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Abstract
We consider the problem of associative image retrieval, focusing on retrieval

of 2-D line drawings by example. We represent 2-D line drawings as semantic
networks of spatial elements and relations among them. We describe a process
for retrieving the drawings based on a structural analogy between the query and
the stored images. We then present several methods of retrieving the drawings:
the first family methods uses logical unification and resolution to accomplish the
matching; the second family of methods heuristically prunes the stored drawings
and then does the resolution and unification on the remaining drawings; two more
methods treat the retrieval problem as a constraint satisfaction problem and use
common CSP techniques for solving it; and the last two methods combine the
heuristic step of the second method with the CSP technique of the third and fourth.
We report on experimental results that compare the performance of these methods
on computer-based libraries of drawings. A surprising result of our work is that for
the fastest of these methods two stage retrieval appeared to offer no benefit over
one stage retrieval.

1 Introduction
This paper deals with the problem of content-based, or associative, image retrieval,
i.e. retrieval of images from a computer-based library by example. Associative image
retrieval involves several issues such as (a) characterizing the content of an image, (b)
characterizing measures of similarity between the contents of two images, (c) represen-
tation of the content of the query image, (d) representation, indexing and organization
of images stored in the external memory, and (e) methods for probing the memory and
retrieving images similar to the query. Almost all earlier work on associative image
retrieval has characterized content of an image, and similarity between two images,
either in terms shapes of objects and their locations or color and texture distributions.
As a result of these characterizations, earlier work typically has relied on numerical
methods to compute and compare objects shapes and locations and statistical methods
to compute and compare color and texture distributions.
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With a few notable exceptions, which we discuss later, earlier work on associative
image retrieval has not investigated characterization of the content of an image in terms
of its spatial structure, i.e., in terms of spatial relations amongst elements in the image.
This characterization of the content of an image raises several questions: how might
we represent the spatial structure of an image, how might we characterize similarity
between the spatial structure of two images, how might we index the stored images,
and, given a query image, how might we retrieve similar images? We focus specifically
on the issue of retrieval of images given the representation of spatial structure using
separate semantic networks for each image. As such, we are essentially dealing with
the problem of associative retrieval of semantic networks [15, 16].

In order to investigate content-based image retrieval based on the spatial structure
of images, our work focuses on the domain of 2-D line drawings composed of spatial
elements such as lines, circles and polygons. In this domain, color and texture are
not present, and computation and comparison of object shapes and locations is simple,
which enables us to isolate the issue of spatial structure. The specific task in this work
assumes a computer-based library of 2-D line drawings along with their representa-
tions, takes as input a representation of a 2-D line drawing as a query, and its desired
output is a set of drawings retrieved from the library that are similar to the query. The
goals of this work are: (a) to re-characterize the problem of image retrieval as a problem
of associative retrieval of semantic networks, (b) explore the structure of the problem
by developing and applying a series of standard methods, and (c) to investigate whether
these methods work, at least in a laboratory setting. Along these lines, we take “spatial
structure” to mean the qualitative arrangement of the various shapes in a line drawing.

We represent the spatial structure of an image in the form of a semantic network in
which the nodes represent the spatial elements and the links are labeled by the spatial
relations among them. We characterize similarity between two drawings in terms of
subgraph isomorphism: a stored drawing is judged to be a similar to a query drawing
if the representation of the spatial structure of the query can be found in, the represen-
tation of the spatial structure of stored drawing. We use symbolic methods to compare
the spatial structure of the query with the spatial structure of the stored drawings and
retrieve drawings similar to the query.

In this paper we first describe a general computational architecture for retrieval of
2-D line drawings and explain our representation of the drawings. We then present
two families of methods for associative retrieval of drawings based on their spatial
structure. The first family of methods uses logical resolution and unification to perform
the matching on each image in the library. The second treats the retrieval problem as
a constraint satisfaction problem (CSP) and uses a common CSP technique for solving
it. We present experimental results that compare the performance of these methods
on three computer-based libraries of line drawings. We also discuss some ideas for
improving these methods with the goal of associative, content-based retrieval of 2-D
line drawings.
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Figure 1: Part of a relational description represented as a semantic network

2 Associative Retrieval
We assume that the images can be described in a semantic network formalism. The
problem, then, is to match the description of a target1 with descriptions of source im-
ages from memory, and return all source images that do match (we should emphasize
that networks for each image are separate). We consider the case in which “matching”
means subgraph isomorphism, which is to say, the description of the target must be iso-
morphic to some portion of the description of the source. Intuitively, this means that,
say, if the target has a square to the left of a circle, then the source must have square to
the left of a circle (to use an elementary example). What this means will become more
apparent when we discuss knowledge representations.

The query image, perhaps, may not be the same sort of image as those in memory;
it may be a sketch. The issue is tangential to our point, however. That image can
be described (or so we assume) as having some number of elements such as strokes
or shapes or color or texture regions or other salient visual objects. These objects
have some relational properties between them. For instance, one may be to the left of
another, or a circle may circumscribe another shape and thus be said to contain it. If
we have an image in which some set of objects or visual elements A, B, C, and D

are, respectively, above, to the right of, to the left of, and below some fifth object or
element E, the portion of the semantic network representing these objects and their
interrelations might look something like figure 1.

Part of the matching task, then, will be to find another image whose description
1We use the terms “target” and “query” interchangeably. Likewise, we use the term “source” to refer

to an image in memory to be matched with a target (or query). This is intended to be consistent with the
literature on analogical reasoning.
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Figure 2: System Architecture—solid lines indicate the components and interactions
dealt with in this paper

has at least those five elements with at least those relationships between them. The “at
least” part is important, here: there may be other elements in the matched image, there
may even be other relationships, but we’re only concerned about those that are captured
by the target (query) image. The complete task is, as we’ve said before, that of sub-
graph isomorphism: the complete target description, as represented in a semantic net-
work, must be present within the description of any source that is returned as a match.
Thus, our task is to represent the content of an image in a relational description—and
specifically in the form of a semantic network—and match it to source images by pro-
jecting the labeled graph that is the semantic network representing the target image’s
description onto the networks for the source image descriptions.2

2.1 Architecture
We describe, here, a general architecture for solving these sorts of problems. Since the
problem is one of matching sources to targets from memory, clearly there must be a
memory of images together with their relational descriptions. Some work in this area
(e.g. [19]) has considered hand-annotated images, but we are dealing with images in
which the description is computed by some process, so that process must be a compo-
nent of this architecture, as it must run on the target at the very least (presumably it has
already been run on all of the images in memory, and they have been annotated already
with their descriptions). Also, clearly, there must be a description matcher that actually
computes matches between source and target. Finally, some means of gathering the

2This raises an interesting question of what sorts of properties of images can be captured in a semantic
network. We do not address this issue in this paper.
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results that are to be returned is necessary.
In some methods that we discuss below, we consider doing an initial retrieval based

on feature vectors to quickly compute potential matches between targets before the
(potentially expensive) description matcher is run. This is to narrow the set of possible
matches and potentially make the retrieval faster. This requires several things. First, it
requires a working memory in which to store the potential matches. Second, the feature
vectors must be generated somehow, so a feature extractor must be run on the target,
and presumably all images in memory, as well, so that they each already have a feature
vector associated with them.

Our basic computational architecture for image retrieval, illustrated in figure 2,
consists of (up to) six basic components [24]:

1. An external memory of images indexed by feature vectors

2. A feature extractor for generating feature vectors

3. A process that generates a semantic network describing the contents (spatial
structure in this case) of an image.

4. A process that matches a target’s description (semantic network) to source de-
scriptions from memory

5. A working memory with potential sources to match with the target query

6. A user interface for drawing the query and visualizing the responses

This architecture can support a retrieval process consisting of two stages: remind-
ing (or initial recall), and selection (or matching). The first stage takes as input a query
example and returns as output references to stored images whose feature vectors match
that of the target. The stored images, which in general are external to this architec-
ture (though we show them anyway), are indexed by feature vectors describing their
spatial elements; of course the feature vector for the query is constructed dynamically.
Pointers to those images with sufficiently similar feature vectors (according to some
appropriate criteria) are brought into the working memory. The reason for this de-
composition of the retrieval process into stages is that matching in the second stage is
computationally expensive to perform; the first stage attempts to minimize the num-
ber of images over which the matching must be performed. Note that this stage may or
may not be present in some particular system. If it is not, then the working memory and
feature extractor would go away, and images in memory would no longer be indexed
by feature vectors. Several of the methods described herein are one stage methods of
exactly this sort.

In the selection stage, the semantic networks of the images in working memory are
matched with that of the query example. The images that match the target sufficiently
well (that is, their descriptions match, as discussed above) are collected and returned
to the user. Semantic networks describing the spatial structure of the image are con-
structed for each source image when they are entered into library, and, of course, the
semantic network for the query is generated dynamically. The matching process does
not depend on the specifics of the representations in the semantic networks, though re-
sults of matching naturally depend quite heavily on the specific representations. Hence,
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Figure 3: An example three-node semantic network in our language

the architecture is relatively independent of any particular representation used for the
spatial structure; it only requires that the knowledge representation be based on the
semantic network formalism.

3 Knowledge Representation
As indicated above, the first stage of the retrieval process uses partial knowledge of the
contents of a drawing in the form of feature vectors, and the second stage uses more
complete knowledge of the drawing’s contents in the form of semantic networks. Here
we discuss these issues in more detail.

3.1 Feature Vectors
The first stage of the retrieval process uses a vector of features, i.e., a vector of attribute-
value pairs, as a heuristic to gauge the potential of a source drawing matching the query
drawing. The feature vector simply is a multiset of the object types contained in a
drawing. Given a list of object shapes, we represent the feature vector as a mapping
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Figure 4: An example of a target image

from object type to its multiplicity:

Rectangle 7−→ 2

Circle 7−→ 3

Triangle 7−→ 1

A drawing is recalled if the multiset of shape types contained in it is a superset of that
of the query. The method scans all stored drawings, calculating whether or not the
multiset of objects in the target is a subset of the multiset of objects in each source
image, returning those for which this is the case. That is, if T is the feature vector for
the target, and S1, S2, . . . , Sk are the feature vectors of the images currently in memory,
then the method returns those images for which T ⊂ Si. The system recognized
individual lines, triangles, rectangles, and ellipses (circles and squares are special cases
of ellipses and rectangles, in which the height and width are equal—however, they are
not treated as being of a separate type).

Of course, more sophisticated systems could also be devised using, say, some prim-
itive and easily calculated spatial relationships (see, for example, [11]). Given a rela-
tional description like that in figure 3, a more interesting feature vector might look
something like this:

triangle 7−→ 2

circle 7−→ 1

left−of 7−→ 2

right−of 7−→ 2

contains 7−→ 1

In this case we’re now using the labels on the links as the “features” in our feature
vector. In the context of the problem, this makes sense, since the matching is based on
subgraph isomorphism, and can only map edges with the same label. As such, com-
puting the multiset subset on these sorts of features should add a bit more information
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Figure 5: Relational description of the image in figure 4

beyond simply the object types. We also use this scheme for feature vectors—we have
developed methods for both.

3.2 Relational Descriptions
The representation of the spatial structure of a image depends very heavily on what
is meant by “spatial structure.” Here we take it to mean the qualitative arrangement
of the various shapes in a line drawing. Given that, it still could mean many different
things, depending on how one chooses to represent the arrangement of a set of shapes,
and precisely what one means by “arrangement.” We do not attempt to address this
question, here. Rather, we are using an architecture and a method that does not depend
too heavily on what representation is chosen. Nevertheless, reasonable constraints must
be placed on the form of the representation.

Since we actually did build a system (several, in fact), we had to fix a language for
relational descriptions. That language was developed for proof of concept. However,
the relational descriptions were automatically generated, and as such we had to settle on
precise definitions of the terms. The five relation types we had were “left-of”, “right-
of”, “above”, “below”, and “contains”. Some of these are a little redundant (e.g. “left-
of” usually implies “right-of” as well), but not entirely, as you’ll see. The automatic
generation works by taking the input drawing (in XFig format) and comparing every
pair of shapes using the available predicates. If a particular predicate holds, a link is
added between the associated nodes in the semantic network, with the appropriate label.
The definitions of these predicate are as follows (s1 and s2 are two shapes appearing
in some drawing):

left-of s1 is “left-of” s2 if and only if the centroid3 of s1 is to the left of the centroid
3The centroid of a shape is the average of the centers of its vertices; in the case of ellipses and circles we
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of s2, the left edge of s1 (meaning the left-most extremity) is at least 20% of the
width of s1 past (on the left of) the left edge of s2, and the right edge of s1 is at
least 20% of the width of s1 past (on the left of) the right edge of s2

right-of s1 is “right-of” s2 if and only if the centroid of s1 is to the left of the centroid
of s2, the left edge of s1 is at least 20% past (on the right) the left edge of s2,
and the right edge of s1 is at least 20% past (on the right) the right edge of s2

above s1 is “above” s2 if and only if the centroid of s1 is above the centroid of s2, the
top edge of s1 is at least 20% past (above) the top edge of s2, and the bottom
edge of s1 is at least 20% past (above) the bottom edge of s2

below s1 is “below” s2 if and only if the centroid of s1 is below the centroid of s2, the
top edge of s1 is at least 20% past (below) the top edge of s2, and the bottom
edge of s1 is at least 20% past (below) the bottom edge of s2

contains s1 “contains” s2 if and only if the bounding box for s1 properly contains the
bounding box for s2, where the bounding box of a shape is defined by the top,
bottom, left, and right edges as defined above (top-most, bottom-most, left-most,
and right-most extremities).

Each of these predicates is applied to each pair of shapes in the image, and when the
predicate is true (by the above definitions) of some pair of shapes s1 and s2, then a
link from node s1 to s2 is added to the network. In figure 3, the image contains three
shapes—two triangles and a circle. In the network, A represents the network and B

and C represent the two triangles, B being the one containing circle A. As a more
interesting example, the image in figure 4 would be represented by a semantic network
like that in figure 5.

3.3 Reasoning
Details of both of the matching methods are discussed in the next section, but here we
discuss how this knowledge representation is used in these methods.

Resolution and unification treat a semantic network as a conjunction of ground liter-
als, where each ground literal is a relation that holds between two constants or variables
representing nodes in the semantic network (and, hence, the corresponding visual ob-
jects). A semantic network with nodes corresponding to spatial objects and links corre-
sponding to spatial relationships between these objects is represented in logical form as
a conjunction of ground literals: the spatial relations are the predicates, and the shapes
are the arguments. For the target drawing, we take the constants corresponding to the
objects as existentially quantified variables instead of constants. Given descriptions of
the target and source drawings, we add the source description to a knowledge base (a
local buffer), and send the target description (with existentially quantified variables) as
a query to the knowledge base. Resolution succeeds only when the terms of the target
(the links, in other words) can be applied to some set of constants (spatial objects) from
the source description.

used the proper geometric center
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For instance, if our target is P (A,B)∧Q(B,C), where A, B, and C are constants,
and our source is P (D,E)∧Q(E,F )∧R(F,G), where D, E, F , and G are constants,
we first turn the target description into ∃x, y, zP (x, y)∧Q(y, z), where x, y, and z are
variables, then resolve this with the source description. Resolution, being essentially
a reductio ad absurdum proof method, works by negating the query and using the
resolution rule of inference to cancel out matching terms. In this case the unification of
the two would bind x to D, y to E, and z to F , and the result would cancel out all of
the terms of the target. This would lead, eventually, to a contradictory conclusion and
success. The two networks corresponding to these logical terms, and the associated
matching, are shown in figure 6.

What has really been done is resolution has been used for it’s unification step. That
is, we are using unification to construct bindings from nodes in the target network to
nodes in the source, and resolution is simply the process by which global consistency
is ensured.

In the constraint satisfaction method, the variables in the query description are taken
as variables to which values must be assigned. These values are constants (i.e. nodes)
from the source descriptions. The constraints can be found from the query terms them-
selves: all of the relations that hold between a variable vi and vj must hold of the values
(nodes) to which they are assigned. This forms the set of constraints which must be
satisfied.

It is important to point out a critical difference between the two methods: the res-
olution and unification method is a test that is applied to each item in memory sepa-
rately, whereas the CSP-based method can be run on all the images in working memory
at once 4. If we want to return all matches, the CSP problem can be rephrased as the
problem of finding all variable assignments that satisfy the constraints, rather than sim-
ply finding a single assignment that satisfies the constraints.

4not necessarily in parallel, but the domains of the variables can range over the entire scope of memory
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Figure 7: An example of a source image. This image was retrieved by the image in fig-
ure 4; the idea is that the shapes in that figure can be found in this one in approximately
the same basic arrangement.

4 Methods
The core of the sorts of systems we’re describing here is the matching process. This
process finds a correspondence between the query drawing and the source drawings in
working memory, eliminating drawings with which no correspondence can be found.
We have used three basic kinds of methods for doing this: a depth-first search using
logical resolution and unification, and two methods for constraint satisfaction.

For these methods, we have some test data which were used to test their execu-
tion. The test data consists of a library of images for memory. In fact, there are three
libraries. In the case of the resolution and unification methods we had a small set of
eight images for populating memory (with three or four objects in each one), and nine
targets, each with two or three objects. This test set was mostly intended to demonstrate
that the algorithm was actually working correctly, and not as an exhaustive demonstra-
tion of the system’s capabilities. Call this test set A.

A second test set consisted of 28 source images for memory, ranging from 3 to
several dozen objects in each one, and the number of terms in the relational description
(or edges in the semantic networks) ranged from a couple of dozen to three or four
thousand in some cases. There were 15 targets in this test set, the first nine of which
were identical with those in test set A. Most of the source images were new, as well
(not all of the eight sources from test set A were used in this test set, but some were).
Call this test set B.

A third test set consisted of 42 source images (for memory), ranging from 3 to over
50 objects in each one (the average was around 12 or so), and the number of terms in the
description ranged from a couple of dozen to over eight thousand thousand (again, by
number of terms we mean the total number of links or edges in the semantic network).
There were 21 targets with this test set, with two to five objects in each, and up to
several dozen terms. The first fifteen of these targets were identical with the fifteen
targets from test set B (and, hence, the first nine were from test set A), and some of the
source images were taken from test set B, as well (but more than a dozen were added,
and some of the old ones were altered). Call this test set C.
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function RESOLVE(c1, c2) returns target description or ⊥
1: unified← FALSE
2: unifier ← ∅
3: retval← NIL
4: for all ` ∈ c1 do
5: if ¬unified then
6: x← UNIFY(FIRST(`), c2, unifier)
7: if x 6= ⊥ then
8: unifier ← x

9: unifed← TRUE
10: else
11: retval← APPEND(retval, {`})
12: if unified then
13: return APPLY-UNIFIER(unifier, retval)
14: else
15: return ⊥

Algorithm 1: The resolution and unification steps

Work in image retrieval (and information retrieval more generally) often tests recall
and precision. The former measures the fraction of those images that should have been
recalled by the search that actually were (according to some metric), and the latter
measures the fraction of images actually recalled that should have been. Since we are
defining the similarity metric in the problem to be one of subgraph isomorphism, any
algorithm that attempts to solve the problem will have a precision and a recall of 100%,
regardless of the domain.5 As such, these are not terribly relevant measures given our
characterization of the problem. Instead, we need to measure performance. Subgraph
isomorphism is known to be NP-Complete, and so any method that solves it generally
will break eventually. The question is how far it can be pushed before it reaches its
limit. Each of the methods run can be looked at a a search of some sort, and so we
have measured two things: states generated and running time. The running time is
potentially misleading, and hence we have state counts. On the other hand, the time
required to generate a state and test it may not correspond too well between different
sorts of methods, and so the relative running times are interesting to some extent.

4.1 Resolution and Unification
Given a query example, our first set of methods all test each source drawing sepa-

rately for subgraph isomorphism. That is, they determine if there is some correspon-
dence between the nodes of the query and the nodes of the source that preserves the
link structure. They do this by actually trying to find one: they match links, one at a
time, in the source with the query. When two such links share a label, they attempt to

5On the other hand, in a particular domain there may be a question of how well a particular language for
representing spatial structure captures the “right” information with which to make a matching, and in this
case recall and precision may become relevant again. However, this issue is beyond the scope of this paper.
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function MATCH(target, source) returns TRUE or FALSE

1: Open← {target}
2: while Open 6= ∅ do
3: current← POP(Open)
4: for all ` ∈ source do
5: term← RESOLVE(current, `)
6: if term 6= ⊥ then
7: if term = NIL then
8: return TRUE
9: PUSH(term, Open)

Algorithm 2: The core matching procedure

find a correspondence between their associated nodes. If the correspondence conflicts
with existing correspondences already made, it is abandoned; otherwise it is left in.
When a link in the query is matched with a link in the source, it is removed from the
query description, so that it cannot be matched again. The search is completed by using
the query description as a sort of “state” in a graph search. The goal is to eliminate all
terms, and the operators take terms from the source and match them with the target as
described above.

Given a query description and a term from the source, the resolution procedure
finds the source term within the target, unifies them, and returns the resolved result.
In terms of semantic networks, given the query network and an arch in the source (an
edge and the nodes it connects), the resolution procedure finds an arch in the query to
map onto the source arch, or returns failure (⊥) if none can be found.

For unification, we don’t actually need a complete unification algorithm; we only
need a fairly basic pattern-matching procedure that matches, say, left-of( x, y)
with left-of(r-1, r-2) by substituting the constants r-1 and r-2 for the vari-
ables x and y. If a term is simply a list, then this procedure runs in linear time (in the
length of a term, which here is three–the predicate name and two arguments): it first
compares predicate names, then compares either a variable with a constant, yielding a
potential substitution, or else a constant with a constant. The result is either failure or
a (potentially empty) list of bindings of variables to constants.

The resolution step, then, is straightforward. Resolution as a rule of inference that
works as follows: given, say ¬P(x, y) ∨ ¬Q(y, x) and P(a, b), the resolvent of the two
is ¬Q(b, a). The resolution step tries to unify the source term with each of the terms in
the target description, looking for a successful match. When it finds one, it applies the
binding to the whole target term, removes the matching term, and moves on. Algorithm
1 gives the details of the method.

The matching procedure begins with the query as an initial state, and continually
resolves each of the terms in the source with it one by one in a depth-first manner until
an empty target description has been reached, at which point success is reported. If at
some point there are no more possible paths to take, then failure is reported. The basic
outline of the procedure is like this:

13



Target time states
target A1 41 ms 217
target A2 15 ms 199
target A3 15 ms 153
target A4 16 ms 217
target A5 26 ms 153
target A6 15 ms 196
target A7 12 ms 115
target A8 3,759 ms 66,948
target A9 19 ms 196
Average 435 ms 7599

Table 1: Test results for 1 stage resolution method on test set A.

1. Choose a term ` from the source description, and resolve it with the current state
(i.e. the target description) as described above.

2. If this resolution fails, go back to step 1. Otherwise, we have a correspondence
between an edge (term) in the target and the edge represented by ` in the source,
as well as correspondences between two nodes (objects or object types) in the
target and two nodes in the source.

3. If all edges in the target have been mapped, return success. Otherwise, save the
mapping and return to step 1.

Algorithm 2 describes this procedure in detail.
We implemented this algorithm in ANSI Common Lisp and ran it on a worksta-

tion using the set of eight sources and nine targets described above. The results are
described in table 1.

In and of themselves these numbers mean nothing. They simply serve to demon-
strate that the program does, in fact, run, and on a very simple test set it can perform
retrieval in under 1 second in most cases, and in the worst case under five seconds. For
most of the queries, the number of states generated was in the hundreds, but for one
of the targets it was over sixty thousand. These numbers will become more relevant
when we compare them to some other results later on. It should be pointed out that this
system was too slow to run on test sets B or C—it did not finish a single target within
a reasonable amount of time (meaning hours).

4.1.1 Two-stage retrieval

The method described so far is essentially running this rather expensive test (algorithm
2) on every image in memory. We have mentioned two-stage retrieval already, and
the use of feature vectors. A natural way to avoid having to run this expensive test on
every image in memory is to use superficial features of the images to retrieve candidates
which might match, and only run the matching procedure on those (or, equivalently, to
prune out those which will very obviously not match)
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Target time states
target A1 2 ms 35
target A2 10 ms 114
target A3 13 ms 127
target A4 16 ms 145
target A5 1 ms 17
target A6 10 ms 111
target A7 1 ms 37
target A8 1,294 ms 16,302
target A9 9 ms 111
Average 151 ms 1889

Table 2: Test results for 2 stage resolution method using test set A

Section 3.1 already described the two schemes we implemented: object types and
relation types. The implementation simply adds a slot to each item in memory with
this feature vector, generating it for each image in memory when that image is added.
The recall filters memory by comparing the feature vector of the target with those in
memory and returning only those that match the target (that is, the count on each feature
is higher than the corresponding one for the target).

Implementing this in the system just described resulted in the numbers from the
original test set (of 8 sources and 9 targets) summarized in table 2. The running times
and state counts have dropped noticeably, now. The two stage retrieval has seen some
improvement. Again, however, this program was too slow to run on test set B.

A slightly more sophisticated piece of information to capture in the feature vectors,
and a little closer to home in terms of relevance to the matching process, would be to
capture relation “types” (meaning labels: left-of, above, contains, etc.). It’s exactly the
same as before, with the multiset subset comparison, but now each number corresponds
to the number of edges with a particular label in the relational description. Implement-
ing and running this new first stage, however, resulted in nearly identical performance
on the test set above, with the only difference being with target 8, for which it took
11,431 states (about five thousand fewer than the original two-stage method) and 626
ms (about half the time). And again, test sets B and C proved too much for it.

4.2 Constraint Satisfaction
From what we have seen so far, the problem we are solving is essentially one of match-
ing objects (variables and constants) in the source and target under the constraints im-
posed by the terms in which they appear. The target has a set of variables to be matched
to some constant (i.e. value), and the relationships between these variables impose
constraints on the values to which they can be matched. This sounds like constraint
satisfaction [13]. We describe, here, a method for solving the problem using constraint
satisfaction using backtracking, which we describe later.

A constraint satisfaction problem is one of assigning values to variables under some
constraints [13]. In general, these constraints are represented as relations (i.e. sets of
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function INITDOMAINS returns Initial Target Domains
1: Let Nodes be a list of all the nodes in the query
2: InitDomain[∗]← ∅
3: for all w ∈ Nodes do
4: Let Arches be a list of all the arches in which w appears
5: MappedNodes← none
6: for all arch ∈ Arches do
7: Let Candidates be a list of all nodes from memory incident on an arch

whose label matches arch (either incoming or outgoing as appropriate)
8: if MappedNodes = none then
9: MappedNodes← Candidates

10: else
11: MappedNodes← Candidates ∩MappedNodes

12: InitDomain[w]←MappedNodes

13: return InitDomain[∗]

Algorithm 3: Initialize Domains

ordered n-tuples) over subsets of the variables. Each variable in a CSP has a domain of
allowed values (possibly the same domain for all variables). The size of the domain(s)
can have a large influence on the difficulty of solving the CSP, but mostly the nature of
the constraints determines the difficulty of the CSP.

The constraint satisfaction methods described here treat the nodes in the query as
variables to be assigned values. The potential values are the nodes from the source
descriptions in memory, all of which are considered at once—that is, we are no longer
performing a separate test on each source in memory, as with the resolution and unifica-
tion methods; we are now running a search procedure on the entire memory considered
collectively. The constraints on the values assigned to the variables (the target nodes)
are precisely those imposed by the subgraph isomorphism problem: if nodes A and B

from the target are to be matched with nodes X and Y from memory, respectively, then,
first, X and Y must be in the same description; second, all relations that hold between
A and B must also hold between X and Y , respectively6. If these constraints are met,
then A can be matched with X and B can me matched with Y . Here our constraints
are all either unary (say, A is a circle—a type constraint), or binary (say, A is left of
B). The only exception is the constraint that all values be from the same description,
but this can be inferred from the binary constraints.

4.2.1 Generate and Test

The key advantage in the methods chosen to solve the problem is not actually the
constraint satisfaction method (which is rather unremarkable), but the fact that a cou-
ple of passes can be made beforehand to reduce the domains of the variables before the
backtracking search runs. This serves to reduce the total number of possible solutions

6Observe, here, that the latter condition implies the former.
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function REDUCEDOMAINS returns Reduced Target Domains
1: InitDomain[∗]← INITDOMAINS()
2: Compute the document ids for each list in InitDomains[∗]
3: Let ReferenceList be the intersection across all of these lists
4: Domain[∗]← ∅
5: for all w ∈ Nodes do
6: CurrentList← ∅
7: for all i ∈ InitDomain[w] do
8: if the document id of i is in ReferenceList then
9: Add i to CurrentList

10: Domain[w]← CurrentList

11: return Domain[∗]

Algorithm 4: Reduce Domains

that can be generated, and hence speed up the process (potentially by a lot). The first
stage simply initializes the target domains to sets of values which have the same incom-
ing and outgoing edges. The second stage reduces these domains by eliminating values
that are not all in the same image. We describe these stages in more detail below.

This algorithm works by maintaining an index of all the arches across all of the
source descriptions. It recalls individual terms from memory and puts them together to
form the complete matching. This process is the core of the algorithm, and works in
three phases: initialization of domains, reduction of domains, and finding the matching,
where matching means subgraph isomorphism. The first two phases serve to limit the
selection of values for each variable, and the third actually computes the matchings
(in fact, it computes all possible matchings). Note that in the following, an arch is
a link (relation) together with its two incident nodes (the arguments to the relation),
the “relative position” of a node in an arch refers to whether it is on the incoming or
outgoing end of the arch (in general, links in a semantic network are directed), and, to
say one arch “matches” another means their links represent the same relation.

The first phase (initialize domains) is described by algorithm 3. It works by finding
nodes in memory that “look similar” to the query nodes: if a query node A is incident
on, say, three links whose labels are R, S, and T , then the algorithm builds a list of all
nodes in memory—across all the source descriptions—that have at least three incident
links with labels R, S, and T .

The second phase (reduce domains), described in algorithm 4, works by ensuring
that the set of source descriptions (document ids) that are represented in the domain of
(list of values for) each variable is the same. This serves to eliminate any value from
the domain of any variable that does not come from a description represented in every
other variable’s domain.

The last phase (find matchings), described in algorithm 5, actually solves the prob-
lem. The basic procedure is one that generates all likely solutions, and go back and
eliminate the ones that do not work. The test, here, is actual subgraph isomorphism:
if A is related to B in the target, then the relations (links, edges) between m(A) and
m(B) must include at least those that held between A and B, where m(∗) is a matching
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function FINDMATCHINGS

1: Domain[∗]← REDUCEDOMAINS()
2: Let Mappings[∗] be nil
{Create Combinations}

3: Let i be 0
4: for each unique choice of one item from each list in Domain do
5: if All nodes in this list are from the same document then
6: Let Mappings[i] be this list
7: Increment i by 1
{Eliminate Wrong Combinations}

8: for i = 0 to |Mappings| − 1 do
9: for each distinct pair of nodes a, b in Nodes do

10: for each relation r that exists between a and b do
11: if no relation r exists between Mappings[i][a] and Mappings[i][b] then
12: eliminate Mappings[i]
13: Each item (list) in Mappings now corresponds to a projection from the query to

some document in memory.

Algorithm 5: Find Matchings

from target to source. This algorithm returns all valid matchings. The idea is that the
first two phases have restricted the set of possible matchings so that there aren’t nearly
as many, now, as there would have been if pure generate-and-test had been done.

Discrimination Trees An issue with the method discussed above which has not been
mentioned yet is indexing. Specifically, the method is constantly searching memory
for individual terms that match a given pattern. This requires indexing the semantic
networks in memory by the individual terms they contain. In test set C, there are
over forty thousand terms across all 42 source images. Retrieving them requires a
pattern-matching function—the same sort of simplified “unification” routine used in
the resolution-based method. Running this routine on every item in a list of forty
thousand is probably not the wisest design decision we could make.

Logical reasoning systems often use discrimination trees to index logical terms.
Discrimination trees are a common tool in AI, but in this application the root node asks
what the predicate is, the next node down in the tree asks what the first argument is,
and so on. In some ways, this is a generalization of a common data structure known as
a trie, often used to index words in a dictionary for use in spell checkers (for example).
Our trees are going to be of fixed shape because of the limited nature of the terms
(every term has two constants for arguments—never one or three, never functions as
arguments, etc.), and we could probably replace it with a table of some sort. However,
at the level of implementation the distinction is going to be lost, and the two methods
will work more or less identically.

The system actually works by maintaining a separate tree for each predicate (there
are five in our language, so there are five trees in the index). In each tree is actually a
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list of n items, where n is the number of arguments to the predicate in question. Since
we’re dealing with semantic networks, each predicate is actually an edge between two
nodes, and so there are two arguments. Thus, the list is of length two. The first item
under that list has two parts: the first part is a list of every edge with the right label
across all source descriptions in memory, and the second is another list, this time of
every node in every semantic network in memory. Under each node is, finally, a list
of all the edges coming out of that node (i.e. terms for which that node is the first
argument). Likewise, in our original, top-level list of two items, the second item has
two items: the first is that same list of all edges with the appropriate label across all
source descriptions in memory, and the other is another list of all of the nodes across all
images in memory. Under each one of these is, again, a list of all of the edges that come
into that node (i.e. terms for which that node is the second argument to the predicate).
So, given a pattern such as P (x, y), the index looks up the answers as follows:

1. Find the tree for predicate P .

2. There are two lists for P . If x is a constant (i.e. a specific node), then lookup that
constant in the second part of the first list for P—this will be a list of edges that
go out of the node referred to by x. Otherwise, if x is a variable, return the first
part of the first list for P—this will be a list of all edges named P in the graph.

3. If y is a constant, look up that constant in the second part of the second list
for P—this will be a list of all edges coming into node y. Otherwise, if y is a
variable, return the first part of the second list for P—this will be a list of all
edges named P in the graph..

4. Compare the lengths of the lists from steps 2 and 3 (if the first item of a list is its
length, this can be computed almost instantly). Take the shorter of the two.

5. Run a pattern-matching routine (such as a simple unification procedure) on each
item in the list of answers you have, and return all those items that unify with
(i.e. match) the pattern.

This algorithm can be generalized into a recursive algorithm that can index any single
predicate calculus term (i.e. a predicate with any number of arguments that can be
variables, constants, or functions, whose arguments in turn can be variables, constants,
or other functions). However, we have no need for the general discrimination tree
algorithm, here.

Test Results Table 3 summarizes the results of running this method on test set A.
Three things are of interest: (1) the times are all four ms or less, and most are two,
(2) the number of states generated for each target is an order of magnitude lower than
for the resolution-based methods, and (3) target 8, which gave the resolution methods
so much trouble, was retrieved in 3 ms and with only 3 states (the fewest possible—
there were 3 objects, and hence 3 variables to match, so apparently the first two phases
exactly determined the matching, leaving essentially no work for the matching phase).
The results of running the method on test set B is summarized in table 4, and for test
set C in table 5. The important thing to note about test set B is that it actually finished
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Target time states
target A1 2 ms 42
target A2 2 ms 9
target A3 2 ms 12
target A4 2 ms 20
target A5 2 ms 6
target A6 2 ms 12
target A7 4 ms 16
target A8 3 ms 3
target A9 2 ms 12
Average 2.3 ms 14.7

Table 3: Test results for 1 stage constraint satisfaction method on test set A

all of the tests, and all but one in under 5 seconds, while generating thousands of states
in most cases. In test set C, the important thing to note is that retrieval times are new
up to several seconds, and the state counts are tens of thousands in most cases, while
millions of states were generated for a few. Also, the last five targets never resulted in
an answer after several hours of running.

4.2.2 Backtracking

Like the last one, this algorithm works by maintaining an index of all the arches across
all of the source descriptions (using the same discrimination tree method described
above), and recalling individual terms from memory to put them together to form the
complete matching. Once again, there are three phases: initialization of domains, re-
duction of domains, and finding the matching. The first two phases are identical to the
previous method, and are described in algorithms 3 and 4. The key difference, now is
in phase three.

This last phase (find matchings), described in algorithm 6, is a backtracking pro-
cedure, now, that works essentially as a depth first search (once again). It proceeds
in a way not unlike the resolution method did, assigning one variable from the target
at a time. The only test is that the current assignment be consistent with the previous
assignments made. The set of assignments made so far, as well as the domains of unas-
signed variables, are all stored in the current state. Algorithm 7 details this consistency
check. The depth first search this time builds a complete search tree, returning all valid
matches instead of just one (as the resolution method did).

Table 6 summarizes the test results of running this method on test set A. Not one
target required a search of more than 8 states. Even target A8, which gave the resolution
methods so much trouble, used a measly 3 states and 3 ms. This performance, however,
is comparable to those of the generate and test method described above. A bit more
information can be seen in test set B, summarized in table 7. Times on the first seven
targets are similar, but the state counts, now are an order of magnitude lower, in the
dozens or hundreds rather than the thousands. Target 8 saw a state count of 723 instead
of over three hundred thousand, and (perhaps the most dramatic difference), target 11
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Target time states
target B1 0.6 s 8,204
target B2 0.7 s 6,104
target B3 0.5 s 735
target B4 0.5 s 548
target B5 0.7 s 9,223
target B6 0.6 s 5042
target B7 0.9 s 12,244
target B8 3.2 s 304,250
target B9 0.6 s 5,042
target B10 4.0 s 14,005
target B11 58.3 s 17,654,995
target B12 4.2 s 286,304
target B13 2.1 s 28,895
target B14 1.2 s 5,128
target B15 4.2 s 357,008
Average 5.48 s 1,246,515

Table 4: Test results for 1 stage constraint satisfaction method on test set B

function FINDMATCHINGS

1: n← |Nodes|
2: Let Mappings[∗] be nil
3: k ← 0
4: Open← {(nil,nil)}
5: while Open 6= ∅ do
6: (w, current)← POP(Open)
7: if w = nil then
8: w ← 1
9: else

10: w ← w + 1
11: for all j ∈ Domain[w] do
12: if CONSISTENT(j, current) then
13: new ← APPEND(current, j)
14: if w = n then
15: Mappings[k]← new

16: k ← k + 1
17: else
18: PUSH((w, new), Open)
19: Each item (list) in Mappings now corresponds to a matching from the query to

some document in memory.

Algorithm 6: Find Matchings (Backtracking)
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Target time states
target C1 2.9 s 29,160
target C2 3.1 s 24,905
target C3 2.5 s 5,455
target C4 2.6 s 5,432
target C5 3.2 s 36,954
target C6 2.8 s 22,554
target C7 3.7 s 39,452
target C8 20.8 s 3,160,394
target C9 2.8 s 22,554
target C10 16:04 m:s 359,116,143
target C11 13:25 m:s 324,153,998
target C12 27 s 3,330,498
target C13 10.1 s 63,777
target C14 6.8 s 74,157
target C15 17.4 s 2,069,391
target C16 2:43 m:s 2,560,188
target C17 - -
target C18 - -
target C19 - -
target C20 - -
target C21 - -
Average 2:16 s 46,314,334

Table 5: Test results for 1 stage constraint satisfaction method on test set C. Targets 17
to 21 were not completed within a reasonable amount of time (several hours). Averages
reported are over the first 16 targets.

function CONSISTENT(i, j) returns TRUE or FALSE

1: if current = nil then
2: return TRUE
3: for all i ∈ {1, . . . , w − 1} do
4: if Not all relations between i and w can be found among the relations between

current[i] and j then
5: return FALSE

Algorithm 7: Consistency Check
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Target time states
target A1 38 ms 8
target A2 1 ms 6
target A3 2 ms 6
target A4 2 ms 8
target A5 2 ms 4
target A6 4 ms 6
target A7 2 ms 6
target A8 3 ms 3
target A9 2 ms 6
Average 6.2 ms 5.9

Table 6: Test results for 1 stage backtracking method using test set A

was retrieved in seven seconds instead of nearly a minute, and while generating only
about a thousand states instead of seventeen million.

Even more interesting results can be seen in test set C, summarized in table 8. Upon
comparison to the generate and test method, first of all, it actually returned answers for
all 21 targets. On the first seven, once again the state counts are an order of magnitude
lower, closer to 1,000 than to 20,000. In target 8, the state count went from over three
million to less than three thousand, a 99% reduction. The rest of the targets showed
similar improvement in terms of state count. Notice, however, than running times are
less predictable; even when there is a substantial reduction in the number of states
generated, running time may not drop by that much, or at all in some cases. It’s not
immediately clear what this means, but for now we can simply say that it serves to
underscore the unreliability of running time as an objective measure of performance.

4.2.3 Two-Stage Retrieval

If the two-stage retrieval sped up the resolution method, it seems reasonable to expect it
to improve the performance of our constraint satisfaction methods, as well. Once again,
the first kind of feature vector used was the object type comparisons, and the second
was the relation types. The first stage (feature vector comparison) was the same one
as used in the resolution-based method (section 4.1.1). The results, however, were a
little surprising: both in terms of running times and state counts, there was virtually no
difference at all between the original and the two stage constraint satisfaction methods.
Furthermore, relation types once again made no difference at all over object types. The
only savings observed was that on target 11 the running time of the generate and test
method (section 4.2.1) dropped by about ten seconds and the state count went down by
a proportional amount. On several other targets, similarly small savings (5-15%) were
seen. Other than these, the running times were nearly identical and the state counts
actually were identical; on average the drop in both was on the order of about 1%.
Similarly small or nonexistent reductions were observed when the two stage methods
were applied to the backtracking algorithm. It seems that the first stage of the retrieval,
here, is not eliminating anything that couldn’t have been eliminated in the first two
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Target time states
target B1 1.1 s 393
target B2 1.0 s 519
target B3 0.6 s 62
target B4 0.5 s 47
target B5 1.0 s 620
target B6 0.9 s 251
target B7 1.6 s 707
target B8 4.0 s 723
target B9 0.9 s 251
target B10 3.6 s 53
target B11 7.3 s 1131
target B12 3.1 s 603
target B13 2.0 s 35
target B14 1.1 s 119
target B15 4.0 s 1251
Average 2.18 s 451

Table 7: Test results for 1 stage backtracking method using test set B

Target time (s) states
target C1 0:06 1064
target C2 0:06 828
target C3 0:03 248
target C4 0:03 289
target C5 0:06 1718
target C6 0:05 864
target C7 0:09 1524
target C8 0:34 2,722
target C9 0:05 564
target C10 0:26 1,029
target C11 1:13 13,093
target C12 0:20 3,089
target C13 0:10 43
target C14 0:07 500
target C15 0:20 2,167
target C16 0:38 848
target C17 0:49 4,099
target C18 0:30 1,322
target C19 0:36 3,732
target C20 0:48 1,851
target C21 3:00 3,574
Average 29.23 2991.9

Table 8: Test results for 1 stage backtracking method on test set C
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phases of the methods described (initialization and reduction of the domains). There
are other interpretations, which we discuss later.

4.3 Summary
The core of the resolution-based methods—the MATCH function described in section
4.1—is a depth-first search. In general, the time complexity of depth-first search is on
the order of O(kd) in the worst case, where k is the branching factor of the state space
and d is the maximum depth. Depth here refers to the number of terms in the query,
and the branching factor is the number of terms in the source description, since at each
step the set of operators is really the terms in the source available to resolve with the
target. However, the space complexity, as with depth-first search in general, is only
O(kd), i.e. it’s linear in the size of the problem. These numbers only hold per test,
however, and the algorithm must repeat the test for each image in memory (or working
memory, in the case of the 2 stage version). When the initial recall is not done (as in
the 1 stage version), and assuming the largest source has k terms in it, and there are n

sources in memory, the overall time complexity is O(n · kd).
The time (and space) complexity of a generate and test constraint satisfaction algo-

rithm in general is O(kd) for much the same reason: it covers the entire search space.
However, in this case the k is the number of terms across all the sources. Using the
terms from above, the new k is at most n · k, so we now have an algorithm with time
complexity of O((n · k)d). There are two things to consider, here: first, the largest
source may have k terms, but the average may be substantially less than that, and sec-
ond, this algorithm prunes the domain size for each variable considerably in the first
two steps (initialization and reduction of domains), and so the time complexity is ac-
tually much less than that. The resolution method must resolve a given source term
with any term from the target at each step in the above formula. The generate and test
method, however, is generating the states rather quickly, with very little processing,
and taking most of the time in the checking of those final states (which represent com-
plete assignments of values to variables). An interesting question to answer would be
whether it is the last stage or the first two stages that make the most difference. One
way to answer that would be to see what the output of the first two stages is; that is, by
how much is the state space reduced in size by the first two stages? A second way to
answer the question would be to explore the results of only the third stage versus the
resolution and unification methods.

The complexity of the backtracking method is not captured very well in big-O
notation; it still spans the same search tree. However, it cuts off large subtrees that the
generate-and-test method does not, which may represent a substantial fraction of the
search tree. In addition, once all leaves are generated, the generate-and-test algorithm
only then goes through and tests them for validity. The backtracking method, on the
other hand, amortizes this cost of consistency checking over the entire search process,
checking as it goes. These two factors combined give a dramatic speedup over the
generate and test method.

Note that the retrieval process and the selection methods are largely independent of
the specifics of the spatial objects and spatial relations as long as they are represented in
the form of a semantic network. Therefore, we believe that the process and the methods
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will work still well for an expanded vocabulary of object types and relation types with
little degradation in performance. In fact, our simple language had links between every
pair of objects in the network. This means that, in terms of constraint satisfaction, the
constraint graph is a complete graph on n nodes. This is the worst-case scenario, in
some sense, for constraint satisfaction, since it means there is little or no structure to
be exploited by such improvements as forward checking, intelligent variable ordering,
dependency-directed backtracking, and so on. A more complex language that, for in-
stance, only compared “nearby” objects, had groups (and represented groups as nodes
in the network), and had other such notions to complicate the representation would
probably allow more sophisticated techniques to be used to exploit this new structure
in the state space.

5 Discussion
The problem of associative image retrieval recently has received enormous attention in
the literature on information retrieval and knowledge management. Extensive surveys
of this literature show that almost all earlier work has focused on the use of numerical
and statistical techniques for extracting and comparing low-level features such as color,
texture, shape and spatial locations from bit-mapped encodings of complex images
[12, 23, 21, 22]. Various approaches involve the making of histograms of various sorts
(such as simple color histograms) representing some distribution that characterizes the
image somehow (such as the distribution of colors in the image over some color space
like RGB). Similarity can then be computed simply by comparing the histograms. One
possibility is a “filter histogram”, in which some number of filters—say, a number of
texture filters, gauging the presence of some particular texture pattern in the image—
are all performed on all images, and their responses are gathered in a sort of histogram,
on which comparisons may be made. “Texture,” in this context, is usually taken to
mean a small repeated spatial pattern of some sort, say of small dots and bars at various
orientations. For instance, a field of yellow and blue flowers may appear as a pattern of
repeated yellow and blue dots, with some bits of green scattered between them. Filter
responses can gauge the presence of particular kinds of patterns in an image. Some
more sophisticated approaches may segment images somehow—say, using color or
texture—and characterize these segmented regions by their color, texture, and shape.
This sort of information is generally modeled statistically, and can be gathered into
feature vectors which can then be used as the basis for retrieval methods [10]. Once
images have been thus described, standard sorts of information retrieval methods may
be applied.

The problem with much of this work is that it is characterizing the “content” of
images at a very low level, one that may not be terribly useful in many applications.
Although the work sometimes deals with spatial layouts of color or texture regions,
it treats this layout as a sort of template. Furthermore, the layout itself is generally
characterized only implicitly, as numerical interrelationships that happen to exist be-
tween various pieces of the data (say, the locations within the image that these shapes
appear). Statistical models may offer some robustness, here, but cannot capture the sort
of abstract, qualitative reasoning we’re speaking of in this paper.
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Levinson and Ellis [15, 16] have investigated the general problem of matching two
semantic networks, though not specifically the task of retrieving 2-D line drawings by
example. They describe a matching method in which the source networks are organized
in a graph-subgraph hierarchy. While our retrieval process and selection methods are
quite different from theirs, our notion of similarity as graph containment is similar to
their proposals.

Do and Gross [4, 11] describe a method for retrieving 2-D line drawings in the
domain of architectural design. Do and Gross’ heuristic method is very simple: given
two drawings, it compares the type and number of spatial elements and the spatial
relations by counting. Their method is roughly equivalent to the heuristic step in our
first method. One complication in their ideas is that the user can select the level of
description; that is, what objects and relations are represented, and hence counted.
Their system makes frequent concessions to user interaction like this, leaving many
decisions open to the user rather than to some AI method. Certainly there is some
merit to this idea.

Ounis and Paşca [18, 19] view the problem of associative image retrieval as one
of computing projections over conceptual graphs representing their content. Although
they do not describe it as constraint satisfaction, their algorithm, in fact, is doing con-
straint satisfaction to compute the projection. Our constraint satisfaction algorithm is
inspired in part by their work, and represents yet another variation of the standard CSP
techniques. Their system, in practice, is quite different from ours. Images must be
annotated by hand with descriptions of their content, and the system itself was actu-
ally written on top of a DBMS. Their representation also had type hierarchies, both
of objects and of relations, and indices involved “acceleration tables” that computed
matches using these type hierarchies as guides. It’s not entirely clear what the advan-
tage of these type hierarchies is, but it is an interesting approach.

Börner et al. compute the maximal common subgraph of the query drawing with the
stored drawings. Given the computational complexity of computing maximal common
subgraph, we expect that this method can be successful only in specific domains in
which the graphs representing the drawings are small and sparse.

We should point out that the idea of a two stage retrieval is not new. Indeed, two
stage retrieval appears to be a prominent theme in much of information retrieval (as
even a cursory web search reveals). In addition, MAC/FAC [9] describes a similar idea
in the context of cognitive models of analogical reasoning. Of course, wee are not
attempting to model any particular aspects of human reasoning.

Although we stated earlier that little or no work is out there on visual retrieval
using spatial relationships, in fact there has been some work in information retrieval
in this direction [2, 14, 17]. There has also been some work in what are sometimes
called “spatial databases,” such as in geographic information systems [5, 6, 20]. This
research has focussed on relational query languages that can either be automatically
extracted from some drawn query (as with Egenhofer’s work on Spatial-Query-by-
Sketch, a query drawing system for geographic information systems), or else entered
textually somehow (say, using SQL). The work in these areas tends towards, on the
one hand, expressive languages that make the retrieval problem intractable [20], or, on
the other hand, much less expressive representations that effectively turn the queries
into mere templates. Egenhofer’s work, we should point out, deals with topological
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relations between spatial regions (such as overlap or containment) represented as se-
mantic networks in very much the way we are talking about [6]. However, though it
deals with query formation, this work does not deal with retrieval per se, which as we
have pointed out is, in fact, a hard problem in and of itself, given these sorts of network
representations.

Ferguson and Forbus [8] too address a different problem from our work, viz., detec-
tion of regularities in a 2-D line drawing. Their representation of a drawing is similar
to ours: encoding a drawing in a graph of spatial elements and spatial relations among
them. The system described—GeoRep—is essentially a rule engine based on an LTMS
that can compute relational descriptions of images given some rule set defining an ap-
propriate language. It is divided into two components; the first computes salient, low-
level visual features such as proximity, parallelism, and connectedness of objects, and
feeds this information to the rule engine. The rules are meant to capture high-level,
domain-specific (and possibly task-specific) knowledge that can aid representation (for
instance there is a rule set for circuit diagrams).

6 Future Work
Subgraph isomorphism, or projection, is a fairly restrictive notion of similarity. Cer-
tainly, given the relationship of the image to its description, some more interesting
measures of similarity might be devised with more interesting domain languages, but
the problem of similarity of description remains. One possible extension is to relax the
problem into one of computing the maximal common subgraph—or, more precisely,
to find the MCS of the target and some set of source images [1]. In addition to of-
fering a more relaxed notion of similarity, this approach allows a quantitative measure
of similarity: results could be ranked by the fraction of the target description that was
matched.

Another area of future work is with more interesting domains. Our examples were
rather simple; it seems that a more interesting domain would require the relational de-
scription to be more elaborate. In addition to offering a better test bed, this could offer
the chance for some more interesting constraint satisfaction techniques to take advan-
tage of structure inherent the problem—structure that was not present in our examples.
For instance, forward checking or intelligent variable ordering are two examples of
CSP techniques that take advantage of structure in the problem that are probably not
very useful in our language, here, since the constraint graphs are complete graphs. We
expect efforts in this direction to eventually break the methods described here; sub-
graph isomorphism and MCS are NP-Complete, in general, and at some point methods
based on them will eventually explode (in terms of running time). The interesting ques-
tion to us is regarding how far they can be pushed, and what interesting AI techniques
can be used to push them.

One interesting potential application of this work has to do with case-based decision
support in medical domains. Specifically, in the case of certain kinds of congenital
heart defects, there is ongoing work on automatic construction of patient-specific 3-D
models of the dynamics of the right ventricle of the heart [7]. The idea is to use these
models as the basis for a case-based reasoning system for aiding the assessment and
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management of congenital heart disease. A system to do this would have to be capable
of making some sort of analogical comparison between the RV models in different
cases, determining those cases in memory which best resemble the given case.

On a somewhat different note, vision-based applications seem interesting to us, and
it seems to us that there is a possibility of connecting our work with earlier CBIR work.
In particular, the work that has gone on has focused on either feature-based or (some-
what less often) template-based representations. It would be interesting to explore what
sorts of representations could be devised using more powerful languages based on re-
lational properties. Given that some interesting representations can be devised, our
work offers a method for retrieving images with similar descriptions. There may also
be some interesting representational issues in the domain of sketch-based recognition,
which may offer some good applications for this work (it should be pointed out that Do
and Gross’s work [4] is an example of previous work in this latter area).

In the longer term, we expect our work on use of spatial structure for image retrieval
by example will support visual analogy in general [3], by operating as a retrieval mech-
anism for more abstract representations of visual scenes that describe problem solving
instances. People seem to solve some problems by solving them visually (think of
sketching on a white board), or else by seeing a visual resemblance to something else,
and letting that inspire a solution. This is what we are referring to by “visual analogy”.
It should be pointed out that in this instance, the representations are now only visual in
that they describe visual aspects of a scene (appearance, shape, color, and so on), and
not because they describe any particular image or photograph.

One problem that our work has not yet begun to address, and in fact is largely
unaddressed in the literature, is that of ambiguity. In section 4.1.1, when we discussed
feature vectors we mentioned how drawings are sets of shapes, and the multiset of
shape types in a drawing could be used for initial recall (reminding). If we have a
drawing of two vertically adjacent squares (e.g., the number “8” on a digital clock), do
we really have two adjacent squares, a rectangle with a line through the middle, three
horizontal and two vertical lines, four vertical and three horizontal lines, or what? A
source drawing in memory could be any of these. A drawing retrieval program should
be able to deal smoothly with the multiple levels of description.

7 Conclusion
The problem of content-based image retrieval is quite open-ended with wide-ranging
applications. Most earlier work has investigated computation and comparison of low-
level content features of images such as object shapes and locations, and color and
texture distributions. In contrast, the emphasis of our work is on the use of spatial
structure for characterizing the contents of an image, evaluating similarity between
two-images, and retrieving of images by example. To isolate this issue of spatial struc-
ture from other content features, our work focuses on associative retrieval of 2-D line
drawings.

This paper describes several methods, based on resolution and unification on the
one hand, and constraint satisfaction on the other, for retrieving 2-D line drawings
similar to a query example. These methods operate on a relational description that ex-
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plicitly represents the spatial structure of the image, treating the relations as constraints
and the visual elements as the variables to be assigned values from memory.

We have also reported on several sets of experiments with the above retrieval pro-
cess and matching methods. These experiments lead to three specific conclusions:

1. The constraint satisfaction methods provide substantial computational benefits
over the resolution-based methods. Resolution and unification worked only for
the first test set, characterized by very small and simple problems, and did not
scale up to the larger and more complex problems in the second and third test
sets.

2. The backtracking constraint satisfaction method offers similarly substantial ben-
efits over constraint satisfaction by generate and test. The latter did not scale up
to the larger and more complex problems in the third test set.

3. The backtracking constraint satisfaction method with discrimination trees was
the fastest of the methods considered, and was the only one that finished all of
the tests in a reasonable amount of time.

While the above results were what one might expect given previous literature on
constraint satisfaction problems, our work also led to a surprising result: for the fastest
of the methods considered, two stage retrieval offered no substantial improvement in
performance over the one stage version. This clearly runs against the conventional
wisdom. Our work does not settle the issue by far, and so unraveling this issue will
require more work.
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