 10% fetal bovine serum (FBS). Cells were 

seeded into a 96-well plate (2000 counts/100uL) for 24 h prior to treatment and then treated with 

various drug concentrations for 72 h. All drugs were dissolved in DMEM/DMSO with DMSO 

concentration maintained at 1%. The effect of compounds on cell viability was measured using the 

MTS assay (CellTiter 96 Aqueous One Solution and CellTiter 96 Non-Radioactive Cell 

Proliferation Assays, Promega, Madison, WI) as described by the manufacturer. IC50s were 

determined using Prism GraphPad 8. 

 

6.4.4 Western blots analysis   

The Western blot protocol was as described in our previous work22. In brief, MDA-MB-231 cells 

were seeded into 6-well plate at 1*106/well in DMEM for 24 h after which the cells were starved 

in serum-free DMEM for another 24 h. Various concentrations of PYM, 11b-d and 15a solutions 

in DMSO were added to the cell culture such that the final DMSO level is 0.1%. Cells were treated 
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for 24 h, washed with cold PBS, and lysed with RIPA buffer (120 L) (VWR, VWRVN653-

100ML) buffer containing phosphatase inhibitor (Fisher Thermo, A32957) and protease inhibitor 

(Fisher Thermo, A32955). The cell lysates were scraped, collected, and vortexed for 15s followed 

by sonication for 60s. The lysate was then centrifuged at 14000x rpm for 10 min and the 

supernatants were collected. The total protein concentration was determined using a BCA protein 

assay kit (BioVision, K813-2500). Based on the results from the BSA assay, the lysates were 

diluted to make equal protein concentration and 20-40 g of each lysate was loaded to each well 

of the TGX MIDI 4-20% gel (Biorad, cat. 5671093) and ran at 150V for 70 min. The gel was then 

transferred on to the Turbo PDVF membrane (Biorad, 1704273) and after blocking with 5% BSA 

for 1-2 h, the membrane was incubated overnight with Bcl-2 (Santa Cruz, sc-7382), Bcl-xL (Santa 

Cruz, sc-8392), p-STAT3/STAT3 (Cellsignaling, D3A7/D1B2J), Cyclin D1 (Cellsignaling, 92G2), 

Actin (A2066-100UL, Sigma-Aldrich) antibodies. The second day, the membrane was washed 

with TBST for 3x5 min; secondary antibody (LiCOR) was added, and the membrane was 

incubated with agitation for 1 h. After washing with TBS-T 3x5 mins, bands were quantified using 

Odyssey CLx Image system. 

 

6.4.5 STAT3 DNA-Binding ELISA Assay 

MDA-MB-231 cells were incubated in 3x10 cm diameter Petri dish with 10% FBS DMEM until 

more than 80% confluency before overnight starvation with serum-free DMEM. Cells were 

washed with cold 1X PBS and lysed using nuclear extraction buffer that came with the kit. 

Following supplier’s instruction, we obtained nuclear lysate and stored at -80 ºC overnight. In the 

2nd day, the lysate was defrosted in ice and diluted 5X the original lysate with the nuclear extraction 
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buffer again to obtain the sufficient volume for assay.  Then, 20 µL aliquot was taken from the 

lysate and diluted with 80 µL water for each well and mixed with 100 µL 2X binding buffer. The 

total volume for each well is 200 µL. These prepared aliquots were treated with positive control 

nuclear lysate provided from the kit, DMSO, and various concentrations of PYM, 11b-d, and 15a 

at room temperature for 15-20 min. Then, each mixture was added into designated DNA-coated 

well. Subsequently, binding buffer (100 μL) was added to each well with gentle mixing using 

multichannel pipet. The plate was incubated in room temperature for 1 h. Then, the solutions were 

removed by gentle suction and the wells washed with a wash buffer supplied with the kit. The 

primary antibody was added and followed by incubation for another 2 h at room temperature in a 

plate shaker. The secondary antibody was then added after another wash and the plate was 

incubated for another 2 h in plate shaker. After washing with the wash buffer, TMB substrate was 

added and the plate was incubated for another 30 min to allow color development. Stop solution 

was added and the plate was read in microplate spectrophotometer reader at 490 nm.  

6.4.6 Flow cytometry 

The Flow cytometry protocol was as described in our previous work22. In brief, MDA-MB-231 

cells (5*106) were seeded to 10 cm plate with DMEM for 24 h prior to drug treatment.  Cells were 

treated with DMSO (control) and DMSO solutions of Pym (100 ) and 11c (2.5  and 5 

) such that the final DMSO level is 0.1%, for another 48 h. Cells were washed with cold 1X 

PBS solution twice then trypsinized. Subsequently, cells were collected using 1X PBS buffer and 

fixed overnight at -20oC using 70% ethanol. Cells were then washed, centrifuged and re-suspended 

in 1X PBS buffer solution of 200 ug/mL RNase A for 30 min. Then cells were treated with 100 
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ug/mL PI staining at room temperature for 30 min. Cell cycle progression was analyzed with BD 

FACS Aria Illu analyzer and the data was processed using FlowJo. 
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Highlights 

Structure-based design furnished three classes of novel pyrimethamine-based STAT3 DNA 

binding domain Inhibitors 

Representative compounds down-regulate the STAT3 downstream proteins Cyclin D1, Bcl-2 and 

Bcl-xL 

Representative compounds are able to distinguish between cancer cell lines 

Representative compound and pyrimethamine induced significant S-phase cell cycle arrest 

Compounds 11b and 11d more strongly inhibited the interaction of p-STAT3 to its target DNA 
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Graphical Abstract 
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6.6 Supporting Information 

Table 6S.1. Docking score of 11b and controls on P1 and P2 postions of DBD domain. 

Compounds P1 Docking 

score (kcal/mol) 

P2 Docking 

score (kcal/mol) 

PYM -6.4 -5.8 

Wbc-04-82 -8.5 -7.5 

11b -10.6 -9.1 
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Compound 2 
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Compound 3a 
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Compound 3b 
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Compound 3c 
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Compound 4a 
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Compound 4b 
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Compound 4c 
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Compound 6 
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Compound 8 
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Compound 10a 
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Compound 10b 
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Compound 10c 
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Compound 11a 
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Compound 11b 
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Compound 11c 
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Compound 11d 
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Compound 13 
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Compound 14a 
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Compound 14b 
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Compound 14c 
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Compound 15a  
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Compound 15b  
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Compound 17 
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Compound 18a 
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Compound 18b 
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Compound 18c 
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Compound 19a  
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Compound 19b  
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Compound 19c  
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LC-MS data 
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Compound 11b 
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Compound 11d 
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Compound 19c 
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Full Gels 

 

1a. 

                                                          DMSO       PYM                   11c                     11d                    DMSO        PYM                   11c                     11d 
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Figure 6S.1. Western blot gel for Compound 11c and 11d. MDA-MB-231 cell line treated by 

DMSO (0.1%), PYM 100µM, 11c (5 µM and 10 µM), 11d (5 µM and 10 µM) for 24 h. (a) gel of 

Actin, Bcl-2, and Bcl-xL. (b) Gel of Cyclin D1. (c) Gel for p-STAT3 and Actin. (d) Gel of T-

STAT3 and Actin.  
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Figure 6S.2. Western blot gel for Compound 11b and 15a. MDA-MB-231 cell line treated by 

DMSO (0.1%), PYM 100µM, 11b (5 µM and 10 µM), 15a (5 µM and 10 µM) in two separate 

experiments for 24 h. (a). gel of p-STAT3, GAPDH, Cyclin D1, Bcl-2, and Bcl-xL. (b). Gel of T-

STAT3 and Actin.  
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Figure 6S.3. Absorbance of NADPH without DHFR reduction. 

 

 

Figure 6S.4. Novel STAT3 inhibitor candidates do not inhibit DHFR activities. DHFR activity 

assay was performed with 1% provided hDHFR incubating with NADPH and DHFR substrate as 

the positive control. The treatment group was treated with 1% DMSO, or DMSO solution of PYM 

500µM (2x IC50), 125 µM, 31.25 µM, 11b-d (10x IC50) and 15a (1x IC50) along with provided 

hDHFR, NADPH and DHFR substrate. DHFR activity was read at OD 340nm for NADPH 

absorbance with kinetic scanning (2-minute intervals from 0 to 28 minutes). The experiment was 

performed in duplicate data. 
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Abstract 

Hepatocellular cancer (HCC) is a heterogeneous cancer sustained by gene-silencing chromatin 

histone hypoacetylation due to dysfunctions in the activities of histone deacetylases (HDACs). 

HCC is also highly dependent on Warburg effect, an altered state of metabolism in which cancer 

cells depend on anaerobic glycolysis for energy source. We report herein that the integration of 

glycoside moieties into the prototypical HDAC inhibitors (HDACi) surface recognition group 

afforded glycosylated HDACi that are selectively cytotoxic to Hep-G2 cells. A cohort of these 

compounds demonstrated intracellular on-target effect and selectively induced in Hep-G2 cells. 

Lead compound STR-V-53 displayed exquisite HCC cell line selectivity, as it is none toxic to cells 

in the NCI-60 panel and derived a significant part of its Hep-G2 cell penetration through GLUT-

2-mediated transport. Furthermore, STR-V-53 is relatively non-toxic to mice and robustly 

suppressed tumor growths in an orthotopic model of HCC as standalone agent. STR-V-53 also 

enhanced the potency of SORA in a combination therapy experiment. Collectively, our data 

suggests that STR-V-53 is a novel HDACi whose potential as targeted anti-HCC agent merits 

further evaluation in additional preclinical studies. 
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7.1 Introduction 

Liver cancer is among the leading causes of global cancer deaths.1 Hepatocellular carcinoma 

(HCC) is the most common of liver cancer types. HCC is responsible for over 80% of all liver 

cancer cases, and occurring in >90% of cases in patients with liver damage.2 The prognosis of 

HCC is very grim, with an estimated 10-12% 5-year survival.3 The common risk factors for HCC 

are ethnicity, gender, chronic viral hepatitis, cirrhosis, alcohol addiction, inherited metabolic 

diseases, obesity, tobacco use, and type-2 diabetes.4-7 There is a strong link between chronic 

inflammation and several cancer types. This relationship is stronger in HCC as it is initiated in 

inflamed liver tissues.8, 9  

Surgical resection is a treatment option for HCC. However, surgery is limited to patients with the 

early stage of the disease and good liver function. Only a small proportion of HCC patients are 

eligible for surgery and the post-surgery relapse rate (50-80 %) is very high.10, 11 Liver 

transplantation is another treatment option for early-stage but shortage of organs and late stage 

diagnosis of the disease have significantly limited this option.12, 13 Systemic chemotherapy became 

a mainstay treatment option for unresectable HCC with the FDA approval of sorafenib, an inhibitor 

of multiple protein kinases including Raf serine/threonine kinases and receptor tyrosine kinases.14 

The subsequent approval of other multikinase angiogenesis inhibitors such as lenvatinib, 

regorafenib, and cabozantinib have added more pharmacological tools for HCC treatment.15 

However, none of these drugs could extend advanced HCC patients survival beyond 3 months.16 

More recently, immunotherapy strategy, involving blockade of immune checkpoints (PD-1 alone 

or with CTLA-4), has shown promising therapeutic effects in the clinic, however, the vast majority 

of patients (>70%) do not positively respond to immunotherapy either as standalone treatment or 
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when combined with antiangiogenic drugs.17 Therefore, there is a significant unmet for more 

efficacious treatment modalities for HCC. 

Histone deacetylase (HDAC) inhibition is a clinically validated epigenetic-based strategy for 

cancer treatment. HDACs, through their lysine deacetylase activities, play important roles in 

epigenetically moderating gene expression at the chromatin level. Dysregulation of HDACs 

expression has been linked to the proliferation, survival, and invasiveness of HCC.18 Specifically, 

the overexpression of class I HDACs (HDACs 1 and 2) and class IIa HDACs (HDACs 4, 7 and 9) 

in HCC cells and patient samples strongly correlates with reduced patient survival.18 To date, five 

HDAC inhibitors (HDACi) – Vorinostat, Belinostat, Chidamide, Romidepsin and Panobinostat – 

have been approved to treat hematological malignancies.19 The potential of Belinostat as anti-HCC 

agents has been studied in clinical trial (NCT00321594).20 However, the results from the trial 

revealed that Belinostat caused median progression-free survival (PFS) and overall survival (OS) 

of 2.64 and 6.60 months, respectively.20 While this result indicates the potential of HDAC 

inhibition as treatment strategy for HCC, improvement of the efficacy is a key challenge that must 

be overcome for the future used of HDACi in the treatment of HCC.  

In previous studies, we have found that bio-inspired alterations to the HDACi surface recognition 

cap group could furnish HDACi with cell-type and tissue selectivity.16-18 More specific to HCC, 

we have found that selective-liver tissue accumulation is a viable approach to improving the anti-

HCC efficacy of HDACi. We have discovered that the integration of macrolide azithromycin into 

the surface recognition group of sub-class I HDAC isoform selective HDACi resulted in 

macrolide-based HDACi, which preferentially accumulated in the liver tissue and robustly 

suppressed HCC tumor growths in an orthotopic model.22  In this study, we explored targeting the 

Warburg effect as a strategy to selectively target HDACi to cancer cells.  Warburg effect is an 
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altered state of metabolism in which cancer cells depend on anaerobic glycolysis for energy source 

even in the presence of oxygen. To sustain this altered metabolism and proliferation,23 cancer cells 

upregulate the expressions of several glucose transporters (GLUT) to facilitate enhanced sugar 

uptake. Overexpressed on several cancers cells surfaces are GLUT-1, GLUT-2, GLUT-3, and 

GLUT-4.24, 25 Unlike several other cancers, HCC is known to overexpress GLUT-2 which could 

effectively promote the uptake glucose and mannose in order to support Warburg effect.26 GLUT-

2 is a major facilitator of sugar transport in the hepatocytes, having higher capacity and lower 

binding affinity to glucose.25 In addition, GLUT-2 could promote the cell uptake of fructose and 

several glycosylated small molecules. This unique property makes GLUT-2 the preferred sugar 

transporter relative to the other GLUTs, 25, 27  

Based on this understanding, we designed and synthesized four classes of novel glycosylated 

HDACi having glycoside moieties (D-glucose, D-mannose, and desosamine sugar) integrated into 

the prototypical HDACi surface recognition cap group.28 We evaluated the HDAC inhibition 

activities of the glycosylated HDACi against representative class I and class II HDACs and 

screened then against representative cancer (A549 and Hep-G2) and normal (VERO) cell lines.  

We found that these compounds demonstrated potent HDAC inhibition activities and a cohort of 

(STR-V-53, STR-I-195, and STR-V-114) are 8- to 10-fold selectively cytotoxic to HCC cell line. 

Also, we found that the HCC cell line (Hep-G2) largely uptakes the glycosylated HDACi through 

GLUT-2 transporter. In addition, these HDACi caused cell-line dependent apoptosis through 

caspase 3 cleavage and p21 upregulations. We also found that a selected candidate compound 

STR-V-53 efficiently suppressed HCC tumor growth over 21-day treatment with no significant 

toxicity. Subsequently, we screened STR-V-53 in the NCI-60 panel. Although the NCI-60 panel 

is lacking liver cancer cell lines, we performed this experiment to obtain further information about 
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the cancer cell-type selectivity of STR-V-53. We observed that, in a one-dose experiment (10 

M), STR-V-53 has negligible effect on proliferation showing a mean cell growth of 99.6%. Our 

cell activity data on STR-V-53 and the lack of growth inhibition effect of STR-V-53 in the NCI-

60 panel strongly support of our conclusion of HCC cell-selectivity attribute of STR-V-53. 

Overall, the compounds disclosed herein have high translational potential as new agents for HCC 

treatment. 

 

7.2 Result 

7.2.1 Chemistry (The synthesis described in this section was performed by Dr. Subhasish 

Tapadar) 

Prototypical HDACi are based on three pharmacophoric model – surface recognition cap-linker 

moiety-zinc binding group (ZBG) (Fig. 7.1a). In designing the disclosed compounds, we 

individually integrated three different glycosides D-glucose, D-mannose, or desosamine – into the 

standard HDACi surface recognition cap group while we adopted the linker moieties that have 

afforded optimum HDC inhibition effect based on our previous studies and those by others.21  As 

ZBGs, we used hydroxamate and N-(2-amino-phenyl)acylamide (NAPA), two moieties that afford 

pan-selective and HDAC class-selective inhibition respectively. This design furnished four classes 

of linkers shown below in Figure 7.1b-c. In addition to these glycosylated HDACi, we also 

synthesized and tested compounds STR-V-46, STR-V-48 and STR-V-183 (Fig. 7.1d) as controls 

to decipher the contributions of the glycoside moieties to the bioactivity of these compounds. 

a.  
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b. 

 

c. 

 

Figure 7.1. Models and designs of the glycosylated HDACi. (a) The three pharmacophoric model 

of HDACi. (b) The aglycone moieties of the designed HDACi. (c) The glycoside moieties of the 

designed HDACi. (d) Structures of control compounds STR-V-46, STR-V-48 and STR-V-183. 
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Scheme 7.1. Synthesis of control compounds STR-V-46, STR-V-48, and STR-V-183. 

 

The synthesis of the control compounds STR-V-46, STR-V-48, and STR-V-183 was 

accomplished via Cu(I) promoted Huisgen cyclization29 between appropriate terminal alkynes and 

azide intermediates,30, 31, 32 followed by functional group deprotection adapting our published 

protocol (Scheme 7.1).33  
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Scheme 7.2. Synthesis of the glucosylated HDACi . 
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Toward the glucosylated HDACi, glucose penta-acetate was coupled with the 4-iodophenol in the 

presence of Lewis acid Tin (IV) chloride in chloroform to yield STR-V-49.34 The TMS group of 

STR-V-49 was removed by treatment TBAF to furnish STR-V-51 which was clicked with the 

TBDPS protect azido azidohydroxamates and the resulting protected product treated with cesium 

fluoride to yield STR-V-166. The acetyl groups of STR-V-166 was hydrolyzed by treatment with 

to sodium methoxide in methanol to furnish the target class I compounds STR-V-53 (Scheme 7.2). 

To synthesize the class II glucosylated HDACi, 6-bromonaphthalen-2-ol was coupled to the 

glucose penta-acetate using Lewis acid boron trifluoride etherate in DCM under refluxing 

condition to form STR-V-55.35 The Sonogashira coupling of the bromo naphthalene STR-V-55 

and TMS-acetylene using catalysts copper iodide, Bis(triphenylphosphine)palladium(II) 

dichloride, TPP in THF, followed by deprotection of the TMS moiety of the resulting product 

using TBAF, resulted in STR-V-111. Subsequently, STR-V-111 was clicked to the TBDPS 

protect azido azidohydroxamates, followed by Cesium fluoride deprotection and acetyl group 

removal; furnished target class II compounds STR-V-115 (Scheme 7.2). We synthesized the class 

IV compounds STR-V-155 and STR-V- 157, which has the class I selective NAPA as ZBG,36 

using a variant of the Cu(I) promoted Huisgen cyclization (Scheme 7.2).37  
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Scheme 7.3. Synthesis of mannosylated HDACi 

To synthesize the mannose derivatives, mannose penta-acetate was coupled with 4-iodophenol 

using boron trifluoride etherate in DCM. The product STR-I-189 was coupled with TMS-

acetylene using the same condition for the synthesis of STR-V-51. The resulting aceylated 

compound STR-I-190 was clicked with TBDPS protect azido azidohydroxamates using the same 
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condition as in the synthesis of STR-V-167 to furnish STR-V-176. Subsequent hydrolysis of the 

acetyl groups yielded the target class I mannose compounds STR-I-195. 

In order to form the mannosylated class II, we coupled the mannose penta-acetate with 6-

bromonaphthalen-2-ol using boron trifluoride etherate under the same condition for the synthesis 

of STR-V-55 to furnish STR-II-30. The transformation of STR-II-30 to the target mannosylated 

class II compounds STR-II-36 (Scheme 7.3), followed similar reaction steps used to synthesize 

analogous glucose compounds.  

 

Scheme 7.4. Synthesis of glucosylated or mannosylated hydroxamate HDACi. 

Toward the class III glucosylated compounds, the Heck coupling of mannose derivative STR-II-

30 with O-trityl acrylamide followed by the deprotection of the O-trityl group with TFA/TIPS in 

DCM and the acetyl group with sodium methoxide furnished the final product STR-V-105. The 

glucosylated compound STR-V-105 was similarly made from STR-V-55 and O-trityl acrylamide 

(Scheme 7.4).  
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Scheme 7.5. Synthesis of desosaminylated hydroxamate HDACi.  

Lastly, we synthesized the desosaminylated compounds from diacetyl desosamine STR-V-160 

which was synthesized via acetylation of desosamine (Scheme 7.5). The coupling of STR-V-160 

with 4-iodophenol, using the same method described for the synthesis of STR-I-189, resulted in 

STR-V-161, which was converted to STR-V-163 using the same condition as in the synthesis of 

STR-V-51. Subsequently, the STR-V-163 clicked with TBDPS protect azido azidohydroxamate; 

and the TBDPS and acetyl groups deprotected to form STR-V-165 in analogous manner to the 

synthesis of STR-V-53. 

 

7.2.2 Molecular Docking 

To gain insight into the prospect of productive interaction between these glucosylated HDACi and 

HDACs and GLUT transporter, we used the in silico molecular docking analysis (Autodock 

Vina)38 to interrogate the binding orientations and the docking scores of a selected compound 
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STR-V-53 against HDAC2 (PDB: 4LXZ), HDAC6 (5G0G) and, GLUT-1 (4PYP) which shared  

55% sequence similarity of GLUT-2. We used GLUT-1 for this analysis due to the due to the 

absence of GLUT-2 structure in the PDB.  

a.                                                                                     b. 

  

C1.                                                                                          C2 

 

Figure 7.2. Molecular docking on (a) HDAC2 (PDB:4LXZ) and (b) HDAC6(5G0G) revealed 

efficient zinc chelation, and (c1) hydrophobicity presentation of GLUT-1(4PYP) with overlay of 
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STR-V-53 and nonyl beta-D-glucopyranoside. (c2) Putative hydrogen bonding interactions 

between glucose moiety of STR-V-53 and amino acids side chains at the binding pocket of GLUT-

1.(d1 and d2) showed STR-V-176 (Desosamine moiety) overlay with Nonyl-beta-D-

glcopyranoside and the intermolecular interaction was demonstrated.  

Molecular docking analyses were performed as we described before.39, 40 We observed that, STR-

V-53 efficiently chelate the Zn+2 ion at the active sites of HDAC2 and HDAC6 (Fig 7.2a-b), an 

interaction that is crucial to effective HDAC inhibition.  The docking scores of the binding poses 

of STR-V-53 which have most plausible interactions within HDACs 2 and 6 active sites are 

9.3kcal/mol and 10.3 kcal/mol respectively. Both binding affinities are relatively high for protein-

ligand interaction, which strongly suggest that they could be potent HDACi. 

Against GLUT-1, we found that the glucose moiety of STR-V-53 optimally interacts within the 

region where the sugar analog nonyl beta-D-glucopyranoside seats (figure 7.2c). More 

specifically, the glucose moiety of STR-V-53 forms H-bonds with Asn-288, Gln-283, Glu-380, 

Asn-415 (Fig. 7.2d). This docking also results in -12.2 kcal/mol binding affinity, a much strongly 

binding affinity relative to unmodified glucose (-6.4kcal/mol) and nonyl beta-D-glucopyranoside 

(-9.5kcal/mol). Based on this in silico prediction, we postulate that glucosylated compound STR-

V-53 will be preferentially transported by GLUT-1, and possibly GLUT-2. STR-V-176 as the 

desosamine derivative HDACi showed less H-bonding in the GLUT-1 binding pocket than STR-

V-53 as it has less hydroxyl group around, which lowers its binding affinity to -10.2kcal/mol. 

These indicates that STR-V-176 may not be as selective as STR-V-53 in cellular uptake to GLUT-

1- or GLUT-2-enriched cell lines. 

 

7.2.3 Anti-proliferation activity. 
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As a cost-effective approach to identify lead compounds for intracellular target validation, we first 

screened all of the synthesized compounds for their effects on the viability of three cell lines: A549 

(lung adenocarcinoma), VERO (kidney epithelial cell), and Hep-G2 (hepatocellular carcinoma). 

We observed that the control compounds STR-V-46 and STR-V-48 showed strong cytotoxicity 

against all three cell lines while there is no selectivity between VERO and Hep-G2. In contrast, 

class I glucose candidate STR-V-53 showed relatively high cytotoxicity and cell-type selectivity 

against Hep-G2 over other cell lines. However, the mannose derivative STR-I-195 showed some 

selectivity but it is not as strong as STR-V-53. In the class II, STR-V-114 (glucose compound) 

still showed 7- to 10-fold selectivity in Hep-G2 with a lower IC50, while the mannose class II 

candidate STR-II-36 is not as selective as STR-V-114. For the cinnamic derivatives in class III, 

we observed that the STR-V-105, STR-V-115 and STR-V-121 showed Hep-G2 selectivity, 

whereas the cytotoxicity is not ideal (>45 µM). HDAC class I selectivity of these compounds may 

contribute to their Hep-G2 selectivity. Thus, we examined the class IV against all three cell lines, 

and we found that none of them could induce significant cytotoxicity on Hep-G2. The reason of 

the failure could be due to the structural-activity relationship (SAR) that the conjugation of sugar 

may not compatible with the NAPA ZBG in HDAC inhibition. Finally, we were interested in 

activities of desosamine derivatives STR-V-165. Interestingly, the desosamine candidate also 

showed 7-fold selectivity on Hep-G2 over VERO. This may not unexpected as GLUT-2 could 

facilitate the transport of several sugars, desosamine included based on this data. 

 

Table 7.1. IC50 of anti-proliferation effects of glycosylated HDACi. *NI=no inhibition up to 

100µM. *NT= not tested 
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Compound name A549 

(µM) 

Hep-G2 

(µM) 

VERO 

(µM) 

STR-V-46 2.8±0.2 0.3±0.05 0.3±0.08 

STR-V-48 1.4±0.2 0.4±0.04 0.2±0.05 

STR-V-183 83.1±6.6 11.8±4.8 41.8±6.1 

STR-V-53 NI* 10.4±0.6 NI 

STR-V-114 77.2±4.3 6.7±1.6 34.1±3.0 

STR-V-176 64.7±7.0 8.0±0.9 77.4±5.6 

STR-I-195 NI 22.3±2.0 65.5±8.3 

STR-V-177 39.6±0.6 7.4±0.9 19.2±0.9 

STR-II-36 20.1±1.1 7.5±0.8 33.6±5.5 

STR-V-105 NI 78.5±11.6 NI 

STR-V-115 NI 66.1±10.3 82.1 

STR-V-165 33.7±1.8 9.6±3.4 76.4 

STR-V-155 59.9±1.3 NT* NI 

STR-V-157 NI NI NI 

Sorafenib 18.1±2.9 3.7±0.4 12.2±0.1 

SAHA 15.7 ± 0.99 5.6±1.7 4.5 ± 0.68 

 

Relative to SAHA, a prototypical HDACi, and Sorafenib, a clinically approved anti-HCC agent, 

our compounds STR-V-53, STR-V-114, STR-I-195, and STR-V-165 could be lead candidates 

cell-type selectivity anti-HCC agents (Table 7.1). As expected, though the Desosamine STR-V-

176 showed potency in HCC, the selectivity over VERO or A549 is around 10-fold, while the 

STR-V-53 is more than 10-fold because it does not induce any cytotoxicity up to 100 µM. 
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To further investigate the cancer cell-type selectivity of our compounds, we screened STR-V-53 

(10 µM) in the NCI 60 panel. We found that STR-V-53 has negligible effect on proliferation of 

all cancer cells in NCI panel, which is lacking HCC cell lines, showing a mean cell growth of 

99.6%. Our cell activity data on STR-V-53 and the lack of growth inhibition effect of STR-V-53 

in the NCI-60 panel (Fig. S7.1) strongly support of our conclusion of HCC cell-selectivity attribute 

of STR-V-53 and possibly other lead glycosylated HDACi disclosed herein.  

 

7.2.4  Hep-G2 cell line uptake glycosylated HDACi via GLUT-2  

a.                                                                                       b. 
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Figure 7.3. Blockage of GLUT-2 attenuates the cytotoxicity of STR-V-53 against Hep-G2. Hep-

G2 and VERO were treated with Phloretin (Ph) for 24 h prior to incubation with STR-V-53 or 

SAHA. (a) Hep-G2 treated by STR-V-53 with or without Ph. (b) Hep-G2 treated by SAHA with 

or without Ph. (c) VERO treated by STR-V-53 with or without Ph. (d) VERO treated with SAHA 

with or without Ph. 

 

To investigate the role of GLUT-2 in the uptake of STR-V-53 by Hep-G2, we pharmacologically 

blocked GLUT-2 with an inhibitor, phloretin (Ph) and assess the effect of this blockage on cell 

cytotoxicity using MTS assay. We observed that Ph selectively mitigated the cytotoxicity of STR-

V-53 against Hep-G2 cell line with no apparent effect on the cytotoxicity of SAHA (Fig. 7.3a-b). 

Against VERO cell line, we did not observe any significant change in the effects of STR-V-53 or 

SAHA in the presence of Ph (Fig. 7.3c-d). This matches our expectation because VERO has limited 

expression of GLUT-2. Collectively, this data suggests that the glycosylated compound STR-V-

53 derives a significant part of its Hep-G2 cell penetration through GLUT-2-mediated transport 

and much less from passive diffusion. 

7.2.5 Glycosylated HDACi showed intracellular HDAC inhibition 

a. 
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                  Control      SAHA         STR-01-114         STR-V-53 

                                          1.25µM   1.25µM     2.5µM    1.25 µM    2.5 µM     

Ac-Tubulin   

      GAPDH  

        AC-H4  

b. 

                     Control               SAHA                      STR-I-195 

                                      0.5 µM   1.25 µM   0.5 µM   1.25 µM   2.5 µM 

Ac-Tubulin  

      GAPDH  

        AC-H4  

 

Figure 7. 4. Hep-G2 induced up-regulation of acetylated H4 and acetylated α-Tubulin. (a) Hep-G2 

treated with DMSO or 0.1% DMSO solution of SAHA (1.25µM), STR-I-114 (1.25µM, 2.5µM) 

and STR-V-53 (1.25µM, 2.5µM). (b) Hep-G2 treated with DMSO or 0.1% DMSO solution of 

SAHA (0.5 µM, 1.25µM) and STR-I-195 (1.25µM, 2.5µM). Cell were treated for 5 h before lysis. 

Data are from two independent experiments. 

 

To determine the contributions of HDAC inhibition to the antiproliferative activities of the 

glycosylated HDACi compounds, immunoblotting was used to investigate the acetylation status 

of histone H4 and -tubulin in Hep-G2 cells in response to exposure to representative compounds 

STR-V-53, STR-V-114 and STR-I-195 using SAHA as a positive control for HDAC inhibition. 

H4 and tubulin acetylation states as biomarkers for HDAC class I and class IIb intracellular 

inhibition, respectively. GAPDH expression was used as a protein loading control. As expected, 

the exposure of cells to STR-V-165 and STR-V-114 at ¼ IC50 and ½ IC50 induced accumulation 

of acetylated H4 and acetylated tubulin. Similarly, SAHA at 1.25 induced H4 and tubulin 

hyperacetylation (Fig. 7.4b). On the other hand, STR-I-195 at 0.5 µM did not show significant 

acetylation of H4 and α-Tubulin, but at 1.25µM and 2.5 µM showed significant acetylation (Fig. 
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7.4b). All these data indicates that compounds STR-V-53, STR-I-195 and STR-V-114 

intracellularly inhibit HDAC isoform I and HDAC 6 at low micromolar concentrations. 

7.2.6 Glycosylated HDACi induce selective Hep-G2 cell apoptosis 

                               DMSO        SAHA           STR-V-53                 STR-I-195 

                                                    5µM         10µM       20µM          10µM        20µM 

Pro-Caspase3         

Clv-Caspase3         

      P21WAF/CIP        
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Figure 7. 5. Evidence of caspase 3 cleavage and p21 up-regulation in Hep-G2 cell by glycosylated 

HDACi. Cells were treated with DMSO or 0.1% DMSO solution of SAHA (5µM), STR-V-53 (10 

and 20 µM), or STR-I-195 (10 and 20 µM) for 18 h. (a) Cropped gels with upregulation on p21, 

pro-caspase3 and clv-caspase 3. (b) Quantification of relative expression of p21 and ratio of clv-

caspase 3 vs pro-caspase3. (Bars show mean plus standard deviation; * P < 0.0332; ** P < 

0.0021;***P<0.0002; ****P<0.00001). 

 

HDAC inhibition could cause cell apoptosis through Caspase cleavage and p21 upregulation. 

Typically, SAHA induces the cleavage of Caspase 3 and p21 upregulation in Hep-G2 cell line 

(Fig. 7.5). To probe if our compounds elicit a similar phenotype, we investigated their effects on 

the cellular levels of cleaved Caspase 3 and p21 through immunoblotting. Specifically, Hep-G2 

cells (1 x106 count/well) were treated with SAHA, STR-V-53 and STR-I-195 at IC50 or 2x IC50 

for 18 h prior to the cell lysis. Western blotting on the cell lysates revealed that STR-V-53 caused 

a significant upregulation of cleave Caspase 3/Pro-caspase 3 ratio, while SAHA and STR-I-195 

also showed cleavage of Caspase 3. p21WAF/CIP was also upregulated significantly at higher 

concentrations of STR-V-53 and STR-I-195. These data implies that STR-V-53 and STR-I-195 

act through HDAC inhibition, in similar manner to SAHA, to induce apoptosis in Hep-G2 cells. 

 

                                 DMSO      SAHA            STR-V-53                STR-I-195 

                                                   5µM          10µM       20µM       10µM        20µM 

Pro-Caspase3         

Clv-Caspase3          

              Actin         
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Figure 7. 6. No evidence of cleavage of caspase 3 in Vero cell treated with STR-V-53 or STR-I-

195. Cells were treated with DMSO or 0.1% DMSO solution of SAHA (5µM), STR-V-53 (10 and 

20 µM), or STR-I-195 (10 and 20 µM) for 18 h. (a) Cropped gels with upregulation on Pro-

caspase3 and clv-caspase3. (b) Quantification of ratio of pro-caspase3 vs cleaved-caspase3. (Bars 

show mean plus standard deviation; * P < 0.0332; ** P < 0.0021;***P<0.0002; ****P<0.00001). 

 

Interestingly, STR-V-53 or STR-I-195 did not induce cleavage of caspase 3 in VERO cells even 

at the same concentrations that would induce caspase 3 activation in Hep-G2 cells (Fig. 7.6). In 

contrast, the SAHA induced cleavage of caspase 3 (Fig. 7.6). This data shows that glycosylated 

HDACi are selectively toxic to HCC cell line Hep-G2. This is most likely due to the selective cell 

uptake mediated by GLUT-2. 

 

7.2.7 STR-V-53 caused cell cycle arrest at S stage 
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Figure 7.7. The effect of STR-V-53 on cell cycle progression. Hep-G2 cells were cultured until 

80% confluence in 10cm petri dish. The cell was serum starved overnight before drug treatment. 

Then the cell were treated with 10 mL of 0.1% DMSO medium, 0.1% DMSO solution of SAHA 
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(5 µM) or STR-V-53 (15µM) respectively for 48 h. (a) The control group. (b) SAHA (5 µM) 

treated group. (c) STR-V-53 (15µM) treated group. Data are from two independent experiments.  

Quantification data is shown above. 

 

To determine if the potent Hep-G2 cell selective cytotoxicity of STR-V-53 results from its 

perturbation of the cell cycle pattern, we evaluated the effect of STR-V-53 on the cycle progression 

by flow cytometry using SAHA as a control (Fig. 7.7). We observed that both SAHA (5 µM) and 

STR-V-53 (15µM) caused significant S phase arrest of Hep-G2 cell after 48 h treatment. This data 

shows that the STR-V-53 may act like SAHA to cause cell death.  

 

7.2.8 Glycosylated HDACi suppress tumor growth in murine model (This experiment was 

performed in collaboration with Petros lab at Emory University)  

Based on the data from the aforementioned in vitro studies, we selected STR-V-53 as a candidate 

for further evaluation in an orthotopic model of Hep-G2-Red-FLuc Bioware® Brite Cell Line 

(PerkinElmer) in mice.   
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Figure 7. 8. Compound STR-V-53 significantly suppressed liver tumor growth and liver tissue 

accumulation with no toxicity based on mice body weight indication. (a) Maximum tolerated dose 

experiment with mice weight monitor. Mice were treated with 50 mg/kg and 100 mg/kg daily for 
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6 days through IP injection, and body weights were recorded daily. There are 6 per group, equal 

number of both sexes. (b) STR-V-53 (25 and 50 mg/kg daily) and SORA (25 mg/kg) were 

administrated into tumor bearing mice via i.p. injection for 21 days. (c). Comparison of the 

monotherapy of STR-V-53 with that of combination therapy of STR-V-53 (25 mg/kg) + Sorafenib 

(SORA) (10 mg/kg). (d). Biodistribution of STR-V-53 8 h post i.p. injection. (e). Tumor uptake 

of STR-V-53 in male and female mice. There are 10 mice (5 male and 5 female) per treatment 

group.  

 

Prior to embarking on tissue distribution and efficacy studies, we first determined the maximum 

tolerated dose (MTD) of STR-V-53 in healthy C57Bl/6 mice. The compound was administered 

via i.p. injection using a formulation containing excipients found in FDA approved drugs – 

dimethylacetamide (DMA)/Cremophor RH 40 (CRH)/Water (10%/20%/70%) – that we 

developed. We exposed cohorts of animals (6 per group, equal number of both sexes) to the drug 

at two concentrations – 50 mg/kg, 100 mg/kg (limiting injection volume to 100 µL per dose) – 

daily for 6 days. Using body weight as an indicator of toxicity, we observed no overt toxicity as 

STR-V-53 caused no significant body weight loss at 100 mg/kg (Fig. 7.8a). Based on this MTD 

data, we investigated the effect of STR-V-53 on tumor growth at 25 and 50 mg/kg body weight.  

Mice (6-8 weeks old) were orthotopically implanted through by a direct intrahepatic artery 

injection with Hep-G2-Red-FLuc cells according to published protocols.41 We used the Red-Fluc 

expression to confirm tumor implantation by bioluminescent imaging using IVIS. Treatment began 

after imaging confirmed the establishment of intrahepatic tumors (approx. 7 days).  Mice were 

grouped into cohorts with similar average relative chemiluminescence and the treatment groups 

were injected daily with 200 µL of solution of STR-V-53, SORA and combination of STR-V-53 

and SORA for 21 days via i.p. route. No treatment group received vehicle only. After treatment, 

mice were imaged again, sacrificed and liver samples were harvested to determine the effects of 
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treatment on tumor size by measurement with calipers. We found that STR-V-53 efficiently 

suppressed HCC tumor growth at 50mg/kg and 25mg/kg to a similar extent as SORA . STR-V-53 

at 25 mg/Kg and 50 mg/Kg induced tumor growth inhibition (TGI) of 60% and 68% respectively 

(Fig. 7.8b). Moreover, the combination therapy of SORA (10 mg/kg) and STR-V-53 (25 mg/kg) 

is more efficacious than either drug as standalone agents. Relative to the effect of each agent alone, 

the combination of STR-V-53 (25 mg/Kg) and sorafenib (10 mg/Kg) additively reduce tumor 

volume with TGI of ~ 80% (Fig. 7.8c). This suggest that STR-V-53 could enhance the efficacy of 

clinically approved SORA.  

Finally, we used mass spectrometry to determine biodistribution of STR-V-53 8h post i.p. 

administration. We measured the levels of STR-V-53 in selected tissues – liver, lungs and the 

plasma – of healthy mice exposed to STR-V-53 (50 mg/kg, i.p.). In the plasma, the level of STR-

V-53 is relatively low for both the female (2.82 pg/mL) and male (8.76 pg/mL) mice. The levels 

of STR-V-53 in the liver tissue of female and male mice are approximately 9.2 pg/mL and 27.2 

pg/mL respectively. In lung tissues, the levels of STR-V-53 in both male and female mice are 

almost undetectable (Fig. 7.8d). We also measured the STR-V-53 in tumor distribution, and we 

found that STR-V-53 demonstrated an efficient tumor distribution rate as 15pg/mg of the tumor. 

This data implies a selective biodistribution of STR-V-53 in HCC tumor. 

 

7.3 Conclusion 

HCC as one of the leading lethal cancers in the world and it still lacks efficient treatment. Previous 

studies have shown that HCC is strongly driven by epigenetic dysregulation that leads to chromatin 

histone hypoacetylation. HDAC inhibition therapy could be promising treatment option for HCC. 
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However, HDACi have been ineffective against solid tumors such as HCC.  We discovered herein 

that the integration of glycoside moieties into the prototypical HDACi surface recognition group 

afforded glycosylated HDACi that are selectively cytotoxic to Hep-G2 cells. A cohort of these 

demonstrated intracellular on-target effect and selectively induced in Hep-G2 cells. We noticed 

that a lead compound STR-V-53 displayed exquisite HCC cell line selectivity, as it is none toxic 

to cells in the NCI-60 panel and derived a significant part of its Hep-G2 cell penetration through 

GLUT-2-mediated transport. Furthermore, we found that STR-V-53 is relatively non-toxic to mice 

and robustly and selectively suppressed tumor growths in an orthotopic model of HCC as 

standalone agent. STR-V-53 also enhanced the potency of SORA in a combination therapy 

experiment. Others have shown that systemic HDACi could enhance the potency of SORA in 

murine models of HCC.42 However, the benefit of HDACi/SORA combination has not borne out 

in the clinic due to dose-limiting toxicities which forced the cancelation of clinical trials of the 

combination of SORA with approved HDACi such as SAHA [NCT01075113] and panobinostat 

[NCT00873002]. Because these compounds are selectively cytotoxicity to HCC cells, they may 

be less prone to the toxic side effects observed in the combination of SORA. Collectively, our data 

revealed that STR-V-53 is a novel HDACi whose potential as targeted anti-HCC agent merits 

further evaluation in additional preclinical and/or IND enabling studies. 

 

7.4 Materials and methods 

7.4.1 Materials 

Anhydrous solvents and reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA), 

Acros, VWR International (Radnor, PA, USA), Greenfield Chemicals or Thermo Fisher Scientific 



595 

 

(Waltham, MA, USA) and were used without further purification. Analtech silica gel plates (60 

F254) were utilized for analytical TLC, and Analtech preparative TLC plates (UV254, 2000 μm) 

were used for purification. Silica gel (200−400 mesh) was used in column chromatography. TLC 

plates were visualized using UV light, anisaldehyde, and/or iodine stains. High performance liquid 

chromatography (HPLC) analyses were performed on a Agilent 1260 Infinity II instrument using 

a Luna® 5µm C-18 column 100 Å (100 mm × 4.6 mm), eluting with solvent A (water) and solvent 

B (acetonitrile) at a gradient of 5% solvent B for the first 4 min and increase to 40% from 4 to 5 

min, then elute with gradient from 40% to 80% for another 20 min, and then constantly eluting 

with 80% solvent B for 5 min. The detection wavelength is at 280 nm and a flow rate of 0.5 

mL/min. Sample concentrations were 250 μM – 1mM, injecting 30 μL. All compounds have ≥ 95 

% purity as determined by HPLC. Chemicals used LC-MS analyses were obtained from the 

following sources: acetonitrile (Optima, LCMS, Fischer Scientific, catalog No. A955-4); formic 

acid (Optima, LCMS, Fischer Scientific, catalog No. A117-50); isopropanol (Optima, LCMS, 

Fischer Scientific, catalog No. A461-4); water (Optima, LCMS, Fischer Scientific, catalog No. 

W6-4); methanol (Optima, LCMS, Fischer Scientific, catalog No. A456-4); Phloretin (VWR, 

Radnor, PA) NMR spectra were obtained on a Varian-Gemini 400 MHz magnetic resonance 

spectrometer. 1H NMR spectra were recorded in parts per million (ppm) relative to the residual 

peaks of CHCl3 (7.24 ppm) in CDCl3 or CHD2OD (4.78 ppm) in CD3OD or DMSO-d5 (2.49 ppm) 

in DMSO-d6. 13C spectra were recorded relative to the central peak of the CDCl3 triplet (81.5 

ppm) and were recorded with complete hetero-decoupling. MestReNova (version 11.0) was used 

to process the original NMR “fid” files. High-resolution mass spectra were recorded at the Georgia 

Institute of Technology mass spectrometry facility. 
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Cell lines including Hep-G2, A549, MDA-MB-231, MCF-7, and VERO were purchased from 

ATCC (Manassas, VA). Cells were cultured the following medium: Dulbecco’s Modified Eagle 

Medium (DMEM) (Corning, 10-017-CV) and phenol red free Minimum Essential Medium 

(MEM) (Corning, 17-305-CV), supplemented with 10% fetal bovine serum (FBS) (Corning, 35-

010-CV). Electrophoresis supplies, TGX MIDI 4–20% gel (cat. # 5671093) and Turbo PDVF 

membrane (cat. # 1704273), were from Bio-Rad Laboratories, Inc (Hercules, CA, USA). Primary 

antibodies - Ac-Tubulin (sc-23950), Ac-H4 (sc-515319) were obtained from Santa Cruz 

Biotechnology (Dallas, TX, USA), caspase 3 and clv-caspase 3 were purchased from Cell 

signaling Technology (Danvers, MA), anti-p21WAF/CLIP (ThermoFisher, Waltham, MA USA), anti-

GAPDH (Sigma, Saint Louis, USA), while secondary antibody (part. IR2173) was from 

ImmunoReagents (Raleigh, NC, USA). RIPA buffer (VWRVN653-100ML) was from VWR 

International (Radnor, PA, USA) while phosphatase inhibitor (A32957) and protease inhibitor 

(A32955) were procured from Thermo Fisher Scientific (Waltham, MA, USA). BCA protein assay 

kit (K813-2500) was purchased from BioVision, Inc (Milpitas, CA, USA). C57BL/6 and Athymic 

Nude-Foxn1nu mice (5-7 weeks old; male and female) were purchased from Envigo RMS, Inc 

(Indianapolis, IN, USA). 

 

7.4.2 Synthesis 

Published/Reported Agents  

STR-V-46 (N-hydroxy-7-[4-(4-methoxyphenyl)triazol-1-yl]heptanamide) was published before. 

The compound PubChem ID is 25068485. STR-V-48 (N-hydroxy-7-(4-(6-methoxynaphthalen-2-

yl)-1H-1,2,3-triazol-1-yl)heptanamide) have also been synthesized and studied in our lab.33 
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Intermediates STR-V-107 (7-azido-N-((tert-butyldiphenylsilyl)oxy)heptanamide) was available 

in stock. STR-V-51 (Pubchem: 102084446), STR-I-190 (CAS: 677352-87-3), were reported and 

published in previous study. (2R,3R,4S,5S,6R)-2-(acetoxymethyl)-6-(4-iodophenoxy)tetrahydro-

2H-pyran-3,4,5-triyl triacetate (STR-V-49) was reported in patent.44 Azido linkers: N-(2-amino-

4-fluorophenyl)-7-azidoheptanamide, N-(2-amino-5-fluorophenyl)-7-azidoheptanamide, and N-

(2-amino-5-(thiophen-2-yl)phenyl)-7-azidoheptanamide were made in published work.22 n-

(trityloxy)acrylamide (STR-V-38) is a commercially available chemical (CAS: 79-06-1).  

 

Chemical synthesis 

4-ethynylphenol (STR-V-180). 4-iodophenol (1.09g, 4.95mmol) mixed with 

Bis(triphenylphosphine)palladium(II) dichloride (104mg, 0.15mmol) and copper iodide (29mg, 

0.15mmol) along with TMS-acetylene (1.01mL, 7.18mmol) in triethylamine (15mL). The solution 

was purged with argon for 5-10 minutes. Then the reaction was heated to 80ºC for 3 h followed 

by suspension. The solution was filtered by Celite and the filtrate was evaporated to dryness by 

vacuum. The crude solution was purified by column chromatography with Solvent system of 

EtOAc: hexane=3:7. The purified compound was collected and dried through vacuum and yield in 

yellow solid. The product was directly dissolved into ice cold THF and mixed with 6mL of TBAF 

(1M in THF) in ice bath.32 The reaction lasted for 1 h and the crude product was purified again 

with column under solvent system EtOAc:hexane=1:9. The product was collected and dried with 

vacuum. The STR-V-180 was yielded as a brown oil (ambiguous amount). 
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N-hydroxy-7-(4-(4-hydroxyphenyl)-1H-1,2,3-triazol-1-yl)heptanamide (STR-V-183). STR-V-

180 (47mg, 0.4mmol) mixed with STR-V-107 (167mg, 0.4mmol) and copper iodide (38mg, 

0.2mmol) in THF:DMSO (1:1mL) solution. The solution was purged with Argon for 5-10 minutes 

before Hunig’s base (0.2ml, 10v/v%) was added. The reaction ran at room temperature for 1 h and 

was suspended by adding ammonia hydroxide (1M, 1mL). The reaction was partitioned between 

DCM (50 mL) and 1M NH4OH (30ml) and the two layers separated. The organic layer was washed 

with water (30 mL), dried over Na2SO4 and evaporated off to give a crude product. The product 

was again dissolved into Methanol (4mL) with addition of cesium fluoride (122mg, 0.8mmol) to 

remove the TBDPS protection group. The reaction was completed in 1 h at room temperature. The 

final product STR-V-183 was furnished by preparative TLC under condition with 5% MeOH in 

DCM. The STR-V-183 was yielded as brick-red solid (4.5mg, 0.015mmol, 3.8%).  1H NMR (700 

MHz, MeOD) δ 8.08 (s, 1H), 7.54 (d, J = 8.5 Hz, 2H), 6.75 (d, J = 8.6 Hz, 2H), 4.33 (t, J = 7.1 

Hz, 2H), 1.99 (t, J = 7.4 Hz, 2H), 1.86 (p, J = 7.1 Hz, 2H), 1.53 (p, J = 7.3 Hz, 2H), 1.34 – 1.24 

(m, 2H), 1.20 (d, J = 4.8 Hz, 4H). 13C NMR (176 MHz, MeOD) δ 157.6, 147.7, 126.7, 119.7, 

115.3, 76.8, 49.9, 32.2, 29.7, 28.0, 25.7, 25.1, 13.0.  

 

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-(4-(1-(7-(((tert-butyldiphenylsilyl)oxy)amino)-7-

oxoheptyl)-1H-1,2,3-triazol-4-yl)phenoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (STR-V-

167).  STR-V-51 (1 g, 2.2mmol) was mixed with STR-V-107 (0.88g, 2.07mmol) in mixture of 

ethanol and tert-butanol (6:6mL). The copper sulfate (99mg, 0.395mmol) was added to the solution 

with sodium ascorbate (313mg. 1.58mmol). Followed by 0.5mL water addition, the reaction lasted 

for 3 h in room temperature and was completed. The crude product was partitioned between DCM 

(30mL) and water (50mL) and two layers separated. The organic layer was washed by water (30 
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mL), dried over Na2SO4 and vacuum evaporation to gained the crude product. The product was 

purified through preparative TLC eluting with EtOAc: hexane=8:2 to furnish the TDBPS protected 

intermediate (1.1g, 1.74mmol, 84%). Then, the intermediate (1.10g, 1.27mmol) was dissolved into 

methanol and deprotected by cesium fluoride (330mg, 2.2mmol) in room temperature for 15 

minutes. The final product was yielded in brown solid (730mg, 1.15mmol, 66.1% after second step 

reaction). 

 

N-hydroxy-7-(4-(4-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-

pyran-2-yl)oxy)phenyl)-1H-1,2,3-triazol-1-yl)heptanamide (STR-V-53). The STR-V-167 

(730mg, 1.15mmol) dissolved into MeOH (2mL) with the addition of sodium methoxide (0.5mL, 

2.3mmol) for 1 h stirring. The hydrolysis reaction was completed with successful removal of 

acetate groups. Then, the reaction is neutralized by Ambolite IR120 Plus resin to adjust the pH=1. 

Noticed that some precipitates may crush out when methoxide was added if the reaction was in 

larger scale (>500mg), while the addition of Resin could rapidly eliminate the precipitation. The 

resin was filtered, and the filtrate was collected and evaporated to dryness via vacuum. The final 

product of crude STR-V-53 was gained. To purify the final product, STR-V-53 was then re-

dissolved into water (5mL) and wash of organic solvents (30mL 15% MeOH solution of DCM). 

The aqueous layer was collected and evaporated to dryness. To completely dry to final pure 

product, 1mL Acetonitrile+0.1mL water was applied for lyophilization. Final product in white 

solid was yielded in 460mg, 0.98mmol, 85.2%. 1H NMR (700 MHz, DMSO) δ 10.33 (s, 1H), 8.48 

(s, 1H), 7.76 (d, J = 8.6 Hz, 2H), 7.16 (d, J = 8.7 Hz, 2H), 5.76 (s, 0H), 5.42 (d, J = 3.5 Hz, 1H), 

4.36 (t, J = 7.1 Hz, 2H), 3.63 (t, J = 9.2 Hz, 1H), 3.57 (m, 3.59-3.55, 4.2 Hz, 1H), 3.47 (m, 3.49-

3.42, 2H), 3.38 (dd, J = 9.7, 3.5 Hz, 1H), 3.20 (t, J = 9.2 Hz, 1H), 1.93 (t, J = 7.4 Hz, 2H), 1.85 (p, 
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J = 7.1 Hz, 2H), 1.48 (p, J = 7.3 Hz, 2H), 1.27 (m, 1.32-1.22, 5H). 13C NMR (176 MHz, MeOD) 

δ 171.5, 157.3, 147.2, 126.5, 124.5, 120.3, 117.1, 97.9, 73.5, 71.9, 70.1, 61.0, 50.0, 48.5, 48.1, 

48.0, 47.6, 32.2, 29.7, 28.0, 25.7, 25.1. HRMS (ESI) m/z Calcd. for C21 H31 O8 N4  [M+H+]: 

467.2136, found  467.2123. 

 

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-((6-bromonaphthalen-2-yl)oxy)tetrahydro-2H-pyran-

3,4,5-triyl triacetate (STR-V-55). Beta-D-glucose pentaacetate (3.31g, 8.49mmol) was mixed with 

6-bromo-2-naphthol (2.34g, 10.18mmol) and dissolved in DCM (25mL) at 0 ºC in ice bath. The 

Boron trifluoride etherate (1.6mL, 12.74mmol) was added drop-wisely into the reaction. The 

reaction was removed from ice and stir at room temperature for 30 minutes. Then, the reaction was 

heated up to reflux for 48 h in total. The solution was mixed with water (30mL) and extracted by 

DCM (30mL). The organic layer was collected and evaporated to dryness. The crude product was 

furnished via column chromatography (EtOAc: hexane=3:7), where the product should elute in 

40% Rf. Final product was yielded as 523mg, 80%. The product STR-V-55 was directly used for 

the next reaction. 1H NMR (400 MHz, cdcl3) δ 7.95 (d, J = 2.0 Hz, 1H), 7.71 (d, J = 9.0 Hz, 1H), 

7.61 (d, J = 8.7 Hz, 1H), 7.53 (dd, J = 8.8, 2.0 Hz, 1H), 7.43 (d, J = 2.5 Hz, 1H), 7.33 – 7.25 (m, 

2H), 5.88 (d, J = 3.6 Hz, 1H), 5.75 (t, J = 10.3, 1H), 5.19 (t, J = 9.4 Hz, 1H), 5.10 (dd, J = 10.3, 

3.6 Hz, 1H), 4.30-4.23 (m, 1H), 4.13 (ddd, J = 10.2, 4.6, 2.1 Hz, 1H), 4.05 (d, J = 12.3 Hz, 1H), 

2.13 – 2.00 (m, 9H), 1.99 (s, 3H). 

 

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-((6-ethynylnaphthalen-2-yl)oxy)tetrahydro-2H-pyran-

3,4,5-triyl triacetate (STR-V-111). STR-V-55 (354mg, 0.63mmol), TMS-acetylene (0.13mL, 
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0.95mmol), Bis(triphenylphosphine)palladium(II) dichloride (9mg, 0.013mmol), copper iodide 

(3.4mg, 0.02mmol) and TPP (2.5mg, 0.0095mmol) was dissolved into THF (3mL) with TEA 

addition (0.17mL). The reaction was kept stirring in room temperature for 72 h. The solution was 

filtered through celite and solution was evaporated. The crude product was purified directly 

through column with solvents EtOAc: hexane=1:2 to gain purified intermediate 250mg, 0.5mmol, 

79.3%. Then, the intermediate product (45mg, 0.08mmol) was immediately dissolved into DCM 

with addition of TBAF (0.08mL, 0.08mmol) to remove TMS group. The crude product was 

furnished via column chromatography (EtOAc: hexane=3:7), the final product STR-V-111 was 

gained as brown solid 30mg, 0.06mmol, 75%. 1H NMR (700 MHz, CDCl3) δ 7.94 (d, J = 13.6 Hz, 

1H), 7.73 (d, J = 9.0 Hz, 1H), 7.67 (dd, J = 15.7, 8.7 Hz, 1H), 7.59 (d, J = 8.7 Hz, 1H), 7.50 (dd, 

J = 13.6, 8.6 Hz, 1H), 7.41 (t, J = 3.3 Hz, 1H), 7.30 – 7.25 (m, 1H), 5.86 (dd, J = 10.2, 3.5 Hz, 

1H), 5.72 (td, J = 9.9, 2.4 Hz, 1H), 5.16 (t, J = 9.9 Hz, 1H), 5.08 (dt, J = 10.4, 3.4 Hz, 1H), 4.26 – 

4.21 (m, 1H), 4.11 (dd, J = 10.6, 4.4 Hz, 1H), 4.03 (d, J = 12.5 Hz, 1H), 3.11 (s, 1H), 2.06 – 2.01 

(m, 9H), 1.96 (s, 3H). 

 

N-hydroxy-7-(4-(6-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-

pyran-2-yl)oxy)naphthalen-2-yl)-1H-1,2,3-triazol-1-yl)heptanamide (STR-V-114). STR-V-111 

(29mg, 0.06mmol), STR-V-107 (30mg, 0.07mmol), copper sulfate (1.5mg, 0.006mmol), sodium 

ascorbate (4.75mg, 0.024mmol), ethanol (1.5mL) and tert-butanol (1.5mL) was used for click 

reaction. The procedures of reaction setup and work-up was described for STR-V-166 synthesis. 

Later, the intermediate STR-V-113 (53mg, 0.057mmol, 95%) was deprotected by CsF (17mg, 

0.114mmol) in MeOH (2mL). Then, the hydroxamate intermediate was worked up with extraction 

of ethyl acetate and re-dissolved into methanol for deprotection of glucose with NaOMe (25% in 
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methanol) (0.08mL, 0.342mmol). Followed by the procedure described in STR-V-53 synthesis, 

final product was yield as white solid (9mg, 31%). 1H NMR (700 MHz, DMSO) δ 10.33 (s, 1H), 

8.14 (s, 1H), 7.95-7.89 (m, 1H), 7.89-7.76 (m, 3H), 7.58 (d, J = 9.6 Hz, 2H), 7.35-7.29 (m, 2H), 

5.56 (t, J = 2.6 Hz, 1H), 3.67 (t, J = 9.5 Hz, 1H), 3.56 (d, J = 10.5 Hz, 1H), 3.47 (d, J = 9.1 Hz, 

2H), 3.42 (dt, J = 9.8, 2.7 Hz, 1H), 3.31 (t, J = 7.0 Hz, 2H), 3.21 (t, J = 9.2 Hz, 1H), 3.17 (d, J = 

1.9 Hz, 0H), 1.93 (t, J = 7.4 Hz, 2H), 1.50 (dp, J = 22.8, 7.4 Hz, 4H), 1.28 (dq, J = 32.1, 7.7 Hz, 

6H). HRMS (ESI) m/z Calcd. for C25 H33 O8 N4 [M+H+]: 517.2293, found 517.2272. 

 

N-(2-amino-5-fluorophenyl)-7-(4-(4-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-

(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)-1H-1,2,3-triazol-1-yl)heptanamide 

(STR-V-155). STR-V-51 (97mg, 0.21mmol) was mixed with N-(2-amino-4-fluorophenyl)-7-

azidoheptanamide (75mg, 0.21mmol) and copper iodide (21mg, 0.11mmol) in THF/DMSO 

(1:1mL) solution. Argon was purged into the solution for 5-10 minutes before 10v/v% addition of 

Hunig’s base. The reaction and work-up procedures were described in synthesis of STR-V-183. 

This clicked intermediate (136mg, 0.19mmol, 90.5%) was re-dissolved into MeOH (2mL) with 

addition of sodium methoxide (0.34mL, 1.49mmol). The following process of deprotection of 

acetate group and purification was followed by procedure described for STR-V-53 synthesis. The 

final product was yielded 29mg (27.4%). 1H NMR (700 MHz, DMSO) δ 9.09 (s, 1H), 8.50 – 8.43 

(m, 1H), 7.75 (td, J = 5.0, 4.5, 2.0 Hz, 2H), 7.18 – 7.13 (m, 2H), 5.42 (d, J = 3.5 Hz, 1H), 5.07 (d, 

J = 6.3 Hz, 1H), 4.96 (dd, J = 26.6, 5.3 Hz, 2H), 4.76 (s, 1H), 4.48 (t, J = 5.7 Hz, 1H), 4.37 (dt, J 

= 15.9, 8.4 Hz, 2H), 3.63 (td, J = 9.2, 4.9 Hz, 1H), 3.56 (dt, J = 10.2, 5.3 Hz, 1H), 3.46 (dt, J = 9.4, 

5.8 Hz, 2H), 3.37 (ddd, J = 9.8, 6.3, 3.6 Hz, 1H), 3.19 (td, J = 9.0, 5.6 Hz, 1H), 2.30 (dt, J = 17.5, 
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9.3 Hz, 1H), 1.86 (tt, J = 17.0, 7.8 Hz, 2H), 1.57 (dp, J = 14.1, 7.4 Hz, 1H), 1.39 – 1.21 (m, 4H). 

13C NMR (176 MHz, MeOD) δ 173.4, 157.3, 156.4, 155.0, 147.2, 137.4, 137.1, 126.5, 124.6, 

120.3, 117.8, 117.2, 112.7, 112.6, 111.6, 111.4, 97.9, 73.6, 73.1, 71.9, 70.1, 61.0, 50.0, 48.0, 47.9, 

47.7, 47.6, 47.5, 47.4, 47.3, 35.7, 35.7, 29.7, 28.2, 25.7, 25.2, 25.1. HRMS (ESI) m/z Calcd. for 

C27 H35 O7 N5 F [M+H+]: 560.2515, found 560.2503. 

 

N-(2-amino-4-fluorophenyl)-7-(4-(4-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-

(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)-1H-1,2,3-triazol-1-yl)heptanamide 

(STR-V-157). STR-V-51 (104mg, 0.23mmol), N-(2-amino-5-fluorophenyl)-7-azidoheptanamide 

(81mg, 0.23mmol), CuI (22mg, 0.12mmol) and Hunig’s base (0.2mL, 10v/v%) in THF-DMSO 

solution (1:1mL) was processed for click reaction followed by procedure of STR-V-183. The 

intermediate (137mg, 0.19mmol, 91%) was gained and deprotected by NaOMe (0.34mL, 

1.51mmol) in MeOH followed by procedure described in synthesis of STR-V-53. The final 

product yielded as yellow solid (21mg, 20%). 1H NMR (700 MHz, DMSO) δ 9.00 (s, 1H), 8.48 

(s, 1H), 7.88 – 7.61 (m, 2H), 7.15 (d, J = 8.8 Hz, 2H), 7.07 (dd, J = 8.9, 6.6 Hz, 1H), 6.46 (dd, J = 

11.2, 2.8 Hz, 1H), 6.28 (td, J = 8.5, 2.8 Hz, 1H), 5.41 (d, J = 3.5 Hz, 1H), 4.37 (t, J = 7.1 Hz, 2H), 

3.62 (t, J = 9.2 Hz, 1H), 3.58 – 3.53 (m, 1H), 3.46 (dt, J = 13.9, 5.9 Hz, 2H), 3.37 (dd, J = 9.8, 3.6 

Hz, 1H), 3.18 (t, J = 9.3 Hz, 1H), 2.27 (t, J = 7.5 Hz, 2H), 1.86 (q, J = 7.3 Hz, 2H), 1.57 (p, J = 

7.5 Hz, 2H), 1.32 (dq, J = 33.2, 7.8 Hz, 4H).  13C NMR (176 MHz, MeOD) δ 173.9, 157.3, 151.7, 

147.2, 127.5, 126.5, 120.2, 119.1, 117.1, 103.6, 102.4, 97.9, 73.5, 70.1, 60.9, 49.9, 48.0, 47.8, 47.7, 

47.6, 47.5, 47.4, 47.2, 35.5, 29.7, 25.8, 25.3. HRMS (ESI) m/z Calcd. for C27 H35 O7 N5 F [M+H+]: 

560.2515, found 560.2511.  
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(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-(4-(1-(7-(hydroxyamino)-7-oxoheptyl)-1H-1,2,3-triazol-

4-yl)phenoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (STR-V-176). STR-I-190 (67mg, 

0.15mmol), STR-V-107 (67mg, 0.16mmol), copper sulfate (3.73mg, 0.015mmol), Sodium 

ascorbate (12mg, 0.06mmol), tert-butanol (1.5mL) and ethanol (1.5mL) were used for click 

reaction follow by the procedure mentioned in synthesis of STR-V-167. The protected 

intermediate (91mg, 0.1mmol, 66.7%) was gained and deprotected by cesium fluoride (32mg, 

0.20mmol) in MeOH (2mL), the reaction and work-up procedures were described for STR-V-53 

synthesis. Later, the crude product was then dried and furnished through preparative TLC with 

condition of DCM:MeOH=9:1. The final product yielded as white solid (15mg, 23.6%). 1H NMR 

(700 MHz, CDCl3) δ 7.81 – 7.68 (m, 3H), 7.12 (d, J = 8.1 Hz, 2H), 5.56 – 5.51 (m, 2H), 5.43 (dd, 

J = 3.6, 1.8 Hz, 1H), 5.35 (t, J = 10.1 Hz, 1H), 4.34 (t, J = 6.6 Hz, 2H), 4.25 (dd, J = 12.2, 5.2 Hz, 

1H), 4.10 – 4.02 (m, 2H), 2.18 (s, 3H), 2.14 – 2.08 (m, 2H), 2.04 – 1.98 (m, 9H), 1.90 – 1.86 (m, 

2H), 1.60 (s, 2H), 1.31 (d, J = 26.4 Hz, 6H). 13C NMR (176 MHz, MeOD) δ 171.3, 170.2, 155.5, 

147.1, 127.0, 125.3, 120.1, 116.9, 95.7, 77.7, 77.5, 77.3, 69.2, 69.1, 65.8, 62.1, 50.2, 49.2, 48.7, 

48.6, 48.5, 48.4, 48.2, 48.1, 48.0, 32.4, 29.8, 29.5, 28.1, 25.8, 25.1, 20.3, 20.2. HRMS (ESI) m/z 

Calcd. for C29 H39 O12 N4 [M+H+]: 635.2559, found 635.2552.  

 

N-hydroxy-7-(4-(4-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-

pyran-2-yl)oxy)phenyl)-1H-1,2,3-triazol-1-yl)heptanamide (STR-I-195). Followed by the 

procedure of deprotection of acetate groups in synthesis of STR-V-53, STR-V-176 (13mg, 

0.02mmol) was deprotected by NaOMe (0.1mL, 0.495mmol) in MeOH (1mL). The final product 
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was yielded as pale-yellow foam (4.95mg, 0.011mmol, 55%). 1H NMR (400 MHz, dmso) δ 10.31 

(s, 4H), 8.47 (s, 1H), 7.73 (d, J = 8.7 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 5.38 (d, J = 1.8 Hz, 1H), 

4.34 (t, J = 7.1 Hz, 2H), 3.82 (s, 1H), 3.71 – 3.53 (m, 2H), 3.53 – 3.20 (m, 4H), 1.94 – 1.76 (m, 

4H), 1.46 (d, J = 8.0 Hz, 2H), 1.25 (s, 6H). 13C NMR (100 MHz, MeOD) δ 171.5, 156.6, 147.1, 

126.6, 124.5, 120.3, 116.8, 98.7, 74.1, 71.0, 70.5, 66.9, 65.5, 61.3, 49.9, 48.3, 46.4, 32.2, 29.7, 

28.0, 25.7, 25.1, 14.1, 7.9. HRMS (ESI) m/z Calcd. for C21 H31 O8 N4 [M+H+]: 467.2136, found 

467.2136.  

 

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((6-bromonaphthalen-2-yl)oxy)tetrahydro-2H-pyran-

3,4,5-triyl triacetate (STR-II-30). Mannose pentaacetate (1.48g, 3.8mmol), 6-bromo-2-naphthol 

(3.5g, 15.21mmol), boron trifluoride etherate (0.72mL, 5.70mmol), were dissolved in DCM as the 

procedure described in synthesis of STR-V-55. TLC condition for the reaction is 

EtOAc:hexane=4:6. The final product yielded 1.34g (64%) without purification. 1H NMR (400 

MHz, cdcl3) δ 7.94 (d, J = 2.3 Hz, 1H), 7.77 – 7.66 (m, 1H), 7.63 – 7.38 (m, 3H), 7.31 – 7.23 (m, 

1H), 5.67 (d, J = 1.9 Hz, 1H), 5.60 (dd, J = 10.0, 3.5 Hz, 1H), 5.49 (dd, J = 3.6, 1.9 Hz, 1H), 5.39 

(t, J = 10.0 Hz, 1H), 4.29 (dd, J = 12.0, 5.2 Hz, 1H), 4.16 – 4.03 (m, 2H), 2.22 (s, 3H), 2.05 (s 3H), 

1.95 (s, 3H). HRMS (ESI) m/z Calcd. for C24 H25 O10 Br Na [M+Na+]: 707.2535, found 

707.2515. 

 

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((6-ethynylnaphthalen-2-yl)oxy)tetrahydro-2H-pyran-

3,4,5-triyl triacetate (STR-II-34). STR-II-30 (301mg, 0.54mmol), 

Tetrakis(triphenylphosphine)paladdium(0) (31mg, 0.027mmol), TMS-acetylene (0.14mL, 
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1.0mmol) were dissolved in Triethylamine (15mL) with DMF (1mL). The reaction was protected 

with Argon gas and heated to 60ºC for 12 h. The crude product was filtered through celite the 

remove palladium. The filtrate was evaporated to dryness and purified through column with 

condition of EtOAc:hexane=4:6. This intermediate product (239mg, 0.45mmol, 84%, yellow 

solid) was gained. Then, the solid (233mg, 0.43mmol) was dissolved into THF (2mL) with 

addition of 1M TBAF (solution in methanol, 0.43mL, 0.43mmol) in ice bath. The reaction was 

stirred in room temperature for 24h. The TMS protected group was successfully removed and the 

final product was yielded as yellow solid (129mg, 0.26mmol, 60.4%). 1H NMR (400 MHz, cdcl3) 

δ 7.96 (t, J = 1.1 Hz, 1H), 7.74 (dd, J = 8.9, 0.7 Hz, 1H), 7.70 – 7.63 (m, 1H), 7.50 (dd, J = 8.5, 

1.6 Hz, 1H), 7.45 (d, J = 2.5 Hz, 1H), 7.30 – 7.23 (m, 1H), 5.68 (d, J = 1.9 Hz, 1H), 5.60 (dd, J = 

10.0, 3.5 Hz, 1H), 5.50 (dd, J = 3.5, 1.8 Hz, 1H), 5.39 (t, J = 10.0 Hz, 1H), 4.29 (dd, J = 12.1, 5.3 

Hz, 1H), 4.15 – 4.03 (m, 2H), 3.13 (s, 1H), 2.22 (s, 3H), 2.05 (d, J = 1.7 Hz, 6H), 1.94 (s, 3H). 

HRMS (ESI) m/z Calcd. for C26 H26 O10 Na [M+Na+]: 707.2535, found 707.2515. 

 

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((6-(1-(7-(hydroxyamino)-7-oxoheptyl)-1H-1,2,3-

triazol-4-yl)naphthalen-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (STR-V-177). STR-

II-34 (199mg, 0.4mmol), STR-V-107 (120mg, 0.4mmol), and CuI (11.4mg, 0.06mmol) was 

mixed in the solution of THF-DMSO mixture (1.5:1.5mL). The procedure of reaction set-up and 

work-up was described in synthesis of STR-V-180. The intermediate was deprotected through CsF 

(32mg, 0.2mmol) in 2mL MeOH as described in STR-V-53. The product was furnished by 

DCM:MeOH=10:1 in Prep TLC and yielded as white solid (15mg, 0.03mmol, 7.5% after two 

steps). 1H NMR (700 MHz, CDCl3) δ 8.24 (s, 1H), 7.85 (d, J = 9.7 Hz, 2H), 7.80 (d, J = 8.8 Hz, 

1H), 7.75 (d, J = 8.2 Hz, 1H), 7.45 (d, J = 2.4 Hz, 1H), 7.23 (s, 3H), 5.58 (dd, J = 10.0, 3.6 Hz, 
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1H), 5.47 (dd, J = 3.6, 1.8 Hz, 1H), 5.37 (t, J = 10.1 Hz, 1H), 4.38 (s, 2H), 4.27 (dd, J = 12.3, 5.5 

Hz, 1H), 4.11 (ddd, J = 10.2, 5.4, 2.3 Hz, 1H), 4.05 (dd, J = 12.3, 2.3 Hz, 1H), 3.21 (t, J = 6.8 Hz, 

4H), 2.19 (s, 3H), 2.12 (s, 3H), 2.02 (s, 3H), 1.92 (s, 3H), 1.60 (s, 4H), 1.54 (p, J = 7.1 Hz, 4H), 

1.31 (q, J = 14.1, 12.6 Hz, 4H), 1.21 (s, 3H). HRMS (ESI) m/z Calcd. for C33 H40 O12 N4 Na 

[M+Na+]: 707.2535, found 707.2515.  

 

N-hydroxy-7-(4-(6-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-

pyran-2-yl)oxy)naphthalen-2-yl)-1H-1,2,3-triazol-1-yl)heptanamide (STR-II-36).  STR-V-177 

(219mg, 0.27mmol) was deprotected by NaOMe (0.5mL, 2.19mmol) in MeOH (2mL), and 

lyophilized to final product STR-II-36 (90mg, 43%) followed by procedure described for STR-

V-53 synthesis. 1H NMR (400 MHz, dmso) δ 10.31 (s, 1H), 8.64 (s, 1H), 8.31 (s, 2H), 7.98 – 7.80 

(m, 4H), 7.56 (d, J = 2.4 Hz, 1H), 7.27 (dd, J = 8.9, 2.5 Hz, 1H), 5.53 (s, 1H), 4.39 (t, J = 6.9 Hz, 

2H), 3.87 (dd, J = 3.5, 1.8 Hz, 1H), 3.72 (dd, J = 9.1, 3.4 Hz, 1H), 3.59 (d, J = 10.8 Hz, 1H), 3.55 

– 3.38 (m, 4H), 1.95 – 1.84 (m, 4H), 1.48 (d, J = 7.3 Hz, 2H), 1.40 – 1.07 (m, 6H). 13C NMR (101 

MHz, cd3od) δ 154.62, 134.3, 129.7, 129.4, 127.6, 126.1, 123.8, 123.7, 120.9, 119.2, 110.6, 98.8, 

74.1, 70.6, 67.0, 61.3, 50.0, 47.8, 47.2, 47.0, 29.7, 28.0, 25.7, 25.0. HRMS (ESI) m/z Calcd. for 

C25 H33 O8 N4 [M+H+]: 517.2293, found 517.2283.  

 

(E)-N-hydroxy-3-(4-(6-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-

pyran-2-yl)oxy)naphthalen-2-yl)-1H-1,2,3-triazol-1-yl)acrylamide (STR-V-105). STR-II-30 

(202mg, 0.365mmol), STR-V-38 (240mg, 0.73mmol) were mixed with palladium (II) acetate 

(12.3mg, 0.05mmol) and tri(o-tolyl)phosphine (32.3mg, 0.11mmol) in Acetonitrile (3mL) for 5 
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minutes with Argon protection. Then, TEA (0.13mL, 0.91mmol) was added to the solution and 

heated to 90°C for 5 h with stirring. The solution was filtered by celite and the filtrate was 

evaporated by vacuum. The crude product was purified through column chromatography with 

solvent EtOAc:hexane=6:4 to collect the intermediate. Then, the intermediate product (87mg, 

0.11mmol, 29%) was re-dissolved into DCM (1.5mL) with addition of TFA (0.5mL) and TIPS 

(0.1mL). The solution turned bright yellow with addition of TFA and returned to pale-yellow 

followed by adding TIPS dropwisely. The product was evaporated to dryness after 30 minutes 

stirring in room temperature. Then, the solutes were redissolved by MeOH (2mL) and deprotected 

by NaOMe followed by procedure described in synthesis of STR-V-53. The final product STR-

V-105 was yielded as brownish solid (24mg, 54%). 1H NMR (700 MHz, DMSO) δ 10.77 (s, 1H), 

8.01 (s, 1H), 7.89 (d, J = 8.9 Hz, 1H), 7.83 (d, J = 8.6 Hz, 1H), 7.67 (dd, J = 8.6, 1.7 Hz, 1H), 7.60 

– 7.56 (m, 2H), 7.30 (dd, J = 8.9, 2.5 Hz, 1H), 6.54 (d, J = 15.8 Hz, 1H), 5.56 (d, J = 1.8 Hz, 1H), 

3.89 (dd, J = 3.4, 1.9 Hz, 1H), 3.73 (dd, J = 9.2, 3.4 Hz, 1H), 3.60 (dd, J = 11.7, 2.1 Hz, 1H), 3.52 

(t, J = 9.4 Hz, 1H), 3.48 (dd, J = 11.7, 6.1 Hz, 1H), 3.43 (m, 3.44-3.41, 1H). 13C NMR (176 MHz, 

MeOD) δ 155.3, 140.5, 135.3, 130.7, 129.8, 129.6, 128.8, 127.6, 123.5, 119.2, 116.4, 110.6, 98.8, 

74.2, 71.0, 70.6, 67.0, 61.3, 48.5. HRMS (ESI) m/z Calcd. for C19 H22 O8 N [M+H+]: 392.1340, 

found 392.1338. 

 

(E)-N-hydroxy-3-(4-(6-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-

pyran-2-yl)oxy)naphthalen-2-yl)-1H-1,2,3-triazol-1-yl)acrylamide (STR-V-115). STR-V-55 

(156mg, 0.28mmol) was dissolved with STR-V-38 (186mg, 0.56mmol) with Pd(OAc) (9.43mg, 

0.042mmol), tri(o-tolyl)phosphine (26.34mg, 0.084mmol) and TEA (0.1mL. 0.74mmol) in 

Acetonitrile (3mL). The procedure to yield pure intermediate (57mg, 25%) was described in 
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synthesis of STR-V-105. The intermediate product (55mg, 0.07mmol) was deprotected by 

TFA(0.5mL) and TIPS (0.1mL) in DCM (1.5mL) as mentioned in procedure of STR-V-105. The 

crude product was deprotected again on acetate group of glucose by NaOMe (0.1mL, 0.42mmol) 

in MeOH (2mL) as described in STR-V-53. The final product was yielded as brownish solid 

(14mg, 52%). 1H NMR (700 MHz, DMSO) δ 10.74 (s, 1H), 7.99 (s, 1H), 7.83 (dd, J = 45.6, 8.8 

Hz, 2H), 7.64 (d, J = 8.6 Hz, 1H), 7.55 (d, J = 17.3 Hz, 2H), 7.29 (dd, J = 8.9, 2.7 Hz, 1H), 6.51 

(d, J = 15.7 Hz, 1H), 5.73 (d, J = 2.7 Hz, 1H), 5.55 (d, J = 2.9 Hz, 1H), 3.65 (td, J = 9.3, 2.8 Hz, 

1H), 3.56 – 3.52 (m, 1H), 3.46 (d, J = 9.5 Hz, 3H), 3.42 – 3.37 (m, 1H), 3.21 – 3.17 (m, 1H), 3.14 

(d, J = 2.8 Hz, 1H). 13C NMR (176 MHz, MeOD) δ 156.0, 140.5, 135.3, 130.7, 129.7, 129.6, 

128.8, 127.6, 123.5, 119.6, 110.9, 97.9, 73.6, 73.2, 71.9, 70.1, 61.0, 48.5. HRMS (ESI) m/z Calcd. 

for C19 H22 O8 N [M+H+]: 392.1340, found 392.1340.  

 

(2S,3R,4S,6R)-4-(dimethylamino)-6-methyltetrahydro-2H-pyran-2,3-diyl diacetate (STR-V-160) 

Desosamine (2g, 11.41mmol) was mixed with Acetic anhydride (3.24mL, 34.24mmol) in DCM 

(60mL). The solution was stirred at room temperature with addition of DMAP (558mg, 

4.57mmol). The reaction was completed and washed by water (50mL) and extracted by EtOAc 

(30mL*2). The EtOAc layer was collected and dried through sodium acetate and vacuum. The 

product was purified through column chromatography in DCM:MeOH=9.5:0.5 solution and was 

detected by Anisaldehyde staining. The eluted product was collected and dried. STR-V-160 was 

yielded as white solid (2.48g, 80%). 1H NMR (400 MHz, cdcl3) δ 6.22 (d, J = 3.6 Hz, 1H), 5.03 

(ddd, J = 11.1, 3.7, 0.8 Hz, 1H), 4.04 (dqd, J = 12.3, 6.1, 2.2 Hz, 1H), 3.64 (d, J = 0.8 Hz, 1H), 

3.13 (td, J = 11.6, 3.9 Hz, 1H), 2.29 (d, J = 0.8 Hz, 6H), 2.13 (d, J = 0.9 Hz, 3H), 2.04 (d, J = 0.8 

Hz, 3H), 1.85 (ddd, J = 13.2, 4.2, 2.5 Hz, 1H), 1.48 – 1.33 (m, 1H), 1.21 (dd, J = 6.2, 0.9 Hz, 3H).  
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(2S,3R,4S,6R)-4-(dimethylamino)-2-(4-iodophenoxy)-6-methyltetrahydro-2H-pyran-3-yl acetate 

(STR-V-161). STR-V-160 (104mg, 0.4mmol) was mixed with 4-iodophenol (135mg, 0.6mmol) 

and dissolved with DCM (3mL). The solution was cooled to ice bath for 10 minutes with Argon 

protection. Then, the Boron trifluoride etherate (1mL, 8mmol) was added slowly and dropwisely. 

The ice bath was removed after 10 minutes stirring, and the reaction lasted for 12 h at room 

temperature. The reaction was partitioned between DCM (30 mL) and water (30mL) and the two 

layers separated. The organic layer was washed with water (30 mL), dried over Na2SO4 and 

evaporated off to give a crude STR-V-161. The product was purified through column with ethyl 

acetate solvent, and the product STR-V-161 was yielded as white solid (161mg, 95%). H NMR 

(400 MHz, cdcl3) δ 7.60 – 7.51 (m, 2H), 6.80 – 6.72 (m, 2H), 5.07 (dd, J = 10.6, 7.5 Hz, 1H), 4.89 

(dd, J = 7.5, 2.1 Hz, 1H), 3.83 – 3.54 (m, 1H), 2.82 (ddd, J = 12.3, 10.4, 4.3 Hz, 1H), 2.31 (d, J = 

2.3 Hz, 6H), 2.16 – 2.03 (m, 3H), 1.87 – 1.78 (m, 1H), 1.61 (s, 1H), 1.46 (q, J = 12.8, 12.2 Hz, 

1H), 0.89 – 0.77 (m, 1H). 

 

(2S,3R,4S,6R)-4-(dimethylamino)-2-(4-ethynylphenoxy)-6-methyltetrahydro-2H-pyran-3-yl 

acetate (STR-V-163). STR-V-161 (221mg, 0.53mmol) was coupled with TMS-acetylene (0.1mL, 

0.65mmol) with catalyst CuI (4mg, 0.02mmol) and Bis(triphenylphosphine)palladium(II) 

dichloride (7.6mg, 0.01mmol), TEA (1.85mL, 13.25mmol) in THF (3mL). The solution was 

stirred at room temperature for 15 h and then filtered with celite. The filtrate was evaporated by 

vacuum to gain the crude product (198mg, 0.51mmol, 96.2%). The crude product was directly 
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deprotected with potassium carbonate (140mg, 1.02mmol) in MeOH (2mL) as describe in 

synthesis of STR-V-53. Noted that the acetylated group was also removed in the process. Product 

STR-V-163 was yielded as yellow solid (105mg, 0.38mmol, 74%). 1H NMR (700 MHz, DMSO) 

δ 7.43 (d, J = 8.7 Hz, 2H), 7.08 (d, J = 8.8 Hz, 2H), 5.53 (d, J = 3.5 Hz, 1H), 4.00 (s, 1H), 3.90 

(dqd, J = 12.5, 6.2, 2.2 Hz, 1H), 3.72 (d, J = 9.2 Hz, 1H), 2.46 (s, 7H), 2.42 – 2.39 (m, 3H), 1.88 

(d, J = 12.8 Hz, 1H), 1.25 (s, 1H), 1.18 (d, J = 6.2 Hz, 1H), 1.09 (d, J = 6.2 Hz, 4H).  

 

(2S,3R,4S,6R)-4-(dimethylamino)-2-(4-(1-(7-(hydroxyamino)-7-oxoheptyl)-1H-1,2,3-triazol-4-

yl)phenoxy)-6-methyltetrahydro-2H-pyran-3-yl acetate (STR-V-165). Followed by procedure of 

STR-V-53, STR-V-163 (47mg, 0.17mmol) was converted to intermediate product (62mg, 52%) 

with copper sulfate (4.26mg, 0.017mmol), sodium ascorbate (13mg, 0.068mmol), in tert-butanol 

(1mL) and methanol (1mL). The product was purified through solution of DCM:MeOH:NH4OH 

=8.5:1.5:0.2. The intermediate compound (58mg, 0.08mmol, 47.1%) was deprotected by CsF 

(25mg, 0.17mmol) in MeOH (2mL) for 30 minutes stirring at room temperature. The final product 

STR-V-165 was purified through preparative TLC with solution of 15% MeOH in DCM with 2% 

NH4OH (1M) and yielded 18.1mg, (0.04mmol, 48%). 1H NMR (700 MHz, DMSO) δ 8.48 (s, 1H), 

7.76 (dq, J = 8.8, 2.6, 2.1 Hz, 2H), 7.16 – 7.10 (m, 2H), 5.48 (d, J = 3.5 Hz, 1H), 4.35 (t, J = 7.1 

Hz, 2H), 3.90 (dqd, J = 12.6, 6.2, 2.1 Hz, 1H), 3.60 (dd, J = 10.6, 3.5 Hz, 1H), 3.00 (ddd, J = 12.0, 

10.5, 3.9 Hz, 1H), 2.28 (s, 5H), 1.83 (td, J = 7.3, 3.5 Hz, 4H), 1.74 (ddd, J = 12.8, 4.1, 2.3 Hz, 1H), 

1.44 (p, J = 7.2 Hz, 2H), 1.29 – 1.21 (m, 6H), 1.06 (d, J = 6.2 Hz, 2H). 13C NMR (176 MHz, 

MeOD) δ 171.7, 157.6, 147.9, 135.8, 134.7, 133.7, 130.7, 128.3, 127.3, 120.3, 117.6, 98.3, 77.9, 

69.1, 66.0, 60.7, 53.8, 52.4, 50.7, 49.3, 48.8, 40.6, 32.9, 31.2, 30.3, 28.6, 26.8, 25.6, 21.2, 19.4. 

HRMS (ESI) m/z Calcd. for C23 H36 O5 N5 [M+H+]: 462.2711, found 462.2696.  
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7.4.3 Cell Culture: 

The cell culture and viability assay protocol were described in our previous work.43 In brief, 

VERO, and A549 cell lines were maintained in Dulbecco’s Modified Eagle Medium (DMEM) 

(Corning, 10-017-CV), supplemented with 10% fetal bovine serum (FBS) (Corning, 35-010-CV). 

Hep-G2 cells were cultured in phenol red free Minimum Essential Medium (MEM) (Corning, 17-

305-CV), supplemented with 10% fetal bovine serum (FBS). Cells were seeded into a 96-well 

plate (2000 counts/100uL) for 24 h prior to treatment and then treated with various drug 

concentrations for 72 h. All drugs were dissolved in DMEM/DMSO with DMSO concentration 

maintained at 1%. The effect of compounds on cell viability was measured using the MTS assay 

(CellTiter 96 Aqueous One Solution and CellTiter 96 Non-Radioactive Cell Proliferation Assays, 

Promega, Madison, WI) as described by the manufacturer. IC50s were determined using Prism 

GraphPad 8. 

 

7.4.4 Western blots analysis   

The Western blot protocol was described in our previous work43. In brief, Hep-G2 cells were 

seeded into 6-well plate at 1*106/well in MEM for 24 h-48 h prior to treatment.  Various 

concentrations of SAHA, STR-V-53, STR-V-114, STR-I-195 solutions in DMSO were added to 

the cell culture such that the final DMSO level is 0.1%. Cells were treated for 24 h, washed with 

cold PBS, and lysed with RIPA buffer (120 L) (VWR, VWRVN653-100ML) buffer containing 

phosphatase inhibitor (Fisher Thermo, A32957) and protease inhibitor (Fisher Thermo, A32955). 
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The cell lysates were scraped, collected, and vortexed for 15s followed by sonication for 60s. The 

lysate was then centrifuged at 14000x rpm for 10 min and the supernatants were collected. The 

total protein concentration was determined using a BCA protein assay kit (BioVision, K813-2500). 

Based on the results from the BSA assay, the lysates were diluted to make equal protein 

concentration and 20-40 g of each lysate was loaded to each well of the TGX MIDI 4-20% gel 

(Biorad, cat. 5671093) and ran at 150V for 70 min. The gel was then transferred on to the Turbo 

PDVF membrane (Biorad, 1704273) and after blocking with 5% BSA for 1-2 h, the membrane 

was incubated overnight with primary antibodies Ac-Tubulin (sc-23950), Ac-H4 (sc-515319) 

(Santa Cruz Biotechnology), caspase 3 and clv-Caspase 3 (Cell signaling Technology), anti-

p21WAF/CIP (ThermoFisher), anti-GAPDH (Aldrich-Sigma). The second day, the membrane was 

washed with TBST for 3x5 min; secondary antibody (LiCOR) was added, and the membrane was 

incubated with agitation for 1 h. After washing with TBS-T 3x5 mins, bands were quantified using 

Odyssey CLx Image system. 

7.4.5 GLUT-2 uptake competition test 

Hep-G2 or VERO cells were seeded (2500 to 4,000counts/well) into 96-well plates, in where each 

well contains 100 µL medium. The cells were cultured overnight with respective mediums 

described in section 4.2. Day 2, the cells were treated with 25 µM Phloretin for 24h. In day 3, 200x 

stock solutions of STR-V-53 and SAHA were used to prepare 2x treatment solution by adding 1% 

stock solution in medium. Then, without removal of medium in 96-well plates, the same volumes 

of drug medium were add directly to the wells with gentle pipetting, to reach 1x drug solution with 

25 µM Ph. In detail, the 200x stock solutions with 2.5mM Ph were made with mixture of 50 µL 

400x stock solutions and 50 µL of 5 mM Ph solution.  For examine, to make 100µM STR-V-53 

treatment solution, 50 µL of 40mM stock solution of STR-V-53 would be mixed with 50 µL 5 
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mM Ph solution. Then 4µL of this stock solution were added to 396 µL medium to make 20 µM 

medium solution with 25 µM Ph. Finally, the 100 µL medium solution was added directly to the 

wells with gentle pipetting to form 1x medium solution of drug containing 25 µM Ph. In this way, 

the original Ph from day 2 will remain inhibit GLUT-2 with no concentration change. After 72h, 

the medium was removed, and new medium (100 µL) added to the wells. MTS solution (20 µL) 

was added to each well. After 2.5-4 h incubation in incubator, the plates were read by plate reader 

at 490 nm. The data were processed by GraphPad Prism 8. 

 

7.4.6 Flow cytometry 

Hep-G2 cells (5*106) were seeded to 10 cm plate with MEM and incubated until 50% confluency 

prior to drug treatment.  Cells were treated with DMSO (control) and DMSO solutions of SAHA 

(5) and STR-V-53 (15) such that the final DMSO level is 0.1%, for another 48 h. Cells 

were washed with cold 1X PBS solution twice and trypsinized. Subsequently, cells were collected 

using 5mL 1x PBS buffer and fixed overnight at -20oC using 70% ethanol. Cells were centrifuged 

by 1x PBS in the day 2 at 4 ºC with spin speed of 3,000g, re-suspended in 1X PBS and centrifuged 

again in the same condition. The supernatant was removed, and the cell pellets were re-suspended 

with 500 µL of 200ug/mL RNase for 30 min. Then cells were treated with another 500 µL of 

100ug/mL PI staining at room temperature for 30 mins. The cell cycle was analyzed with BD 

FACS Aria Illu analyzer and the data was processed using FlowJo. 
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7.6 Supporting information 

NMRs 
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STR-V-53 (1H) 
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STR-V-53 (13C) 
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STR-V-55 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



623 

 

STR-V-111 
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STR-V-114 
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STR-V-155 (1H) 
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STR-V-155 (13C) 
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STR-V-157 (1H) 
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STR-V-157 (13C) 
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STR-V-176 (1H) 
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STR-V-176 (13C) 
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STR-V-195 (1H) 
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STR-V-195 (13C) 
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STR-II-30(1H) 
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STR-II-34(1H)  
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STR-V-177(1H) 
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STR-V-177(13C) 
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STR-II-36(1H) 
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STR-II-36(13C) 
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STR-V-105 (1H) 
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STR-V-105 (13C) 
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STR-V-115 (1H) 
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STR-V-115 (13C) 
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STR-V-160 (1H) 
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STR-V-161 (1H)  

 

 

 

 

 

 

 

 

 

 

 

 

 



645 

 

STR-V-163 (1H) 
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STR-V-165 (1H NMR)  
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STR-V-165 (13C NMR) 
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Figure S7. 1. Table of NCI-60 panel of STR-V-53 in 10µM dosage screening.  
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