AN INTEGRATED OPTIMAL DESIGN PROCESS FOR A MANUFACTURING PLANT

A THESIS
Presented to
The Faculty of the Division of Graduate
Studies
by

Alfred Tit Yu Chan

In Partial Fulfillment of the Requirements for the Degree Master of Science in Industrial Engineering

Georgia Institute of Technology
May, 1975
an InTEGRATED OPTIMAL DESIGN PROCESS
FOR A MANUFACTURING PLANT

Approved:

ACKNOWLEDGMENTS

The author wishes to express his sincere appreciation to Dr. Paul S. Jones for his suggestions and constant guidance during the course of this study.

Appreciation is extended to Dr. Donovan Young and Professor James M. Apple, members of the Reading Committee, for their part in bringing about the completion of this work.

The author also is indebted to Dr . John A. White for his provision of the computer card deck for the location model used in this study.

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS ii
LIST OF TABLES iv
LIST OF ILLUSTRATIONS v
SUMMARY vi
Chapter
I. INTRODUCTION 1
Background
The Problem
Approach to the Problem
II. LITERATURE SURVEY 8
Location Selection Models
Layout Models
Equipment Selection Models
III. THE INTEGRATED OPTIMAL DESIGN PROCESS 24Formulation of SubprogramsFormulation of the Master ProgramSummary and Limitations of the Model.Procedure of Application
IV. A SAMPLE PROBLEM 67
Data SetupResults and Analysis
V. CONCLUSIONS AND RECOMMENDATIONS 88
APPENDIX
A. PREPARATION OF INPUT 92
B. LISTING OF FORTRAN PROGRAM 97
BIBLIOGRAPHY 131

LIST OF TABLES

Table Page

1. Classification of Factors 4
2. Characteristics of the Plant Location Models 14
3. Parameters of the IODP 50
4. Numerical Variables of the IODP 52
5. Decision Variables of the IODP 53
6. Fixed and Variable Costs of Equipment 55
7. Fixed and Variable Costs of Building 55
8. Special Parameters for the Computer Program 64
9. Forecast of Market Demand 68
10. Maximum Capacities of Plant Locations 69
11. Characteristics of Materials Handling Equipment 69
12. Characteristics of Parts 70
13. Characteristics of Manufacturing Machines 70
14. Characteristics of Departments 71
15. Transportation Costs 72
16. Costs of Building 73
17. Fixed Costs of Manufacturing Equipment 73
18. Fixed Costs of Materials Handling Equipment 75
19. Operating Costs of Materials Handling Equipment 76
20. Summary of the Computer Runs 80
21. Format of the First Card 92
22. Format of the Data Cards 93

LIST OF ILLUSTRATIONS

Figure Page

1. General Structure of the IODP 7
2. Input/Output of the Master Program 34
3. Input/Output of the IODP 57
4. Printout of Information from Data Cards 78
5. Printout of the Final Iteration of Run 1 83
6. Layout Resulted from Run 1 87

The objective of this study was to develop a design process integrating the decisions that establish the major characteristics of a manufacturing plant. The problem of initiating a new branch plant was attacked. It was assumed that only one plant was built. Decisions on the following factors were studied:

1. Plant location.
2. Capacity.
3. Distribution pattern.
4. Number of manufacturing equipment.
5. Number and type of materials handling equipment.
6. Floor area.
7. Plant layout.

This study was intended to provide the user of the process with a set of optimal design parameters that include the above factors, rather than sub-optimal solutions for individual factors which of ten results if the factors are analyzed separately.

An operations research model including all interrelationships and individual constraints among the aforesaid factors was developed. The method of solution was based on the decomposition principle. The model was decomposed into a master program and three subprograms. The subprograms consisted of a plant location selection program, an equipment selection program, and a plant layout program. The master program integrated the subprograms recognizing cost interrelationships.

Specific factors observed in the data collection process were organized into a step-by-step application procedure. A computer program was developed to solve the model and tested on sample problems.

It was concluded that if the capacity of the branch plant to be established is predetermined, the process will guarantee near-optimal solution. If the capacity of the branch plant is not predetermined, the process can serve as a tool to investigate the influence of capacity on the cost structure. Once the capacity is determined, a final run with the specified capacity will then give the set of nearoptimal solutions.

CHAPTER I.

INTRODUCTION

Background

Many important decisions establish the structure of a manufacturing plant. A few of these are plant location, capacity, size, type and number of manufacturing machines and material handing equipment, and facility layout.

A vast number of quantitative methods have been derived to help the user to obtain an optimal or near optimal decision under a set of specific assumptions. However, each of the above mentioned decisions has been studied mostly on an individual basis. The decisions are generally highly dependent on each other. A decision is often made on the basis of other decisions while the resulting decisions also serve as an information input for the other decisions. Under these circumstances, a set of optimal decisions obtained from individual optimization methods does not necessarily represent an optimal solution to the system. (The system is defined as the set of plants, markets, manufacturing equipment, handling equipment, the layout and interrelationships among them.)

The purpose of this study is to build a quantitative model integrating the decisions on plant location, capacity, size, type and number of manufacturing equipment and materials handling equipment, and layout. The model should include all cost functions as well as interrelational and individual constraints among the factors affecting the aforesaid
decisions. It should allow the user to obtain a set of optimal solutions referring to the entire system rather than sub-optimal solutions for individual components of the system.

The Problem

Assume a firm has several plants operating in different locations. For simplicity, assume it to be a single-product manufacturing firm with markets distributed over a large area and a total demand exceeding the total output of existing plants. A forecast of the demand over a longterm planning period, e.g., 10 years, is obtained. A new plant is to be built in order to have the supply meet the forecast demand. Decisions to be made include the following:

1. Plant locations
2. Capacity.
3. Distribution pattern。
4. Number of manufacturing equipment.
5. Number and type of materials handling equipment.
6. Floor area.
7. Plant layout,

The traditional way of solving the abore problem is to isolate each sub-problem and try to get an optimal solution for each using mathematical equations or operations research models together with available data. A typical approach would be solve problems 1, 2, and 3 with a mixed integer programming model, 4 and 5 with mathematical functions depending on the capacity of the new plant, 6 with an equipment selection model, and 7 with a computerized plant iayout program. Unfortunately,
optimizing items separately does not necessarily give an optimal solution to the system problem. To illustrate this, consider this simplified example. Suppose the operating costs per month of three types of equipment at three different locations are represented by the matrix below:

		location		
		1	2	3
	A	70	80	90
	equipment	88	78	98
	C	94	84	74

When the location with the minimum operating cost is to be selected, the type of equipment used has to be predetermined. However, different predetermined equipment yields different results. Locations 1, 2, 3 will be selected if equipments A, B, C are used respectively. A similar situation occurs when equipment selection is performed with predetermined locations. The ideal method is to compare the costs under every combination of equipment and location. This is possible for very smallscale simple problems. As the number of locations and equipment types to be considered becomes larger, this becomes impractical. Furthermore, in obtaining a solution for the entire system, the process of comparing results under combinations of all the factors is highly impractical even for small-scale problems.

The above mentioned problem suggests the need for a model from which an optimal set of solutions to the system can be obtained with minimal effort. The model developed for this purpose in this study will
be referred to as Integrated Optimal Design Process (IODP).

Approach to the Problem

The seven factors, which establish the structure of a manufacturing plant, are the basic subjects of this study. When the factors are considered individually, the solution procedures include solving a location selection problem, an equipment seleciion problem, and a layout problem. Table 1 shows how the factors are classified.

Table 1. Classification of the Factors

Name of Problem	Factors Considered Directly	Factors Considered Indirectly
Location Selection	(1) Plant Location (3) Distribution Pattern	(2) Capacity (4) Number of Manufac- turing Equipment
Equipment Selection	(5) Number and Types of Materials Handling Equipment	
Plant Layout	(7) Plant Layout	

Consideration of the factors indirectly means that the factors are obtained from mathematical equations associated with the direct solution of the problem.

Since there have been so many powerful methods developed for solving these problems, constructing a completely new model without using the available solution methods would be far from practical. With this in mind, the procedure followed in this study has been:

1. To select the appropriate location selection, equipment selection and plant layout methods.
2. To identify all the interrelationships among the factors considered.
3. To put all the above together into a single model and to develop the solution procedure.

Step 1 was accomplished as a result of a literature survey. Available models, with the greatest compatibility with other models in the system, were selected. Step 2 was accomplished through an analysis of the input and output structure of the selected models. The interrelationships identified are basically transfer functions, by which output from one model is transferred to input to the other models.

The decomposition principle developed by Dantzig and Wolfe (8)* provided the insight to develop the solution procedure for Step 3. The decomposition principle solves the problem by iterating through an alternate sequence of master program and subprograms. By solving a master program, a set of prices are generated which are fed into the subprograms. The subprograms which optimize their relative objective functions over specific sets of constraints are solved, generating new points. These points are fed into the master program to update the price vectors, which are in turn fed into the subprograms.

Utilizing the decomposition principle, the location selection model, the equipment selection model, and the layout model were treated

[^0]as subprograms while the interrelationships among them made up the master program. Figure 1 illustrates the general structure of the IODP.

Figure 1. General Structure of the IODP

CHAPTER II

LITERATURE SURVEY

Location Selection Mode1

Problems in location analysis can be categorized into (1) location on a plane, and (2) location on a network. Location on a plane is characterized by an infinite solution space while location on a network has a solution space consisting of points on the network.

Revelle, Marks and Liebman (27) further classified location models into private sector models and public sector models. Private sector models are those in which the total cost of transportation and operating facilities is isolated as the objective to be minimized. Public sector models are problems with the dilimma that goals, objectives and constraints are no longer easily quantifiable, nor are they even necessarily commensurate nor easily defined

The location model in this study selects a plant site from among a finite number of feasible locations based on obtainable cost data on transportation and operating the facilities, and is thus a private sector model on a network. A survey was made of research devoted to solve problems in this specific category

Revelle, Marks and Liebman (27) defined the general mathematical formulation of the plant location problem as follows;

$$
\operatorname{minimize} \quad Z=\sum_{j=1}^{n} \sum_{i=1}^{m} c_{i j}\left(x_{i j}\right)+\sum_{i=1}^{m} F_{i}\left(y_{i}\right)
$$

$$
\begin{array}{rlrl}
\text { subject to: } \sum_{j=1}^{n} x_{i j} & =y_{i} & i & =1,2, \ldots, m \\
\sum_{i=1}^{m} x_{i j} & =D_{j} & j & =1,2, \ldots, n \\
x_{i j} & \geq 0 & & i=1,2, \ldots, m \\
y_{i} & \geq 0 & j & =1,2, \ldots, n \\
i & =1,2, \ldots, m
\end{array}
$$

where

$$
\begin{aligned}
x_{i j} & =\text { amount shipped from location } i \text { to market } j, \\
y_{i} & =\text { total amount shipped from location } i, \\
C_{i j}\left(x_{i j}\right) & =\text { cost of shipping the quantity } x_{i j} \text { from } i \text { to } j, \\
D_{j} & =\text { the demand at market } j, \\
n & =\text { the number of markets, } \\
m & =\text { the number of proposed locations. }
\end{aligned}
$$

Except for the objective function, this formulation is identified as that of the classical Hitchcock transportation problem. However, since the facility function $F_{i}\left(y_{i}\right)$ is frequently nonlinear, the problem cannot be solved by linear programming. Generally, $\mathrm{F}_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{i}}\right)$ includes a large fixed investment for land, equipment, utilities, etc.

A sizeable amount of research has been done to develop either an exact solution procedure or a heuristic solution procedure for the above problem. Two of the best known heuristic procedures are that of Kuehn and Hamburger (21), and Feldman, Lehrer, and Ray (14).

The Kuehn-Hamburger heuristic procedure assumes that the trans-
portation costs are linear and that the facility cost function is in the form:

$$
\begin{aligned}
F_{i}\left(y_{i}\right) & =a_{i}+b_{i} y_{i} & & , \text { if facility exists } \\
& =0 & & \text { if it does not }
\end{aligned}
$$

The procedure locates facilities one at a time until no additional facilities can be added without increasing total cost. Then the solutions are modified by evaluating the profit implications of dropping facilities or of shifting them from one location to another.

Feldman, Lehrer, and Ray (14) assume transport costs are linear and the facility cost function is a continuous concave function. The solution procedure starts by assuming all plants are assigned. Plants are then dropped one at a time until no plant can be dropped with saving achieved.

Efroymson and Ray (ll) formulate the plant location problem as a mixed integer programing problem. The formulation is:

$$
\begin{aligned}
& \operatorname{minimize} z=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}+\sum_{i=1}^{m} f_{i} y_{i} \\
& \text { subject to: } \quad \sum_{i \in N_{j}} x_{i j}=1, \quad j=1,2, \ldots, n \\
& 0 \leq \sum_{j \in P_{i}} x_{i j} \leq n_{i} y_{i}, \quad \begin{array}{l}
i=1,2, \ldots, m n \\
j=1,2, \ldots, n
\end{array} \\
& y_{i}=(0,1) \text { for all } i
\end{aligned}
$$

where

$$
\begin{array}{rl}
c_{i j} & =t_{i j} D_{j}, \\
t_{i j} & =\text { the unit transportation cost from location } i \text { to } \\
\text { market } j, \\
D_{j} & =\text { the demand at market } j, \\
x_{i j} & =\text { the fraction of } D_{j} \text { supplied from location } i, \\
f_{i} \geq 0 & =\text { the fixed cost associated with location } i, \\
y_{i} & =1 \text { if the plant at location } i \text { is used, } \\
m & 0 \text { number of possible plant locations, } \\
n & =\text { total number of markets, } \\
P_{i} & =\text { the set of markets that can be supplied by the } \\
& \text { plant at location } i, \\
n_{i} & =\text { the number of markets in } P_{i}, \\
N_{j} & =\text { the set of plants that can supply market } j,
\end{array}
$$

The solution method employed is an implicit enumeration known as branch and bound; and an exact solution is obtained,

A plant location problem frequently includes constraints on the configuration of plants. It may require that only a certain number of plants out of a given set be allowed open or closed, or that the opening or closing of one plant imply a similar or opposite action for a different plant. These side constraints are included in the Spielberg (31) formulation of the plant location problem. The algorithm employed by Spielberg is also branch and bound.

Another type of constraint that requires attention is capacity constraints. $\mathrm{Sa}^{-}(28)$ included capacity constraint but not the configuration constraint in his formulation of the problem. An exact
solution method using the branch and bound treatment and an approximate routine borrowing the 'add' approach of Kuehn and Hamburger (21) and the 'drop' approach of Feldman, Lehrer and Ray (14) were developed by Sa°.

Capacity constraints were also studied by Marks (24). Marks' model allows warehouses to be considered as intermediate points between source and demand. The facility cost function is assumed to involve a fixed charge plus a linear expansion cost. The main characteristic of Marks' solution procedure is the use of Ford and Fulkerson's out-ofkilter network algorithm (15).

Ellwein and Gray (12) developed a formulation of the plant location problem including both the configuration and capacity constraints. The formulation is:

$$
\begin{array}{rl}
\operatorname{minimize} z & =\sum_{i=1}^{m} \sum_{j=1}^{n} d_{i j} x_{i j}+\sum_{i=1}^{m} g_{i}\left(\sum_{j=1}^{n} x_{i j}\right)+\sum_{i=1}^{m} f_{i} y_{i} \\
\text { subject to: } \sum_{i=1}^{m} x_{i j} \geq b_{j} & j=1,2, \ldots, n \\
\sum_{j=1}^{n} x_{i j} \leq a_{i} y_{i} & i=1,2, \ldots, m \\
\sum_{i \in S_{t}} y_{i} \leq r_{t} & t=1,2, \ldots, p \\
x_{i j} \geq 0 & \\
y_{i}=(0,1)
\end{array}
$$

where

$$
x_{i j}=\text { amount that location } i \text { supplies to market } j \text {, }
$$

$$
\begin{aligned}
d_{i j} & =\begin{array}{l}
\text { transportation cost per unit of product } \\
\\
g_{i}\left(\sum_{j=1}^{n} x_{i j}\right)
\end{array} \\
f_{i} & =\text { source variable costs, } \\
y_{i} & =1 \text { if ifed cost at location } i, \\
& 0 \text { if not, location } i \text { is used, } \\
b_{j} & =\text { demand at market } j, \\
a_{i} & =\text { capacity of plant at location } i, \\
s_{t} & =\text { a subset of the m source locations, } \\
r_{t} & <m, \text { the configuration constraint. }
\end{aligned}
$$

When simplified, the objective function becomes:
$\operatorname{minimize} \sum_{i=1}^{m} \sum_{j=1}^{n} v_{i j} x_{i j}+\sum_{i=1}^{m} f_{i} y_{i}$
where $\quad v_{i j}=$ per unit variable cost.

The solution procedure utilizes an enumerative search scheme in conjunction with feasibility-optimality tests to reduce the size of the feasible set. Then for each of the small number of enumerated source configurations passed through the tests, a transportation problem is optimized to determine the minimum cost allocation.

The characteristics of the models included in this survey are summarized in Table 2.

Table 2. Characteristics of the Plant Location Models

Author	Exact Solution Procedure	Configuration Constraints	Capacity Constraints
Kuehn and Hamburger (21)	no	no	no
Feldman, Lehrer and Ray (14)	no	no	no
Efroymson and Ray (11)	yes	no	no
Spielberg (31)	yes	yes	no
Sa- (28)	yes	no	yes
Marks (24)	yes	no	yes
Ellwein and Gray (12)	yes	yes	yes

Layout Models

Plant Layout, as defined by Apple (1), is planning and integrating the paths of the component parts of a product to obtain the most effective and economical interrelationship between men; equipment; and the movement of materials from receiving, through fabrication, to the shipment of the finished product.

This definition of plant layout clearly indicates that plant layout is directly associated with the flow of materials. Consequently, quantitative layout methods developed mostly have the objective of minimizing the material flow cost.

Early research on quantitative layout methods mainly devoted to the development of the Travel Chart. Cameron (7) used the name of From-

To Chart to replace the Travel Chart. The From-To Chart is basically a matrix summarizing numerical measure of the materials flow from one department to another.

A procedure utilizing the From-To Chart to solve process type layout problems was developed by Smith (30). Other charts similar to the From-To Chart are the Cross Chart of Farr (13) and Relationship Chart of Muther (25).

A complete procedure to utilize the From-To Chart was developed by Buffa (5). Buffa used a method called 'Sequence Analysis.' The sequence of operations is analysed from route sheets or operation sheets together with forecast data on the production of parts and data on the unit handling loads for parts. The results of the analysis are represented by (1) a 'Sequence Sumary' which includes the move sequence of every part and the departmental space requirements, and (2) a summary of production and handling data including data on pieces per month, pieces per load and loads per month. Based on the above data, a load summary, which is equivalent to a From-To Chart, is constructed. This chart shows the frequency of material handing among all combinations of departments. A network diagram is then constructed with nodes representing departments and arcs representing the relative value obtained from the chart. A trial and error procedure is then carried out to rearrange the departments such that departments having material handling relationships are arranged adjacent to each other. The major disadvantage of using the above procedure is that in obtaining an ideal schematic diagram, the differences in departmental area requirements are disregarded.

As the layout problem becomes large in scale, computerized layout programs are often considered to be more efficient than traditional methods. The Computerized Relative Allocation of Facilities Technique developed by Buffa and Armour and Vollman $(3,6)$ is the first computer model widely accepted. The progran requires input of the following data:

1. Interdepartmental flow per time unit.
2. Unit load material handling cost per unit distance.
3. An initial layout.

The objective is to minimize the total material handling cost calculated from the distances, the volume flow, and the handling cost between each pair of the departments. The algorithm tests possible exchanges of departments and makes the exchange,

Seehof, Evans, Fredricks and Quigley (29) developed the Automated Layout DEsign Program (ALDEP) which can generate initial layouts of up to three floors. It requires the following input data:

1. Building description.
2. Departmental area requirements.
3. Departmental preference matrix.
4. Preassignment list of the departments to specific floors or locations.

The program generates layouts independently for each floor by a random selection technique. The objective is to generate layouts allowing the departments with the highest priority relationships to be placed adjacent to each other.

Computerized RElationship LAyout Planning (CORELAP) developed by Lee and Moore (23) generates an initial layout based on the following input data:

1. A Relationship Chart of the Muther type (25).
2. Departmental area requirements.
3. Size of a unit block.
4. The maximal ratio of building length to width.

CORELAP uses a heuristic approach which maximizes the Tatal Closeness Rating (TCR) for each department. The first department placed in the layout is the one with the maximal $T C R$; then the rest of the departments are placed one at a time such that the department with maximum closeness rating with the previous department is selected. The placement procedure utilizes a 'sweep' routine which places the selected department closest to the previous department.

A series of studies by Gani (16), Devis (10), Klein (20), Deisenroth (9), and Apple at Georgia Institute of Technology resulted in the development of the Plant Layout Analysis aNd Evaluation Technique (PLANET). The major contribution of PLANET is the introduction of actual handling cost into the From-To Chart, which allows the generation of an initial layout that minimizes the total handling cost for the lay. out arrangement. The program requires the following input data:

1. Departmental area requirements,
2. Size of a unit block.
3. Priority of placement (optional).
4. Flow specification in three possible formats:
(a) A part list including the frequency of movements, cost
per move and move sequence for every part making up a unit of product;
(b) A From-To Chart representing the cost of flow between the departments. Stating mathematically:

$$
\begin{aligned}
& C_{i j}=\sum_{\text {all } k} c_{i j k} \text { for all } i \text { and } j \\
& \text { and } c_{i j k}=f_{k} u_{k} d_{i j} \quad \text { for all } i, j \text { and } k \\
& \text { where } \quad \begin{aligned}
C_{i j}= & \text { total flow cost from department } i \text { to } \\
& \text { department } j \text { per time unit, }
\end{aligned} \\
& \begin{aligned}
c_{i j k}= & \text { flow cost from department } i \text { to de- } \\
& \begin{array}{l}
\text { apartment } j \text { for part } k \text { per time } \\
\\
\text { unit, }
\end{array}
\end{aligned} \\
& \begin{aligned}
f_{k}= & \text { frequency of movement for part } k \text { per } \\
& \text { time unit, }
\end{aligned} \\
& u_{k}=\text { cost per move per } 100 \mathrm{ft} \text { for part } k \text {, } \\
& \begin{aligned}
\mathrm{d}_{\mathrm{ij}}= & \text { distance in } 100 \mathrm{ft} \text { between department } \\
& \mathrm{i} \text { and department } \mathrm{j} .
\end{aligned}
\end{aligned}
$$

(c) A penalty matrix which causes the program to locate the departments with large penalty value close together. The program utilizes two procedures: (1) the selection procedure, and (2) the placement procedure. Before the selection procedure starts, a Flow-Between Chart is constructed by adding the flow cost in one direction to that in the reverse direction. The program allows the user to compare results obtained from three selection methods of different approaches:

1. Selection method A -- First the pair of departments having the
highest flow-between cost is selected for placement. Then the rest of the departments are selected by taking the pair with the highest flow-between cost, where pairs are formed by combining departments in the available list with those in the placed list. Thus the size of the placement list increases while the available list reduces to zero when the layout is accomplished.
2. Selection method B -- This is similar to method A; but the department on the available list that has the highest total relationship to those departments in the layout is selected.
3. Selection method C -- By adding elements across each row of the Flow-Between Cost Chart, the 'Total Departmental Flow Between Cost' is obtained. The departments are then ranked in descending order based on these values. The order of placement then follows the ranking order.

The placement procedure utilized by the program first approximates the location of the center of the selected department along the perimeter of the existing layout. When the center is fixed, the blocks are added to the layout by a spiral or looping process in order to insure a relatively square shape.

Besides the heuristic models discussed above, mathematical programming approaches to the problem also exist in the works of Gilmore (16), and Lawler (21). However, their models are not practical owing to computational time requirements,

Equipment Selection Models

A list of items to be used in studies for machinery selection in manufacturing enterprises is suggested by Grant and Ireson (18) as follows:

- Investment
- Expected economic life in years
- Estimated salvage value at end of life
- Annual cost of taxes
- Annual cost of insurance
- Annual cost of materials
- Annual cost of direct labor
- Annual cost of indirect labor
- Annual cost of maintenance and repairs
- Annual cost of power
- Annual cost of supplies and lubricants
- Annual cost associated with space occupied

Reed (26) developed a step-by-step procedure to obtain estimates of labor costs, investment costs, and operating costs for movement, loading and unloading activities of a piece of materials handling equipment. In arriving at the costs, the following factors must be considered:
(a) Labor cost rate in dollars per man-hour.
(b) Operating cost rate in dollars per equipment-hour,
(c) Annual investment cost of the equipment, which is taken as a percentage of the initial cost.
(d) Actual working hours per year,
(e) Investment rate in dollars per equipment-hour; which is obtained by dividing item (c) by item (d).
(f) Utilization factor applied to correct for downtime of manpower and equipment.
(g) Loads per year derived from the quantity per year and the quantity per load.
(h) Hours per load, which is the sum of hours for the loaded trip, the unloaded return trip, and deadhead trips required to bring back empty containers.
(i) Annual cost of the containers used by the equipment. Based on items (f), (g) and (h) stated above, the actual man-hours per year and equipment-hours per year are calculated. Multiplying these values by their relative cost rates represented by items (a), (b) and (e) gives annual labor costs, annual investment costs of equipment, and annual operating costs. The above mentioned observations and calculations are performed for each of the activities of movement, loading and unloading. The total of the annual costs obtained together with the annual investment costs on the containers used in the activities represents the annual equivalent cost of utilizing the piece of equipment. The equipment with the lowest annual equivalent cost is selected,

Most other work on equipment selection utilized standard discounted cash-flow procedures. The methods of transferring the cash flows of the alternatives to values on a comparable basis as summarized by Bazaraa (4), are:

1. Present worth method.
2. Final worth method.
3. Equivalent annual cost method.
4. Rate of return method.
5. Rate of return on additional investment method.
6. Adjusted rate of return on additional investment method. Methods 1, 2, 3 and 4 are mostly used to compare mutually exclusive alternatives while method 5 and 6 can handle mixed type alternatives more effectively. Definition of the above methods can be found in most standard texts on engineering economics.

Criteria on comparison of alternatives developed generally use one of the above listed methods as the means of making final comparison. (In the case of equipment alternatives, the rate of return method cannot be applied because there is no direct return.) The main difference between criteria developed is the manner of treating the nonmonetary factors. Apple (2) developed a criterion by which a piece of equipment is selected on the basis of the value obtained from multiplying the total of direct costs, indirect costs and indeterminate costs by a weighted evaluation of intangible factors such as quality, availability, complexity, flexibility, etc,

A nine-step procedure developed by Bazaraa (4) takes the levels of mechanization into account. The levels of mechanization which best fit the given case are determined before the economic analysis is made, The pieces of equipment which do not fit into the situation are then eliminated. An economic analysis is made on the remaining pieces of equipment. The adjusted rate of return on additional investment method and/or the equivalent annual cost method is used for this purpose. The
final step is to make the choice by one of the two procedures:

1. Consideration of the trade-off between economic and intangible factors, subjectively, by the materials handling engineer.
2. Construction of an indifference curve based on many other people's experience.

Since the latter method is expensive and time consuming, it is not recommended unless the equipment is very expensive.

Jones (19) has emphasized equipment compatibility in his work. Ten warehouse functions were identified. Numerical expressions for the interactions among equipment alternatives filling the different warehouse functions were developed in the framework of a queuing network analysis. These interactions allowed the construction of sets of alternatives which can satisfy all the warehouse activities. Equivalent daily costs (similar to equivalent annual cost in nature) were calculated for each set, and the least-cost set was identified.

CHAPTER III

THE INTEGRATED OPTIMAL DESIGN PROCESS

Formulation of Subprograms

Three subprograms were formulated to be utilized by the IODP. They are:

1. Location Subprogram
2. Layout Subprogram
3. Equipment Subprogram

These subprograms utilize models reviewed in the literature survey, which are able to give satisfactory solutions to the problem as stated in Chapter I, and also are able to facilitate the formulation of the master program. The formulation of the subprograms will be discussed below.

1. Location Subprogram

The location subprogram utilized in the IODP is designed to generate a distribution pattern while selecting the best location for the branch plant from a number of proposed locations. It is also assumed that there are one or more plants already existing in the system.

The structure of the problem implies that a model which includes configuration constraints on the number of plants used should be selected. Furthermore, a location model without the capacity constraints may generate a distribution pattern having the total supply from existing plants exceed their maximum capacities; thus the location model should
also include the capacity constraints as well as configuration constraints.

Needless to say, as observed from Table 2, the Ellwein and Gray model is the only model that can handle both configuration and capacity constraints; and it is selected as the basis of the location subprogram in the IODP.

The objective function of the Ellwein and Gray model in its simplified form is:
minimize

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} v_{i j} x_{i j}+\sum_{i=1}^{m} f_{i} y_{i}
$$

Since the IODP has to include decisions on the utilization of manufacturing machines and materials handling equipment, cost variables relating to such activities should be introduced into the location model to insure integrity of the system. For this purpose, the per unit variable cost $v_{i j}$ and the facility fixed cost f_{i} have been broken down to allow a clearer presentation of the costs involved. The formulation of the location subprogram then appears as follows:

$$
\begin{equation*}
\operatorname{minimize} Z_{L}=\sum_{i=1}^{E} \sum_{j=1}^{J}\left(C_{i j}+r_{i}\right) x_{i j}+\sum_{i=E+1}^{I} \sum_{j=1}^{J}\left(C_{i, j}+p_{i}+h\right) x_{i j} \tag{LO}
\end{equation*}
$$

$$
+\sum_{i=E+1}^{T}\left(F_{i}+P_{i}+H_{i}\right) y_{i}
$$

subject to: $\quad \sum_{i=1}^{I} x_{i j} \geq D_{j} \quad$ for all j

$$
\begin{align*}
& \sum_{j=1}^{J} x_{i j} \leq g_{i} y_{i} \quad \text { for all } i \tag{L2}\\
& \sum_{i=1}^{I} y_{i} \leq E+1 \tag{L3}\\
& \sum_{i=E+1}^{I} y_{i} \leq 1 \tag{L4}
\end{align*}
$$

$$
\begin{equation*}
y_{i}=(0,1) \quad \text { for all } i \tag{L5}
\end{equation*}
$$

$$
\begin{equation*}
x_{i j} \geq 0 \quad \text { for all } i \text { and } j \tag{L6}
\end{equation*}
$$

where

$$
\begin{aligned}
E & =\text { Number of existing plants, } \\
I & =\text { Number of plant locations including existing plants, } \\
J & =\text { Number of markets, } \\
C_{i j} & =\text { Cost of shipping one unit from location } i \text { to market } j, \\
r_{i} & =\text { Cost of producing one unit in existing plant } i, \\
F_{i} & =\text { Fixed cost per unit time of operating a plant at } \\
& \text { location } i, \\
P_{i} & =\text { Cost of machining one unit at location } i, \\
P_{i} & =\text { Fixed cost per unit time of machinery at location } i, \\
h & =\text { Cost per unit time of handling one unit, } \\
H_{i} & =\text { Fixed cost per unit time of materials handling at } \\
D_{j} & =\text { Demand at market } j \text { per unit time, } \\
g_{i} & =\text { Maximum capacity allowed at location } i, \\
x_{i j} & =\text { Amount shipped from location i to market } j,
\end{aligned}
$$

$$
y_{i}=\begin{aligned}
& 1 \text { if plant is used at location } i \text {, } \\
& 0 \text { if not. }
\end{aligned}
$$

Location 1 to E are assumed to be the locations of existing plants, Equations (L1) and (L2) are the demand and supply (capacity) constraints respectively. The configuration constraints are represented by equations (L3) and (L4). These two equations insure that the existing plants are included in the solution and only one location is selected from the proposed locations for the branch plant.

2. Layout Subprogram

As the IODP is complex in structure, a computerized layout prom gram is preferred to traditional layout methods.

Since the IODP is a quantitative model, a layout program utilizing quantitative input is desirable. CRAFT program requires an initial layout as input. Preparation of this layout is too troublesome for a complex process. ALDEP program requires a preference matrix as input and uses a random selection technique. Since the construction of a preference matrix is often based on qualitative information rather than quantitative data, ALDEP program does not appear to be compatible with other subprograms in the system, and is therefore rejected. CORELAP is also rejected because the relationship chart which is used as input to the program represents qualitative ratings,

PLANET program was developed especially for the purpose of generating an initial layout for production facilities. It utilizes quantitative input data and uses actual materials handing cost between the departments as the scoring technique for the program. In every sense, it appears to be more compatible with the IODP than any other computer-
ized layout models; and thus it is selected as the layout subprogram of the IODP,

The model can be represented mathematically as:

$$
\begin{array}{ll}
\operatorname{minimize} & z_{y}=\sum_{e=1}^{k-1} \sum_{l \neq e}^{k}\left(\Delta_{e l} \gamma_{e l}\right) \\
\text { subject to } & \gamma_{e l}=\text { Function }\left(s_{k}, \Delta_{e l}\right) \tag{Y1}
\end{array}
$$

where

$$
\begin{aligned}
\Delta_{e l}= & \text { Materials handling cost in dollars per ft. per unit } \\
& \text { time from department } e \text { to department } \ell, \\
\gamma_{e l}= & \text { Distance in ft. between department } e \text { and department } \ell, \\
s_{k}= & \text { Area requirement in sq. ft. of department } k, \\
k= & \text { Number of departments. }
\end{aligned}
$$

PLANET program allows the user to compare results obtained from three alternative selection methods. However, only method C is used here in order to reduce the burden of decision making by the users of IODP. Since all of the selection methods use heuristic approaches, there is no guarantee that any of them is the best; method C is only selected at random.

3. Equipment Subprogram

As already pointed out in the literature survey, the criteria developed differ mostly only in their methods of utilizing the intangible factors to modify the cost factors. An economic analysis is included in any of the criteria developed. The equivalent annual cost method has
been observed to be the most widely accepted method in equipment selection models. This method has also appeared to be the most appropriate method to be used in the IODP. Actually, the equivalent annual cost has already been applied in the development of the location subprogran when the cost factors F_{i}, P_{i}, and H_{i} are expressed in dollars per unit time,

Since only quantitative factors are considered in this study, the equipment subprogram will only utilize the costs associated with the equipment. Generally speaking, there are only two types of costs associated with a piece of equipment. They are the fixed cost expressed in dollars per unit time, and the operating cost expressed in dollars per equipment-hour or in dollars per distance unit travelled by the equipment. The cost factors suggested by Grant and Ireson (18) as listed in the literature survey are derived by breaking down these two types of costs. However, if the total equipment-hours or total distance traveled by a piece of equipment per unit time is known, the operating cost per unit time can be calculated. Adding the operating cost per unit time to the equivalent fixed cost per unit time gives the total equivalent cost per unit time. (If the unit of time is one year, then the value obtained is the equivalent annual cost.)

The equipment subprogram will use the equivalent cost per unit time for selecting the appropriate equipment. All costs involved are expected to be modified by intangible factors before they are input into the subprogram.

The equipment selection procedure presumes that the same piece of
materials handling equipment can move parts between several pairs of manufacturing operations. Therefore, it is necessary to assure that only a single type of materials handling equipment is used to move a part. Relaxation of this requirement may create many complicating conditions which could make the IODP unmanageable. Based on this assumption, one type of equipment will be selected to move each part of a product throughout the process. Furthermore, the number of pieces of equipment required to move each part have also to be decided.

The above discussion has led to the formulation of the equipment subprogram. Equipment alternatives are set up for each part of a product; and the type with the least cost per unit time will be selected. The integer programming formulation is the best way to present the criteria. However, since only one alternative is chosen for each part, and the decision made for each part is assumed to be independent, the actual solution technique need not necessarily use integer programming solution techniques. The computer program developed for this purpose (see Appendix B) only uses a simple search technique to obtain the leastcost equipment. Expressing the equipment subprogram in an integer programming formulation is important only because it can generate a decision variable which can be useful in the formulation of the master program, The equipment subprogram is formulated as follows:

$$
\begin{equation*}
\text { minimize } \quad Z_{E}=\sum_{t=1}^{T} \sum_{n=1}^{N}\left(Q_{n} \tau_{n}+\pi_{t n}\right) z_{t n} \tag{E0}
\end{equation*}
$$

$$
\text { subject to: } \quad \begin{align*}
\sum_{n=1}^{N} z_{t n} & =1 & \text { for all } t \tag{El}\\
z_{t n} & =(0,1) & \text { for all } t \text { and } n \tag{E2}
\end{align*}
$$

where

$$
\begin{aligned}
& T=\text { Number of parts per unit of product, } \\
& \mathrm{N}=\text { Number of materials handing equipment, } \\
& Q_{n}=\text { Fixed cost of using one piece of discrete type } \\
& \text { handling equipment or one foot of continuous type } \\
& \tau_{t n}=\text { Number of discrete type handing equipment or length } \\
& \begin{aligned}
\pi_{t n}= & \text { Operating cost per unit time of using handing } \\
& \text { equipment } n \text { to move part } t,
\end{aligned} \\
& z_{t n}=\begin{array}{l}
l \\
\\
0 \\
\text { if part } \\
\text { if not. }
\end{array} \quad \text { is moved by handing equipment } n \text {, }
\end{aligned}
$$

Equation (El) is the constraint to insure that only one type of equipment is chosen for each part. Detailed expressions to derive the parameters used in this subprogram will be developed in the formulation of the master program.

The parameters defined above possess different units of measurement for different classes of materials handing equipment. Generally, materials handing equipment can be classified into discrete and continuous types. Each type performs the handing activities in a distinct fashion and carries a different cost structure. A brief description of both types is presented:
(a) Discrete type -- Typical examples are fork truck, walkie pallet lift, and hand truck. This type of equipment moves
items in discrete movements. A move is completed whenever the piece of equipment has transported a batch of items from a loading point to a discharge point. The capacity of every move depends on the equipment, and purchase price is fixed for a single piece of equipment.
(b) Continuous type -- Typical examples include various types of conveyors. This type of equipment transports items in a path predetermined by the design of the device and having fixed points of loading and discharge. The movement is continuous since items can be loaded onto or discharged from the device at any time or place. The purchase prices generally depend on the capacity (often expressed in weight units) that can be transported per unit time, and the length of the devices to be installed. In other words, the purchase price of a piece (or system) of ec 1ipment depends on its capability as well as the distance to be covered by the device.

The above definitions will be applied to materials handling equipment named as discrete type or continuous type hereafter,

Formulation of the Master Program

In this section, the interrelationships between all the factors considered by the IODP will be identified. Mathematical expressions of all the interrelationships will be the basic elements of the master program. The function of the master program thus developed is to generate a set of updated prices which are then fed into the subprograms
developed in the last section.
The input to the master program includes (1) fixed parameters, and (2) decision variables output from the subprograms. The master program includes sixteen mathematical expressions and generates a set of nine price factors. The expressions are arranged in such an order that all variables included in an expression have been derived from previous ones. A block diagram summarizing all the input and output of the expressions is presented in Figure 2.

The formulation of the expressions will be discussed separately as follows:

1. Capacity

$$
\begin{equation*}
G=\sum_{i=E+1}^{I} \sum_{j=1}^{J} x_{i j} \tag{M1}
\end{equation*}
$$

where

$$
\begin{aligned}
G= & \text { Capacity of the branch plan: in units per unit time, } \\
x_{i j}= & \text { Amount shipped from location } i \text { to market } j \text { per } \\
& \text { unit time, } \\
I= & \text { Number of locations (including existing plants), } \\
J= & \text { Number of markets. }
\end{aligned}
$$

x_{ij} is decided by the location subprogram. Since the location subprogram will choose only one location, $\sum_{j}^{J} \mathrm{x}_{\mathrm{ij}}$ will equal to zero if i is not chosen, for $i=E+1, \ldots, M$. ' G ' will then represent the total amount shipped from the selected location, and is thus the capacity of the branch plant.
2. Number of Manufacturing Equipment

$$
\begin{equation*}
b_{m}=\binom{\text { largest }}{\text { integer }} \leq\left(G / \sigma_{m}\right)+\eta_{1} \text { for all } m \text {, } \tag{M2}
\end{equation*}
$$

Figure 2. Input/Output of the Master Program
where
$\mathrm{b}_{\mathrm{m}}=$ Number of manufacturing equipment m required,
$\sigma_{m}=$ Average number of units of product that can be produced by equipment m per unit time,
$\eta_{1}=$ Allowance factor for the manufacturing equipment.
G / σ_{m} gives the number of machine m required. However, the number thus obtained is often non-integer. For example, it may come up in the solution that 2.4 machines are required. Management has to make the decision whether two or three machines should be purchased. Such a decision largely depends on past experience or knowledge of the characteristics of the equipment such as the maximum capacity and probability of breakdown. In order to introduce this decision into the mathematical expression, an allowance factor η_{l} is utilized. The value b_{m} then becomes the largest integer smaller than or equal to $\left(\left(G / \sigma_{m}\right)+\eta_{1}\right)$, where $0 \leq n_{1}<1$.

If a relative rather than absolute allowance is desired, η_{1} may be replaced by $\mu_{1}\left(G / \sigma_{m}\right)$, so that the expression in the brackets becomes $\left(\left(G / \sigma_{m}\right)\left(l+\mu_{1}\right)\right)$. For example, if $\mu_{1}=0.06$, then any roundoff will result in not more than a 6 percent undercapacity. 3. Departmental Area Requirement

$$
s_{k}= \begin{cases}\beta_{k}+\delta_{k} b & \text {, if dept. } k \text { uses manufacturing } \tag{M3}\\ \text { equipment } m,\end{cases}
$$

where

$$
s_{k}=\text { Departmental area requirement in sq. } f t \text {. }
$$

$$
\begin{aligned}
\beta_{k}= & \text { Fixed area in sq. ft. required by department } k, \\
\delta_{k}= & \text { Area in sq. ft. required by a unit of manufacturing } \\
& \text { equipment } m \text { if department } k \text { uses machine } m \text {, or } \\
& \text { area in sq. ft. required by a unit of product if } \\
& \text { otherwise. }
\end{aligned}
$$

An assumption has to be made at this point that every department includes only one type of manufacturing machines such as in a job shop. Floor space requirement for a department will either depend on the number of manufacturing equipment it includes, or on the capacity of the plant if the department is not involved in direct manufacturing process, such as the raw materials storage.

Also, there may be a fixed space requirement for auxilary equipment in every department.
4. Building Floor Area

$$
\begin{equation*}
S=\sum_{k=1}^{K} s_{k} \tag{M4}
\end{equation*}
$$

where

$$
S=\text { Total floor space of building in sq. ft. }
$$

The summation of all departmental area requirements gives the physical size of the building. In order to be accurate, s_{k} should include space requirements for all kinds of activities including the administrative offices, cafeteria, etc.
5. Total Building Cost

$$
\begin{equation*}
F_{i}=\Phi_{i}+\Psi_{i} S \quad i=E+1, \ldots, I \tag{M5}
\end{equation*}
$$

where

$$
\begin{aligned}
F_{i}= & \text { Total cost per unit time of owning the branch plant } \\
& \text { at location } i, \\
\Phi_{i}= & \text { Fixed cost per unit time of owning the branch plant } \\
& \text { at location } i,
\end{aligned} r \begin{aligned}
\Psi_{i}= & \text { Cost per sq. ft, per unit time of owning the plant }
\end{aligned}
$$

As already mentioned, the expression of $\mathrm{F}_{\mathbf{i}}$ in cost per unit time has implied the application of the equivalent cost method used in economic analysis. Φ_{i} represents all the costs required to initiate the plant, which do not depend on the size of the plant. These costs will be converted to cost per unit time through the appropriate interest rate. Ψ_{i} is a more complicated cost factor. It may include the cost of land, cost of building, and all other costs which depend on the size of the plant. Needless to say, these costs will also be converted to dollars per unit time.
6. Fixed Machinery Cost

$$
\begin{equation*}
P_{i}=\sum_{m=1}^{M} P_{i m}{ }_{m} \quad i=E+1, \ldots, I \tag{M6}
\end{equation*}
$$

where

$$
\begin{aligned}
P_{i} & =\text { Fixed cost per unit time of machinery at location } i, \\
P_{i m} & =\text { Fixed cost per unit time of a unit of manufacturing } \\
& \text { equipment m used at location } i
\end{aligned}
$$

Expression (M6) is self explanatory. P_{i} is just the total fixed machinery cost at location i. Though the same machinery will be used wherever the plant is located, the purchase prices or maintenance
costs of the machines may be influenced by the location of the plant. The purchase prices of some equipment may include a transportation cost; and the maintenance costs for specific equipment may also depend on where the plant is located. The parameter $P_{i m}$ is therefore set up for such conditions.
7. Fixed Cost of One Piece of Materials Handling Equipment

$$
\begin{equation*}
Q_{n}=\sum_{i=E+1}^{T} Q_{i n} y_{i} \quad \text { for all } n \tag{M7}
\end{equation*}
$$

where

$$
\begin{aligned}
Q_{n}= & \text { Fixed cost per unit time of using one piece of } \\
& \text { discrete type materials handling equipment or } \\
& \text { one foot of continuous type materials handling } \\
& \text { equipment } n, \\
Q_{i n}= & Q_{n} \text { at location } i, \\
y_{i}= & 1 \text { if plant at location } i \text { is used, }
\end{aligned}
$$

$Q_{i n}$ included in expression (M7) is expressed in units approprinate to both type of materials handing equipment mentioned,

Similar to the parameter $P_{i m}$ of expression (M6), fixed cost of a piece of equipment may also depend on where the plant is located. However, by utilizing the decision variable y_{i} generated from the location subprogram, only the cost vector at the selected location, which is now represented by Q_{n}, will be fed into the equipment subprogram.
8. Distance Traveled

$$
\begin{equation*}
\alpha_{t}=\sum_{e=1}^{K} \sum_{\ell=1}^{K} \gamma_{e l} \xi^{\xi} \text { tel } \quad \text { for all } t \tag{M8}
\end{equation*}
$$

where

$$
\begin{aligned}
\alpha_{t}= & \text { Total distance in units of } 100 \text { ft. traveled by } \\
& \text { part } t \text { in the manufacturing process, } \\
\gamma_{e l}= & \text { Distance in } f t \text {. between department } e \text { and } \\
& \text { department } \ell, \\
\xi_{\text {tel }}= & 1 \text { if part } t \text { is moved from department } e \text { to } \\
& 0 \text { ifepartment } \ell,
\end{aligned}
$$

In order to represent the move sequence mathematically, the three dimensional vector space $\{\xi\}$ is set up. Each element in the vector space has a value of either 1 or 0 , where 1 implies a move has occurred. The introduction of $\xi^{\text {tel }}$ into expression (M8) has allowed all distances covered by part t in the manufacturing process to be summed up, giving α_{t} 。
9. Number of Continuous Handling Devices

$$
\phi_{t n}=\binom{\text { largest }}{\text { integer }} \leq\left(G / \theta \lambda_{n} \rho_{t n}\right)+\eta_{2} \quad \begin{align*}
& \text { for all } t \text { and } \tag{M9}\\
& \\
& \\
& \\
& \text { continuous type } \\
& \text { equipment } n
\end{align*}
$$

where

$$
\left.\begin{array}{rl}
\phi_{t n}= & \begin{array}{rl}
\text { Number of continuous type materials handling equipment } \\
& n \text { required to move part } t,
\end{array} \\
\theta= & \text { Number of working hours available per unit time, }
\end{array}\right\} \begin{aligned}
\lambda_{n}= & \text { Average moving speed in ft/hour of materials handling } \\
& \text { equipment } n,
\end{aligned} \quad \begin{aligned}
\rho_{t n}= & \text { Maximum number of part } t \text { that can be carried by one } \\
& \text { foot of the continuous type materials handling }
\end{aligned}
$$

When the equipment to be considered is of continuous type, $\rho_{\text {tn }}$
is expressed in units per ft. Consequently, ($\theta \lambda_{n} \rho_{t n}$) gives the number of part t that can be transported by equipment n per unit time. This unit of measurement is derived from multiplying the units of the three parameters together: (hour/unit time) (ft/hour) (number/ft) $=$ number/unit time. Since 'G' units of product are produced per unit time, there would also be " G " number of part t to be moved through the process per unit time. Dividing ' G ' by ($\theta \lambda_{n} \rho_{\mathrm{tn}}$) would therefore give the exact number of pieces of equipment to be used. As this exact number will seldom be an integer, the allowance factor η_{2} is introduced, where $\eta_{2} \geq 0$, and <1. The function of η_{2} is similar to Π_{1} which has been discussed in detail when expression (M2) was developed.

It should be pointed out that θ need not necessarily correspond to the actual working hours. Allowance for recess and accidental delays may be subtracted from θ before it goes into the IODP. The expression of λ_{n} in average speed rather than maximum speed has also increased the flexibility in decision making,
10. Frequency of Move

$$
v_{\operatorname{tn}}=\left\{\begin{array}{l}
G / \rho_{t n} \tag{M10}\\
\left(\phi_{t n} \theta\right) /\left(\alpha_{t} / \lambda_{m}\right)
\end{array}, \text { for } n \text { is discrete type, } n\right. \text { is continuous type, }
$$

where

$$
\begin{aligned}
{ }^{{ }_{\mathrm{tn}}=} & \text { Number of unit loads moved by discrete type materials } \\
& \text { handling equipment } n \text { or number of runs performed by } \\
& \text { the continuous type materials handling equipment } n \\
& \text { for part } t \text { per unit time, }
\end{aligned}
$$

$$
\begin{aligned}
\rho_{t n}= & \text { Maximum number of part } t \text { that can be combined to } \\
& \text { forma unit load for discrete type materials han- } \\
& \text { dling equipment } n \text {. }
\end{aligned}
$$

In order to develop materials handing costs, the frequency of moves should be determined. If a discrete type equipment is used, the frequency of moves can be represented implicitly by the number of unit loads formed. However, if continuous type equipment is used, it would be rather difficult to define a unit load since the device is transporting items continuously. Furthermore, under normal manufacturing conditions, the continuous type devices are usually kept running all the time. Because of these special characteristics, it would be better to develop a value based on the movement of the device itself rather than on the movements of the loads. v_{tn} is therefore expressed in 'runs' per unit time for continuous type equipment. A 'run' is defined as the movement from the starting point to the ending point of the device.

When the equipment n used is of the discrete type, the unit of $\rho_{t n}$ is number of parts per unit load. Dividing G by $\rho_{t n}$ thus gives the number of unit loads moved through the manufacturing process per unit time.

In order to obtain the number of runs per unit time for continuous type equipment, a series of calculations is required. (α_{t} / λ_{n}) represents the time required to complete a run. ($\phi_{\mathrm{tn}}{ }^{\theta}$) represents the total equipment-hours performed per unit time. Thus ($\left.\phi_{t n} \theta\right) /\left(\alpha_{t} / \lambda_{n}\right)$ gives the number of runs performed per unit time,
11. Number of Discrete Handling Equipment or Length of Continuous Device

$$
\tau_{t n}= \begin{cases}\binom{\text { largest }}{\text { integer }} \leq\left(v_{t n} \alpha_{t} / \theta \lambda_{n}\right)+\eta_{2} & \begin{array}{l}
\text { for discrete } \\
\text { type equipment }
\end{array} \\
\phi_{t n} \alpha_{t} & \text { all) } \\
& \begin{array}{l}
\text { for continuous } \\
\end{array} \\
& \text { type equipment } \\
& n\end{cases}
$$

where

$$
\begin{aligned}
\tau_{t n}= & \text { Number of discrete type or length of continuous type } \\
& \text { naterials handiing equipment } n \text { required for part } t
\end{aligned}
$$

The number of continuous type handling equipment to be used has been derived from expression (M9); but the information for purchase to be made is incomplete as the lengths of the d vices are not specified. $\tau_{\text {tn }}$ represents the total length of the continuous type device n to be installed for part t. It is obtained by multiplying the total distance covered by part t through the process by the number of devices used.

In case discrete type equipment is used, $\tau_{\text {tn }}$ represents the number of pieces of equipment to be used and is obtained by a series of calculations. $\left(\alpha_{t} / \lambda_{n}\right)$ gives the total time that part t spends in movement through the manufacturing process. Assuming that time delays occurred in the manufacturing process, soading and unloading time, and time for return trips have been included in the determination of the moving speed, $\quad \theta /\left(\alpha_{t} / \lambda_{n}\right)=\left(\theta \lambda_{n} / \alpha_{t}\right)$ would represent the number of moves that a piece of discrete type equipment n can perform per unit time. Since the number of moves required should be $v_{t n}$, dividing $v_{t n}$
by $\left(\theta \lambda_{n} / \alpha_{t}\right)$, which becomes ($\left.v_{t n} \alpha_{t} / \theta \lambda_{n}\right)$, gives the exact number of discrete type equipment n required. The allowance factor η_{2} is then introduced into the expression to allow $\tau_{\text {tn }}$ to be an integer.
${ }^{\tau}$ tn thus derived from expression (M11) will be fed into the equipment subprogram. The total overhead costs referring to every combination of part t and equipment n would then be obtained by multiplying $\pi_{t n}$ by the relative Q_{n} derived from expression (M7). 12. Operating Cost of Materials Handling Equipment ($\$ / 100 \mathrm{ft}$)

$$
\begin{equation*}
u_{n}=\sum_{i=E+1}^{I} u_{i n} y_{i} \quad \text { for all } n \tag{M12}
\end{equation*}
$$

where

$$
\begin{aligned}
u_{n}= & \begin{array}{l}
\text { Operating cost of materials handling equipment } n \\
\\
(\$ / 100 \mathrm{ft})
\end{array} \\
u_{i n}= & \text { Operating cost per } 100 \mathrm{ft} . \text { of materials handling } \\
& \text { equipment } n \text { at location } i .
\end{aligned}
$$

Utilizing the decision variable y_{i} from the location subprogram, the cost vector u_{n} which corresponds to the selected location is extracted.
13. Total Operating Cost of Materials Handling Equipment (\$/unit time)

$$
\begin{equation*}
\pi_{t n}=u_{n} v_{t n} \alpha_{t} \quad \text { for all } t \text { and } n \tag{M13}
\end{equation*}
$$

where

$$
\begin{aligned}
\pi_{t n}= & \text { Operating cost per unit time of using materials } \\
& \text { handling equipment } n \text { to move part } t .
\end{aligned}
$$

$\left(v_{t n} \alpha_{t}\right)$ gives the total distance covered by part t per unit time if discrete type equipment is used. If continuous type equipment
is used instead, the result will be the total distance covered by the 'runs'. Since in both cases, the unit of measurement is unchanged, ($v_{t n} \alpha_{t}$) can be multiplied by u_{n} directly. As u_{n} is expressed in dollars per 100 ft ., the output from the expression $\pi_{t n}$ is expressed in dollars per unit time and will be fed into the equipment subprogram. 14. Distance Between Departments

$$
\begin{equation*}
\Delta_{e l}=\sum_{t=1}^{T} \sum_{n=1}^{N}\left(\left(Q_{n} \tau_{t n}+\pi_{t n}\right) / \alpha_{t}\right) z_{t n} \xi_{t e l} \tag{M14}
\end{equation*}
$$

for all e and ℓ
where

$$
\begin{aligned}
\Delta_{e l}= & \text { Materials handling cost per ft. per unit time from } \\
& \text { department } e \text { to department } \ell, \\
z_{t n}= & 1 \text { if part. } t \text { is moved by equipment } n,
\end{aligned}
$$

$\Delta_{\text {el }}$ actually represents elements of the From-To Chart which serves as input data to the layout subprogram.

The function of $z_{t n}$ in the expression is to assign the handing equipment to every part t, where $z_{t n}$ is the decision output from the equipment subprogram.

Introduction of $\xi_{\text {tel }}$ into the expression informs the expression which parts are moving between the departments and in what direction. Handing costs of all the parts moved from one department to the other are summed up to give $\Delta_{\text {el }}$,

$$
\left(Q_{n} \tau_{n}+\pi_{t n}\right) \text { is the total handling cost per unit time for the }
$$ relative part t and equipment n. Since the elements of the From-To Chart are required to be expressed in dollars per unit time per ft., the

total handing costs are divided by the relative total distance covered in the manufacturing process.

It should be pointed out here that the handling costs used here are somewhat different from that used in the original PLANET. PLANET considers only variable costs as the handing cost; but here in expression (M14), the fixed cost per unit time is also included. This difference is due to the basic assumptions of the two models. PLANET assumes that the type of handling equipment selected for each part remains the same. However, IODP assumes no predetermined assignment of handing equipment. Though the introduction of $z_{t n}$ assigns the handling equipment to move the parts, this assignment is subject to change in the next iteration. Since the fixed costs also depend heavily on the distances the parts are moved, it would be reasonable to minimize the distance between departments.
15. Total Fixed Materials Handling Costs

$$
\begin{equation*}
H_{i}=\sum_{n=1}^{N}\left(Q_{i n} \sum_{t=1}^{T}\left(\tau_{t n^{2}}{ }_{t n}\right)\right) \quad \text { for all } i \tag{M15}
\end{equation*}
$$

where

$$
\begin{aligned}
H_{i}= & \text { Fixed materials handling cost per unit time at } \\
& \text { location } i, \\
Q_{i n}= & \text { Fixed cost per unit time of using one piece of } \\
& \text { discrete type materials handling equipment or } \\
& \text { one foot of continuous type handling equipment } \\
& n \text { at location } i,
\end{aligned}
$$

The fixed cost of materials handling at each location is one of the elements making up the facility cost at that location. The function of expression (M15) is to update the price vector H_{i} corresponding to
the decision output $z_{t n}$ from the equipment subprogram. H_{i} is actually the total of all the fixed costs of the selected equipment. 16. Variable Handling Cost

$$
\begin{equation*}
h=\left(\sum_{t=1}^{T} \sum_{n=1}^{N} \pi_{t n} z_{t n}\right) / G \tag{M16}
\end{equation*}
$$

where

$$
h=\text { Cost of handing one unit of product. }
$$

The function of the expression (M16) is similar to that of expression (M15). The variable cost of the handling equipment per unit time is updated. However, since h is to be fed into the location subprogram as an element of variable cost, it should be expressed in dollars per unit. The cost is therefore divided by G, the capacity in units per unit time, to give h in terms of dollars per unit.

All the expressions in the master program have now been developed. Figure 2 is a block diagram summarizing all the input and output flows of the master program.

Summary and Limitations of the Model

The mathematical model of IODP is summarized as follows:

$$
\begin{aligned}
\operatorname{minimize} \quad z= & \sum_{i=1}^{E} \sum_{j=1}^{J}\left(C_{i j}+r_{i}\right) x_{i j}+\sum_{i=E+1}^{I} \sum_{j=1}^{J}\left(C_{i j}+p_{i}+h\right) x_{i j} \\
& +\sum_{i=E+1}^{I}\left(F_{i}+P_{i}+H_{i}\right) y_{i}+\sum_{e=1}^{K-1} \sum_{\ell \neq e}^{K}\left(\Delta_{e l} \gamma_{e l}\right) \\
& +\sum_{t=1}^{T} \sum_{n=1}^{N}\left(Q_{n}{ }^{\top} t n+\pi_{t n}\right) z_{t n}
\end{aligned}
$$

subject to:

$$
\begin{align*}
\sum_{i=1}^{I} x_{i j} & \geq D_{j} \tag{Ll}\\
\sum_{j=1}^{J} x_{i j} \leq g_{i} y_{i} & \text { for all } j \tag{L2}\\
\sum_{i=1}^{I} y_{i} \leq E+1 & \tag{Lu}\\
\sum_{i=E+1}^{I} y_{i} \leq 1 & \text { for all } i \tag{LL}\\
y_{i} & =(0,1) \tag{LD}
\end{align*}
$$

$$
\begin{equation*}
x_{i j} \geq 0 \quad \text { for all } i \text { and } j \tag{L6}
\end{equation*}
$$

$$
\begin{equation*}
\gamma_{e l}=\text { Function }\left(s_{k}, \Delta_{e l}\right) \tag{Yo}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=1}^{N} z_{t n}=1 \quad \text { for all } t \tag{El}
\end{equation*}
$$

$$
\begin{equation*}
z_{\mathrm{tn}}=(0,1) \quad \text { for all } \mathrm{t} \text { and } \mathrm{n} \tag{ER}
\end{equation*}
$$

$$
\begin{equation*}
G=\sum_{i=E+1}^{I} \sum_{j=1}^{J} x_{i j} \tag{Ml}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{b}_{\mathrm{m}}=\binom{\text { largest }}{\text { integer }} \leq\left(\mathrm{G} / \sigma_{\mathrm{m}}\right)+\eta_{1} \text { for all } \mathrm{m} \tag{M2}
\end{equation*}
$$

$$
\beta_{k}+\delta_{k} b_{m} \quad, \begin{gather*}
\text { if dept. } k \tag{м3}\\
\text { factoring equipment anu- }
\end{gather*},
$$

$$
s_{k}=\left\{\beta_{k}+\delta_{k} G\right. \text {, otherwise }
$$

$$
\begin{align*}
& S=\sum_{k=1}^{K} s_{k} \tag{M4}\\
& F_{i}=\Phi_{i}+\Psi_{i} S \quad i=E+1, \ldots, I \tag{M5}\\
& P_{i}=\sum_{m=1}^{M} P_{i m} b_{m} \quad i=E+1, \ldots, I \tag{M6}\\
& Q_{n}=\sum_{i=E+1}^{I} Q_{i n} y_{i} \quad \text { for all } n \tag{M7}\\
& \alpha_{t}=\sum_{e=1}^{K} \sum_{l=1}^{K} \gamma_{e l} \xi^{\xi} \text { tel for all } t \tag{M8}\\
& \phi_{t n}=\binom{\text { largest }}{\text { integer }} \leq\left(G / \theta \lambda_{n} \rho_{t n}\right)+\eta_{2} \tag{M9}\\
& \text { for continuous type n } \\
& \mathrm{G} / \rho_{\mathrm{tn}} \quad \text { for discrete type } \mathrm{n} \text { (M10) } \tag{M10}\\
& v_{t n}=\left\{{ }_{\left(\phi_{t n} \theta\right) /\left(\alpha_{t} / \lambda_{n}\right) \text { for continuous type } n}\right. \\
& \binom{\text { largest }}{\text { integer }} \leq\left(v_{t n} \alpha_{t} / \theta \lambda_{n}\right)+n_{2} \tag{M11}\\
& \tau_{t n}=\begin{array}{ll}
\{ & \text { for discrete type } n \\
\phi_{t n}{ }^{\alpha} & \text { for continuous type } n
\end{array} \\
& u_{n}=\sum_{i=E+1}^{Y} u_{i n} y_{i} \quad \text { for all } n \tag{M12}\\
& \pi_{t n}=u_{n} v_{t n}{ }_{t} \quad \text { for all } t \text { and } n \tag{M13}\\
& \text { n }
\end{align*}
$$

$$
\begin{align*}
& \Delta_{e l}= \sum_{t=1}^{T} \sum_{n=1}^{N}\left(\left(0_{n} \tau_{t n}+\pi_{t n}\right) / \alpha_{t}\right) z_{t n} \xi_{t e l} \tag{M14}\\
& \text { for all } e \text { and } \ell \\
& H_{i}= \sum_{n=1}^{N}\left(Q_{i n} \sum_{t=1}^{T}\left(\tau_{t n}^{z} t n\right)\right) \text { for all } i \tag{M15}\\
& h=\left(\sum_{t=1}^{T} \sum_{n=1}^{N} \pi n^{z} t n\right) / G \tag{M16}
\end{align*}
$$

All variables involved in the model can be classified into (1) parameters, (2) numerical variables, and (3) decision variables. Parameters refer to fixed input data to the IODP. Numerical variables are all numerical representations, either final or intermittent, of the factors processed by the IODP. These variables are actually the sixteen factors processed by the master program. Decision variables refer to the variables directly output from the subprograms, from which the solution set is derived.

Definitions of the symbols in the model are summarized by Tables 3, 4 and 5,

Table 3. Parameters of the IODP.

E Number of existing plants

I
J
M
N
K
T Number of parts per unit of product
$\theta \quad$ Number of working hours available per unit time
$\lambda_{n} \quad$ Average moving speed in $f t / h r$ of materials handing equipment n
$u_{i n} \quad$ Operating cost per 100 ft . of materials handling equipment n at location i
$\beta_{k} \quad$ Fixed area in sq. ft. required by department k
$\delta_{k} \quad$ Area in sq. ft. required by a unit of machine m if dept. k uses machine m, or area in sq. ft. required by a unit of product otherwise
$\xi_{\text {tel }} \quad=1$ if part t is moved from department $\quad=$ to department l,

Table 4. Numerical Variables of the IODP

Symbol	Definition
G	Capacity of the branch plant in units per unit time
b_{m}	Number of manufacturing machines m required
s_{k}	Departmental area requirement
S	Building floor area
F_{i}	Total cost per unit time of operating the branch plant at location i
P_{i}	Fixed cost per unit time of machinery at location i
Q_{n}	Fixed cost per unit time of using one piece of discrete type handing equipment n or one foot of continuous type handing equipment n
α_{t}	Total distance in 100 ft . traveled by part t in the manufacturing process
$\phi_{t n}$	Number of continuous type equipment n required to move part t
v_{tn}	Number of unit loads moved by discrete type equipment n or number of runs performed by the continuous type equipment n for part t per unit time
${ }^{\text {tn }}$	Number of discrete type or length of continuous type equip. ment n required for part t
u_{n}	Operating cost per 100 ft . of materials handing equipment n
$\pi_{t n}$	Operating cost per unit time of using materials handling equipment n to move part t
${ }^{\text {el }}$	Materials handing cost per ft. per unit time from department ℓ to department ℓ
$\mathrm{H}_{\text {i }}$	Fixed cost per unit time of using one piece of discrete type handling equipment or one foot of continuous type handling equipment n at location i
h	Cost of handling one unit of product

Table 5. Decision Variables o': the IODP

Symbol	Definition
$\begin{aligned} & x_{i j} \\ & y_{i} \end{aligned}$	```Amount shipped from location i to market j per unit time =1 if plant at location i is used, =0 if not```
$\begin{aligned} & \gamma_{e l} \\ & z_{t n} \end{aligned}$	```Distance in ft. between department }e\mathrm{ and department } =l if materials handling equipment }n\mathrm{ is used to move part t . =0 if not```

All the parameters listed in Table 3 are assumed to be known in order to carry out the IODP. In the collection of the data, the following conditions have to be observed:

1. The lives of the machines and handing equipment are estimated and the interest rate for transferring the investment costs to equivalent costs per unit time is decided.
2. The manufacturing process is assumed to be optimal. That is, any possibility of improving the manufacturing process should be investigated and adjustment made before the IODP is used.
3. The types of manufacturing equipment used are fixed. If several types of manufacturing equipment can be used for the same purpose, the right type should be decided first, because the IODP only gives the number of machines to be purchased; it does not make comparisons among alternative machines.
4. Every department contains only one type of manufacturing equipment.
5. No repetition of move sequence is allowed for any of the parts. For example, 1-2-4-6-2-4-5, where the numbers represent the names of departments, is not allowed since sequence $2-4$ is repeated.
6. At a certain stage of the manufacturing process, if a few parts are combined to form a sub-unit, the sequences of the parts are terminated and the new sub-unit begins its sequence as a new part.
7. If more than one piece of a specific part is required to produce a unit of product and all of them follow the same sequence, these pieces can be combined as one part. The total weight and size is used accordingly in the calculation of maximum number making up a unit load.
8. Table 6 and 7 show the general cost items included as fixed and variable costs of the equipment and facilities.

Table 6. Fixed and Variable Costs of Equipment

$\begin{gathered} \text { Fixed Costs }(\$ / \text { unit time }) \\ \left(\mathrm{P}_{\mathrm{i}}, \mathrm{H}_{\mathrm{i}}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Variable Costs (\$/unit of product) } \\ & \left(r_{i}, \mathrm{p}_{\mathrm{i}}, \mathrm{~h}\right) \end{aligned}$
Capital Recovery of Investment in Equipment and Installation	Utility Costs (including fuel, electricity, etc.)
Labor Cost*	Maintenance Cost**
Maintenance Cost**	
Insurance	
Taxes	

Table 7. Fixed and Variable Costs of Building

$\begin{gathered} \text { Fixed Costs (\$/unit time) } \\ \Phi_{i} \\ \hline \end{gathered}$	$\underset{\Psi_{i}}{\text { Variable Costs }}(\$ / \mathrm{sq} f t)$
Initiation Cost (including costs in making contracts, etc.)	Capital Recovery of Investment in Land, Building and Improvements.
Indirect Labor ${ }^{\dagger}$	Insurance
	Taxes
	Maintenance Cost
	Utility Cost
	Indirect Labor ${ }^{+}$

[^1]Figure 3 shows the operation of the IODP. In testing for the optimality of the solution set, the value of the objective function for the location subprogram, i.e., equation (LO) is used as the score. The other two objective functions relating to the layout and equipment subprograms are not included because the variables included in these two functions have already been represented either directly or indirectly by the variables included in equation (LO). The solution set is said to have arrived at optimal when the score comes to a constant value after certain number of iterations. However, this does not necessarily imply that the scores converge to the constant value. At times when the location subprogram generates the decision variables y_{i} and $X_{i j}$ different from the existing ones, delay in the updating process of the system would occur and output from the following iteration would not be feasible,

To illustrate what 'delay' means, let us first make an observation on the mathematical relationship between the factors in the master program.

At the end of an iteration, a set of decision variables $\left(y_{j}\right.$, $\left.x_{i j}, z_{t n}, \gamma_{e l}\right)$ is generated. This set then goes into the master prom gram. The first factor derived from $X_{i j}$ is the capacity G. This factor is found to have influence on every other factor except Q_{n}, α_{t} and u_{n}. The following factors will be increased in value as G increases: $b_{m}, s_{k}, S, F_{i}, P_{i}, \phi_{t n}, v_{t n}, \tau_{t n}, \pi_{t n}, \Delta_{e l}$, and H_{i}. Also, α_{t} is derived from $\gamma_{e l}$, and if $\sum \alpha_{t}$ is increased, $\sum \tau_{t n}, \sum_{t n}, H_{i}$ and h will be increased. The factor H_{i} is found

Figure 3. Input/Output of the IODP
to be used in the computation of the score of the IODP and is subject to increase if either G or α_{t} increases.

Now, consider at the end of an iteration, the decision set is $\left(y_{i}^{1}, x_{i j}^{1}, z_{t n}^{1}, \gamma_{e l}^{1}\right)$, and G^{1} and $\sum_{t} \alpha_{t}^{l}$ are derived from this set. The optimal solution has not been reached and the updated price vectors are then fed into the Location subprogram, Layout subprogram, and Equipment subprogram simultaneously. The Layout subprogram then generates $\gamma_{e l}{ }^{2}$ based on s_{k}^{1} and $\Delta_{e l}{ }^{1}$, where $\gamma_{e l}{ }^{2}=\gamma_{e l}{ }^{1}$ and thus $\sum \alpha_{t}^{2}=\left[\alpha_{t}{ }^{1}\right.$. The Equipment subprogram also gives $z_{t n}^{2}=z_{t n}^{1}$. However, the Location subprogram generates $y_{i}^{2} \neq y_{i}^{1}$ and thus $G^{2}>G^{1}$, and also $s_{k}^{2}>s_{k}^{1}$. Though $h_{i}^{2}>H_{i}^{1}$, the score Z^{2} would be smaller than Z^{1} since $y_{i}{ }^{2}$ is obtained from a minimization program. However. z^{2} is noticed to be infeasible. The components making up the score Z^{2} are based on a different capacity. $F_{i}{ }^{2}$ and P_{i}^{2} are based on G^{2} while H_{i} and h are based on $\sum_{t} \alpha_{t}^{2}$ which is based on $Y_{e l}{ }^{2}$ and in turn based on G^{1}. As $G^{1} \neq G^{2}$, the updating of H_{i} and h is said to be 'delayed". If $y_{i}, x_{i j}$ and $z_{t n}$ would not change in the next iteration, then $\gamma_{e l}{ }^{3}$ generated will be based on G^{2}, but since $G^{2}>G^{1}$ and thus $s_{k}^{2}>s_{k}{ }^{1}, \sum_{t} \alpha_{t}^{3}>\sum_{t} \alpha_{t}^{2}$ as a result and $Z^{3}>Z^{2}$, where Z^{3} is feasible now as its components are based on G^{3}, where $G^{3}=G^{2}$.

The above discussion illustrates how the variation of G during the process affects the score. The following discussion shows how the capacity will affect the decision set.

The original Ellwein-Gray location-allocation model assumes the facility costs are fixed, that is, they are independent of the supplies
from the locations. Observing the input and output flows of the IODP, it can be noticed that the facility costs are not really 'fixed'. Their values would actually increase with the capacity of the branch plant, 'G' , determined by the Location subprogram itself.

Consider during an iteration, the price vectors $F_{i}{ }^{\mathbf{I}}, \mathrm{P}_{\mathbf{i}}{ }^{l}$, and $H_{i}{ }^{l}$, which are updated according to G^{1}, are fed into the Location subprogram, which then generates $y_{i}{ }^{2} \neq y_{i}{ }^{l}$ and gives $G^{2}>G^{1}$ 。 Assume the Z^{2} obtained will remain constant for further iterations and thus y_{i}^{2} and the related solution set is said to be optimal. However, the above deduction would imply that $y_{i}{ }^{2}$ is optimal only when the capacity is G^{2}. In other words, G^{2} does not necessarily become the optimal capacity. A location n, which implies $y_{n} \neq y_{i}{ }^{l}$, and $\neq y_{i}{ }^{2}$ may exist such that for facility costs of $F_{i}{ }^{1}, P_{i}{ }^{1}$ and $H_{i}{ }^{1}$, if y_{n} is selected, then G_{n}, which is derived from the corresponding supply, will be smaller than G^{2}; but y_{n} is not selected since the objective function obtained if it is used will be greater than that obtained if $y_{i}{ }^{1}$ is used. However, if F_{i}, P_{i} and H_{i} are based on G_{n}, then the total of F_{n}, P_{n} and H_{n} thus derived would be less than that derived from $y_{i}{ }^{1}$ or $y_{i}{ }^{2}$, and the difference would be significant enough to have y_{n} chosen. Since G^{I} is used at iteration 1 and G^{2} for iteration 2 as the base for deriving the facility costs, there is no chance for G_{n} to be used. Therefore the final solution set does not necessarily become the exact optimal solution set,

The final output of the IODP consists of information required to make the decisions as specified, when the problem to be studied is
defined as in Chapter I. Under some circumstances, the capacity of the branch plant may be predetermined because of various economical or political reasons outside the scope of this study. For such a case, the capacity G would not be changed during the process and the final solution set will guarantee a near-optimal solution.

As discussed previously, an optimal solution cannot be obtained because the facility costs F_{i}, P_{i} and H_{i} vary with the value of capacity G, and thus also $\sum \mathrm{x}_{i j}$, which is determined by the Location subprogram itself. This condition actually invalidates the basic assumption of the Ellwein-Gray location model, which is that the facility costs are fixed. If the capacity is predetermined, the fixed facility cost assumption of Ellwein-Gray location model is then valid, since the capacity is not allowed to vary and the facility costs are thus independent of $\sum \mathrm{x}_{i j}$, the distribution pattern.

When the capacity G is a fixed value, each of the three subprograms will tend to generate an optimal solution by a minimization process. The behavior of the solution procedure of the IODP is similar to the solution procedure of a large linear system by the decomposition principle; therefore it is reasonable to believe that if capacity G is fixed, the IODP will converge to an optimal solution after a certain number of iterations. Experience in using the IODP on sample problems has indicated this to be true,

On the other hand, even if the capacity is fixed, the solution obtained may not be the exact optimal solution. The Layout subprogram uses the PLANET layout program, which depends on a heuristic solution procedure, which can not guarantee an exact optimal solution. The

IODP is therefore believed to obtain at least a near-optimal solution.
An experimental computer program in FOR'RRAN IV has been developed for the IODP. The Location and Layout subprograms are modified versions of the programs for the original Ellwein-Gray model and PLANET.

Based on computation experience on some sample problems, cycling may occur at runs where G is allowed to vary. This will happen when y_{m} is selected if its corresponding price vectors depend on G_{n}; but G_{m} is derived from y_{m} and the relative price vectors will cause y_{n} to be generated, from which G_{n} is derived. When cycling occurs, an optimal solution set would not be obtained from the first run and the user is advised to make runs based on fixed capacities and make the comparison.

Furthermore, the IODP is based on deterministic forecasts of market demands. Frequently, the forecasting of market demands is stochastic and therefore it would be necessary to perform a sensitivity analysis referring to the demand characteristics in order to get a satisfactory solution set. Recommendations on performing this sensitivity analysis will be included in the procedure of application developed in the next section.

Procedure of Application

The following step-by-step procedure is suggested for users of the IODP:

Step 1. Establish the set of locations to be considered. A11 intangible requirements such as climate, transportation facilities, availability of building, etc., are assumed to be satisfied by every
location.
Step 2. Decide the unit time on which all of the costs can be based. Also establish a long term plaming horizon and obtain the forecast of the market demands at the end of the planning period. Frequently, an upper limit and a lower limit of demand is estimated for every market. The user must then decide the value on which the set of market demands should be based, since either the upper limit, the lower limit, or the mean can be used. Such a decision must make use of past experience, technical knowledge and intuitive judgement. The user may also prefer to make runs on different frames of reference for the market demands; such as making three separate runs with each based on either the lower limits, the means or the upper limits of the market demands,

Step 3. Estimate the maximum capacity allowed at each location. This will consider the availability of labor, resources and facilities. If there is no limitation on the capacity for a location, the respective parameter g_{i} can be assigned a value larger than the total demand.

Step 4. Establish the materials handing equipment set to be considered. All intangible factors should be considered in establishing this set. If such methods as multiplying the actual costs by indexes derived from intangible factors are used, the relative costs are adjusted before they are used for the IODP. If some types of equipment cannot be used on some parts of the product because of technical difficulties, the respective parameter $\rho_{t n}$, the number of parts making up a unit load or carried by a foot of conveyor, can be assigned a zero
value, the program will automatically reject the equipment n for the part t if $\rho_{t n}$ is zero.

Step 5. Determine all parameters referring to the building, machines and equipment characteristics based on past experience and information from vendors and operating manuals. Such parameters include $\sigma_{m}, \rho_{t n}, \lambda_{n}, \beta_{k}$, and δ_{k}.

Step 6. Making use of the assembly charts, operation process charts, etc., determine the move sequence of every part.

Step 7. Estimate the number of hours available per unit time. Allowances on down time and other delays are included.

Step 8. Decide the allowance factors η_{1} and η_{2}. Characteristics of these two factors have been discussed in Chapter III.

Step 9. Estimate all data required to develop the cost parameters included in Table 3: $C_{i j}, r_{i}, \Phi_{i}, \Psi_{i}, P_{i m}, p_{i}, Q_{i n}, u_{i n}$. This step involves a vast data collection effort. Detail labor and power costs for all activities of purchase, operation and maintenance have to be obtained for every proposed location and the existing plants.

Step 10. Transfer all the costs obtained in Step 8 to equivalent costs per unit time by a specific interest rate decided by the financial policy of the firm. In general, if unit time is taken as 1 year, then equivalent annual cost is:*

[^2]\[

$$
\begin{aligned}
C & =(P-F)\left(-\frac{i(1+i)^{n}}{(1+i)^{n}-1}\right)+F i+M \\
& =(P-F)(A / P, i, n)+F i+M
\end{aligned}
$$
\]

where
$P=$ Initial cost of asset,
$\mathrm{F}=$ Salvage value at the end of life,
$\mathrm{n}=$ Life in years,
$M=$ Constant yearly cost.

Step 11. Decide other parameters which are required for the operation of the IODP computer program. These are shown in Table 8,

Table 8. Special Parameters for the Computer Program

Code	Definition
BSIZE	Size of a unit block in sq. ft. Sor layout
DISINT	The initial distance assigned to every $\gamma_{\text {el }}$
IDEQ(N)	$\begin{aligned} & =1 \text { if } n \text { is discrete type equipment, } \\ & =2 \text { if } n \text { is continuous type equipment. } \end{aligned}$
INDEX(K)	$\begin{aligned} & =m \text { if area of department } k \text { depends on machine } m \text {, } \\ & =0 \text { if area of department } k \text { depends on capacity. } \end{aligned}$
NSQ(T)	Number of departments included in the path of part t
MVSQ(T,L)	Move sequence of part t expressed in ($L_{1}, L_{2}, \ldots, L_{\text {NSQ }}$)
KPRIOR(K)	Priority of department k in the layout process

Step 12. Calculate the lower limit of capacity of the branch
plant. This is done by subtracting the total supply of the existing plants from the total demand. There may be a few values of lower limit, referring to the lower limits, the means and the upper limits of the market demands.

Step 13. Provide an initial decision variables set to start the program.

Step 14. Prepare the input.
Step 15. Run the program.
Step 16. At least four runs are suggested. These four runs have the following input structure:

Run 1. Market demands at their mean values. Capacity free to vary.

Run 2. Market demands at their upper limits. Capacity free to vary.

Run 3. Market demands at their mean values。 Capacity fixed at respective lower limit.

Run 4. Market demands at their upper limits. Capacity fixed at respective lower limit.

The market demands at their lower limits may be neglected since it will give a tight plan, not allowing much room for expansion. Other runs with combinations of means and upper limits of the market demands may also be made if the user feels it necessary to get more information on some particular markets.

It should be pointed out that if cycling occurs in either Run 1 or Run 2 where the capacity is free to vary, a sequence of runs with the capacity fixed at different values can be carried out for both cases of
using means or upper limits of market demands.
Step 17. Collect all results from Step 15 and make the analysis based on such indications as the change of solution set, the total variable cost, and the facility cost. Here no specific rules are set up in making the final decision. The final decision will depend on the experience and intuitive judgement of the analyst, and other economical and political factors not considered in this study. For example, at the selected location, there may be some large scale transportation projects being carried out, which when completed will provide suitable transportation facilities to evoke a much lower cost for products shipped from that location. Therefore it may be better to build a plant with very large capacity even if it means closing one of the existing plants in the future,

On the other hand, since the facility costs of existing plants are assumed to be zero, and the facility cost of the branch plant actually depends on its capacity, the value of the objective function tends to be lowest when the capacity of the branch plant is allowed at the lower limit; but it does not necessarily mean that the capacity is best to be set at its lower limit.

CHAPTER IV

A SAMPLE PROBLEM

Data Setup

Step 1 through Step 11 of the procedure for application are actually devoted to the data collection process. Since the IODP attacks the problem of initiating a new branch, it is difficult to have real world data at hand. The sample problem presented here has been set up on an imaginary basis; but an effort has been made to make it look reasonable, The IODP is applied to the determination of the decision set for a branch plant producing air compressors (Apple, 33). The data setup presented below will follow the procedure of application developed in the last chapter. However, only the final data collected in every step are shown; the treatment with intangible factors are not presented.

Step 1. The firm is assumed to have two existing plants. They are located at;

1. Atlanta
2. Los Angeles

The set of proposed locations for the branch plant includes five locations which are numbered from 3 to 7 as follows:
3. Boston
4. Cleveland
5. Denver
6. Minneapolis

7. New York

Step 2. The unit time is one month and planning horizon is ten years.

A forecast of demand from 12 markets after 10 years is assumed, expressed in units per month and shown in Table 9. It can be seen that the locations of existing plants are markets themselves.

Table 9. Forecast of Market Demand

Market No.	Market Location	Lower Limit	Mean	Upper Limit
1	Atlanta	6400	7000	7600
2	Los Angeles	5600	5900	6200
3	Boston	6300	7050	7800
4	Cleveland	2800	3000	3200
5	Denver	6000	6250	6500
6	Minneapolis	5900	6300	6700
7	New York	5400	6000	6600
8	San Francisco	5500	6000	6500
9	Dallas	5200	5500	5800
10	Chicago	4800	5500	6200
11	Buffalo	5700	6000	6300
12	Miami	5250	5500	5750

Step 3. The maximum capacity is shown in Table 10.

Table 10. Maximum Capacities of Plant Locations

Location No.	Location	Max. Capacity
1	Atlanta	30000
2	Los Angeles	30000
3	Boston	40000
4	Cleveland	35000
5	Denver	35000
6	Minneapolis	35000
7	New York	50000

Step 4, 5 and 6. Data collected in Step 4 and 5 are shown in Table 11, 12, 13 and 14 .

Table 11. Characteristics of Materials Handling Equipment

Equipment No.	Materials Handling Equipment	Type	Average Moving Speed in ft/hr
1	Man with hand truck	Discrete	800
2	Walkie Pallet Lift	Discrete	1400
3	Fork Lift Truck	Discrete	12000
4	Belt Conveyor	Continuous	3600
5	Trolley Conveyor	Continuous	1800
6	Overhead Towline Cart	Continuous	1600
7	Underfloor Towline Cart	Continuous	2400

Table 12. Characteristics of Parts

$\begin{gathered} \text { Part } \\ \text { No. } \end{gathered}$	Units making up a load or of equipment								
	Part	1	2	3	4	5	6	7	Move Sequence
1	Crankcase	9	27	227	0	3	4	5	1-2-3-6-4-10-11
2	Cylinder	20	60	500	1	6	7	8	1-3-4-7-10-11
3	Cylinder Head	33	100	833	0	6	7	8	1-3-4-10-11
4	Crankshaft	67	200	1667	1	6	7	8	1-8-3-2-4-10-11
5	Connecting Rod	133	400	3333	1	7	8	9	$\begin{aligned} & 1-5-4-9-4-2-6-4- \\ & 6-10-11 \end{aligned}$
6	Piston	200	600	5000	0	8	10	10	1-3-4-10-11
7	Piston Pin	800	2400	20000	1	8	10	10	1-8-3-5-10-11
8	Outside Bearing	400	1200	10000	1	8	10	10	1-3-10-11
	Inside Bearing	667	2000	16667	1	8	10	10	1-3-10-11
10	Breather	200	600	5000	1	8	10	10	1-2-4-10-11
11	Flywheel	6	17	139	0	0	3	4	1-3-6-10-11
12	Cover Plate	0	0	0	1	8	10	10	1-6-10-11
13	Suction Fitting	400	1200	10000	1	8	10	10	1-3-10-11
14	Discharge Fitting	800	2400	20000	1	8	10	10	1-3-2-10-11
15	Valve	0	0	0	1	8	10	10	1-6-10-11
16	Cover Gasket	0	0	0	1	8	10	10	1-6-10-11
17	Breather Plate	0	0	0	1	3	10	10	1-6-10-1.1

Table 13. Characteristics of Manufacturing Machines

$\begin{gathered} \text { Machine } \\ \text { No. } \\ \hline \end{gathered}$	Machine	Machinery Time per unit (hr)	Avg. Production Rate (u / mo)	$\begin{gathered} \text { Floor Space } \\ \left(\mathrm{ft}^{2}\right) \end{gathered}$
1	Mill	0.168	750	80
2	Lathe	0.677	188	100
3	Drill	0.205	614	40
4	Grinder	0.016	7875	30
5	Press	0.068	1853	40
6	Hone	0.009	1.4000	40
7	Saw	0.018	7000	60
8	Bore	0.072	1750	40

Table 14. Characteristics of Departments

Dept. No.	Department	Fixed Area $\left(\mathrm{ft}^{2}\right)$	Variable Area $\left(\mathrm{ft}^{2} / \mathrm{machine}\right)$ $\left(\mathrm{ft}^{2} / \mathrm{mnit}\right)$
1	Receiving and Rough Stores	2500	
2	Mill	50	0.10
3	Lathe	50	100
4	Drill	50	40
5	Grinder	50	30
6	Press	50	40
7	Hone	50	40
8	Saw	50	60
9	Bore	50	40
10	Final Inspection	500	
11	Assembly, Packing, Shipping	2000	0.05
12	Administration	5000	0.20

Step 7. Number of working hours available per month: 126 hr , assuming 252 working days per year, 21 days per month, 8 hours per day, and an allowance factor of 0.75 ,

Step 8. Allowance factor for manufacturing equipment: 0.75; allowance factor for materials handling equipment: 0.75 .

Step 9 and 10. Transportation costs are assumed proportional to the distance between the plant locations and the markets. The figures shown in Table 15 are derived from the actual distances between the locations and markets.

Table 15. Transportation Costs

	Plant Location						
Market	1	2	3	4	5	6	7
1	0	1.60	0.77	0.50	1.01	0.77	0.62
2	1.60	0	2.17	1.72	0.84	1.41	2.01
3	0.77	2.17	0	0.45	1.42	0.99	0.15
4	0.50	1.72	0.45	0	0.96	0.53	0.35
5	1.01	0.84	1.42	0.96	0	0.60	1.25
6	0.77	1.41	0.99	0.53	0.60	0	0.88
7	0.62	2.01	0.15	0.35	1.25	0.88	0
8	1.82	0.28	2.25	1.79	0.89	1.43	2.12
9	0.59	1.02	1.29	0.85	0.56	0.68	1.14
10	0.50	1.49	0.70	0.24	0.72	0.29	0.58
11	0.63	1.85	0.32	0.13	1.10	0.67	0.26
12	0.47	1.30	1.10	0.96	1.51	1.24	0.94

The production cost per unit (including handling and machinery cost) at the existing plants are:

Existing plant at location 1: 0.380
Existing plant at location 2: 0.360
The machinery cost per unit of product at the proposed locations are:

Location No.:	3	4	5	6	7
Product unit Machinery Cost;	$\$ 0.368$	0.346	0.352	0.360	0.368

In real practice, the above production and machinery costs have to be based on time-study results for the manufacturing machines and handling equipment.

Table 16 shows the cost of building at each proposed location. The annual interest rate i is assumed to be 15 per cent. Since the life n of a building is very long, the factor for converting capital to equivalent cost per unit time, $i(i+1)^{n} /\left((1+i)^{n}-1\right)$, approaches
i as n approaches infinity. Therefore if a piece of land costs $\$ 10$ per square foot, its cost will be equivalent to an annual cost of about $\$ 1.50$ per square foot, or about $\$ 0.125$ per square foot per month. The overhead cost per month and the variable cost per square foot per month shown in Table 16 are set up in such a way as to have the figures look close to real costs derived from the calculation mentioned above.

Table 16. Costs of Building

Location Number	3	4	5	6	7
Fixed Cost/mo	$\$ 2000$	1800	1900	1800	2200
Cost/ $\mathrm{ft}^{2} / \mathrm{mo}$	$\$ 0.15$	0.12	0.12	0.10	0.15

For obtaining the costs associated with the manufacturing machines and materials handling equipment, the annual cost formula presented in Step 10 of the procedure for application is applied. The costs per month are obtained by dividing the annual costs by 12 . Table 17 and 18 show the raw data assumed, and the calculation.

Table 17. Fixed Costs of Manufacturing Equipment

	1	8	950	100	7300	622.4
	2	8	1000	110	7300	623.2
	3	8	850	90	7300	621.0
4	4	8	550	55	7300	616.5
	5	8	900	100	7300	621.7
	6	8	650	80	7300	617.9
	7	8	750	90	7300	619.4
	8	8	800	90	7300	620.2
	1	8	920	100	7600	647.0
	2	8	1000	110	7600	648.2
	3	8	800	90	7600	645.2
	4	8	650	55	7600	641.5
5	5	8	900	100	7600	646.7
	6	8	720	80	7600	644.0
	7	8	780	90	7600	644.8
	8	8	800	90	7600	645.2
	1	8	900	100	7100	605.0
	2	8	1000	110	7100	606.5
	3	8	820	90	7100	603.8
	4	8	520	55	7100	599.4
6	5	8	900	100	7100	605.0
	6	8	700	80	7100	602.0
	7	8	800	90	7100	603.5
	8	8	780	90	7100	603.2
	1	8	950	100	8100	689.1
	2	8	1000	110	8100	689.8
	3	8	850	90	8100	687.7
7	4	8	550	55	8100	683.2
	5	8	900	100	8100	688.3
	6	8	720	80	8100	685.7
	7	8	780	90	8100	686.5
	8	8	800	90	8100	686.8

Table 18. Fixed Costs of Materials Handling Equipment

$\begin{gathered} \text { Location } \\ \text { No. } \\ \hline \end{gathered}$	Equipment No.	$\begin{gathered} \text { Life } \\ \mathrm{n} \\ \hline \end{gathered}$	$\begin{gathered} \text { Purchase } \\ \text { Price } \\ \mathrm{P} \\ \hline \end{gathered}$	$\begin{gathered} \text { Salvage } \\ \text { Value } \\ \mathrm{F} \\ \hline \end{gathered}$	Annual Labor, Maintenance, tax, etc. M	```Equivalent Cost per month at 10% interest (incl. F, M)```
3	1	15	55	5	5555	463.5
	2	8	2000	200	5595	499.2
	3	8	2500	250	5600	503.9
	4	8	200	15	40	6.3
	5	8	250	25	42	7.7
	6	8	275	25	45	7.9
	7	8	300	30	45	8.3
4	1	15	55	5	4545	379.3
	2	8	2080	200	4585	413.2
	3	8	2500	250	4590	419.8
	4	8	200	15	40	6.3
	5	8	210	25	42	6.6
	6	8	250	25	45	7.5
	7	8	250	30	45	7.5
5	1	15	50	5	5050	421.4
	2	8	2100	200	5090	455.5
	3	8	2450	250	5095	461.1
	4	8	180	15	40	6.0
	5	8	200	25	40	6.3
	6	8	225	25	43	6.9
	7	8	250	30	43	7.3
6	1	15	50	5	4545	379.3
	2	8	2050	200	4585	412.7
	3	8	2450	250	4590	419.0
	4	8	180	15	40	6.0
	5	8	200	25	40	6.3
	6	8	250	25	43	7.3
	7	8	250	30	43	7.3
7	1	15	50	5	5555	463.5
	2	8	2050	200	5595	496.8
	3	8	2500	250	5600	503.9
	4	8	180	15	42	6.2
	5	8	200	25	42	6.5
	6	8	250	25	45	7.5
	7	8	250	30	45	7.5

Table 19 shows the operating cost per 100 ft . of the materials handling equipment. These figures may be very unreal since in order to make them look close to real data, a number of operating characteristics, including horsepower and efficiency, have not been considered.

Table 19. Operating Costs of Materials Handling Equipment

Location No.	1	2	3	Equipment Number			
3	0	0.0015	0.0025	0.0009	0.0060	0.0080	0.0080
4	0	0.0015	0.0025	0.0009	0.0058	0.0088	0.0080
5	0	0.0014	0.0024	0.0008	0.0050	0.0080	0.0080
6	0	0.0015	0.0025	0.0009	0.0055	0.0085	0.0085
7	0	0.0015	0.0025	0.0009	0.0060	0.0080	0.0080

$$
\text { Step 11. } \begin{aligned}
\text { BSIZE } & =25 \mathrm{sq}, \mathrm{ft} . \\
\mathrm{DISINT} & =100 \mathrm{ft}, \\
\operatorname{IDEQ}(\mathrm{~N}) & =(1,1,1,2,2,2.2) \\
\operatorname{INDEX}(\mathrm{K}) & =(0,1,2,3,4,5,6,7,8,0,0,0) \\
\mathrm{NSO}(\mathrm{~T}) & =(7,6,5,7,11,5,6,4,4,5,5,4,4,5,4,4,4) \\
\mathrm{MVSQ}(T, L) & : \text { Already defined in Table } 9 \\
\operatorname{KPRIOR}(K) & =(2,1,1,1,1,1,1,1,1,2,2,3)
\end{aligned}
$$

Results and Analysis

The rest of the steps in the procedure of application are carried out as follows:

Step 12. Lower limit of the branch plant is: 10,000 units/month if means of market demands are used.

Step 13. The initial set assumes location 5 is selected and a distribution of $x_{i j}$ is input to make the capacity $=15,000$ units/ month. Also equipment no. 1 is assumed to be used by all parts. DISINT $=100 \mathrm{ft}$. as defined in Step 11 has assumed an initial value for rel.

Step 14. Figure 4 shows the printout of information from the data cards prepared for Run 1. Other runs have the same figures, except for card number 16 and 17 , which represent the market demands and maximurn capacities for the locations respectively.

Step 15 and 16. Table 20 is a summary of the results of the runs carried out. Location 6 is observed to be selected in every run. As expected, the value of the objective function is lowest when the capacity of the branch plant is set at its lowest limit. However, a further look at the cost structure indicates that the variable cost per unit under such a capacity is very high. What has made the value of the objective function increase when the capacity of the branch plant is enlarged, is the facility cost.

Furthermore, if the capacity of the branch is set at its lower limit, all three plants in the system have to be operated at full capacity in order to meet the demand.

The above two facts, together with other factors outside this study, may give the user reason to initiate a branch plant with a capacity much larger than the lower limit. One such factor may be the trend of the demand forecast. If the market demand is observed to increase at a rapid rate, it is highly likely that the user will prefer

Card No,

Figure 4a. Printout of Information from Data Cards

Card No,

Figure 4b, Printout of Information from Data Cards

Table 20. Summary of the Computer Runs

	Input.	Charact	ristics	Output					
$\begin{aligned} & \text { Run } \\ & \text { No. } \end{aligned}$	Demand Pattern	Total Demand	Capacity Constraint	Location Selected	Total Variable Cost V	Facility Cost of Branch Plant A	Objective Function Value Z	$\begin{gathered}\text { Capacity of } \\ \text { Existing Plants } \\ 1\end{gathered}$	Capacity of Branch Plant G
1	All at Means	$70,000$	Free to Vary	6	53,515.37	221,898.50	275,413.87	30,000 11,900	28,100
2	A11 at Upper Limits	$75,150$	Free to Vary	6	57,639,62	250,243.29	307,882.91	30,000 12,700	32,450
3	All at Means	70,000	Fixed at 10,000	6	62,736.26	105,474.10	168,210.36	$30,00030,000$	10,000
4	All at Upper Limits	$75,150$	Fixed at 15,150	6	65,239.37	137,968.00	203,207.36	$30,00030,000$	15,150
5	D1 Upper Limit A11 Others at Means	$70,600$	Free to Vary	6	53,785.47	226,932.60	280,718.07	30,000 11,900	28,700
6	D3 Upper Limit All Others at Means	$70,750$	Free to Vary	6	54,430.52	227,530. 50	$281,961.02$	$30,00011,900$	28,850
7	D6 Upper Limit A11 Others at Means	70,400	Free to Vary	6	53,659.57	225,503.90	279,163.47	30,000 11,900	28,500

D7 Upper 70,600
Limi
A11
Others
at Means
D8 Upper 70,500
Free to
Vary
A11
Others
at Means
D10 70,700
Free to Vary
Upper
Limit
A11
Others
at Means
Vary
$6 \quad 54,157.47226,932.60281,090.07 \quad 30,00011,900 \quad 28,700$
$653,835.37221,898.50275,733.8730,00012,400 \quad 28,100$
,835.
28,800
$6 \quad 53,970.50226,912.20280,882.70 \quad 30,00011,900 \quad 28,800$
a branch plant with higher capacity. Since having the branch plant with a low capacity would imply that all three plants operated at almost full capacity; this would not allow much room for further expansion beyond the planning horizon. If the market demand grows slowly, large scale expansion is not likely to occur and a smaller capacity may be enough.

One other advantage of setting a high capacity for the branch plant is that in case the market demand declines in the future, one of the presently existing plants which has the highest production cost may be closed down and a huge overhead cost can be saved. Of course, this is based on the assumption that the branch plant initiated under the IODP will have a production cost lower than that of the existing plants.

As mentioned previously, the results shown in Table 20 serve only as a means at helping the user. The capacity is left to the decision of the user; and a final run may be required if the capacity determined is different from that shown in Table 20.

Figures 5 and 6 show the results obtained from Run 1, The user must adjust the layout shown in Figure 22 into the building configuration desired.
＊＊＊＊ITERAT1 ON ： 4 ． 4 ＊＊＊＊

H2FATLLH PGAMT TS BUILI AT LOCATION： 6 Carncity of pranich rlanit is 20100 らTEE CF UFANCH RLATIT IS 45373 ST．FT．

	7000		n	n	0	n	0	0
PA口MET：？	0		5900	0	0	n	0	0
	7050		ก	0	0	n	0	0
	0		0	n	0	n	3000	0
WARAET：5	a		n	0	0	n	0250	0
W．，${ }^{\text {PNET：}}$ a	π		n	0	0	n	6300	0
	－0n9		n	\bigcirc	0	n	\bigcirc	6
＂r＂n隹：\％	a		60un	0	0	ก	0	u
\cdots •，	4450		0	0	0	ก	1usu	0
	3		0	0	0	ก	bsue	0
	0		0	0	0	0	couv	0
＂ninet：i？	らヶn！		0	0	0	n	u	0
	1 ll	85	44					
un．uF M，chimer	21150	is	156					
n．uf＂uchitir	314%	IT，	$5 ?$					
in．uF Maritite	4 lisun	TS	10					
no．Lf marlitit	－ 115 L	IS	21					
in．lf loachimer	－1154	8S	2f					
－uF rameritar	7 1＇Sーワ	15	10					
a．UF Re，．chitm	－liscon	15	22					

Figure 5a．Printout of the Final Iteration of Run 1

Figure 5b. Printout of the Final Iteration of Run 1

－WF．FT：9	－ 0	1.33	1．tin	1． 20	.71	1.44	1.31
	．83	1．45	1.117	． 39	1.07	． 0	． 95
	J．01	2.211	．60	－ 48	1.45	1．4s	． 63
	.85	1.061	1.47	1.31	1．8G	1.00	1．31

F．YFR COCT AT FAGM EACAIIOH

refi： 1	arti.0	$\begin{gathered} 7 t .4 \\ 254.4 \end{gathered}$	102．？	145.1	$14 n .1$	106.8	182.2	11月．2	188．8	176.3
「ごっ：？	74．9	．${ }^{1}$	136．7	83.6	$65^{2} 2$	31.5	105.3	149.6	114.4	94.4
	1rao	18．e．								
rı＂I： 3	$\cdots \cdots$	450.8	． 0	120.7	15．n	85.4	157.9	74.0	164.5	152.0
	3×6	28：\％．4								
「ごロ：4	9¢5．：	03．6	：20．7	．	57.5	42.8	37.2	107.7	43.7	96.6
	95． $0^{\text {a }}$	：1907								
rapl $=5$	rin．i	t， 3.2	2：3．8	55	． 0	37.8	42．1	162．A	89.2	43.1
		$11^{10} 07$								
reri：	－na．s	51.5	85.4	42.8	37. A	． 0	80.0	144.9	86.5	74.0
	$1 \sim 9.3$	：57．b								
＂Lい口：？	＋4，${ }^{\text {a }}$	815．3	2＇7．9	37.7	4． 1	Bu． 0	． 0	224.9	63.5	6not
	1～ㄱ．2	7\％＇）								
rar： 0	$\cdots{ }^{n} \cdot{ }^{3}$	110.6	74．11	187．7	IA？．A	144.4	224.9	． 0	231．＇	219.0
	，＂9．a＇	34．94								
いいい：		110.1	164.5	4.3 .7	$\mathrm{A}^{n} .2$	86.5	65.5	231.5	． 0	132．5
	5－7．7	7i．l								
refisis	474.3	9 Ca	：52．1	96．8．	4＊．1	74.0	66.8	219.0	132.3	－4
	－r．e	nould								
$n_{4} 11: 11$	－ $\mathrm{s}^{\text {n．e }}$	$15,3.0$	2110.3	151.9	90．5	124.3	122.2	27.3 .2	187.7	55.3
	.1	15.4 .1								
rali：${ }^{\text {r }}$	\cdots arn ${ }^{\text {a }}$	8：3．f	23.4	114.7	$11^{0.7}$	157.5	77．5	347.4	71.0	98.8
	15.4 .2	－ 1								

Figure 5d. Printout of the Final Iteration of Run 1

Figure 6. Layout Resulted from Run 1

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The contribution of this study is the integration of the major activities in facilities planning into a unique system. However, the process does not pretend to provide a solution set with exact numerical figures, Flexibility in decision making has been emphasized in the form of applying various allowance factors throughout the process. Accuracy of such factors will depend on the users experience and technical knowledge.

Seven factors have been included in the solution set defined for the problem studied. The major shortcoming of the IODP falls on the capacity factor. It has been found that if the capacity of the branch plant is predetermined, a near-optimal solution can be guaranteed; but if the capacity is allowed to vary, there is no guarantee of an optimal solution and it is possible for cycling to occur. Based on the above observation, the following conclusions are reached from this study:

1. Given the capacity of the branch plant to be established, the IODP can be used to obtain a near-optimal solution set including (a) plant site, (b) distribution pattern, (c) floor area, (d) number of manufacturing equipment, (e) number and type of materials handling equipment and (f) plant layout.
2. If the capacity of the branch plant is not predetermined,
the IODP can help the user to make a decision on the capacity by providing useful information on the optimal plant site and costs under specific capacities. After the capacity has been fixed, the final run using the determined capacity would then give the near-optimal solution.

Recommendations for Further Study

The following suggestions are outlined for extension of this work:

1. The IODP assumes that every part is moved by one type of equipment throughout the manufacturing process. Enforcing such a condition may not always be economical or even possible. It may be also reasonable to consider movements between two departments done by a single type or combination of materials handing equipment.
2. Treat the allowance factors more precisely such as assigning a different allowance factor for every machine or piece of equipment, Also when the exact number of a piece of materials handling equipment used is less than 0.5 , the equipment may be used to handle other parts in order not to permit the equipment to be idle too much.
3. Develop an efficient search procedure, which allows the user to make use of the IODP to get an optimal capacity; or develop a model which will guarantee optimal capacity,
4. Include the stochastic behavior of the market demands imm plicitly in the model,
5. Modify the model to fit a multi-product plant,
6. Consider the problem of initiating more than one branch plant at the same time.
7. Consider a plant with a multi-storied building.
8. Application of the model to environments other than production, such as in hospitals or urban planning.

APPENDIX A

PREPARATION OF INPUT

The input data consist of twelve single variables and twentythree dimensional variables. Table 21 shows the format for the first card which includes all the twelve single variables. Table 22 shows the format for the dimensional variables. The user is expected to have a basic knowledge of the format statements of FORTRAN programming. Definitions of the symbols have been shown in Table 2, 4 and 5.

Table 21. Format of the First Card

Column	Symbol	Computer Code	Format
$1-3$	E	EXIS	I3
$4-6$	I	INO	I3
$7-9$	J	JNO	I3
$10-12$	M	MNO	I3
$13-15$	N	NNO	I3
$16-18$	K	KNO	I3
$19-21$	T	TNO	I3
$22-25$	0	HOUR	I4
$26-29$	η_{1}	F1	F4.0
$30-33$	η_{2}	F2	F4.0
$34-38$	-	BSIZE	F5.0
$39-43$	-	DISINT	F5.0

Table 22. Format of the Data Cards

Symbol	Computer Code	Format on Each Card	Arrangement on the Cards
$C_{i j}$	$\operatorname{CTRAN}(\mathrm{I}, \mathrm{J})$	10F8.0	$\begin{aligned} & C_{1,1} ; C_{1,2} ; \ldots ; C_{1,10} \\ & C_{1,11} ; \ldots ; \mathrm{C}_{1, \mathrm{~J}} \\ & \mathrm{C}_{2,1} ; \mathrm{C}_{2,2} ; \ldots ; \mathrm{C}_{2,10} \\ & \mathrm{C}_{2,11} ; \ldots ; \mathrm{C}_{2, \mathrm{~J}} \\ & \vdots \\ & C_{I, 1} ; \mathrm{C}_{I, 2} ; \ldots ; \mathrm{C}_{I, 10} \\ & C_{I, 11} ; \ldots ; \mathrm{C}_{I, J} \end{aligned}$
D_{j}	DEM (J)	1316	$\begin{aligned} & \mathrm{D}_{1}, \mathrm{D}_{2}, \ldots, \mathrm{D}_{13} \\ & \mathrm{D}_{14}, \mathrm{D}_{15}, \ldots, \mathrm{D}_{\mathrm{J}} \end{aligned}$
g_{i}	CAP (I)	1018	$\begin{aligned} & g_{1}, g_{2}, \ldots, g_{10} \\ & g_{11}, g_{12}, \ldots, g_{I} \end{aligned}$
r_{i}	OPINIT (I)	8F10.0	$\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{E}}$
Φ_{i}	PLB(I)	8F10.0	$\begin{aligned} & \Phi_{1}, \Phi_{2}, \ldots, \Phi_{8} \\ & \Phi_{9}, \Phi_{10}, \ldots, \Phi_{I} \end{aligned}$
Ψ_{i}	PLV(I)	8F10,0	$\begin{aligned} & \Psi_{1}, \psi_{2}, \ldots, \Psi_{8} \\ & \Psi_{9}, \Psi_{10}, \ldots, \Psi_{I} \end{aligned}$

$\mathrm{P}_{\text {im }}$	FMACH (I, M)	10F8.0	$P_{E+1,1} ; P_{E+1,2} ; \ldots ; P_{E+1,10}$
			$P_{E+1,11} ; \ldots ; P_{E+1, M}$
			$P_{E+2,1} ; P_{E+2,2} ; \ldots ; P_{E+2,10}$
			$\begin{gathered} P_{E+2,11} ; \ldots ; P_{E+2, M} \\ \vdots \\ P_{I, 1} ; P_{I, 2} ; \ldots ; P_{I, 10} \end{gathered}$
			$\mathrm{P}_{\mathrm{I}, 11} ; \ldots ; \mathrm{P}_{\mathrm{I}, \mathrm{M}}$
P_{i}	CPRO(I)	10F8.0	$\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{10}$
			$\mathrm{p}_{11}, \ldots, \mathrm{p}_{I}$
σ_{m}	MNUM (M)	1018	$\sigma_{1}, \sigma_{2}, \ldots, \sigma_{10}$
			$\sigma_{11}, \ldots, \sigma_{M}$
-	$\operatorname{IDEQ}(\mathrm{N})$	1018	$\mathrm{IDEQ}_{1}, \mathrm{IDEQ}_{2}, \ldots, \mathrm{IDEQ}_{10}$
			IDEQ $_{11}, \ldots$, IDEQ $_{N}$
$Q_{\text {in }}$	FEQP (I,N)	10F8.0	$Q_{E+1,1} ; Q_{E+1,2} ; \ldots ; Q_{E+1,10}$
			$Q_{E+1,11} ; \ldots ; Q_{E+1, N}$
			$Q_{E+2,1} ; Q_{E+2,2} ; \cdots ; Q_{E+2,10}$
			$Q_{E+2,11} ; \ldots ; Q_{E+2, N}$
			$Q_{I, 1} ; Q_{I, 2} ; \ldots ; Q_{J, 10}$
			$Q_{I, 11} ; \ldots ; Q_{I, N}$

$\rho_{t n}$	UNIT (T, N)	16 I 5	$\begin{aligned} & \rho_{1,1} ; \rho_{1,2} ; \ldots ; \rho_{1,16} \\ & \rho_{1,17} ; \ldots ; \rho_{1, N} \\ & \rho_{2,1} ; \rho_{2,2} ; \ldots ; \rho_{2,16} \\ & \rho_{2,17} ; \ldots ; \rho_{2, N} \\ & \vdots \\ & \rho_{\mathrm{T}, 1} ; \rho_{\mathrm{T}, 2} ; \ldots ; \rho_{\mathrm{T}, 16} \\ & \rho_{\mathrm{T}, 17} ; \ldots ; \rho_{\mathrm{T}, \mathrm{~N}} \end{aligned}$
λ_{n}	RATE (N)	1316	$\begin{aligned} & \lambda_{1}, \lambda_{2}, \ldots, \lambda_{13} \\ & \lambda_{14}, \ldots, \lambda_{N} \end{aligned}$
u_{im}	$\operatorname{CMV}(\mathrm{I}, \mathrm{N})$	16F5.0	$\begin{aligned} & u_{E+1,1} ; u_{E+1,2} ; \ldots ; u_{E+1,16} \\ & u_{E+1,17} ; \ldots ; u_{E+1, N} \\ & u_{E+2,1} ; u_{E+2,2} ; \ldots ; u_{E+2,16} \\ & u_{E+2,17} ; \ldots ; u_{E+2, N} \\ & \vdots \\ & u_{I, 1} ; u_{I, 2} ; \ldots ; u_{I, 16} \\ & u_{I, 17} ; \ldots ; u_{I, N} \end{aligned}$
-	INDEX(K)	16 I 5	$\begin{aligned} & \text { INDEX }_{1}, \text { INDEX }_{2}, \ldots, \text { INDEX }_{16} \\ & \text { INDEX }_{17}, \ldots, \text { INDEX }_{K} \end{aligned}$
β_{k}	SPA (K)	16 I 5	$\begin{aligned} & \beta_{1}, \beta_{2}, \ldots, \beta_{16} \\ & \beta_{17}, \ldots, \beta_{K} \end{aligned}$

δ_{k}	SPB (K)	16F5.0	$\delta_{1}, \delta_{2}, \ldots, \delta_{16}$
			$\delta_{17}, \ldots, \delta_{K}$
-	$\begin{aligned} & \operatorname{NSQ}(T), \\ & \operatorname{MVSQ}(T, L) \end{aligned}$	40I2	$\begin{aligned} & \mathrm{NSQ}_{1}, \mathrm{MVSQ}_{1}, 1 ; \mathrm{MVSQ}_{1}, 2 ; \ldots ; \mathrm{MVSQ}_{1}, \mathrm{NSQ}_{1} \\ & \mathrm{NSQ}_{\mathrm{q}}, \mathrm{MVSQ}_{2}, 1 ; \mathrm{MVSQ}_{2}, 2 ; \ldots ; \mathrm{MVSQ}_{2, \mathrm{NSQ}_{2}} \\ & \quad \vdots \\ & { }^{\mathrm{NSQ}_{\mathrm{T}}, \mathrm{MVSQ}_{\mathrm{T}, 1} ; \mathrm{MVSQ}_{\mathrm{T}, 2} ; \ldots ; \mathrm{MVSQ}_{\mathrm{T}, \mathrm{NSQ}_{\mathrm{T}}}} \end{aligned}$
-	KPRIOR(K)	40 I 2	$\mathrm{KPRIOR}_{1}, \mathrm{KPRIOR}_{2}, \ldots, \mathrm{KPRIOR}_{\mathrm{K}}$
x_{ij}	$\operatorname{XDIS}(I, J)$	1316	$\mathrm{x}_{1,1} ; \mathrm{x}_{1,2} ; \ldots ; \mathrm{x}_{1,13}$
			$x_{1,14} ; \ldots ; x_{1, J}$
			$\mathrm{x}_{2,1} ; \mathrm{x}_{2,2} ; \ldots ; \mathrm{x}_{2,13}$
			$\begin{aligned} & \mathrm{x}_{2,14} ; \ldots ; \mathrm{x}_{2, \mathrm{~J}} \\ & \vdots \\ & \mathrm{x}_{\mathrm{I}, 1} ; \mathrm{x}_{\mathrm{I}, 2} ; \ldots ; \mathrm{x}_{\mathrm{I}, 13} \end{aligned}$
			$\mathrm{x}_{\mathrm{I}, 14} ; \ldots ; \mathrm{x}_{\mathrm{I}, \mathrm{J}}$
y_{i}	Y (I)	40 I 2	$\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{I}}$
$z_{\text {tn }}$	$Z(T, N)$	4012	$z_{1,1} ; z_{1,2} ; \ldots ; z_{1, N}$
			$\begin{gathered} z_{2,1} ; z_{2,2} ; \ldots ; z_{2, N} \\ \vdots \end{gathered}$
			$\mathrm{z}_{\mathrm{T}, 1} ; \mathrm{z}_{\mathrm{T}, 2} ; \ldots ; \mathrm{z}_{\mathrm{T}, \mathrm{N}}$

APPENDIX B

LISTING OF FORTRAN PROGRAM

```
C*******************************
    LOMMUN/LOCI/EXIS,VARIINF
    COMMON/LUCZ/CAP,DEM,INO,JNO
    COMMON/LOC3/XDIS
    COMMON/LOC4/Y
    COMmDN/LAY/DIST(20.20)
    * /lay1/KNO,BSIzE,area
    * /LAYZ/TLYST,NDILAY,NDPAVL.LISTOR(99)
    COMMON/BLKA/CLAY(20,20)
    * /BLKE/KPRIOR(2O)
    * /BLKC/ LAYOUT(100,100):MAXI,MAXJ,MINI,MINJ
    * /BLKG/ KSYM(99),BLANK
    COMMO:NEG/EQUIP(20.20),Z,INO,NNO
    INTEGER UNIT(20,20),RATE(20),SPA(20),MNUM(20).
    * - Z(20),NSO(20),M V5Q(20.39), x(25).
    * ..(20,20,20).NMACH(20),VT(20,20).
    * LPEA(20),E,I,J,M,N,K,T,HOUK,CAPAC,SIZE,NEQ(20,20) .
    * <(20.20),KEQ(20.20),INO
    INTEGER*4 EXIS.I'NF(25),CAH(25),DEA(50),INO.JNO:XDIS(25.50)
    *|r*2(25)
    UIMENSIU: CTRAN(25,50),PLB(20),PLV(25)0FMACH(25,20),
    * FEGP(25,20),CMV(25,20),5H3(20),CPRO(25),FPRO(25).
    * TJ(20),F3LD(25),FQ(20),CMOV(20),CHD(20,20).
    * CFLOW(20,2U),FNN(2U).INJEX(20),IDEQ(20)
    * -FFF(25),FROL(25),UPINIT(25)
    K=AL*4 Vaz(25.50)
100U FUKMAT (713.I4,2F4.0,F5.0.F5.0)
1001 FOKMAT (10F8.0)
100< FOKvat (1316)
100S FORMAT (10I8)
1004 FON:4AT (EF10.0)
100b rORMAT (cGI3)
1006 FOKVAT (16I5)
1007 FORNAT (15F5.0)
1008 FORNAT (COI4)
100Y FORMAT (40I2)
101U FOR"AAT (2.11.////10X,'**** ITLRATION NO...I2.' ****'//)
1011 FOKMAT (////10X,'****** PKOGKAM TEKNINATED ******'/10X,'PROBLEM GO
    *NVERGES TOO SLOW,MAXIMINN NO. OF ITERATIONS REACHED')
1500 FOKMAT (1H0.'BRANCH PLANT IS BUILT AT LOCATION: ',12)
1501 FOKWAT ( 1-0.'CGPACITY OF BKANCH PLANT IS ',IB)
150Z HORMAT (1HO,'SIZE OF BRANLH HLANT LS MII,'' SQ.FT.'/)
150S FURMAT (1-.'ND. OF MACHINE ',12,' USEU IS ,.IG/)
1504 FORMAT (1HO,'PART ',I2,' IS HANDLEU BY',IG.' UNITS OF DISCRETE TY
    *HE EGJIP\ENT NO. ',I2)
```

```
    150S FORMAT (IHO,'PART ',I2.' IS HANJLEU BY',I3.' SYSTEMS OF CONTINUOUS
    * TYPE EQUIPMENT NO. ",I2." TUTAL OF ',I7,' FEET')
    2000 FOKMAT (1rHO.4X, VARIABLE LOS1 MATRIX:COL-SOURCE,ROW-MARKET')
    2001 FOK:GAT (1,HO,1X, MARKET:',12,2X,11(F8.2,2X),4(/12X,11(F8.2.2X)))
```



```
    2004 F゙OKMAT (///4X,'EQUIPMENT LOST MATR\X:COL-EQUIPMENT,ROW-PART')
    2006 FORMAT (1H0,1X,1DEPT:1,I2,2X,10(FR.1,2X)/10X,10(F8,1,2X))
    2007 FORMAT (///4X,'AREA REQUIHMENTS FOK EACH DEPARTMENT'//2X,17
        *(I5,2X)/टx,17(I5,2X))
    200B FOKMAT ////4X,:FROM-TO-CHART OF TOTAL COST FLOW IN DOLLARS PER FOO
        *T')
    2009 FOKMAT (1H0,1X, DEPT:',I2,2X,11(F8.4,2X)/10X,11(F8.4,2X))
    201U FORMAT (1HO,'$$$5$$$$ OSJECTIVE FUNCTION VALUE :',F14.2)
    2012 FORNAT (////10x,'*********************************'/10x,
        *'* OPTIMAL SOLUTION IS ARMIVLD *'/LOX,'****************************
        *****')
    2017 FOKMAT (///4X,'DISTANCE IN FEET BETWEEN DEPARTMENTS')
    2025 FORMAT (1HO"'TOTAL VARIABLE COST:',F12.2//1X.'FACILITY COST',F12.2
        *)
    2026 FOKMAT (1:H0:1X, MMARKET:',12,2X,11(18,2X),4(/12X,11(18,2X)))
    2027 FOKMAT (1HO.4X,'DISTRIBUTION MATRIX:COL-SOURCE')
C
C---READ IN ALL FIXED VARIABLES FOK THE MODEL-m
C
        OLOTAL=9`9999999.0
        1TER=0
            1 READ (5,1000) EXISIINO,JNO,MNO,NNOMKNO,TNO,HOUR,F1,F2,BSIZE
            *OULSINT
                LL=EXIS+1
            UO 3 I=1,INO
            3 KEAD (5,1001)(CTR^N(I,J),U=1, JNO)
            K=AJ (5.1002) (DEV(J).J=1:JNO)
            KEAD (5.1003) (CAP(I),I=1,1NU)
            KEAD (5,1J04) (OPINIT(I),I=1,EXIS)
            KEAD (5.1004) (PLB(I).I=1'INU)
            NEAJ (5,1004) (PLV(I),I=1,INU)
            UO 4 I=LL,INO
            4 KEAD (5.1CO1) (FMS,CH(I,M):M=1,MNO)
            K=A) (5.1.001) (CPRO(I),I=1.INO)
            KEAD (5,1003) (MNUM(M),M=1,MNO)
            REAJ (5,1CO3) (IJEQ(N),N=1,NNO)
            NO & I=LL.INO
            YK=AD (5.1001) (FEOP(I,N),N=1,NNO)
            Uu 10 T=1,TNO
            10 KEAD (5,1DO6) (UNIT(T,N),N=1,NNO)
            KEAD(5,1%O2) (RATE(N),N=1,VNU)
            UO 12 I=LL,INO
1< KEAD (5.1UC7) (CMV(I,N)ON=1,NNO)
            KEAD (5,1000) (INJEX(K),K=1,KNO)
            K=4D (5,10C6) (SPA(K),K=1,KNO)
            K=AD (5,1007) (SPA(k),K=1.KNU)
            DO 14 T=1.TNO
14 KEAD (5,1009) NSQ(T),(MVSQ(T,L),L=1,39)
        K=AD (5,LDC9) (KPRIOR(K),K=1,KNO)
C
Cm--KEAJ IN THE INITIAL SOLUTIONS=**
C
```

```
        NO 21 I=1.INO
    21 KEAD (5,1002) (XDIS(I,J),J=1,JNO)
        KEAD (5.1.009) (Y(I),I=1.INO)
        LO 23 r=1,TNO
    23 KEAO (5,1009) (Z(T,N),N=1,NNU)
        UO 27 E=1,KNO
        UO 26 L=1.KNO
        If(E.NE.L) GO TO 24
        UIST(E,L)=0
        UIST(L,E)=0
        GO TO 26
    24 UIST(E,L)=DISINT
        UIST(L,E)=DISINT
    26 CONYINUE
    ¿7 CONTINUE
    30 UO 29 I=1,EXIS
        UO 28 J=1.JNO
    28 VAK(I,J)=CTRAN(I,J)+OPINIT(I)
    29 CONTIINUE
        ICN=0
C---THL MASTER PROGRAM BEGINS=~
C-N-FIRST TRANSFER THE FLOW SEQUENCE INTO O.I VARIABLES--*
C
    WRITE (6,1010)ITER
    UO 33 T=1,TNO
    UO 32 E=2,KNO
    vO 31 L=1.KNO
    31 N(T,E,L)=0
    3C LONTINUE
    33 CONTINUE
        Uつ 35 T=1.TNO
        NN=NS心(T)-1
        UO 34 N:A=1.NN
        E=M\veeSO(T, M,M)
        L=YVS\2(T,YM+1)
    34 n(T,E,L)=1
    3% CUNTI'JUE
C
C-ー-EG.(M1)-=0
COO41 1=1,INN
    X(I)=0
        U0 40 J=1.JNO
    40 x(I)=x(1)+XDIS(I,J)
    41 CONTINUE
        \angleAPAC=0
        UO 42 I=LL,INO
    4< LAPAC=CAF'AC+X(I)
C
c---EGO(M2)-\infty
        UO 44 M=1,MNO
    44NMACH(N)=(FLOAT(CAPAC)/MNUM(M))+F1
C
```

```
C---上Q.(M12)mm
    47 N=1.NNO
    CMOV(iN)=0
    00 46 I=LL,INO
        46 CMOV(N)=CYOV(N)+CMV(I.N)*Y(I)
        47 CONTINUE
C
c-m-tQ.(MG)-m-
C
    UO 63 I =LL,INO
    FPRO(I)=0
    DO 62 \=1,MNO
        62 FPKO(I)=FPRO(I)+FMACH(I,M)*NMACH(M)
    63 CONTINUE
C
C---EQ.(M3)--m
C
    DO 72 K=1.KNO
    LF (INDEX(K).EQ.O) GO TO 71
    MMU=INDEN(K)
    AREA(K)=SPA(K)+SPB(K)*NMACH(MMU)
    GO TO 72
    71 AREA (K)=SPA(K)+SPB(K)*CAPAC
    7 2 \text { CONTINUE}
C---LO.(M4)---*
    SIZE=O
    UO 74 K=1.KNO
        74 SIZE=5IZご+AREA(K)
c
C---EQ.(M5)=--
C
    UO }76\mathrm{ I=LL,INO
    70 トこんつ(i)=rLV(I)*SI2E
C
C---EG.(1g)
    400 10 403 T=1,TNO
        T\nu(T)=0
        UO 402 E=1.KNO
        UO 401 L=1,KNO
    401 TU(T)=TU(T)+DIST(E,L)*W(TOE,W)
    402 CONTIINUE
    40J CONTI:NUE
C
c---上Q.(Mg.M10,V11)=-\infty
    0U 90 v=1.NNO
    IF(IDEQQ(v).EQ.2) GO TO 83
C
C
    NO 82 T=1.TNO
    NEQ(T,N)=0
    LF(UNIT(1,N),EQ.O) GO TO BZ
```

```
            VT(T,N)=FLOAT(CAPAC)/UNIT(T,N)+0.5
            NEQ(T,N)=((FLOAT(VT(T,N))*TD(T))/(FLOAT(HOUR)*RATE(N)))+F2
            IF(NEQ(T,N),EQ,O)NEQ(T,N)=1
        82 CONTINUE
            GO TO 90
c
C
        83 DO 86 T=1,TNO
            KEQ(T,N)=0
            NEQ(T,N)=0
            IF(UNIT(T,N),EQ.O) GO TO BG
            K上Q(T,N)=FLOAT(CAPAC)/(HOUR*(RATE(N)*UNIT(T,N)))+F2
            IF(KEQ(T,N).EQ.0)KEQ(T,N)=1
            VT(T,N) =KEQ(T,N)*FLOAT(HOUR)/(TD(T)/RATE(N))+0.5
            NEQ(T,N)=KEQ(T,N)*TD(T)+0.5
            8G CONTINUE
            90 CONTINUE
C
C-п-EQ.(M7)=-\infty
C
            vO 93 N=1,NNO
            FQ(N)=0
            UO 92 I=LL,INO
        92 FQ(N)=FQ(N)+FEQP(INN)*Y(I)
    93 CONTINUE
C
C---LQ.(M13)--\infty
C
    UO 109 T=1.TNO
            UO 108 N=1.NNO
            CHD(T,H)=CMOV(N)*VT(T,N)*(TD(T)/10U)
    IOB CONTINUE
    10Y CONTIINUE
C
C--m\hbarU.(M14)-mom
    NO 123 T=1,TNO
    U0 122 N=1.NNO
    IF(Z(T,N).EQ.O) GO TO 122
    FNN(T)=(C4OV(N)/100)*VT(T,N)+FQ(N)*NEQ(T*N)/TD(T)
    GO TO 123
    122 CONTINUE
    123 CONTIINUE
            UO 127 E=1,KNO
            DO 120 L=1,KNO
            LFLOW(E,L)=0
            CLAY(E,L)=0
            UO 125 T=1,TNO
            CFLOW(E,L)=CFLOW(E,L)+FNN(T)*W(T,E|L)
    125 CLAY(E,L)=CLAY(E,L)+FNN(T)*W(T,E,L)
    126 CONTIINJE
    127 CONTINUE
C
C ---EQ (M15)=-\infty
    299 0O 114 I=LL,INO
```

```
            FHOL(I)=0
            UO 113 N=1,NNO
            N}\angle(N)=
            UO 112 T=1.TNO
    112 NZ(N)=NZ(N)+(NEQ(T,N)*Z(T,N))
    113 FHUL(I)=FHDL(I)+FEQP(I,N)*NZ(N)
    114 CONTINUE
C
C---EQ(M16) ---
C
        CHUL=0
        DO 1302 T=1,TNO
        UO 1301 N=1*NNO
        CHOL=CHDL+CHD(T,N)*Z(T,N)
    1301 CONTINUE
    1302 CONTINUE
        CHUL=CHDL/CAPAC
C
        UO 300 I=LL,INO
        1F (Y(I).EQ.1) KBRAN=I
    300 CONTLINUE
        WRITE (6.1500) KBRAN
        WRITE (6.1501) CAPAC
        WRITE (6,1502) SIZE
        VHRITE (6.2027)
        0O 303 Jこ1,JNO
303 WRITE (6,2026) J,(XDIS(I,U),1=1.INO)
    DO 301 M=1,MNO
3C1 WRITE (6.1503) M,NMACH(M)
    NO 307 T=1,TNO
    NO 308 N=1.NNO
    IF(Z(T,N).EQ.O) GO TO 308
    1F(IDEQ(N).EQ.1) GO TO 304
    HRITE (6,1505) T,KEQ(T,N),N,NEQ(T,N)
    GO TO 30G
304 WRITE (6,1504) T,NEQ(T,N):N
    GO TO 30G
30% CONTINUE
30Y CONTINUE
    WKITE (6.2000)
    UO 163 I=LLIINO
    DO 162 J=1.JNO
162 VAR(I,J)=CTRAN(I,J)+CPRO(1)+CHDL
163 CONTINUE
    UO 165 J=1.JNO
16\ WRITE (6.2001) J,(VAR(I.J).I=1.INO)
    OO 169 1=1.INO
    FFF(I)=('F3LD(I)+FPRO(I)+FHDL(I))
164 LNF(I)=FFF(I)*100+0.5
    WRITE (6,2003) (FFF(I),I=1,INO)
    UO 173 T=1.TNO
    UO 172 N=1.NNO
17% tQUIP(T,N)=(FQ(N)*NEQ(T,N))+CHD(T,N)
173 CONTINUE
    WRITE (6.2017)
    UU 174 E=1,KNO
174 WRITE (6.2006) E, (OIST(E,b):L=1,KNO)
```

```
            WKITE (G,2007) (AREA(K),K=1,KNO)
            WRITE (6,2008)
            UU 176 E゙=1.KNO
    176 NRITE (6,2009) E,(CFLOW(E,L)PL=1,KNO)
C
C--NTEST FOR OPTIMALITY
C
    vc=0
        DO 204 I=1,INO
        DO 202 J=1.JNO
    202 VC=VC+VAF(I,J)*XDIS(I!J)
    204 CONTINUE
        FC=0
        DO 211 I=LL,INO
    211FFC=FC+FFF(I)*Y(I)
    224 CONTINUE
        TOTAL=ZVC+FC
        WRITE (6,2025) VC,FC
        WRITE (6,2010) TOTAL
        UIFF=TOTHL-OLDTAL
        LF(OIFF) 273.280.273
    273 LJER=ITER+1
        OLUTAL=TOTAL.
        IF(ITER.GT.7) GO TO 290
        UO 276 I=1.INO
        UO 275 J=1.JNO
    275 VAR(I,J)=VAR(I;J)*100
    276 CONTINUE
        CALL LOCMIN
        CALL EQMIN
        CALL LAYYIN
        JO 411 E=1,KNO
        UO 410 L=1,KNO
    41U UIST(E,L)=DIST(E,L)*SQRT(BSILE)
    411 CONTLIUUE
        GO TO 30
    28U CALL UUTHUT
        WRITE(60col2)
        STOP
    290 WRITE (6.1011)
        STOP
        END
*
*
*
*
C********************************
c
C EQUIPMENI SUBPROGRAM
C
        SUUROUTLIEE EQMIN
        COMMON/EU/EQUIP(20,20),Z,INO,NNO
        LNTEGER T,TNO,Z(20,20)
        WRITE(6.300)
    300 FOKMAT(1X,'EQUIPMENT IS CALLED')
```

```
    DO 3 T=1, TNO
        UO 2 N=1.NNO
    2 L(T,N)=0
    3 CONTINUE
        0O 50 T=1,TNO
        1=1
    4 J=1
    S IF(I.GT.NNO.OR.(I+J).GT.NNO) GO TO 30
        IF(EQUIP(T,I).LE.O) GO TO 25
        IF (EGUIP(T,I+J)-EQUIP(T,1)) 20,20,15
    15 KS=I
    18 J=u+1
        GO TO 5
    20 IF(EQUIP(T,I+J).LE.O) GO TO 18
        KS=I+J
        I=1+J
        GO TO 4
    25 1=1+1
    GO TO 4
    30 L(T,KS)=1
    50 CONTINUE
        RETUR:V
        ENO
*
*
*
*
C*****************************
    SUDROUTLIUE LAYMIN
    LNTEGER SLANK,AREA(2O)
    CUMMOV/ILKA/ CSTVAT(20.20)
    * /コLKB/ N3LKS(99)
    * /دLKE/ KPRIOR(20)
    * /SLKF/ KLASS(9)
    * /:LKG/ KSYM(99).BLANK
    COMmON /LAY/JIST(20,20)
    * /LAY1/NJPPTS.BSIZE,AREA
    * /LAY2/TLYC5T,NJILAY,NUPAVL.LISTOR(99)
        UA1A SLANK/2H,
        UATA (KS\M(I),I=1,2g)/2H 2.2H 2.2H 3.2H 4.2H 5.2H 6.2H 7,2H 8.2H 90
    *,2H1O,2H11,2H12,2H13.2H14.2H15,2H1b,2H17,2H1R,2H19,2H2O/
    521 FOORMAT (SOX,35H NORMALIZEU FLOW-ZETWEEN COST CHART,15X,E14.7.///%
    *bx,15(6x,A2)./)
    S22 FOKMAT (/.4X,A2,15F8.4)
    523 FURMAT (כX,10H THERE ARE,I3,3GH DEHARTMENTS AVAILABLE FOR ARRANGEM
        *に隹.")
    903 FOKMAT (10(3H**),4X11HDERARIMENT , A2,36H WILL NOT APPEAR IN TME F
        * LNAL LAYUUT. 3X,10(3H**)./,1U(3H**),4X,51HSINCE THE AREA REQUIRED
        * FOR IT &S LESS THAN A BLOCK , 1X,1U(3H **)*/)
    91U FOHVAI (//,66(2H *),//,84H EKROR IUUNBEK 010-- THE PROGRAM HAS FOU
        *NU THE MAXIINUM COST VALUE TO BE NONPOSITIVE. ,//,66(2H*))
        WRITE (6.999)
```

```
    999 FORMAT (//IXPLAYOUT IS CALLEU'/)
    KLINES = 11
C
    KEAD AREA REQUIREMENTS FOK EACH DEPARTMENT.
    NDPOMT=0
    UO 1010 I = 1,NDPTS
    100% NSLXS(I) = FLOAT(AREA(I)) / BSIZE + 0.5
    IF (KPRIOR(I).EQ.0) KPRIOR(I) = 1
    KLINES = KLINES + 2
    IF (NBLKS(I).GT.0) GO TO 1009
    KPRIOR(I) = -1
    NOPOMT = NDPOMT + 1
    WRITE (6,903) KSYM(I)
    KLINES = KLINES + 2
    1009 IF (KLINES.LT.S0) GO TO 1010
    KLINES = 5
    1010 CONTINUE
    NDPAVL = NDPYS - NDPOMT
    OO 1015 ITHD = 1.NDPTS
    IF (KPRIUR(ITHD),EQ,-1) GO TU 1015
    UO 1014 KTH=1.9
    IF (KPRIOR(ITHD).GT.KTH) GO TO 1014
    KLASS(KTR) = KLASS(KTH) + 2
    1014 CONTINUE
    1015 CONTINUE
C THIS SECTION WILL TAKE THE COST CHART FROM THE PARYS LIST
C OR THE FROM-TO CHART DATA ANU NORMALIZE IT AND THEN PRINT
    A COPY.
1065 CUNTINUE
    UO 1070 2THD = 1,NDPTS
    uO 1069 ~THO = 1,NDPTS
    IF (CSTMMT(ITHD.JTHD).LE.CSTMAX) GO TO 1069
    CSTMAX = CSTMAT(ITHD.JTHD)
    1069 CONTINUE
1070 CONT LNUE
    IF (CSTMAX) 1071.1071.1072
1071 WR1TE (6,910}
    STOP
107L CONTINUE
    JO 1075 1THD = 1,NDPTS
    UU 1075 UTHD = 1.NDPTS
1075 CSTMAT(ITHD,JTHJ) = CSTMAT(ITHD,JTHD) / CSTMAX
1140 CUNTIINUE
    NDPTMI = NDPTS =1
    NO 1150 LTHO= 1,NDPTM1
    UV 115O UTHD = ITHD,NOPTS
    CSTMAT(ITHD.JTHD) = CSTMAI(IIHD.JTHD) + CSTMAT(JTHD.ITHD)
1150 CSTMAT(JIHD.ITHO) = CSTMAT(IIHD.JTHD)
    UO 1160v=1.NOPTS.15
    USTART = J
    JSTOP = J + 14
    LF (USTOP.GT.NDPTS) JSTOP = NOPTS
    UO 11601 = 1,NDPT5,25
    ISTART = I
    ISTOP = 1 + 24
    IF (ISTOW.GT.NDPTS) ISTOP = NOPTS
    UO 11GU II = ISTART.ISTOP
1160 CONTINUE
```

```
        GALL SELZ (NDPTS)
        KETUR:N
        END
*
    SUHROUTINE SEL3 (NDPTS)
C YHIS SUBROUTINE SELECTS THE ENTERING DEPARTMENTS BASED ON
C AN ORDERED LIST OF THEIR KELATION TO THE OTHER UEPARTMENTS.
    UIMENSION LIST(99),TDPCST(99)
    COMMON /OLKA/CSTMAT (20,20)
    * /bLKD/KSTATE(99)
    * /BLKE/KPRIOR(20)
    * /BLKF/KLASS(9)
    * /LAY/OIST(20,20)
    * /LAY2/TLYCST,NDILAY,NUPAVLPLISTOR(99)
    NOILAY =0
    UO 902 KE=1,NDPTS
    UO 900 KL=1;NDPTS
    900 UIST(KE,KL)=0
    902 CONTINUE
1010 CALL GLEAR
    DO 1020 ITHD=1,NDPTS
    UO 1015 JTHD=1,NDPTS
1015 TUPCST(ITHD) = TOPCST(ITHD) + CSYMAT(ITHD,UTHDO
    LIST(ITHU) = ITHD
1020 KSTATE(ITHD) = KPRIOR(ITHU)
    LASTK = NDPTS + 1
1026 LASTK = LASTK = 1
    10 1030 K=2.LASTK
    I = LIST(K-1)
    J=LIST(K)
    LF (TDPCST(J).LT.TDPCST(I)) GO TO 1030
    LIST(K)=I
    LIST(K-1) = J
1030 LONTINUE
    IF (LNSTK.NE.2) GO TO 1026
    LASTK = IMPTSS + 1
1031 LASTK = LASTK - 1
    UO 1035 K=2.LASTK
    1 = LIST(K-1)
    J = LIST(K)
    LF (KSTATE(J).GE.KSTATE(I)) GO TO 1035
    LIST(K-1)= = 
    LIST(K)= I
103b LONTINUE
    LF (LASTK.NE,2) GO TO 1031
    UO 1040 1=1.NDPTS
    K = LIST(I)
    IF (KSTATE(K).NE,-1) GO TO 1045
1040 CONTI:NUE
1045 KTHD = 1-1
105U KTHD =KTHS +1
    LNUEPT = LIST(KTHD)
    CALL PLACE (NDILAY,INDEPT,NDHTS,TLYEST)
    LISTOR(NJILAY) = INDEPT
    1t (NJILAY.LT.NJPAVL) GO 10 1050
```

```
    KETURN
    ENO
*
*
SUBROUTINE CLEAR
C THIS SUBROUTINE CLEARS THE LAYOUT MATRIX
    COMMON/OLKC/ LAYOUT(100,100),MAXIOMAXJ,MINI,MINJ
    UO 1100 I=1.100
    LO 1100 J=1.100
    1100 LAYOUT(I,J) = 0
        RETURN
        ENU
**
*
C THIS SUBİOUTINE PLACES THE DEPARTMENTS IN THE EXISTING
C LAYOUT. INDEPT IS THE INCUMING DEPARTMENT.
    OLIAENSION DEPTMD (99,2),IJPER(900,2)
    COMMON /BLKA/ CSTMAT(20.2U)
    * /ELKB/ NBLKS(99)
    * /OLKC/ LAYOUT(100,100),MAXIPMAXJ,MINI,MINJ
    * /ULKD/ KSTATE(99)
    * /LAY/OIST(20,20)
    IF (NJILHY-1) 1010.1100:1200
    1010 KTHD = LivDEPT
    THIS SECTION PLACES THE FIRSI DEPAKTMENT IN THE MIDOLE OF A
C THIS SECTION
    IMID = 50
    JM1D = 50
    NHLK = N:ULKS(INJEPT)
    NBSD = SURT(NBLK)
    NJKM = N-LK - NBSD ** 2
    LFST = "ID - N3SD / 2
    LLST = IFST + N3SD - 1
    JFST = JMID - N3SD + 1
    ULST = JYST + NBSO -1
    KSUMI = i
    KSUMS = <
    00 1020 1 = IFST,ILST
    UO 1020 J = JFST.JLST
    KSUMI = KSUMI + I
    KSUMJ = KSU*AJ + لJ
1020 LAYOUT(I.J) = INJEPT
    MLNI = IFST
    MAXI = ILST
    MlNJ= JiST
    MAXJ = JMID
    IF (NSRM.EQ.0) GO TO 1050
1030 NJ = JFST m 1
1031 CONTIINJE
    MINJ=NJ
    UO) 10401 = IFST,ILST
    KSUMI = KSUMI +I
    KSUMJ = KSUMJ + NJ
    LAYOUT(I,NJ) = INDEPT
```

```
    NBKM = NGRM - 1
    IF (NतRM.EQ.0) GO TO 1050
    1040 CONTINUE
        NJ = NJ - 1
        GO TO 1031
    105U CONTINUE
        KSTATE(INDEPT) =0
        AUX1 = KSUMI
        AUX2 = KSUMJ
        AUX3 = NOLK
        DEPTMD(INDEPT,1) = AUX1 / AUX3
        UEPTMO(INDEPT,2) = AUX2 / AUX3
        NDILAY = NDILAY + 1
        NETURN
1100 CONTINUE
C THIS SECTION PLACES THE SECOND DEPARTMENT IN THE LAYOUT.
C ADJACENT TO THE FIRST DEPARTMENT.
    NBLK = NELKSS(INDEPT)
    NGSJ = SORT(NBLK)
    NBRM = NOLK - NBSD
    IFST = IMID - NBSD / 2
    ILST = IFST + NBSD - 1
    JFST = JHID + 1
    JLST = JFST & N3SD = 1
    KSUMI = 0
    KSUMJ =0
    DO 1110 I = IFST,ILST
    UO 1110 J = JFST,JLST
    KSUNI = NSUMI + I
    KSUMJ = xSUMMJ + J
1110 LAYOUT(IrJ) = INDEPT
    IF (IFST.LT.MINI) MINI = LFSI
    LF (ILST.GT.MAXI) MAXI = LLSI
    MAXJ = ULST
    IF (NJRM.EO.O) GO TO 1140
    NJ = JLST + 1
1120 maxJ=NJ
    UO 1130 l = IFST,ILST
    KSUMI = KSUMI + I
    KSU:nJ = KSUMJ + NJ
    LAYOUT(I,NJ) = INDEPY
    NSHM = NORN - 1
    IF (N3RM.EQ.0) GO TO 1140
113U CONTINUE
    NJ= \JJ + 1
    GU TO 11:%0
1140 CONTINUE
    KSTATE(IIvJEPT) = 0
    A\cupX1 = KSUMI
    AUX2 = KSUMJ
    AUX3 = NELK
    UとPTM)(INJEPT,1) = AUX1 / AUX3
    UEPTM)(INDEPT,2) = AUX2 / AUX3
    XI = JEPTMO(KTHD,1)
    XJ = DEPTYD(KTHD,2)
    YI = DEPIMO(INDEPT,1)
    YJ = JEPIMD(INDEPT,2)
```


C

TLYCST＝CSTMAT（KTHD．INDEPT）＊OST
C

$$
\text { UIST }(K T H O \text {. INDEPT })=D S T
$$

UIST（INDEPTOKTHD）$=$ DST
NDILAY $=$ NDILAY +1
RETURN
$1200 \operatorname{COSMIN}=2 * * 27$
IFST $=$ MINI－ 6
ILST $=$ MAXI +6
JFST $=$ MINJ -6
$J L S T=M A X J+6$
IF（IFST．LT．1）IFST＝1
LF（JFST．LT．1）JFST＝1
UO 1210 I＝IFST，ILST
DO $1210 \mathrm{~J}=\mathrm{JFST}, \mathrm{JLST}$
IF（LAYOUT（I，J）．LT，O）LAYOUT（I，J）＝0
1210 CONTINUE
NBRM $=$ NGLKS（INDEPT）
UO $12131=2.5$
INUEX $=1$－ 1
ITEST $=(1 * 2-1) * * 2$
IF（NGRM．LT．ITEST）GO TO 1214
1213 CONTINUE
INDEX $=5$
1214 INUXP $=-1$
1215 THKKIP $=0$
$I=M I H I+I N D X P$
JFST＝MINJ＋INDXP
DO 1220 J $=$ JFST． 80
IF（LAYOUT（I＋ $1, J+1$ ），NE．0）GO TO 1225
1220 CONTINUE
122 S NSLKIP $=$ NBLKIP +1
1JPER（：NBLKIP，1）$=1$
IJPER（iJBLKIP，2）＝J
LAYOUT（I．J）$=$ INDXP
人ジy $=1$
$12301=1$ JPEK（KPG，1）
$J=I J P E K(K P B, 2)$
IM1＝I－1
$|P|=I+1$
JM1＝J－ 1
JP1＝J＋ 1
$1 J \cup M 1=-1$
IUUMZ $=1$
UO 1260 II $=I M_{1} \cdot I P_{1}$
」0 120J 」J＝JM1．JP1
1JUM2 $=1$ JUM1＊IDUM2
LF（1JUMC．EQ．－1）GO TO 1200
IF（LAYOUT（II，JJ）．NE．O）GO TO 1260
ILM1＝II－1
HIPI $=I I+1$
JJM1＝
＋ 1
00 1240 III＝IIMI．IIPI
UO 1240 JJJ $=$ JJM1．JJPI

```
    IF (LAYOUT(III,JJJ).EQ.0) GO TO 1240
    IF (LAYOUT(III,JJJ).GT.INDXP) GO TO 1250
    1240 CONTINUE
    GO TO 1260
    1250 NBLKIP = NBLKIP + 1
        IF (NBLKIP.GT.900) sTOP
        IJPER(NBLKIP,1)=II
        IJPER(NBLKIP,2)=JJ
        LAYOUT(II,JJ) = INDXP
    1260 CONTINUE
        IF (KPB.EQ,NBLKIP) GO TO 1270
        KPB = KPB + 1
        GO TO 1230
    1270 IF (INDEX + INDXP) 1275.1280.1275
    1275 INDXP = INDXP - 1
    GO TO 1215
    1280 CONTINUE
        DO 1320 K = 1,NBLKIP
        CST = 0
        XI = IJPER (K,I)
        XJ = IJPER(K,2)
        UO 1310 KTHD =1,NDPTS
        IF (KSTATE(KTHD).NE,O) GO TO 1310
        YI = JEPTMD(KTHD,1)
        YJ = JEPTYD(KTHO,2)
        DST = ABS(XI-YI) + ABS(XJ-YJ)
    1300 CST = CSTMAT (KTHD,I:\DEPT) * UST + CST
    1310 CONTINUE
        IF (CST.GT.COSMIN) GO TO 132U
        COSMIN = CST
        KBEST = K
    1320 CONTINUE
    KFLAG = 0
    I = IJPEK(KPEST,1)
    J = IJPEiर(KBEST,2) -1
    JวT = 1
    IOI = 0
    K1I = 0
    K1J=0
    KONTI =0
    KONTJ = 0
    KSUMI = 0
    KSUNJ =0
C GENERAL PLACENENT PrOCEDUREg
    140U I = I + 1JT
        J= J + JכT
        LF (I.LE.9.OR.I.GT.90) GO TO 1440
        IF (J.LT.G.OR.J.GT.9G) GO TO 1440
        IF (LAYOUT(I,J).GT.O) GO 10 1440
        IF (KFLAU.EQ.O) GO TO 142O
C THIS SECTION TESTS FOR CONTIQUITY
    IMI = I - I
    IPI = I + 1
    JM1 = J - 1
    JP1 = J + 1
    DO 1410 II = IMI.IP1
    UO 1410 لJ = JM1.JP1
```

```
        IF (LAYOUT(II,JJ).EQ.INDEPT) GO TO 1420
    1410 CONTINUE
        GO TO 1440
    1420 LAYOUT(I,J) = INDEPT
        KFLAG = 0
    1430 CONTINUE
        KSUMI = KSUMI +I
        KSUMJ = KSUMJ +J
        NBRM = NBRM - 1
        IF (I.LT.MINI) MINI = I
        IF (I.GT.,VAXI) MAXI =I
        IF (J.LT.MINJ) MINJ = J
        IF (J.GT.MAXJ) MAXJ = J
        IF (NJRM.EQ.O) GO TO 1490
    GO TO 1441
    1440 KFLAG =1
    1441 CONTINUE
    THIS SECTION SELECTS THE NEXT BLOCK TO BE TESTED.
    IF (KONTL.NE.KII) GO TO 1460
    KONTI = O
    IF (IDT.EQ.O) GO TO 1450
    IDT = 0
    GO TO 1460
    1450 LDT = (-1) ** (KII + 2)
    K\I=KLL+1
    1460 KONTI = KONTI
        1F (KONTJ.NE.K1J) GO TO 1480
    KONTJ = 0
    IF (JJT.こ0.0) GO TO 1470
    klu=klu+1
    JOT = 0
    GO TO 1460
    1470 J0T = (-2) ** (K1J + 1)
    148U KONTJ = KONTJ +1
    GO TO 14U0
    1490 CONTINUE
    A\cupX1 = KSUMI
    AUX2 = KSUMJ
    AUX3 = NELLKS(INDEPT)
    UEPTM)(I:VJEPT:1) = AUX1 / AU苂
    DEPTMJ(INDEPT.2) = AUX2 / AUX3
    XI = JEPIMD(INDEPT,1)
    xJ = ఎビPTMD(INDEPT:2)
    UO 1510 XTHD = 1.NDPTS
    LF (KSTATE(KTHD).NE.(j) GO TO 1510
    YI = JEPTMD(KTHD.1)
    YJ = DEPIMD(KTHD,2)
    UST = ASS(XI-YI) + ABS(XJ-YN)
C
    UIST(KTH_.INDEPT)=OST
    UIST(INDEPT,KTHD)=DST
C
    TLYCST = TLYCST - CSTMAT(KTHU.INDENT) * OST
    1510 LONTINJE
    KSTATE(LINDEPT) = 0
    NDLLAY = NDILAY + 1
    KEIURN
```

```
        END
*
*
            SUBROUTINE OUTPUT
C THIS SUBHOUTINE PRINTS THE LAYOUTS AS REQUESTED BY THE USER.
        INTEGER BLANK
        DIMENSIOIV LINE(40)
        COMMON /BLKC/ LAYOUT(100,100),MAXIPMAXU.MINI,MINJ
    * / BLKG / KSYM(9g),BLANK
    * /LAYZ/TLYCST,NDILAY,NUPAVL,LISTOR(99)
    10U FORMAT (1H1.55X,6HLAYOUT,LOX,E14.7%//)
    101 FORMAT (5X,40(1X,A2)P/)
    102 FORMAT (1H1.40X,20H LEFT HALY OF LAYOUT,//)
    10S FOHMAT (1H1,40X,21H RIGHT HALF OF LAYOUT,10X,E14.7.1/)
    104 FORMAT (EBH THE ORDER OF HLACEMENT WAS , 30(A2,1X),1,13X,35(A2,1X)
    */,13X.35(A2.1X))
    00 1010 L=1.40
1010 LINE(L) = BLANK
    K = MAXJ - MINJ + 1
    IF (K,GT.40) GO TO 1050
    VRITE(6,100) TLYCST
    UO 1040 1 = MINI,MAXI
    L=20-k/2
    OO 1030 J = MINJ.MAXJ
    L =L+1
    NUM = LAYOUT (I,J)
    LF (NUM.LE.O) GO TO 1020
    LINE(L) = KSYM(NUM)
    GO TO 1030
1020 LDNE(L) = BLANK
103U CONTINUE
1040 WR1TE (6,101)(LINE(K),K=1,40)
    LF (NJILAY.EQ.NOPAVL) GO TO 2000
    KETUKN
1050 WRITE (6.102)
    U 1080 L = MINI,MAXI
    UO 1070 」= MINJ.50
    NUM = LAYOUT(I,J)
    IF (NUY.LE.O) GO TO 1060
    LINE(J) = KSYM(NUM)
    GO TO 10%0
106U LINE(J) = BLANK
107U CUNTINUE
1080 WRITE (6,101) (LINE(K),K=1,40)
    WhITE(6.103) TLYCST
    NO 11101= MINI,MAXI
    UO 1100 J = 51,MAXJ
    L= = - 50
    NUM = LAYOUT(I,J)
    LF (NUM.LE.O) GO TO 1090
    LINE(L) = KSYM(NUM)
    GO TO 11U0
10gU LINE(L) = RLANK
1100 CONTINUE
1110 WRITE (6,101) (LINE(K),K=1.4U)
    LF (NJILAY.EQ.NDPAVL) GO TO 2000
```

```
    RETURN
    2000 UO 2010 1=1,NDILAY
    j = LISTUR(I)
    2010 LISTOR(I) = KSYM(J)
        NUM = NUILAY + 1
        DO 2020 1=NUM:99
    2020 LISTOR(I) = BLANK
        NRITE(6.104) LISTOR
        RETURN
        ENO
*
*
*
*
C*******************************
c
C
C*******************************
    SUBROUTINE LOCMIN
    COMMON/LUC1/EXIS,VARPF
    COMMON/LOCZ/A.B.M.N
    COMMON/LCC3/XDIS
    COMMON/LUC4/YSTAR
    COMMON/3LKI/INSUFF,II,FIXCST,IFS,FUIFF,ORDER,IH
    COMMON/BLK2/NETM,NETN,CMIN,IH,REFNOD,G,ISMJ,C,X,OUAL,NS,Y,
    1 NT
    UIMENSION VAR(25.50)
    LOGICAL FIXED,CAPAC,CAPEQL,INITAL,ENUM
    INTEGER*'4 M,N,SPRIME,S,F(25),A(25),R(50),C(1376 ),Y*2(25),FIXCST.
    1 EXIS.ORDER(25),CMIN,CAP,NFXENA/O/,AVLGAP/O/,T/O/,DELTAV(25).
    2 OUAL(77).P/O/, LL/O/,XSTAK(1376),G.SUM/O/,IH*2(25),FKO.
    3NS*2(1376),NT*2(1376),S(JMUBJ(OU),DCOEFF(25,90),YSTAR*2(25):
                                    ISTAT*2(25),V(90)/9U*O/,VMIN,VYINL,FMAXL/O/,SUMFKO:
                                =*2(25.99),NFREE/O/,CKOI,CKOIL,GSTAF/999999999/,NDC/0/,
                    IN=立O(25),IC*2(99),L*2(25)/25*9/, X(1376),REFNOD,FDIFF(25)
    **UIS(25,50)
C KEAD IN NUMBER OF SOURCES ANU UESTLNATIONS. CAPACITIES. DEMANDS.
c CONSTRAIINTS. ANS COSTS.
C
    KESET VARINBLES FOR NEW PKOBLEM
C
400U AVLCAP = 0
    r = 0
    NFXEN:I =0
    P=0
    LC = 0
    SUM = 0
    FMAXL = 0
    NFREE = C
    NJC=0
    GSTAR = 5999999997
    NO 4001 1=1.90
4001 V(I) = 0
    004002 1=1.25
```

```
4002L(I)=9
C S SPRIME = L.B. ON NO. OF SOURCES TO BE USED AND S = U.B, ON NO. OF S.
C
C
        SPRIME=EXIS+1
        S=SPRI:ME
    1 FORMAT (16I5)
    2 FORMAT (10I8)
    3 FORMAT (2OI5)
    4 FORMAT (15I5)
c
        NETM=M+N+2
        NETN=M*N+M+N+2
        U0 305 J=1,N
        C(U)=0
    305 CONTINUE
        NPM=N+1
        IZ=NETN-N-1
        WRITE (6.141)
    141 FOKMAT (///1X, IOOATION IS CALLED*/)
C
C---TRANFER VAR(I,J) INTO C(J)--\infty
C
        IYY=1
        UNW=1
        DO 208 J=:NPM,IZ
        C(U)=VAR(IYY,JWW)
        l YY=IYY+1
        LF(IYY.LE.M) GO TO 208
        IYY=1
        \NW=JaN+1
        LF (JHN.ET.N) GO TO 209
    2OH CONTINUE
    209 NPM=IZ+1
C
        LO 306 J=IJPM,NETN
        C(J)=0
    306 CONTINUE
C
        INITIALILE THE SOURCE AND SINK LISTS FOR NETWRK
        NPM=N+M
        UO 310 =1,NPM
        NS(J)=」
310 CONTINUE
        1Z=M*iv-M
        NP1=N+1
        UO 330 J=M,IZ,M
        UU 320 I二NP1,NPM
        NS(I+J)=1
320 CONTINUE
330 CONTINUE
        1Z=M*i刂+N
        UO 340 l=1,M
        NS(IZ+I)=NPM+1
        NT(IZ+I)=N+I
340 CONTIVUE
```

```
    NS(IZ+M+I)=NPM+2
    NT(IZ+M+1)=NPM+1
    0O 350 J=1,N
    NT(J)=NPM+2
    350 CONTINUEE
    DO 370 J=1,N
    IZ=N+J*M-M
    DO 360 I=1,M
    NT(IZ+I)=J
    360 CONTINUE
    370 CONTINUE
C
    MAKING THIS ASSIGNMENT FOR REFNOD WE WILL HAVE ALL DUAL > 0
    KEFNOO=M+N+1
    IR=0
C
    FIXEO=,TRUE.
    CAPAC=,TRUE.
C CAPEQL =,TRUE, ONLY WHEN ALL CAPACITIES =.
    CAPEQL=.FALSE.
    INITAL=.FALSE.
    LNUM=.TRUE.
C
C STEP && FEASIBILITY CHECK
    NSTEP=1
    FIXCST=0
    CVIN=0
    UO 5 J=1:N
    CMIN = CMIN + B(J)
        S CONTINUE
        UO 6 I=1,M
        ORDEK(I)=A(I)
        LH(I)=I
        r(1)=1
        6 CONTINUE
            IF (.NOT.CAPAC) GO TO 10
            1F (S.EQ.4.OR.CAPEQL) GO 10 7
            CMLL SORT (1,M)
    7 CAF = -C:IN
            M*S=M-S+1
            U0 8 I =Mv,5,M
            CAP=CAP+CRDER(I)
            O CONTINUE
            LF (CAP.UE.O) GO TO dO
            HR1TE (6,9)
    9 FOKMAT (T4O,'A FEASIBLE SULUIION DOES NOT EXIST:)
            STOP
C
C STEP 2 INITIAL SOLUTION
    10 NSTEP=2
    ChlCULATE DELTAV(I)
    UO 11 l=1.M
    Y(I)}=
C
C
    WE ASSUME PROSLEM IS FEASIBLE WITH ANY SINGBLE SOURCE NOT USED--CH
```

```
            CALL NETV.RK
            UELTAV(I)=G
            Y(I)=1
    11 CONTINUE
c CALCULATE VMIN
            CALL NETWRK
            VMIN=G
            UO 1112 I=1,M
            UELTAV(I)=DELTAV(I)-VMIN
            FOIFF(I)=F(I)-DELTAV(I)
            IF (F(I).LT.DELTAV(I)) FDLFF(I)=F(I)
    1111 CONTINUE
C
C ATTEMPT TO FIX Y(I) TO ONE AT LEVEL. ZERO
C
            IF (S.LT.M) GO TO 14
            0O 13 I=1,M
            MAXDV=DUAL(N+I)*A(I)
            IF (DELTAV(I),GE,NAXDV) MAXDV=DELTAV(I)
            IF (MAXDV.GT,F(I)) GO TO 12
            GO TO 13
    12 L(I)=0
            FIXCST=FIXCST+F(I)
            AVLCAP=AVLCAP + A(I)
            LC=LC+1
        13 CONTINUE
            1Z=N+V*N
    14 lF (INITAL) GO TO 241
            IF (.NOT.FIXED) GO TO 2I
E
    FIND SOLUTION WITH Y(I) FRACIIONAL
            NO 15 J=ivp1.IZ
            x5TAK(J)=C(J)
            1=Ng(J)-!v
            IF (L(I).EG.O) GO TO 15
            C(J)=C(J)+F(I)/A(I)
        15 CONTINUE
            CALL VETINRX
    152 MINOPT=G4FIXCST
C
    NOW WE MUST RESTORE C(II,J) TU THE PROPER VALUES
            UO 16 J=MrP1MIZ
            C(J)=xSTAR(J)
    16 CUNTINUE
C
    SECONJ IMITIAL SOLUTION PROCEJURE
    1<=IZ+1
    1ZZ=NETN-1
    UO 17 J=1Z.IZZ
    1=NT(J)-N
    KX=-X(J)
    KX=(1.0+i& X/A(I))*F(I)+.5
    ORDER(I) =INT(RX)
    LH(I)=I
```

```
    17 CONTINUE
    CALL SORT (1,M)
    UO 18 I=1.M
    IF((AVLCAP ,GE. CMIN ).ANU.(LC .GE. SPRIME))GO TO 19
    LHH=IN(I)
    LF (L(IHH),EQ.O) GO TO 18
    L(IHH)=1
    AVLCAP=AVLCAP+A(IHH)
    LC=LC+1
    FIXCST=FIXCST+F(IHH)
    18 CONTINUE
    GO TO 25
    19 DO 20 K=I,M
        IHA=IH(K)
        LF (L(IHA),EQ. O) GO TO 20
        Y(IHA)=0
    20 CONTINUE
    GO TO 25
C
    241 READ (5,1) (X5TAR(I),I=1,M)
    21 MINOPT=G
        UO24 I=1.M
        IF (L(I),EQ, O) GO TO 24
        IF (INITAL.ANO.XSTAR(I).EQ.1) GO TO 23
        IF (.NOT.INITAL.ANJ.X(IZ+I).GT.O) GO TO 23
        Y(I)=0
        GO TO 24
    23 LC=LC+1
    FIXCST=FIXCST+F(I)
    AVLCAP=AVLCAP+A(I)
    24 CONTINUE
C
    CHANGING INITIAL SOLUTION IF IT DOES NOT SATISFY Y < S CONSTRAINT
    25 LF (LC .LE. S) GO TO 31
    IF (.:NOI.CAPEQL) GO TO 258
    UO 255 I=1,M
    URUER(I)=JELTAV(I)
    IH(I)=】
    255 CONTIINUE
    GO TO 26b
    25४ U0 26 I=1,M
    ORUER(I)=A(I)
    LH(I)=I
    26 CONTI'JUE
    265 CALL SORT (1,M)
    ML=1
    MU=M
    I=1
    27 MU=MU-I+1
    UO <8 I=`ん.M
    1+18=IH(I)
    IF (Y(IH),.EQ.O) GO TO 28
    IF ((AVLCAP-A(IHB)).LT.CMLN) GO TO 29
    LC=LC-1
```

```
        Y(IH(B)=0
        FIXCST=FIXCST-F(IHB)
        AVLCAP=AVLCAP-A(IHB)
        IF (LC.LE.S) GO TO 31
    28
    CONTIVUE
    29 ML=I
        DO 295 I=1,MU
        MMS=MU-I I 1
        LHC=IH(MMS)
        IF(Y(IHC).EQ.1) GO TO 295
        LC=LC+1
        IHD=IH(I)
        Y(IHD)=1
        FIXCST=FIXCST+F(IHC)
        AVLCAP=AVLCAP+A(IHC)
        GO TO 27
    295 CONTINUE
C
C STEP 3& INITIALIZATION STEP
C IF CAPAC ANO SSM THEN WE WILL NEED THE SOURGES ORDERED ON CAPACITI
C LN STEP & BUT WE SORT HERE SLNCE STEP & IS AN ITERATIVE STEP.
    31 IF ((.NOT,CAPAC),OR,(S.EQ.M)) GO TO 34
    DO 33 I=1.M
        ORUER(I)=A(I)
        IH(I)=I
    33 CONTINUE
        CALL SORT (1,M)
    34 00 36 I=1,M
        IF (Y(I) .EQ. O) GO TO 32
        IF (L(I).GT. O) L(I)=LC
        1STAT(I)=1
        GO TO 36
    32 ISTAT(I)=^1
        INFREE=IJFREE+1
        L(I)=LC
    36 LONT INUE
C
C IF (.NOT.ENUM) GO TO 39
    NFXENM=50
            T=2
C
    37 FORMAT (40I2)
C
    U0 38 LL=1,M
        30 ヒ(LL,1)=1
            IC(1)=EX15+1
            KKK=EXIS+1
            UO 2200 LL=KKK,M
    2200 E(LL,2)=2
            IC(2)=1
C
        39 NSTEP=3
            VMINL=VM&N
            IF (S.LT,M) GO TO 52
```

```
    UO 51 I=1,M
    IF (Y(I).EQ.O) VMINN=VMINL+DELTAV(1)
    51 CONTINUE
    GO TO 54
    52 UO 53 I=1,M
        IF (Y(I).EQ.1) GO TO 53
        IF ((ISTAT(I).EQ.-1).AND.(F(1).LT,UELTAV(I))) GOTO 53
        VMINL=VMINL+DELTAV(I)
    53 CONTINUE
    54 FMAXL=GSTAR-VMINL
        KO=1
        GO TO 130
C
    45 IF (V(KO).LT.O) GO TO 70
    STEP 5& DESGENDANT FEASIBILITY CHECK FOR DUALITY CONSTRAINT
    IF (LC .EQ.S) GO TO 110
C FMAXL IS UPDATED IN STEPS 6.11,AND 13
    UO 55 I=1.M
    INEQKO(I)=-DCOEFF(I,KO)
    55 CONTINUE
    NEGVKO=0
    1STEP=5
C
    510 FKO=0
    SUMFKO=0
    UO 59 I=1.M
    LF (ISTAT(I) .GE. O) GO TO 5G
    511 IF (DCOEFF(I.KO).GE.NEGVKO.ANO.ISTLP.NE.8) GO TO 59
    IF (FIXC5T+FDIFF(I).GT,FMAXL) GO TU 59
    531 1F (T .EG. O) GO TO 58
    UO 57 LLニ1,T
    SUM=0
    OO 56 II=1.M
    LF (Y(II).EQ.1) SUM=SUMTE(IIOLL)
    56 CONTLINUE
    SUM=SU:1+E(I.LL)
    IF (SUM .GT. IC(LL)) GO TO 54
    57 CONTI:UUE
58 LH (FKO.EO. C) II=?
    FKU=FKO+1
    1H(FKO)=1
    SUMFKO=SUMFKO-DCOEFF(I,KOI
    IF (INEQRO(I).GT.INEGKO(II)) IL=!
    59 CONTINUE
    IF (FKO.EQ. O) GO TO 110
    1F (ISTEP-8) 591.866.60
591 1F (SUMFNO .LE.V(KO)) GO TO 110
    IF (FKO.EQ.1.OR.INEEKO(II).GI.V(KO)) GO TO 60
    CALL PRUGE(INEQKO,FKO.V(KU))
```

```
            IF (IFS.GT.FMAXL.OR,INSUFF.EW.1) GU TO 110
C
    60 LC =LC+1
        ISTAT(II)=1
        Y(I隹=1
        NFREE=NFREE-1
        L(II)=LC
        AVLCAP=AVLCAP+A(I1)
        FIXCST=FIXCST+F(II)
        IF (F(II).GE.DELTAV(II)) FMAXL=FMAXL+DELTAV(II)
        KO=1
        DO 63 K=1,NDC
        V(K)=V(K)+DCOEFF(II,K)
        IF (V(K).GT.V(KO)) KO=K
    63 CONTIINUE
        GO TO 45
C
    STEP 7& CMIN AND Y>S' CONSTRAINT CHECK
    70 CAP=AVLCAP-CMIN
        IF (CAP.LT.O) GO TO 8O
        IF (LG .LT. SPRIME) GO TO 87
        GO TO 90
C
    80 INSTEP=8
        IF ((S-LC),GE.NFREE) GO TU 8S
C KECALL THAT SOURCES ARE STILL ORDEKED GY CAPACITY FROM STEP 3.
    SUM=0
        vO &2 I=1,M
        MYS=M-I+1
        1HE=If(M4S)
        IF (ISTAT(IHE).GE.O) GO TO 82
        SUn=5U'q+1
        1H (SU^.GT.(S-Lこ)) GO TO B5
        CAP = CAH + ORJER(M,MS)
    82 CONTINUE
    83 UO 84 I=1,M
    IF (ISTAT(I) .EQ. - 1) CAP=CAH+A(I)
    84 CONTINUE
    85 1F (CAP.LT. 0) GO TO 110
        RECALL THAT WE HAVE ALL V(K) FOR THE CURRENT NODE FORM STEP 4.
        JO 86 I=1.M
        LNLOKO(L)=(DELTAV(I)-F(I)//A(I)
    86 CUNTINUE
    8@ち NEGV<O=-V(KO)
        1STEP=8
    GO TO 51C
866 IF (UCOEFF(II,KO).LT.NEGVKO.AND.A(II)+AVLCAP,GE.CMIN) GO TO 6O
    It (FKO.=?.1) GO TO En7
    CNLL PRONE(A,FKO,CMIN-AVLLAP)
        if (IFS.GT.FMAXL.OR,INSUFH.EU,1) GO TO 110
867 11=IH(1)
```

```
        IJK=0
        UO 86B I=1,FKO
        1HF=IH(I)
        IF (UCOEFF(IHF,KO).GE.NEGVKO) GO TO 868
        IUK=1
        IF (INEQKO(IHF).GT.INEQKO(II)) II=1H(I)
    868 CONTINUE
        LF (IJK.EQ.O) GO TO 110
        GO TO 60
C THE FOLLONING PERTAINS WHEN LMIN CUNSTRAINT IS NOT VIOLATED
    87 IF ((NFREE+LC).LT.SPRIME) GO TO 110
C RECALL THAT WE HAVE ALLL V(K) FOR THE CURRENT NODE FROM STEP 4.
        00 88 I=1,M
        INEOKO(I)=OELTAV(I)_F(I)
    88 CONTINUE
        GO TO }86
C STEP 9& CURRENT NODE FIXEU CUST TEST
    90 NSTEP=9
        IF (S .EG. H1) GO TO 130
        SUM=VMIN
        UO 91 I=1.M
        IF (Y(I) .EQ. O) SUM=SUM+UELTAV(I)
    91 CONTINUE
        LF (FIXCST.LE.(GSTAR-SUM)) GO TO 13O
C
C VOTE THAT WE HAVE ALL V(K) FUR THE CURRENT NODE
        UO 101 I=1.M
        INEQKO(I)=DELTAV(I)-F(I)
    101 LONTINUE
        NEGVKO=-V(KO)
        1STEP=10
        *) TO 51:
C
    STEP 11\alpha BRANCH BACKWARD
    110 NSTEP=11
        IF (LC.EU.O) GO TO 140
        12み=0
        JO 113 I=1,M
        LF ((Y(I).LT. 1).OR.(L(I).EQ. 0)) GO TO 113
        CKUI=JCO-FF(I,KO)
        LF (FJIFF(I).LE.CKOI) CKOL=FUIFF(I)
        LF (ILP EQ. 1) GO TO I12
        11P=1
    11111=I
        CKOII=CKOI
        GO TO 113
    112 IF (CKOIL.GE. CKOI) GO TU 113
        GO TO 111
    113 CONTINUE
        LF (IIP.EQ. O) GO TO 140
C
```

```
c DETERMINE WHETHER AN ENUMEKAIION CONSTRAIHT WITL BE NEEDED
C
    IF (L(II).EQ. LC) GO TO 116
    vo 115 I=1,M
    IF (ISTAT(I).NE. O) GO TO 11b
    IF((L(I) .GE. LC).OR.(L(I).LI.L(II)) GO TO 115
    T=T+1
    IF (T.GT.99) GO rO 1155
    IC(T)=-1
    DO 114 LL=1,M
    E(LL,T)=0
    IF ((LL.EQ,I).OR.((ISTAT(LL).EQ.I)•AND.(L(LL).LE.L(I)))) E(LL,T)=1
    IC(T)=IC(T)+E(LL,T)
    114 CONTINUE
    IF (T.GT.P) P=T
    115 CONTINUE
    GO TO 116
    1155 WRITE (6,1156)
    1156 FORMAT (" WE HAVE EXCEEDED LIMIT ON ENUM CONST:)
            STOP
c
    116 LC=LC-1
    UO 118 1=1,M
    IF (ISTAT(I).NE, 0) 60 TO 117
    IF (LII).LT.L(II)) GO TO 118
    ISTAT(I)=-1
    IF(F(I).LT.OELTAV(I)) FMAXL=FMAXL+UELTAV(I)
    60 TO 118
    117 IF (ISTAT(I).NE, 1) GO TO 11甘
            IF (I ©EU. I1) GO TO 118
            IF (L(I).EQ.(LC+1)) L(I)=LC
    11% contInue
    ISTAT(I1)=0
    r(II)=0
    L(11)=LC
    F1\timesCST=F1\timesCST-F(11)
    AVLCAP=AVLCAP-A(II)
    FVAXL=FMLXL-DELTAV(II)
    KO=1
    20 1130 K=1.NDC
    V(K)=V(K)-DCOEFF(II,K)
    IF (V(k).GT.V(KO)) KO=K
    1180 conttane
C UETER:IINING WHETHER ANY ENUMERATION CONSTRAINT CAN BE DROPPED
    ITL=NFXENM+1
    1183 ITU=T
        LF(ITL.GT.ITU) GO TO 120
        u* 119 Il=ITL.ITU
        IF(IC(IT).LE.LC) GO TO 119
        LF (E(IN,IT).EQ. 0) GO TO 119
        v0 1185 1=1.M
        IF ((ISTMT(I).EQ.1).AND.(E(I.IT).NE.1)) GO TO 119
    1185 cONTINUE
        60 to 1195
    11Y CONTINUE
```

```
        IF (ITL.EQ.NFXENM+1) GO TO 120
        GO TO 12u
    1195 T=T-1
        ITL=IT
        IF(IT.GT.T) GO TO 1183
        DO 1197 K=IT,T
        IC(k)=1C(k+1)
        0O 1196 I=1:M
        E(I,K)=E(I,K+1)
    SUBROUTINE SORT(II;JJ)
C SORTS ARKAY A INTO INCREASING ORDEH, FROM A(II) TO A(JJ)
C ORUERING IS BY INTEGER SUGTRACTION
    COMMON/BLKI/INSUFF.II,FIXUST,IFS,FUIFF,A,IH
    INTEGER*4 A(25),T,TT,IU(6),IL(6),IH*2(25),FDIFF(25),FIXCST
    M=1
    I=I I
    ひここ」
    IF(I .GE. J) GO TO 70
    10 K=1
        IJ=(J+I)/2
        T二A(IJ)
        IT=IH(IJ)
        IF(A(I).LE. T) GO TO 20
        A(IJ)=A(I)
        IH(IU)=I:H(I)
        A(1)=T
        IH(I)=IY
        T=A(IJ)
        IT=IH(IJ)
    20 Lニ」
    1F(A(J).GE. T) GO TO 40
    A(IJ)=A(J)
    1H(IJ)=1.7(J)
    A(J)=T
    LH(J)=IT
    T=A(iJ)
    IT=IH(IJ)
    IF(A(I) .LE. T) GO TO 40
    A(IJ)=A(1)
    LH(IJ)=IrI(I)
    A(1)=T
    IH(I)=IT
    T=A(IJ)
    IT=IH(IJ)
    GO TO 40
    30 A(L)=A(K)
        IH(L)=IH(K)
        A(K)=TT
        LH(K)=I\T
    40 L=L-1
    IF(A(L) .GT, T) GO TO 40
    TT=A(L)
    1TT=IH(L)
5 0
    k=k+1
```

```
        IF(A(K),LT. T) GO TO 50
        IF(K .LE.L) GO TO 30
        IF(L-I .LE.J-K) GO TO 60
        IL(M)=I
        IU(M)=L
        I=K
        M=M+1
        GO TO 80
    60 IL (M)=K
        IU(M)=J
        J=L
        M=M+1
        GO TO BO
    70 M=Mー1
        IF(M .EQ. O) RETURN
        I=IL}(M
        J=IU(M)
    80 IF(J-I GE. II) GO TO 10
        IF(I .EQ, II) GO TO 5
        I=I-1
    90 I=I+1
        LF(I .EQ. J) GO TO 70
        T=A(I+1)
        IT=IH(I+L)
        LF(A(I) ,LE.T) GO TO 90
        K=1
    100 A(K+1)=A(K)
        IH(K+1)=1H(K)
        K=K-1
        LF(T .LT. A(X)) GO TO 100
        A(K+1)=T
        IH(X+1)=IT
        G0 TO 90
        ENO
*
    SUHROJTI E PROSE (AOHF,NUM.VAL)
    COMVON/BLKI/INSUFF,II,FIXCST.IFS,FUIFF,ORDER,IH
    REAL*4 RMTIO(25)
    INTEGER*4 AORF(25),IH*2(25),LST(25),VAL,NUM,ORDER(25),FDIFF(25),
1
C
    LRR=0
    ISUN=0
    1FS=FIXCST
    IVSUFF=0
1 FORMAT (: NUM=',I8)
    WRITE (6.1) NUM
    UO 10 I=1,NUM
    LST(&)=1
    IHG=IH(I)
    RATIO(I)=FLOAT(AORF(IHG))/FDIFF(IHG)
1 0
    LONTINJE
        UO 30 I=1.NUM
        JO 2O J=1.NUM
        LSTA=LST(J)
```

```
        LSTA=LST(I)
        LF (RATIU(LSTA).LE.RATIO(LSTS)) GO TO 20
        IT=LST(I)
        LST(I)=LST(J)
        LST(J)=IT
20 CONTINUE
        IRK=IRR+1
        IHHH=IH(LSTB)
        ISUM=I SUMi AORF (IHHH)
        IF (ISUM.GE.VAL) GO TO 40
    CONTINUE
        INSUFF=1
        RETURN
40 IZ=IRR-1
        IF (IZ.GT.O) GO TO 50
        LSTC=LST(1)
        II=IH(LSTC)
        RETURN
50 DO 52 I=1.I2
        LSTF=LST(I)
        IHZ=IH(LSTF)
        LFS=IFS+FJIFF(IHZ)
        CONTINUE
        LSTD=LST(IRR)
        IHY=IH(LSTD)
        IFS=IFS+FJIFF(IHY)*(VAL-(ISUM-AORF(IHY)))/
        1
        AORF(IHY)
    RETURN
    ENU
*
*
*
C
C
c
    COMMON/BLK2/M.N.CNIN.IR•REFNOD.ISUM,ISMJ,C.X *
1 PI,S,Y,T
    LOGICAL JRKTHR
    INTEGER*4 M,N,REFNOD,OUTKLL,S*2(1376),T*2(1376),C(1376),CMIN,BJJ*
1 X(1376),PI(77),G*2(1376),H*2(1376),L(77),R(77),JJ,AAP
2 TERM,LAGORG,ORIGIN,P,SS,R,KP,KG,EPS,EPSL,ALGM,ALGN,
3 U*2(79),V*2(79),ALGA(25),ALG甘(50),Y*2(25),BJ,BKP
C
```

```
    LR=IR+1
```

 LR=IR+1
 JJ=N-ALGM
 OUTKIL=0
 1F (IR.GT.1) GO TO g1
 C COUNT ARES BEGINNING AND ENDING AT NODES AND INITIALIZE X AND PI
MN=M+C
UO 3 I=3,MM
U(1)=0
V(I)=0
3 CONTINUE

```
```

 004 J=1.N
 KS=5(J)
 KSS=S(J)
 U(KS+2)=U(KSS+2) + 1
 KT#T(J)
 v(KT+2)=v(KT+2) +1
 X(J)=0
 4 CONTINUE
 UO 5 I=1.M
 PI(I)=0
 5 CONTINUE
 C CUMMULATE COUNTS
U(1)=1
U(2)=1
V(1)=1
V(2)=1
MM=M+1
006 I=3.MM
U(I)=U(I)+U(I-1)
V(I)=V(I)+V(I-I)
6 CONTINUE
C
SET UP AKC LOCATOR LISTS
UO \& J=1,N
KAS=5(J)
MMUUこU(KAS+1)
G(MMUU)=J
KAT=T(J)
LLV=V(KAT+1)
H(LLV)=J
U(KAS+1)=U(KAS+1)+1
V(KAT+1)=V(KAT+1) + 1
8 CONTINUE
NN=N+2
B1 NO 9 J=1,N
K35=S(J)
KゝT=T(J)
C(J)=C(J)+PI (KBS)-PI (KBY)
9 LCCNYINUE
C LOUK FOR IN OUTMOF-KILTER ARC
10 IF (IR.EG.I.OR.IR,GT.ALGM.ANU.IR.LE,ALGM+3) JJ=1
UNLESS THIS IS THE FIRST HRODLEM THE FIRST N-ALGM-1 ARCS ARE IN K\
AA=0
GRKTHR=.IRUE.
ENS=999959999
15 BJJ=CVIN
LJJ=0
LF (JJ.LE.ALGN) LJJ=ALGB(JJ)
IF (JJ.G:.N-ALGM.AND.JJ.NL.N) BJJ=ALGA(JJJ-N+ALGM+1)*Y(JJ-N+ALGIM+1)
C
c
IF (X(JJ).GT. 3JJ .OR.C(UJ).GT.O.AND.X(JJ).GT.LJJ) GO TO 30
C
20
IF (LJJ.EQ.BJJ.AND.C(JJ).NE.U.AND.\forallRKTHR.NND.EPS.NE.0) GO TO 25
」コニ」コ+1
tPb=999999999
1F (JJ.LE.N) GO TO 15

```
```

 00 22 J=1,N
 KCS=S(J)
 KCT=T(J)
 C(J)=C(J)-PI (KCS)+PI(KCT)
 22 CONTINUE
 GO TO 200
 25 TERM=S(JJ)
 ORIGI:J=T(J)
 LAHORG=Jل
 GO TD 35
 30 TERM=T(Uu)
 ORIGIN=S(JJ)
 LABORG=-JJ
 35 R(1)=ORIGIN
 40 IF (.NOT.BRKTHR,AND,JJ,EQ.AA)GO TO 45
 C ZERO OUT LABELS
00 42 I= 1.M
L(I)=0
42 CONTINUE
SS=1
45 P=1
AA=JJ
BRKTHR=.FALSE.
L(ORIGIN) = LABORG
C TRY TO LABEL THE FORWARD ARCS
50 1=R(P)
II=U(I)
IN:OU(I+1)-1
DO 51 A=\1.IN
J=G(A)
K=T(J)
LF (L(K).NE.O) GO TO 5\&
BJ=CMIN
LJ=0
IF (J.LE.ALGN) LJ=ALGB(J)
c
C
IF (L(K).EQ.O.AND.(X(J).LT.LJ.OR.C(J).LE.O.AND.X(J).LT. BJ)'
1
GO TO 52
GO TO 51
52 L(K)=\
SS=SS+1
R(S5)=K
CONTINUE
TRY TO LMBEL THE BACKWARD ARCS
II=V(1)
IN=V(I+1)=1
DO 53 A=j1.IN
J=H(A)
K=S(J)
IF (L(K).TIE.O) GO TO 53
OJ=CMIN
LJ=0

```
```

 IF (J.LE.ALGN) LJ=ALGB(J)
 IF (J.GE.N-ALGM.AND.J.NE.N) BJ = ALGA(J -N+ALGM+1)*Y(J-N+ALGM+1)
 C
IF (L(K).EQ.O.AND.(X(J).GT. 甘J.OR.C(J).GE.O.AND.X(J).GT.LJ))
1
GO TO 53
54 L(K)=-J
SS=S5+1
R(SS)=R
53 CONTINUE
TEST FOR TERMINAL LABELED
IF (L(TEFM).NE.O) GO TO 5S
P=P+1
C IF SCAN LIST EXHAUSTED, NON-BREAKTHRU
IF (P.GT.SS) GO TO 90
GO TO 50
C FIND FLOW INCREMENT IN GYCLE
55 EPS=999999999
BRKTHR=.TRUE.
KT=TERM
J=1
60 KQ=L(KT)
KP=IABS(KQ)
IF (KO.GT.O) GO TO 65
KT=T(KP)
IF (G(KP).GE.O)GO TO 75
GO TO 70
65 KT=S(KP)
1F(C(KP).GT.O) GO TO 75
70 BKP=CVIN
IF (KP,GE,N-ALGM,AND.KP,NE,N) BKP=ALGA(KP.-N+ALGM+1)*Y(KP-N+ALGM+1)
13=IA3S(3KP-X(KP))
IF (EPS.OT.IB) EPS=IB
6O TO 80
75 LKP=0
1F (KP.LE.ALGN) LKP=ALGB(KP)
L3=IASS(LKP-X(KP))
LH (EPS.OT.IB) EPS=IB
80 K(J)=人敘
IF (KT.E*.TERM)GO TO B5
J=J+1
GO TO 60
= INCREVENT FLOW
85 UO 8* I=\.J
IF (R(I).LE.O) GO YO B7
NARこK(I)
x(NAR) =x(NAR)+EPS
GO TO 88
87NEK=R(I)
x(-NSR)=x(-NBR)-EPS
88 CONTINUE
GO TO 15
= FINJ JELTA FOR NOM-GREAKTHRU
90 EPSL=99GU99999
UO 92 J=1,N
BJ=CMIN
\llcornerコ=0

```
```

 1F (J.LE.ALGN) LJ=ALGB(J)
 IF (J.GE.N-ALGM.AND.J.NL.N) BJ=ALGA(J -N+ALGM+1)*Y(J -N+ALGM+1)
 C
 KOS=S(J)
 KDT=T(J)
 IF (L(KDS).NE.O.AND.L(KDT).EN.O.ANO.X(J).LT. BJ .OR.L(KDS).EQ.OO
 1 O.ANO.L(KDT).NE.O.AND.X(J).GT.LJ) GO TO 9&
 GO TO }9
 91 LAC=C(J)
 IB=IASS(LAC)
 IF (EPSL.GT.IB) EPSL=IB
 92 CONTINUE
 c
C TEST FOR CASE 2
EPS=EPSL
IF (EPS.IN.999999999) GO TO 95
LLOR=L(ORIGIN)
ICJJ=C(JJ)
IF (C(JJ).EQ.0) GO TO 100
IF (ILOR.GE.O.AND.ICNJ.GE.O) GO TO 100
IF (ILOR.LT.O.AND.ICJJ.LT.D) GO TO 100
EPS=IABS(C(JJ))
C CHANGE REJUCED COSTS
95 UO 955 J=1.N
KES=S(J)
KET=T(J)
IF (L(KES).EQ.O.AND.L(KET).NL.0) C(J)=C(J)+EPS
IF (L(KES),NE.O.AND.L(KET),EN.O)C(J)=C(J)-EPS
955 CONTINUE
C CHANGE NCJE PRICES
IF (L(REFNOD).EQ.O) GO TO 97
U0 96 I=1,M
IF (L(I).EQ.O) PI(I)=PI(I)+EPS
96 COVTINJE
GO TO 99
97 土0 98 I二ょ,M
IF (L(I).NE.O)PI(I)=PI(I)-ENS
90 CONTINUE
99 ロJJ=CMIN
LコJ=0
1F(JJ.LE.ALGN)LJJ=ALGB(JJ)
IF (JJ.GE.N-ALGM.AND.JJ.NK.N) BJJ=ALGA(JJ-N+ALGM+1)*Y(JJ-N+ALGM+1)
c
IF (EPS.EQ.EPSL.OR.X(JJ).EQ.LJJ,OR•X(JJ).EQ. BJJ) GO TO 15
100 OUTKIL=OUTKIL+1
GO TO 20
2vo 15UM=0
N:V=N=4LG:im1
UO 210 J=ALGN,NN
I SU**=I SU:1+C(J)*X(J)
210 CONTITIUE
1SMI=0
216 UO 214 I=1.ALGM
LF(Y(I).EO.1) ISMI=ISMI+HI(ALGN+I)*ALGA(I)
214 CONTIINUE
LSMJ=0
UO 219 J=1,AbGN

```
\(I S M J=I S M J+P I(J) * A L G B(J)\)
219 CONTIINUE
LF (ISネJ-ISMI.NE.ISUM) GO TO 230
220 RETURIN
230 WKITE (6.231)
231 FORMAT (" PROBLEM SOLUTIUN HAS INCORRECT DUALS:) STOP END
1. Apple, James M., Plant Layout and Materials Handling, Ronald Press Company, New York, 1963.
2. Apple, James M., Material Handling Systems Design, Ronald Press Company, New York, 1972.
3. Armour, Gordon C., and Elwood S. Buffa, "A Heuristic Algorithm and Simulation Approach to the Relative Location of Facilities," Management Science, Vol. 9, No. 2, 1963.
4. Bazaraa, Mokhtar S., "The Determination of the Optimal Level of Mechanization in the Selection of Materials Handing Equipment," unpublished masters thesis, Georgia Institute of Technology, Sept., 1967.
5. Buffa, Elwood S., "Sequence Analysis for Functional Layouts," Journal of Industrial Engineering, Vo1. 6, No, 2, 1955.
6. Buffa, Elwood S., Gordon C. Armour, and Thomas E. Vollman, "Allocating Facilities with CRAFT," Harvard Business Review, March-April, 1964.
7. Cameron, D. C., "Travel Charts," Modern Materials Handing, Vo1. 7, No. 1, 1952.
8. Dantzig, G. B., and P. Wolfe, "The Decomposition Algorithm for Linear Programs," Econometrica, Vol. 29, 1961.
9. Deisenroth, Michael P., "Quantitative Utilization of Activity Data for Initial Layouts," unpublished masters thesis, Georgia Institute of Technology, March, 1971,
10. Devis, Juan M., "An Extension of a Technique for Planning and Evaluating Materials Flows for Plant Layouts," unpublished report, Georgia Institute of Technology, May, 1967.
11. Efroymson, M. A., and T. L. Ray, "A Branch-Bound Algorithm for Plant Location," Operations Research, Vol. 14, No. 3, 1966.
12. Ellwein, L. B., and P. Gray, "Solving Fixed Charge Allocation Problems with Capacity and Configuration Constraints," AIIE Transactions, Vol. 3, No. 4, 1971.
13. Farr, Donald E., "Charts that Show Problems," Modern Materials Handling, Vol. 10, No. 1, 1955.
14. Feldman, E., F. A. Lehrer, and T. L. Ray, "Warehouse Locations Under Continuous Economics of Scale," Management Science, Vol. 2, No. 9, 1966.
15. Ford, L. R., Jr., and D. R. Fulkerson, Flows in Networks, Princeton University Press, 1962.
16. Gani, Arang Z., "Evaluation of Alternative Materials Handling Flow Patterns," unpublished report, Georgia Institute of Technology, April, 1965.
17. Gilmore, P. C., "Optimal and Suboptimal Algorithms for the Quadratic Assignment Problem," Journal of the Society of Industrial and Applied Mathematics, Vol. 10, No. 2, 1962.
18. Grant, E. L., and W. G. Ireson, Principles of Engineering Economy, The Ronald Press Company, New York, 1960.
19. Jones, Paul S., "A Least-Cost Equipment Selection Technique for Distribution Warehouses," unpublished report, Stanford Research Institute, June, 1971.
20. Klein, Kenneth M., "An Aid to Usage of PLANET," unpublished report, Georgia Institute of Technology, 1968.
21. Kuehn, A. A., and M. J. Hamburger, "A Heuristic Program for Locating Warehouses," Management Science, Voi. 9, No. 4, 1963.
22. Lawler, Eugene L., "The Quadratic Assignment Problem," Management Science, Vol. 19, No. 4, 1963.
23. Lee, Robert C., and James M. Moore, "CORELAP-COmputerized RElationship LAyout Planning," Journal of Industrial Engineering, Vol. 18, No. 3, 1967.
24. Marks, D. H., "Facility Location and Routing Models in Solid Waste Collection Systems," PhD Thesis, The Johns Hopkins University, Nov., 1969.
25. Muther, Richard, Practical Plant Layout, McGraw-Hill Book Company, New York, 1955,
26. Reed, Ruddell, Jr., "Simplified Approach to Selection of Materials Handling Equipment," Modern Materials Handling, April, 1961.
27. Revelle, C., D. Marks, and J. C. Liebman, "An Analysis of Private and Public Sector Location Models," Management Science, Vol. 16, No. 11, 1970.
28. Sa", Graciano, "Branch-and-Bound and Approximate Solutions to the Capacitated Plant-Location Problem," Operations Research, Vol. 17, No. 6, 1969.
29. Seehoff, J. M., W. O. Evans, J. W. Fredricks, and J. J. Quigley, "Automated Facilities Layout. Programs," Proceedings ACM National Meeting, 1966.
30. Smith, Wayland P., "Travel Charting-First Aid for Plant Layout," Journal of Industrial Engineering, Vol. 6, No. 1, 1955.
31. Spielberg, K., "Algorithm for the Simple Plant-Location Problem with Some Side Conditions," Operations Research, Vol. 17, No. 1, 1969.
32. Thuesen, H. G., W. J. Fabrycky, and G. J. Thuesen, Engineering Economy, Prentice Hall, Inc., New Jersey, 1971.
33. Problem Manual for Plant Layout, Ronald Press Company, New York,```


[^0]:    * All literature references are listed in the bibliography.

[^1]:    * Labor cost is included in the fixed cost based on the assumption that the operator of a piece of equipment is employed full time even though the equipment is not under full work load.
    ** Maintenance cost is often semi-variable. It is a combination of a fixed cost and a variable cost depending on the work load of the equipment,
    $\dagger$ Indirect labor is often semi-variable, e.g., high level staff is fixed and low level staff is always variable.

[^2]:    * This formula is discussed in detail in Thuesen, Fabrycky and Thuesen (31),

