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SUMMARY

The employment of polymeric materials reinforcedhwmano-sized reinforcing
agents is ubiquitous throughout the science andneegng composites community.
Spherical nanoparticles, single-walled nanotube&/N$s), double-walled nanotubes
(DWNTSs), multi-walled nanotubes (MWNTs), and vamgwown carbon nanofibers
(VGCNFs) are all excellent candidates for reinfoneat of polymer matrices when
advanced material performance is the objective. tal@img beneficial mechanical
property characteristics through utilization ofnfercing agents typically depends on
several factors, to include:

- impurity concentration within the nano-agent ortba surface of the nano-agent

- cohesion between polymer matrix and reinforcinghage

- matrix-to-agent compatibility
In regards to the strength of nanocomposite mageaader simple loading conditions,
several researchers have investigated the stresgihdurability with respect to the
aforementioned parameters [1-7]. In addition, shedy of the strength/durability of
polymeric nanocomposites tested under fatigue ¢tomdi has been conducted by
researchers in [8-10]; however, it is not well btdned. Designers and manufacturers in
the polymeric and nanocomposites community couldefie greatly from studies that
relate the fatigue conditions to the residual gjterand change in material properties. In
addition, a specific qualitative methodology thableates whether the critical state of
fracture in nanocomposites occurs through debondinfgacture of nanotubes from the
polymeric surface could be a useful protocol fasigeers that seek to improve interfacial

strengths.
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CHAPTER 1

INTRODUCTION

The objective of the current research was to dauti to the area of mechanics of
composite polymeric materials. This objective wemched by establishing a quantitative
assessment of the fatigue strength and evolutiaonasthanical property changes during
fatigue loading of nanocomposite fibers and film&oth experimental testing and
mathematical modeling were used to gain a fundamhemtderstanding of the fatigue
behavior and material changes that occurred duiatigue loading. In addition, the
objective of the study was to gain a qualitativel smndamental understanding of the
failure mechanisms that occurred between the nambagnd matrix in nanocomposite
fibers. This objective was accomplished by exangnscanning electron microscopy
(SEM) fractographs. The results of this reseamh loe used to better understand the
behavior of nanocomposite materials in applicatioinere degradation due to fatigue
and instability of the composite under loading abods may be a concern. These
applications are typically encountered in autonmmtigerospace, and civil engineering
applications where fatigue and/or fracture are prinfactors that contribute to failure.

Testing and modeling the evolution of damage andngh to underlying
microstructural properties in polymeric homogene@msl nanocomposite materials
subjected to fatigue is a formidable task. Forngtative analysis, often times the
researcher is given the task of associating aeingtiable or group of damage variables
that can specifically map the changes to matetractire. In reality, the problem of
tracking material property and behavioral changesaaresult of fatigue becomes

computationally complex, since there are a pletladréesting conditions and variables



that can take on a range of values. For matesiadsstructures that experience fatigue,
the history of the material is often difficult tatk and map because the materials often
experience a variety of sporadic fatigue loadsedifig in magnitude and type. The goal
of a true prognostic damage model should be torataly identify a critical damage
variable (or set of damage variables) that can umntfied and related to the overall
degradation of the material.

For the fatigue research, the sole efforts of @#s=arch were not meant to merely
replicate the fatigue-life experiments that are deaed on materials, where a
relationship is sought for the stress level (amghf) to the number of cycles to failure
(typical S-N curve) [1-3]. In fact, for the curtestudy, this type of analysis has been
conducted on nanocomposite PLA films with succe$bese important analyses have
yielded useful material characterization results help researchers understand the
response of these materials to fatigue. The dbgaf the research on the PLA
nanocomposite films was to evaluate a biodegradadlgmeric film (poly(lactic acid))
and its reinforced counterpart with nanoclay pletido assess the fatigue performance.
Currently, there is a large gap in the literatunéhwegards to research on fatigue of
polymers reinforced nanoparticles. The currends@ddressed this gap by highlighting
experimental and phenomenological aspects thabeautilized to address the failure in
both unreinforced and nanocomposite fibers andsfilmhich can then be extrapolated
for use in the failure detection of other unreicka and nanocomposite systems.

Although a very useful tool, fatigue-life data aborare not sufficient for
describing the evolution of damage in nanocompasigerials under fatigue loading.

Particularly, for single polymeric fibers, theretypically a large amount of scatter in S-N



curve behavior. Therefore, for the nanocompositer$, a residual strength fatigue

model that tracked the evolution behavior of theemals was developed. In essence, the
objective of the fatigue research on residual meiclah properties was to establish a

guantitative assessment of the evolution of medaamroperty changes during fatigue

loading of nanocomposite fibers. The objectivéhef research on instability and fracture

in nanocomposite fibers was to elucidate the degfesesidual strength degradation

using analytical methods and artificial neural ratg (ANNs). These objectives were

realized through the completion of the followingks:

1) Unreinforced (homogeneous) and nanocomposite finere tested in uniaxial
tension and uniaxial tensile fatigue to assessabielual strength and degradation
mechanisms

2) The quantitative results were implemented into aengmenological
(mathematical) ANN model for the prediction of desal strength and mechanical
property changes for various loading conditions

The major contributions to the scientific and emginng community that were realized at
the conclusion of this research project include:n #vestigation of the fatigue

performance of poly(lactic acid) unreinforced andnocomposite films and the
development of an assessment tool for monitorird) @redicting damage accumulation
in unreinforced and nanocomposite single fibersenatigue loading. The literature and
scientific community could benefit greatly from atiue study on unreinforced and
nanocomposite materials subjected to fatigue l@adinThe scientific and research
community could benefit greatly from a systematied amore robust method for

predicting failure in materials subjected to faggoading. Currently, the methods that



have been reviewed in the literature do not take ¢onsideration damage that evolves as
a result of the fatigue loading process. Instélael,conventional fatigue models assume
that fatigue life is a random variable that exlsb#a functional dependency on the
maximum stress and other test variables. Althdhgee methods have proven sufficient
over the years, the application is quite limiteddese in some cases the fatigue life
distribution can be separated by an order of magdaidifference. The current approach
has utilized both fatigue life models and damageabées such as inelastic strain and
modulus degradation to monitor the changes in dracstrength and other constitutive
properties as a result of the fatigue loading pece

Although there is some research that exists on ttpcs of fatigue in
nanocomposites [4-7], there have been very fewiesduthat have investigated the
residual strength decreases as a function of ftiguiables and a damage variable(s). In
terms of single nanocomposite fibers, there has legen less research conducted in the
area of fatigue with the utilization of mathematit@ols to monitor changes in residual
strength and other mechanical properties. Theqgserf the fatigue research was to
provide value to scientists and engineers that wasldesign better and more robust

materials that can withstand cyclic stresses aaghstin engineering applications.



CHAPTER 2

LITERATURE REVIEW

2.1. Mechanical Fatigue of Polymeric Materials
2.1.1. Overview of Fatigue
The process of fatigue that is conducted for peréorce evaluation of materials
entails subjecting the materials to a series oflHoaload iterations for a prescribed
number of cycles. The dynamic stress-strain respar a viscoelastic polymer sample
under fatigue conditions is given as:

£ =(Ag)sinat

o =(Ao)sin(at +0) 1)

In this formulary,¢ is the instantaneous straik is the strain amplitudeyis the angular
frequency,ois the instantaneous stregkris the stress amplitude, adds the phase lag
component of the stress and strain. In ordinadyrper materials, typically the strain
lags behind the stress response due to the vismuponent of the sample. One can
envision that this phase la@, of the strain component is the direct result oé th
imaginary viscous dashpot inhibiting the straindiion from being directly in phase with
the applied sinusoidal stress. Fatigue tests #leeretested in load control or
displacement control, depending upon the naturthetest and the desired results. For
load controlled experiments, subsequent to analngiep strain input, the mean cyclic
amplitude of the strain will increase with time ¢®s) to compensate for the fixed
amplitude of stress. This phenomenon is analogmtise creep evolution that occurs in

polymers that are exposed to a constant statissstog a long period of time (Figure 2.1).
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Figure 2.1. Idealized deformation process in adingscoelastic solid depicting the
residual strain that remains as a result of a emh$bad experiment [8]
If the fatigue tests are conducted in displacenf@nstrain) control, the mean value of the
cyclic load of the viscoelastic sample will expege a relaxation phenomenon, in which
the macroscopic stress on the polymer chains reldagecompensate for the fixed
amplitude of strain. This fatigue relaxation phe@mon is equivalent to the relaxation

behavior observed in conventional polymer systdfigufe 2.2).
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Figure 2.2. Idealized relaxation curve for a podyr8]

Mechanical fatigue conducted on polymeric material$ypically conducted to
determine a relationship of the resistance of theenml under various cyclic load
amplitudes to the number of cycles to failure. Ifatudies related to fatigue on
polymeric materials were conducted to genef&wersusN (stress vs. number of cycles

to failure) curves. These studies were usefulpi@dictions of fatigue life in metallic



materials [8]. A depiction of a typic8vs. N curve is shown in Figure 2.3. To develop
this relationship, multiple experiments were runvatious maximum stress levels to

determine the number of cycles of endurance fartiqular specimen.

Stress (MPa)

1 1 1
10 10* 10
No. of cycles, &

Figure 2.3. A typicab-Ncurve for prediction of failure [8]

Primordial studies that were conducted on polymeese mainly focused on
rubber materials [9-11]. In these studies, a tgpenergy fracture concept was applied
based on guantitative analyses of Rivlin and ThofB8as A power-law fatigue crack
growth empirical law was established as:

dc _ , ..
aN - Al (2.2)

In (2.2),c is the crack length\ represents the number of cycléss the surface work
parameter, andA and n are material parameter constants. This type alyais is
equivalent to the strain-energy release rate/strgsasity analysis that is conducted for
linear elastic fracture mechanics problems [12].

Typically, Coffin-Manson curves are utilized to aslish a relationship between
the strain amplitude and the number of cycles lorla Strain amplitude based fatigue

life prediction is based upon Coffin-Manson curtkat are obtained from isothermal



mechanical fatigue testing. The Coffin—Manson eiguats a strain-life based fatigue

formula and is given as [13-14]:

£, =%(2Nf)b+gf'(2Nf)° (2.3)

This Coffin-Manson equation can be partitioned ibi® strain components, namely
elastic and plastic strains, that are engendersddoapon the maximum stress level that
the polymeric sample experiences under fatiguerdeftions:

€= €t (2.4)

In these equations, represents the strain rangg, is the fatigue strength coefficiert,

is the elastic moduludy; represents the number of cycles to failusejs the fatigue
ductility coefficient, b is the fatigue strength exponent, ands the fatigue ductility
exponent. In Equation 2.4, represents the elastic component of the strainliarde
and &a represents the plastic component of the strain liardp. A pictorial
representation of the cyclic stress-strain hysigressponse of a sample undergoing

deformation is shown below in Figure 2.4.

Ac/E

Figure 2.4. Stable stress-strain hysteresis 108p [1



In addition, a strain-amplitude vs. cycles to feglyplot is provided in Figure 2.5, which
represents a pictorial amalgam of the results ftbenCoffin-Manson equations and the

hysteresis loop in Figure 2.4.

Elastic

Strain Amplitude (log scale)

0.5 Ny
Cycles to Failure (log scale)

Figure 2.5. Elastic, plastic, and total strainlifs.curves [13]

As mentioned earlier, mechanical fatigue conduabed polymeric systems is quite
different from that of metals, ceramics, or otheittle materials because the time
dependent (viscous) nature of the samples is aapiray factor that governs failure.
Because of this strong time dependency, it is guitportant to understand that the
properties of polymeric materials are dependentnuih@ cyclic stress conditions and
may not be static throughout the duration of thst. t& his is the significant drawback of
utilizing S-N curve and Coffin-Manson analyses alone for preghctof failure in
polymeric materials. For example, the elasticiparbf the Coffin-Manson relationship
that was presented above assumes a static modultwever, as will be shown later,
the modulus of a polymer material that undergoeshaeical cycling experiences severe
degradation over the duration of the test and @hilinge significantly, thus altering the

prediction of the number of cycles to failuhg, In addition, the residual strength of the



material degrades over the duration of the experimeln a load-controlled fatigue
experiment, the value &R (load ratio) would thus be an increasing functmrer the
duration of the test, due to the fact that thedwsli strength degrades with successive

fatigue iterations.

2.1.2. Scatter in S-N curves

Fatigue life curves that provide information abthé number of cycles to failure
for a particular stress level typically containgaramounts of scatter in the data. In fact,
fatigue data is widely known to be heteroscedastitature, which means that the scatter
becomes more pronounced for longer fatigue liv€ge Figure 2.6 for an example of

heteroscedasticity of a functional variable.

[« noisy data (std = 0.01) .
0.3r o noisydata (std =0.1) 0
— true function

Figure 2.6. Plot showing heteroscedasticity ofaable [15]

Several researchers have attempted to explaindseetastic behavior iB8-Ncurve data
and how the fatigue lifel\;, is a random variable for a particular stress ll¢¥6-19].
Authors in [20] have expounded upon this notiort flatigue life is a random variable

with the application of stress for a given ampléudn addition, the authors in [21] have
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proposed that in the randomness of the fatiguesteasie of a material, constant
amplitude fatigue test results show that at angsstamplituds, the fatigue lifeNg is a

random variable. Lognormal or other statisticakriisition functions are typically used
to describe the variability of the fatigue life.n [21], it is proposed that the fatigue

damageDyg;, caused by a cycle is also a random variableishr@lated td\s; as:

Dsf = (25)

In addition to these studies, Dowling in [13] hasvoted a large portion of the text
explaining that for various influential factors teas considerable statistical scatter in the
data.

Recently, some research has been conducted usims Adlexplain and predict
the scatter observed in fatigue-life data by Buetaal [22-23]. In [22], Bucar et al.
explain that in the randomness of fatigue resigamica material, constant amplitude
fatigue test results dictate that at any stressl léne fatigue life is a random variable. To
explain this concept of randomness in the numberyofes to failureN;, consider the
following explanation utilizing the probability dr#ution concept (p.d.f.) derived in
[22]:

Let X represent a column vector of influential factonsa fatigue test such &ax

(maximum stressk, (mean stressk; (notch factor), frequency, etc:
X = (Xy, X oo X )T = (S S Ko Foven) (2.6)

Here,X is a random variable and the complete descrigifdhe problem of mapping the

input to output variables can be described thraughnt p.d.f. of the form:

e (6 ¥) = Fy o (YX) P (%) 2.7
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Here, fyx = f(y/X) is the p.d.f. ofY given thatX takes on a particular value afgx)
represents the unconditional p.d.f>of

To implement the scatter and distribution of thggue lives, the authors in [22]
expressed the error function in the neural networkterms of either a Weibull
distribution or a lognormal distribution aBl¢ase refer to Section 2.3 of this document

for a thorough explanation of neural networks amgplacations:

f(yix) = ia, (x) BM(L)]A o ex;J[— (L]A } (Weibull distribution) (2.8)

g (x 6(x)

f(y|x)=ial(x) 1 exp{_ (logéfa-za)(X)Z)} (Lognormal distribution) (2.9)

In these distribution functiong and 4 represent the Weibull shape and scale parameters
of thelth component distribution, ang and g represent the mean and standard deviation
of log(Y) of the Ith lognormal distribution. The functional relatgdmp between the
vectorx and the p.d.ff(y/x) is determined by values of the synaptic weigh{f the
multilayer perceptron neural network through miraation of the cost function (error
function). The statistical distributions (Weibalhd lognormal) are implemented into the

error function as:

E(N)=> ¢en) (2.10)

e(n) = —|nLM;a, (x,) O, (v, |, )} (2.11)

Estimations of the fatigue life were calculated fwosth the Weibull and lognormal

distributions and the characteristics of the neksare shown in Table 1. Figures 2.7
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and 2.8 display actual data and neural networknegitbn data for a family ob-Ncurves

for the Weibull and lognormal distributions, resipesly.

Table 2.1. Characteristics of the NNs used in taerical examples [22]

Table 2
Characteristics of the NNs used in numerical examples

Configuration of the neural network Example Example
no. | no. 2
Size of input layer, N; 3 2
Type of component distributions in a f{y|x) Weibull Lognormal
No. of component distributions in a f{y|x) 1 |
No. of hidden layers of neurons 1 |
No. of neurons in hidden layers, N; 4 2
Activation functions of hidden neurons, g; Tanh Tanh
No. of neurons in output layer, Ny 3 3
Activation functions of output neurons, ¢, Linear Linear
Initial rate of learning, 7 0.0001 0.0005
Momentum of leaming « 0.05 0.05
Value of parameter, k 1n-° 1-°
Value of parameter, 0.5 0.5
Value of parameter, & 0.7 0.7
No. of epochs till the end of the learning 260,000 140,000
Final value of the error function E(n) 425.6 59.1
600
NONN ——
CotoUNEN P10 50 90%
< capt AN,
500 ® SN
NN N e Twde NN,
N NN NONN
7 400 ~a :
L]
] J Tt TR
&
@300 ‘e
P
g
] AISI 4130
w ]
£ R =810 Nmm~
z K=2
= Mean stress Sm:
= 200F ¢ 0.00
o — — - 6895
o ... 13790
A& —-—- 20685
150 | X Runout
al i sl a1 s sl it a2l MR TTT]
10° 10 10° 10° 10’

Cycles to failure N

Figure 2.7. Actual fatigue data and NN estimatedily of S—N curves for P=(10, 50,
and 90%) probabilities of failure at¥2 — Weibull distribution [22]
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distribution [22]

These studies by Bucar et al [22-23] indicate thediral network algorithms can be
utilized to predict the scatter i8-N curves through implementation of statistical
distribution functions such as Weibull and lognokmarlhese statistical distribution
functions were implemented into minimization of thmost (error) function to
guantitatively capture the scatter behavior of thiggue life. However, these recent
studies, as well as conventional fatigue studiesnadibaddress the underlying damage
accumulation that leads to failure in materials. tHis dissertation, a different approach
will be described that seeks to utilize damage mpatars as input variables for a more
consistent prediction of failure strength in neanréinforced) and nanocomposite

materials.
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2.1.3. Mechanical and Fatigue of Poly(ethylene TerephttggléPET) Single Filaments
Some interesting observations have been made ragahe physical degradation
of PET, unreinforced fiber samples [24-26]. In i&didd, Cho et al. [27] studied the
fatigue behavior of unreinforced PET fibers undariaus processing conditions with the
same crystal structure at101® cycles. Thermoluminescence (TL) glow experiments
under various fatigue proved that the strain hardgeffect was the culprit of enhanced
TL glow at early stages of the fatigue process datkct sites were responsible for
enhanced glow at later stages in the fatigue psocés essence, they showed that the
strain hardening effect altered the stress-straaecof PET in the early stages of fatigue;
however, its effect attenuated after a certain tpimirthe cyclic experiments. They also
showed that the viscosity molecular weights werduced with the increase of the
number of fatigue cycles. This effect was attrdolito chain scission of the PET
molecules during cycling. Other efforts to illurate the effects of fatigue on the
accumulation of damage in PET fibers have beenstigeged in [28], in which
destructive tests were performed. In their expents, the ultimate failure of PET fibers
after 4.22E6 cycles was due to the presence ohgerutal, inherent flaw hypothesized to
be antimony trioxide (SKDs3), which was used as a catalyst in the productioRET.
Liang et al. [29] investigated the effects of chagidity on the nonlinear viscoelastic
behavior of several polymeric fibers, to includeTPEThey concluded that the nonlinear
viscoelasticity was strongly governed by the rigidof the chain, with semirigid
structures such as PET exhibiting a NVP (nonlingacoelastic parameter) between
flexible polymeric fibers (Nylon 6 and PVA) and idgpolymers (Vectran and Kevlar).

In essence, they showed that NVP increased witteasing chain rigidity. Liang et al.
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[29] also concluded that irreversible structurabmipes occurred faster in polymeric
fibers with higher NVP values, thus indicating dborfatigue lifetimes with increasing
molecular chain rigidity. Le Clerc et al. [30] hlevnvestigated the response of
mechanical properties to changes in temperatureufoeinforced PET fibers and
assemblies under various loading conditions. 3ipally, they determined that for fiber
assemblies initially at room temperature (*2J) a temperature rise was observed during
fatigue experiments conducted at 50 Hz. The teatper rise was shown to be an
increasing function of the maximum stress/load d@ongh during fatigue loading and was
also dependent on the median stress value (faahme load amplitude, higher maximum
temperatures were observed for lower mean loaldsghat et al. [24] conducted fatigue
experiments on PEN (polyethylene naphthalate) &fd fibers at 50 Hz and compared
those with creep experiments to demonstrate tlasit streep lifetimes tested at 70% of
the fracture strength were much higher than cyif#times tested under stress-controlled

conditions.

2.1.4. Fracture Behavior of PET and other Polymeric Singlements

Some authors have performed past microscopy imgagins on single fibers to
ascertain failure modes. Particularly, Hearle $3]- has performed an extensive
mechanical testing and SEM study on various poljenioers to determine modes of
failure. In addition, the authors in [34-43] haperformed extensive studies on the
fracture performance and mechanical behavior afisipolymeric filaments.

In terms of quantitative mechanics studies conduad@ single polymeric

filaments, there has been limited research andstigations. Michielsen [44] has
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investigated the fracture behavior of larger nygfibers (900um wide and 25Qum
depth), where the critical strain energy release (&) for highly oriented filaments was
17.8 kJ/Mi. As a comparison, the critical energy release f@talry as molded (DAM)
low-orientation bulk samples was 3.9 k3/ras described in [45]. Michielsen [46] also
examined the effects of relative humidity (RH) ¢ strain energy release rate of nylon
66 fibers, where it was shown that increases inéRbendered a decrease in the initial
modulus E;) and critical strain energy release ragg) of the samples. In that studg;

varied from 31.3 kJ/fmat 0% RH to 15.6 kJ/frat 100% RH.

2.2. Polymeric Nanocomposite Materials
2.2.1. Enhancements in Material Properties and Mechaniethavior

Many studies have been conducted on nanocompoaiteles under simple
loading conditions to ascertain the effects okfiltontent on the mechanical properties.
Sandler et al. [47] have performed uniaxial teneiperiments on melt-spun polyamide
12 fibers employed with various reinforcing agertts,include arc-grown nanotubes
(AGNT), aligned catalytically grown nanotubes (aClGNentangled catalytically grown
nanotubes (eCGNT) and catalytically grown nano8HE&NF). In all cases, the modulus
and yield stress of the nanocomposites were showrethigher than the unreinforced
polyamide 12 fiber, and the values were shown tdirearly correlated with the filler
content (increases in modulus and yield strengtth wicreased filler content). The
eCGNT reinforced polyamide 12 composites showedtbst significant improvements
in modulus (1.6 GPa) and yield strength (45 MPa)aafiller content of 10% in

comparison with a modulus of 0.8 GPa and yieldnsiite of 21 MPa for the unreinforced
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polyamide 12. Breton et al [48] have also notisgphificant increases in modulus with
decreases in the ultimate strain and fracture gthefor epoxy/MWNT composites. This
clearly indicates that filling the epoxy with MWNTled to stiffer and more brittle

materials. Other evidence has been provided bytéhand Adali [49], Chen and Tao
[50], and Kim et al. [51] that indicates stiffeniraf the polymer matrix due to the
inclusion of nano-sized reinforcing agents underpe loading conditions. What can be
concluded from these studies is that nano-sizedfaming agents increase the
mechanical properties and overall mechanical benai the materials for engineering

applications.

2.2.2. Mechanical Behavior of Nanocomposite Fibers

In terms of single hanocomposite fibers for engimgeapplications, Chae et al.
[52] have investigated the employment of SWNTs iatdAN matrix with various
concentrations. The tensile modulus was showretalimost linearly correlated with the
volume fraction of the reinforcement material, withriations of 0% (control PAN),
0.4%, and 0.8% of SWNT volume fraction (Figure 2.9) addition, the tensile modulus
and strength were shown to be an approximate lyw@&areasing function of the draw
ratio of the fiber, up to 40X, where the modulus atrength values began to plateau with

increases in draw ratio (Figure 2.10).
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Figure 2.10. Tensile modulus and strength of gelksPAN fibers as a function of draw
ratio [52]

Reinforcement efficiency studies of PAN fiber wihwt% SWNT bundles (20, 10, and

4.5 nm), SWNTs (1 nm), DWNTs (5 nm), MWNTSs (20 nmpd VGCNFs (20 nm) have

also been conducted by Chae et al [53], where Xdiffyaction, raman spectroscopy,

scanning electron microscopy (SEM), tensile teBiglA, and thermal shrinkage tests

were conducted in this research. Improvementsanhanical properties (tensile, DMA,
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and thermal shrinkage) were observed for all reoifig agents. Zeng et al. [54] have
also investigated CNFs for increases in mechamicgberties of a PMMA fiber matrix.
Two different grades of CNFs were employed in tidMA matrix and Table 2.2
displays the results indicating increases in meicaproperties (PR-21-PS and PR-24-
PS). The PR-21-PS grade possessed a larger draimmtePR-24-PS. Other researchers
[55-59] have also successfully processed singleynpetic fibers with nano-sized

reinforcing agents to obtain enhancements in machlproperties.

Table 2.2. PMMA nanocomposite properties for twitedent grades of PMMA (PR-21-
PS) and PR-24-PS

Sample Diameter (m) Tensile modulus (GPa) Tensile strength (GPa) Elongation at break (%) Compressive strength
PMMA conirol 60 = 4 4715 0.20 = 0.04 16 =3 28+ 2
PMMA/PR-21-PS 5 wi% 61 = 12 8.0=12 0.17 = 0.04 10 =6 7311
PMMA/PR-21-PS 10 wt% 63 = 10 7.7 1.0 0.16 = 0.04 106 -

PMMA/PR-24-PS 5 wt% 62+ 5 75+ 13 0.16 + 0.03 10 =5 66 = 20
PMMA/PR-24-PS 10 wt% 63 =5 7.6 =09 0.15 = 0.01 94 -

2.2.3. Poly(lactic acid) Nanocomposite Films

Poly(lactic acid) or polylactide (PLA) is a biodedable polymeric material that
is generated from renewable products, rather tbamnentional petroleum products, as is
the case for ordinary polymeric materials. PLA hasome an attractive replacement for
materials such as poly(ethylene terephthalate), ttuats competitive mechanical
properties and amenable manufacturing proper@asrently, PLA is aggressively being
researched as a viable renewable resource foottkand agricultural industries [60-61].
PLA is currently used in a number of biomedical laggpions, such as sutures, stints,
dialysis media, and drug delivery devices, buta$ llso been evaluated as a material for

tissue engineering. In addition, films composegalfy/(lactic acid) have been employed

20



in the medical industry as a means to reduce thedton of postoperative cardiac
adhesions [62] and as a means to reduce postoeratira-abdominal adhesions,
inflammation, and fibrosis [63]. In these biomediapplications, the PLA system is
selected because of its specific composition antkentar architecture. The PLA films
possessed a prescribed mechanical strength, fiexibrate of resorption, and
biocompatibility that was needed for these biomald@&pplications. Thus it can be
avowed that PLA is a multi-purposed material tham ®e utilized due to its superior
mechanical strength and biodegradability attributes

Combining PLA with nanoclay particles for increasearrier and mechanical
performance has also become popular [64-66]. Bmraftithe increased interest in PLA
as a viable engineering and packaging materiatetblrould be more studies directed at
the mechanical and fatigue behavior of the materidlhis study seeks to mitigate this
research gap by identifying the modes and mechanafailure for PLA and PLA 5

wt% samples with nanoclay loaded under uniaxiaditenand uniaxial fatigue loading.

2.3. Atrtificial Neural Networks (ANNs) — Applications iMechanics and Engineering
2.3.1. Overview of ANNs
An artificial neural network is an information pexsing system that has certain
performance characteristics in common with biolagiteural networks [67]. A neural
network is characterized by:
1) its pattern of connections between the neuronseték architecture)
2) its method of determining the weights on the cotioes (called its

training, or learning algorithm)
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3) its activation function

Artificial neural networks have been successfullyliaed in engineering, science,

medical, and finance applications. In the paspliegtions utilizing neural networks

have included signal processing, control systeraiem recognition, medicine, speech
production, speech recognition, and mortgage banjéi]. There is a strong similarity

between the structure of the biological neuron. (aebrain or nerve cell) and the
processing element (artificial neuron) of a neuretwork. The dendrites, soma, and
axons of a typical brain nerve cell are reminisadrthe functions of the neural network,
as explained in Table 2.3.

Abdi [68] has provided a detailed and thorough amrption of neural networks,
where a historical perspective of neural netwoskprovided, types of neural networks
are expounded upon, and examples of modeling apioics are given. Figure 2.11
displays a perceptron architecture that is compagado layers along with modifiable
synaptic weights. Despite the recent approbat®NNs were originally based on
antediluvian concepts posed by McCulloch and Riitsl943 [69] and Rosenblatt’s
introduction of the perceptron in 1958 [70]. Laggaminations [71-72] proved that these
prehistoric models were highly ineffectual in natwand were basically glorified linear
regression models with limited capabilities, whexrgsociations between inputs and

outputs existed only if the output was a lineangfarmation of the input [68].
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Table 2.3. Table describing functions of the detedrisoma, and axon in a biological

neuron
Dendrites Soma axon
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Figure 2.11. Perceptron architecture composed ofiayers of cells connected by

synaptic weights [68]
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2.3.2. Applications of Neural Networks: Classification aRdgression

Advancements in computational power and developn@nimore rigorous
nonlinear models have engendered a new level afesscfor the employment of neural
networks for a plethora of engineering applicatio@urrently, artificial neural networks
can be employed for pattern recognition or regogssnalysis, depending upon the
nature of the problem to be solved.

In applications involving pattern recognition, tigeal of the neural network
algorithm is to correctly classify species basedrugertain input variables that are
inherently associated with the type of species. anipdes of applications involving
classification neural networks include: predictafrsecondary structure of a protein from
its amino acid sequence [74], sedimentary rocksdiaation [75], and stock market
predictions [76]. In general, statistical clagsifion is a procedure in which individual
items are placed into groups based on quantitatifermation of one or more
characteristics inherent in the items (referre@ddraits, variables, characters, etc.) and
based on a training set of previously labeled itd#g. A general mathematical
definition of the classification problem can be aédsed as: Given training data
{(X1,Y1),....,06,Yn)}, produce a classifieh:X-Y which maps an objeck/X to its
classification labey/X.

In terms of regression analysis, from a statist&tahdpoint, the objective is to
relate a dependent variable(s) to a specified setdependent variables. A regression
formulary can either be linear or nonlinear, depegdn the relationship between the
input and output variables. The types of neurdaoeks that were employed in the

current research made use of nonlinear algoritharsdetermining the relationship
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between the input and output variables. Nonlineggression neural networks, or
nonlinear function approximation neural networkg, @nployed to estimate a function of
the input to the output variables when complexityponderates over the simplicity of a
simple linear regression analysis. To illustrate tgamut of applications utilizing
nonlinear regression models outside of composites raechanics, a few examples of
recent applications include:
* Food science and engineering — processing of cassackers, where the
objective was to predict moisture content and watgivity during the hot
air drying process [78]
* Biomedical engineering — research on pediatricepadi with potential
kidney ailments, where the goal was to predict Byl decrease of
serum creatinine (breakdown of creatine phospimateuscle) [79]
* Aquacultural engineering — research on the effectslorimp farm
environment to predict the growth of shrimp basedaoset of variable
growth conditions [80]
» Agricultural engineering — assessment model toiptegnmonia emission
from field applied manure utilizing 11 emissiontias [81]
As seen from the descriptions in these examplesrahge of applications for nonlinear
regression models and neural networks is wide-rengi
The rudimentary concepts of an artificial neurawwogk (with a hidden layer) are
shown in Figure 2.12, where an input and an oulpygr of variables is given. To
correctly associate the output variables, the nétwaining begins and initializes with a

default set of weights on the synaptic connectiofise algorithm progresses in a forward
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manner until the desired output is reached. Weigidnges are adjusted through
employment of a learning algorithm such as a baxggation scheme, where the output
error (mean squared error (MSE) between desirepubaind predicted output variables)
is reduced over a series of epochs (time interwaif) the desired minimum is achieved.
Backpropagation typically refers to the supervitsining technique that is utilized for
training artificial neural networks [82]. Employegknerally in feedforward network
systems, the general meaning of the term refeas'b@ackwards” propagation of the error
terms between the input and the output in an efforeduce the overall mean-squared

error.

learning
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Figure 2.12. Architecture of ANN model [83]

2.3.3. Learning Paradigms in ANNs
In order for a neural network to accurately asdecibe input variables with the
output variable(s), it must first traverse throuwmlseries of learning exercises. From a

practical standpoint, the process of learning ia tietwork scheme involves being
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presented with a set of observations and the nkttfman adjusting itself to solve the
algorithm from an optimal standpoint. There am@¢hmain types of learning paradigms
for ANN architectures. They include:

» Supervised learning

* Unsupervised learning

* Reinforcement learning
The objective of the learning exercises in the akeoetwork scheme is to minimize a
cost function, which in typical cases is the megunased error term (MSE). Most
applications in regression analysis and classiboaanalysis utilize supervised learning
techniques to minimize the cost function and sdheeproblem in an optimal manner. In
essence, the supervised learning algorithm invabessg presented with a sequence of
training vectors, or patterns, each with an asseditarget output vector. The weights
are continually adjusted over a series of companaititervals in an effort to reduce the

cost function, or MSE. The MSE is calculated basedhe following equation [84]:

E:%Z(ti —y,} (2.12)

In this equationt; represents the target (or desired) response oithtli@it (neuron) and
yi is the actual produced response.

Various algorithms can be used to achieve thisnlegrprocedure and minimization
of MSE cost. They include:

- Standard backpropagation (gradient descent)

- Backpropagation with momentum

- Conjugate gradient

- Levenberg-Marquardt
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- Genetic learning
The most popular of these methods is the backpadjmagscheme, which literally refers
to a backwards propagation of errors throughoutniéevork. The rudiments of these

learning procedures will be briefly discussed ie lter sections of this chapter.

2.3.4. Applications of genetic training algorithms in nalnetworks

The concept of genetic training in neural netwaekgends that of basic training
algorithms such that the training process is oadi through a method similar to
evolutionary behavior that occurs in biologicalteyss. The goal of the genetic training
algorithm is to find the optimal solution to theoplem which results in a minimum error.
The genetic training procedure involves selectavassover, mutation, and evaluation of
networks that are tested for fitness. A schemdéscription of the genetic training

process is shown in Figure 2.13 [154].
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Figure 2.13. Basic procedure used for genetic dhgartraining [154]

The authors in [91-95] have investigated the emmplayt of genetic algorithm

(GA) neural networks for mechanical behavior predits in composite materials. Li et

28



al. [91] have used genetic algorithms for modelgggni-solid extrusion of composite
tubes and bars, which involved solidification, héeinsmission, and large plastic
deformation. The GA was applied in the optimizatdesign of the technical parameters
in the semi-solid extrusion processes, where ggodemnent between the calculated data
and the experimental results was achieved. Ketell 2] used GAs to obtain optimal
layer sequences in symmetrically laminated squaderactangular plates. The GA and
neural networks successfully predicted the natfrexjuencies of the composite plates
and optimal layered sequences, as compared totgefsom a finite element model.
Aijun et al. [93] utilized neural networks and GAs the analysis and prediction of the
correlation between CVI processing parameters amgbhproperties of carbon-carbon
composite materials. The authors in [93] used @Asptimize the input parameters of
the model and select perfect combinations of CWhefgical vapor infiltration)
processing parameters. Suresh et al. [94] usdttlpaswarm optimization and GAs to
find the optimal geometry and stacking sequenceotufr blades that satisfied stiffness
requirements with elastic couplings. They foundt thoth particle swarm optimization
schemes and GAs provided close approximationset@tperimental results. Abouhamze
and Shakeri [95] used GAs for stacking sequencendg#tion in laminated composites
and obtained good results as compared to the enpetal results.

In regards to constitutive behavior prediction rohterials, there have been
researchers that utilized GAs for the predictionhef mechanical behavior. Early studies
by authors in [96-97] were conducted using GAstfa prediction of the constitutive
behavior of materials. Recently, Rao et al. [98én utilized ANNs and GAs for

simulation of the stress-strain response of whiskarforced ceramic-matrix composite
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(CMC) materials. The training of the feedforwaretwork was conducted for stress-
strain paths of CMCs having various interfacialahgtrengths. Successful results were
obtained, indicating the capability of the netwtoleeplicate the constitutive results from
finite element analysis.

Genetic training of an artificial neural network/olves optimization of the neural
network inputs and network parameters, such as sitsgs, momentum values, and
number of processing elements in the hidden 12898y §9]. As stated earlier, the main
goal of the optimization scheme is to search fer dbpropriate parameter settings that
yield the lowest minimum error (lowest cost funadipas is the case for all learning

algorithms.

2.3.5. Types of ANNs applied in engineering applications

The multilayer perceptron model and generalizedfteeard model are simple
types of ANN architectures that can be utilizedeate a specific set of input variables to
a singular or set of multi-targeted output variabldn general, multilayer perceptrons
(MLPs) are layered feedforward networks that asgn&d with static backpropagation
algorithms.  Their primary advantage rests in tlaseeof-use and the capacity to
approximate any input/output map. The key disathges are that they train slowly, and
require lots of training data (typically three tisnenore training samples than network
weights) [99]. Similarly, generalized feedforwandtworks are a generalization of the
MLP such that connections can skip one or morertayi theory, a MLP can solve any
complex problem that a generalized feedforward ogtwcan solve. However, in

practice generalized feedforward networks tendetonich more efficient in computation
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time and the training process. In some instareasandard MLP can necessitate several
hundred more training epochs than the generalieedférward network containing the

same number of processing elements.

2.3.6. ANNSs Applied to Fatigue Behavior of Composites

Why should researchers and designers apply ANNsiteinforced polymers and

nanocomposites? The answer is quite simple ansl upsn the following observations:

- Empirical models that are easy to use

- Neurons can represent and predict nonlinear betsvio

- Computational tools have become easily accessible
Over the past decade, a plethora of ANN applicatietated to composite materials have
been developed by scientists and engineers foowarapplications. ANNs are useful
nonlinear analysis tools for determining complerlimear relationships among input and
output variables. Researchers have applied ANN®Igmeric matrix composites, metal
matrix composites, and ceramic matrix compositgwéalict mechanical properties based
on uniaxial experiments, biaxial experiments, atdajtie [100-105].

In regards to composite materials, Al-Assaf andKi&di [106] have utilized
polynomial classifiers (PCs) and ANNs to predictigae lives of unidirectional
laminates under tension-tension and tension-comsjoredatigue loading. The critical
input parameters utilized for the ANN were maximsiress, fiber orientation angle, and
stress ratio. Multi-layer back-propagation netvgorknd feedforward multi-layer

networks were employed to predict the fatigue livEthe composites.
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Lucon and Donovan [107] have utilized an ANN teclu@ on metal matrix
composites to estimate the macroscopic elastic gpies, obviating the need for
computationally expensive micromechanics technigquAs eight-celled representative
volume element (RVE) was utilized in this researsimilar to the micromechanics
approach. Inputs into the ANN were achieved bgidsding the elastic modulug) and
Poisson’s ratio if) values for the RVE into a vector form. The outfargets represented
the macroscopic effective Young’'s moduli and effectshear moduli of the system. A
MAC3D micromechanics code, based on the generalzethod of cells, was used to
successfully train the network. The results frora tesearch showed that computation
time was significantly reduced as compared to i@l micromechanics approaches
(Figure 2.14).

In regards to residual strength of composite malteriLeone et al [83] have
investigated the use of ANNs for predicting resldsteengths in glass fiber reinforced
plastics (GFRPs) for pre-fatigued samples. In #tisdy, the input variables were
selected as the stress leveg],and the number of acoustic emission eveNts, The
solitary output variable was computed as the nomedsional stressy ., which relates
the applied stress to the composite residual snengxcellent agreement was obtained
with the employment of the ANN scheme, and theltesare shown in Figures 2.15 and

2.16.
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Figure 2.15 illustrates the fact that lower RMSoenvas achieved wheN; was greater
than 130, indicating that a strong correlation &xsbetween the composite residual
strength and number of acoustic emission eventsmiihed with results from Figure
2.16 and elementary fracture concepts [12], theselts suggest that critical defects were
present in the material at a certain stress lgkiak lowering the overall strength of the
material due to fatigue. Thus in this research,dtitical damage variable was quantified
as the number of AE events related to materialatigron, which is specifically related

to the defects present for a specific load.

2.4. Material Degradation due to Fatigue
2.4.1. Definition of Damage

In order to quantify the actual accumulation of dgenin a material due to fatigue
loading, one must characterize and quantify theadgn Damage can be defined as the

gradual degradation of a material and is an intrimsaterial property dictated as a
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damage variable [108]. There have been a multinideuthors that consider damage as
an intrinsic material state [109-117]. In termsfatigue, damage can be considered an
abstruse concept in relation to conventional apgres such as S-N and Coffin-Manson

curves. In fact, damage is not defined in theséeatsosince they provide a number of

cycles to failure or fatigue life prediction, whictoes not truly reflect the progressive

process of fatigue damage evolution due to growtti eoalescence of microcracks.

Traditional fatigue theories do not reflect an irgre intrinsic approach, and cannot give

the damage distribution of the material under cyidading [108].

In conventional materials, damage is charactenzddrms of dislocation density
or microcrack density used in boundary value cantm mechanics problems due to the
fact that elasticity is directly correlated with dage. This elasticity to damage
correlation is confirmed because the number of atdmonds decreases with damage
[118]. In our current state of engineering, itas difficult to develop a prognostic model
based solely on dislocation or crack density caraiions [108,119]. Thus one has to
measure degradation of the global mechanical ptiegersuch as elastic modulus to
represent the evolution of dislocation density ocrotrack density. Inelastic strain is

also considered to be related to fatigue damagletemo [108].

2.4.2. Elastic Modulus Degradation

In engineering, the elastic modulus is measuredaonples as a function of strain
up to 1% strain [13]. Changes in elastic modulus tb thermal and/or mechanical
cycling can illuminate the accumulation of damagea imaterial, as described in Basaran

et al. [108]. Using elastic modulus degradatiorm@amamage metric is highly established
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in the mechanics community [119-120]. The elastadulus degradation metric can be

guantified as:

D=1-—t (2.28)

In this equationD is the damage state variabi®,is the initial elastic modulus, arkgl is
the elastic modulus at any point. At the initiatiof the tesD=0 and for ultimate failure

D=1.

2.4.3. Inelastic strain

Inelastic strain can be considered as any compooénstrain that is not
recoverable as a result of the fatigue loading ggec In effect, inelastic strains are
considered to occur due to irreversible processes the standpoint of thermodynamics.
This has been established from the Clausius-Duhlmaguility of thermodynamics, in
which processes such as creep and plastic stragender irreversible changes in the
material. Inelastic strains can occur as a resuithe creep process due to constant
amplitude fatigue loading or as a result of plasti@ins that are engendered due to
loading above the yield point of the material. fEhbave been several researchers that

consider inelastic strains as a damage evolutiderion [108, 119-120].
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CHAPTER 3

MECHANICAL AND FATIGUE BEHAVIOR OF POLY (LACTIC
ACID) NANOCOMPOSITE FILMS

Summary of Chapter 3

The mechanical and fatigue behavior of poly(laeted) (PLA) neat films and
PLA films reinforced with 5 wt% nanoclay particlasas been examined using various
analytical procedures. The results showed thatherfilms tested in this study, PLA 5
wt% samples were more susceptible to crazing asdah@e maximum fatigue stress as the
PLA neat samples, as evidenced by results front ligtnsmission experiments in the
visible spectrum. In addition, under fatigue loadiconditions, the PLA neat samples
displayed almost the same fatigue resistance (nuofbeycles to failure) at 3 Hz and 30
Hz, while the PLA 5 wt% samples showed a shifthea humber of cycles to failure to
higher values at a frequency of 30 Hz. Using thedr regression curves from tBeN
data (stress vs. number of cycles to failure), tim&ilure curves were generated to show
the difference between the PLA neat and PLA 5 wa¥h@es when tested at frequencies
of 3 Hz and 30 Hz. Based on these results, ih@n that the nanoclay particles served
to increase the fatigue resistance at the higleguincy of 30 Hz, when compared to the

PLA neat sample.

3.1. Experimental
3.1.1. Sample Preparation and Mechanical Testing
The PLA neat and PLA 5 wt% specimens were prepamd processed at the

University of Akron, Akron, OH, USA. The sampleesiimen size used for the fatigue
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tests was 9.5 mm wide by 30 mm long. The thickmésbe PLA neat samples and PLA
5 wt% samples was 0.26.02 mm and 0.3.04 mm, respectively. The BOSE®
ELectroForce® (ELF®) 3200 testing machine (Endwptevas used to conduct the
mechanical experiments in uniaxial fatigue at fesguies of 3 Hz and 30 Hz. The
Enduratec has a maximum load of 225 N (5D dmd a maximum frequency of 400 Hz.
A set of low mass grips, Model GRP-TC-DMA450N fr&d®SE ELectroForce® (Eden
Prairie, MN USA), were used to conduct the fatigasts. The ELF 3200 measures
displacements via a Capacitec 10& displacement transducer (Model HPC-40/4101)
used as a feedback for the control loop. The uamliagnsile tests for characterization
were performed at an elongation rate of 5 mm/mira@tandard Instron machine. The
Q800 Dynamic Mechanical Analysis (DMA) machine fr@A instruments (New Castle,
DE USA) was used to evaluate and characterizeyhandic behavior of the samples as a
function of frequency and temperature. The specisiee used for the DMA tests was
10 mm wide by 25 mm long. All experiments were cueted at room temperature,

laboratory air. The typical humidity of the labtmgy air was about 50%.

3.1.2. Light Transmission Experiments

Light transmission experiments were conducted ie thsible wavelength
spectrum (360-750 nm) on the UltraScan XE specotgheter from HunterLab
(Reston, VA) to assess the effects of crazing. Ru¢he small specimen width, an
aperture size of 0.375” was attached to the insggtntnto conduct the light transmission
experiments. Light transmission experiments werelacted to determine the effects of

mechanical loading on the opacity (reduction ims$garency) of the PLA and PLA 5
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wt% nanocomposite samples. The samples were |ldatiethe machine as close to the
fracture surface as possible, so as to captureftbets of stress whitening due to crazing
that developed around and close to the failureoregi
The equation that appositely describes the amotuhgit that was transmitted

through the sample can be determined by considéneddeer-Lambert Law [121-122],
considering that the fractional light intensity tthaas lost can be represented as:

|
dl_ =-a;dh (3.1)
Here, dl represents the fractional loss in intensltys the intensity of lightar is the
extinction coefficient, andh represents the infinitesimal thickness of the dam{if this

equation is integrated, one obtains the following:

di

=-a ['dh
B jo (3.2)

The intensity as a function of the extinction caeéint and thickness of the sample is
expressed as the Beer-Lambert Law [121]:
| =1,e™" (3.3)

The transmission of light through the sample cappgessed as:

(3.4)

Here,| andly represent the transmitted intensity and the indid@ensity, respectively,
andP andPy represent the transmitted power and incident pomspectively. In these
experiments, the sample thickness of the PLA nasiptes was 0.26).02 mm and the
thickness of the PLA 5 wt% samples was @04 mm.

3.2. Uniaxial Tensile Test Results
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The results from the uniaxial tensile tests indicduat the PLA neat films and the
PLA 5 wt% films exhibited similar mechanical propes. The modulus of the neat film
(3.1 GPa) was very close to that of the PLA 5 wtdfiotomposite film (3.2 GPa). On
average, the maximum strain of the neat film sanwées very close to that of the
nanocomposite sample (0.081 compared to 0.10). tdisle energy of the PLA 5 wt%
sample was approximately 5% more than the PLA saatple. Lastly, the maximum
stress of the PLA neat sample was actually 18%éehigian the 5wt% sample. These
results are not in accordance with similar studiest have evaluated the mechanical
behavior of PLA with the inclusion of clay nanopelgs. The authors in [65] noted an
increase in the tensile strength of the PLA nanquusites up to 5 wt%, whereas in the

current study a decrease in the tensile strengsholvaerved.

Table 3.1. Uniaxial tensile test results for ptagfic acid) PLA neat films

Thickness| E | Opax Ot Emax Energy
mm GPa | MPa | MPa kJ/m?

PLA2002D-NT-1 0.27 3.1 57 51 0.052 2.0

PLA2002D-NT-2 0.27 2.8 58 50 0.053 2.3

PLA2002D-NT-3 0.23 3.2 59 49 0.12 5.5

PLA2002D-NT-4 0.26 3.1 60 49 0.12 5.6

PLA2002D-NT-5 0.22 3.4 58 52 0.055 2.5

PLA2002D-NT-6 0.28 3.1 59 50 0.092 4.3
Average 0.26 31 58 50 0.081 3.7
Std. Dev. 0.02 021 | 10 12 0.032 1.6
95% Confidence 022 | 1.1 13 0.033 17
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Table 3.2. Uniaxial tensile test results for PLE® with 5 wt% nanoclay particles

Thickness E Omax O; Emax Energy
mm GPa | MPa | MPa kJ/m?®
PLA2002D5%C30B-1 0.29 2.9 45 38 0.11 4.0
PLA2002D5%C30B-2 0.28 3.1 49 41 0.14 5.5
PLA2002D5%C30B-3 0.27 3.3 50 42 0.080 3.2
PLA2002D5%C30B-4 0.38 3.4 54 46 0.10 4.3
PLA2002D5%C30B-5 0.28 3.2 49 41 0.087 2.7
Average 0.30 3.2 49 41 0.10 3.9
Std. Dev. 0.040 020 | 27 25 | 0.020 0.94
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Figure 3.1. Example stress-strain curves of PL&t aad PLA 5 wt% samples under
uniaxial tensile loading conditions

These results are somewhat counterintuitive, someewould envision that the addition

of rigid platelet clay nanoparticles would have néigantly enhanced all of the

mechanical properties of the PLA samples.

Howetlee, intimacy of the bonding

between the matrix and nanoparticle was low, stheeaddition of functional groups or

other bonding agents was not incorporated intofaéfseication process. This led to a
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lower interfacial strength of the nanocompositecgpens. Due to the low interfacial
adhesion between the nanoparticles and PLA malespnding occurred at the site of the
interface, leading to lower fracture strengths argher strains at break under uniaxial
conditions. In fact, it has been observed in iteedture that systems with low interfacial
adhesion between the matrix and polymer exhibibdding at a stress lower than that of
the neat matrix [65,123], leading to lower yieldesigths and higher strains at break (due
to massive crazing) with increasing nanoparticlecemtration. Also, due to the platelet
shape of the nanoparticles, stress concentratitas svere engendered, causing the
debonding to occur more easily. Shown in Figur2, 3he authors in [124] have
illustrated how the yield stress in a polymeric pndecreases with the addition of rigid
platelet CaC@ nanoparticles. In essence, the researchers ] [@2plained that the
reduction in yield strength was due to the fact tha particles debonded from the matrix
before overall yield. Based on these results kidlieved that under uniaxial conditions,
the debonding caused a lower yield and fracturength of the PLA 5wt% sample, as

shown in Figure 3.1.

o d=0.7 um
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---e--%------ computer model
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Figure 3.2. Yield stress vs. particle volume fiaetfor polymer system with rigid
CaCQ particles displaying the decrease as a functiqradicle volume fraction [10]
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3.3. Results from DMA

The results from the DMA experiments revealed &etdhce in behavior for the
PLA neat and PLA 5 wt% samples. For DMA tests cmteld on the mechanical
properties as a function of frequency, the resshiswed that the nanocomposite 5 wt%
samples showed a broader transition in tan delth siorage modulus from lower

frequencies up to higher frequencies. This is shawFigure 3.3, where an example

result of the tan delta and storage modulus vguiacy has been plotted for the samples.
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Figure 3.3. tan delta and storage modulus vsuéeaqy for neat PLA sample and 5wt%
PLA sample

It is believed that the broader transition in taftal for the nanocomposite samples is the
result of the nanoparticles that interacted with thatrix and caused the strain in the
samples to lag the stress for a larger frequenaglow than the neat samples. A similar
result has been obtained by the authors in [12%jerev studies of the viscoelastic

behavior of polylactide systems reinforced with argclay nanoparticles has been
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obtained. They confirmed results that showed thattan J function increased as an
increasing function of the nanoclay content forfedbuencies. In the current study, for
both the PLA neat sample and the PLA 5 wt% sampéecritical frequency at which the
tan dfunction displayed its maximum peak was approxatyat00 Hz (Figure 3.5). The
results from the storage modulus vs. temperatuosveti a similar result (Figure 3.4),
where the mechanical behavior of the films frommotemperature up to 120 was
virtually identical. The results showed that farAP5 wt% samples, the glass transition
temperature was slightly shifted to a lower tempge TheT, of the neat PLA samples
was 77.2C while theTy of the PLA 5 wt% samples was 74C7
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Figure 3.4. Stored and loss modulus vs. tempexdturPLA neat and PLA 5wt%
samples

44



35

i

tan delta
~
TR R
—__]

; A

0 20 40 60 80 100 120 140
Temperature (deg C)

Figure 3.5. Tan delta vs. temperature for PLA aeat PLA 5wit% samples

3.4. Results from Light Transmission Experiments

The results from light transmission indicate thenples loaded in uniaxial tension
displayed a great deal of transparency reducti@tduhe formation of a craze zone that
surrounded the crack tip region and spread to getaportion of the film. In these
experiments, stress whitening was visually obseasd Figure 3.6 depicts an example
where light transmission data of a PLA 5 wt% filested under uniaxial conditions is
guantified. The results indicate that the liglansmission behavior changed with loading
condition and wavelength. At around 420 nm, theximam difference between the
undeformed PLA 5 wt% and the uniaxially loaded skemgecurred. For the uniaxially
tested samples, craze zones formed perpendiculdiettoading direction. Craze zone
formation with the creation of a nubilous film sacé is highly established in the
literature [12,126]. This crazing process is knawncreate microvoid sites and stress
whitening in the vicinity of deformation for PLA swles with and without the

reinforcement of clay nanoparticles [65]. From ligat transmission experiments, it was
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determined that the wavelength at which the largkstiation in light transmission

between the undeformed and deformed samples wasxampately 420 nm.

Wavelength (nm)

Figure 3.6. Uniaxial tensile test results: liglainsmission vs. wavelength in the visible
spectrum (360 nm-750 nm) for PLA 5 wt% sample tksteder uniaxial loading to
failure

The light transmission results from the fatigue exipents are shown in Figure 3.7.
These results indicated a similar pattern to tliahe uniaxially tested samples. There
was a critical wavelength around 420 nm that edi$te the samples, where the largest
deviation was observed between the undeformed sampll deformed samples. It
should also be noted that the PLA 5 wt% sampleplalied lower light transmission
values in the visible spectrum than the PLA neatas. This is expected, due to the
fact that the platelet rigid particles were respolesfor inhibiting light transmission

through the film at all wavelengths.
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Figure 3.7. Fatigue results: light transmissionwavelength for PLA neat and PLA 5
wt% nanocomposite samples

The light transmission behavior of PLA 5 wt% vs.APheat samples can be seen
more clearly from Figure 3.8, where the light tramssion data at 420 nm (critical
wavelength) of unfatigued and fatigued PLA neat &idh 5 wt% samples has been
plotted as a function of the maximum fatigue stresBhe results showed that for
unfatigued PLA, the percentage of light that wasmsmitted through the sample was
approximately 83%, while the PLA 5 wt% unfatiguedngple exhibited a light
transmission value of 75%. In addition, the PLAVB% samples exhibited a larger
decrease in the light transmission as a functiomakimum stress with respect to the
neat PLA samples. Stress whitening due to craziag observed visually on both PLA
neat and PLA 5 wt% samples. However, based orighe transmission results from
Figure 3.8, it is seen that the 5 wt% samples etdubslightly more opaque film
structures as a function of maximum fatigue sttbas the PLA neat samples, indicating
that the PLA 5 wt% samples were more sensitiverdainog than the PLA neat samples.

This can be explained by considering results frém literature that explain that an
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increase in the loading of nanoclay particles imdu@ phenomenon that promotes
debonding and localized vyielding, leading to sigmaifit crazing [65]. Jiang et al. [65]
have noted that neat PLA tested under uniaxialisenshowed fairly smooth fracture
surfaces, when viewed using the scanning electnarostope (SEM). This was due to
the lack of large scale plastic deformation in rfebfA. However, the fracture surfaces
of PLA reinforced with nanosized-precipitated caini carbonate (NPCC) showed more
yielding features because of larger plastic defoionacaused by more crazes. In
addition, they observed that the fracture morphplofPLA reinforced with 2.5 wt%
montmorillonite (MMT) clay exhibited stress whitegi and necking during tension. The
results from Figures 3.6-3.8 in this dissertatitudg are directly in sync with the results
from the literature, where more opacity due tosstnehitening was observed for the PLA
5 wt% nanoclay films.
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Figure 3.8. Percentage light transmission vs. mari stress for PLA neat and PLA 5
wt% samples as a function of maximum fatigue stress
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3.5. Results from Constant Stress Fatigue

Fatigue tests were conducted on the PLA and PLA% samples at various levels
of maximum stress to determine the fatigue restgtat frequencies of 3 Hz and 30 Hz.
Maximum stress vs. number of cycles to failure (SedNrves were generated for these
samples to determine their resistance to a repestdit loading for a fixed maximum
stress. Maximum fatigue stress values in the rafiggproximately 25% to 75% of the
maximum uniaxial stress were used to conduct thgu@ experiments. The results for
the experiments conducted below the critical gteassition frequency (below 100Hz) at
a frequency of 3 Hz indicated a result that is s@ha concomitant with the results from
the uniaxial tensile tests. At 3 Hz, the unreinéat PLA samples exhibited a higher
fatigue resistance than the PLA samples reinforegd 5 wt% nanoclay particles, as
shown in Figure 3.9. However, at 30 Hz, the PLAatnand PLA 5 wt% samples
exhibited almost the same fatigue behavior. Thdicates that the nanoclay particles
served to enhance the fatigue resistance of thplsarat 30 Hz. Based on the regression
results shown in Figure 3.9, it is known that b&thA neat and PLA 5 wt% samples
displayed a linear semi-log behavior with a funcéibform that relates the maximum
fatigue stress to the number of cycles to failwe a

g,

o =—mIn(N, )+ b (3.5)

In (3.5), gmax represents the maximum fatigue stressrepresents the slope of the
regression curvey; represents the number of cycles to failure, an@presents the y-
intercept. Equation (3.5), which relates the maximstress to the number of cycles to

failure, can be rewritten in modified form expregsthe maximum stress as a function of

time to failure t;, and frequency, as:
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Oy =—min(t, OF )+ b (3.6)

Equation (3.6) was algebraically modified to derareempirical relationship for the time
to failure that was expected for the PLA neat ahé B wit% samples, as a function of
maximum stress and frequency, as:

— Umax_b
)

tf :—f (37)

For the PLA neat and PLA 5 wt% samples conducted Hiz and 30 Hz, one would
expect a similar shift in the number of cycles th@ids an equivalent time to failure
shift, since 1) the results from DMA indicated thithe storage modulus ardn o
functions were virtually constant in this frequencgnge and 2) the uniaxial
characterization results indicated that the PLAt saanple is superior to that of the PLA
5 wt% sample in terms of yield strength and fraetstrength. However, the PLA neat
and PLA 5 wt% nanocomposite samples behaved diffigren terms of the time to
failure due to fatigue loading as a function of maxm stress and frequency. In an
effort to quantify the difference in behavior ofetlwo samples (neat vs. 5 wt%) as a
function of frequency, time to failure curves wegenerated based on the empirical
expressions and are shown in Figure 3.10. The torfailure curves for the PLA neat
samples at 3 Hz and 30 Hz show a very wide diffegan time to failure with respect to
the PLA 5 wt% samples. In terms of time, the Plefainsamples at 30 Hz failed much
sooner than the PLA neat samples tested at 3 Hz30A1z, the PLA 5 wt% samples
exhibited the same behavior as the PLA neat samplesre they failed sooner than the
samples tested at 3 Hz. However, there is oneewtdtie difference between the fatigue

behaviors of the two samples. In terms of timamitst be noted that the PLA 5 wt%
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samples exhibited a much smaller time differeriigtiveen 3 Hz and 30 Hz than the PLA
neat samples. After all, based on the mechanicaftacterization results, one would
expect that the fatigue resistance of the PLA 5 w#ples at 30 Hz would be lower
than the PLA neat samples; however, this was net dhse. This observation is
interesting, because it indicates that the nanogtaticles served to enhance the fatigue
resistance of the PLA samples at 30 Hz, wherecitegsed the time necessary to cause
failure. In addition, the PLA neat samples fatidt 30 Hz displayed a steeper decline
slope in the semi-log maximum stress vs. numberycfes to failure behavior. Thus,
from the results of the uniaxial experiments intlec3.1 and the fatigue results of this
section, it can be concluded that the nanoclayighest engendered two antithetical
mechanical property attributes: 1) decreased maximatress (yield stress) and fracture
stress under uniaxial tension conditions and 2)jemsed time to failure between the
lower frequency of 3 Hz and higher frequency oftBOwhen compared to the PLA neat

sample (lower time to failure differential betweewt% sample at 3 Hz and 30 Hz.
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3.6. Further Discussion about Results from Fatigue ofA RiInd PLA Nanocomposite

Samples

A study by Kim and Lu in [1] was conducted on pasmonate samples at
different frequencies to determine that cyclingl@aver frequencies caused a shorter
fatigue life (number of cycles to failure) for avgn stress amplitude. This same effect
has been realized for the current study in PLA Sov#amples. Based on results of
cycling polycarbonate samples at various frequencieey noted two observations:
Cycling at higher frequencies may cause 1) a chamghke internal nature of viscous
flow to create localized yield-like deformation aBgit may cause a thermal effect due to
viscoelastic hysteresis-induced heating.

Studies by researchers in [127] have investigated the role of clay affects the
fracture behavior of poly(propylene) (PP) reinfatceith nanoclay particles. They
conducted wide angle x-ray diffraction (WAXD), teamission electron microscopy
(TEM), dynamic mechanical analysis (DMA), and saagrelectron microscopy (SEM)
in the investigation of the impact properties of 8Rconclude that the role of nanoclay
served to enhance the mechanical properties of pilgmer and to change the
deformation mode from matrix crazing and vein-tyjpe neat PP to a microvoid-
coalescence-fibrillation process in the PP nanoasite. This phenomenon is illustrated
in Figure 3.11, where the microvoid-coalescenceaHation process has been illustrated

by the authors in [127].

53



microvoid
Nanoclay

) stretched fibrils
tactoid

Zones 1,2
>‘I’ "T“T"v |:'/

v

W=

—~ = N\

-~
|

bridging matrix
elements

microvoid

Figure 3.11. Envisioned process of microvoid ceedace-fibrillated fracture behavior in
PP nanocomposite (picture from [127])

From the current results, it is seen that as tbguiency of the test is increased, the PLA 5

wt% nanocomposite samples were less susceptilfitue damage than the PLA neat

samples, where at the higher frequency, the natiolearserved to toughen the material.

In fact, it is known from the results in [65] thatthough nanoclay particles debond from

the surface, they serve to prevent coalescence fooming large cracks and leading to

premature failure.

Conclusions from Chapter 3

The mechanical behavior of PLA neat and PLA 5 wtééngles has been
evaluated to determine the effect of nanoclay gadion the fatigue resistance. The
yield and fracture strength of the PLA neat samplas 18% and 22% higher than the
PLA 5 wt% samples, respectively, when tested unoheaxial conditions. Uniaxially
tested PLA 5 wt% samples exhibited stress whiteding to crazing and fatigued PLA 5
wt% samples exhibited more stress whitening andirmgathan PLA neat samples as a
function of maximum fatigue stress, as evidencedrdsults from light transmission

studies. A fatigue study was conducted on the &8st 3 Hz and 30 Hz to ascertain
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whether or not there was a difference in fatigueaveor between PLA neat and PLA 5
wt% samples. Based on the literature results ancbiot results from uniaxial tension, it
was expected that the fatigue resistance (numbeydes to failure) of the samples
would increase with increasing frequency. Thigease in fatigue life from 3 Hz to 30
Hz was observed for the PLA 5 wt% samples. Howether PLA neat samples did not
exhibit this behavior, where they experienced alnttuss same number of cycles to failure
at 3 Hz and 30 Hz. This phenomenon was furthentified using time to failure curves
for the different samples at 3 Hz and 30 Hz, whereas shown that there was a much
larger deviation in time to failure for the PLA neamples than the PLA 5 wt% samples
when tested at 3 Hz and 30 Hz cyclic frequenci®erhaps the results at 3 Hz are
concomitant with the results from the PLA neat &idA 5 wt% uniaxial (quasistatic)
experiments, where the lower rate of strain appbocaat that frequency was highly
similar to that of uniaxial tension. However, héthigher frequency of 30 Hz, the PLA
neat samples may have experienced more damages #iec fatigue life was not
increased. Based upon the results from the liuezadind the results from the PLA neat
fatigue experiments, it is known that the nanogtayticles, although not intimately
bonded to the PLA polymer chain architecture, sgteebolster the fatigue resistance of
the samples. The results of this study are imporbecause they indicate that the
mechanical behavior of PLA neat and PLA nanoclagy@as tested under fatigue loading
conditions is different for different frequenciesThese results can be used as a
guantitative and qualitative measure for studieshsas accelerated life testing and
mechanical performance. It would be interestinggoertain how these results compare

to a study in which the temperature of the sam@esdecreased (similar to increase in
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frequency for this study), and fatigue experimesdaducted to determine if the time-

temperature superposition phenomenon is applidalileese polymer systems.
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CHAPTER 4

MECHANICAL AND FATIGUE BEHAVIOR OF POLY(ETHYLENE
TEREPHTHALATE) (PET) AND NANOCOMPOSITE FIBERS:
EXPERIMENTAL RESULTS

Summary of Chapter 4

PET control fibers (diameter of ~24+3yuand polyethylene terephthalate (PET)
fibers with embedded heat treated vapor grown cartanofibers (VGCNFs) (diameter
of ~25+2 um) were exposed to cyclic loading and atonic tensile tests. The control
fibers were processed through a typical melt-blegdechnique and the PET/VGCNF
samples were processed with approximately 5 wt9%oramanofibers present in the
sample. Under uniaxial fatigue conditions, theffowere subjected to a maximum stress
that was approximately 60% of the fracture strdsth® sample at an elongation rate of
10 mm/min in uniaxial tension. Subsequent to mawtfire fatigue conditions, the fibers
were tested under uniaxial stress conditions f@eolation of the change in mechanical
properties. The elastic modulus, hardening modutasture strength, tensile energy,
and yield strain of both PET control and PET/VGCHN&mples in uniaxial tension
subsequent to fatigue were shown to be dependenth@nresidual fatigue strains.
Relative mechanical property values were used tlyae the difference in PET and
PET/VGCNF samples as a function of residual stréinmost cases, the results indicated
a strengthening mechanism (strain hardening effacthe low residual strain limit for
fatigued PET samples and not for fatigued PET/VGQ&dmples. In comparison with
the unreinforced PET sample, the PET/VGCNF fibehewsed greater mechanical

property degradation as a function of residuairstdae to fatigue when cycled at 60% of
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the fracture stress, as evidenced through andlyacal SEM (scanning electron
microscopy) results. The effects of the fatiguecpss on these mechanical properties
have been hypothesized and supported through rexispiialitative, quantitative, and

SEM techniques.

4.1. Introduction

Poly(ethylene terephthalate) (PET) fibbeve been employed as reinforcement
agents in many engineering applications. Theyeapecially known for their toughness
and high strength-to-weight ratio. As engineemks® develop stronger materials for
advanced applications, the inclusion of reinforcegents presents itself as a viable
option for increased strength. The field of namoposites is particularly attractive for
engineers and designers in the field nanotechnadmglymechanics of materials. Nano-
sized reinforcing agents such as single-walledararianotubes (SWNTSs), double-walled
nanotubes (DWNTSs), multi-walled nanotubes (MWNTsand vapor-grown carbon
nanofibers (VGCNFs) are all candidates for incmegsthe mechanical properties of
various polymer matrices. In this investigatidme inclusion of VGCNFs into the PET
fiber was employed to determine the effect of iatigon the residual mechanical
properties of the fibers in uniaxial tension. Issence, the mechanical properties of
nanocomposite fibers were investigated from a tedidtandpoint: how the fatigue
process engendered microstructural changes inilbeesfand altered their mechanical
properties. Limited research exists on the deftionamechanisms of fatigue in
nanocomposite PET fibers. In fact, a quantitasttely on this subject is needed to fully

realize the benefits of reinforcing agents suchV&CNFs, which are in a class of
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materials that are touted as the next-generatiotigbtweight applications. In a recent
investigation, Ma et al. [128] utilized various cpounding methods (ball milling, high
shear mixing, and extrusion) and a traditional rfitepinning method to develop
PET/VGCNF composite fibers. In the case of theosamposite fibers (PR-24-HT)
tested under uniaxial tensile loading at a fixedistrate, the elastic modulus was shown
to be slightly higher than the PET control sampées] the fracture strength was slightly
lower than the PET control sample. In the curiemestigation, the same fibers were
tested in an effort to determine their mechani@distance to cyclic loading under

various loading conditions.

4.2. Sample Preparation

The PET/VGCNF specimens were prepared and processbd Georgia Institute
of Technology. The experimental procedure employedthe production of these
nanocomposite fibers (PR-24-HT) as well as basichaeical properties are given in
[128]. Single PET/VGCNF filaments were cut to adth that yielded samples with a
gage length of 1" (25.4 mm). The single fibers avdronded to a manila (paper)
rectangular gasket (0.1 mm thickness) manufactbsethe Miami Valley Gasket Co.
(Dayton, OH, USA) via Scotch® Super Strength Alrpase adhesive (drying adhesive).
The adhesive was allowed to cure for 24 hours éonmlete bonding. The diameter of
the PET control filaments was 24+3 um and the dteamef the PET/VGCNF filaments
was 25+2 um). This was obtained using a standeser [diffraction instrument and test

method as described in [128].
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4.3. Fatigue & Uniaxial Tensile Tests

The BOSE® ELectroForce® (ELF®) 3200 tensile andgta testing machine
(Enduratec)) was used to conduct the mechanicarewrpnts in uniaxial cyclic loading
and uniaxial tension. The load cell had a maximoad rating of 2.5 N (250 g) and
resolution of+10 mg. The ELF 3200 measures displacements viapactec 10Qum
displacement transducer (Model HPC-40/4101) used f@®dback for the control loop.
The resolution of this displacement transducer s&&um full-scale. All experiments
were conducted at room temperature, laboratory alihe typical humidity of the
laboratory air was approximately 50%.

Based on the terminology and depiction in Figurk #he residual creep strain
was measured by subtracting the oscilloscope dispilant value at the initiation of the
test from the displacement at the conclusion of ¢bastant-stress amplitude fatigue
phase, once the specimen was unloaded to zers stnelsallowed to dwell for a short
time.

Approximately 150 fibers were tested in this inygstion. About 10% of the
fibers broke at the grip interface at the conclnsid the uniaxial tensile loading phase,
which indicated premature failure due to a stremscentration near the grip interface.
For this reason, these experimental results wengtezimfrom the results in this study.
All fibers possessed the same frequency duringicyohding (5 Hz), elongation rate
during uniaxial tension (10 mm/min), and heat ®datHT) conditions during synthesis
[128] of the nanocomposite fibers. A detailed dggion of the preparation of the

samples for mechanical testing is provided in [129]
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The dynamic stress-strain response of a viscoelpstymer sample under fatigue
conditions is given in Equation (2.1). One cavirat must be noted is that Equation
(2.1) is only valid under equilibrium conditionsnae the stress and strain have both
attained fixed amplitude values for the durationhef fatigue test. At the initiation of the
fatigue test, Equation (2.1) was not valid becaihsesinusoidal strain response of the
material was changing nonlinearly with time (cregpj due to the application of an
imposed constant stress. This phenomenon is verjas to the creep behavior in

polymers exposed to a constant stress for a longgoef time (Figure 2.1).

4.4. Uniaxial Tensile Tests (Specimens Without Priondtag)

Results from the uniaxial characterization teswicate that the PET-VGCNF
samples with 5 wt% were more superior mechanicdln the PET control samples.
Shown in Table 4.1 are results from the uniaxiatiie tests. A 95% confidence interval
was provided to determine the range of values witttiich the mean value was likely to
fall within. Although the samples are identical tfre samples tested in [128], the
elongation rate in the current study was approxegad0% of the elongation rate in
[128]. This validates the minor differences in tmechanical properties for the two
studies in the case of the unfatigued samples.

Two methods were used to obtain the modulus ofsdraples: the 1% strain
method according to [13] and the conventional secaodulus method for polymers.
The response of the PET and PET/VGCNF fibers withmior fatigue was nonlinear
elastic, strain hardening (see Figure 4.1). Sulessgto the yield point, the fiber began

to strain harden nonlinearly, and finally reachéeé ultimate tensile strength or the
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maximum stress within the stroke limitations of thachine. As shown in Table 4.1, the

PET nanocomposite sample (PET/VGCNF) exhibited érighechanical properties than

the PET control sample in terms of elastic mod(kis hardening modulusH), yield

strength §;), and tensile energy. The unfatigued yield sgahthe PET/VGCNF and

PET control samples were similar.

In terms of maxn strain within the stroke

limitations of the machine (~12 mm), the PET cohsample exhibited a maximum

strain () equivalent to 0.45+0.017. This is expected duéhe more ductile nature of

the PET samples vs. the PET/VGCNF samples.

Table 4.1. Properties of PET control and PET/VGGQiNfments at elongation rate of
10mm/min under uniaxial stress conditions withaubipfatigue

E
E (GPa) H 0o o

CEEJm 1% strain éSCZ";‘])t (MPa) | (MPa) | & | (MPa) | & | ENergy )

Average 6.6 42| 210 110 0027 250 045  1.1E+03

Std. Dev. 1.1 11| 46| 22| 00059 33 | 0019| 1.5E+02
95%

Interval 1.1 1.0 43 21 0.00585 31 0.017 1.4E+02
PET E (GPa) GIED H 0o o E ]

Ve | 1% strain éeca";‘])t (MPa) | (MPa)| & | (MPa) | © nergy (w)

Average 158 11.1] 380 300 0028 526 028  1.5E+03

Std. Dev. 0.38 047] 36| 15| 00080 23 | 0.050| 3.5E+02
95%

Interval 0.47 058| 44| 19| 00037 29 | 0.062| 4.4E+02
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Figure 4.1. Stress-strain curve results from umisbensile tests on PET control & PET-
VGCNF samples
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The results of the unfatigued samples indicate thatmodulus of the PET-VGCNF
samples was more than twice the value of the PETra@losamples. The fracture strength
of the PET-VGCNF samples was also twice the valtighe PET control samples.

Similar results indicating a superiority in stremd@tom the employment of VGCNFs into
polymeric matrices have been obtained by the asthor [150]. These authors
investigated the mechanical properties of VGCNFpleged in nylon and polypropylene
composites and observed great improvements inléeagength and elastic modulus.
The results in the current research have been aceahpa the model by Cox [151]. The
Cox model predicts the modulus value of the nangumite fiber for ideally oriented

VGCNFs as:

E =VE + {1— ta”ﬁhﬁ}vf E, (4.1)
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Here, Vy, represents the matrix volume fraction (96.4% iis tase) E,, represents the
matrix modulus (6.6 GPa from the experimental ts$3W; represents the fiber volume
fraction (which is 3.6% based on 5 wt% VGCNFs adogg to [128]), andss represents

the VGCNF modulus (240 GPa according to [152]).e TéctorS is estimated according

to the following expression:

_ | E,
'B_E\/(1+ V)E, xIn(r/4av,) (4:2)

Here, | represents the VGCNF lengtld, represents the VGCNF diameter, amd
represents Poisson’s ratio of the matrix (takerD.83) [126]. According to the Cox
model, the matrix modulus is highly dependent uth@naspect ratid/(l). The authors in
[128] have investigated the effect of nanocompdgier modulus on the aspect ratio and
noticed that the modulus increases with increaaspect ratio, and then plateaus off to a
steady state value. Based on the values statect amal the results from the Cox model
utilizing an aspect ratio greater than 50 (indisatgpproximate steady state value
according to [128]), the nanocomposite fiber moduas estimated and is shown in
Figure 4.2. The results in Figure 4.2 show thealigteon of the modulus as a function of
VGCNF aspect ratiol/d), as well as the average result of the experinhentadulus
calculated using the 1% strain calculation [13] #mel secant modulus calculation. The
graph in Figure 4.2 shows that the experimentallt@$rom the 1% strain modulus and
secant modulus of the PET-VGCNF fibers were inrirege of values for that predicted
by the Cox model for fibers. Nanocomposite mogudidictions were computed for PET
matrices containing VGCNF with moduli in the raridgxE<350. This range of values

was utilized, because in actuality, there was ntoam likely a statistical distribution of
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aspect ratiosl/d) for VGCNFs that existed for the samples. Théhaug in [152] have
reported that the modulus of VGCNFs is 240 GPa, thisl modulus curve has been
displayed as well. The objective of Figure 4.2oisndicate that the experimental results
obtained from this study are in accordance witlulte§rom the Cox model predictions

when typical values for the modulus of the VGCNEsienplemented into the model.
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Figure 4.2. Cox model prediction of the elasticdumlos as a function of aspect ratio

Determination of the yield point was an importaargmeter for characterizing
the PET and PET/VGCNF samples under uniaxial tensids described earlier, the
nonlinearity of the stress-strain curve obscured éxact value of the vyield point;
however, the method as described in [130] waszetilito determine this value. Two
intersecting lines based on the modulus value U@dcstrain and a hardening modulus in
the later plastic stages (5% less tlgrup to &) were employed in the calculations for

consistent determination of the yield stress basethe following set of equations:
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From the elastic modulus:

£=001

£+b (4.3)

£=0

do

£ de

From the hardening modulus:

£+h, (4.4)

E=Emax— 005

max

In Equations (4.3) and (4.4y= and gy represent the linearized form of the elastic
stress and hardening stress evaluated betweenvee lgnits andb; andb, are arbitrary
intercepts. These equations were set equivaleah¢éoanother and the yield stress and
strain were defined by the vertical intersectiorelio the stress-strain curve (see Figure

4.3).
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Figure 4.3. Stress-strain curve for material shgvélastic and plastic regions depicting a
method to determine the yield stress [130]

4.5. Fatigue Experimentation Phase
In this study, fatigue conditions were applied be tspecimens, similar to the

research in [129]. In essence, the fatigue testbopned in this experiment were not
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totally destructive as in normal fatigue tests vehitre material is cycled to failure [131].
Rather, the fatigue cycles in these experimentg warployed to make an assessment on
the residual properties of the fiber subsequentfatigue at a maximum load of
approximately 60% of the fracture stress. The al/ewbjective was to ultimately
develop a correlation on the evolution of damage @range in mechanical properties of
polymeric nanocomposite and pristine fibers subsegto fatigue. In addition, a study
was undertaken to determine if the load amplitdoied  ratio) had an effect on the overall
mechanical response of the fibers subsequentiguéat All fatigue tests were conducted
at 5 Hz at load ratios @& = 0 and R=0.333 for the nanocomposite and con&nwiptes.
Here, the load rati® is defined as the ratio of the minimum to the nraxin stressiK =
OminlOmay during fatigue. The maximum fatigue load at whithe samples were
subjected to was 58% of the fracture stress for/RECNF samples and 57% of the
estimated fracture stress of PET control samplegréximately 60% of fracture stress in
each case).

Figures 4.4 & 4.5 display a 1 s interval of thedaa. time and displacement vs.
time response of the PET/VGCNF sample and the abséimple under sinusoidal cyclic
loading conditions between 0-15 g (PET/VGCNF) an@ @ (control PET) after
equilibrium stress and strain values were reach@&tiese samples were subjected to
uniaxial fatigue loading conditions. From the draphe phase lag components are
clearly visible. Both the pristine sample and tmEnocomposite specimen behaved
similar to a viscoelastic solid, exhibiting smalgse angle values between stress and

strain for a fixed frequency of 5 Hz.
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The dynamic viscoelastic behavior for both PET oauntand PET/VGCNF
samples has been confirmed through DMA studiesL28]] in which the authors have
examined the effects of tah vs. temperature for a frequency of 1 Hz and oleskrv
minute differences (Figure 4.6). Because it isimahat tand is a function of frequency
in the elastic range [8], the observations in Fegu4.4 & 4.5 warrant a detailed DMA
investigation at the 5 Hz frequency over a varratad temperatures for the PET and

PET/VGCNF samples.
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Figure 4.4. Oscilloscope output of load vs. timd displacement vs. time
response of PET control sample undergoing uniaxmisoidal loading (Prescribed load
values: 0-8 g-stress ratio=0 (R=0))
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Figure 4.6. Dynamic mechanical analysis propefoe®ET control (C) and
PET/VGCNF samples (9) [128]
4.6. Tensile Tests Subsequent to Load-Controlled Fatigue
A representation of the stress-strain responsebefd tested in uniaxial tension
without prior fatigue and subsequent to fatigushswn in Figure 4.7. The fibers that
were exposed to fatigue were shifted accordinghéorésidual strain that remained as a

result of the fatigue process.
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Figure 4.7. Residual stress-strain response offfilmeuniaxial tension subsequent
to fatigue under various loading configurationsoté Stress-strain curves have been
shifted according to the residual strain due toféitigue process. The circles highlight a
dip in stress values.

For clarity, only one stress-strain curve is shdameach corresponding loading
configuration in Figure 4.7. This figure is shotmelucidate the post-fatigue effects on
the uniaxial stress-strain response of PET and YGTNF filaments. From Figure 4.7,
the following observations can be delineated reggrdhe unfatigued samples vs. the
fatigued samples:

1) The constitutive stress-strain response changeah fnon linear elastic strain
hardening with an ambiguous yield point to non-direlastic strain hardening
with a more clearly defined yield point (piecewigen-linear elastic, strain

hardening) and decreasing hardening modulus. Whgtrue for both PET and

PET/VGCNF samples tested subsequent to fatiguevdhide quantified later.
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2) In most samples tested subsequent to fatigue, &@sea decrease in stress values
which resembled a small “dip” in the stress-st@irnve, similar to the behavior of
some metals (see circled regions in Figure 4.His Tdip” has been qualitatively
explained in [132] for poly(ethylene terephthalag@mples tested in uniaxial
tension and was attributed to an intrinsic yieldgaess and/or a decrease in the
cross-sectional area of the specimen (necking).

3) There was a reduction in hardening modulus for ftgjued samples vs. the
unfatigued samples for PET and PET/VGCNF samplas; resembled a more
perfectly plastic behavior subsequent to the stggtd point, as seen in Figure
4.7. In essence, the hardening modulus gradugproached the horizontal
condition as a function of residual strain. Thigl Wwe elaborated upon in the

discussion of the change in mechanical properties.

These observations clearly show the alterationghm uniaxial constitutive
response as a result of fatigue for PET and PEDawnposite samples. Effectively,
there were changes in the overall constitutive oBsp, the maximum stress, elastic
modulus, hardening modulus, yield strain, and thmount of energy absorbed by the
sample during the uniaxial tensile loading phadackvwill be delineated in Figures 4.8-
4.9 and Figures 4.11-4.18. In Figures 4.8-4.9igdres 4.11-4.18, thieold line at the
relative value = 1 indicates the absolute valuenipfur the unfatigued sample (refer to
Table 4.1 for absolute values of the PET nanocortgder and PET unreinforced
fiber, respectively). Arrows pointing up X or down () depict the increase or decrease

in the mechanical property value in the low residst@ain limit, respectively. The
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relative values in Figures 4.8-4.9 and Figures 4.11B were derived from the ratio of the

fatigued mechanical property value to the unfattjpeoperty value.

4.7. Mechanical Tests Subsequent to Fatigue
4.7.1. Relative Tensile Stress Subsequent to Fatigue

Figure 4.8 displays relative maximum stress valwathin the stroke limitations
of the fatigue machine) from the PET control andf RESCNF samples as a function of
residual strain from the fatigue process. For kb PET control and PET/VGCNF
samples, the results show a decreasing trend cufe strength vs. accumulated strain.
The results from Figure 4.8 show that the fatiguecess conducted under R=0
conditions engendered irreparable damage to th@lsamith the accumulation of strain
for PET/VGCNF samples. These results indicate dhaaccumulation of void sites may
have been generated in the PET/VGCNF specimensrasuét of the fatigue process.
Interestingly, the results for the PET control séapin Figure 4.8 indicate a slight
increase in the maximum stress for low residuaistvalues (less than approximately
5%). In fact, for the PET control samples in tbev Iresidual strain limit for the R=0
condition, five samples achieved a higher maximaass with the retention of fatigue
strain, indicating a strengthening mechanism frohe tfatigue process.  After
approximately 5% residual strain, the maximum strealues for the PET control
samples showed a decaying behavior. From a comnmrstandpoint, the results in
Figure 4.8 indicate that although the nanocompasitaples possessed an overall higher

maximum stress value in the unfatigued state, € €ontrol sample possessed higher
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relative maximum stress values subsequent to fatiguall residual strain values in this

study.

Relative Maximum Stress
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Figure 4.8. Relative maximum stress of PET/VGCN#& BET Control samples in
uniaxial tension (subsequent to fatigue) vs. redidtrain for the R=0 loading condition.

The data in Figure 4.9 are results of the relativ@imum stress in uniaxial

tension subsequent to fatigue for the condition B38. These results indicate that the

unreinforced PET relative maximum stress was highealmost all cases for the same

residual strain with reference to the nanocompasitaple. Similar to the results for the

loading condition R=0, there was a spike in maximstness values for low residual

strains (up to approximately 7%) with an ensuingagebehavior. The results for the

relative maximum stress for the PET/VGCNF samplesvé®@mewhat monotonic, with no

sharp increases in relative maximum stress forresidual strain values. Combined, the

results in Figures 4.8 and 4.9 indicate that tltusion of VGCNFs into the PET matrix
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adversely affected the maximum obtainable stresst(fre strength) in uniaxial tension

subsequent to fatigue for R=0 and R=0.333 conditio@ne explanation for the increase
in maximum obtainable stress (in the low residuiis limit) for PET control samples

could be that the fatigue process engendered gnnadint of the polymer chains along
the main axis, causing a shift from ductile to Idastile behavior in the sample. In fact,
it will be later shown that for PET control samplested subsequent to R=0 fatigue
loading, there was an increase in the elastic nusdahd hardening modulus in the low
residual strain limit, supporting the claim thae tRET samples were less ductile in the

low residual strain limit.
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Figure 4.9. Relative maximum stress of PET/VGCN#& RET Control samples in
uniaxial tension (subsequent to fatigue) vs. residtrain for the R=0.333 condition
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4.7.2. Elastic Modulus Subsequent to Fatigue

There were obvious decreases in the elastic modsitnall strain limit modulus —
up to 1%) for both PET and PET/VGCNF samples asnation of residual strain. A
representative stress-strain curve of a PET/VGCathpde that underwent 5,000 cycles
under load-controlled conditions and 3.9% accompanyesidual strain is shown in

Figure 4.10.

Elastic modulus (up to 1% strain) for cycled & uncycled PET/VGCNF fibers
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Figure 4.10. Representative elastic modulus of/FECNF sample before and
subsequent to fatigue (up to 1% strain)

This behavior is very similar to the Mullins effeaibserved by Mullins [133] in
which a material is loaded to a defined strain galand then subsequently reloaded to
traverse a different stress-strain curve. Theceffie Figure 4.10 exhibits the stress
softening phenomenon as described by Mullins on th@xial loading of rubbers
subsequent to fatigue.

Comparatively, in terms of the elastic modulus @hhis an indication of the

stiffness of the material), the nanocomposite shibvggeater signs of modulus
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degradation with the retention of strain from thédue process. Figures 4.11 and 4.12
depict relative moduli of the PET and PET/VGCNF pés vs. residual strain for
loading conditions R=0 and R=0.333, respectiveln Figure 4.11, the PET control
sample showed a stiffening effect in the low realdrain limit, similar to the increased
fracture strength behavior observed in Figuresah@® 4.9. The nanocomposite samples
exhibited no signs of stiffening subsequent togiat; rather a severe reduction in
modulus was observed for small residual strainesbor both R=0 and R=0.333 loading
conditions (Figures 4.11 and 4.12). Although ftexrdture suggests a significant increase
in modulus for nanocomposite materials [48-51, &8 an overall stiffer material, these
results suggest that stress-controlled fatigue itiond that result in an ensuing residual

strain for PET-VGNF materials can cause severeatazhs in the elastic modulus.
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Figure 4.11. Relative elastic moduli of PET conand PET/VGCNF samples
(subsequent to fatigue) vs. residual strain forRR@ loading condition
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Figure 4.12. Relative elastic moduli of PET conand PET/VGCNF samples
(subsequent to fatigue) vs. residual strain forRR€.333 condition
4.7.3. Tensile Energy Analysis of Fibers in Uniaxial TemsSubsequent to Fatigue
Another primary indicator of the damage accumuratio materials due to the
fatigue process is the measurement of total enengher the load-displacement curve in
uniaxial tension. Measurements of the relativesiterenergy were plotted vs. residual
strain to determine the effects of fatigue on thergy absorption capabilities of the PET
control and PET/VGCNF samples. Figures 4.13 afd display relative tensile energy
results for the R=0 and R=0.333 condition, respebti Although there is some scatter
in the data, Figures 4.13 and 4.14 clearly illustrdlne degenerative effects from the
fatigue process. The lines that are provided engttaphs in Figures 4.13 and 4.14 are
meant to guide the eye and are not actual trerslbiéhe decay behavior. These results

are somewhat intuitive, as one expects less entrdye available to the sample to
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perform useful work after the accumulation and met® of strain from the fatigue
process. After all, some of the internal energyhef sample was converted to hysteresis
heat during the fatigue process and some was edilior changing the underlying
microstructure of the pristine sample, inducingypmér chain alignment along the fiber
axis. Similar to the results obtained for the maxm stress and the elastic modulus, the
PET control samples displayed an increase in ereoggrption in the low residual strain
limit for the R=0 condition. In terms of tensil@ergy capabilities, the nanocomposite
sample showed lower values with respect to theinforeed sample for both R=0 and
R=0.333 conditions. The results in Figure 4.14datk that some PET/VGCNF samples
displayed higher energy absorption values in the Hesidual strain limit; however, the
trend was not consistent for similar residual stralues. There is much more scatter in
the data in Figure 4.14, which may have arisen frelight differences in sample

structure, etc.
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Figure 4.13. Relative total energy of PET contrad ET/VGCNF samples (subsequent
to fatigue) vs. residual strain for the R=0 loadawogdition (Trendline is not an actual
representation of the decay behavior)
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4.7.4. Hardening Modulus Subsequent to Fatigue
The hardening behavior of samples was also studtedbtain post-yield

deformation information about the samples beford anbsequent to fatigue. The
hardening modulus provides an indication of theabvedr of the sample in the plastic
dominated region, as indicated in Figure 4.3. THaedening modulus indicates the
resistance of the material after it has yieldedlidating a resistance to plastic flow
behavior. The results in Figure 4.15 and 4.16rbleiadicate that the nanocomposite
sample (PET/VGCNF) demonstrated a greater progliatplastic flow (less hardening)
subsequent to fatigue loading at ratios of R=0Rn6.333. In fact, for the PET/VGCNF

sample, only one relative hardening modulus valkié dbove the threshold for the

unfatigued sample in Figures 4.15 and 4.16 (baid)]i indicating a reduction in the
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modulus as the result of fatigue. The PET/VGCNFl&aing behavior for the R=0.333
condition was fairly monotonic, with no significamicreases or decreases observed as a
function of residual strain. For comparison, thanteol PET sample showed slight
increases in the hardening modulus in the low tegidtrain limit, further corroborating
the possibility of a strengthening mechanism resjie for improved mechanical
behavior in PET filaments with the retention of dnstrains from fatigue. This was
consistent for both R=0 and R=0.333 loading coodg#i Future studies need to be
performed to further quantify the mechanism resg@dor the decrease in mechanical
properties and overall mechanical behavior of PBiiocomposites with the retention of
strain from the fatigue process. Cho et al. [2@)é already confirmed that strain
hardening is a dominating effect in the early ssagkcyclic extension, and defects are
more dominating in the latter stages of fatiguéne Tesults of the study from [27] are in
accordance with the results in Figures 4.8-4.9 Bigires 4.11-4.18 presented in the

current research.
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Figure 4.15. Relative hardening modulus of PET @nd PET/VGCNF samples
(subsequent to fatigue) vs. residual strain forRR@ loading condition
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4.7.5. Yield Strain Subsequent to Fatigue

The yield strain values of the single filaments sadquent to fatigue were also
evaluated to determine the effects of residualirstrdrigures 4.17 and 4.18 depict the
relative vyield strain as a function of residual astr for the PET control and
nanocomposite sample. The results clearly show rdsdual strains in the material
caused an increase in the yield strain of the defdrmaterial. In essence, subsequent to

fatigue, the material possessed a new length:

L =L, +AL (4.5)
The post-fatigue engineering yield strain was defim terms of the undeformed length
as:

.0,
£ =

et
YL

(4.6)
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In (4.5) and (4.6),0, represents the yield displacemeht, represents the new

length of the samplé,o represents the undeformed length of the specidiiemepresents

the residual length that remained as a result tajue, andgy' represents the yield strain

of the fatigued (deformed) sample. The resultBigures 4.17 and 4.18 indicate that the

yield strain in the fatigued PET control and PETOMEF (deformed) samples was

inhibited as a result of creep strain retentiorlsoAfrom a relative standpoint, the results

seem to indicate that the relative yield straithi@ PET control samples showed a greater

dependence on the residual strain for both R=0Rx@333 loading conditions.

Relative Yield Strain

18

1.6

14

12

0.8 1

0.6

0.4

0.2 1

o
p—
—— —
-
-
s

< PET Control

= PET/VGCNF

0 0.05

0.1 0.15 0.2 0.25
Residual strain

Figure 4.17. Relative yield strain of PET controtldPET/VGCNF samples (subsequent
to fatigue) vs. residual strain for the R=0 loadaogdition
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Figure 4.18. Relative yield strain of PET controtldPET/VGCNF samples (subsequent
to fatigue) vs. residual strain for the R=0.333ditan

4.8. SEM Fractography

Scanning electron microscopy (SEM) experiments veereducted to determine
the effects of fatigue loading conditions on thacfure morphology of the PET
unreinforced and PET/VGCNF single fibers. The Itssdirom the SEM study
substantiate the quantitative results obtained f&autions 4.2-4.7, supporting the claim
that the nanocomposite fibers degraded more sogmfiy with the accumulation and
retention of residual strains than its unreinforcednterpart (PET control). Figure 4.19
indicates that the fracture morphology of the ugtad and fatigued PET samples was
similar. The sample was fatigued at a stress rafti®R = 1/3 with a corresponding
residual strain equivalent to 2.4%. The PET santplted without prior fatigue
displayed a fracture pattern similar to fracturefibkrs seen in the literature [33]: 1)

initiation of fracture point, 2) opening of a v-sbtand 3) progression to unstable fracture
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orthogonal to the fiber axis. The unfatigued umi@iced PET samples (Figure 4.19 (a))
showed a similar morpholology and fracture behawasrthe fatigued samples (Figure
4.19 (b) (stable v-notch opening then progressmartstable fracture). However, there
was a slight difference. From the fatigue processeral microfailure splits were created

along the fiber axis, indicating a slight accumigiatof damage in the material.

PET: >
Unfatigued sample\\
- Ty
Kraeture initiation
and*propagation

s

PET:
&= 2.4%

Material degradati;f
due to fati

Figure 4.19. (a) SEM fractograph of a PET unreitdd specimen without prior fatigue

(uniaxial tensile fracture) and (b) specimen witiopfatigue and 0.024 (2.4%) residual

strain from fatigue process indicated slight maledtegradation due to tiny microfailures
along fiber axis
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In contrast to the PET unreinforced samples, th&/Y&CNF fatigued samples
exhibited a distinct difference in fracture morpdgy) from the unfatigued samples.
Figure 4.20 (a) displays an unfatigued PET/VGCNm@a with no prior fatigue,
demonstrating that the sample fractured in a mamsmaiar to that of PET control
samples. However, Figures 4.20 (b) and 4.20 (splady images of PET/VGCNF
samples that have been fatigued at stress ratid&=af3 with corresponding residual
strains of &g = 0.78% and& = 0.93%, respectively. Defibrillation and decabes
mechanisms of the reinforcing agent from the PETrisnare clearly observed in Figures
4.18 (b) and 4.18 (c). Further, the results fromet®ns 4.2-4.7, which indicate that the
nanocomposite fibers experienced greater degradativan their unreinforced
counterparts, are supported by Figures 4.20 (b}a2@l (c). In comparison with the PET
fatigued sample at a residual strain of 2.4% (Fegud.9 (b)), the nanocomposite fibers in
Figures 4.20 (b) and 4.20 (c) exhibited lower realdstrain values of 0.78% and 0.93%,
respectively. This indicates that the fatigue psscin PET/VGCNF samples precipitated
more fracture zones for lower residual strain valtean their unreinforced counterparts,
leading to lower relative residual strengths. He nhext section, a discussion will be
provided that seeks to further explain these changenechanical properties and fracture

morphology as a result of fatigue loading.
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PET/VGCNF: - 14
Fracture initiation b
Unfatigued sample e +% PET/VGCNF:

defibrillation
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&= 0.93%

Defibrillated
surface

Figure 4.20. (a) SEM fractograph of a PET/VGCNE@men without prior fatigue
(uniaxial tensile fracture), (b) specimen with priatigue and 0.0078 (0.78%) residual
strain from fatigue process indicated highly disgdrand tortuous crack pattern and (c)

PET/VGCNF specimen with prior fatigue and 0.0093®30%) residual strain from
fatigue process indicating defibrillation along fiteer axis
4.9. Further Discussion
All of the results in Figures 4.8-4.18 regardingcimenical property changes as a
function of residual strain suggest that furtharestigation should be made into effects

of maximum fatigue load levels with respect to ptadeformation. For this study, the

maximum fatigue loads were similar with respecthte maximum load (stress) of the
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sample in uniaxial tension without prior fatigua@s stated earlier, for both PET/VGCNF
and PET control samples, maximum fatigue load Ewelrresponded to approximately
60% of the maximum stress of the material in ur@bxension without prior fatigue
(Omax=0.580¢ for PET/VGCNF andom,=0.57c; for PET control). However, from a
comparison of the results in Table 4.1, the PETrobsample was more ductile than the
PET/VGCNF sample with 5 wt% nanofiller. This wasdicated by comparing the
fracture strains &) in Table 4.1. The results indicate that the tivee strain for the
unfatigued PET control sample was approximatelyo Obésed on the samples that
fractured and the SD band in Table 4.2. The fractstrain for the unfatigued
PET/VGCNF sample was 0.28+0.050. Thus in termtesting parameters, the samples
were subjected to similar maximum loads under tegtigonditions with respect to their
fracture stress values; however, with respectetdyconditions, the samples experienced
different types of stresses during fatigue andimethdifferent types of residual strains.
The results in Figures 4.8-4.18 indicate that tlE Bamples retained both creep and
plastic strains from fatigue (viscoplastic), wherethe PET/VGCNF samples only
retained mostly creep (viscous) strains (thoughlleed yielded regions could have been
created). This can be further analyzed by consigehe maximum stress during fatigue
for both samples in comparison to the calculatedidystress values. The PET control
samples were cycled at maximum stress values dguivdo 1.%, whereas the
PET/VGCNF samples were cycled at maximum stressegatquivalent to approximately
0.980,. The results are interesting because they eltecittat cycling at stress values for
similar ratios of the maximum stress for unreinémtenaterials and composites engender

different results for material property changese da the differences in the onset to
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plastic deformation in the samples. In fact, titerdture suggests that microstructural
changes occur as the result of plastic deformatmdmch could partially explain the
difference in material property changes as a fonctf residual strain for the PET
control and PET/VGCNF samples. Achibat et al. [134ve performed low frequency
Raman scattering measurements on shear yielded PMBAples below the glass
transition temperatureT§) to conclude that microstructure is affected eiretthe case
where load-unload specimens are unloaded to mapmsdly identical zero stress
conditions. The specimens were yielded under uaremnditions and the results showed
that 1) anisotropy decreased in PMMA specimensi@alty loaded above the yield point
with respect to undeformed specimens and 2) logueacy Raman (LFR) data showed
an excess scattered intensity in the 30-50 camge for plastically deformed specimens
under simple shear conditions. In addition, Avee¢@al. [129] have shown that the yield
stress subsequent to fatigue loading is clearlyrection of the ratchet (accumulated)
strain induced under load-controlled fatigue candg for nylon 66 single filaments.
Also, the plastic and elastic energies of filameasted subsequent to fatigue were shown
to be decreasing functions of accumulated fatigteans Conformational changes have
also been confirmed to occur in polymers as a redunechanical loading in the yield
threshold range. Aoyama et al. [135] have obseoaedormational shifts from gauche-
to-trans as a function of strain for neat PBT amilfubber blends utilizing Raman
spectroscopy measurements. The neat (unreinfoRRBd)specimens displayed a rapid
increase of gauche-to-trans conformations at apmabely 10% strain, which was
associated with the onset of plastic deformatiorelding) in the specimen. The

reinforced samples displayed almost 100% degréensformation from gauche to trans
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at a maximum strain of 50% while the unreinforceanples underwent diminutive
changes of 20% degree of transformation at 50%nstrdhese results are similar to
increases in trans content as a function of sti@rpoly(ethylene terephthalate) sheets
that were observed from infrared (i.r.) spectroscefudies by Cunningham and Ward
[136] and Hutchinson et al. [137].

With the aforementioned observations in mind, tb#oWwing relationship is
presented for residual strains in PET and PET/VGGEmples as result of fatigue at
similar maximum load levels:

For PET control samples,

o, +0
ER,cont = i = 2 (47)
LO LO
and for PET/VGCNF samples,
O _ 0O,
& = R =_C 4.8
RVG LO LO ( )

In (4.7) and (4.8)&r cont and & v represent the residual strain for the PET cordral
PET/VGCNF sample, respectively, represents the elongation that remained in the
sample as a result of creep (viscous) deformatisimg constant-loading fatigue, aidgl
represents the plastic deformation that was engedde the PET control sample. For a
further comparison of the results in Figures 4B34an interesting study would be for
one to decouple the creep and plastic strains asteld in (4.7) for the PET sample, and
investigate the change in material properties fasmetion of residual creep strains. What
is clear from this study is that PET/VGCNF fibemadied under viscoelastic fatigue

conditions suffer defibrillation and decohesion fow residual creep strains (as low as
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0.78%), while the PET unreinforced samples showralag fracture morphology even

for creep strains as high as 2.4%.

Conclusions from Chapter 4

Mechanical property characterization and fatiguststdnave been performed on
PET control and PET/VGCNF samples. In terms oguiail tension, for the unfatigued
samples the PET nanocomposite (PET/VGCNF) sampiébiéed superior mechanical
properties. To determine the influence of cycbading on material property changes,
fatigue loading at ratios R=0 and R=0.333 was cotetlion the PET/VGCNF and PET
control samples at ratios of approximately 60% rof fracture stress. Subsequent to
fatigue loading, uniaxial tensile tests were conedcon the deformed samples to
ascertain residual strength behavior. From aivelagtandpoint, the residual material
properties of the PET control sample and PET/VGGhIfples were shown to be closely
correlated with the residual fatigue strains. tdiion, a tendency for necking was
indicated by a drop in stress values for fatiguddTl Pcontrol and PET/VGCNF
specimens, based on results from the literature.

From a relative standpoint, the PET/VGCNF sampldsowed greater
deterioration in mechanical properties as a resfullatigue. This was supported through
analysis of residual strength mechanical respondeS&M fractography. From the SEM
study, defibrillation and decohesion mechanisms ewaoticed for the fatigued
PET/VGCNF samples. From the residual strengthyarglthe PET control samples
showed an increase in maximum stress, elastic rmaedbhrdening modulus, and tensile

energy for small residual fatigue strains, suppgrtihe claim in the literature that strain
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hardening occurs in early stages of cyclic extensitn addition, for both PET control
and PET/VGCNF samples, the onset of yield undeaxaal tension was modified as a
result of the fatigue process, as indicated byiticeease in yield strain as a function
residual strain. The difference in ductility an@xmmum fatigue stress in relation to the
yield stress of the PET control and PET/VGCNF samphay indicate that the difference
in mechanical property changes as a function aflues strain from a relative standpoint
can be explained by the fact that the PET contolge was more susceptible to yield.
When subjected to maximum fatigue loads correspunth 60% of the fracture stress,
both creep and plastic strains were engenderdteiET control samples, whereas only
creep strains were engendered in the PET nanoca@pg@ET/VGCNF) sample. In
sum, the results from this study indicate that Riafeinforced samples can withstand a
larger accumulation of strain from the fatigue @ conducted at 60% of the maximum

fatigue stress as compared with PET/VGCNF 5 wt%ooamposite samples.
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CHAPTER S

RESIDUAL PROPERTY PREDICTIONSOF PET AND PET-VGCNF
FIBERS: MODELING AND PREDICTION USING ARTIFICIAL
NEURAL NETWORKS

Summary of Chapter 5

A set of experiments has been performedooly(ethylene terephthalate) (PET
control) and PET fibers with vapor grown carbonaférers (PET-VGCNF) to assess the
mechanical integrity of the materials due to a adp@ cyclic loading. Artificial neural
networks (ANNs) have been used to examine the uakistrength and elastic modulus
degradation behavior of the filaments as a functidnthe input mechanical testing
variables (maximum fatigue stregsay Stress ratidz, # cyclesN, undeformed modulus-
E) and a damage variable that has been identifigtleasesidual strain from fatigues.
The exact relationship of how these input varialétate to the degradation of the elastic
modulus,E, and the fracture strengttg, has been determined. The results of this study
are two-fold. First, the results indicate that Adllsan be used to predict the residual
strength and modulus degradation behavior of PET RBT/VGCNF single filaments
under various loading conditions. Backpropagafl®R) with momentum and conjugate
gradient algorithms have been utilized to succdlgstuain a multilayer perceptron
(MLP) network for modeling the mechanical behavaidrsingle polymeric filaments
subsequent to fatigue loading. Second, the reButsate that the mechanical behavior
of the PET control and PET-VGCNF differs as a fiorciof the input fatigue conditions
that are prescribed. The main difference was ttatPET control samples exhibited a
distinct hardening effect in the low residual sirlimit and this was not observed for the

PET-VGCNF samples (This has been previously digtuss Chapter 4). The employed
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neural networks were successful at replicatingrelening behavior for the PET control
samples and the mechanical behavior changes f&?EfeVGCNF samples as a function

of Omax R, andé&r.

5.1. Introduction

The scientific and engineering community has expex@d great research and
commercial success of nanocomposite materials thepast decade. In particular, the
polymer science community has realized great erdraants in mechanical behavior,
with regards to the nano-sized agents that areséafunto a polymeric matrix. A critical
area of nanocomposite materials that must be asketds damage induced from fatigue
loading conditions. In conventional materials, dge is typically characterized in terms
of dislocation density or microcrack density used boundary value continuum
mechanics problems due to the fact that elastisitdirectly correlated with damage.
This elasticity to damage correlation is confirmfmstause the number of atomic bonds
decreases with damage [118]. In our current stémgineering, it is arduous to develop
a prognostic model based solely on dislocationracicdensity considerations [108,119].
Thus one has to measure degradation of the globahamical properties, such as elastic
modulus and fracture strength, to represent thdugen of dislocation density or
microcrack density. Inelastic strain is also cdesed to be related to fatigue damage
evolution [108].

There have been few studies that implénaedamage parameter into an ANN
structure for determination of material degradatethre to fatigue loading in polymer

fibers and their nanocomposites. In the curres¢aech, the damage parameter that has
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been implemented is a fraction of the viscous paortf the creep strain that remained as
a result of fatigue loading conditions. This tyggeanalysis differs from that of traditional
fatigue analysis and S-N curve analysis becaus¢h@fincorporation of a material
tracking parameter as well as mechanical testingrpeters that are related to the overall
residual mechanical properties of the material.e$sence, the current analysis extends
the traditional fatigue analyses from a history dmde-based approach to a hybrid
history and material state-based approach. Thaltse®f this research seek to
complement and expand the traditional analysesatfjife where a prior history and
number of cycles must be prescribed for predictdrfailure. The research in this
analysis was “state-based” in the sense that thete®s of material properties was
evaluated at discrete intervals during the fatiggst. ANN models were implemented to
transform the discrete model into a continuous rhtlaEt was capable of tracking the
degradation in material behavior over the lengththe# test. The results from this
research could be used in applications where immifsglure detection due to fatigue in

materials or structures is necessary.

5.2. Damage Parameters

In the context of the current research, damagedefised as the gradual degradation
of the material and was an intrinsic material propdictated as a damage variable [108].
As stated in the literature review, elastic modutlegradation and residual strength
degradation can both be used as damage metriasth&oesidual property predictions,
the behavior of both residual strength and residuadulus were measured as a function

of an input vector set that was supplied to theaewetwork
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5.3. Experimental Methods
5.3.1. Sample Preparation and Mechanical Testing

The PET and PET/VGCNF specimens were prepared aodessed at the
Georgia Institute of Technology according to [128]The details of the specimen
preparation and the mechanical testing paradigmpeseided in [129]. The BOSE®
ELectroForce® (ELF®) 3200 tensile and fatigue tagtmachine (Enduratec)) was used
to conduct the mechanical experiments in uniax@akion and uniaxial cyclic loading.
All experiments were conducted at room temperatlaboratory air. The typical
humidity of the laboratory air was approximately%sQsee [129] for more testing

details).

5.3.2. Application of Artificial Neural Networks (ANNs)ntroduction to ANNs

In the current research study, ANNs were utilized the prediction of the
residual mechanical properties of both unreinforaed nanocomposite PET fibers. The
Neurosolutions 5 software package [99] was utilizedperform the neural network
training and simulations. Neurosolutions 5 is pged with a variety of neural network
architectures and training algorithms that can seduor analysis. Specifically, in this
research, multilayer perceptron (MLP) networks werged with various learning
algorithms for proper training of the network.

The MLP is a simple feedforward ANN architecturattivas utilized to relate a
specific set of input variables to a singular otitpariable. In this manuscript, the input
variables consisted of the mechanical testing ¢mmd$i and one damage parameter, and

the output variables consisted of the residuahgtteor the residual elastic modulus, as
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will be described in Sections 5.5.3 and 5.5.4. MiRge trained with the following
learning algorithms to minimize the cost functidSE):

= gstatic backpropagation with momentum

= conjugate gradient
The most popular of these methods is the backpeifmagscheme, which literally refers

to a backwards propagation of errors throughoun#te/ork.

5.4. Learning Paradigms Used for Computation
5.4.1. Standard backpropagation and backpropagation witnmantum learning
Backpropagation is the most widely used and unaleesarning algorithm for
optimization in neural network schemes [85]. TlaeKpropagation scheme implements
the steepest descent method (gradient descent d)¢8&). The researchers in [84] have
provided a very thorough and detailed explanatiobagkpropagation and other learning
algorithms for applications to polymeric materialBuring each iteration of computation,
the weights were continually adjusted in the dimctof which the error function
decreased the most. To visualize the anatomyeb#tkpropagation network in more
detail, consider Figure 5.1, where three layersteiir the computational procedure: an
input layer, a hidden layer, and an output layArnetwork structure similar to that in

Figure 5.1 was used for the residual property eatadas in the current chapter.
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Figure 5.1. Topology of a three-layer feedforwaagkpropagation network [84]

The output of thé, processing elements (PEg)was computed as:
p

z, :Zyiwij (5.1)
i=1

Here,w; represents the weight of the connection betweengtandjn PEs. Because
most complex problems necessitate the usage ofneanlanalysis, hidden layers were

employed, in which an activation functidnwas introduced as:

Yi = f(iahvhij = f(ri) (5.2)

In the current research, the activation functioflized was the hyperbolic tangent
function (TanhAxon in Neurosolutions).
The error between the HIDDEN and OUTPUT layers (Begure 5.1) was

adjusted utilizing the following relationship:
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E _ 0|1 ‘
ﬁzm{%;(bl _Zi)}z(bj —zj)yi =9y, (53)
i i =

Here, g represents the error term for each OUTPUT PE. Wéight adjustments for the
INPUT and HIDDEN layers were realized by employitige chain rule and partial

differential equations, where the weight changeafoarbitrary number of layers was:

OE _0E 9y, O, 0, _ <
ov, 0y, or, 9x, ov, ,2:1:( )

b=y )y, f l(ri )ah (5.4)

With these gradients established for the INPUT ttib[PEN and the HIDDEN to
OUTPUT layers, in the backpropagation with momentaethod, the adjustments of the
weight connections were computed as:

w, " = w - aaa—E +A0w,°"  (between HIDDEN and OUTPUT layers)  (5.5)

ij
ij

e =y, 0 - ﬁ:—E + Ahv,, (between INPUT and HIDDEN layers) (5.6)

Vii
Vhl

In the preceding equation&, [ are positive terms that were used to standardiee t
weight adjustments. These termg, (f) are called the learning rates of the neural
network and standard backpropagation assumes obngtgs terms. In this study,
a=0.100 an@3=0.100. In the preceding equatiohtepresents the momentum term in the
backpropagation with momentum learning procedufar this study,A=0.700 for all

simulations. The momentum learning was used taaedhe sensitivity of the network

to small features in the error surface.
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5.4.2. Conjugate Gradient algorithm

The conjugate gradient algorithm was also usednioimizing the cost function
in neural network training. In contrast to the rafoentioned backpropagation and
Levenberg-Marquardt learning algorithms, the coajaggradient method utilized a
variable learning rate. From a mathematical stamdpit is closely associated with the
backpropagation method that utilizes the methostedépest descent. The authors in [84]
have given a thorough explanation of the method &ndill be provided here for
reference. To succinctly describe the method, @are envision that there is an initial
guess for the minimum valwe, through a search direction:

_9E
ow,

S =

(0]

—Jo (5-7)

Approximations ofwy were generated in an effort to minimize the efuorction, E, as
follows:
1) For k=0 to 1, computation was initiated at pamtand a line minimization ot
was performed in the directic

2) The scalar functiom was determined such that the functid(@) = E(w, + as,)

was minimized J was expressed as a function of the learning safer fixed
values ofw ands).
The updated estimate wfis given as:
Wiy = Wy T O\ S (5.8)
The next step in this algorithm was the selectiba new conjugate search direction. In
terms of numerical stability, the Polak and Ribierethod proven by Haykin in [90] has

been suggested for updating the search directicording to:
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S _DE(Wk+1) + LS

T —
In the preceding equatiolfi, ,, = —w.
S
Utilizing the expressions fow:; and si1 from above led to an expression for the

variable learning rate.

5.5. Material Degradation due to Fatigue
5.5.1. Elastic Modulus Degradation

The elastic modulus was measured on samples asctofu of strain up to 1%
strain. This was considered the extent of thetielasgion [13]. Changes in elastic
modulus due to thermal and/or mechanical cyclingeskto illuminate the accumulation
of damage in a material, as described in Basaraal. ¢108]. Using elastic modulus
degradation as a damage metric is very establishéde mechanics community [119-

120]. The elastic modulus degradation metric wemntjfied as:
D=1-—" (5.9)

In this equationD is the damage state variabig,is the initial elastic modulus, arktl is
the elastic modulus at any point. At the initiatiof the tesD=0 and for ultimate failure

D=1.

5.5.2. Inelastic strain
Inelastic strain can be considered as any compooénstrain that is not
recoverable as a result of the fatigue loading gssc In effect, inelastic strains occurred

due to irreversible processes from the standpdirthermodynamics. This has been
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established from the Clausius-Duhem inequality lidrtodynamics, in which creep
processes and plastic strains engendered irrelersthanges to the material
microstructure. Inelastic strains occurred assalteof the creep process due to constant
amplitude fatigue loading or as a result of plasti@ins that were engendered due to
loading above the yield point of the material. fEhbave been several researchers that
consider inelastic strains as a damage evolutiderion [118-120]. In this manuscript,
the inelastic strains occurred primarily due to titeep process from constant stress
fatigue loading. In terms of creep that evolvedirty the fatigue process, the residual
strain that remained in the sample was a compouoietiite strain parameter represented

through a Volterra equation. The total creep steaolution was given as:

£(t) = @ « [k (t-t)ofte (5.10)

G

Instantaneous Creep evolution
creep over time

In this equationgt) represents the strain evolution as a functioniraé d(t) is the
stress rate function (which possesses constantitadglin the case of constant stress
fatigue loading)E is the instantaneous elastic modulus, knsl the compliance function.
In the case of fatigue loading conditions, the ¥iol relationship had to be expanded to
account for the sinusoidal response of the streslssérain functions. A generalized
parameter denoted for the time varying functionthapreceding equation to account for
sinusoidal loading conditions is:

X(t) = X(t)sinat (5.11)
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Here, the generalize¥(t) function is used to represent the sinusoidal twaeying
behavior of the stress, strain, and compliancetions. Since the problem prescribed in
this manuscript relates to constant stress fatigaing, the stress function was given as:
oft)= o, sinat (5.12)
Here, ox represents the amplitude of the stress functisimgdatigue loading.

Most of the samples tested in this study experi@mmalinear viscoelastic fatigue
conditions, as evidenced by the fact that more tharelastic portion of strain remained
in the sample subsequent to fatigue loading. Bseaf this, the Volterra creep function
could not be decoupled into instantaneous and &walstrains. In this case, the residual

strain was measured as a fraction of the entiegnsévolution parameter, as:
g, |t -
£, = {{EO + JOK(t - r)a(r)dt'} (5.13)

Here, ¢ is a parameter that was defined in the interngdl<, and was a representative
fraction of the creep strain that remained in thegle subsequent to unloading. The
form of equation (5.13) is that of a Volterra fuoat which is normally used to describe

the creep behavior of polymeric materials subjettedonstant stress loading conditions

[21]. In (5.13),0(r) actually represents the sinusoidal stress (whafes between the
minimum and maximum stress for this problem andidethe strain by an angl®, E
represents the initial elastic modulégt- 7) represents the creep compliance function that
evolved over time, and is a factor that denotes the portion of the cr&egin evolution
that was retained subsequent to fatigue loading.

The residual strain parameter was implemented i@ neural network

architecture as an input for prediction of the daal strength mechanical properties of
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the PET and PET-VGCNF fibers subsequent to fatigading. An example schematic
of the creep process that occurred during fatigushiown in Figure 5.2, where actual
data is displayed for the strain amplitude and esponding residual strain for a test
specimen that underwent 5,000 prior cycles. lrufegh.2, there was an instantaneous

creep&(to) followed by a steady creep evolution up £i)), then strain unloading to zero

stress with an ensuing residual stragg).(
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Figure 5.2. Example strain amplitude vs. time fs@@men that underwent 5,000 cycles
illustrating the creep evolution and retention s

5.5.3. Neural Network Architecture for Prediction of Ragail Mechanical Properties -
PET Control Samples
For the PET unreinforced samples, the input vefdorthe ANN was defined

considering the following:
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X ={R o

nax E ol (5.14)
Here, R, gmax E, and & are all scalar variables that represent the strass, the
maximum stress during fatigue cycling, the undefetrelastic modulus, and the residual
viscoelastic creep strain, respectively. Notiaarfrthis input vector that the number of
cycles,N, was omitted from the choice of variables for REifeinforced samples. In the
experimental testd\ was defined in the range 16Mkx389,000, although the variable
was omitted from the computational simulations.e Téason thatl was omitted from the
input vector for residual property predictions REET unreinforced samples was because
there was a huge amount of scatter observed irddkee for prediction of the residual
strength and elastic modulus degradation. Thusnwthe ANN computations were
performed with the inclusion of the number of cgglthe network synaptic weights were
adjusted and virtually assigned zero contributiorthte input variableN. The fatigue
tests were conducted at various minimum and maxirsuiess levels and load ratios for
both PET control and PET-VGCNF samples. Stresssatf R=0 and R=1/3 were used
to conduct the fatigue tests on the PET controlgeasnand values corresponding to the
interval 0.2%%<0m4<0.600t were used for the maximum stress variations. dlastic
modulus,E, was a value that corresponded to either the Rifra or PET-VGCNF
undeformed modulus. Residual viscoelastic cregganstvalues, as determined by the
method shown in Figure 5.2, were in the range:£0.23. An example schematic of the

network used to predict the residual streng#{X) and the elastic modulus degradation

(D(X)) of the PET control sample is shown in Figure 5.3
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) bl hidden Output Variable(s):
ninput variables layer (k elements) singular

R=0min/ Omax > R
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Figure 5.3. Schematic of ANN architecture usedpf@diction of residual
mechanical properties in PET control samples

5.5.4. Neural Network Architecture for Prediction of Rasadl Mechanical Properties —
PET-VGCNF Samples
For the PET-VGCNF samples, the input vector forAlNN was defined considering the

following:

X={R g, N E &} (5.15)

In this vector, the other variables have been pitgsd in 5.5.3, with the exception b
which represents the number of fatigue cycles.esStratios oR=0, R=1/3, andR=2/3
were used to conduct the fatigue tests on the PETINF samples and values
corresponding to the interval 0.340n2<0.600; were used for the maximum stress
variations. The number of fatigue cycles perfornoedthe PET-VCNF samples was

100GN<1.25E6. As with the PET control samples, residustoelastic creep strain

values, as determined by the method shown in Figurewere in the range<@:<0.16.
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5.6. Results and Discussion
5.6.1. Results From Training and Testing Procedur

The results of the neural network performance idic that both the
backpropagation with momentum and conjugate gradieining algorithms were
successful at depicting the residual strength diegien as a function of the mechanical
testing conditions and the residual strain parame®own in Tables 5.1 and 5.2 are the
numerical results from the training results andinigsof networks for PET and PET-
VGCNF samples that underwent fatigue conditiondRe0 at a maximum stress of 60%
of the failure stress. The mean-squared error (M&ESt function was utilized to
evaluate the efficiency of the network. The dataseere randomized and three trials
were run to evaluate the network performance. fw PET control samples,
implementation of the BP with momentum algorithngemdered an average final MSE
of 0.01309, an average number of processing elen{fid) in the hidden layer equal to
5, and an average linear correlation coefficienggqual to 0.8663. Implementation of the
conjugate gradient method to train the network Iteduin a lower average MSE of
0.007187, an average number of PEs equal to 5,aandverage linear correlation
coefficient equal to 0.7617. These data show\illie the conjugate gradient algorithm
was more efficient at driving out the error betwelea computed and actual signals, it
was not as efficient at representing the data faomew testing data set. The results from
the training and testing of the ANN for the residpioperty prediction of PET-VGCNF
samples fatigued at 60% of the failure stress atdit a similar pattern to the PET control

samples. The main difference is that, on averfmyehoth the BP with momentum and
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the conjugate gradient algorithms, the number dflémn PEs necessary for computation
was 6.

The results from the experimental and ANN predictiof the modulus
degradation metric subsequent to fatigue are giv8rables 5.3-5.4. As with the fracture
strength data, the modulus degradation resultsanelia strengthening effect in the low
residual strain limit for the PET samples and iases in the modulus degradation
thereafter. For the PET-VGCNF samples, the elastidulus degradation increased with
increasing residual strains. The performance tesiubm the training and testing
experiments are shown in Tables 5.3 and 5.4. Fhenperformance results in Tables 5.3
and 5.4, the conjugate gradient algorithm was naedfieient than the BP algorithm in
reducing final MSE for a time series of 1000 epochBhe average final MSE was
0.008751 and 0.008691 for the PET control and PEBCMF samples conducted at 60%
of the fracture stress under R=0 conditions, respmdyg. In addition, the average
correlation coefficientr, was greater for data replication utilizing thengmate gradient
method for both the PET control and PET-VGCNF saspl The synaptic weights
obtained from the training and testing results @led in Tables 5.1-5.4 were stored in a
database file and later used to determine the meéigroperties subsequent to fatigue

based on other loading conditions, as will be deedrlater.
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Table 5.1. Nondimensional residual strength ANNgenance data for PET Control
samplesR=0, gpma=0.60

MLP-Backpropagation with momentum

MLP-Conjugatedggat

Training results Testing Training results Testing
results results
Randomized Final Best Randomized Final Best
trials MSE network ' trials MSE network r
# PEs # PEs
Trial 1 0.01543 6 0.8725 Trial 1 0.007922 5 0.8469
Trial 2 0.01080 4 0.8739 Trial 2 0.008050 5 0.6709
Trial 3 0.01304 6 0.8525 Trial 3 0.005590 5 0.7671
Average | 0.01309 5 0.8663 | Average | 0.007187 5 0.7616
Std. Dev. | 0.002312 1 0.01197 | Std. Dev. | 0.001385 0 0.08814

Table 5.2. Nondimensional residual strength ANKNgenance data for PET-VGCNF

samplesR=0, 0y,,=0.60¢

MLP-Backpropagation with momentum MLP-Conjugatedggat
Training results Testing Training results Testing
results results
Randomized Final | (U0, || Randomized | Final | U0, |
# PEs # PEs
Trial 1 0.01200 6 0.8401 Trial 1 | 0.006043 6 0.8136
Trial 2 0.01451 5 0.8774 Trial 2 | 0.009026 6 0.7339
Trial 3 0.01070 6 0.8735 Trial 3 | 0.008422 5 0.8739
Average | 0.012403 6 0.8637 Average 0.007831 6 0.8071
Std. Dev. | 0.001936 0.6 0.02050 Std. Dev. 0.001577 0.6 0.07021
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Table 5.3. Elastic modulus degradation ANN perfamce data for PET control samples,

R=0, 0nax=0.60¢
MLP-Backpropagation with momentum MLP-Conjugatedggat
Training results Testing Training results Testing
results results
Randomized Final Best r Randomized Final MSE Best r
trials MSE network trials network
# PEs # PEs
Trial 1 0.01209 6 0.9057| Triall 0.009215 5 0.8401
Trial 2 0.01053 6 0.6891| Trial2 0.009012 4 0.7883
Trial 3 0.01030 5 0.6496| Trial 3 0.008025 6 0.7155
Average 0.01097 6 0.7481 | Average 0.008751 5 0.7813
Std. Dev. | 0.0009745 0.6 0.1379 | Std. Dev. | 0.0006366 1 0.06258
Table 5.4. Elastic modulus degradation ANN perfamce data for PET-VGCNF
samplesR=0, 0y,,=0.60¢
MLP-Backpropagation with momentum MLP-Conjugatedggat
Training results Testing Training results Testing
results results
Randomized Final Best r Randomized Final Best r
trials MSE network # trials MSE | network
PEs # PEs
Trial 1 0.01178 4 0.7890, Triall |0.009045 5 0.8464
Trial 2 0.01417 5 0.8565 Trial2 |0.007979 6 0.7576
Trial 3 0.01008 5 0.6440, Trial3 | 0.009404 5 0.8649
Average 0.01201 6 0.7632 Average | 0.008691 6 0.8113
Std. Dev. | 0.002055 0.6 0.1086 Std. Dev. | 0.001007 0.7 0.07591

5.6.2. Residual Strength as a Function of Number of Cyates residual strain — PET

Control

Figure 5.4 displays some graphical results of thBINA simulations for

unreinforced and nanocomposite fiber samples tastdér R=0 loading conditions at a

maximum stress equal to 60% of the fracture strédsndimensional residual fracture

strength is represented as a function of residuaihsand # of cycles in Figure 5.4 for the
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PET control sample. This 3-D visualization deliiesahow the number of fatigue cycles

did not have a significant effect on the residuedrggth of the PET control samples.

Nondimensional residual strength as a function of residual strain and # cycles

PET Control Sample, R=0
Smax = 0.65f
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B ANN Prediction-Backprop with momentum
B ANN Prediction-Conjugate gradient

Figure 5.4. PET control sample under R=0 cond&i@®D schematic illustrating the
nondimensional residual strength as a functiomefriumber of cycles\), and the
residual straingy)

For the PET control sample, the results in Figureibdicate that the residual strength
was increased in the low residual strain limit &nein degraded with the residual strain
strongly, while there was no dependency on the rurob prior fatigue cycles. This is
seen by the scatter in the residual strength vighnumber of cycles on Figure 5.4. A
curve fit from the MLP network trained via BP withomentum and conjugate gradient
algorithms is also provided to indicate how the elod) procedures were not able to
correctly identify the relationship of the resids#dength with the number of cycles. As
mentioned previously, the number of cycles was teahifrom the training and testing
procedure to enhance the predictability of the oetw To further corroborate this

finding, a sensitivity analysis was performed oe tlata and the results shown in Figure
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5.5 indicate thalN was the parameter that least affected the resgiteigth when all the
other input variables remained constant. For tBd Rontrol samples tested under
fatigue conditions, the reason for the weak depecel®n the number of fatigue cycles
can be likely explained by considering that flawvarious and random sizes existed in
the samples prior to fatigue testing. The rand@srand scatter of the residual strength
has been heavily investigated by researchersiogli#Veibull statistics to study how the

fracture strength is strongly affected by the “westkink” (largest flaw) [138-141].

Sensitivity About the Mean

Sensitivity

o8 8888858

O Residual Strength

# cycles Res strain  Max Load Ratio E (old)
Input Name

Figure 5.5. Sensitivity analysis indicating theakelependence of the residual strength
on the number of cycles

5.6.3. Residual Strength as a Function of Number of Cyatesresidual strain — PET-
VGCNF

There was a difference in mechanical behavior fug PET-VGCNF with
comparison to the PET control samples subsequemtitpue loading. Figure 5.6 shows
the nondimensional residual strength as a funatifoiine residual strain and the number
of prior fatigue cycles for a PET-VGCNF sample unBe0 conditions. The results do
not indicate a strengthening effect in the low eyahd low residual strain limit, in

contrast to the PET samples. In addition, the-WBINF samples exhibited a stronger
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residual strength degradation dependency on théeauof cycles than the PET samples,
indicating that further cycling causes more micfedts and failure sites to occur. This
has been corroborated with SEM fractographs of shmples tested under fatigue
conditions, where defibrillation and decohesionaweoticed in the nanocomposite PET-
VGCNF samples for small residual strains and a lsmahber of cycles (Chapter 4).
Figure 5.6 displays the nondimensional residuangfth as a function of the residual
strain and includes the results from the ANN simafaprocedure. Both the BP with
momentum and the conjugate gradient based algaitere successful at reproducing
the experimental results from the fatigue tests cAn be seen from Figure 5.6, for the
PET-VGCNF samples there was an “s-shaped” depegdanthe residual strength on
the number of cycles and residual strain parametdrsre the residual strength degraded
with residual strain and on the number of fatigyeles,N.

PET-VGCNF Sample, R=0
Smay = 0.65f

outlie
LT utlier

1.004 - 4

v
0.9399

[ ]

0.8761 -
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0.7485 -

Nondimensional residual strength

06847 +
1.2e+004

‘0.072
0,108
0144

9800

7200 . Residual strain
4800 .

2400
# Cycles o 018

W Experimental data
B ANN Prediction-BF with Momentum
W ANN Prediction-Conjugate gradient

Figure 5.6. PET-VGCNF sample, R=0 conditions: 8dbematic illustrating the
nondimensional residual strength as a functiomefriumber of cycles\), and the
residual straingy)
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5.6.4. Mechanical Property Predictions of PET and PET-VGRbers Subsequent to
Fatigue Loading as a Function of Residual Strain

Plots were generated to illustrate the effectiverasthe ANN computations at
capturing the dependency of the residual mechamicgperties on the residual strain
parameter. Production data were generated ussgntidel obtained from the training
and testing procedures, provided in Tables 5.1-5Higures 5.7-5.8 indicate both
experimental and production data results for PETtroband PET-VGCNF samples at a
stress ratio of R=0 and a maximum stress equaD% 6f the fracture stress. For the
PET control sample, Figure 5.7 shows that bothBRewith momentum and conjugate
gradient algorithms were both successful at refiigathe experimental trends of the
residual strength and elastic modulus degradatimh Gapturing the strain hardening
effects in the lower residual strain limits. Iretbase of elastic modulus degradation, the
BP with momentum algorithm was slightly better apresenting the strain hardening
effect from the actual data, since the conjugatalignt network slightly underestimated
the data at low residual strains. For this loadiagdition, both ANN algorithms slightly
overestimated the elastic modulus degradation testulee interval 0.0255<0.24.

Figure 5.8 shows experimental and ANN productiatadesults for the residual
strength and elastic modulus degradation as aitundf residual strain foR=0 and
Omax=0.60; for PET-VGCNF samples. The residual strength aidafion was represented
well by both training algorithms. However, for tledastic modulus degradation, the
conjugate gradient based procedure was slightliebat replicating the data. The BP
with momentum based algorithm exhibited a simil@ndl to that of the conjugate
gradient; however, there was a slight overestimatibthe elastic modulus degradation

using this procedure (as shown in Figure 5.8).
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Figure 5.7. PET control sample (R=:2=0.60): Actual experimental results and ANN
production data sets (BP with momentum and congugeddient) of nondimensional
residual modulus vs. the residual strain

1.2
1
*
Residual strength
0.8 >
*
-
&) .
=
5]
0.6
=
S
IS " ¢
IS
@ 04 .
o Elastic modulus degradation
0.2
0+ T T T T T T T T T
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
residual strain
¢ Experimental-elastic modulus degr-PET-VGCNF ¢  Experimental-residual strength-PET-VGCNF
Elastic modulus degradation-BP with momentum Residual strength-BP with momentum
Elastic modulus degradation-Conjugate gradient Residual strength-Conjugate gradient

Figure 5.8. PET-VGCNF sample (R=f,.=0.605): Actual experimental results and
ANN production data sets (BP with momentum and ugale gradient) of
nondimensional residual modulus vs. the residuairst
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Figure 5.9. Comparison of the mechanical behavi&®tor control and PET-VGCNF
samples subsequent to fatigue loading utilizing AdtBidictions based on BP with
momentum and conjugate gradient algorithms

To better assess the differences in mechanicalvimhas a function of the residual
strain, the results from the ANN computations aDRnddna=0.60; were plotted on the
same graph. The results from the simulations atdidhat the PET control samples
retain strength slightly better than the 5 wt% r@moposite counterparts when subjected
to fatigue stresses with the retention of creeqirsér Further, as stated earlier, the results
show that the nanocomposite samples exhibited uakistrength and elastic modulus
degradation readily with the retention of creepiss. The results also show that
although the PET control samples exhibit straindeamng in the form of modulus
increases in the low residual strain limit, theeraf degradation is noticeably higher than
that for PET control samples subsequent to thisldrang, indicating that the aligned

chains experienced a greater loss in stiffness untely after the low residual strain
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limit. These results are in sync with results frone literature, where PET control
samples have been shown to exhibit distinct handeeffects in the early stages of
fatigue at room temperature [27]. The authors iB7][ have conducted
thermoluminescence studies on PET filaments andlgded that the cyclic extensions in
the early stages of fatigue engender distinct hande effects and that the strain
hardening decreases with the increasing numbeemdat extensions. The effect of
defects was shown to be present at later stagasgdine fatigue process, where further
cycling increased the possibility of the introdoctiof defects. Although many studies
have not been conducted on the mechanical behafionanocomposite materials
subjected to fatigue, results from the literatunecomposite materials support the claim
that the nanocomposite fibers suffered mechanitangth and residual strength
degradations due to repeated cycling [142-143]. cr&eses in residual strength for
composite materials under fatigue loading, as sedfigures 5.8 and 5.9 for the PET-
VGCNF samples tested in this study, can be alstamqu by the poor adhesion between
the matrix and reinforcing agent. In the literaturthis is evidenced through
computational calculations of the critical sheaess required for debonding [144-145]
and SEM fractography where pull-out and debondssire seen at high magnifications
[146-147]. In the case of this study, a separatedetailed SEM study was conducted to
determine the primary mode of failure in PET-VGCE&mples loaded under fatigue
conditions (see Chapter 4). The primary mode olura was defibrillation and
debonding of the VGCNF from the PET matrix aftecleyg and accumulation of strains.
Results from the literature also support the lossesiodulus degradation of the PET-

VGCNF samples subjected to fatigue loading [148].
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5.7. Comparison of the Residual Mechanical PropertiesPBT Control and PET-
VGCNF Fibers Under Various Loading Configurations

From the results of the BP with momentum and caatigradient based training
procedures, the best networks were used to modaietfidual strength degradation and
elastic modulus degradation under other variousditmp configurations so that
comparisons could be made between the mechanibavioe of PET control and PET-
VGCNF samples. Shown in Figure 5.10 is a comparisibthe residual strength and
elastic modulus degradation between PET control BET-VGCNF samples as a
function of the residual creep strain for streg®saR=0 and R=0.333 at a maximum
stress equal to 60% a@k. These results indicate that, in most cases, thahresidual
strength and elastic modulus degradation were yigeljpendent upon the maximum
fatigue stress amplitude. For PET control samplesyesults for the R=0 configuration
demonstrate the aforementioned residual strengthetastic modulus hardening in the
low residual strain limit (up to 1% for the resitisrength and up to 0.5% for the elastic
modulus degradation). For the R=0.333 loading igonétion, the results varied. The
results in Figure 5.10 also indicate an increasth®fesidual strength in the low residual
strain limit in excess of that for the R=0 configtion for the PET control samples;
however, the elastic modulus experienced no handeini the low residual strain limit.
This is likely due to the lower strain amplitudathhe samples were exposed to during
cycling (with respect to the R=0 configuration),isfhengendered little or no orientation
of the polymer chains along the fiber axis. Therage strain amplitude of the PET
control samples at the R=0 configurations was apprately 0.038, while the strain

amplitude was 0.016 for the R=0 loading configumati
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For the PET-VGCNF samples, the results varied afi. wFor the residual

strength, the results in Figure 5.10 indicate th@resnentioned dependency of the

residual strength on the residual strain for thed Rsading configuration (maximum

stress equal to 60% of). However, when the stress ratio was increasé&-m333, the

model results indicated little to no dependencythef residual strength on the residual

strain. As with the results from the PET samplis, low decline in residual strength up

to 10% strain is likely due to the lower strain ditople that the samples were exposed to

during cycling.

For the R=0 loading configuratiahe PET-VGCNF samples were

exposed to average strains with an amplitude d3®i@ comparison to average strain

amplitudes of 0.013 for the R=0.333 loading confagion.
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Figure 5.10. Residual strength and elastic modddéggadation predictions of PET
control and PET-VGCNF as a function of residuaistfor R=0 and R=0.333 stress
ratios (Omax= 0.60%) utilizing MLP ANN architecture and BP with momeant training

algorithm
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The MLP with BP based scheme was also utilized tdeh the effects of
maximum fatigue stress on the residual mechanicgigsties. The results are provided
in Figures 5.11 and 5.12. The results show thaethstic modulus and residual strength
of both PET control and PET-VGCNF samples both ddpen the maximum fatigue
stress during fatigue loading. A family of curwesas generated for elastic modulus
degradation and residual strength as a functiomaXimum fatigue stress for residual
strains in the low limit §g =0.01), median residual strain liméz£0.05 andsz=0.10) and
upper residual strain limitg¢=0.15). For the PET control samples in the lowdhes
strain limit (g =0.01), the results indicate that both the redidiieength and elastic
modulus were not strongly affected by increasing thmaximum stress up to
approximately 30% of the fracture stress; in adtyaboth the residual strength and
elastic modulus values increased after 30% of th&imum fatigue stress (hardening
effect). For the other residual strain configuwas ¢=0.05, &=0.10, andsz=0.15), the
results indicate a degradation of both the residtia@ngth and elastic modulus up to
approximately 30% of the fracture stress, then angk in slope for both properties as
function of maximum fatigue stress (increasing slégr residual strength and decreasing
slope for elastic modulus). These results are istarg with the results from the

experimental regimen.
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Figure 5.11. Residual strength and elastic modddéggadation predictions of PET
control samples at various residual straigs90.01,& =0.05,& =0.10,& =0.15)
utilizing ANNs with BP with momentum training schem

The residual properties of PET-VGCNF samples atlves strainssg =0.01,& =0.05, &
=0.10, & =0.15 displayed a similar trend to those of thel Rientrol sample (Figure
5.12). The results indicate a declining residue¢rngth and elastic modulus up to a
certain percentage of the maximum fatigue stré&s) & change in slope. The results of
Figure 5.12 indicate an exacerbation effect ofrttaximum fatigue stress on the residual
mechanical properties for increasing residual s$raiAs shown in Figure 5.12, higher
residual strainsg; =0.10 andg =0.15) induced by the same maximum fatigue stress
engendered greater losses in residual strengtlelastic modulus. In comparison to the

PET control samples, the residual strength behawias the same as a function of

maximum fatigue stress and residual strain; howethgr elastic modulus displayed a
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plateau behavior at a certain maximum fatigue stvadue, as indicated by the “plateau

spine” in Figure 5.12.
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Figure 5.12. Residual strength and elastic modddéggadation predictions of PET-

VGCNF fibers at various residual strairgg €0.01,& =0.05,& =0.10,& =0.15) utilizing
ANNSs with BP with momentum training scheme
Conclusions for Chapter 5
The results from this chapter indicate that affimeural networks (ANNS)

utilizing backpropagation with momentum and conjeggradient learning algorithms
can be used to predict the residual mechanicalgpties of PET and PET-VGCNF fibers
subsequent to fatigue loading. The ANNs were ssgfady trained to replicate
experimental data and the models were used tordigieithe dependence of the residual

fracture strength on number of cycld$),(residual creep straing{), maximum fatigue

stress fmay, and stress ratidRj. The experimental and computational results stbw
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that the residual mechanical properties of PETrobsamples exhibited a scattered and
weak dependence dw This was observed in the experimental data amapatational
sensitivity analysis, which indicated thidtwas not a strong factor in determining the
residual mechanical properties of PET samples. ABEE&-VGCNF samples exhibited a
stronger dependence on the number of cycles, areltives included as an input variable
into the ANN input vector set. The experimentadl @emputational results also showed
that the residual creep strain parameter (obtazsed fraction of the viscoelastic creep
strain) strongly affected both the residual fragetsirength and the elastic modulus. From
a comparative standpoint, the experimental reshitsved that the PET control samples
exhibited hardening effects in the low residuakistrlimit while the PET-VGCNF
samples did not. These behaviors were capturet witi the ANN computations.
Increasing the stress ratio from R=0 to R=0.333 stesvn to affect both the PET control
and PET-VGCNF samples slightly, while both sam@ekibited an exacerbation effect
(higher degradation of both residual strength afebstie modulus) with increasing
residual strain.

The results from this chapter could betipalarly useful for designers and
engineers that wish to employ polymeric fibers asstituent materials in composites
exposed to fatigue loading. By using the expertaemsults and computational results
from this chapter, one can determine the mechatiehbvior of the fibers (residual

strength and elastic modulus) as a function ofimpechanical testing variables.
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CHAPTER G

PREDICTING THE MECHANICAL BEHAVIOR OF PET AND PET-
VGCNF FIBERS SUBSEQUENT TO FATIGUE LOADING USING
GENETIC ARTIFICIAL NEURAL NETWORKS

Summary of Chapter 6

The constitutive behavior of poly(ethydenerephthalate) (PET) unreinforced
(control) and PET fibers reinforced with 5 wt% vagoown carbon nanofibers
(VGCNFs) under uniaxial tension and subsequenatigide loading has been evaluated
utilizing various analytical models. Two typesfafigue tests were performed: 1) Long
cycle fatigue at 50 Hz (glassy fatigue) to evaldatgyue resistance and 2) fatigue at 5 Hz
(rubbery fatigue) to evaluate residual strengthfggerance. The long cycle fatigue
results at 50 Hz indicate that the PET-VGCNF samgbehibited an increased fatigue
resistance of almost two orders of magnitude whempared to the PET unreinforced
filaments. The results of the fatigue tests atzimtlicate that the constitutive response
of both the PET control and PET-VGCNF samples chdngubsequent to fatigue
loading. The uniaxial constitutive response of BieT and PET-VGCNF fibers was
modeled utilizing genetic-algorithm (GA) based raumetworks. The results showed
that the uniaxial tension constitutive behavior bufth PET unreinforced and PET-
VGCNF samples with and without prior fatigue canrbpresented with good accuracy
utilizing neural networks trained via genetic-bavagkpropagation algorithms, once the
appropriate post-fatigue constitutive behaviortiized. Experimental data of uniaxial
tensile tests and experimental post-fatigue caristéd data have been implemented into
the networks for adequate training. The uniax@lstle tests were conducted at an

elongation rate of 0.17 mm/s. The fatigue testeveenducted in tension-tension fatigue

123



with variations in the stress ratiR)( maximum stressday, humber of cyclesN), and
the residual creep straig).

The scientific and engineering community could ligéneemendously from a
predictive constitutive model that evaluates theesst state of the materials when
subjected to fatigue loading. In essence, thetitahige prediction results could be of
great utility to researchers and manufacturershsth to evaluate the effects of fatigue
loading parameters on the mechanical behavior ledessidual properties of the material
subjected to fatigue loading. The genetic basedlah@etwork evaluation is rigorous in
the sense that vital information about the meclanésting parameters is correlated with
the state of the material at certain points dutitggfatigue test.

Specifically, in this research, uniaxial tensilepesiments and stress controlled
fatigue experiments were conducted on PET-VGCNFp$zsnat room temperature to
ascertain the effects of cycling on the mecharbedlavior and constitutive response. It
is understood from the fatigue experiments andréselts from Chapters 4 and 5 that
cycling under stress-controlled conditions causeydaic creep to occur in the samples
with the retention of a permanent residual strddue to the retention of the strains, it is
known from the literature on unreinforced PET samphat the molecular orientation
changed [8]. Other studies have been conductaddess the effects of drawing on the
molecular orientation in PET samples [149]. Ththats observed that the PET samples
retained the molecular orientation bel@w(glassy state), while abovig, the molecular
chains possessed sufficient energy for relaxatidhe extent of drawing polyethylene

terephthalate samples beldly produced some crystallinity as observed from ti&CD
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results. Figure 6.1 provides a depiction of resfilom Ward [21] that idealizes the

amorphous polymer chain configurations subsequefatigue.

(b) polymer hainsafter deformation

Figure 6.1. Schematics of (a) unoriented amorplpolgmer chains and (b) oriented
amorphous polymer chains [8]
With the inclusion of VGCNFs, the problem of cotgive behavior prediction becomes
more complicated. Based on the results from #égarch, it is shown that cycling at a
low frequency (5 Hz) in the rubbery regime changbs mechanical behavior
(constitutive behavior) of the sample. Effectdtid mechanical loading parameters and
the residual creep strains have been used to abksessthe mechanical properties

changed based on the following input parametergiman stressdiay), stress ratioR),

number of cyclesN), and residual strairgi.

6.1. Experimental
6.1.1. Sample Preparation and Mechanical Testing
The PET-VGCNF specimens were preparedpaocessed at the Georgia Institute

of Technology as described in [128]. The detafldhe specimen preparation for the
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mechanical testing paradigm are provided in [129The BOSE® ELectroForce®
(ELF®) 3200 tensile and fatigue testing machinediigatec)) was used to conduct the
mechanical experiments for uniaxial tension, ur@bxyclic loading, and dynamic
mechanical analysis (DMA). The uniaxial tensilstsewere performed at an elongation
rate of 10 mm/min and the fatigue tests were coteduat frequencies of 5 Hz and 50 Hz.
Using the ELF 3200, DMA tests were conducted aiouar frequencies to determine the
response of the phase lag compontan §) and stiffness of the sample as a function of
frequency in the range 0.1 to 100Hz. All experitsemwere conducted at room

temperature, laboratory air. The typical humidifythe laboratory air was about 50%.

6.1.2. Genetic neural network training
The process flow for the GA training scheme that waed in this research is

shown in Figure 6.2.

Populate initial
networks
(random)

Train and evaluate
networks &
determine fitness

Proper
fitness of
networks?

Discard
networks
without
mutation

Combine and
mutate to create
new population of
networks

END

Max. # of
generations
reached

END EVOLUTION
PROCESS

Figure 6.2. Process flow for Genetic Algorithm (G#gsed training
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Firstly, a random population of networks was créateEach of the networks in this
population contained different parameters (input aetwork parameters). The networks
were then trained using backpropagation with mooranbr conjugate gradient and
evaluated to determine their fitness (see [85] d@scription on backpropagation
algorithms). In GA based training, the fithessresponds to the lowest mean-squared
error (MSE) of all the networks within a correspogdgeneration. The network weights
were saved into a database for later retrievalndutesting of the neural network and
later for production datasets (see Appendix C kanaple). If the fitness of the networks
did not meet the MSE requirement, they were natctetl for mutation/reproduction.
Proper fitness of the networks and selection canpédormed using a variety of
techniques, to include roulette, tournament, tapgrd, best, or random.

In conventional GA training, the combination of gaeters can be performed via
crossover, which can either be one-point, two-pdimtee-point, or n-point crossover.
For the current research, one-point crossover ea@®nmed. In one-point crossover, a
crossover point was randomly selected within a mlmsome and was then interchanged
with two parent chromosomes at this point to predweo new offspring. An example of
the one-point crossover method using binary d&j@9s
Parent 1: 11001|010
Parent 2: 00100|111
Subsequent to the exchange of the parent chromasamié¢he crossover point, the
following offspring are produced:

Offspring 1: 11001|111

Offspring 2: 00100|010
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The crossover probability was set to 0.9 in all e@kpents. After combination
(crossover), mutation occurred in which one or ngegae values in a chromosome was
altered from its initial state. This operation résd in new gene value creation, allowing
the genetic algorithm to arrive at better solutitren previously possible. Mutation is an
imperative step in the genetic search, becausedtedses the chance of the network
population stagnating at local optima. The mutat@eration occurs during evolution
according to a user-definable mutation probabilityn this research, the mutation
probability was set at a low value of 0.01 for ol results. Other parameters that were
used during the genetic computations relate to step size optimization and the
momentum rate optimization for the backpropagatatgorithms. Table 6.1 prescribes

the upper and lower bound values for these paramete

Table 6.1. Upper and lower bound properties of sie@, momentum, and PE element
optimization parameters for genetic algorithm tiragn

Constitutive behavior Modified
prediction constitutive
behavior

L ower bound Upper | Lower | Upper
bound | bound | bound

Step size optimization 0 1 0 1
Momentum optimization 0 1 0 1
PE element optimization 10 20 1 10

In the current research, the roulette method wiizad for selection of the best (most fit)
networks. Roulette selection involved selectiometivorks based on the “survival of the

fittest” methodology, in which selection was projpamal to the fitness. In the roulette
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selection, unfit networks were not selected for boration and mutation, while the
“most fit” (high fitness) networks were selected étombination and mutation.

The evolutionary process ended once the maximumbeurof generations was
reached. The maximum # of generations was 5Chfsrrésearch, with a population size
of 25 networks in each generation, which correspdrid 1,250 total networks that were
evaluated for each computational experiment. RBohenetwork, the training iterations
evolved for 2,000 epochs.

Subsequent to the evolution process, the netwoightgewere saved to a *.bst file
(best weights) for later retrieval. For an exampighis type of file, see Appendix C.

For an example of pseudocode that was used forr&@wing, please refer to Appendix D.

6.1.3. Artificial Neural Network (ANN) Computations

Neural network simulations were performed on addah PC with a Pentium M
processor at 1.86 GHz with 2.00 GB of RAM. The Msolutions SW
(NeuroDimension, Inc., Gainesville, FL) package waidized to model the data and
perform the GA ANN simulations. For the genetigaalthm (GA) training, theTlrain
Genetic function in Neurosolutions was implemented. Hoe tonstitutive behavior
prediction of the samples with and without priotigae, a total of 43,825 data points
were used for computation. From this, 70% werecalled for genetic training (30,678
points), 15% were allocated for cross-validatior5{@ points), and 15% were allocated
for testing the networks (6,574 points). The geokthe network for the constitutive

behavior prediction consisted of the 5-input vesjmaice, denoted as:

- T
X :{amax RN ¢ ER} (6.1)
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The output parameter was the stregsfiiom the neural network simulation. An example
of the ANN architecture for prediction of the mencital behavior of the fiber samples is
shown in Figure 6.3. For the modified constitutltvehavior approach, which will be

described later in this chapter, approximately @ihgs were used for each material
property value (elastic modulus, hardening moduhs, yield point), where 70% of the

data was devoted to training and 30% was devotégsting the networks.
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Figure 6.3. Schematic of ANN architecture usethis study for prediction of
constitutive behavior of the PET-VGCNF samples sgbent to fatigue
An initial 5-10-10-1 architecture was utilized, whicorresponded to 5 input neurons, 10
hidden neurons in the first hidden layer, 10 hiddenrons in the second hidden layer,
and one output variable. In Figure 83epresents the stress ratio, defined as:

R = Fmn (6.2)
g

max
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Here, onin represents the minimum stress during fatigue taadinddnax represents the
maximum stress during fatigue loading. For PETtmdrsamples, stress ratios of R=0
and R=0.333 were utilized in this study and for BteT-VGCNF samples stress ratios of
R=0, R=0.333, and R=0.667 were utilized. Alsotha input vector spac&| represents
the number of fatigue cycles,represents the strain in the axial loading dicect,,),
and & represents the residual creep strain from theguatiloading history, and was
computed according to Equation (5.13).

All of the mechanical testing parameteRs,gmax andN were prescribed directly into
the Enduratec machine. The parametéuniaxial strain) was the result of the uniaxial
test andsg (residual strain) is the function described inl8.that is the result of the
fatigue loading test. An example of the strainletron and retention of residual strain is

shown in Figure 5.2.

6.2.  Results and Discussion
6.2.1. Results from Fatigue — DMA Results

DMA tests were conducted on the samples to deterniie transition from
rubbery behavior (at low frequencies) to glassyabedr (at high frequencies) on the
samples. A representative DMA curve is shown guFe 6.4 illustrating the results. The
samples showed a clear transition from rubberylassy behavior at approximately 40
Hz, based on the peak of the stiffness curve asrsho Figure 6.4. Frequencies that
engendered shorter relaxation times (rubbery) &@vs to the left of the 40 Hz
bifurcation line and frequencies that resultedoinger chain relaxation times (glassy) are

to the right of the 40 Hz bifurcation line in Figu8.4.
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Figure 6.4. Representative DMA curve for PET-VGCddmple indicating stiffness and
phase angle vs. frequency
6.2.2. Results from Fatigue — Fatigue in the Viscoela&iassy Regime
Fatigue tests were conducted on the PET controlREID-VGCNF fibers at 50
Hz to determine the fatigue resistance above thbany threshold. These fatigue tests
were conducted at a maximum stress equal to 60dtedracture stress of the respective

samples, with a stress ratioRf0.
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Figure 6.5. Results from fatigue tests at 50 Hizcating the superior fatigue properties
of the PET-VGCNF samples in the viscoelastic/gladtate

The results in Figure 6.5 indicate that the PET-WECS wt% samples outperformed
their respective unreinforced counterparts for @miovo orders of magnitude more
cycles at 50 Hz. There was significantly more tecah the number of cycles to failure
data for the PET control samples, as shown in Eigub. These data represent the
results from 7 samples tested under uniaxial fatiganditions at 50 Hz. Four PET
samples and three PET-VGCNF samples were testaéetéomine the average number of
cycles to failure ;) value. These were lengthy experiments that smieral weeks to
complete due to the millions of cyclic iteratiorexjuired for testing (i.e. 50E6 cycles @
50 Hz requires 11.6 days of testing). These resarn¢ significant in the fact that one
notices that PET-VGCNF fibers tested above thesgiansition frequency are noticeably

more resistant to failure than their PET unreindofrcounterparts, even when tested at a
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higher stress dna=300MPa for PET-VGCNF samples ag.,=170MPa for the PET

control samples).

6.2.3. Results from Fatigue - Training & Testing Results

The genetic ANN training procedures were run twoes and the results were
averaged to obtain the stress-strain response eofrthterials with and without prior
fatigue. The two training procedures represenfediht randomized data trials. The
results from the conjugate gradient, GA traininggedure are shown in Table 6.2.
Results of the mean-squared error (MSE) were fdoly, with an average value of
0.00863 for the two runs. On average, the minimuBBMvas reached between 3 and 4
generations. The testing results, which were abthion stress values not previously
provided to the neural network set, displayed mive=ililts, where the average correlation
coefficient ¢) for the two trials was 0.9269. To delineate #ggeement of the testing
results, the experimental stress values (actualthes computational (predicted) stress
values are shown in Figures 6.6 and 6.7. Fhealue for Trial 1 was 0.8895 and tRé
value for Trial 2 was 0.8297. What should be regtifrom these results is that on Trial
1, good agreement was obtained between the expaahwitput stress and the predicted
output stress. However, on Trial 2, which représamother randomized trial, although
the R? value was 0.8297 there was a poor agreement dtfeetéact that the predicted
output stress value was shifted from 0 up to apprately 100 MPa. This did not reflect

the true experimental constitutive response ofhtlagerial.
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Table 6.2. Optimization summary results for GA ra@wmetworks-conjugate gradient (5-
10-10-1 architecture) for PET-VGCNF samples

Training Results Testing Results
Min MSE Generation r
Trial 1 0.00655 4 0.9431
Trial 2 0.0107 3 0.9108
Average 0.00863 3.5 0.9269
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Figure 6.6. Randomized trial 1: Experimental st(@ssual) vs. predicted stress from GA
ANN for constitutive behavior prediction of samplepresenting good correlation
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Figure 6.7. Randomized trial 2: Experimental stresgpredicted stress from GA ANN
for constitutive behavior prediction of samplesresgnting overestimation of the
predicted stress (poor correlation)

In addition to the results from the testing andnireg procedures, a sensitivity analysis
was performed on the networks in Trials 1 and 2ldétermine the effect of each input
variable on the output (stress) signal. The resafithis sensitivity analysis are shown in
Figure 6.8. To conduct the sensitivity analysegcheindividual input signal was varied
while the other inputs remained constant. This dase in an effort to determine the
change in the output signal (“sensitivity”) witrspect to the variation of the input signal.
It is seen from Figure 6.8 that the number of cy@ was the least important parameter
in affecting the stress output. Intuitively, theas (£) showed the strongest correlation

to the output stress signal. Surprisingly, thédwes creep strain parametegr) exhibited
the second lowest sensitivity. However, it is kmofiom the experimental results and

residual property predictions [129] that the pa@digiue mechanical behavior of both PET

and PET-VGCNF fiber samples is a strong functiogzofThe graphical results in Figure
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6.9 that illustrate example stress-strain respoot#dse samples before and subsequent to
fatigue loading exhibit results that correlate viltle results in Figures 6.6 and 6.7. From
Figure 6.9, it is shown that the GA based ANN tedirvia conjugate gradient procedure
was very efficient at representing the unfatiguesponse of the materials. In contrast,
the GA based ANN trained via backpropagation wassogcessful at representing the
unfatigued constitutive behavior of the samplest dsplayed a distinct overshoot of the
yield point. It should also be noticed from Fig@&:® that both the BP with momentum
and conjugate gradient based genetic algorithme Wweth unsuccessful at representing
the constitutive response of the fatigued samplEsus it was decided that the network
should be modified to accommodate for the exclusibthe input variableN from the
input vector set and the implementation of a nemstitutive law to accurately reflect the
linear elastic strain hardening constitutive bebgwvhich will be discussed in the next
section. From Figure 6.9, one can see the gratk@keases in the hardening behavior
with the further accretion of residual strain, asllwas an abrupt change in slope

subsequent to yield.

Sensitivity

€ OmarlO¢ R €r N

Input Name

Figure 6.8. Genetic ANN sensitivity analysis of thput parameters for prediction of the
constitutive behavior of PET-VGCNF samples

137



1.2

ANN genetic, BP with
mentum
1 non-differentiable at &,
1
Unfatigued :
’ w ANN genetic, wANN genetic,
193 conj. gradient conj. gradient
%]
() 0.8
= ,
@ Fatigued Fatigued
9 20,0497 £=0.1587
(9} =V _
N N=10,000 g;éo,ooo
g 06 R0 =656
g - Ormax0=0.568 e O7=0:
=
o
pd /
04 +—f
ANN genetic,
onj. gradient
0.2 % /
0+ f . .
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Strain

Figure 6.9. Results from Trials 1 and 2 from ANMetc neural networks used to
predict unfatigued and post-fatigue constitutivepense of PET and PET-VGCNF
fibers, indicating the poor capability of the ANNrgetic procedure to capture the sharp

transition in stress-strain behaviorsat

6.2.4. Results for Prediction of Constitutive Responseéffei2nt Approach

The ANN testing results from Section 6.2.3 indickiat a different approach was
necessary for the successful modeling of the domis® response of the PET and PET-
VGCNF materials subsequent to fatigue loading. nfFtbe experimental results, it is
known that the post-fatigue stress-strain respofsbe materials is linear-elastic, strain
hardening with a clearly defined yield point. Thirem a mathematics viewpoint, it can
be stated that the post-fatigue constitutive respois non-differentiable af. The

mathematical statement that expresses this diseotytiin the constitutive response at

the yield point ) is:
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f(gy i h)_ f(gy) is nonexistent (6.5)

Because of this discontinuity, an open-form solutwas utilized to capture the stress-
strain response, and the GA neural network wasinetd to determine the correct
response. The open-form mathematical relationghgt appositely describes this

piecewise constitutive behavior is:

(e X u{x[e-a (%]  e2q e

In Equation (6.6)E()~(j,£Y(X), and H(;(j represent the modulus, yield strain, and

hardening modulus as a function of the input meidahnesting parameters. Thus, the
task was to determine the three functions (modulies] strain, and hardening modulus)
as a function of the input vector space using tAeb@sed neural networks. One should
refer to Appendix E for a schematic representatibthe structure of the ANNSs utilized
for these computations.

The ANNs were retrained using a GA based BP withmer@um procedure.
Figures 6.10-6.15 indicate the capability of théwwek in minimizing the MSE cost

function over the number of network generations.total, 9 trials were run to determine

the mechanical properties stated in Equation (@ ®ials for E(Xj, 3 trials forsY(f(),

and 3 trials foH(;(j). The parameters used for step size, momenturmh, #E

optimization are provided in Table 1.
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The results from the simulations were satisfactay,shown from Figures 6.10-6.15,

where the MSE vs. generation and actual vs. ANNetierplots are provided. The

constitutive response of the materials was agattqa to illustrate the effectiveness of

the new approach, and the results are displayEayure 6.16.

1.2
Exp, PET-
VGCNF
1 \ ey e
Genetic, PET-
VGCNF Genetic, PET
control
0.8 -
R=0.333 ‘ <«—_ Exp, PET
A Omax/Onin = 0.6 ff R=0.333 control
) g =0.0527 Omax/Omin = 0.6
5 € =0.107 R=0
4 0.6 | Opmad Omin = 016 R=0
() =
N Exp, PET | &=0.159 G/ Oin = 0.6
= control ' £=0.234
£ /
o 04 ‘
z Genetic, PET xp, PET-VGCNF
control
l'el
0.2
Genetic, PET:
VGCNF /
0 T T T T T T T T
0.05 0.1 15

0. 0.2 0.25 0.3 0.35

Strain

0.4 0.45

ANN genetic - PET-VGCNF Experimental - PET-VGCNF
=== ANN genetic - PET control Experimental - PET control

ANN genetic - PET-VGCNF
ANN genetic - PET control

Experimental - ANN genetic
Experimental - PET control

Figure 6.16. Representative normalized stresgasttaves of PET control and PET-
VGCNF samples (experimental and GA neural netwoekligtions) subsequent to
fatigue loading. The data to the left of the cuypvescribe the testing conditions of the

sample

The results in Figure 6.16 indicate that the GArakwmetwork procedure was more

efficient than the aforementioned method at captuthe constitutive response of both

PET and PET-VGCNF fibers, indicating the appliciypibf the open-form constitutive

law outlined in Equation 6.6.
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Conclusions for Chapter 6

Fatigue experiments were conducted on &&ifrol and PET-VGCNF samples to
determine the mechanical behavior of the materidier both PET control and PET-
VGCNF samples conducted at 50 Hz, the results atelithat the fatigue resistance of the
PET-VGCNF samples was approximately 2 orders of nitade higher than their
unreinforced counterparts. For tests conducte8 &iz, residual strength tests were
performed to ascertain the change in material ptigge and constitutive behavior
subsequent to fatigue loading. Genetic algoritBA)(based artificial neural networks
(ANNSs) were used to model the constitutive respoofséoth PET control and PET-
VGCNF samples with and without prior fatigue. ThA based ANNs were successful at
replicating the constitutive behavior of sampleshaut prior fatigue, due to the
nonlinearity and continuity of the stress-straimveu However, for samples with prior
fatigue, an open-form solution was necessary téucaphe stress-strain response of the
materials, due to the non-differentiable behavibixya Based on the neural network
testing results, the GA based ANNs were not sufigleas representing the post-fatigue
response of the materials. In actuality, the ANfdeerated continuous and differentiable
functions. However, when a piecewise linear etastirain hardening model was
implemented, good results were achieved for theahotithe post-fatigue stress-strain
response. This work is significant in the sensg Hoth computational researchers and
other scientists and engineers can benefit fronerstanding the employment of neural

networks applied to unreinforced polymeric and ramoposite material behavior.
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CONCLUSIONSOF DISSERTATION

Due to the results of the current study, the sdierdommunity now has a better
understanding of fatigue and degradation mechanteatsoccur in VGCNF reinforced
fibers and nanoclay reinforced composite films.rr€otly, there is little research related
to fatigue of single polymeric fibers and their neaomposite counterparts. In addition,
there is very little work on fatigue of nanocompedilms. The research that does exist
is limited in the sense that it does not refleet ¢rolution of damage accumulation in the
material. Thus traditional approaches are notlpalefficient in the sense that they are
purely phenomenological and do not reflect any asttuctural changes that occur as a
result of fatigue. The research that has been Edetpin this dissertation helped to
mitigate this gap by indicating how the maximurness and number of cycles to failure
are correlated to the stress whitening (opaqueonsyithat are observed around the
cracked region. Within the semi-phenomenologicamework that was developed for
the PET and PET-VGCNF fibers, the objective wasl&wify and elucidate factors that
affect the fatigue strength and other mechanioapgnties as a result of fatigue loading.
This objective was accomplished utilizing experitaén ANN modeling, and
fractography. The experimental, modeling, andtérgaphy results from the fatigue
experiments can serve as a great utility for martufars and fabrication specialists
seeking to design unreinforced and nanocompositerrals that can withstand fatigue
stresses.

Another objective of the research was to identiky primary cause of failure, or
instability, for single nanocomposite fibers unalki loaded in tension and under fatigue

loading. There is a void of research in the afdaiture mechanisms that occur in single
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fibers reinforced with vapor grown nanofibers anldeo nanofillers due to the fact that a
testing methodology has not been established tofggadly ascertain the primary cause
of failure. This dissertation has helped to aléwithe gap by using an established
fractography methodology to compare the resultsadh neat and nanocomposite fibers
that were subjected to fatigue loading. A distiddterence in the fractography was
observed between the neat samples and nanocompasijges that were subjected to

uniaxial and fatigue loading.
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FUTURE WORK

Based on the experimental and computatioesults from this study, there are
several areas can be expounded upon. Firstlymputational study can be done on the
PLA and PLA nanocomposite films utilizing neuraltwerks to accurately predict the
number of cycles to failure and the time to failbyerelating these output variables to the
input variables (maximum stress, frequency, % ligahsmission, etc). A structure
similar to that shown in Figure 6.17 could be usegredict the number of cycles to
failure. In addition, one could also replace tlghtl transmission state variable with a
more sensitive structural variable, such as thétesgag intensity that is derived from
small angle x-ray scattering (SAXS) experimentst isl believed that the SAXS
experiments would be sensitive enough to damaganadation to provide a strong
enough sensitivity to the output varialdig,
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Figure 6.17. Idealized ANN architecture for preidic of number of cycles to failure
(Ns) in PLA and PLA nanoclay films
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Next, a thorough SEM study should be conductedherfitms at high magnifications to
ascertain the mode of failure (i.e. pull-out oftplat particles and/or platelet fracture)
under uniaxial tension and fatigue loading condgio A classification neural network
scheme can then be used to predict the type ofréaihat is expected based upon certain
mechanical input conditions. A fracture mecharsttedy should also be conducted on
the films to provide a comparison of the differenae energy release rate vs. initial flaw
size. A thorough impact fracture mechanics stuthukl also be conducted on the PLA
nanocomposite and PLA unreinforced films to detaeheir resistance to impact loads.
From the conclusions of the PET unreicddr and PET-VGCNF fibers, it would

be interesting to determine how the fatigue rest#aand residual property behavior of
the samples behaves as a function of temperatmre&ddition, a study should be done
with different types of reinforcement agents toedetine the effect on fatigue resistance.
Based on these results, a more robust computatimgaial network model could be

developed and used to predict the mechanical behavi
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APPENDIX A: OTHER SEM FRACTOGRAPHSOF PET AND PET-
VGCNF FIBERS

2500% 5 m
PET Control Sample PET Control Sample
R=1/3 R=1/3
& =10.7% E=2.7%
N = 6,000 cycles N = 100,000 cycles

PET-VGCNF Sample PET-VGCNF Sample
R=1/3 R=0
& =0.78% &=0
N = 25,000 cycles N = 1,000 cycles
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APPENDIX B: NEURAL NETWORK MODELS

Backpropagation with momentum operators

' Voo

/*\ _ I

Input vector L Tanh transfer output vector set
set (Nx1) Synaptic weight functions (Mx1)
N= # of input adjustments M= # of output
variables (N lntputts,) N variables
outputs

Figure B.1. Example BP with momentum ANN architeetwith various network
parameters utilizing Neurosolutions modeling SW

Conjugate gradient operators

i

Ut vect Tanh transfer Ut vect "
TS apiwegn funcons oo vector <
N= # of input adjustments M= # of output

variables (N inputs, N outputs) /7 variables

Figure B.2. Example conjugate gradient ANN arattitee with various network
parameters using Neurosolutions modeling SW
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APPENDIX C: EXAMPLE ANN WEIGHT DATABASE FILE

/1 Wei ght s saved from br eadboard C.\ Docunent s and
Set ti ngs\ Rodney\ Deskt op\ Ph. D. Di ssertation\PET Fibers\PET and PET
pi ecewi se data-BP with nom Trial 3-E. nsb.

/1 Saved after epoch 2000, exenplar O.

/1 Fil enane: PET and PET piecewise data-BP with nomTrial 3-
E. geneti c. bst

#NSWei ght Fi | eVer si on 243

4

nputFile File

1. 9565217391304346e-001 -2.1913043478260867e+000

7.7060509071912042e+000 -9. 0000000000000002e- 001

2.7449999996568755e+000 -9. 0000000000000024e- 001

2.6999999986500001e+000 -9. 0000000000000002e- 001

#tdesiredFile File
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1
1.3061227868537131e- 001 -1.2266597893182514e+000

0

#i nput Axon Axon
4 1
1

0

#hi ddenl1Axon TanhAxon

71

1

7 7.9095237631544549e+001 -1.9060069028715773e+001 -
2.2136014547787110e+002 - 3.6017953932281323e+001
9. 6353687230757316e+001 -1.6439352165475402e+001

3.2757545868036999e+000

#out put Axon TanhAxon
11
1

1 1.5946804361957878e- 001
#criterion L2Criterion
11

1

0

#hi ddenl1Synapse Ful | Synapse
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28 -1.4127499076867585e+002 1.7310735845025840e+002 -

2.3699973717633817e+001 6. 7599961913121433e+001 -
2.4891343126708879e+001 - 8. 8995582447045422e+001 -
4.3185911084428303e+000 -5.4219638586472016e+001
1. 4188597068463795e+002 -1.1765632492008375e+002 -
7.7794249186279629e+001 6. 3575457297401421e+000 3.6631648108229335e+001
-3.7951206547839064e+001 -1.1984342823342965e+001
5.5913409861043899e+000 - 3. 1153339505348196e+001
6.5135417354998140e+001 -2.0601316103305653e+001
1.2979215901874763e+001 -2.3312569997905126e+001 -
3. 7628493558679061e+001 2.4159483062849834e+001 2.9538339482560598e+000
-5.0318881222283913e+001 4.1221253868020973e+001

2.0278700993366783e+001 -7.7830114720013190e+000

#hi ddenl1SynapseBackpr op BackFul | Synapse

28 0. 0000000000000000e+000 0. 0000000000000000e+000

0. 0000000000000000e+000 0. 0000000000000000e+000 0. 0000000000000000e+000

0. 0000000000000000e+000 0. 0000000000000000e+000 0. 0000000000000000e+000

0. 0000000000000000e+000 0. 0000000000000000e+000 0. 0000000000000000e+000
0. 0000000000000000e+000 0. 0000000000000000e+000 0. 0000000000000000e+000
0. 0000000000000000e+000 0. 0000000000000000e+000 0. 0000000000000000e+000
0. 0000000000000000e+000 0. 0000000000000000e+000 0. 0000000000000000e+000
0. 0000000000000000e+000 0. 0000000000000000e+000 0. 0000000000000000e+000
0. 0000000000000000e+000 0. 0000000000000000e+000 0. 0000000000000000e+000
0. 0000000000000000e+000 0. 0000000000000000e+000

#out put Synapse Ful | Synapse
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7 -2.6246067041756832e-001 2. 0322565054490435e-001 7.9569725339638930e-
001 -1.5878424839894811e- 001 1. 8216397501796548e- 002

2.3258017228538599e- 001 -4.5547602973141049e- 001

#out put SynapseBackpr op BackFul | Synapse
7 0. 0000000000000000e+000 0. 0000000000000000e+000
0. 0000000000000000e+000 0. 0000000000000000e+000 0. 0000000000000000e+000

0. 0000000000000000e+000 0. 0000000000000000e+000

#hi dden1SynapseBackpr opGr adi ent Monent um

28 -7.2134208043970596e- 002 9. 1539581217165947e- 002 -
1.6425903105207681e- 002 3.1104970570750668e-002 -1.2717547793109454e-
002 -4.7326311716032937e- 002 -1.8062698036747811e- 003 -
2.7905649234722250e- 002 6.9911900018219175e-002 -6.5935239385609745e-
002 -3.8067269395222383e- 002 6.2270920175213794e- 003
1. 8665632641082779e-002 -1.9280744183824125e-002 -5.4257680122097481e-
003 3.0607859151620211e- 003 -1.9477236865748829¢e- 002
3.3673288437948146e-002 -1.1308613623061530e-002 7.8785718139145391e-
003 -1.0512469069480772e- 002 -2.2143192241054054e- 002
1.5279319930692366e- 002 -7.7908632430909047e-005 -2.6446922608194635e-
002 2.1288390457059950e- 002 1. 0567275790305515e- 002 -

5. 3624350786773715e- 003

#hi ddenlAxonBackpr opGradi ent Monent um
7 4,1851781544271667e- 002 -9. 9609225543008852e- 003 -
1.1257890650615640e- 001 -1.7432664471243153e-002 4.7202592699732898e-

002 -1.4165639989982352e-002 5. 7798424311618730e- 005

#out put SynapseBackpr opGradi ent Monment um
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7 -4.1540324599749252e- 006 1. 8451494008947929e- 005 -
1.4746945649507135e- 004 4.3518184986320308e-005 6.4773113601926190e- 005

-2.1431216013797234e- 005 1. 6753765450055720e- 005

#out put AxonBackpr opGr adi ent Moment um

1 -1.6187834218083755e- 004

#control StaticControl

0

1. 0000000000000000e+009
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APPENDI X D: EXAMPLE PSEUDOCODE FOR GENETIC
ALGORITHM COMPUTATIONS

Pseudocode for GA training and constitutive behagietermination of PET and PET-
VGCNF samples — Adapted from Maiti et al. [155]

begin

Initialize GA parameters “Initialize step sizes, mentum, inputs, populations,
generations, evolution time, #PEs”

g=0 “g represents current generation”

initialize p(t)

“ p(t) represents the population at t-th generation
evaluate p(t)
while ( not terminate condition )
{
t=t+1
select p(t) from p(t-1)
alter ( crossover and mutate ) p(t)
evaluate p(t)
upgrade the result, if possible
}
store weights of the best result found
end program
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APPENDI X E: STRUCTURE OF NETWORKSUSED FOR
MODIFIED CONSTITUTIVE BEHAVIOR PREDICTION

1 hidden layer,
k element

/ . Output layer
O

Input layer

Figure E.1. ANN structure for material propertegiction of PET and PET-VGCNF
fibers using GA training. Herg(X) corresponds to the material property output (Elast
modulus, hardening modulus, or yield strain)
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