
Aware Home Visual Perception (Part II):
Impelementation and references

Zhonghao Yang
Graphics, Visualization, and Usability Center

Georgia Institute of Technology, Atlanta, GA, USA
yangzh@cc.gatech.edu

Abstract

This Technical Report is presented as a starting point of the User’s Manual for Aware Home visual perception system. The
potential audience will be anyone who want to understand the implementation details or want to learn the interface for
building their own applications based on this system.

1 Introduction

This document serves as a starting point of the User’s Manual for the Aware Home visual perception system. This Technical
Report includes:

1. System architecture and module responsibilities;

2. System implementation and current status;

3. Explanation of various utility programs for the system;

4. System deployment, debugging and maintenance issues;

1.1 Automate documentation process

The practice of writing documentation with code is always strongly encouraged. Well-commented source can dramatically
boost development efficiency and reduce system maintenance pain. Throughout this project we use the excellent Doxygen
tool (www.doxygen.org) to automatically extract comments from source files, and reference manuals are available in both
PDF and HTML formats for each modules. The compact PDF format is more suitable for off-line reading while HTML
version is ideal for on-line browsing. Both versions provide essentially the same contents.

1.2 The audience

For this documentation, I assume the audience has significant working experience in object-oriented design and C/C++
programming, and basic knowledge for Windows operating system, especially about Microsoft COM/DCOM. Knowledge
about linear algebra, image analysis, computational geometry, computer vision will be helpful but not strictly required.

The audience should at least have access to the following softwares:

1. Microsoft Visual Studio C++ 6.0 with the latest service pack, MSDN (Microsoft Developer’s Network), optional latest
Microsoft Core SDK;

2. Doxygen: good documentation generation and management tool;

3. WinCVS: Windows front-end for CVS (Concurrent Version System);

4. OpenCV (Open-source Computer Vision library), available atsourceforge ;

1

5. STLFilt: Open source tools to filter lengthy and unnecessary STL messages, available athttp://www.bdsoft.com ;

6. any text editors, like UltraEdit fromidmcomp);

7. any image viewers, we recommend IrfanView;

2 System Overview

As explained in my previous Technical Report, with distributed cameras and computers, we want the Aware Home to have
the visual perception capability across the house. An ideal visual perception system will include the following feature:

• Reliably tracking targets and maintain their identities across multiple rooms throughout their lifetime, under reasonable
wide range of illuminations and other environment noise;

• Function in real-time with distributed computing environment. The tracking system should not be subject to specific
camera deployments and machine configurations;

• High degree of automation and limited manual intervention during extended period of time. The service is expected to
be running 24-by-7.

This complicated perception task is achieved with the careful combination of both hardware and software pieces. The
design details for various algorithms has been described in my previous Technical Report and this document is intend to
focus on system engineering details. The intended audience should be anyone who want to further develop the system or
anyone who want to build their own applications on top of this system.

2.1 Hardware

Cameras:Currently the 2700-square-feet Aware Home has 27 fixed cameras (MB-1850U, from http://www.polarisusa.com/)
mounted in ceiling of both floors. These cameras are analog micro-board cameras equipped with plastic wide-angle lens.
According to our experience, AGC (Automatic Gain Control) causes some troubles during dramatic illumination change, and
we manually turned this feature off. Please refer to the camera’s manual for instructions.

There are also a few PTZ cameras scattered around the house, we are developing experimental control module for them.
Cables: BNC cables are used to connect cameras with video capture card in the basement, we did not use any video

amplifiers in between and the video signal seems fine. Sometime we also need some extra RCA-to-BNC adaptors.
Framegrabbers: Each machine is equipped with two video capture cards (Osprey 100), with each card connecting to

only one video camera. We deliberately did not push too hard on hardware resource. Further engineering might consider
switching between video channels to drive down the overall hardware cost.

Machines: 8 DELL machines are allocated to control/process 14 cameras on the first floor (vision1 to vision8),
while another 8 newer DELL machines for another 13 cameras on the second floor (vsensor1 to vsensor8). All 16
machines are located in the basement for a centralized development environment, and currentlyvsensor8 is used as primary
development machines with all latest source codes, documentations, etc.

2.2 Software

All machines run Windows 2000 system and constitutes a distributed computing setting, suggesting the necessity of man-
aging resources across process and machine boundaries. We have thus established a middleware layer to enable module
communication and management across processes and machines based on Microsoft’s COM/DCOM technology. Of course
there are other alternatives such as CORBA and Java RMI in terms of middleware package. However, the COM/DCOM
libraries and executables are readily available for all Windows platform, requiring less learning and deployment efforts, and
our project has the right scale for it. CORBA is still undergoing standard evolution and requires greater learning efforts. Java
RMI is not suitable for performance-sensitive video applications.

Throughout the project development, we maintain clear separation between the middleware layer and algorithm codes.
The middleware layer is ultimately system-specific, while the perception algorithms are written in ANSI C/C++ to ensure
platform-independent. This is to ensure system’s portability, independent on the middleware implementation.

2

The system makes heavy use of OpenCV library, available for both Windows and Linux platform. This library provides
many useful routines for computer vision research and development.

Currently we usevsensor8 as our major development machine, and it has the latest source codes as well as docu-
mentations. All system codes (note only codes, not documentations) are achieved in CVS (Concurrent Version System) on
jetson.cc.gatech.edu with module name ofTrack8 . Also the latest codes, documentations, and related materials
are available in CD-ROM media.

2.2.1 Further information about COM/DCOM

Throughout the system, we use Microsoft COM/DCOM as underlying protocol to enable distributed computing and resource
management, all developers need to have at least a basic understanding of COM/DCOM principles and programming tech-
niques. Search MSDN using keywordUsing COM for some introductions.

COM (Component Object Model) is a way to define common programming interfaces so that different piece of code can
work under pre-defined interfaces. This feature is quite helpful and make it possible to separate the design and implementation
phase for different time and parties. DCOM (COM on a wire) takes one more step by expanding COM to support communi-
cation and invocation among objects on different computers (Search MSDN usingDCOM Technical Overview). Ideally
any piece of code that is written in DCOM paradigm can interact with each other across machine and process boundaries.

Please review basics about COM/DCOM before going on. For serious system development, the audience are required to
develop more in-depth knowledge if they do not.

3 System details

All names for variables, functions, structures or classes are represented byverbatim ;
$TRACKER_SYS$is the root directory for the visual tracking system. All directory is relative to this root.
Source codes resides in their own module directories, anddoc directory has documentation in both PDF and HTML

format, where detailed explanations on classes, structures, and algorithms are presented. System/application developers
should refer to those manuals for coding-related issues.

In order to keep the system flexible and portable, we keep the implementation for algorithm and middleware separate.
Here is a list of our modules in the system together with their brief descriptions:

• primitive_lib : provides the basic primitives used for image/video processing, computer vision and other system
engineering. Basic image structure, time stamp, common interfaces for algorithm can be comfortably fit here;

• visionGen_lib : provides platform-independent descriptions for various computer vision algorithms. Later li-
braries can further subclass them for specific purpose;

• visionWin_lib : contains Windows-specific variants for all algorithms based onvisionGen library;

• dcomRemote: contains the middleware wrapper for COM/DCOM. Specifically, we designed client-side agents to
store states and manage the communication with remote servers, so that user application’s coding responsibility is
greatly reduced. In the future, this library can possibly be replaced by better middleware implementation without
sacrificing portability;

• dcomCapture : a standalone DCOM server to provide video capturing capabilities from regular camera, AVI files
and possibly PTZ cameras. This module is designed to deliver flexible video streams to any clients (applications / other
DCOM modules);

• dcomBSensor : a standalone DCOM server to provide background subtraction for any incoming video streams. This
module is designed to transform raw video stream into blob representations for any clients (applications / other DCOM
modules). The visual information is further condensed;

• dcomTracker : a standalone DCOM server to provide clique-level visual fusing and tracking capacity. This module
is designed to convert blob representations from multiple synchronizeddcomBSensor s to local target trajectories;

3

• dcomClique : the experimentalcliqueManager , another standalone DCOM server for managing global targets.
This module is designed to provide global target labels and trajectories for query and archiving. Currently there is no
stable implementation for this, and please refer to our previous Technical Report for some algorithm ideas;

• dcomConfigServer : a standalone DCOM server is designed to provide system-wide configuration service, any
user applications or DCOM servers can query specifickey = value pair as specified in configuration file;

• visionDebug : a Windows-based frontend to interact with the underlying system for debugging purpose. For exam-
ple, user can initiate multiple remote cameras, etc.

For DCOM servers, the readers can also refer to Fig. 1.

CameraA0
 CameraA1
 CameraA2

Hardware management

Blob

SensorA0

Visual sensors

Blob

SensorA1

Blob

SensorA2

R

a

w

F

r
a

m

e

Other

Blob Sensors

 Clique-level

TrackerA0

Visual Processing

B

l
o

b

F

e

a

t
u

r
e

s

Clique Manager

(House-wide when,

where, who information)

C

l
i

q

u

e

-
l

e

v

e

l

t
r

a

j
e

c

t
o

r
y

Blob

SensorA3

CameraA3

Location-aware

applications
 H
o
u
s
e
-
w
i
d
e

l
o
c
a
t
i
o
n
Applications

Other Clique-level

Trackers

Other cameras and

AVI sources

Figure 1: system schema

3.1 System configuration and configServer

To offer maximum flexibility in configuring distributed hardware and software pieces, we use text-based configuration file.
The configuration file is organized as standard Windows .INI format, with only two-level hierarchies for ease of reading
and parsing. The variabledefaultLocalConfigFileName in the filedcomRemote/dcomEntities.h stores the
location for the system’s configuration file (one of the few hard-coded location throughout the system).

A standalone DCOM server (configServer) will load the configuration filevisionConfig.ini in a pre-defined loca-
tion and serve configuration queries for all other DCOM modules and applications. The query operations can be performed
independent of machine and process boundaries, thanks to the COM/DCOM-based communication semantics. In fact the
configuration server is automatically started once there is a client who potentially need configuration information in the
system, refer to the functionsstartLocalConfigAgent andstopLocalConfigAgent in dcomRemote library: a
reference count mechanism is implicitly used.

All system-level entities (including hardware and software pieces) are organized into categories in the configuration file,
namely the filevisionConfig.ini :

1. cameraModel : the camera model describes logically how camera works, including intrinsic, extrinsic parameters and
camera’s pose with respect to the world. This entity also contains distortion parameter for possible image unwarping;

2. camera : the camera entity controls the camera hardware by specifying the camera’s physical property, such as host
machine, and device identification, etc. Other hardware-related properties can also be added here later. Cameras on the
first floor is identified by a letterA (such ascameraA0), while cameras on the second floor isB (such ascameraB0).
It’s one variant of (video) stream sources, managed bydcomCapture ;

4

3. aviFile : the video file in .avi format. Each instance of this entities correspondents to an .avi file that resides on a
specified machine. As one variant of (video) stream source managed bydcomCapture , it can be used to feed video
for blobBSensor , for example;

4. imageSeq : the image sequence as one variant of (video) stream sources, managed bydcomCapture . Each instance
of this category can be used as video source for providing frames;

5. blobSensor : this is the DCOM module that is in charge of local visual sensing for blobs. Internally, each instance
use background substraction algorithm to process frames from any stream sources (camera/aviFile/imageSeq, etc) and
generates blobs corresponding to moving pixels;

6. clique : this category contains geometry (size, boundary) and other information about each clique (room). A list of
blobBSensor s within the physical coverage of this clique is also specified, used as part of the scene modeling for
the visual fusing algorithm;

7. blobTracker : this category describes software piece for the DCOM server, that is in charge of clique-level visual
tracking. Internally each instance will perform visual integration, motion correspondence, and compute clique-level
trajectories of targets in one clique;

8. cliqueManager : this category describes software piece of one DCOM server, in charge of house-wide visual
perception service by considering labeling transfer between cliques. This information exchange is necessary to ensure
proper target identity handover between cliques for a consistent house-wide visual tracking task. Actually there is only
one active instance for the whole house.

I’ll provide more detailed information on each category in the following subsections.

3.2 cameraModel

In order for a visual tracking system to work in real environment, we first need to know something about the cameras and the
environment. As an essential part for such prior knowledge, camera modeling includes the determination of both intrinsic and
extrinsic parameters (with respect to the global world). We achieve this task using an utility program based on the OpenCV
library.

We will first introduce some mathematical background for the camera calibration, followed by explanations on how to use
the utility program to calibrate camera. Finally some discussions and possible improvements are provided.

3.2.1 Mathematical background

The intrinsic matrix for any camera is as following:



fx 0 u
fy v

1


 (1)

fx andfy are the focal length along the image X and Y axis measured in pixels. For most practical cameras, they are
slightly different. (u, v)T is the image coordinate where the optical axis intersects with the image plane, for most practical
camera this will be slightly off the frame center. We assume pixels are perfectly rectangular.

For intrinsics, we use the proposed method in OpenCV library. The chessboard pattern of original size (8-by-11 inch)
is available atmisc/calibrationPattern . Note the distortion parameter definition is slightly different from another
popular calibration package (Camera calibration toolbox for Matlab from Jean-Yves Bouguet): the first 4 doubles are of the
identical meaning and can be used inter-changeably.

For pinhole cameras, the projective projection is modeled as:




x
y
1


 ∼




fx 0 u
fy v

1


 · [P3×3 t3×1

] ·




X0

Y0

Z0

1


 (2)

5

whereP3×3 and t3×1 are the rotation matrix and translation vector for the world system in the camera system, and
(X0, Y0, Z0, 1)T is the homogenious coordinate for any 3D point in world system. Later we will define in details all related
systems.

Theoretically if we can accumulate a number of frames with all image features detected (48 inner corners for our chess-
board pattern per frame), epi-polar constraints can be exploited to find optimal solution for intrinsics and distortion parameters
in terms of squared error, using non-linear optimization techniques. Search online bycamera calibration for technical
details. The camera calibration toolbox for Matlab from Jean-Yves Bouguet has very good materials to start with.

It’s a little bit complicated to determine extrinsics: 1) it is not fully automatic and require some manual intervention; 2) it
concerns several coordinate systems that we need to define here:

• camera systemS2: S2 is defined with X, Y axes aligned with image plane’s X, Y axes, and Z axis pointing out.
The origin coincide with the principal point. Intrinsic matrix is further introduced to account for the camera’s own
geometry;

• intermediate world systemS1: the origin sits onone of the inner cornersas shown in Fig. 2. The Y axis should always
be along the longer edge of the pattern, while X axis takes the shorter edge, due to the coding convention in OpenCV
implementation. Under this definition, note that 1) the origin isNOT the corner of the whole chessboard pattern; 2)
the X axis is not necessarily horizontal in captured image, and Y axis is not necessarily vertical; 3) given four inner
corners (the green corners as in the Fig. 2), the intermediate world system is uniquely defined;

• global world systemS0: each floor of the house is modeled identically but independently, with origin located at the
southeast inner corner of the house. i.e., the southeast corner of the living room. With world X axis aligned with
NORTH wall, and Y axis WEST wall, a natural right-handed world coordinate system is defined with Z axis up. All
measurements for this system are in centimeters. The floor plan is available inmisc/floormap .

Figure 2: Intermediate systemS1

Typically we use a 4x chessboard pattern (32-by-44 inch) for extrinsic calibration. Essentially, given correspondence of
all 48 inner corners for their image and world coordinates, the OpenCV function ofcvFindExtrinsicCameraParams
(or its double variant) is able to compute the rotation and translation of the world (implied by theworld coordinatearguments
for the function) in camera’s systemS2.

There are two approaches to compute the global worldS0 with respect to camera systemS2:

1. Correspondence is given and computed betweenS2 andS1, manually measure and determine the matrixT1←0 (so that
X1 = T1←0 ·X0), finally T2←0 = T2←1 · T1←0;

2. Correspondence is directly given betweenS2 andS0. In other words, the features’ world coordinates are directly
measured inS0, T2←0 can be computed in one single step without additional matrix multiplication;

We use the first approach in all our utility program, however, the second approach turns out to be much easier and should
be preferred in later implementation.

6

Even though we can calibrate individual camera to reasonable accuracy, there are still errors for projection of a common
feature onto floor space by two adjacent cameras, resulted from individual camera’s intrinsic and extrinsic errors. In our
system, we are particularly concerned about the accuracy of projection on the floor by each cameras, and we introduce
additional floor alignment process to further minimize projection error.

Here is our solution: for each camera, we manually label common image features (4 corners of a poster board)(xi, yi), 0 ≤
i < 4, project them onto the floor(Xi, Yi, 0), 0 ≤ i < 4 with this camera’s calibration. Tape-measure the ground truth
(X ′

i, Y
′
i , 0) for those corners in world systemS0. Fit the model

[
X ′

i

Y ′
i

]
=

[
a00 a01

a10 a11

]
·
[

Xi

Yi

]
(0 ≤ i < 4) (3)

using square error minimization. The alignment matrixA = {aij} captures the variation in individual camera’s calibration.

3.2.2 Utility for camera calibration

Available inmisc/calib , the utility is a mini-project, with similarCCameraModel class and a driver classCCaptureVFW ,
which essentially perform video capturing using Video For Windows SDK. The whole project is moderately documented,
and the audience should not have too much trouble understanding the idea and codes.

The calibration utility here is an extension based on the OpenCV’s implementation. The fact that the cameras and the host
machines are far apart requires some design work to ensure we can smoothly gather enough number of successfully detected
patterns at different poses, even in uncontrolled illumination. Those frames will be used in the numerical optimization for
camera calibration.

For intrinsics, the utility works as following: It continuously detects the desired pattern feature in every incoming frame
(supplied by the driver procedure). Once it successfully detects all 48 inner corners in one frame, the program will give an
audio feedback and accumulate the data. At the same time, the utility will freeze video capture for two second, allowing
the operator to move the chessboard for next pose: similar pose will cause numerical instability and thus is not helpful in
numerical optimization at all. During this continuous capturing and detecting, the operator is free to adjust illumination and
pattern pose. This method turns out to be very effective, and the whole calibration process can be finished within minutes. It
only requires two people, each with a telephone handset: operator 1 is required to monitor the utility running while operator
2 standing before the camera hardware with the chessboard. The telephone link has to be established so that operator 2 can
hear the audio feedback.

We use a standard pattern of 8-by-11 inch for intrinsic calibration. The typical practice is to obtain 5 poses by rotating
around the pattern’s horizontal axis, and another 5 poses by rotating around another axis. 10 frames is enough for reliable
intrinsic computation. The same process can be done multiple times for averaging/verification.

For extrinsic calibration, we need a 4X chessboard pattern (32 by 44 inch) to be placed in the camera’s view. We use the
first approach, which require the determination for intermediate systemS1 by selecting one of the 4inner cornersas origin
(Refer to Fig. 2).

Start the utility and capture a single snapshot for the pattern on the floor. Under Aware Home’s geometry, it’s simply
not possible for the native OpenCV corner detector to reliable detect corners and we have to do it manually. Exit the
program, manually locate the image coordinates for the 4inner corners(origin, X and Y direction, and the last corner) (using
IrfanView or even Windows Painter). The functionCCameraModel::doManualCornerExtraction will use linear
interpolation as initial value and then refine the corner coordinates with the OpenCV functioncvFindCornerSubPix .
Given 48 correspondence between image coordinates and world coordinates, the homogenous matrixT2←1 can be computed.

Tape-measure and determineT1←0: the translation and rotation betweenS1 and the global worldS0.
T2←0 = T2←1 · T1←0. Refer togetCameraModel in moduledcomRemote for this computation.
This manual work is only required once for each cameras.

3.2.3 Current status

Currently all 27 fixed cameras have been calibrated. Intrinsic, extrinsic and distortion parameters can be found invisionConfig.ini .

3.2.4 Discussions

In the future, we could be smarter by directly clicking on the captured image to streamline the extrinsic process. Bigger chess-
board pattern or better and reliable corner detector will be also better solution, but we simply have not explored those possible

7

options. Jean-Yves Bouguet’s camera calibration toolbox for Matlab also provides links for other improved solutions.

3.2.5 Properties in configuration

category the category for this group, alwayscameraModel
resourceID the resource identification within this category for this instance
rotationZ the rotation betweenS0 andS1, used to computeT1←0

cameraOrigin the origin ofS1 in global worldS0

focus the camera focus in pixel
principal the camera’s principal point in pixel
undistort the camera’s distortion parameter
extTransVec the camera’s translation vector in mm
extRotVec the camera’s rotation vector
extRotMat the camera’s rotation matrix
alignment the alignment coefficient

3.3 cameras

This category represents the physical concept of a camera, or the video-capturing device, used by the DCOM module
dcomCapture . All properties are quite self-explanatory.

category the category for this group, alwayscamera
resourceID the resource identification within this category for this instance
hostMachine the host machine for this instance
deviceID the device ID for the video capture card for this instance
cameraModel the camera model associated with this instance

3.4 avi files

This category represents the video file, used by the DCOM moduledcomCapture .

category the category for this group, alwaysaviFile
resourceID the resource identification within this category for this instance
hostMachine the host machine for this instance
aviFileName the local file directory and name for this instance
undistortNeeded a flag indicating whether additional unwarping is needed
startPosition the start frame number when requesting frames
cameraModel the camera model associated with this instance, possibly used for unwarping

3.5 image sequences

This category represents image sequence, used by the DCOM moduledcomCapture .

category the category for this group, alwaysimageSeq
resourceID the resource identification within this category for this instance
hostMachine the host machine for this instance
baseFolderName the local directory for this image sequence
baseSeqName the local base name for this instance
suffix the image type for this instance
startFrame the start frame number when requesting frames
endFrame the end frame number when request frames
cameraModel the camera model associated with this instance, possibly used for unwarping

8

3.6 blobSensor

In essence, this category represents the DCOM moduledcomBSensor for performing background substraction for arbitrary
video streams. Typical one such instance is established on the same machine of the associated video stream source (cam-
era/AVI/image sequence, etc) to avoid transmission overhead. However, this is not a hard constraint andblobSensor s can
be used to process frames from any machine, for example due to debugging purpose.

category the name for this category, alwaysbSensor
resourceID the resource identification within this category for this instance
hostMachine the host machine for this instance
source the video source for providing frames for this instance,

can be any instance in eithercamera , aviFile or imageSeq category
trainFrame the number of frames used for background training;

3.7 clique

The cameras are grouped for each room (typically 4 or 6 cameras per room) based on their physical proximity. The camera
group has special semantics because in our system we make full use of their significant overlapping for visual fusing. This
category specifies whatblobSensor s (in turn what cameras/AVIs) are responsible for providing blobs for each instance of
clique.

category the name for this category, alwaysclique
camCount the camera count for this instance of clique
contains the list for blob sensors within this clique, separated by colon.

This implicitly corresponds to the video sources within this instance of clique
gridDist the distance between grids in centimeter, used to discretize the floor space for this instance
projectionHeight the height of the projection plane for this instance
cliqueArea the rectangle (x, y, width, height) for the instance of clique.

Note not all grids need to belong to this clique, exclusion and unreliable area
can be specified with respect to this rectangle, making the clique non-rectangular

cliqueAreaExclude a list of rectangle that are excluded from this instance of clique
cliqueAreaUnreliable a list of rectangle that are within this clique, but deemed unreliable.

Examples are those areas near the wall or other furniture where it’s unreliable to consider projection

3.8 blobTracker

Clique-level tracking task is accomplished in each DCOM module ofdcomTracker .

category the name for this category, alwaysbTracker
resourceID the resource identification within this category for this instance
hostMachine the host machine for this instance
source the associated clique for this instance

3.9 cliqueManager

Assuming there are some overlapping between cliques so that target locations can be used for transferring labels, the clique-
Manager is designed to assign for each target a global targetID so that house-wide perception is possible. We have not fully
implemented this feature in our system yet.

category the name for this category, alwayscliqueManager
resourceID the resource identification with this category for this instance
hostMachine the host machine for this instance
contains a list of cliques that this instance manages
writeToDatabase a flag indicating whether the global target should be archived into database

9

4 Debugging application

To facilitate debugging for the whole system, we designed a MFC-based application which essentially served as a client to
connect and verify each DCOM modules. Through this interface, the system/application developer can have better interaction
with the underlying system and possibly have a deeper understanding of how the system works. I will describe this debugging
GUI in detail in this sections.

The string arrayg_resourceName in the filevisionDebug.cpp defines all available entities that can be accessed
from this debugging GUI. Having detailed definitions in the global configuration filevisionconfig.ini , these enti-
ties ranges from cameras (cameraB0 , cameraB12 , etc.), avi video files (aviFileCalib6 , e.g.), image sequences,
blobSensor s (bSensorB0 , etc.), clique trackers (bTrackerB0 , etc.) and clique manager (cliqueManager0).

4.1 Connecting to remote video sources

A new view for any remote camera can be created by selecting the itemFile|New Camera View... . If the remote
camera has not been started, this will start the camera (thedcomCapture server, to be more exact), otherwise the running
instance of DCOM server is connected. The new view will continuously display rectified frames (using associated camera
model) transmitted from remote camera server (dcomCapture). The remote server is shut down when the last connection
in the whole system has been closed. The local camera will follow the same semantics in terms of activating and accessing.

Refer to classCDocCamera, especiallyCDocCamera::workerThread () for details on how to manipulate frames
after retrieved at local ends.

A new view for any remote video file can be created by selecting the itemFile|New AVI file View... . If the
remote DCOM serverdcomCapture for this video file has not been started, this will start the server, otherwise the running
instance is connected. The new view will continuously display frames from the video file across network. Rectification can
also be performed for each frame on either end. The remote server is shut down when the last connection has been closed.
The local video file will follow the same semantics in terms of activating and accessing.

Refer to classCDocAVI , especiallyCDocAVI::workerThread () for details on how to manipulate frames after
retrieved at local ends.

There is currently no similar manu item for image sequences. However, the implementation is quite straightforward.
The system is quite flexible that the unwarping can be performed either at video server side or at the client side.

4.2 Connecting to remote blobSensors

A new view for any remoteblobSensor s can be created by selecting the itemFile|New BSensor View... . If the
remote DCOM serverdcomBSensor for the specified instance has not been started, this will start the server, otherwise the
running server is connected. The new view will continuously display extracted blobs generated from the specified instance
of dcomBSensor no matter it’s remote or local. The server is shut down when the last connection has been closed.

Refer to classCDocBlobSensor , especiallyCDocBlobSensor::workerThread () for details on data process-
ing.

When the remote server ofdcomBSensor is required to get started, the server will automatically start all underlying
dcomCapture servers as defined invisionConfig.ini . Be aware this is an automatic chain reaction and in case of
failure, consider the possibility of failure fromdcomBCapture .

4.3 Connecting to remote clique visual trackers

A new view for any remoteblobSensor s can be created by selecting the itemFile|New BTracker View... . If the
remote DCOM serverdcomBTracker for the specified instance has not been started, this will start the server, otherwise
the running server is connected. The new view will continuously display computed local trajectories generated from the
specified instance ofdcomBTracker no matter it’s remote or local. The server is shut down when the last connection has
been closed.

Refer to classCDocTracker , especiallyCDocTracker::workerThread () for details on data processing.
When the remote server ofdcomBTracker is required to get started, the server will automatically start all underlying

dcomBSensor servers as defined invisionConfig.ini . Be aware this is an automatic chain reaction.

10

Note: this interface has not been fully tested, a safer way to try this feature isCVisionDebugApp::OnFileTracker ,
where you can understand how blobs are extracted from synchronized cameras, and fused to provide reliable tracking within
one clique.

4.4 Connecting to remote cliqueManager

This is still under development.

4.5 Synchronized video capturing

Our visual fusing algorithm needs the capability of synchronized video capturing. Ideally all concerned cameras (or other
forms of video resources) needs to provide frames at the same time instance (synchronization) for accurate geometrical
reasoning.

The dialog classCDlgSyncCapture is responsible for gathering user’s input, performing video capturing and stor-
ing frames. InternallyCDlgSyncCapture::syncCaptureThread () uses classCModuleSynchronizer for all
synchronization work.

4.6 More about configServer

The activation/shutdown ofdcomConfigServer is transparent. ThedcomConfigServer is only designed to reside
at a pre-defined host (as defined in the filedcomEntities.h) at the proper time, the issue arising is that how can other
process locate this only instance (most possibly across network). Our solution is to use moniker in COM/DCOM terminology.
A moniker is a resource identifier that can uniquely locate a running instance (note: not a class of servers) in a networked
environment. The authors are strongly encouraged to find more details about moniker in MSDN. The flip side of this approach
is that we are somehow forced to live in Microsoft world.

Some details for this approach: after activating thedcomConfigServer , the system will write the moniker (resource
identifier) to a network-accessible file (the filemainCliqueManager.guide) at a well-known location (the location has
to be accessible by all server/client machines). Other applications/DCOM modules can access the file for the moniker. With
the moniker, they are able to locate the unique instance ofdcomConfigServer currently running in the system.

For details, refer tostartLocalConfigAgent andstopLocalConfigAgent in dcomRemote library.

5 Deployment, debugging, and maintenance

5.1 System deployment

5.1.1 Microsoft DCOM support

Both Windows 2000 and Windows XP fully support COM/DCOM Technology. However, for serious development purpose,
you need to make sure the underlying include files and libraries are up-to-date. First all latest service packs for both the
Windows system and the Visual Studio have to be applied. On top of those patches, you also need to download the latest
Microsoft SDK (core SDK) from Microsoft website, and direct Visual Studio to use the latest SDK instead of the old include
files and libraries that ships with the original Studio CD-ROM. (SelectTools->Options->Directories... in Visual
Studio).

5.1.2 deployment and updating

System deployment is an essential step towards making the system running over distributed resources. Currently all libraries
(except the debugging GUI) is deployed in all vsensor machines (fromvsensor1 to vsensor8) since all those machines
can possibly act as providers for some DCOM services.

We usevsensor8 as the major development machine: the system will generate libraries and executables into locallib
directory, which is also shared across network and can be accessed by synonym\vsensor8\system .

On the desktop of each vsensor machine, there is a .BAT icon namedUpdate VSENSOR, which simply copy the latest
binaries from the publishing directory\vsensor8\system to their local directoryc:\vtracking\bin and perform
necessary registerations. This manual updating should be performed every time when there is a change in code/interface in

11

vsensor8 . Each machine should have this directory (c:\vtracking\bin) properly set in system global variablePATH
so that Windows knows how to locate them.

Also currentlyc:\vtracking\bin\system of each machine fromvsensor1 to vsensor8 has all required DLLs
for running COM/DCOM and OpenCV package. These libraries do not required to update every time. Each machine should
also have this directory properly set in globalPATHvariables so that Windows knows how to find these DLLs in case of
need.

In the future, we need to be more careful about the system deployment issue, and especially we need to separateRelease
Versionfrom Debug Version. While Debug Versionis for system developers to further expand the core function for this
system, theRelease Versionis for application developers who want to build their own applications on top of this system, and
definitely they prefer a more stable system.

5.1.3 Accounts

A distributed system will inevitably run into security considerations. You can not simply let users to access any computing
resources from an unauthorized location, and this is especially true for video cameras. We do not focus too much on security
issues and primarily rely on Microsoft COM/DCOM’s in-built security mechanisms.

In order for this distributed system to work, we manually established an accountvision on eachvsensor machine.
All machines have to be actively logged exactly in accountvision in order to provide/request services. COM/DCOM do
provide mechanism for one machine to provide remote services with different accounts, which requires somehow embedded
password in the function call. Interested system developers can explore that option in future. However, at this moment, we
restrict the user to stick tovision account.

Due to security management, currently Windows requires periodic changing of password for every 3 months, and expired
password do cause problems. Here is the symptom and solution:

Tip : In Microsoft COM/DCOM,HRESULT hris used as return value by most functions to indicate the status of previous
operation. The text description of this return value can be found by typing ”hr,hr” in Visual Studio’sVariable Window .
It contains valuable information about COM/DCOM debugging and helps greatly to reduce debugging pain.

One of the most annoying error message for hr in our system development isE_ACCESSDENIEDwhen you are trying
to establish an instance or connect to a remote instance. While this error can have some other causes, mostly it’s due to the
expiration of user account ”vision”. Simply reset the password to default for the target machine will solve this issue.

5.1.4 Adding new machine

Here is the checklist for adding new machine into this system:

1. setting up system, and possibly Visual Studio for development work;

2. ensure network runs well, add the machine into network;

3. ensure this machine is able to accessmainCliqueManager.guide on the network;

4. modifyvisionConfig.ini to include any hardware/software pieces that will run on this machine;

5. set directories to store binaries for possible DCOM server/clients. set script to update from publication directory
(vsensor8\system);

5.2 Debugging

The COM/DCOM debugging is very complicated because it concerns with both servers and clients. Especially when
client/server terminates/crashes for some reasons, the developer might have to manually shut down all related processes.
One of the most frequent mistakes: when shutting down the GUI client, the developer often forgets to shut down all remote
server processes and the configServer. This will cause the subsequent invocation of remote servers to fail.

Tip1: sometime it’s hard to tell whether a crash is due to algorithm failure or COM/DCOM infrastructure. In this case,
simply useCVisionDebugApp::test() to perform an isolated blackbox test and unit test. Since this is done locally
without intervention from COM/DCOM issue, problems might be easily located.

Tip2: given KVM switch, it’s sometime hard to debug distributed DCOM modules on different machines. One work-
around is to change thevisionConfig.ini to make both the server and client application running on the same machine.

12

Start one instance of Microsoft Visual Studio, load server and set breakpoint accordingly. Start another instance of Visual
Studio on the same machine for the client and set breakpoint. (It’s OK that class information might not be available for the
second instance of Visual Studio due to sharing conflict). Running the server will put the server into waiting state, waiting
inter-process invocation from clients, and the breakpoints in the server will be automatically reached when the client invoke
the server.

5.3 System extensions

Refer to directorysummerProject for codes, documentations on various system extensions. This work was done with a
group of 4 undergraduate student during the summer of 2004.

5.3.1 PTZ camera wrapper

We performed initial investigation on how to integrating PTZ cameras into our vision system, primarily for active vision
purpose. This requires the capability to communicate with camera control base and direct the camera to point to a specified
location in global world systemS0. It differs significantly from traditional fixed cameras since in this case the communication
is bi-directional. In the project CD-ROM, the projectsummerProject/TestCameraServerGUI for manipulating PTZ
camera. Refer to separate documentation for details.

5.3.2 Database interface

We performed initial investigation on interfacing with Microsoft SQL Server, primarily for archiving trajectories. The original
code is invisionWin_lib , and documentation is also available in directorysummerProject .

5.3.3 Applications

Based on the idea presented in [2, 3], we performed experimentations on a number of applications.

5.4 Testing videos

We’ve captured a number of videos using either the debugging application or the video capture utility that comes with Osprey
Video card/Windows system. Those videos can be used for performance test for various vision modules.

Since our visual fusing algorithm require synchronization (time stamp alignment), we did synchronized video capturing
using the cameras in second floor kitchen (cameraB4 to cameraB7). These videos include:

• caseA_cameraB * are the videos used for our WACV’05 paper [4]. Four cameras are used to capture 4 people
enter/exit the kitchen randomly and walking around;

• caseB_cameraB * are captured by 4 kitchen cameras for WACV’05 paper [4], Only 1 person is walking around to
simplify data association;

• In cameraB * _sitting , 4 people sits and walks around the kitchen;

• cvpr_camB * is the synchronized videos for stress test. The testing scenarios are described in sectionStress test
of previous Technical Report

Acknowledgments

The support of resources from Aware Home Research Initiative (AHRI) at Georgia Institute of Technology to make my work
possible is gratefully acknowledged.

13

Appendix

Appendix A: Delivable CD-ROMs

Here is the structure of the CD-ROM media:

module codes for individual modules
doc documentations in both PDF and HTML format
lib binaries and libraries for the system, directory for publication
publications publications (conference papers and Technical Reports)
summerProject experimental features and utilities
testVideos videos used for system debugging
testVideos/polygons the polygon output after visual fusing, one file per frame
videos videos forFinding lost object application
misc/floormap The floor map for Aware Home (jpeg and Microsoft Visio format)
misc/extrinsic working images for extrinsic calibration
misc/alignment working images for alignment
misc/calibratoinPattern the chessboard pattern
misc/visionConfig.ini a copy of the global configuration file for the whole system,

specified in variabledefaultLocalConfigFileName
misc/vidCap Video capturing utility from MSDN
misc/o100NTsdk SDK from Osprey on how to perform video capturing
misc/STLFilt STLFilt software
misc/WinCVS120 WinCVS software
misc/vs6.chm MSDN Samples
misc/calib camera calibration utility
misc/Tortiglioni work by previous students on Aware Home Visual Tracker, depreciated

Appendix B: Misc materials

Something that system developers might need to know:

1. password for accountvision for each machine;

2. password for CVS located onjetson.cc ;

For obvious reason, this information can only be found physically with the project CD-ROMs.
Together with the project CD-ROMs, there is a file folder, which contains a) working sheet for camera calibrations; b)

tutorials for COM/DCOM, STL, ATL, etc.
For more information about this project, please contact: Zhonghao Yang (yangzh@gmail.com)

References

[1] Eric Martinson, Ronald C. Arkin, Noise maps for acoustically sensitive nativation, Proc. of SPIE, Vol. 5609, Oct. 2004.

[2] Rodney E. Peters, Richard Pak, Gregory D. Abowd, Arthur D. Fisk, Wendy A. Rogers, Finding lost objects: informing
the design of ubiquitous computing services for the home, GIT-GVU-04-01.

[3] Truon, Khai. N., Abowd, Gregory D., Brotherton Jason A. Who, what, when, where, how: Design issues of capture
and access applications, Proceedings of the Inernational conference: Ubiquitous computing (UbiComp 2001), Atlanta,
Georgia, Sep, 2001, pp. 209-224.

[4] Zhonghao Yang, Aaron Bobick, Visual integration from multiple cameras,IEEE workshop on applications for computer
vision, 2005

14

