GEORGIA INSTITUTE OF TECHNOLOGY	OFFICE OF CONTRACT ADMINISTRATION
SPONSORED PROJECT TERMIN	
60	
	Date8/31/84
A K E-27-628 Project No. A E-27-628	School XXXX TE
Includes Subproject No.(s)	
Project Director(s) Dr. Wallace Carr	GTRI / XOUXX
Sponsor Monsanto Company	·
Title "Feasibility of Utilizing a Machnozzle t	o Pre-Dry Nonwoven Fabric"
Effective Completion Date: 12/31/83	(Performance) 12/31/83 (Reports)
Grant/Contract Closeout Actions Remaining:	
None	
X None	
Final Invoice or Final Fiscal Report (A	Already Submitted 3/30/84)
Closing Documents	
Final Report of Inventions	
Govt. Property Inventory & Related Ce	rtificate
Classified Material Certificate	
Other	
Continues Project No.	Continued by Project No.
OPIES TO:	
roject Director lesearch Administrative Network	Library GTRI
lesearch Property Management	Research Communications (2)
ccounting rocurement/EES Supply Services	Project File Other I. Newton
esearch Security Services	
eports Coordinator (OCA) egal Services	

Final Report

•

.

.

ı

FEASIBILITY OF UTILIZING A MACHNOZZLE TO PREDRY NONWOVEN FABRIC

W. W. Carr

GEORGIA INSTITUTE OF TECHNOLOGY The School of Textile Engineering Atlanta, Georgia 30332

Prepared for

Monsanto Fibers & Intermediates Company

Contracting Through

The Georgia Tech Research Institute Georgia Institute of Technology Atlanta, Georgia 30332

July 1984

/

TABLE OF CONTENTS

a new state in the sector of the sector of

_

1

		<u>Page</u>
LIST	OF TABLES	ii
LIST	OF FIGURES	iii
LIST	OF APPENDICES	۷
ABST	RACT	vi
1.	INTRODUCTION	1
2.	OBJECTIVE	1
3.	DESCRIPTION OF MACHNOZZLE	1
4.	TEST APPARATUS AND PROCEDURE	1
5.	TEST PLAN	5
6.	CALCULATIONS AND ASSUMPTIONS	6
7.	RESULTS AND DISCUSSION	8
	 7.1 Phase I 7.2 Phase II 7.3 Phase III 7.4 Physical Property Tests 	
8.	CONFIDENTIALITY AND PUBLICATIONS	31
9.	CONCLUSIONS	39
	Appendices	41
	References	51

LIST OF TABLES

N. State of the second

Table		Page
1.	Results of Machnozzle Test Performed on 2.0 oz/yd ² , Type 23 Cerex®	2
2.	Summary of Proposed Tests	7
3.	Process and Energy Cost Data	9
4.	Fabric Property Test Results	33
5.	Cerex [®] Physical Property Specification	35
6.	Fabric Property Sample Identification	37

LIST OF FIGURES

Figur	<u>`e</u>	Page
1.	Cross Section of the Machnozzle	3
2.	Test Apparatus	4
3.	The Variation of Fabric Regain with Steam Supply Pressure - Phase I - No Shim	10
4.	The Variation of Fabric Regain with Air Supply Pressure - Phase I - 2 Mil Shim	11
5.	The Variation of Fabric Regain with Air Supply Pressure - Phase I - 3 Mil Shim	12
6.	The Variation of Fabric Regain with Air Supply Pressure - Phase I - 5 Mil Shim	13
7.	Total Drying Cost Using Machnozzle and Thermal Dryer Versus Steam Supply Pressure - No Shim	15
8.	Total Drying Cost Using Machnozzle and Thermal Dryer Versus Air Supply Pressure - 2 Mil Shim	16
9.	Total Drying Cost Using Machnozzle and Thermal Dryer Versus Air Supply Pressure - 3 Mil Shim	17
10.	Total Drying Cost Using Machnozzle and Thermal Dryer Versus Air Supply Pressure - 5 Mil Shim	18
11.	The Effect of Wrap Angle on Fabric Regain, Phase II - Steam with no Shim	21
12.	The Effect of Wrap angle on Fabric Regain, Phase II - Steam with a 3 Mil Shim	22
13.	The Effect of Wrap Angle and Fabric Regain Phase II - Air with 3 Mil Shim	24
14.	The Effect of Fabric Weight on Machnozzle Performance Type 23 Fabrics - No Shim - Steam	25
15.	The Effect of Fabric Weight on Machnozzle Performanc: Type 23 Fabric - 3 Mil Shim - Air	26
16.	Total Drying Cost Versus Steam Supply Pessure 0.3 oz/yd ² , Type 23 Fabric - No Shim	27
17.	Total Drying Cost Versus Air Supply Pressure 0.3 oz/yd ² , Type 23 Fabric - 3 Mil Shim	28

LIST OF FIGURES (Continued)

الم المراجع من الأليان الي اليان الي الذي المالية المراجع من المراجع من المراجع من المراجع المراجع المراجع من ا المراجع المراجع

Figur	<u>e</u>	Page
18.	Total Drying Cost Versus Steam Supply Pressure 2.0 oz/yd ² , Type 23 Fabric - No Shim	. 29
19.	Total Drying Cost Versus Air Supply Pressure 2.0 oz/yd ² , Type 23 Fabric - 3 Mil Shim	30
20.	The Effect of Fabric Type on Machnozzle Performance 0.5 oz/yd ² - 3 Mil Shim - Air	32

LIST OF APPENDICES

20 4 · ·

Page

Α.	Compilation of Test Results	41
Β.	Gas Consumption Versus Gas Supply Pressure	48

/

ABSTRACT

. «دلا

The feasibility of using a Machnozzle to Predry Cerex® spunbonded, nylon 6,6 fabric has been investigated. The Machnozzle's moisture removing ability, energy efficiency, and impact on physical properties were studied. Tests were conducted with air and steam as the motive gas. The parameters varied during the tests were: fabric type, fabric weight, gas type, gas supply pressure, slot width of the Machnozzle and wrap angle on Machnozzle. The responses monitored were: gas flow rate, fabric regain (weight of water/weight of dry fabric) and physical properties of the fabric.

The tests were conducted in three phases. Information obtained from the earlier phases was used to establish optimal system parameters for testing in subsequent phases. Phase I was conducted to determine the effects of gas type, gas pressure and slot opening on the Machnozzle's moisture removing ability and on energy requirements. Phase II was conducted to establish the effects of wrap angle on moisture removal, energy requirements and fabric properties. The first two phases were conducted using 0.5 oz/yd², Type 23 Cerex® fabric. Phase III was carried out to determine the effects of fabric weight and fabric type on the Machnozzle's performance.

Tests results showed clearly that the Machnozzle can appreciably reduce (by as much as 121%) the regain of Cerex® fabric. Both steam and air were effective as the motive gas; however, lower fabric regains (9% versus 24%) were obtained with steam. Utilizing the Machnozzle to predry Cerex® fabric had no appreciable effect on the physical properties measured.

The moisture removed by the Machnozzle varied significantly with gas supply pressure, slot opening and wrap angles. Over the ranges of parameters tested, moisture removal increased as each of these parameters was increased. However, gas consumption also usually increased as these parameters were increased. Consequently, the energy cost of operating

vi

the Machnozzle also increased. Thus a cost/benefit analysis was made to determine optimal parameter settings.

The effect of fabric weight on the fabric regain following processing with the Machnozzle was small; however, the economics of dewatering with the Machnozzle varied greatly with fabric weight. Energy cost savings associated with using the Machnozzle to predry 0.3 oz/yd² and 0.5 oz/yd² Cerex® nonwoven fabric were small (4% and 18%); however, use of the Machnozzle as a predrying device did appreciably reduce energy cost in drying of 2.0 oz/yd² Cerex® nonwoven fabric. Energy cost was reduced by approximately 67%.

The effect of fabric type (23 versus 24) on the Machnozzle's ability to remove water was small. Also, the economics of utilizing the Machnozzle were similar for the two types of fabrics.

1. INTRODUCTION

Extensive testing [1-3] has demonstrated the feasibility of using the Machnozzle to predry sheeting-weight, woven fabric. However, no information on the utilization of the Machnozzle to dewater nonwoven fabrics has been published. A brief study of the Machnozzle's ability to predry 2.0 oz/yd², Type 23 Cerex[®] was conducted to obtain an indication of the viability of using the Machnozzle to dewater light-weight nonwoven fabrics. The test results (see Table 1) indicated the Machnozzle can significantly reduce the regain (pounds of water per pound of dry fabric) of Cerex[®]. Following the favorable results of the preliminary test, a project has been conducted to evaluate the Machnozzle as a predrying device for Cerex[®] spunbonded, nonwoven nylon 6,6 fabric.

2. OBJECTIVE

The objective of the project was to determine the feasibility of predrying Cerex® spunbonded, nonwoven Nylon 6,6 fabric using a Machnozzle. The Machnozzle's moisture removing ability, energy efficiency, and impact on physical properties was investigated. Both steam and air were studied as the motive gas.

3. DESCRIPTION OF THE MACHNOZZLE

The Machnozzle is a mechanical method of predrying textiles. A cross section of a Machnozzle is shown in Figure 1. In this device, a high pressure gas, such as steam or compressed air, is accelerated to sonic velocity by passing it through a narrow, converging slit. Fabric is passed along the slit exit, where the high-speed gas flow effects water removal. Water and residual matter entrained in and around the fibers are literally blown out of the fabric.

4. TEST APPARATUS AND PROCEDURE

The test apparatus used to wet out, squeeze and transport fabric across the Machnozzle is shown schematically in Figure 2. A 400 mm

Number	Sample (%)	R B Regain Before Machnozzle (%)	R A Regain After Machnozzle (%)	ΔR
	1	141	17	124
	2	154	13	141
	3	156	14	142
	4	171	12	159
	5 AVG.	<u>173</u> 159	$\frac{13}{14}$	$\tfrac{160}{145}$

Table 1. Results of Machnozzle Test Performed on 2.0 oz/yd², Type 23 Cerex®

1 Mar. 1 Mar. 1

Regain \equiv pounds of water per pound of dry fabric.

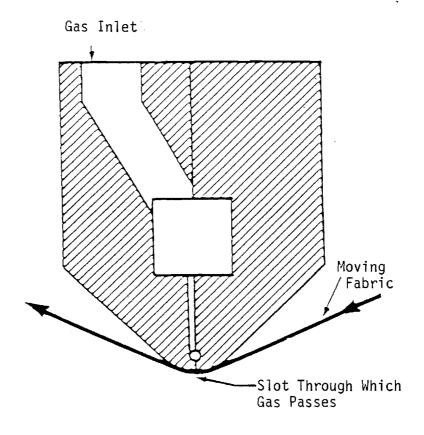
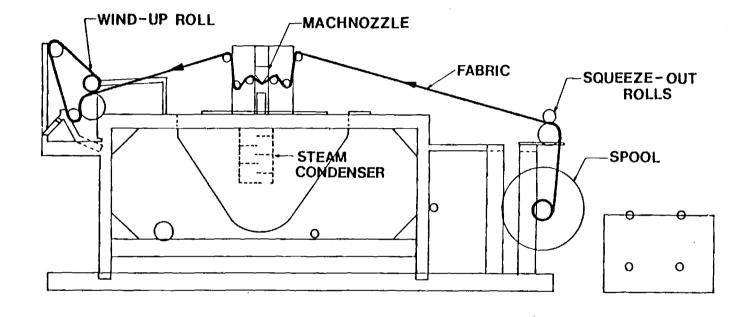



Figure 1. Cross Section of the Machnozzle.

.

ł

Figure 2. Test Set-Up

.

(approximately 16 inch) Machnozzle is mounted in a framework along with a series of guides. Variable speed gear motors allow fabric speed to be varied over a range of speeds from approximately 10 YPM to 90 YPM.

Either steam or air can be used as the motive gas for the Machnozzle. When steam is used, an electric resistance heated steam boiler is used to provide steam at various pressures up to approximately 90 psig. A 10-hp compressor is used to provide compressed air at pressures up to approximately 135 psig. Orifice plates are installed in the gas lines so flow rates can be measured.

The normal test procedure was as follows (see Figure 2):

- o Wet out the fabric and wind it onto the spool at the end of the machine.
- o Thread the fabric through the machine.
- o Set the boiler or compressor controller at the given gas supply pressure and wait for it to reach that pressure.
- o Turn on the gas line to the Machnozzle and allow the Machnozzle to heat up.
- o Set the drive roller variable speed gear motor for the given fabric speed.
- o Turn on the fabric drive and run fabric through the machine for the specified period.
- o Stop the machine and cut out fabric samples before and after the Machnozzle. Record relative humidity and gas flow rate. Sew the ends of the fabric together.
- o Weigh the fabric samples then dry the fabric samples overnight in an oven and reweigh them.

5. TEST PLAN

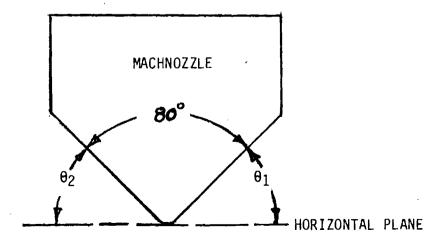
A series of tests was conducted to establish the Machnozzle's moisture removing ability, energy efficiency, and impact on physical properties. Tests were conducted with air and steam as the motive gas. The parameters varied during the tests were: fabric type, fabric weight,

gas type, slot width of the Machnozzle, wrap angle on Machnozzle and gas supply pressure. The responses monitored were: gas flow rate, fabric regain and physical properties of the fabric.

The tests were carried out in three phases. Information obtained from the earlier phases was used to establish optimal system parameters for testing in subsequent phases. Phase I was conducted to determine the effects of gas type, gas pressure and slot opening on the Machnozzle's moisture removing ability and on energy requirements. Phase II was conducted to establish the effects of wrap angle (see Table 2 for definition) on moisture removal, energy requirements, and fabric properties. Previous studies [1-3] have shown that wrap angle is an important parameter affecting moisture removal with sheeting-weight, woven fabric. The first two phases were conducted using 0.5 oz/yd², Type 23 Cerex® fabric. Phase III was carried out to determine if similar results would be obtained for other fabric weights and for Type 24 Cerex® fabric.

The proposed tests (as appeared in the proposal) are summarized in Table 2. The results of tests performed are summarized in Appendix A.

The physical property tests conducted were selected and performed by Monsanto Fibers & Intermediates Company. The tests included: Taber abrasion, Mullen burst strength, air permeability, tear strength, and thickness. Samples representing optimal test conditions for each fabric were supplied to Monsanto Fibers & Intermediates Company. The test results were compiled and furnish to Georgia Tech for inclusion in the final report.


6. CALCULATIONS AND ASSUMPTIONS

The preliminary test results showed clearly that the Machnozzle can significantly reduce fabric regain of Cerex[®]. However if the Machnozzle is to be a viable way of predrying nonwovens, it must also be attractive economically. Thus an analysis comparing the energy costs associated

Table 2.	Summary	of	Proposed	Tests
----------	---------	----	----------	-------

Fabric	Fabric Speed	Gas T	vpe	Gas	Wrap	Number of
Description	(ft/min)	Air	Steam	Pressure	Angle***	Test
<u>Phase I</u> 0.5 oz/yd ² Type 23	219	3 Slit Widths	1 Slit Width**	6 Pressures	θ ₁ =θ ₂ =50 ⁰	24
<u>Phase II</u> 0.5 oz/yd ² Type 23	219	Optimal Slit Width	1 Slit Width	Optimal	θ1=θ2=30° θ1=θ2=15° θ1=θ2= 0°	6
<u>Phase IIIa</u> 0.3 oz/yd ² Type 23	336*	Optimal Slit Width	1 Slit Width	3 Pressures	Optimal	6
<u>Phase IIIb</u> 2.0 oz/yd ² Type 23	54	Optimal Slit Width	1 Slit Width	3 Pressures	Optimal	6
<u>Phase IIIc</u> 0.5 oz/yd ² Type 24	219	Optimal Slit Width	1 Slit Width	3 Pressures	Optimal	6
					TOT	AL 48

*Maximum speed obtainable up to 336 ft/min will be run. *Minimal slit width will be used with steam. ***Wrap angle refers to θ_1 and θ_2 .

with the Machnozzle with those of the currently used vacuum-drum thermal dryer was made for each test.

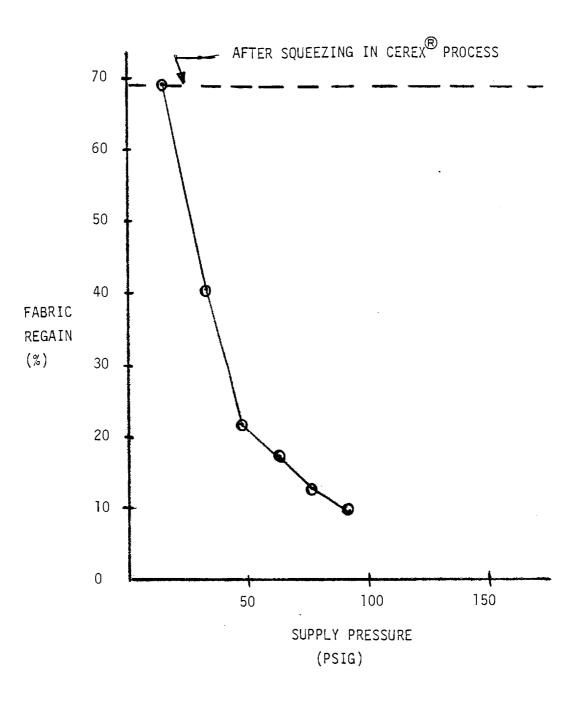
Calculations were based on process and energy cost data supplied by Monsanto (see Table 3). Fabric regain prior to the Machnozzle was higher than fabric regain just after squeezing in the Cerex® process. Calculations of moisture removal by the Machnozzle were made using the fabric regain ater squeezing in the Cerex® process since the Machnozzle would be located directly after squeezing in the plant situation.

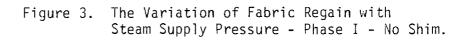
The assumption was made that water left in the fabric after the Machnozzle would be removed thermally, requiring the same amount of energy on a weight basis as the currently used process. The total cost of drying with Machnozzle was obtained by adding the energy costs of the Machnozzle with the costs of removing the remaining water thermally. The current costs of thermally drying Cerex® nonwoven fabric was based on data provided by Monsanto, indicating that approximately 4.0 pounds of steam is used to remove one pound of water.

7. RESULTS AND DISCUSSION

7.1 Phase I

Phase I was conducted to determine the effects of gas type, gas pressure, and slot opening on Machnozzle performance. The effects of these parameters on the Machnozzle's ability to remove water from Cerex[®] nonwoven fabric can be seen in Figure 3-6. Figure 3 shows that the Machnozzle can dewater Cerex[®] nonwoven fabric and that the amount of water removed depends on steam supply pressure. After squeezing in the $0.5oz/yd^2$, Type 23 Cerex[®] process, fabric regain is approximately 69%, which can be used to judge the performance of the Machnozzle. As steam supply pressure was increased in 15 psi increments from 15 psig to 90 psig, regain of fabric passed over the Machnozzle decreased. At 90 psig, fabric regain was reduced to approximately 10%.


Fabric Weigh (oz/yd2)	t Throughput (1b/hr)	Fabric Speed at Machnozzle (ft/min)	Fabric Regain Leaving Squeeze Rolls (lb water/lb dry fabric)
0.3	480	353	0.61
0.5	520	230	0.69
2.0	520	54	1.3


Table 3. Process and Energy Cost Data

.

UTILITY DATA

Steam Cost : \$8.16 per thousand pounds. Compressed Air Cost: \$0.30 per thousand per cubic foot.

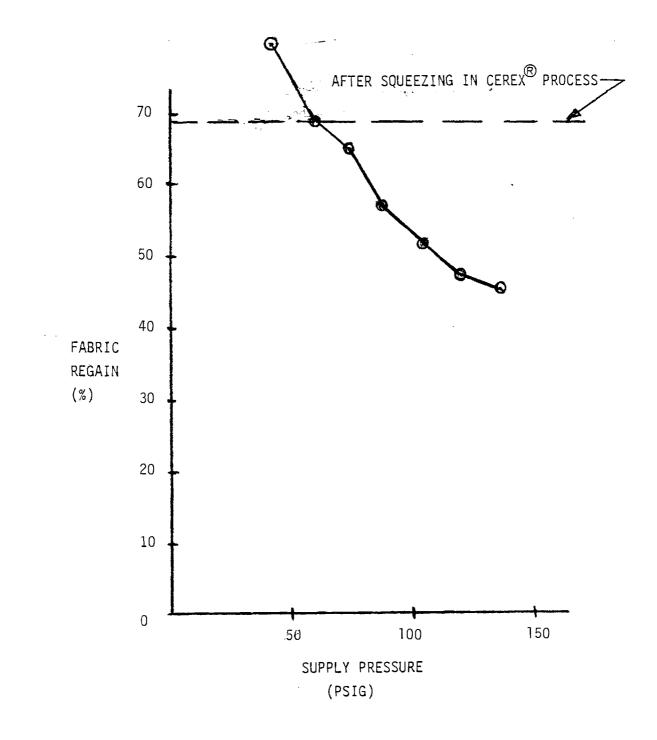


Figure 4. The Variation of Fabric Regain with Air Supply Pressure - Phase I - 2 Mil Shim.

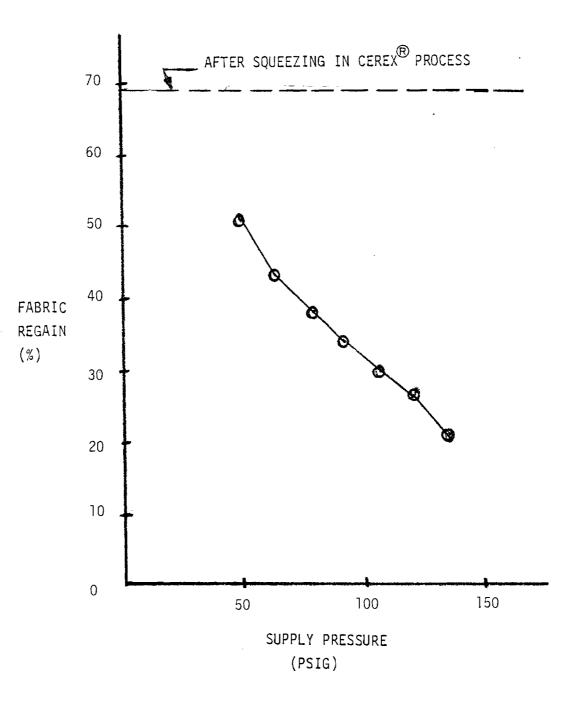


Figure 5. The Variation of Fabric Regain with Air Supply Pressure - Phase I - 3 Mil Shim.



Figure 6. The Variation of Fabric Regain with Air Supply Pressure - Phase I - 5 Mil Shim.

When air was used as the motive gas for the Machnozzle, a wider slot opening was required. Wider slots were obtained by using shims in the Machnozzle. The slot opening is approximately equal to the shim thickness. Figures 4-6 show the results of tests for shim thicknesses of 2, 3, and 5 mils, respectively. Similar to the results for steam, fabric regain decreased as supply pressure was increased. The figures reveal that for the range of parameters tested, the Machnozzle's moisture ability with the 2-mil shim is not as good as its performance with the other two shims.

Fabric regain was lower for the 5 mil shim at the lower supply pressures. However, as supply pressure was increased, the difference in regains obtained with the 3-mil and 5-mil shims was small. At a given supply pressure, air flow rate was higher for the 5-mil shim than for the 3-mil shim. Since the capacity of the compressed air system was limited, the highest air supply pressures that could be tested with the 3-mil and 5-mil shims were different. The highest supply pressure used with the 3-mil shim was 135 psig while the highest supply pressure that could be tested with the 5-mil shim was 105 psig. The fabric regains obtained at these highest supply pressures for the two shims were comparable (22% and 24%).

The lowest regain obtained using air was higher (22% versus 10%) than that obtained using steam. The difference may be due to the evaporative effects associated with using steam versus room temperature air.

The energy cost associated with drying 0.5 oz/yd², Type 23, Cerex[®] nonwoven fabric using the Machonozzle in conjuction with the currently used thermal dryes were calculated and compared with the cost of drying using only the thermal dryer. The results are plotted in Figures 7-10. Total drying cost is plotted versus gas pressure supplied to the Machnozzle. As supply pressure is increased, fabric regain is reduced which decreases the quantity of water to be removed by the thermal dryer. However, as gas supply pressure is increased, gas flow rate through the Machnozzle is increased. As a result, energy cost for operating the

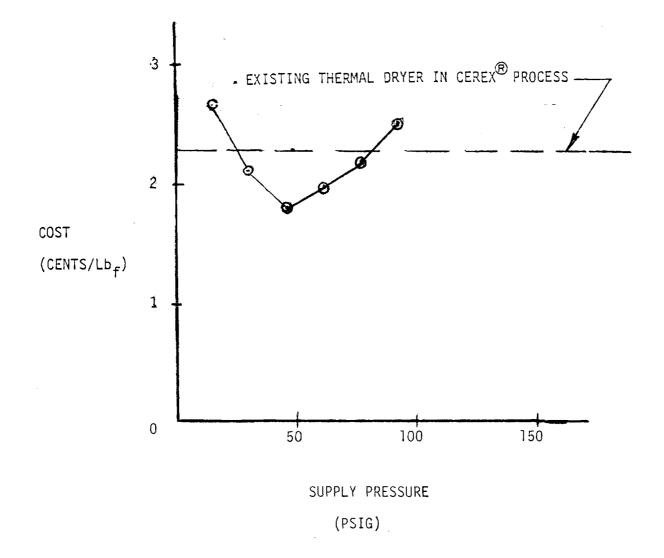
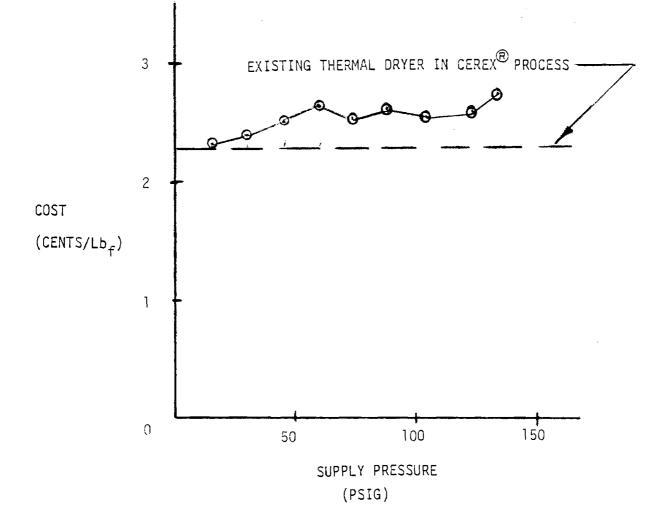
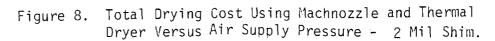




Figure 7. Total Drying Cost Using Machnozzle and Thermal Dryer Versus Steam Supply Pressure - No Shim.

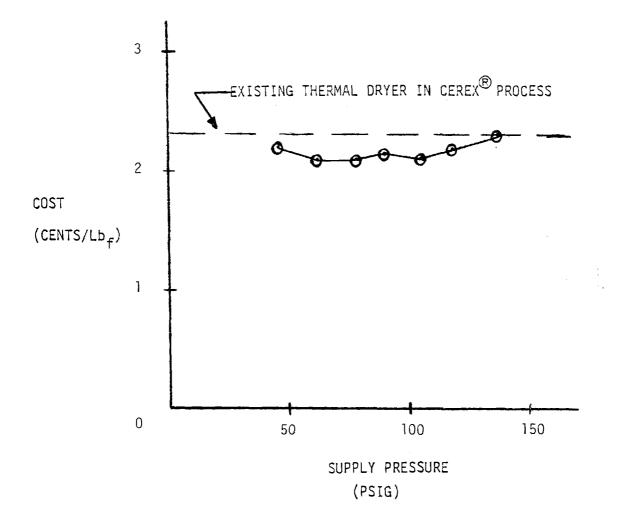


Figure 9. Total Drying Cost Using Machnozzle and Thermal Dryer Versus Air Supply Pressure - 3 Mil Shim.

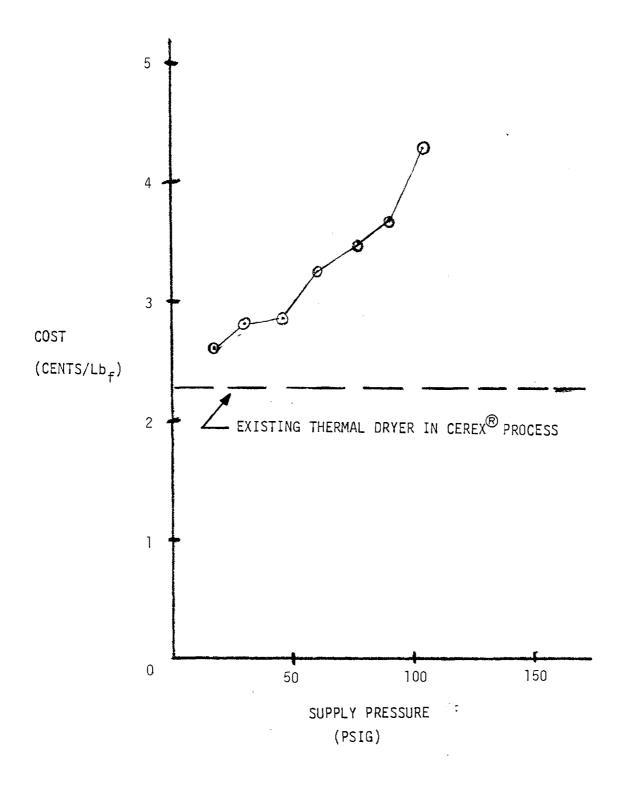
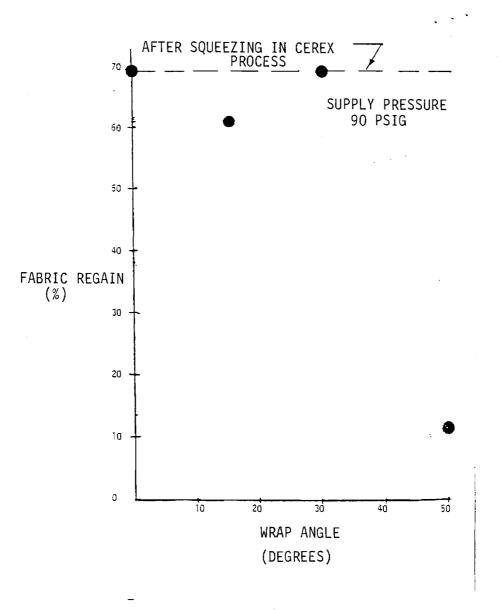
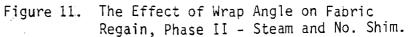


Figure 10. Total Drying Cost Using Machnozzle and Thermal Dryer Versus Air Supply Pressure -5 Mil Shim.

Machnozzle increases as supply pressure is increased. Thus, cost/benefit of increasing gas supply pressure was evaluated. The plot in Figure 7 indicates that when steam is used as the motive gas, the cost of drying is minimal for a steam supply pressure of approximately 45 psig. Thus, a steam supply pressure of 45 psig was selected as the pressure to be used in Phase II tests.

In Figures 8-10, total drying cost is plotted versus air supply pressure for shim thicknesses of 2, 3 and 5 mils, respectively. The total drying cost for 2 mil and 5 mil shims, at all pressures tested, exceeded the cost of using only the thermal dryer. When the 3 mil shim was used, total drying cost was lower than the cost of using only the thermal dryer. The minimal total drying cost appears to be between 60 and 75 psig. An air supply pressures of 75 psig and a shim thickness of 3 mils were selected for the Phase II tests.


The energy cost of drying 0.5 oz/yd², Type 23, Cerex[®] nonwoven fabric is not greatly reduced by using the Machnozzle. The fairly high energy requirement per mass of water removed is associated with the fairly low water mass flow rate per unit width of fabric passing over the Machnozzle. Previous tests [1-3] have indicated that the Machnozzle's dewatering ability changes little as process speeds (and mass flow rate) is increased. Also, the gas consumption of the Machnozzle is insignificantly affected as process speed (and mass flow rate) is increased. Consequently, the Machnozzle's energy-efficiency tends to be better at higher water mass flow rates per unit width of fabric passing over the Machnozzle. In the 0.5 oz/yd², Type 23 Cerex[®] fabric process, the fabric mass flow rate per unit width of Machnozzle is low (4.33 pounds per hour per inch). Also, the squeeze rolls reduce fabric regain to 69%. Consequently, the quantity of water "seen" by the Machnozzle is low. With heavier weight Cerex[®] fabric (2.0 oz/yd². Type 23), the squeeze rolls are less effective in lowering fabric regain. As a result, a larger water mass flow rate per unit width of fabric passes across the Machnozzle, and total drying cost can be significantly reduced (see Phase III).


7.2 Phase II

Phase II was conducted to determine the effects of wrap angle (see Table 2 for definition) on Machnozzle performance. Contact angles of 0°, 15°, 30°, and 50° were selected for testing. When tests using steam as the motive gas were conducted, very little moisture removal was obtained at contact angles less than 50°. The tests were performed using a steam supply pressure of 45 psig. Supply pressure was increased to 90 psig, but steam flow rate was extremely low and little dewatering occurred at contact angles below 50° (see Figure 11).

The large effect of contact angles on the Machnozzle's dewatering performance is related to the wet fabric's not touching the face of the Machnozzle at contact angles less than 50° (see schematic in Table 2). Steam flow rate through the Machnozzle depends greatly on whether fabric is touching the inlet face of the Machnozzle and whether the fabric is moving or stationary. Apparently, when wet, cold fabric passes across the upstream face of the hot machnozzle, thermal stresses build up in the machnozzle, causing the slot opening to increase. As a result, steam flow rate increases greatly when wet fabric is in contact with and passes over the upstream face of the Machnozzle.

One set of tests with slot opening increased by using a 3 mil shim was conducted to determine if dewatering with steam could be achieved at lower contact angles. By increasing the slot opening, steam flow rate was increased and fabric regain was reduced at the lower contact angles (see Figure 12). Even with the 3 mil shim in the Machnozzle, steam flow rate increased (approximately doubled) when the contact angles were increased to 50°. Best results (minimal total drying cost) were obtained at contact angles of 30° and a supply pressure of 45 psig. The results were slightly inferior to the previous results obtained using no shim. Since testing of slot opening with steam as the motive gas was beyond the scope of this project, most of the steam tests in Phase III were conducted using 45 psig steam supply pressure, 50° contact angles and no shim.

21

.

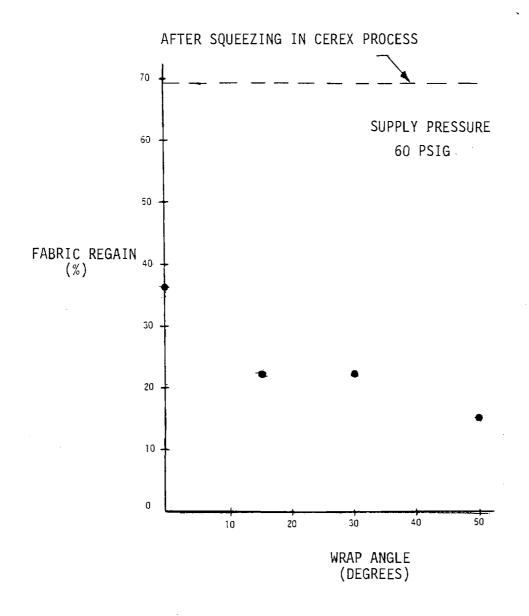


Figure 12. The Effect of Wrap Angle on Fabric Regain, Phase II- Steam with a 3 mil Shim.

The effect of contact angles on the Machnozzle's dewatering performance was small when air was used as the motive gas (see Figure 13). The Machnozzle does not heat up when air is used, and the cold, wet fabric's touching the upstream face of the machnozzle has little effect on gas flow rate. However, fabric regain was lowest at contact angles of 50° , and total drying cost was also minimal at 50°

7.3 Phase III

Phase III was conducted to determine the effect of fabric weight and type on Machnozzle performance. The effect of fabric weight is illustrated in Figure 14 and 15, where fabric regain following the Machnozzle is plotted versus gas supply pressure. Figure 14 shows that at a given gas supply pressure, fabric regain following the Machnozzle is slightly higher for the 0.3 oz/yd^2 fabric than for the other two weight fabric. The steam flow rate through the Machnozzle at a given supply pressure was slightly lower for the 0.3 oz/yd^2 fabric, which may be the reason for the higher fabric regains. Since the 0.3 oz/yd^2 fabric carries less water across the upstream full of the Machnozzle, the slot may not open up as much with the 0.3 oz/yd^2 fabric as it does with the heavier fabrics. As a result, a lower steam flow rate would result. Figure 15 shows that when air is the motive gas, fabric regain following the Machnozzle ws similar for the three weights of fabric tested.

Although fabric regains following the Machnozzle are similar for the three fabric weights, the economics of dewatering are quite different for the three fabric weights, mainly due to differences in fabric regain following squeezing (61%, 69%, and 131% for fabric weights of 0.3 oz/yd^2 , 0.5 oz/yd^2 , and 2.0 oz/yd^2 , respectively). Figures 16 and 17 show that for 0.3 oz/yd^2 fabric, the total cost of drying using the Machnozzle in conjunction with the existing thermal drying system is close to the cost of using only the thermal dryer. On the other hand, when the Machnozzle is used to dewater 2.0 oz/yd^2 fabric, the total cost of drying is considerably reduced (see Figures 18 and 19).

The effect of fabric type on the Machnozzle's dewatering performance was studied by running tests using Type 24, 0.5 oz/yd² Cerex[®] nonwoven

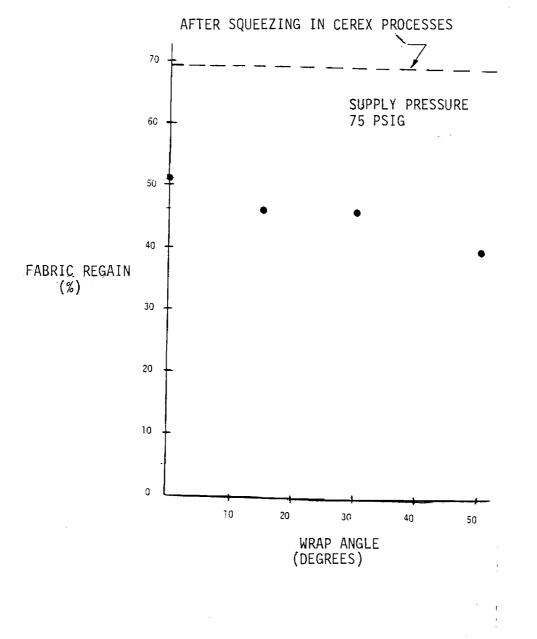


Figure 13. The Effect of Wrap Angle and Fabric Regain Phase II - Air with 3 Mil Shim.

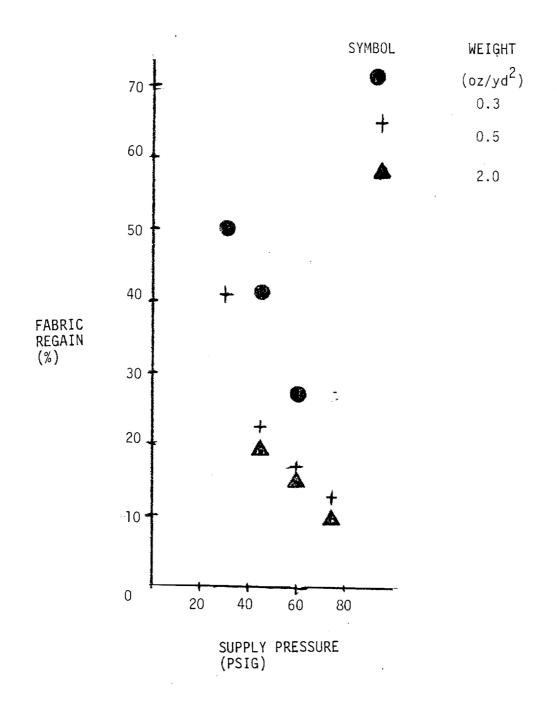
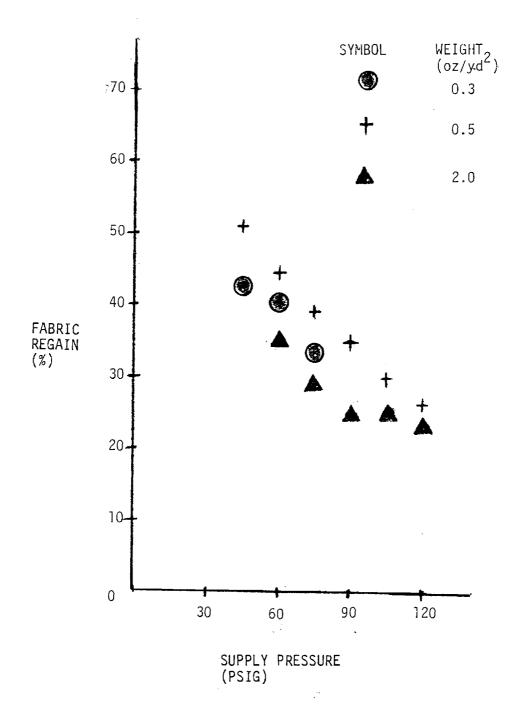



Figure 14. The Effect of Fabric Weight on Machnozzle Performance Type 23 Fabric - No Shim - Steam.

Y

Figure 15. The Effect of Fabric Weight on Machnozzle Performance Type 23 Fabric - 3 Mil Shim - Air.

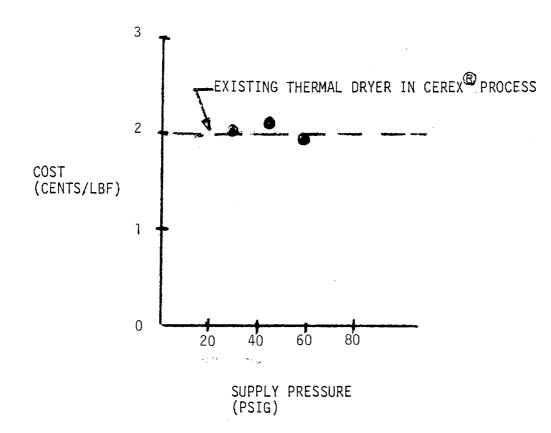


Figure 16. Total Drying Cost Versus Steam Supply Pressure 0.3 oz/yd², Type 23 Fabric - No Shim.

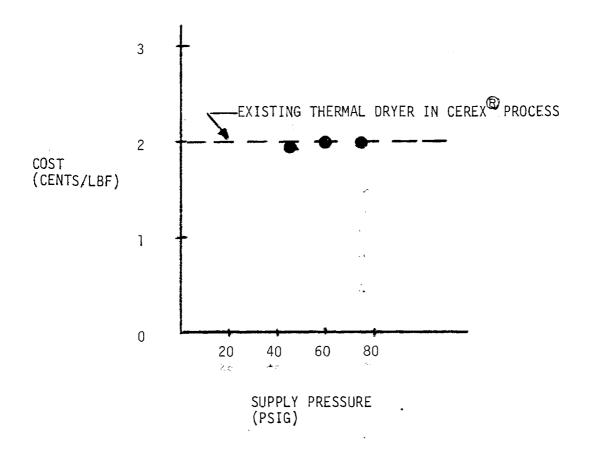


Figure 17. Total Drying Cost Versus Air Supply Pressure 0.3 oz/yd², Type 23 Fabric - 3 Mil Shim.

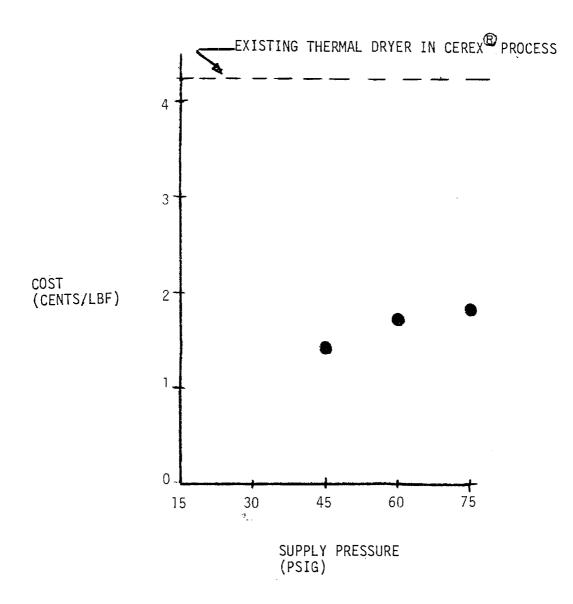


Figure 18. Total Drying Cost Versus Steam Supply Pressure 2.0 oz/yd², Type 23 Fabric - No Shim.

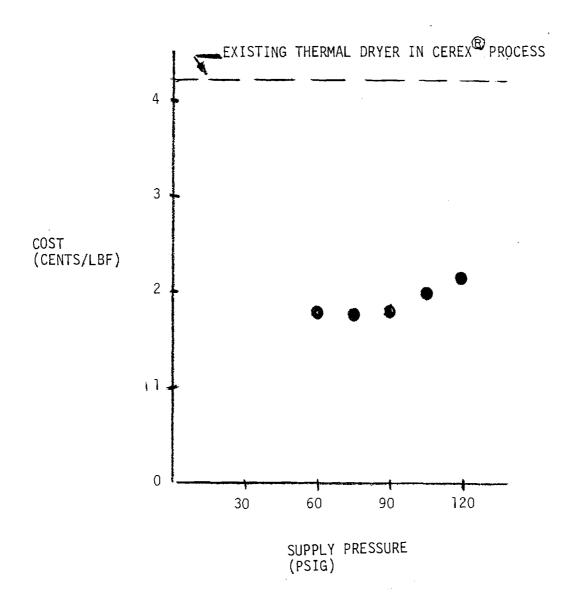


Figure 19. Total Drying Cost Versus Air Supply Pressure 2.0 oz/yd², Type 23 Fabrie - 3 Mil Shim.

fabric and company the results with those from Phase I and II where Type 23, 0.5 oz/yd^2 , Cerex® nonwoven fabric was used. Fabric type had little (if any) effect on moisture removal by the Machnozzle (see Figure 20). Since gas consumption was not affected by fabric type, the economics of dewatering using the Machnozzle should be the same for Types 23 and 24 fabric.

7.4 Physical Property Tests

Physical property tests on selected samples were conducted by Monsanto Textile and Intermediates Company. Results of the tests (Taber Abrasion, tear strength, thickness, Mullin burst strength, and air permeability) are summarized in Tables 4-6.

Samples were taken before and after the Machnozzle to determine if the Machnozzle had any effects on fabric properties. The results indicate that the effects were small in all of the tests. Taber abrasion values for samples taken after the Machnozzle were slightly lower than those for samples taken before the Machnozzle; however, the effect was small. All but one of the samples had Taber Abrasion values in the A-grade category.

Tear strength was evaluated in both the transverse and machine directions. The Machnozzle had little effect on tear strength in either direction. In some cases tear strength increased, while in other case it decreased. With one exception, tear strength of the samples fill in the A-Grade category. The Machnozzle had no obvious effects on thickness, burst strength or air permeability.

8. CONFIDENTIALLY AND PUBLICATIONS

The project was conducted in accordance with the Non-Disclosure Agreement between Georgia Tech and the Monsanto Fibers and Intermediates Company which was agree on as of April 22, 1983. The Georgia Tech researchers are free to publish the information generated by the project

31

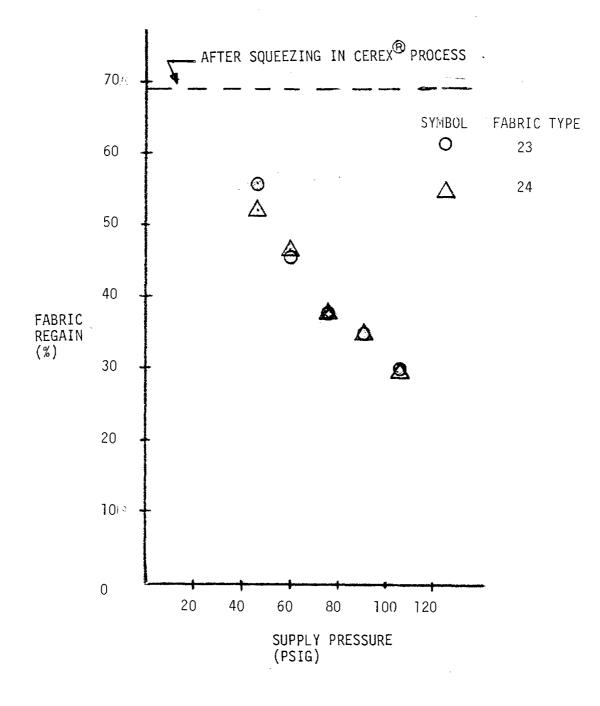


Figure 20. The Effect of Fabric Type on Machnozzle Performance 0.5 oz/yd² - 3 Mil Shim - Air.

"Fabric Sample Summary"

ample Summary"			
Fabric Type	Weight	Sample I. D.	
T-23 T-23 T-23 T-24	.5 osy .3 osy 2.0 osy 0.5 osy	1 thru 22 23, 24, 43, 44 25 thru 30 31 thru 42	

Lab Test Results

,

I. Type 23 Products

Sample Number	Taber Abrasion	Tear Str Transverse	rength <u>Machine</u>	Thickness	Surst Strength	Air <u>Permeability</u>
1	4.7					960
2	4.9	4.7				1056
3	4.5	5.4	7.1	3.2	33	859
4	4.5	4.9	6.0	3.5	32	874
5	5.3	5.5	9.4	3.7	32	949
5	4.9	4.3	5.0	3.3	34	869
7	5.6	6.3	6.0	3.7	31	911
8	5.2	5.3	6.0	3.1	32	965
9	5.6	5.5	6.6	3.7	29	822
10	5.2	4.7	5.8	3.2	32	914
11	5.2	4.2	7.7	3.1	32	923
12	5.3	5.2	6.7	3.5	31	897
13	5.4	4.4	4.7	3.0	31	876
14	4.8	4.8	4.7	3.7	33	920
15	4.7	4.3	4.7	3.3	35	869
16	4.4	4.5	5.5	4.5	38	816
17	5.8	4.5	5.8	3.6	28	1019
18	4.4	4.3	5.4	3.5	33	901
19	5.5	4.8	5.5	3.3	33	981
20	5.5	5.1	4.9	3.4	30	1078
21	6.0	5,1		3.1	30	9 61
22	4.5			3.1	30	1023
23	4.8	2.6	4.4	2,6	24	1202
24	5.2	2.2	4.6	3.4	24	1349
25	4.0	11.0	16.6	7.0	87	142
26	2.0	13.4	16.8	8.0	87	174
27	3.6	11.5	17.5	7.2	83	156
28	3 .3	11.7	20.1	8.3	92	135

•

•

I. Type 23 Products (cont'd)

Sample Number	Taber Abrasion	Tear Sti <u>Transverse</u>	Tear Strength ansverse <u>Machine</u>		Burst Strength	Air <u>Permeability</u>
29	4.0	11.6	17.7	7.7	90	143
30	3.8	9.5	21.5	7.1	84	138
43	4.5	3.2	5.1	3.2	25	1214
44	4.3	.3.1	5.5	2.3	25	1191

II. Type 24 Products

1

Sample	Taber	Tear Str	ength	Thickness
Numper	Abrasion	Transverse	Machine	
31	1.0	1.0	3.8	3.4
32	1.0	1.2	3.9	3.8
33	1.0	1.2	4.1	3.8
34	1.1	1.5	5.2	4.0
35	1.0	1.5	4.7	3.6
36	1.2	1.0	4.0	3.9
37	1.3	1.2	4.3	3.7
38	1.0	1.2	4.б	3.5
39	1.2	1.0	3.7	3.9
40	1.4	0.9	3.5	3.7
41	1.0	1.5	4.6	3.7
42	1.0	1.2	3.6	4.2

Property	<u>Typical</u>	Min	Max	Tar
Abrasion Resistance, Taber Cycles				
A-Grade Avg.	5.0	4.0		4
A-Grade Individual		3.0		
B-Grade Avg.		2.5		
Tear Strength, Pounds				
Transverse Direction	2.7	1.8		
Machine Direction	4.0	2.0		
Thickness, mils.	2.51			
Average Burst Strength, psi	25.0	14.0		
Air Permeability, CFM/ft ²	1359			
B. 0.5 oz/yd ²				
Abrasion Resistance, Taber Cycles			-	
A-Grade Avg.	5.0	4.0		
A-Grade Individual		3.0		
B-Grade Avg.		2.5		
Tear Strength, Pounds				•
Transverse Direction	4.1	2.4		
Machine Direction	4.7	2.8		
Thickness, mils.	3.4			

Table 5. Cerex[®] Physical Property Specifications

.

/

Table 5. Cerex[®] Physical Property Specifications (Cont'd.)

I. Type 23 Products (cont'd)

<u>C. 2.0 oz/yd²</u>

.

.

,

	Property	Typical	Min	Max	Target
	Abrasion Resistance, Taber Cycles				
	A-Grade Avg.	5.0	4.0		4.7
	A-Grade Individual		3.0		
	3-Grade Avg.		2.5		
	Tear Strength, Pounds				
	Transverse Direction	11.75	11.0		
	Machine Direction	14.5	13.0		
	Thickness, mils.	7.3			
	Average Burst Strength, psi	92	55		
:	Air Permeability, CFM/ft ²	153			
II.	Type 24 Products				
	0.5 oz/yd² only				
	Abrasion Resistance Taber Cycles	1.0			
	Strip Tensile Strength, lbs/in				
	Transverse Direction	2.4			
	Machine Direction	4.9			
	Thickness, mils.	3.8			

and a set of the second se

Sample	Can Turo	Gas Supply Pressure	Contact Wrap Angle	Fabric Speed (ft/min)	Location o Machno Before	
Number	Gas Type	(psig)	(degree)		beiore	Aiter
Туре	23, 0.5 oz/y	^{,d2}				
1	Steam	90	0	219	В	
1 2 3 4 5 6 7	Steam	90	0	219		А
3	Steam	45	0	219	В	
4	Steam	45	0	219	•	А
5	Steam	45	15	219	В	
6	Steam	45	15	219		А
7	Steam	45	30	219	В	
8	Steam	45	30	219		А
8 9	Steam	60	30	219	В	
10	Steam	60	30	219		А
11	Steam	75	30	219	В	
12	Steam	75	30	219		А
13	Air	75	0	219	В	
14	Air	75	. 0	219		А
15	Air	75	15	219	В	
16	Air	75	15	219		А
17	Air	75	30	219	В	
18	Air	75	30	219		А
19	Air	75	50	219	В	
20	Air	75	50	219		А
21	Air	135	50	219	В	
22	Air	135	50	219		А
Type 23	3, 0.3 <u>oz/yd</u> 2	2				
23	Air	60	15	265	В	
	Air	60 60	15	265	0	А
24		00	10	200		-
43 44	Control Control					

Table 6. Fabric Property Sample Identification.

		Gas Supply	Contact Wrap	Fabric	Location o	
Sample		Pressure	Angle	Speed	Machno	
Number	<u>Gas Type</u>	(psig)	(degree)	(ft/min)	Before	After
-	~ ~ ~ ~ /				-	
Iype	23, 2.0 oz/	yaz				
25	Steam	60	50	65	В	
26	Steam	60	50	65		А
27	Air	75	50	65	В	
28	Air	75	50	65		А
29	Air	75	50	219	В	
30	Aira	75	50	219		А
31	24, 0.5 oz/ Steam	45	0	219	В	
32	Steam	45	0	219	_	А
33	Steam	45	15	299	В	
34	Steam	45	15	219	-	A
35	Steam	45	30	219	В	-
36	Steam	45	30	219	-	А
37	Air	90	30	219	В	•
38	Air	90	50	219	•	А
39	Air	90	50	219	В	۸
40	Air	90	50	219	В	А
41	Air	60 60	50 50	219 219	D	A
42	Air	60	50	219		A

Table 6. Fabric Property Sample Identification (Continued).

pertaining to the use of the Machnozzle to dewater nonwoven fabrics. In accordance with the Non-Disclosure Agreement, any publication of the results will not disclose information concerning Monsanto Fibers and Intermediates Company's Nonwoven Fabric Manufacture.

9. CONCLUSIONS

The results of the study show that the Machnozzle can appreciably lower the regain of Cerex® spunbonded, nonwoven nylon 6,6. Both steam and air were effective as the motive gas; however, lower fabric regains were obtained with steam. Passing the fabric across the Machnozzle had no appreciable effect on the physical properties measured.

Gas supply pressure, slot opening, and wrap angle are important system parameters that affect water removal and energy efficiency of the Machnozzle. Over the ranges of parameters tested, moisture removal by the Machnozzle increased as each of these parameters increased. However, when gas supply pressure and slot width (also, wrap angle when steam is the motive gas) are increased, gas consumption is increased, and consequently, energy cost of operating the Machnozzle is increased. Thus a cost/benefit analysis is necessary to establish optimal parameter settings. When steam was used with no shim in the Machnozzle, the optimal system parameters were: supply pressure of 45 psig and contact angles of 50°. When air was the motive gas, optimal system parameters were: supply pressure of 75 psig, contact angles of 50° and shim thickness of 3 mils.

The effect of fabric weight on the Machnozzle's ability to remove water is small; however, the economics of dewatering are quite different for the three fabric weight tested. The difference is due to the variation of fabric regain following squeezing with fabric weight. Energy cost savings associated with using the Machnozzle to dewater 0.3 oz/yd^2 and 0.5 oz/yd^2 Cerex® nonwoven fabrics were small (4 and 18%). On the other hand, use of the Machnozzle appreciably reduced the energy cost

39

of drying 2.0 oz/yd² Cerex[®] nonwoven fabric. Energy cost was reduced by approximately 67%.

The effect of fabric type (23 versus 24) on the Machnozzle's ability to remove water was small. Also, the economies of utilizing the Machnozzle were similar for the two types of fabric. Appendix A

.

•

COMPILATION OF TEST RESULTS

Table A1. Phase I

`

0.5 oz/yd², TYPE 23 CEREX® NONWOVEN FABRIC

Gas Type	Gas Supply Pressure (psig)	Gas Consumption (1b/hr-in)	Shim Thick- ness (Mils)	Wrap Angle (Degrees)	Fabric Speed (ft/min)	Fabric Regain After Squeezin in Cerex® Process (%)	g Fabric Regain After Machnozzle (%)	Reduc- tion in Fabric Regain (%)	Dr. (cents/ Machnozzle	ying Cost bounds of Thermal Dryer	fabric) Total
CONTROL	-	-	_	-	230	69	-	-	0	2.25	2.25
STEAM	15	2.2	0	50	230	69	69	-	0.42	2.25	2.67
STEMT	30	4.1	Õ	50	230	69	41	28	0.77	1.33	2.10
	45	5.9	Õ	50	230	69	22	47	1.11	0.72	1.83
	60	7.8	Ō	50	230	69	17	52	1.47	0.54	2.01
	75	9.7	Ō	50	230	69	12	57	1.81	0.41	2.22
	90	11.5	0	50	230	69	10	59	2.17	0.32	2.40
AIR	15	0.4	2	50	230	69	69	0	0.03	2.25	2.29
	30	1.3	2 2	50	230	69	69	0	0.12	2.25	2.37
	45	3.0	2	50	230	69	69	0	0.28	2.25	2.54
	60	4.5	2	50	230	69	69	0	0.28	2.25	2.67
	75	5.8	2	50	230	69	66	3	0.55	2.16	2.70
	90	7.5	2 2	50	230	69	57	12	0.71	1.87	2.58
	105	9.2	2	、50	230	69	52	17	0.87	1.68	2.55
	120	10.9	2	50	230	69	48	21	1.03	1.57	2.60
	135	13.0	2	50	230	69	46	23	1.22	1.50	2.71

Table A1. Phase I (Continued)

.

0.5 oz/yd², TYPE 23 CEREX® NONWOVEN FABRIC

	<u>î a</u>		Shim			Fabric Regain After Squeezin in		Reduc- tion in	Dw	wing Cost	
	Gas Supply	/ Gas	Thick-	Wrap	Fabric	Cerex®	Regain After	Fabric		ving Cost	fabric)
Ga		e Consumption		Angle	Speed	Process	Machnozzle	Regain	(cents)	Thermal	
Тур		(1b/hr-in)		(Degrees)		(%)	(%)	(%)	<u>Machnozzle</u>	Dryer	Total
AI	R 45	5.4	3	50	230	69	52	17	0.51	1.69	2.20
	60	6.8	3	50	230	69	44	25	0.64	1.44	2.08
	75	8.9	3	50	230	69	39	30	0.83	1.27	2.11
	90	10.8	3	50	230	69	35	34	1.00	1.14	2.14
	105	12.3	3	50	230	69	30	39	1.15	0.98	2.13
	120	14.1	3	50	230	69	27	42	1.32	0.88	2.19
	135	16.1	3	50	230	69	22	47	1.50	0.73	2.23
ΑI	R 15	8.0	5	50	230	69	58	11	0.75	1.89	2.64
	30	13.8	5 5	50	230	69	46	23	1.29	1.51	2.80
	45	17.0	5 5	50	230	69	38	31	1.60	1.25	2.85
	60	23.2		50	230	69	33	36	2.17	1.08	3.26
	75	26.5	5	50	230	69	30	39	2.49	0.98	3.47
	90	30.6	5	50	230	69	25	45	2.86	0.80	3.66
	105	36.7	5	50	230	69	25	45	3.44	0.81	4.25

Table A2. Phase II

0.5 oz/yd², TYPE 23 CEREX® NONWOVEN FABRIC

	Gas Type	Gas Supply Pressure (psig)	Gas Consumption (1b/hr-in)	Shim Thick- ness (Mils)	Wrap Angle (Degrees)	Fabric Speed (ft/min)	Fabric Regain After Squeezin in Cerex® Process (%)	g Fabric Regain After Machnozzle (%)	Reduc- tion in Fabric Regain (%)	Dr. (cents/ Machnozzle	ying Cost pounds of Thermal Dryer	fabric) Total
	CONTROL	_	_	_	· _	230	69	-	_	0	2.25	2.25
	STEAM	90	_	0	0	230	69	69	0	-	_	2.25
	0.12.1.1	90	5.1	Ō	15	230	69	61	8	0.97	1.99	2.96
		90	_	Ō	30	230	69	69	0	-	-	2.25
		90	14.8	0	50	230	69	12	57	2.169	0.32	2.49
	STEAM	45	6.6	3	0	230	69	38	31	1.25	1.22	2.48
		45	6.2	3 3 3	15	230	69	32	37	1.17	1.04	2.22
		45	6.4	3	30	230	69	27	42	1.21	0.89	2.10
		45	11.0	3	50	230	69	16	53	2.08	0.54	2.62
	STEAM	60	8.0	3	0	230	69	36	33	1.51	1.18	2.69
		60	8.0	3 3 3 3	15	230	69	22	47	1.51	0.71	2.22
		60	8.0	3	30	230	69	22	47	1.51 /	0.72	2.23
		6 0	14.4	3	50	230	69	15	54	2.72	0.48	3.20
1	AIR	75	8.9	3	0	230	69	51	18	0.83	1.66	2.49
		75	8.9	3 3	15	230	69	46	23	0.83	1.51	2.34
		75	8.9	3	30	230	69	46	23	0.83	1.33	2.16
		75	8.9	3	50	230	69	41	28	0.83	1.27	2.10

Table A3. Phase III

0.3 oz/yd², TYPE 23 CEREX® NONWOVEN FABRIC

Gas Type	I	Gas Supply Pressure (psig)	Gas Consumption (1b/hr-in)		Wrap Angle (Degrees)	Fabric Speed (ft/min)	Fabric Regain After Squeezing in Cerex® Process (%)	g Fabric Regain After Machnozzle (%)	Reduc- tion in Fabric Regain (%)	Dr: (cents/ Machnozzle	ying Cost bounds of Thermal Dryer	fabric) Total
CONTROL		-	-	-	-	331	61	-	-	0	1.99	1.99
STEAM		30	2.0	0	50	265*	61	50	11	0.41	1.64	2.05
		45	3.9	0	50	265	61	43	18	0.81	1.39	2.20
		65	5.1	0	50	265	61	27	34	1.03	0.89	1.92
AIR		45 60 75	5.4 6.8 8.9	3 3 3	50 50 50	265 265 265	61 61 61	42 41 34	19 21 27	0.55 0.69 0.90	1.38 1.32 1.10	1.93 2.01 2.00

* Maximum Speed Obtainable on Test Apparatus.

Table A4. Phase III

2.0 oz/yd², TYPE 23 CEREX® NONWOVEN FABRIC

	Gas Supply	Gas	Shim Thick-	Wrap	Fabric	Fabric Regain After Squeezin in Cerex®	ig Fabric Regain After	Reduc- tion in Fabric	Drying Cost (cents/pounds of fabric)		
_Gas		Consumption		Angle	Speed	Process	Machnozzle	Regain		Thermal	
Туре	(psig)	(lb/hr-in)	(Mils)	(Degrees)	(ft/min)	(%)	(%)	(%)	Machnozzle	Dryer	Total
CONTROL STEAM	- 45 60 75	- 4.3 6.7 8.3	- 0 0 0	- 50 50 50	65 65 65 65	130 130 130 130	- 18 15 9	- 112 115 121	4.24 0.80 1.25 1.56	4.24 0.60 0.50 0.30	4.24 1.40 1.75 1.86
AIR	60 75 90 105 120	6.8 8.9 10.8 12.4 14.2	3 3 3 3 3 3	50 50 50 50 50	65 65 65 65 65	130 130 130 130 130 130	35 29 26 26 24	95 101 104 104 106	0.64 0.83 1.00 1.16 1.32	1.14 0.96 0.84 0.85 0.78	1.78 1.79 1.84 2.01 2.10

•

Table A5. Phase III

0.5 oz/yd², TYPE 24 CEREX® NONWOVEN FABRIC

Gas ₄ Type	Gas Supply Pressure (psig)	Gas Consumption (1b/hr-in)		Wrap Angle (Degrees)	Fabric Speed (ft/min)	Fabric Regain After Squeezin in Cerex® Process (%)	g Fabric Regain After Machnozzle (%)	Reduc- tion in Fabric Regain (%)	 (cents/ Machnozzle	ying Cost counds of Thermal Dryer	fabric) Total
4 Type	(psig)	(10/11-11)	(1113)	(Degrees)	(10/11/17)	(/0)	(76)	(//)	Hacimozzic		Total
CONTROL STEAM	- 45 45 45	- 5.3 6.2 6.5	- 3 3 3	0 15 30	230 230 230 230	69 69 69 69	- 41 30 31	- 28 39 38	1.01 1.18 1.23	2.25 1.35 0.99 1.03	2.25 2.36 2.17 2.26
AIR	45 60 75 90 105	5.4 6.8 8.9 10.8 12.3	3 3 3 3 3	50 50 50 50 50	230 230 230 230 230 230	69 69 69 69 69	56 47 38 36 29	13 22 31 33 40	0.51 0.60 0.83 1.01 1.16	1.82 1.52 1.24 1.17 0.96	2.32 2.12 2.07 2.18 2.12

Appendix B

•

GAS CONSUMPTION VERSUS GAS SUPPLY PRESSURE

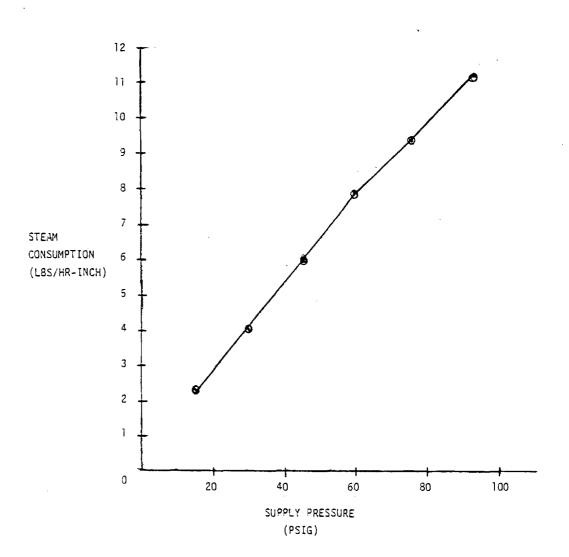


Figure B1. Steam Flow Rate Versus Supply Pressure - No Shim.

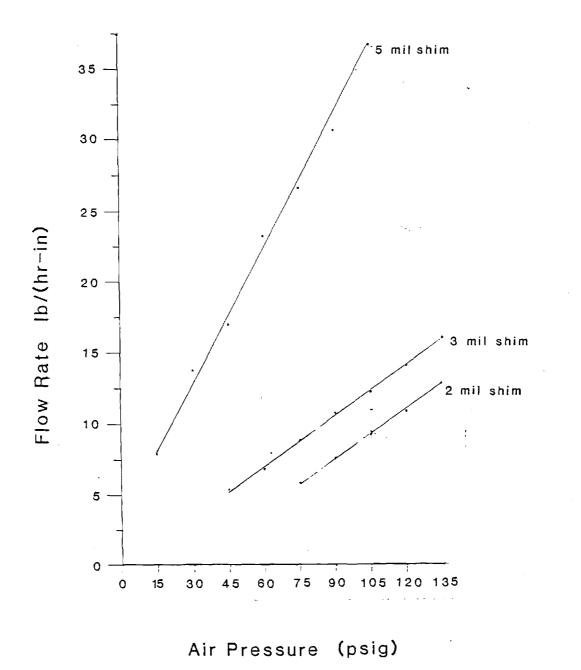


Figure B2. Air Flow Rate Versus SuppTy Pressure

REFERENCES

- Brookstein, D. S., et al., "Development and Demonstration of Energy-Conserving Drying Modifications to Textile Process," Final Technical Report to Part II, Phase III, Extension of U.S. Department of Energy Contract No. DE-AS05-76540081, Georgia Institute of Technology, Atlanta, 1980.
- Carr, W. W., et al., "In-Plant Demonstration of a Machnozzle as a Fabric Predrying Device," Final Technical Report, U.S. Department of Energy Contract No. DE-AS05-80C540350, Georgia Institute of Technology, Atlanta, 1981.
- Carr, W. W., et al., "Assessing the Machnozzle as a Predrying Device," <u>Textile Chemist and Colorists</u>, Vol. 15, No. 8, pp. 21-26, August 1983.