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Summary 

The goal of designing for robustness is achieved by minimizing a configuration's 

sensitivity to the uncertainty factors, which themselves may take various forms (economic, mission 

related, disciplinary). The result is a solution which satisfies the customer requirements while at 

the same time is well-balanced in that it performs well under a wide variation of conditions. This 

report documents a method by which robust aircraft designs are obtained, utilizing a new 

probabilistic objective function and making use of techniques such as Response Surface Method 

and Monte Carlo simulation. Three detailed implementation examples of the robust design 

simulation (RDS) are presented addressing various forms of design uncertainty. Additionally, in 

accordance with Year one objectives, an initial investigation into the merits of Neural Networks 

and Fuzzy Logic was completed to determine their potential merits in the RDS environment. 

Prospects and directions for Year two research are outlined to complete the report. 
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Introduction 

1. I n t r o d u c t i o n 

In a traditional aircraft design problem, an engineer seeks to find the settings of a 

preselected group of design variables which minimize a specified objective function. The concept 

of robust aircraft design, however, entails a further decomposition of terms. The group of 

available design variables must be classified into two distinct categories: those that the designer 

may freely vary and those which may vary, but are outside of the control of the designer. The first 

group termed are control variables while the second group represents noise (or uncertainty) 

variables. 

The goal of designing for robustness is achieved by minimizing a configuration's 

sensitivity to the uncertainty factors, which themselves may take various forms (economic, mission 

related, disciplinary). This is accomplished not by optimizing a single quantity, but rather by 

simultaneously minimizing variation associated with the selected quantity as well finding its 

optimum value (or meeting its target). The result is a solution which satisfies the customer 

requirements while at the same time is well-balanced in that it performs well under a wide variation 

of conditions. 

Since any system analysis or optimization is only as good as the quality of the contributing 

analyses, the need for introducing higher fidelity, discipline-specific analyses in the methodology 

is apparent. This need provides the impetus for the use of Response Surface Equations (RSEs). 

RSEs allow one to enhance or improve the synthesis program's analyses capabilities and make 

possible the study of innovative aircraft concepts and technologies using more sophisticated 

method. A key requirement is that these RSEs must accurately represent the data generated by the 

sophisticated codes. Recognizing that this accuracy may not always be possible through RSEs, a 

portion of this study is dedicated to seeking improved techniques for the enhancement of ASDL's 

robust design simulation (RDS). In Year one, this emphasis has resulted in the investigation of 
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RSE transformations as well as new approximation techniques to ensure that, when obstacles do 

arise in executing the RDS, alternate avenues will be available to overcome them. 

After a short review of the Year one tasks for this study, sections II-IV will describe Year 

one research results and conclusions. The report closes with an overall summary and ideas for 

future directions. Publications which have resulted from this research and some related references 

are listed after the summary. 

1.1. Year One Tasks 
• Develop a procedure according to which a Robust Design Simulation can be achieved 

• Classify forms of uncertainty (design, environmental, etc.) 

• Identify the dependencies between noise variables and the OEC for a range of control 

variable settings 

• Develop disciplinary (aerodynamics, structures, etc.) RSEs for differing classes of 

vehicles using such codes as ELAPS, BDAP, AW AVE, etc. 

• Initiate information gathering/literature search on Neutral Networking, Genetic 

Algorithm, Fuzzy Logic 

1.2. Classroom Case Study 
It is a continual goal at ASDL to incorporate research results directly into the classroom 

environment through lectures and focused projects. The evolving RDS method described below 

and the associated examples of addressing various forms of uncertainty were presented to students 

in the core classes of the School of AE's design curriculum (AE 6351 and AE 6352) in the winter 

and spring terms of 1996. These students subsequently implemented the RDS for an HSCT, with 

specific emphasis on designing and forming disciplinary RSEs in a number of areas. A full length 

report documenting the students effort is in the final stages of preparation and will be made 
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available once completed under separate cover. Below are some details which summarize their 

objectives, analyses, and results. 

Every year, ASDL sponsors a graduate design team as part of the aerospace graduate 

curriculum. The purpose of the design team is to create a conceptual/preliminary aircraft design by 

applying the methods learned in class to the design and synthesis of an aerospace vehicle of current 

interest. The motivating idea is to teach students practical implementation of advanced design 

methodologies via a focused design project. This year's project was the Robust Design of a High 

Speed Civil Transport (HSCT). 

The thrust of the 1996 team's work was to extend the methods pioneered by the previous 

year's design team and apply RDS methods developed in ASDL research over the past year. This 

was accomplished by focusing on several primary objectives: 

• Design a feasible, economically viable HSCT 

Bring various disciplines together via Integrated Product Teams (IPT) to demonstrate the 

utility of RDS and IPPD in the aircraft design process; utilize RSM where appropriate to 

accomplish this 

• Develop "design skills" and foster a spirit of teamwork among team members 

In pursuing these objectives, the central accomplishment of this year's design team was the 

application of response surface methods (RSM) in several disciplines concurrently to create a truly 

conceptuaiypreliminary IPPD tool (based on FLOPS). These disciplinary RSEs included ones 

involving structures, aircraft noise, and static stability. Once the new FLOPS tool was created, 

two parallel approaches to robust design were carried out, one based on ASDL's RDS and the 

other based on an approach developed in Georgia Tech's School of Mechanical Engineering. The 

results of the two implementations provided some interesting similarities (and a few differences). 

The report currently being prepared details the methods, results, and lessons learned during 

the 1996 HSCT design project. The intent is to provide a roadmap of what has been accomplished 

to date in the area of robust design of HSCT configurations so that future teams can extend the 

methods used here. The information contained in it should be sufficient for a relative newcomer to 
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the field of robust design to understand the methods used and apply them to other areas of design 

such as rotorcraft, space vehicles, etc. 
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2 . O b j e c t i v e F u n c t i o n s in a R o b u s t D e s i g n S i m u l a t i o n 

2.1. Forming an Initial Overall Evaluation Criterion 
As mentioned in the introduction, the goal of designing for robustness is achieved by 

minimizing a configuration's sensitivity to a variety of design uncertainties. This is not 

accomplished by solely optimizing the mean of an objective function, but rather by minimizing 

variation, or variance, associated with the selected objective as well. Taguchi introduced the 

concept of a signal-to-noise-ratio (S/N) which, if maximized, yields a high signal or benefit with 

little noise or variation[6],[7],[8] This solution satisfies the customer requirements while at the 

same time is well-balanced in that it performs well under a wide variation of conditions and 

environments. In an effort to improve on Taguchi's signal-to-noise-ratio concept, ASDL 

introduced and examined a new metric, based more on statistical foundations. In this new 

approach, traditional design objectives such as weight, life cycle cost, or ticket price now become 

intermediate evaluation metrics used to construct a new objective, the Overall Evaluation Criterion 

(OEC), which will ultimately be minimized. 

This OEC is comprised of the mean and variance of the traditional design objective, and 

they are computed based on the presence of uncertainty variables in the design space. The three 

equations listed below are the mathematical formulations of the desired OEC for three different 

design objectives: minimizing the objective, maximizing it, and optimizing it for a specified target 

value. Equation (1), the product of variance and the square of the mean, is analogous to the 

traditional concept of single objective minimization. Equation (2) is in turn analogous to single 

objective maximization. Finally, Equation (3), a weighted average of the variance and the squared 

deviation from the target, represents the case where the objective is to minimize the deviation from 

a specified target value. A summation has been employed here rather than a product, since a value 

for the mean right on the target would yield an OEC of zero using the product regardless of the 
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associated variance. In this case, a is an arbitrarily chosen weighting parameter that can emphasize 

either distance from target value or variation. However, for all three equations, a minimal value for 

the OEC is desired. 

OEC = Variance * Mean 2 (rriinirnize mean for traditional objective) (1) 

OEC = Variance / Mean 2 (maximize mean for traditional objective) ( 2 ) 

OEC = a * (Mean - Target) 2 + (1-a) * Variance ( 3 ) 

Minimizing one of these of OECs is equivalent to maximizing the signal-to-noise ratio 

according to Taguchi's formulation. The two methods differ, however, in the way this OEC or 

signal-to-noise ratio is obtained. While Taguchi's approach utilizes an inner and outer array for 

design and noise variables respectively [6], [7] 5 the RDS OEC is based on a Design of Experiment 

(DOE) implementation which yields RSEs as a function of all key design and noise variables. In 

this case, the noise variables are assigned probability shape functions that produce, through a 

Monte Carlo simulation, a probability distribution for the objective, $/RPM. This approach to the 

estimation of the noise factor effects represents a major improvement in accuracy compared to 

Taguchi's approach. 

2.2. Extensions to the OEC Concept 
As experimentation with the use of the OECs in Eq. ( 1 - 3 ) proceeded, new ideas came to 

light. The following steps describe an extension developed to these OEC formulations. A DOE 

table, independent of any that were used in previous steps of RDS up to that point, is constructed 

for the control variables only. For each case in this DOE (i.e. for each setting of the control 

variables), a Monte Carlo simulation is being executed based on the assumptions made for the 
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noise variables, which are in general non-normal distributions. Note that this process 

encompasses numerous simulations, each of which requires 5,000-10,000 function calls! Without 

the facilitation of RSEs, this is an almost impossible task to accomplish. In addition, the Monte 

Carlo simulation has been chosen over an available analytical method for the distribution 

generation, since Monte Carlo does not need the simplifying assumption of normal distributions 

for the noise variables. Each of the simulations defined in the DOE generates a frequency chart for 

the objective, similar to the one in Figure 1. 

Forecast: C/RPM (Baseline) 
Frequency Chart 

1 Y 155 

Figure 1. Example Distribution for the Objective 

Figure 1 is a frequency chart. What is desired, however, is an analytical expression for the 

probability distribution represented by the frequency chart. In order to achieve this, each 

frequency distribution is approximated by one of the standard probability distributions. This 

distribution fitting process, employed by Crystal Ball® [Ref. 1], has been found to most often yield 

a gamma distribution, displayed in Equation 4, as the best approximation via the Chi-Square 

Ranking Method. By keeping track of the location (L), scale (a ) , and shape ((3) for each 

distribution of each run in the DOE table, a response surface equation in terms of the control 

(4) 

variables in the table can be fitted for each of the 3 parameters. 

f(x) = LsJ 1 
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However, attempting to do this has shown that the fit of a quadratic equation for the gamma 

distribution parameters is generally very poor (R-square between 40 and 80%). Hence, a new 

direction was again postulated. 

The latest proposed methodology employs the fit of an RSE for the probability of achieving 

objective function values below a desired target value P(Obj<target) that can generally be fit much 

better to the obtained data (R-square of 92 to 98%). In other words, the obtained equation links a 

customers objective of achieving values smaller than a target to design or control variables that 

allow the designer to optimize the objective in order to find the design solution that guaranties the 

probability of customer satisfaction. After having obtained this equation in terms of the central 

variables, an optimal solution can easily be found by maximizing P(Obj<target) while satisfying all 

imposed design and environmental constraints. This optimal solution corresponds to a shift of the 

objective distribution for the objective as displayed in Figure 2. The ability to perform a 

constrained optimization is one of the advantages of this method over, for example, the Taguchi 

method. [Ref. 2 ] 

Figure 2. Distribution Shift to Maximize Probability of Achieving a Target 
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3. UNCERTAINTY AND THE USE OF RSES IN ROBUST DESIGN 
SIMULATION 

3.1. ECONOMIC UNCERTAINTY WITH SYSTEM LEVEL RSES 

Economic uncertainty, not considered in traditional aircraft design environments, has been 

found over the past two years at ASDL to significantly affect the economic viability of a fleet of 

vehicles, often more significant than technology considerations. Although there are a wide variety 

of economic uncertainties, key quantities that have been used in recent RDS problems include fuel 

cost, economic range, and load factor. Uncertainty in fuel cost is fairly obvious, since surely its 

price will fluctuate over the life of an aircraft. The economic range represents the average mission 

distance the aircraft will fly over its life, a quantity needed for the estimation of direct operating 

cost. For example an HSCT will service cities that are at least 3 ,000nm apart and most likely on 

the average 3 ,200nm apart even though aircraft is sized for around 5,000nm. Load Factor is 

strictly an economical factor, describing the ratio of passengers boarded on a given trip to available 

seats. Its mode is assumed to be at 65%. Economic analysis is done using the Aircraft Life Cycle 

Cost Analysis (ALCCA) program, which takes, among other inputs, the component weights and 

fuel weight from a converged FLOPS sizing run. ALCCA also accounts for airline and 

manufacturer business practices (e.g. required return on investments). [Ref. 3 ] 

The following example from Reference 4 demonstrates the modeling of economic 

uncertainty. The task is to find a robust design for a HSCT, emphasizing wing planform and 

engine cycle control parameters. Additionally, takeoff and landing field length limitations (less 

than 11,000ft) are imposed. The design objective, cTRPM, and all constraints considered for this 

example are summarized in Table 1. 
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Table 1. Summary of Objective and Constraints for Economic Uncertainty Example 

0/RPM minimize 
Acquisition Cost minimize 

Gross Weight N/A 
Fuel 

Requirement Rf 
> 1 

Approach Speed < 154 kts 
Takeoff Field 

Length 
< 10,500 ft 

Landing Field 
Length 

< 11,000 ft 

All responses presented in Table 1 are modeled by FLOPS/ALCCA as functions of 

design/control and noise variables. In order to facilitate the Monte Carlo simulation without 

executing the actual synthesis code for each simulation run, each of the responses is approximated 

by an RSE in terms of the most important design/control and noise variables, according to the 

Pareto Principle. 

For this example, the six most important control factors, presented in Table 2, were 

selected together with the three most influential economic noise quantities. These noise variables 

presented in Table 2 as well and are responsible for the fact that the final objective well be a 

probability distribution for the 0/RPM. The economic noise variables influence economic 

responses only, hence introducing a distribution to 0/RPM and acquisition cost only. 
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Table 2. Summary of Control and Noise Variables 

Thrust to Weight Ratio Control TWR 0.28 - 0.32 
Wing Area Control WingArea 8 . 5 - 9 . 5 10 Jft" 
Longitudinal Kink 
Location 

Control x l 1.54 - 1.62 

Spanwise Kink 
Location 

Control y i 0.5 - 0.58 

Turbine Inlet 
Temperature 

Control TIT 3 - 3 . 2 5 10 J °F 

Fan Pressure Ratio Control FPR 3.5 - 4.5 
Fuel Cost Noise $-Fuel 0.55 - 1.1 $/gal 
Load Factor Noise LF 0.55 - 0.75 
Economic Range Noise Ec-Range 3 - 5 10* nm 

The ranges for all variables which describe the design space are shown in Table 2. Thrust 

to Weight Ratio is one of the main sizing variables describing the ratio of engine thrust over the 

gross weight of the vehicle. Wing area replaces wing loading as a sizing variable and contributes 

also as an aerodynamic variable. The kink location, normalized by the semi span, was found in a 

previous ASDL study to be the main aerodynamic effect contributing to the objective, 0/RPM, and 

the constraints. [Ref. 5] 

Turbine Inlet Temperature and Fan Pressure Ratio are the main propulsion related variables 

contributing to the objective function and the constraints. Fuel Cost is modeled over the life of the 

aircraft and includes the rather unlikely cases of oil crises, yielding the relatively large variation. 

However, the mode of its distribution is assumed to be at 0.65$/gal. The previously mentioned 

Load Factor has a mode of 65%. It is assumed also that the HSCT will service cities that are at 

least 3,000nm and most likely on the average 3,200nm apart. Nevertheless, the current 

configuration is capable of flying distances below 5,000nm, the upper limit for this variable. 

The equations for probability of achieving objective values (0/RPM, seen as Y in Figure 3) 

below the target values A, B, C, and D together with the 0/RPM, acquisition cost, gross weight, 

and the constraints are displayed in Figure 3 in the form of prediction profiles. Also shown is the 

robust design solution based on its so called desirability, a feature of JMP® [Ref. 6] , the statistical 

package used to generate the DOEs, equations, and all prediction profile graphs presented in this 
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report. JMP® assigns desirability values between zero and one (bottom row of Figure 3), one 

being the most desirable, to all design variable settings based on assigned desirability values for 

each response. For example, if a response is supposed to be maximized, like Prob(Y<A), high 

values of that response are assigned high desirability values, as displayed in the last column of 

Figure 3. If a response is supposed to be minimized, like the objective function 0/RPM, high 

desirability values are assigned to low values for that response. By perturbing the variable setting, 

each outcome of a response yields a desirability for that setting based on the assigned desirability. 

If more desirabilities are being assigned to different responses, all desirabilities are multiplied with 

each other. This allows a multiple objectives optimization that is translated into a single objective, 

called desirability. 
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Wing Area Desirability 

Figure 3. Prediction Profiles for Probabilities, Objectives, and Constraints 

Additionally, this desirability feature is able to handle constraints by assigning a desirability 

of zero to all constraint response values that violate their requirement and one to those that satisfy 

the value. Hence, all variable settings that violate a constraint will have a desirability of zero since 

the desirabilities of all responses are multiplied. If a response, such as gross weight, should not 

influence the desirability value of the solution, all values are being assigned a desirability of one. 

This feature enables the designer to obtain a solution to an optimization problem quickly and very 
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visibly on the screen without the need for a separate optimization execution. The obtained robust 

design solution as it compares with the baseline are summarized in Table 3. 

Table 3. RDS Solution for Economic Uncertainty Example 

T/W Ratio 0.313 0.300 
Wing Area 9340 ft 2 9000 ft' 
x l 1.54 x 

span 
1.58 x 
span 

y i 0.58 x 
span 

0.54 x 
span 

TIT 3 2 5 0 T 3125°F 
FPR 3.5 4 .0 

Based on the results presented in Table 3, a Monte Carlo simulation was employed one 

more time in order to compare the cumulative distribution for 0/RPM of this robust design solution 

to the original one of the baseline, as displayed in Figure 4. For all targets, the robust design 

solution yields a higher probability of achieving values below that target. Naturally the probability 

increases with increasing values for the target. However, it can be seen that for "small" and "very 

large" target values the difference in probability between the robust design solution and the baseline 

is very small. The difference increases, however, for values around the means of the distributions. 

Hence, one can also conclude from this example that the improvement of one solution over an 

other does depend on the target itself. Finally the entire exercise demonstrates a repeatable 

methodology for assessing economic uncertainty. 
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(Robust Solution) 

Ct e/RPM 
(Baseline} 

Figure 4. Distribution Comparison Between Baseline and Robust Design Solution 

3.2. Mission Uncertainty with System Level RSEs 

Since a transport aircraft flies a variety of different missions during its lifetime, the notion 

of sizing the aircraft for a "design mission" appears inadequate. It is proposed here that the 

eventual mix of city pairs that will make up the routes for an aircraft such as the HSCT is best 

represented by modeling the mission variability directly. Each city pair represents a distinct 

mission, with numerous possible active constraints, not the least of which is the requirement of 

subsonic flight over land. The length of the design mission is taken as a control variable. In other 

words, it can be chosen to achieve some optimum for a selected objective. The characteristics of 

the mission, however, are treated randomly, as illustrated in Figure 5. Due to the FAA stipulation 

of no supersonic flight over land, an HSCT must fly in regimes (subsonic and supersonic cruise) 

which cause conflicts in the planform optimization process. Thus, these optimizations generally 

result in geometry trades between subsonic and supersonic performance. Depending on the city 

pairs, the percentage of the mission flown at subsonic speeds will be different, thus affecting these 

trades. The most demanding mission is mission (a) in Figure 5 with a range of 6000 rim. 
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® 

Figure 5. Possible HSCT Mission Profiles 

To examine the effects of this mission uncertainty, intermediate RSEs similar to the 

economic uncertainty example above were formed which relate outputs such as the S/RPM to the 

control and noise variables. In this case, the control variables were mainly wing planform 

parameters while the noise variables consisted of a combination of mission and economic 

uncertainty terms. The RSEs themselves are best viewed via prediction profiles as seen in Figure 

6. These RSEs relate the 10 variables to the five responses ($/RPM, Gross Weight, Fuel Weight, 

Takeoff Field Length, and Approach Speed). These responses can be thought of as intermediate 

objectives and constraints, since the ultimate objective and constraints will be probabilities of 

achieving certain targets for these intermediate responses. In the figure, the values of "-1" and "1" 

are normalizations of the respective actual minimum and maximum values, used to provide proper 

scaling between the 10 design variables. Table 4 shows the design variable and their range. 
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Table 4: HSCT Problem Design Variables and Classifications 

Type Variable Group Symbol Minimum Maximum 

Control 

Wing Kink X-location Aerodvnamic XI 1.54 1.69 

Control 
Wing Kink Y-location Aerodynamic YI 0.44 0.58 

Control Wing Ref. Area Sizing Sref 8500 sa. ft. 9500 so. ft. Control 
Thrust/Weight Sizing TWR 0.28 0.32 

Control 

Mission Range Mission DESRNG 5000 nm 6000 nm 

Random 

% Subsonic- Legl Mission SUBL1 0% 15 % 

Random 
%Subsonic- Leg2 Mission SUBL2 0 % 15 % 

Random Climb Optimization Mission CLIMB 0 (min time) 1 (min fuel) Random 
Fuel Cost Economic COFL 0.55 Steal 1.1 Steal 

Random 

Economic Ranee Economic EcRNG 3000 nm 5000 nm 
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Figure 6. Prediction Profiles for Intermediate Objectives and Selected Constraints 

Due to the noise variables, resulting robust design objective solutions will be in the form of 

probability distributions. In this particular case, the constraints as well as the objectives are 

affected by the uncertainty. Thus, they too will result in probability distributions. This 

phenomenon is due to the fact that the mission uncertainty affects the performance of the aircraft 

(unlike economic uncertainty, which does not). Now, to find a robust solution, the settings of 
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control variables which maximize the probability of meeting a target value for $/RPM while 

simultaneously achieving a probability of one (or very close to one) of meeting the constraints need 

to be determined. The desirability search procedure is utilized again by assigning a desirability of 

one to high probabilities of meeting three different targets for $/RPM. This is seen in Figure 6, 

showing the prediction profiles. Each response depicted represents a regression equation which 

relates the control parameters to a probability distribution for a given target. This is constrained by 

meeting the approach speed constraint for any possible combination of uncertainties. Thus, a 

probability of one of achieving a 154 knot approach speed is desired. Economic results are again 

normalized by the baseline. 

As in the previous examples, targets are assigned for the $/RPM three targets are specified 

in Figure 7. Target A is the most aggressive since it represents the lowest $/RPM value of the 

three, followed in ascending order by B and C. Naturally, the probability of achieving the target 

increases from target A to C. Comparing against the intermediate (or traditional) desirability results 

of Figure 6, the robust search results show similar trends for three of the five control variables 

(XI, TWR, and DESRNG). The normalized y-kink location (Yl) takes on an intermediate value 

in the robust approach, and the wing area variable (SREF) should be set at its midpoint for the 

most robust feasible solution. The latter effect seems to be due to the conflicting goals of 

maximizing the probability of meeting the approach speed constraint and maximizing the 

achievement of low $/RPM targets. The other performance constraints tracked, the takeoff and 

landing field lengths, both resulted in probabilities of one for every point tested in the region of 

good designs. In other words, these constraints are not active. 
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The robust solution results as compared to the baseline HSCT are summarized in Table 4 

and Figure 8. The table lists the five control variable settings associated with the robust solution as 

well as their baseline values. In the figure, for each target, the robust solution has a significantly 

higher probability of achieving the target. In fact, for the lowest target (target A), the baseline had 

a probability of zero. This graphic summarizes in a concise way the result of a RDS 

implementation. 



Uncertainty and the use of RSEs in Robust Design Simulations 

Page 20 
Table 4. HSCT RDS Results- Mission Uncertainty Example 

C o n t r o l 
V a r i a b l e B a s e l i n e 

R o b u s t 
S o l u t i o i I 

XI 1.615 1.55 
Yl .51 .565 
TWR .3 .28 
Sref 8500 sq. ft. 9000 sq. ft. 
DESRNG 5000 nm 5000 nm 

1 NON 
NO 

i 
• j o > .260 

Figure 8. Cumulative Distribution Comparison- Mission Uncertainty Example 

3.3. Disciplinary (Propulsion) Uncertainty with Disciplinary RSEs 
Disciplinary uncertainty, though different in character from economic or mission 

uncertainty, is treated essentially the same in the RDS method. It can come from a variety of 

sources, including analysis tool imprecision and lack of design knowledge in the early design 

phases. For instance, it is very difficult to capture all elements which contribute to a response in a 

single analytical model without making the model excessively complex. This is especially true of 

complex systems such as aircraft. As a result, most analytical have a certain degree of uncertainty 

inherent to them. 

The second effect is the implicit uncertainty in design knowledge as a design progresses 

from the conceptual to preliminary to detailed design stages. Typically, major design parameters 

such as wing area, thrust-to-weight ratio, etc. change somewhat as the design matures. This 

natural drift of system level parameters can be thought of as an uncertainty from a disciplinarian 

viewpoint. For instance, the aerodynamicist whose job is to design a wing for optimum 

performance under some specified flight conditions is given wing area and loading targets from 
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conceptual analysis. However, as the design progresses through the preliminary stage, these 

targets may be somewhat modified due to results from disciplinary analysis in other areas such as 

structures or controls. The net result is uncertainty in design targets from an aerodynamics point of 

view. 

Disciplinary uncertainty is also present all the way down to part-level design. A prime 

example of this can be found in design of combustor liner cooling systems in gas turbine engines. 

The flame temperatures found in modern gas turbine combustors is far above that of the melting 

temperature of the combustor materials, and it is therefore necessary to cool these parts to prevent 

premature and/ or catastrophic failure. Typically, combustors are cooled using compressor 

discharge air which is usually at a relatively cool 1200 F. The job of the combustor cooling 

designer is to design the combustor cooling system which uses the minimum amount of cooling air 

possible while simultaneously keeping the combustor cool enough to prevent failure, overheating, 

spilling, etc. 

Combustor cooling efficiency is dependent on parameters such as compressor discharge 

temperature, flame temperature, and heat transfer convective coefficient on both the flame and 

coolant side of the combustor liner. Unfortunately, each of these parameters has a certain degree 

of associated uncertainty . For instance, compressor discharge temperature is dependent on flight 

condition, ambient conditions, compressor efficiency, seal wear, and many more parameters which 

are beyond the cooling designer's ability to control. Typically, the cooling system designer must 

proceed based on the predictions of an engine cycle analysis and try to design a cooling system 

based on a worst-case estimate of compressor discharge temperature. 

Likewise, flame temperature also has some degree of associated uncertainty. First, the 

turbine inlet temperature (TTT) may change somewhat as the design progresses due to changes in 

design requirements of the engine. Second, flame distribution within the combustor volume is not 

uniform and it is typical to have zones where the flame temperature is higher than elsewhere. 

Finally, heat transfer coefficients have some degree of uncertainty due to non-uniformities in flow 

patterns within the combustor. For instance, some areas within the combustor are subjected to 
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intense flame scrubbing which increases the local heat transfer coefficient and results in "hot spots" 

in the combustor. 

Taken together, these uncertainties in design parameters constitute a serious concern in the 

design of a combustor cooling system. Historically, the method used to overcome this uncertainty 

was to design to meet an assumed "worst case" condition. This sometimes resulted in overdesign 

of cooling systems which an attendant reduction in propulsive efficiency. However, for modern 

engines, every ounce of efficiency is of tantamount importance and the penalties associated with 

this "worst case" method are no longer acceptable. In the case of the combustor liner problem, 

environmental objectives dictated that cooling air mass flow rate be minimized while 

simultaneously guaranteeing acceptable metal temperatures. The combustor configuration did not 

have sufficient design margin to use the "worst case" method and an alternative was needed. 

A goal in the RDS setting is to find ways of quantifying this uncertainty such that the 

designer has the ability to design for uncertainty rather than resorting to a "worst case" method. 

The example of robust combustor liner design is a very detailed example of robust methods applied 

to the part level of a system [Ref. 7 ] . However, these methods apply equally well to all other 

levels of design detail. 

3 .3 . 1 . Robust Liner Design Methodology 

The objective of liner cooling design is to keep the liner peak metal temperature below some 

maximum metal temperature, set by strength and material considerations, using the smallest 

cooling mass flow rate possible (material thermal stress considerations are not considered at this 

point). In addition, since an LPP combustor must use minimal liner cooling flow, there is littie 

design margin available to compensate for uncertainty in the analysis process. Thus, the designer 

needs a way of minimizing the effect of uncertainty in such a manner as to be reasonably assured 

that liner temperature limitations will not be exceeded regardless of flight condition, ambient 

temperature, manufacturing imperfections, and so on. 
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3 . 3 . 2 . Liner Cooling Model 

A step-by-step description of robust cooling design methodology is given in Figure 9. The 

central element is an analysis tool that is capable of predicting the peak liner metal temperature as a 

function of cooling geometry, liner flame (gas) side boundary conditions, and liner backside 

(coolant-side) boundary conditions (depicted inside the dashed box in Figure 9). Backside 

boundary conditions are calculated through cycle analysis and cooling analysis. Cycle analysis is 

used to calculate coolant temperatures (T 3) while cooling analysis is used to calculate backside heat 

transfer coefficient. Typically, this cooling analysis is based on a regression of experimental data 

for the cooling configuration under consideration. 

Flame-side (or gas side) boundary conditions are more difficult to calculate because flame 

side flow patterns are usually not uniform. Those zones near a swirler cup are subject to intense 

flame scrubbing which creates hot-spots in the liner material. In addition, the calculation of 

radiative heat flux into the liner walls is a very difficult task and typically consists of a considerable 

amount of guesswork on the designer's part. Finally, it is usually necessary to use CFD analysis 

in order to get a reasonably accurate estimation of the boundary conditions along the wall. Lacking 

this, one must at least have some idea based on historical knowledge of what typical values for 

convective heat transfer coefficient and adiabatic wall temperature are for the configuration under 

consideration. 

The liner thermal model and boundary condition calculation routines collectively constitute 

a mathematical model for liner metal temperature as a function of cycle parameters and cooling 

system geometry. In an abstract sense, one can think of the liner cooling model as a "black box" 

which takes cooling geometry and cycle information and returns a liner metal temperature, as 

shown in Figure 9. Since several of the input parameters may be considered as noise factors, the 

model has some inherent uncertainty in the calculation of liner temperature. 
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LINER IMPINGEMENT MODEL 
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Screening 
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Simulation 
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of OEC LINER METAL TEMPERATURE RSE* 
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RSE*T MEAN=F(X/D,TBC,...) VAR.=F(X/D,TBC...) 

1. START WITH DESIGN VARIABLES OF INTEREST, CREATE SCREENING TEST USING DOE 
2. ANALYZE EACH CASE IN 3. FIX VARIABLES THAT ARE 4. ASSIGN DISTRIBUTIONS TO LINER IMPINGEMENT INSIGNIFICANT TO LINER NOISE PARAMETERS; USE MODEL TO FIND RESULTING TEMPERATURE. CREATE RSE RSM TO CREATE AN RSE OF METAL TEMPERATURE FOR LINER TEMPERATURE AS MEAN TEMP & VARIANCE A FUNCTION OF REMAINING AS A FUNCTION OF CONTROL DESIGN VARIABLES VARIABLES 

SOLUTION WITH MINIMA! VARIANCE AND MEAN TEMPERATURE 
5. DEFINE OEC=MEAN*VAR; OPTIMIZE FOR MINIMUM OEC USING CLASSICAL TECHNIQUES 

Figure 9. Robust Combustor Liner Cooling Design Methodology 

3 . 3 . 3 . Screening Test 

The impingement model consists of a set of nine input parameters and a single response, 

listed in Table 5 . Three of these are impingement geometry parameters (x/D, Z/D, D) and two are 

engine cycle parameters (T, l a m e , T c o o ,) . x/D is the non-dimensional impingement hole spacing, Z/D 

is impingement gap spacing, and D is impingement hole diameter. The parameter h g a s is the flame 

side convective coefficient, K is liner metal thermal conductivity, AP/P is impingement baffle 

pressure drop as a percentage of P 4 , and TBC Thickness indicates the thickness of the TBC coat on 

the flame side of the liner. T f l a m e is the adiabatic flame temperature, and T c o o ) is the coolant 

temperature impinging on the liner backside (taken to be equal to compressor discharge 

temperature). Note that the design variables consist of three noise (denoted "N") and six control 

parameters (denoted "C"). 
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Table 5 . Screening Test Parameters and Ranges 

Parameter Units Control/Noise 
x/D - C 
Z/D - C 

D in c 
Tflame F N 
Tcool F N 
hgas BTU/hr-ft2-F N 
K BTU/ft-hr C 

AP/P %P4 c 
TBC Thickness in c 

A minimum and maximum value was selected for each of the variables based on design 

experience, and a DoE used to set up a fractional factorial experiment consisting of 33 cases. For 

all cases, the value of each input parameter was set either to the max (+1) or min (-1) value with the 

exception of the last case, in which all inputs were set to the midpoint of each range. Due to the 

proprietary nature of these ranges, only the normalized (±1) values for each variable are presented 

here. Each case was run using the liner cooling model defined earlier to find the peak metal 

temperature in the liner. This data was then analyzed using JMP 9. The results can be expressed in 

the form of a Pareto plot as shown in Figure 10. 

Response (%) 

Figure 10. Pareto Plot of Liner Cooling Parameters 

Once the number of important variables was identified, a so-called disciplinary RSE was 

generated for the liner temperature. This equation serves as a model which both relates the key 
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design parameters to the selected response and facilitates the implementation of RDS. This 

implementation is described next. 

Once again Monte Carlo simulation is used to show the effect of uncertainty on the liner 

temperature. In order to do this, each of the noise parameters is given a fixed probability 

distribution based on design experience. After assigning fixed distributions to the noise 

parameters, it is possible to assess how the control parameters affect the mean and variance by 

simply changing the values for the control parameters and looking at the resultant mean and 

variance. Equations for liner temperature mean and variance are derived using RSM in the same 

fashion as for the liner temperature RSE before. Once again, DoE is used to design an 

experimental setup consisting of 27 cases in which each of the four control variables is varied 

between their minimum and maximum values. 

Statistical analysis of the Monte Carlo simulation results shows that the hole spacing (x/D) 

and the TBC thickness have a strong effect on the temperature variance while the effect of pressure 

drop and hole size are small. Similarly, TBC thickness and hole spacing have a strong effect on 

liner mean temperature. This trend is reflected in the Pareto plots of Figure 11. Note that the liner 

temperature variance is dominated by the first two terms, whereas the mean temperature must 

include at least the first 4 terms in order to get a reasonable approximation of the response. Also, 

note that the interaction of x/D with itself is a significant factor in the determination of liner mean 

temperature. 
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Figure 11. Pareto Plot of Combustor Liner Temperature (a) Mean and (b) Variance 

These results can also be given in the form of prediction profiles as shown in Figure 12. 

The prediction profile is a matrix of plots showing each variable plotted against each response to 

show how the responses are effected by each parameter over the ranges investigated. The 

prediction profiles also give the designer an estimate of response sensitivities. A steep profile 

indicates the response is highly sensitive to that input, while a flat line indicates the input has no 

effect on the response. These results were subsequently used to generate a robust design based the 

OEC in Equation (1), since this particular example was conducted before the transition to the 

probability minimization objective illustrated in the two previous examples. 

u 
§ 
> 

~\ ' 1 • r 

T O " 
x/D 

0 
D(in) 

0 
TBC (in) 

I 1 1 1 

T 0 
AP/P 

Figure 12. Prediction Profiles for Combustor Liner Mean Temperature and Variance 
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3.4. Disciplinary RSE- Structures 
The goal of this example is to generate an RSE for wing structural weight for an HSCT-

type aircraft. It is part of the overall classroom case study described in the Introduction of this 

report to completely perform this task a number of steps have to be taken, the first of which is the 

construction of a detailed structural model of the wing. Next, aerodynamic and thermal loads must 

be applied to this model. These loads, in turn, must either be calculated internally by the structural 

analysis code or imported by an external aerodynamics code. Finally, this model under load is 

analyzed subject to a set of constraints such as stress, flutter, and deflection. The thickness of the 

model elements must then be sized to meet these constraints, yielding an optimized structural wing 

This process must then be repeated in a systematic manner for different design variable 

values, as assigned by a DOE. Generating a weight response for each case according to the DOE 

matrix will then yield a quadratic equation of wing weight as a function of the chosen design 

weight. 

variables. Figure 13 visually illustrates the iterative process to develop a wing weight equation. 

Design Variables Automation 
RSE for 

~\pply aerodynamic 
and thermal loading to 
each model 

Figure 13. Wing Weight Generation Process 



Uncertainty and the use of RSEs in Robust Design Simulations Page 29 

Two structural analysis codes, both of which have been used in the ASDL, were studied as 

possible candidates as the structural tool for this study. The first of these is the Equivalent 

Laminated Plate Solution (ELAPS). The second is the Automated Structural Optimization System 

(ASTROS). ASTROS was chosen as the tool to be used in this study despite the complexity and 

steep learning curve associated with it. The primary reason for choosing ASTROS over ELAPS is 

its power as a structural analysis and design code, including its ability to perform flutter analysis 

and optimize wing weight. Additionally, its ability to model aerodynamic loads internally was 

attractive, especially since the alternative was to import loads from an external source if ELAPS 

were used. However, ELAPS remains a viable option for structural analysis within RDS if 

ASTROS proves to be inappropriate. 

3 . 4 . 1 . A S T R O S 

ASTROS was developed by the Flight Dynamics Directorate, Air Force Wright 

Aeronautical Laboratory, and has many favorable attributes for this study despite a steep learning 

curve. ASTROS combines finite-element based structural analysis, aerodynamic analysis and 

optimization algorithms, making it a complete structural design tool. The finite-element analysis 

subroutines are capable of stress, modal and thermal analysis. The aerodynamic analysis uses 

USSAERO for steady aerodynamics and Doublet-Lattice and constant pressure methods for 

unsteady aerodynamics. ASTROS can optimize a structure subject to many different constraints, 

typically minimizing structural weight by optimizing element thickness subject to a particular 

constraint. It can be used to model the entire aircraft including the fuselage, empennage and 

landing gear. ASTROS is much more than a conceptual design tool and is capable of doing 

analysis in all phases of the design process. 

In spite of its many advantages as a complete design tool, the use of ASTROS does have a 

cost. It is difficult to automate which is very important when implementing the RSM. In addition, 

it has a high computational cost for a complex model. Time to both learn and implement the code 

is the most significant factor when using ASTROS in the design process. 
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The construction of the FEM was also facilitated by a mesh generator, developed in "in 

house" at ASDL. This mesh generator has the capability to create an ASTROS input file for an 

HSCT of arbitrary planform given wing geometry parameters. Since RSM requires numerous 

runs of varying configurations, the mesh generator is an invaluable tool that allows quick 

generation of many different configurations in minimal time. 

3 . 4 . 2 . A s s u m p t i o n s 

Chief among the assumptions is that of using a simplified representation of the wing as 

shown in Figure 14. Specifically, the task of modeling detailed internal wing geometry in 

ASTROS is a long and laborious process and would have taken far to long to complete for this 

Year one effort. Therefore, the wing was modeled as a flat plate comprised of all-titanium 

quadrilateral elements (See Table 6. Titanium Material Allowables, CQUAD4 in ASTROS Bulk 

Data). In this representation, the wing is divided into seven regions as shown in Figure 14. The 

first three regions are structural regions, and the last four are flaps. 

Table 6. Titanium Material Allowables 

T i t a n i u m (T i6 -AI -4V) M a t e r i a l 
A l l o w a b l e s 

âliow fsension) 0.104*10° lb/ft" 

allow (compression) 0 . 1 0 4 * 1 0 ' l h / f l 3 -

âllow (shear) 0.608*10' lb/fr/ 
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wing) 
Figure 14. Representation ofWing and Wing Regions 

Wing strength was tailored to meet a specified sizing maneuver. Though a number of 

maneuvers (symmetric and asymmetric) and load conditions (2.5g, - l g ) should be considered in 

the structural sizing process, due to time limitations only one maneuver could be considered. 

Previous research conducted on HSCT Structural concepts by Lockheed [Ref. 8] found that one 

maneuver was primarily the most critical. This maneuver was a symmetric +2.5g pull-up at Mach 

0.9 and 35,000 ft. 

Fuel in the wing was modeled as concentrated mass at each of the nodes internal to the 

leading and trailing edge. From a baseline FLOPS file a wing fuel weight of 400,000 lbs. was 

assumed for the entire wing (200,000 lbs. for half-wing). Of this weight, 33% was placed in the 

strake region, 45% in the inboard wing box, and 22% in the outboard wing box. 

The engines were modeled as lumped masses with an approximated weight of 21,000 lb. 

per engine. The engine nodes were "attached" to the rest of the structure using multi-point 

constraints. These constraints dictate the motion of the engine node by constraining the deflection 

of the node to be dependent on the deflections of the nodes surrounding it. It was initially hoped 

that engine location could be a design variable in the weight RSE. However, time hmitations once 

again forced the location of the engines to be fixed at their baseline values (19.407 ft from A/C 

center for inboard engine, and 32.3 ft from A/C center for outboard engine). Future studies may 
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wish to examine the impact of engine location on wing weight, since its contribution could be 

significant to the aeroelastic performance of the wing. 

3 . 4 . 3 . RSE Results 

In any RSM exercise, one of the first procedures is to define the design variables and 

ranges (design space) to be used in creadon of the RSE. The ranges correspond to the minimum 

and the maximum values of the design variable. The 9 original design variables and their values 

are shown in Figure 15. TOGW was added since the weight of the aircraft directly determines the 

loads on the wing, and thus has a tremendous impact on the required thickness of the structural 

members. 

Variable Description Mia Value Max. Value 
LE Kink 1 .54 1.69 
LE Tip Location 2.10 2.36 
TE Tip Location 2.40 2.58 

x 4 
TE Kink Location 2.19 2.36 

x 5 
TE Root Location 2.19 2.50 
Y Kink 0.44 0.58 

s . 

wing 
Wing Area (ft2) 7800 8800 

TOGW Takeoff Gross 750,000 1,000,000 
Weight (lb) 

750,000 1,000,000 

T Equivalent Inboard 0.16 0.29 T 
Thickness (ft) 

Figure 15. Design Variable Definition and Ranges 

With the design variables and their ranges defined, the next step was to find stress critical 

elements in the FEM. This was accomplished by examining a number of different wing 

configurations at different TOGW, and observing which panel elements in the wing consistently 

had the highest Von-Mises stresses. Figure 16 shows 6 panels that had high stresses for all 

configurations. However, for every configuration examined, one of the root panels (46,47, or 48) 

always contained the highest stresses, and thus were identified as stress critical panels that would 

be monitored in the following screening test and stress RSE determination. The kink panels 
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(78,79,80), though never observed to be stress critical in the cases that were examined, always had 

high enough stress to warrant their inclusion as responses in the screening test and stress RSE. 

60 80 100 
X-LOCATION ((EAT) 

Figure 16. The Stress Critical Elements 

The design space of the stress response is defined nine variables. The first step taken was 

to use a screening test to determine which variables contributed the least to the response. Ideally, 

the number of variables should be reduced to eight or less to reduce the number of cases for the 

RSE generation. The screening test response is Von-Mises stresses at each stress critical panel, 

and the DoE setup employed is a 2-level Resolution-IV Fractional Factorial DoE for 9 factors (64 

cases). The effect of each design variable on the Von-Mises stress response for the three root 

panels is visually illustrated in the form of Pareto plots in Figure 17. It is clear from these plots 

that the variables S w i n g and X 3 contribute the least to the stress response, and thus were fixed to 

their baseline values for the RSE phase to 8100 ft2 and 2.49, respectively. 
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TERM 
INBOARD THICKNE TOGW X5 X1 YKINK X4 
X2 SWING X3 
TERM 
INBOARD THICKNE 
TOGW X5 X1 YKINK X2 X4 SWING X3 TER M INBOARD THICKNE TOGW 
X5 
X2 
X1 YKINK X4 SWING X3 

SCALED ESTIMATE -0.5519596 0.44921 455 -0,1199174 0.1 1212257 0.0B0806G7 -0,053489 0.02692631 -0.0161114 -0.0158784 SCALED ESTIMATE -0.6333962 0.49472487 -0.1901304 0.11356703 0.08533463 0.06503893 -0.0392957 -0.0197691 -0.0162873 SCALED ESTIMATE -0.6803079 0.49146039 -0.3668102 0.09402252 0.09179813 0.0818287S 0 05330812 -0.0242207 -0.0109309 

r 

1 
r 

E l e m e n t 4 6 

E l e m e n t 4 7 

E l e m e n t 4 8 

Figure 17. Pareto Plots from the Screening Test for the Von-Mises Stress 

With the design space now reduced from 9 factors to 7 factors, 100 cases were set up 

according to a 5-level Central Composite DOE with 22 center points. The Von-Mises stresses 

were recorded for each case, and an analysis of variance was performed on the resulting responses 

to produce an RSE for Von-Mises stress at each of the stress critical panels. Figure 18 shows 

prediction profiles of the stress RSE for each of the root panels. Note that inboard wing thickness 

has the largest effect on node stress, as expected. 
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Figure 18. Stress RSE Prediction Profiles 
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The coefficients (bp b^, by) of the resulting stress RSE's were then imported to an EXCEL 

spreadsheet which, setting the Von-Mises response to zero in the RSE and using the quadratic 

formula, would calculate inboard wing box plate thickness (T i b ) as a function of the design 

variables. Table 7 shows a sample of this Excel worksheet where t represents the inboard wing 

box plate thickness, A l is area of the strake, A2 is the area of the inboard wing box, and A 3 is the 

area of the outboard wing box. 

Table 7. Sample of Excel Worksheet 
X I 

1 . 5 9 3 
1 . 5 9 3 
1 . 5 9 3 
1 .593 
1 .593 
1 . 5 9 3 
1 . 5 9 3 
1 . 5 9 3 
1 . 5 9 3 
1 . 5 9 3 
1 . 5 9 3 
1 . 5 9 3 

02 
2 . 1 9 1 
2 . 1 9 1 
2 . 1 9 1 
2 . 1 9 1 
2 . 1 91 
2 . 1 91 
2 . 1 9 1 
2 . 1 9 1 
2 . 1 9 1 
2 . 1 9 1 
2 . 1 9 1 
2 . 1 9 1 

X 3 
2 . 4 6 3 
2 . 4 6 3 
2 . 4 6 3 
2 . 4 6 3 
2 . 4 6 3 
2 . 4 6 3 
2 . 4 6 3 
2 . 4 6 3 
2 . 4 6 3 
2 . 4 6 3 
2 . 4 6 3 
2 . 4 6 3 

XJJ 
2 . 2 5 0 
2 . 2 5 0 
2 . 2 5 0 
2 . 2 5 0 
2 . 2 5 0 
2 . 2 5 0 
2 . 2 5 0 
2 . 2 5 0 
2 . 3 0 0 
2 . 3 0 0 
2 . 3 0 0 
2 . 3 0 0 

X 5 
2 . 2 9 9 
2 . 2 9 9 
2 . 2 9 9 
2 . 2 9 9 
2 . 3 9 1 
2 . 3 9 1 
2 . 3 9 1 
2 . 3 9 1 
2 . 2 9 9 
2 . 2 9 9 
2 . 2 9 9 
2 . 2 9 9 

0 . 4 3 9 
0 . 4 8 9 
0 . 5 3 1 
0 . 5 3 1 
0 . 4 8 9 
0 . 4 6 9 
0 . 5 3 1 
0 . 5 3 1 
0 . 4 8 9 
0 . 4 8 9 
0 . 5 3 1 
0 . 5 3 1 

S w i n g 
S I 5 1 . 4 
8 4 4 8 . 7 
8 1 5 1 . 4 
8 4 4 3 . 7 
8 1 5 1 . 4 
8 4 4 8 . 7 
8 1 5 1 . 4 
B 4 4 S . 7 
8 1 5 1 . 4 
B 4 4 B . 7 
8 1 5 1 . 4 
8 4 4 8 . 7 

8 3 7 8 3 7 
9 1 2 1 6 3 
9 1 2 1 6 3 
8 3 7 8 3 7 
9 1 2 1 6 3 
8 3 7 8 3 7 
8 3 7 8 3 7 
91 21 63 
9 1 2 1 6 3 
8 3 7 8 3 7 
8 3 7 8 3 7 
9 1 2 1 6 3 

S e m l s p a n 
6 5 . 1 5 
6 6 . 3 3 
6 3 . 7 6 
6 4 . 9 2 
6 4 . 4 0 
6 6 . 5 6 
6 3 . 0 0 
6 4 . 1 4 
6 4 . 3 1 
6 5 . 4 7 
6 2 . 9 8 
6 4 . 1 1 

A1 <f t*2) 
1 6 5 3 . 5 4 
1 7 1 3 . 8 5 
1 7 1 8 . 6 9 
1 7 B 1 . 3 7 
1 6 1 5 . 6 0 
1 6 7 4 . 5 2 
1 6 7 7 . 7 3 
1 7 3 8 . 9 2 
1 6 1 1 . 0 9 
1 6 6 9 . 6 5 
1 6 7 6 . 3 8 
1 7 3 7 . 5 2 

A2 (ft* 2) 
1 3 5 1 . 5 3 
1 4 0 2 . 0 0 
1 4 0 3 . 3 4 
1 4 5 5 . 7 7 
1 4 1 3 . 3 2 
1 4 6 6 . 0 2 
1 4 6 6 . 2 2 
1 5 2 0 . 9 3 
1 3 6 7 , 2 1 
1 4 1 8 . 2 3 
1 4 2 1 . 2 2 
1 4 7 4 . 2 9 

A3 (5*2) 
9 4 0 . 3 0 
9 7 5 . 8 2 
8 2 6 . 1 2 
6 5 7 . 3 5 
9 1 7 . 9 6 
9 5 2 . 6 5 
8 0 5 . 7 2 
8 3 6 . 2 0 
9 6 8 . 7 6 

1 0 0 5 . 3 0 
£52.13 
8 8 4 . 2 9 

t (In) 
0 . 1 5 2 
0 .1 66 
0 . 1 6 9 
0 . 1 5 4 
0 . 1 5 5 
0 . 1 4 2 
0 . 1 4 5 
0 . 1 5 8 
0 . 1 6 7 
0 . 1 5 3 
0 . 1 5 5 
0 . 1 7 0 

Since thickness of the inboard wing box can now be found for any combination of the 

design variables (within their respective ranges), total wing weight can be calculated. Material 

density is required to calculate the weight of the wing. However, since the flat plate model 

neglects the space that would exist between the skin panels of a real wing, if the actual density of 

titanium were used, the wing weight would be unrealisticaJly heavy. To account for this limitation 

in the flat plate model, a reduced density based on structural densities from the Lockheed [Ref. 8] 

study is used to 'capture' the space between the skin panels for each structural section. The 

reduced densities used for each section are: 
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PS t r a ke = 47. l ib / f t 3 

P l b w i n g = 51.9 lb/ft3 

Poowi„g = 63.9 lb/ft3 

and as a comparison: 

P.itanium = 276 lb/ft3 

With the capabdity to determine wing weight using the Excel spreadsheet for any point in 

the design space, a third DoE is set up, this time with wing weight as the response and 8 design 

variables (X, - Y, , S w i n g , and TOGW) as the elements of the matrix. A 5-level 177 case 

Orthogonal Central Composite DoE with 33 center points was used, and an analysis of variance of 

the response according to the DoE produced the prediction profiles for each of the wing section 

weights shown in Figure 19. 

M 3 4 1 . 4 7 J 

Figure 19. Wing Weight RSE Prediction Profiles 

The fit of the RSE to the experimental data is captured by the R 2 value and the residual plot. 

For the wing weight RSE these are given in Figure 20 and indicate an acceptable fit. 
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Rsquare 0 .99887 

M e a n 90386 .24 lb 

Figure 20. Fit of the Wing Weight RSE 

As a tool for understanding the influences on wing weight, a Pareto plot was also generated 

for total wing weight (Figure 21) using all terms in the RSE, including the interacting effects. As 

clearly seen in Figure 21, over half the terms in the RSE have little to no effect on the total wing 

weight response. The most significant contributors (with the exception of X 3 ) are the first-order 

terms. This also is evident from the weight RSE prediction profile (Figure 19) in which the 

response is nearly linear with respect to the design variables. 
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T e r m S c a l e d E s t i m a t e 
TOGW 2 3 8 4 . 4 2 6 4 
XS - 1 6 3 8 . 1 3 1 4 
Swing 937 .4173 
Ykink 610 .3777 
X2 498.181 1 
XI 3S5.17B7 
X4 2 7 0 . 2 6 5 3 
TOOW-X5 -110 .5411 
X S ' X S 107 .6660 
TCXSW-TOQW -62.0744 
T O G W ' X i 41 .0025 
T O G W S w I n g 40 .1335 
X 5 - X Z -38 .9027 
TOGWYklnk 32.9011 
S w I n g ' X S -26 .1676 
X£*X1 -27 .1562 
Yklnk-Yklnk -23 .6674 
X3 -21 .8707 
X 4 - X 2 15.2624 
Yklnk*X2 •11.6929 
Smlng 'Yk lnk 6.4445 
Swing*X2 8.3627 
X 4 ' X 1 -7.6357 
X 4 - X 4 -6.6718 
Swlnj ) -X1 6.1110 
T O G W X 4 5.5869 
X 2 - X 1 5.5447 
X 2 * X 2 -5.5279 
S w I n g ' S w I n g -5.4629 
X1 *X1 -5.4405 
X 3 - X 3 -5.3494 
S * l p g - X 4 4.5056 
Yklnk-X5 4.0608 
X 5 " X 4 -3 .6483 
Yklnk-X4 -3 .1155 
Ykink-Xl 1.1610 
T O G W X 3 •0.6748 
Yklnk"X3 0.6271 
X 3 * X 2 •0.5684 
S w i n g ' X S 0 ,5093 
X 6 - X 3 0.3536 
X3*X1 0.1301 
T O G W X 2 0.0416 
X 4 ' X 3 •0.0072 

Figure 2 1 . Wing Weight Pareto Plot 
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4. NEURAL NETWORKS AND FUZZY LOGIC: 
POTENTIAL IMPROVEMENTS OVER RSM 

Since the RSM uses a least squares approach to generally fit a quadratic function, there are 

some limits on the use of Response Surface Equations (RSEs): 

• The Response Surface Equation typically cannot handle more than 9 to 11 variables, 

which can mean enormous limitations especially in the case of such a complex system as 

an aircraft. 

• The functional form ofthe RSE must be pre-specified; transformations are possible but 

not guaranteed to improve the prediction accuracy 

• Even with very small ranges of the variables, the fit in some cases is still not 

satisfactory. 

• RSM treats only continuous variables 

All this calls for ways to approximate unknown functions in a different way. The object of this 

portion ofthe Year one effort was to identify, gather literature, and begin preliminary assessments 

of alternative methods of function approximation which are still applicable to the evolving design 

process. Two such methods identified and described next. 

4 . 1 . Neural Networks 

A Neural Network is generally made up of many very simple processing units called 

neurons. Figure 22 illustrates such a processing element in the case where it has only one input. 
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Neuron without a bias Neuron with a bias w n. 
r-

a i r w n. 1 
[From: MATLAB, A W toolbox[Ref. 9}] 

Figure 22: Single Input Neurons with and without a bias 

Associated with each neuron is the transfer function with which it operates, n denotes the 

input to the transfer function F, and a is the output of the transfer function , which is also the 

output of the neuron itself. A neuron can work with or with out a bias. If there is no bias, the 

input p multiplied with the weight w forms the input for the transfer function f. Thus, the equation 

that relates the output to the input can be expressed as follows: 
a = F(w*p) 

If there is a bias, it is added to the weighted input term, before the term is entered in the 

transfer function. The equation to describe the operation the neuron fulfills would therefore be: 

a = F(w*p + b) 

The weight w and the bias b are adjustable parameters. The bias can be viewed as an 

additional weight, who's corresponding input is always 1. The advantages of using a bias is for 

one, that it is another parameter that can be adjusted to help train the network to give the desired 

values. Also, a bias is often necessary to be able to reach all the desired output values, since it 

creates the effect of an off-set. 
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4 . 1 . 1 . Neuron with several inputs 

A neuron with multiple inputs and a bias is shown in Figure 23. Here, there are R inputs 

and thus R weights involved. The input n for the transfer function is formed by multiplying each 

input, p(k), with its corresponding weight, w( l ,k ) , where k = 1,2,...,R, and then adding the bias. 

The first index of the weight indicates the number of this neuron, for the case that there may be 

more than one neuron in this layer. (See next section) 

[From: MATLAB, NN toolbox[Ref. 9]] 

Figure 23: Neuron with multiple inputs 

In this case the vector of inputs and the vector of weights are: 

P(D 
p(2) 
P(3) 

w = [ w ( l , l ) w(l,2) ... w( l ,R) ] p = 

P(R) 



1 I 
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Then the input n for the transfer function is made up of the dot product of the weights and 

input vectors and of the bias: 

a = F(w*p + b) 

4 . 1 . 2 . A Layer of Neurons 

In Figure 23 a layer of Neural Networks is depicted. Here, there are R inputs and S 

outputs. The number of outputs is equal to the number of neurons in the output layer (the last 

layer). 

W ( U ) I 
n ( l ) w F a ( l ) w I F ,ib(1) 
0(2) F a(2) 

b(2) 

W(S,R) y n ( S ) w p a ( S ) ^ 

b(S) 

[From: MATLAB, NN toolbox[Ref. 9]] 

Figure 24: Layer of Neurons 

The transformation the network performs can then be described in matrix form as: 

a = F(W*p + b) 
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It is clear, that now the output a and the bias b are vectors with S elements and the weights 

form a matrix with S rows and R columns. Equations for the separate outputs could be extracted 

from the matrix equation. 

4 . 1 . 3 . M u l t i - l a y e r Neural Networks and Ne twork Archi tectures 

A Neural Network with three layers is shown in Figure 25. In a feed forward network, the 

outputs of the previous network layer are simply the inputs for the next layer untd the last one is 

reached. 

al = FI (Wl*p+bl) a2 = F2 (W2*al+b2) a3 = F3 (W3*a2+b3) 
Hidden Layer #1 Hidden Layer #2 Output Layer 

[From: MATLAB, NN toolbox[Ref. 9 ] ] 

Figure 25 : Neural Network with three Layers 

There now is a weights matrix for every layer. The last layer is called the output layer, and 

the previous ones are the hidden layers. Occasionally, the inputs are referred to as the input layer, 

which can lead to confusion, since a three layer network to someone who counts the inputs as a 

layer is something different that what is to someone who does not count the inputs. Here, the 
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inputs will not be counted as another layer. The number of neurons in the output layer is 

determined by the number of outputs. The number of neurons in the hidden layers however is free 

and can be chosen. 

4 . 1 . 4 . T r a n s f e r f u n c t i o n s 

In principle, any function can serve as a transfer function. Some widely applied transfer 

functions are hardlimit, linear and sigmoid functions. Figure 26 and Figure 27 illustrate the graphs 

of these functions. 

a a 

| - 1 1 - 1 

Figure 27: Log-Sigmoid and Tangent Sigmoid Transfer Function 

4 . 1 . 5 . T y p e s o f N e u r a l N e t w o r k s 

There are many different types of neural networks for a lot of different applications. These 

include perception networks, different types of recurrent networks, networks with instar and 

outstar neurons and self-organizing maps. For the application in the IPPD design methodology as 

a method of function approximation, only the feed forward neural networks are of interest. 

Therefore, this report will focus on the function approximation with feed forward networks. 
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4 .1 .6 . Funct ion A p p r o x i m a t i o n w i t h Feed F o r w a r d Networks 

The architecture of a feed forward neural network is usually a multilayer network as already 

shown in Figure 25. For each layer, there is a weights matrix and a vector of biases. These, 

together with the information of which transfer function is used in each layer, determines the neural 

network. 

When evaluating the network answer for a certain input vector, there will be an answer a 

for each layer. The answer vector of the first layer will be serve as the input vector for the second 

layer, the answer of the second layer will be the input for the third, if there is one, and so on until 

the last layer is reached. Its answer will then be the total network answer. In this study, only 

networks where all the neurons in one layer have the same transfer function are considered. Also, 

it is assumed, that all neurons of each layer are connected with each neuron in the adjoining layers. 

Other constructions are possible, but they are not within the scope of this study. 

4.1.6.1. Transfer Functions 

A two layer neural network, with a hidden layer of neurons and an output layer, which has 

a tangent sigmoid transfer function in the hidden layer and a pure linear one in the output layer is 

known to be able to approximate any function arbitrarily well if there are enough neurons in the 

hidden layer. Such a network is depicted in Figure 28. 
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1 -l r i -i 

[From: MATLAB, AW toolbox[Ref. 9]] 

Figure 28: Feed Forward Neural Network for Function Approximation 

The sigmoid function is needed to introduce an effect of non-linearity. Otherwise, the 

network can only be able to simulate linear functions. It needs to be s tangent sigmoid function, 

since the logarithmic sigmoid only maps to positive values. The linear transfer function in the 

output layer is used to achieve outputs beyond the interval from -1 to 1. The tangent sigmoid layer 

maps the inputs to the interval between - 1 and 1 and the pure linear function in the output layer can 

spread it over the entire range of the real numbers. 

The following figures show the equations, by which this network is represented. 
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n 1 ( 2 ) 

_ n 1 ( S 1 

N2(~ ) 
n 2 ( 2 ) 

n2(S_ ) 

W 1 ( 1 , 1 ) W 1 ( 1 , 2 ) -

W 1 ( 2 , 1 ) W 1 ( 2 , 2 ) -

W 1 { 1 , R ) b 1 ( 1 ) 

W 1 ( 2 , R ) b 1 ( 2 ) 

W 1 ( S 1 , 1 J / V 1 ( S 1 , 2 ) - - W 1 ( S 1 , R ) b 1 { R ) Pffl, 

a1(1 
a 1 ( 2 ) | 

U K S J 

t a n h ( n 1 ( 1 
t a n h ( n 1 ( 2 ) 

t a n h ( n ( S 1 ) 

Figure 29: Matrix Equation for the First Layer (Tangent Sigmoid) 

W 2 ( 1 , 1 W 2 ( 1 , 2 ) r - W 2 ( 1 , S t ) 2 ( l | ) 

W 2 ( 2 , i y V 2 ( 2 , 2 - ) - W 2 ( 2 , S b ) 2 ( 2 ) 

W 2 ( S 2 , ^ 2 ( S 2 , 2 T W 2 ( S 2 , 3 J t S ) ( S LI' L 1 

" A1(T) 
A1(2) 

a 1 ( S 

A 2 ( 1 
a 2 ( 2 ^ 

; LA2(^J) LN2(Sj 

N2(1 
N2(2 

Figure 30: Matrix Equation for the Second Layer (Pure Linear) 

4.1.6.2. Training the network 

The network is first initialized with random weights and then trained to represent the 

assigned problem. This is done by applying the a training values, of which input and outputs are 

known, to the network. Then with respect to the error, the inputs and the transfer functions used 

the network weights are change such that the error decreases. This is done repeatedly until the 

network error meets or is less than a previously selected error goal. 

A set of training values consists of an input vector p and the target vector t that goes with it. 

First, the input p is applied to the network and the network answer a is calculated for this input. 

The total network error is defined as: 
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Then the weights change matrix for each layer is calculated according to the learning rule 

and using backpropagation. 

4.1.6.3. Learning and Backpropagation 

A simple and widely used learning rule is one using a plain gradient approach. It should 

serve as an example here to explain the learning and training process as well as the 

backpropagation. 

For backpropagation, so-called deltas are calculated for every layer. For the output layer, 

which in our case is the second layer, the calculation looks like this: 

To calculate the delta for the first layer, the total network error is replaced by the delta of 

the second layer: 

The elements of the weights change matrices are: 

d\% = at,*a,*/r 
di% = c/2*1*/1 

dV\( = a\ * p* 11 
dt\ = Q̂ *1*/ t 

where lr is the learning rate. It has to be chosen with care; if it is too large, the network may 'jump 

over ' minima during the learning process, and the error will increase; if the learning rate is chosen 

very small, however, the network will converge very slowly. The ability to select a learning rate is 

governed by experience and does not have standard guidelines. 
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The new weights are obtained by simply adding the weights change matrices to the weights 

matrices: 

\% = \% + dM£ 

tx, = br, + dh. 

The basic gradient approach backpropagation can be described as follows: 

AW(/,y)=//*c/(/> p(y) 

where, as previously discussed, p is the input vector to the current neuron layer, and d is 

the delta of that layer. 

4.1.6.4. Batching 

When multiple input and their associated target vectors are available, the inputs and the 

target vectors each form a matrix. The matrix of inputs P has is a (R,Q) dimensional matrix, where 

R is the number of inputs and Q the number of cases, for which data is available. The matrix of 

target values T is (S2,Q) dimensional, where S2 is the number of neurons in the second layer or 

number of outputs. The network answer of the first layer A l is (S1,Q) dimensional, with SI being 

the number of neurons in the first, the hidden layer. The answer of the second layer, which is the 

network answer A2 has the same dimensions as the target value matrix, and so does the matrix of 

errors. 

All the equations can be applied to matrices too, such that all available training vectors can 

be applied at the same time. This is done repetitively until the total network error is below a certain 

error criterion. 
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4.1.6.5. Different Learning Rules and Training Methods 

In addition to the training method based on the plain gradient approach discussed earlier, 

there are some other rather common training methods that should be mentioned here. A derived 

approach is the learning with momentum. Here a momentum constant is used to take the previous 

weight change into account. This then and the change is suggested by the basic gradient learning 

rule forms the new weights change. The equation that describes this methods may look as follows: 

AW(i, j) = meA\A\i, j) + (1 - m / /* d(/)* p( j) 

Where mc is the momentum constant. Because of this factor, the approach with momentum 

is not as likely to get trapped in a local minimum as the plain gradient approach is. There is also 

the possibility of using an adaptive learning rate. It is basically the same approach described above 

as the basic gradient approach, with the only difference that the learning rate changes. 

Each iteration, the new weights are calculated with the current learning rate, and then the 

network error is computed. If the error increased, the learning rate is decreased, and new weights 

and the network error are computed again; if the error is still increased, the learning rate is further 

decreased. This goes on, until the new set of weights achieves a smaller network error than the 

previous weights did. In that case, the weights are updated and the learning rate is increased. The 

approaches using the momentum and adaptive learning rate can also be combined, and they usually 

show better and faster convergence than the approach using the plain error gradient does. 

Another enhanced approached uses the Levenberg-Marquart Optimization. This can 

mathematically be described as follows: 

AW=(JTJ+nl)-' JTe 

1 
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Where e stands for the error and J is the Jacobian matrix of derivatives. Training a neural 

network with this method is significantly faster than any of the others, but it also usually requires 

more memory. 

4.1.6.6. Initial Results and Observations 

Several example test cases were conducted using a neural network to form a functional 

relationship from a set of data (usually data from an existing DOE). Many of the different attempts 

showed how sensitive the convergence is to the scaling of the outputs. The results also seem to 

show that, although convergence may be possible, the network does not necessarily represent the 

problem sufficiently well. It is also remarkable that those responses that did not fit well when their 

network was tested also took a long time to converge and converged only with a relatively high 

number of neurons. This suggests that the actual function may be a very complicated one, and it 

obviously is not captured by the constructed network. 

At this point, a two layer neural network with a tangent sigmoid transfer function in the 

first layer and a linear transfer function in the second layer seems to be suitable to represent some 

of the responses. It is left to further investigations to find out why there were problems with other 

responses. Overall, there does not seem to be an inherent limit on the number of variables or their 

ranges as is the case with the Response Surfaces. This makes the application of neural networks in 

the IPPD design methodology seem highly favorable. This is the first study on this idea, and a lot 

of thought still has to be given to the details of implementing the neural networks in the 

methodology. Logical next steps include: search for and evaluate other possible learning rules and 

training methods that may be more suitable for complex systems, seek better ways of optimizing 

the number of neurons, research the impact of initial weights on the training, and examine the use 

of genetic algorithms to find the global optimum of the error surface with respect to the weights. 

4.2. F u z z y L o g i c 

Fuzzy Logic systems can be used to represent nonlinear input/output relationships through the 

use of if-then rules. A noted attribute of FL is the simplicity of the models used to represent these 
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relationships as compared to other approaches. In reviewing literature for this report, FL 

applications included control system design of various types, pattern recognition, and function 

approximation. Certainly this is a mere subset of the variety of applications for which FL has been 

applied. Since the present focus is on function approximation, the reader should consult the 

references for further details on FL theory and its permutations [Ref. 10, 11] . 

In many FL scenarios, a human expert translates his or her knowledge of a problem to a series 

of initial if-then rules with the hope that these rules will form an adequate Fuzzy Inference System 

(FIS). FIS is the term for any system which uses fuzzy reasoning to map an input/output space 

[Ref. 12]. An example rule might be, "If (Wing Area is BIG) then (Gross Weight is BIG)". 

However, for less obvious situations or where the effects of parameter interactions are complex, 

sufficient human expertise may not exist which can create an initial FIS, let alone an effective one. 

A remedy proposed to deal with this dilemma is extracting the fuzzy rules from a set of 

input/output data (simulated or experimental) [Ref. 13]. 

Before discussing rule extraction, three basic types of FIS are identified. They are the 

Mandami, zero-order Seguno, and first-order Seguno. As Table 8 tflustrates, the main difference 

between the three is how the output membership functions (MFs) are represented. These output 

MFs form the "then" part of the if-then rule sequence (also called antecedent-consequent pair) 5. 

The antecedents are modeled by input membership functions. The input memberships functions 

fuzzify a crisp input by determining the degree of membership (between 0 and 1). For our 

previously defined example rule, the degree to which "Wing Area is BIG" may be defined as in 

Figure 31. This degree represents the amount of support for the rule which, when combined using 

an implication operator (such as min or max), form the output fuzzy set. This output set is 

modeled through the aforementioned output MFs. If the output MFs are fuzzy (Mandami FIS), 

they appear as distributions (one for each rule). The output is defuzzified by computing the 

centroid of the combined MFs. In the Seguno systems, the output is not a distribution by a single-

valued MF (called a singleton). This facilitates denazification, which now consists simply of 

finding the weighted average of as many data points as there are rules. 
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Table 8. Types of Fuzzy Inference Systems (Y=output, X~inputs) 

Mandami 
Fuzzy 

(e.g. Fig. 1) 

1 
Y 

Ptf) 

Zero-Order 
Seguno 

Fuzzy 
(e.g. Fig. 1) 

crisp constant 
Y = k 

First-Order 
Seguno 

Fuzzy 
(e.g. Fig. 1) 

crisp linear equation 
Y = k0+klXl + k2X2+... 

E 
01 
O 

(Typical Crisp Input) 
W i n g A r e a 

Figure 31. Example Input Membership Function (Antecedent): "If (Wing Area is BIG)" 

Function approximation applications using FL proceed in two distinct steps. First, based 

on a set of input/output data, initial rules and their associated membership functions must be 

formulated in some way. The second step is to then tune the resulting FIS so as to obtain the 

desired prediction accuracy. With regards to step one, two techniques are readily available to form 

the initial FIS. One is a grid search technique, which, as the name suggests, simply partitions the 

data space in grid format and assigns rules accordingly. As a consequence, for systems with more 

than 4 or 5 inputs, this techniques becomes impractical due to the exponential growth of the 

number of rules with the number of inputs [Ref. 1 2 ] . The other method for distilling a FIS from a 

dataset is called clustering. In general, the clustering approach looks for patterns in the data (both 

input and output) and, once identified, takes advantage of these patterns by forming rules near the 
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point in the data space where large "mass" was found [Ref. 13]. Both methods are available in 

MATLAB. However, since the grid search technique suffers from the "curse of dimensionality" as 

the number of inputs increases, relatively large problems must be tackled with the clustering 

approach. In fact, it is in such problems with high dimensionality that the clustering algorithm is 

of increased benefit. 

4 . 2 . 1 . I n i t i a l Results and Observations 

As an initial insight into the comparative strengths and weaknesses of FL and RSM, two 

example problems were investigated. The first was the prediction of a probability distribution for 

$/RPM from a previous study. The second related to a disciplinary model: approximation static 

pitching moment for a range of HSCT wing planforms. Fuzzy Logic and RSM estimators were 

formed in each case and resulted in the following observations. 

• Prediction Accuracy: Based on the two example problems, there does not seem to be 

clear evidence that either FL and RSM is always more accurate than the other at representing a data 

space. The FL approach did seem to have an advantage when a relatively large set of data was 

available (the static pitch stability example), even under the circumstances of having 24% less 

training data points! The RSM fared better than FL with the small datasets of the probability 

prediction example. 

• Ease of Implementation: In many respects, this issue is more a function of software 

design than anything inherent to the two theories. Once the data is generated, a useable FIS or 

RSE can be constructed about equally as quick (within minutes) using MATLAB and JMP® 

respectively. 

• Data Dimensionality: Both methods have limitations in this area. RSM generally can be 

used to construct models (2nd order and above) of no more than 9 inputs. FL has no such 
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restriction per say, though the fitting ratio could quickly become unacceptable as the number of 

inputs grow. The clustering algorithm significantly extends the dimensionality allowed over the 

grid search technique, and thus, in certain situations, FL could be used for high dimensional cases 

out of reach of the RSM. 

• Reversibility/Differentiability: This refers to the capability of switching an input to an 

output (and vice versa) in a function approximator. While an RSE is reversible (simply rearrange 

terms in the equation so that the variable of interest is isolated), it appears that one would have to 

start from scratch in the FL arena if an input/output switch is desired. In a related matter, an RSE 

can provide smooth derivatives in an optimization setting while such information in a FL setting 

would require finite differencing. 

• Functional Form: Creating a RSE requires the assumption of a functional form (e.g. 2nd 

order polynomial, as was the case for the two examples here). Quick transformations are possible 

which allow the transition to a new form, though one might have to search among several 

possibilities before finding the best one. A FL predictor requires no a priori assumption in this 

way. Among the three types of FIS defined (see Table 8), the lst-order Seguno has been 

mentioned in the literature as being the most accurate in almost all cases. 

• Discrete/Continuous Variables: Both examples presented in this study consisted of 

continuous input and output variables. Many times, however, a need will arise to examine systems 

with a mixed continuous-discrete composition. The RSM is predicated on all input variables being 

continuous (since it seeks to construct continuous multidimensional surfaces to map inputs to 

outputs). In the context of rule extraction from data, FL as well models only continuous types, at 

least initially. After an initial FIS is formed, particular MFs can be modified so as to make the 

input have rule firings only at discrete settings. Surely, this is a suboptimal approach, but any 
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capability is better than none. Of course, the accuracy of the FIS before and after such a 

modification should always be examined. 

Overall, as is usually the case when comparing competing algorithms, neither FL nor RSM 

is the better choice all of the time. However, through examination of concept fundamentals as well 

as examples, this initial investigation has identified the types of scenarios in which each would be 

best utilized. 
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5. FUTURE DIRECTIONS IN ROBUST DESIGN 
Besides the work in progress described above, research in years two and three of this study 

will be initiated in the area of Fast Probability Integration (FPI). FPI encompasses a number of 

techniques which show promise in replacing the computationally intense Monte Carlo approach to 

generating probability distributions in the RDS setting. Many of these techniques have developed 

in the fields of reliability and structural failure/fatigue prediction. Fundamentally, however, they 

are appropriate for any situation where uncertainty is to be quantified and eventually mitigated to 

the largest extent possible. Studies in Reference 14 [Wu] have shown that FPI can require from 

1/10 to 1/1000 of the computer time as compared to Monte Carlo. 

Steps already taken to incorporate FPI into RDS consist of the following: 

a) The attendance of Dr. Mavris at a short course hosted by the Southwest Research 

Institute entided "Probabilistic Analysis and Design- Computational Methods and Applications". 

This short course provided a much needed survey of what FPI methods are currently being 

proposed/used in industry, government, and industry. 

b) A visit of Dr. Mavris with Dr. Christos Chamis of NASA Lewis, who has developed 

several approaches and codes for probabilistic structural analysis and design. This visit resulted in 

an agreement between ASDL and Dr. Chamis' branch for the sharing of information and codes 

related to FPI and probabilistic modeling. 

5 7 
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6. CONCLUSIONS AND STATUS 
This report has documented Year one progress in this effort to develop "Advanced Design 

Methodology for Robust Aircraft Sizing and Synthesis". This was done via a detailed 

development of the proper objective function in a robust design setting. This objective, which best 

captures the customer requirements, is the probability of achieving a specified target(s) for an 

aircraft system (such as required yield per revenue passenger mile, $/RPM). After the 

development and explanation of this objective, differing types of uncertainty which enter an aircraft 

synthesis problem were described and methods for addressing these different types were explained 

(and demonstrated via example). Keys to implementing these methods were the Response Surface 

Method (RSM) and the Monte Carlo approach to probability distribution generation. While these 

techniques proved effective, deficiencies were identified in their use. 

In looking toward the future (with Year two goals in mind), new techniques were 

investigated under the Year one effort in the hopes of mitigating the identified deficiencies in RSM 

and Monte Carlo. Descriptions of Neural Networks and Fuzzy Logic and their potential use in a 

robust design environment were presented. Finally, the Fast Probability Integration (FPI) 

technique seems promising as a efficient replacement to the computationally intense Monte Carlo 

method. 

5 8 
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S U M M A R Y O F C O N T R A C T P E R I O D E F F O R T S 

Contract efforts are focused on refining the Robust Design Methodology for Conceptual Aircraft 

Design. Robust Design Simulation (RDS) was developed earlier as a potential solution to the need 

to do rapid trade-offs while accounting for risk, conflict, and uncertainty. The core of the 

simulation revolved around Response Surface Equations as approximations of bounded design 

spaces. 

An ongoing investigation is concerned with the advantages of using Neural Networks in 

conceptual design. In the overall design methodology, one possibility for the application of Neural 

Networks is as an alternative to the Response Surface Equations, which are limited in both the 

number of parameters and their ranges. To investigate this, a first step was to implement a two-

layer (one hidden layer) feed-forward neural network with pure linear and tangent sigmoidal 

transfer functions to approximate the design metrics of various disciplines and bring them back to 

the systems level. Some aspects in this approach were found to need special attention. Among 

them are the selection of the number of neurons in the hidden layer, which were adjusted with the 

learning behavior, and the appropriate training methods for the neural network. The network was 

trained via backpropagation methods, and the development of suitable training methods will lead to 

genetic algorithms and other methods to be used for this purpose. 

Thought was also given to the development of a systematic way to choose or create a baseline 

configuration based on specific mission requirements. To explore the possibilities of Knowledge-

Based Systems with their reasoning and database mining capabilities, an Expert System was 

developed, which selects aerodynamics, performance and weights models from several 

configurations based on the user's mission requirements for subsonic civil transports. This 

motivates future research toward investigating a hybrid system of artificial intelligence methods, 

possibly Neural Networks combined with Knowledge-Based Systems, to systematically select or 

develop baseline configurations for unconventional aircraft designs. In addition, such a hybrid 

system can potentially provide design guidance in the larger scope of the overall RDS. 

The investigation of affordability in the design process has made the investigation of a probabilistic 

approach to design necessary, due to the inherent ambiguity of assumptions and requirements as 

well as the uncertain operating environment of future aircraft. The approach previously developed 

at ASDL, linking Response Surface Methodology with Monte Carlo Simulations, has revealed 

itself to be cumbersome and at times impractical for multi-constraint, multi-objective problems. In 

addition, prediction accuracy problems were observed for certain scenarios that could not easily be 
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resolved. Hence, a portion of this year's research focused on an alternate approach to probabilistic 

design, which is based on a Fast Probability Integration (FPI) technique. Critical reviews of the 

combined Response Surface Equation/ Monte Carlo Simulation methodology against the Advanced 

Mean Value (AMV) method, one of several FPI techniques, has been accomplished. Both 

methods are used to generate cumulative distribution functions, which are subsequently compared 

in an example case studies, usually employing a High Speed Civil Transport (HSCT) concept. 

Outcomes of this research and the case studies have been an assessment and comparison of the 

analysis effort and time necessary for both methods is performed. In summarizing the results, the 

Advanced Mean Value method shows significant time savings over the Response Surface 

Equation/Monte Carlo Simulation method, and generally yields more accurate CDF distributions. 

The research has also resulted in a step-by-step illustration on how to use the AMV method for 

distribution generation and the search for robust design solutions to multivariate constrained 

problems. 
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SUMMARY OF ACCOMPLISHMENTS FOR CURRENT CONTRACT PERIOD 

The goal of designing for robustness is achieved by minimizing a configuration's sensitivity to the 

uncertainty factors, which themselves may take various forms (economic, mission related, 

disciplinary). The result is a solution which satisfies the customer requirements while at the same 

time is well-balanced in that it performs well under a wide variation of conditions. Over the term 

of this grant, research has led to a series of methods by which robust aircraft designs are obtained 

utilizing a probabilistic objective function and techniques such as Response Surface Method and 

Monte Carlo simulation. 

For the period covering this performance report, the advanced robust design method(s) has been 

refined, formalized, and expanded to include the evaluation of new technologies. The majority of 

this work has been summarized and disseminated in three conference papers published as well as 

one journal article accepted for publication in February, 1999. These documents are listed below 

and are available at: h t t p : / / w w w . a s d l . g a t e c h . e d u / p u b l i c a t i o n s 

1. Mavris, D.N., DeLaurentis, D.A., "A Stochastic Design Approach for Aircraft Affordability," 21st Congress of 
the International Council on the Aeronautical Sciences (ICAS), Melbourne, Australia, September 1998. Paper 
ICAS-98-6.1.3. 

2. Mavris, D.N., Kirby, M.R., Qiu, S., "Technology Impact Forecasting for a High Speed Civil Transport", World 
Aviation Congress and Exposition, Anaheim, CA, September 28-30, 1998. SAE-985547. 

3. Daberkow, D.D., Mavris, D.N., "New Approaches to Conceptual and Preliminary Aircraft Design: A 
Comparative Assessment of a Neural Network Formulation and a Response Surface Methodology", World Aviation 
Congress and Exposition, Anaheim, CA, September 28-30, 1998. SAE-985509. 

A major accomplishment in the first two years of this research was the construction of a 

probabilistic design method that identified when a new technology infusion would be required to 

increase the robustness of the design (e.g. its chances of success). In this last year, research has 

focused on how one goes about modeling and assessing the impact of these new technologies and 

the feasibility and viability of the design space. The response surface method is again used in what 

has become known as a Technology Impact Forecast (TIF) environment (see papers I, and 2 . 

referenced above). The variability due to uncertainty in technology performance can now be 

accounted for in forecasting future design performance. The TIF was implemented for the High 

Speed Civil Transport as reported in papers 1. and 2. 

Several tools that aid in the exercising of these methods are shown in the following table. An 

asterisk indicates the specific tools that were given to the sponsor for their future use. 

D. Mavris, PI, NAG-1-1793 
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Software Purpose 
STARS* Utility to aid in the setup of Design of Experiments information and 

its execution 

Command L i n e DOE* Utility to aid m the setup of Design of Experiments tables from JMP 

p a r s e * , t sw* Automatable I/O file parsing and substitution utilities 

p l o t c d f * Plots Cumulative distribution function from FPI output 

d o e 2 r s e * Regression of DOE data for a specified model equation 

JMP° Commercial statistical analysis package by SAS Institute Inc. 

C r y s t a l B a l l 0 Commercial Monte Carlo Sim. package by Decisioneering Inc. 

Finally, as an extension of earlier work on the use of the RSM, research into alternative 

approximation and optimization techniques has continued, primarily in the area of neural networks. 

Paper 3. referenced above has documented a study of the relative merits of RSM and neural 

networks in the robust design setting. A key conclusion from this investigation was that the 

networks can indeed outperform RSM, especially when the underlying nature of the problem is 

unknown and the number of necessary factors is high. 

All the above activities were reported to the technical monitor directly in a visit on October 16/17, 
1998 at Georgia Tech. 
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The goal of designing for robustness is achieved by minimizing a configuration's sensitivity to the 

uncertainty factors, which themselves may take various forms (economic, mission related, 

disciplinary). The result is a solution which satisfies the customer requirements while at the same 

time is well-balanced in that it performs well under a wide variation of conditions. Over the term 

of this grant, research has led to a series of methods by which robust aircraft designs are obtained 

utilizing a probabilistic objective function and techniques such as Response Surface Method and 

Monte Carlo simulation. 

For the period covering this performance report, the advanced robust design method(s) has been 

refined, formalized, and expanded to include the evaluation of new technologies. The majority of 

this work has been summarized and disseminated in three conference papers published as well as 

one journal article accepted for publication in February, 1999. These documents are listed below 

and are available at: h t t p : / / w w w . a s d l . g a t e c h . e c l u / p u b l i c a t i o n s 

1. Mavris, D.N., DeLaurentis, D.A., "A Stochastic Design Approach for Aircraft Affordability," 21st Congress of 
the International Council on the Aeronautical Sciences (ICAS), Melbourne, Australia, September 1998. Paper 
ICAS-98-6.1.3. 

2. Mavris, D.N., Kirby, M.R., Qiu, S., "Technology Impact Forecasting for a High Speed Civil Transport", World 
Aviation Congress and Exposition, Anaheim, CA, September 28-30, 1998. SAE-985547. 

3. Daberkow, D.D., Mavris, D.N., "New Approaches to Conceptual and Preliminary Aircraft Design: A 
Comparative Assessment of a Neural Network Formulation and a Response Surface Methodology", World Aviation 
Congress and Exposition, Anaheim, CA, September 28-30, 1998. SAE-985509. 

A major accomplishment in the first two years of this research was the construction of a 

probabilistic design method that identified when a new technology infusion would be required to 

increase the robustness of the design (e.g. its chances of success). In this last year, research has 

focused on how one goes about modeling and assessing the impact of these new technologies and 

the feasibility and viability of the design space. The response surface method is again used in what 

has become known as a Technology Impact Forecast (TIF) environment (see papers 1. and 2 . 

referenced above). The variability due to uncertainty in technology performance can now be 

accounted for in forecasting future design performance. The TIF was implemented for the High 

Speed Civil Transport as reported in papers 1. and 2. 

Several tools that aid in the exercising of these methods are shown in the following table. An 

asterisk indicates the specific tools that were given to the sponsor for their future use. 
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SOFTWARE PURPOSE 

STARS* Utility to aid in the setup of Design of Experiments information and 

its execution 

Command L i n e DOE* Utility to aid in the setup of Design of Experiments tables from JMP 

p a r s e * , t sw* Automatable I/O file parsing and substitution utilities 

p l o t c d f * Plots Cumulative distribution function from FPI output 

d o e 2 r s e * Regression of DOE data for a specified model equation 

JMP° Commercial statistical analysis package by SAS Institute Inc. 

C r y s t a l B a l l " Commercial Monte Carlo Sim. package by Decisioneering Inc. 

Finally, as an extension of earlier work on the use of the RSM, research into alternative 

approximation and optimization techniques has continued, primarily in the area of neural networks. 

Paper 3. referenced above has documented a study of the relative merits of RSM and neural 

networks in the robust design setting. A key conclusion from this investigation was that the 

networks can indeed outperform RSM, especially when the underlying nature of the problem is 

unknown and the number of necessary factors is high. 

All the above activities were reported to the technical monitor directiy in a visit on October 1 6 / 1 7 , 
1998 at Georgia Tech. 
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SUMMARY OF ACCOMPLISHMENTS 

Robust design is accomplished by minimizing a design's sensitivity to uncertainty factors, which 

may be economic, mission, or disciplinary related. The goal of robust design is to seek a 

solution that satisfies all customer requirements and performs well under a wide range of 

conditions. During the term of this grant, robust design problems have been formulated and 

solved by utilizing a probabilistic objective function and techniques like Response Surface 

Method (RSM), Monte Carlo Simulation (MCS), and Fast Probability Integration (FPI). In 

solving the robust design problem, research has led to several advanced robust design 

methodologies, and they have been refined, formalized, and expanded to include the evaluation 

of new technologies. The work performed under this grant has been summarized and 

disseminated in four conference papers and one journal article (listed below). They are available 

for download at http://wwu.asdl.gatech.edu/publications. 

1. Mavris, D.N., DeLaurentis, D.A., "A Stochastic Design Approach for Aircraft 
Affordability," 21st Congress of the International Council on the Aeronautical Sciences 
(ICAS), Melbourne, Australia, September 1998. Paper ICAS-98-6.1.3. 

2. Mavris, D.N., Kirby, M.R., Qiu, S., "Technology Impact Forecasting for a High Speed Civil 
Transport", World Aviation Congress and Exposition, Anaheim, CA, September 28-30, 
1998, SAE-985547. 

3. Daberkow, D.D., Mavris, D.N., "New Approaches to Conceptual and Preliminary Aircraft 
Design: A Comparative Assessment of a Neural Network Formulation and a Response 
Surface Methodology", World Aviation Congress and Exposition, Anaheim, CA. September 
28-30, 1998. SAE-985509. 

4. Mavris, D.N., Bandte, O., DeLaurentis, D.A., "Determination of System Feasibility and 
Viability Employing a Joint Probabilistic Formulation", 37th Aerospace Sciences Meeting & 
Exhibit, Reno, NV, January 11-14, 1999. AIAA 99-0183 

5. Mavris, D.N., Bandte, O., DeLaurentis, D.A., "Robust Design Simulation: A Probabilistic 
Approach to Multidisciplinary Design," Journal of Aircraft, Volume 36, No. 1, Pages 298 -
307. 

In the first two years, the major accomplishment was the construction of a probabilistic design 

method that identified when new technology infusion is needed in order to increase the 

robustness of the design (e.g. its chances of success). In this last year, research has focused on 
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how one goes about modeling and assessing the impact of these new technologies and the 

feasibility and viability of the design space. The Response Surface Method is again used in what 

has become known as a Technology Impact Forecast (TIF) environment (see papers 1 and 2 

referenced above). The variability due to uncertainty in technology performance can now be 

accounted for in forecasting future design performance. The TIF was implemented for the High 

Speed Civil Transport as reported in papers 1 and 2 . 

Also, in the last year of this grant, a natural progression of the robust design methodology to 

examine the variability due to uncertainty for several different criteria simultaneously was 

completed. The research funds provided under this grant was used as "seed money" to 

investigate a joint probability formulation to see how multiple decision criteria can be addressed 

while handling uncertain information probabilistically. The initial findings of this research for 

two dimensions are documented in paper 4 listed above. This research has shown much 

potential; therefore it was proposed to the Sponsor and accepted as the next phase of research for 

advanced probabilistic/stochastic design methods. 

Several prototype tools that aid in the exercising of these methods (excluding joint probability 

formulation) are shown in the following table. An asterisk indicates the specific prototype tools 

that were given to the sponsor for their future use. 

SOFTWARE PURPOSE 

STARS* Utility to aid in the setup of Design of Experiments information and 
its execution 

Command Line DOE* Utility to aid in the setup of Design of Experiments tables from 
JMP 

parse*, tsw* Automated I/O file parsing and substitution utilities 
plotcdf* Plots Cumulative distribution function from FPI output 
doe2rse' Regression of DOE data for a specified model equation 

Commercial statistical analysis package by SAS Institute Inc. 

Crystal Ball* Commercial Monte Carlo Simulation package by Decisioneering 
Inc. 
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Finally, as an extension of earlier work on the use of the RSM, research into alternative 

approximation and optimization techniques has continued, primarily in the area of neural 

networks. Paper 3 referenced above has documented a study of the relative merits of RSM and 

neural networks in the robust design setting. A key conclusion from this investigation was that 

the networks can indeed outperform RSM, especially when the underlying nature of the problem 

is unknown and the number of necessary factors is high. 

The final research area conducted during the no-cost-extension period was the use of the Fast 

Probability Integration. This technique was developed by Southwest Research Institute under 

sponsorship from N A S A Glenn Research Center. The general idea behind FPI is the estimation 

of the probabilistic modeler instead of the analysis code, as with using Response Surface 

Methodology. By eliminating the approximation of the physic-based codes, the probabilistic 

design methods, which is essential to robust design, is now much more practical and accurate. 

All the above activities, excluding the joint probability formulation and FPI, were reported to the 

technical monitor directly in a visit on October 16 and 17, 1998 at Georgia Tech. 
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