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SUMMARY

State estimation is an integral part of many robotic systems. It is particularly important in the

realm of high performance ground vehicles where systems must be real-time, robust, and accurate.

This project aims to tackle the problem of improved state estimation reliability, robust to GPS

dropout, applied to the control of an aggressively driving autonomous vehicle in an unstructured

environment. To accomplish this goal, the system combines components for visual SLAM, wheel

odometry, IMU integration, and incremental inference on a factor graph. The result is a system

that is tolerant to short periods of GPS dropout allowing a vehicle to safely handle the situation.

viii



CHAPTER 1

INTRODUCTION

State estimation in robotics refers to estimating the position, velocity, and orientation along

with other desired parameters of a robot. This is done by collecting information from sensors on the

robot and performing some optimization to find what state is the most likely. More formally, given

all previous observations Zt:1, we are interested in finding X∗, the robot state X that maximizes

the posterior probability, P (X∗) = argmaxXP (X|Zt:1).

State estimation is ubiquitous in all of robotics and is especially important in the frontier of

research in high performance robotic control. One such example is the Autorally project which

operates a 1/5th scale autonomous ground vehicle to research high performance aggressive driving

in unstructured rally-like environments [1]. In this application, it is critical for state estimation

to be real-time, accurate, and robust. Introducing speed into the problem of control means all as-

pects, from the algorithms to the hardware, must adhere to a strict real-time constraint. Precise

maneuvers necessitate a high degree of accuracy, and robustness affords safety and diverse oper-

ating conditions. There has been some success with control using limited or no state estimation

[2, 3]. However, these approaches currently lack the generalizability, predictability, and reliability

needed for safety critical systems like autonomous vehicles. This paper aims to meet the demands

of high performance autonomous ground vehicles and will do so by incorporating state of the art

components into one state estimation system. Specifically, this paper uses incremental inference on

a factor graph for trajectory smoothing to integrate data from visual simultaneous localization and

mapping (VSLAM), wheel odometry (WO), inertial measurement unit (IMU), and global position

system (GPS). The contribution of this paper is the development of a robust, multimodal, real-time,

factor graph-based state estimation method well suited for systems with highly nonlinear dynamics

that might break motion models of more traditional methods. Experimental validation is shown on

a 1/5th scale autorally platform in a high-speed, off-road, racing environment. Driving datasets are
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publicly available through the Autorally project along with a public implementation of all software

used 1.

1https://github.com/AutoRally/autorally.
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CHAPTER 2

BACKGROUND

2.1 Inference Methods

The canonical approach to state estimation is to fuse measurements from an inertial measure-

ment unit (IMU) and GPS into an Extended Kalman Filter (EKF) [4, 5, 6, 7, 8]. In general,

Kalman filters make two assumptions: the system is linear and the measurement error is Gaus-

sian noise. EKF extends this to nonlinear systems by linearizing the prediction function around

the current estimate. However, this extension only works well for systems whose prediction func-

tions are approximately linear [4]. Another variant is the Unscented Kalman filter (UKF) which

uses the Unscented Transform to select a minimal set of points to propagate through the nonlinear

update function [4]. Monte Carlo Localization is yet another method which maintains a set of

particles representing the distribution, transforms each through an update function, then performs

importance sampling [9]. Both the UKF and Monte Carlo Method can model nonlinear systems;

however, they both require an explicit update function. In aggressive driving scenarios, formulat-

ing an explicit update function analytically would require difficult to estimate information such as

the coefficient of friction at every time step [1]. Further, in these models, there is no natural way

to model complex constraints such as loop closures in VSLAM systems.

In aggressive driving scenarios, especially with large wheel slip in drifting maneuvers, it is

particularly important to model the system’s nonlinearity. In a recent notable example, Funk et

al. developed an autonomous vehicle for on-road aggressive driving [10]. Their state estimation

system incorporated similar ideas, but integrated them into an EKF. They do not operate the vehicle

at the limits of handling due to the limitations of this model. This in not an appropriate limitation

for the Autorally project which specifically attempts to works at the limits of performance of the

hardware.
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An alternative framework, used in this project, is trajectory optimization using factor graphs.

A factor graph is a bipartite graph whose vertices are divided into factors and variables and whose

edges join factors and variables [11]. In factor graphs, each factor represents a factor in the factor-

ization of the joint probability density function where the neighborhood of the factor node is the

set of variables involved in that particular factor of the function. Factor graphs are a natural repre-

sentation of the SLAM or robot localization problem because the observations are treated as givens

and the graph only encodes variables that we are interested in [11]. Factor graphs are a very pow-

erful representation because it is possible to solve exactly or approximate the full joint probability

distribution. There has been lots of work done on the implementation and theory of incremental

inference on factor graphs which aids in real-time applications [12, 13, 14]. One example fuses

measurements from GPS, IMU, and a VSLAM pipeline into a factor graph-based optimization.

This is a similar project as the work presented here; however, the optimization was done offline

rather than in real-time and the VSLAM pipeline was designed specifically for the application of

crop monitoring [15].

2.2 Visual SLAM

A vision component has become an integral part of many modern state estimation algorithms

[7, 8]. Visual odometry (VO) refers to estimating camera motion from consecutive images, and

VSLAM is an extension of this problem that involves creating a map of the environment while

localizing within that map using images from a camera system. VO can be divided into two types:

direct and feature based methods [16, 17]. Direct methods rely on directly comparing pixel values

to estimate the motion of features. Direct methods tend to be very fast, skipping the costly feature

extraction step, but they also tend to be less accurate. Feature-based methods rely on extracting

features and tracking those features over consecutive frames to estimate motion. Feature-based

methods tend to be slower due to feature extraction but also tend to more accurate. The Semi-

Direct Visual Odometry algorithm attempts to combine the two methods [16, 18]. This approach

has been shown to be very effective, but it lacks a loop closure component meaning systems relying

4



on it are susceptible to long-term drift.

ORB SLAM is a feature based visual SLAM system that that utilizes oriented Brief (ORB) fea-

tures [19, 20]. This methods relies on efficient feature extraction and matching (due to the feature

descriptor selected), robust mapping including aggressive culling of map points and keyframes,

and global pose optimization. The mapping algorithms attempts to only keeps relevant features

and key frames. This is meant to keep the growth of the map in check which in turn keeps the

run-time in check. The global pose optimization provides long-term drift free navigation when

loop closures are encountered. This project uses a modified version of ORB SLAM because of its

attempts to trade off between accuracy and speed, ideal in a real-time system.
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CHAPTER 3

METHODS

The state estimation system presented in this paper utilizes both state of the art work and

standard components. The system integrates IMU and GPS (when available) measurements along

with integrate wheel odometry estimates and transforms computed from VSLAM or VO. As seen

in figure 3.1, this make the system complete, integrating every sensor and piece of information

available to the vehicle. Additionally, the system is designed in a modular fashion utilizing the

Robot Operating System for intermodule communication [21].

Figure 3.1: The inputs and outputs of the state estimation system and its subsystems.

Figure 3.2: A typical time slice of the structure of the factor graph used. The graph vertices are
separated into factors and variables. GPS factors are shown in green, visual odometry is shown in
red, wheel odometry is shown in blue, an IMU factor is shown in yellow, and a constant IMU bias
factor is shown in black.
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IMU integration uses a state of the art implementation from GTSAM which is detailed in [22]

and [23]. The integrated IMU measurements create a factor in the graph that constrains the previous

position, velocity, and bias variables along with the next position and velocity variables. GPS

measurements are incorporated in a very simple manner where the measurement is transformed

into a local coordinate frame using an initial measurement. This then creates a unary constraint on

a position variable.

The wheel odometry model is a very simple Ackermann steering model. It takes the current

steering angle and four wheel speeds, measured from Hall effect sensors, and computes an esti-

mated forward velocity and yaw rate at approximately 70 hz (where yaw is the vehicle’s orientation

around the axis perpendicular to flat ground) [1]. This estimated velocity is then integrated over a

given time step to calculate a relative transform between the pose at the beginning of the time step

and the end of the time step. This relative transform then acts as a constraint on two consecutive

position variables. It is important to note that the model makes the assumption that the vehicle has

no lateral component (no sliding) to its velocity and that there is no wheel slip. Although these

assumptions are clearly broken in this particular use case, the model creates an estimate that is

accurate enough over the time scale to be useful. This suggests with a more descriptive model, like

the one described in [24], the results would be even better.

The VSLAM component of the system relies on the open source implementation of ORB

SLAM released by the authors [19, 20]. The library was then modified to output the relative

transform between each image frame. These transforms are then composed into one relative trans-

form that describes the change of the vehicles position between two given times. As with the wheel

odometry, this transform is interpreted as a constraint between two consecutive position variables.

The time at which GPS messages are received is not perfectly in sync with the frame rate of the

cameras. Therefor, the closest frames are taken at the boundary, and it is assumed that the error

associated with this assumption is mostly negligible and accounted for in the covariance of the

constraint. A more generalized approach would be to estimate the trajectory in continuous time

[15].
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Figure 3.2 shows a typical time slice of the factor graph. The graph vertices are separated into

factors and variables. Xt, Xt+1 represent pose, including position and orientation, Vt and Vt+1

represent velocity, and Bt and Bt+1 represent IMU bias. The state that we want to estimate is

the current pose, velocity, and IMU bias at time t + 1. The product of all factors associated with

previous variables (Xt:1, Vt:1, and Bt:1) is proportional to the posterior probability distribution

P (Xt:1, Vt:1, Bt:1|Zt:1) ∝
t∏

i=1

`(Xi, Vi, Bi;Zi) = `(Xt:1, Vt:1, Bt:1;Zt:1) (3.1)

where Zi is the set of measurements associated with the variables at time ii, and `(.) is a likeli-

hood function, proportional to the probability function. Thus, at time t + 1, we have a new set

of measurements to incorporate into an updated estimate. Specifically, we have a GPS factor,

l(Xt+1;Gt+1), an IMU factor, l(Xt+1, Vt+1;Xt, Vt, Bt, It), a VO factor, l(Xt+1;Xt, V Ot), a WO

factor, l(Xt+1;Xt,WOt), and an IMU bias factor, l(Bt+1;Bt). The product of these new factors is

the incremental update to be applied,

`(Xt+1, Vt+1, Bt+1;Xt:1, Vt:1, Bt:1, Zt+1) = `(Xt+1;Gt+1) ∗ `(Xt+1, Vt+1;Xt, Vt, Bt, It)

∗ `(Xt+1;Xt, V Ot) ∗ `(Xt+1;Xt,WOt)

∗ `(Bt+1;Bt)

(3.2)

The updated distribution is then the product of these new factors and the previous factors

P (Xt+1:1, Vt+1:1, Bt+1:1|Zt+1:1) ∝ `(Xt:1, Vt:1, Bt:1;Zt:1)

∗ `(Xt+1, Vt+1, Bt+1;Xt:1, Vt:1, Bt:1, Zt+1)

= `(Xt+1:1, Vt+1:1, Bt+1:1;Zt+1:1)

(3.3)

From the previous state, IMU measurements are integrated to get an initial estimate of the next state

which is used as a starting point for the optimization to find X∗
t+1, V ∗

t+1, and B∗
t+1 that maximize

equation 3.3, in other words, find the most probable state.

For evaluating the system presented in this paper, the AutoRally platform was used [1]. The
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Autorally platform is a fully autonomous vehicle developed at the Georgia Institute of Technology

for performing research on the cutting edge of high performance robotic control and perception.

It is based on a 1/5th scale remote-control car that is fitted with an electric motor and onboard

computing and sensing which includes stereo cameras, a high precision IMU, and a GPS setup to

receive RTK corrections.

Figure 3.3: (Left) The AutoRally platform with onboard sensing and computing. (Right) The
AutoRally platform performing a high speed maneuver.

The platform is driven autonomously and manually on both of the Georgia Tech Autonomous

Racing Facilities (GTARF) on the main campus and the Georgia Tech Research Institute (GTRI)

campus. GTARF at the main campus is an oval dirt track that is eight feet wide and 225 feet long.

GTARF at the GTRI campus is a more complex dirt track that is 15 feet wide and 550 feet long.

These facilities offer a controlled environment for testing the AutoRally platform at the limit of its

performance. On both tracks, the vehicle can regularly reach speeds in excess of 20 miles per hour.
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Figure 3.4: (Top) The GTARF at the main campus of Georgia Tech. (Bottom) The second GTARF
at the GTRI campus.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Results

The following results come from recorded data in which the system was performing nominally

with GPS and IMU. This data was recorded over a three minute test run at the main campus GTARF

at speeds of 5-7 m/s (this is just past the slip point of the wheels). The nominal system is considered

to be ground truth in the following experiments. The first test was to evaluate the accuracy of both

wheel odometry and VO when input into the factor graph. Both of these components compute

relative transforms from one position variable to the next, so their error can be found by comparing

the computed transform and the ground truth transform. The results of this comparison are show

in figures 4.1 and 4.2.

Figure 4.1: (Left) The yaw, (center) x, and (right) y error over an wheel odometry factor compared
to ground truth.

4.2 Discussion

In figure 4.1, we see the expected bias in the estimates. In the test run, the vehicle is traveling

counter-clockwise which causes the estimates to be consistently under for y and over for yaw by

not accounting for wheel slip. This is expected given such a simplistic physical model. There

has been other work that expands on odometry modeling that would greatly increase the accuracy

11



Figure 4.2: (Left) The yaw, (center) x, and (right) y error over an visual odometry factor compared
to ground truth.

Figure 4.3: (Left) The yaw error and (right) the x-y positional error of the system integrating
information when no GPS is available. WO is wheel odometry and IMU, VO is visual odometry
and IMU, WO and VO is all three, and IMU only includes data from the IMU.

and reduce bias [25, 26]. On the other hand, figure 4.2 shows that the VSLAM pipeline gave

significantly better estimates in all three measurements. However, what it gains in accuracy it loses

in reliability.

Significant effort was put into making the VSLAM pipeline more robust. Neither of the open-

source implementations of SVO or ORB SLAM was able to produce reliable estimates, even af-

ter tuning. This is thought to be because the environment is a particularly challenging one for

VO/VSLAM for several reasons. The textures on the track are very self-similar. The track sur-

face itself has very few reliable features. This means that the only consistent features that can be

extracted frame to frame are far from the vehicle. Additionally, given the low perspective of the

cameras along with the high speeds, a large portion of the image moves a substantial amount be-

tween frames. Coupled with a very short stereo baseline, the only reliable features cannot be used

12



for positional estimation. Although VSLAM is largely considered a theoretically solved problem,

the experience on this project shows there is still much work to be done on the engineering and

reliability side of the problem.

Figure 4.3 shows the error of the system when operating without GPS. As expected, the ori-

entation error is quite stable and is dominated by the IMU given that angular rates can be directly

measured with low noise. When looking at the positional error over time, it is more obvious the

effect the other measurements have on the estimate. Because the wheel odometry measurements

are biased, they quickly pull the estimate away. However, by directly measuring the velocities VO

and WO cap the growth of the linear velocity errors. This manifests as much slower growth of

error over time. VO allows the system to stay within approximately one meter of the ground truth

for 15 seconds. Potentially, this allows for safer operation where the system can come to a stop

autonomously.

13



CHAPTER 5

CONCLUSION

This paper proposed a comprehensive system for state estimation built on the idea of integrating

all available information into a single estimate. By itself, the results were not reliable enough to

confidently operate without GPS. However, this project has laid the foundation for a modular state

estimation system. Future work can capitalize on this and replace subsystems with more accurate

and reliable ones, thus improving the system as a whole.
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