
AUTOMATED GENERATION OF

ROUND-ROBIN ARBITRATION AND

CROSSBAR SWITCH LOGIC

A Thesis
Presented to

The Academic Faculty

by

Eung S. Shin

In Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy

School of Electrical and Computer Engineering
Georgia Institute of Technology

November 2003

AUTOMATED GENERATION OF

ROUND-ROBIN ARBITRATION AND

CROSSBAR SWITCH LOGIC

Approved by:

Professor Vincent J. Mooney III, Adviser

Professor George F. Riley

Professor Sung Kyu Lim

Professor Mary Ann Ingram

Professor Santosh Pande

Date Approved: 11/05/2003

“In his heart a man plans his course, but the LORD determines his

steps....”

– Proverbs 16:9

To my parents

iii

ACKNOWLEDGMENTS

During my Ph. D. study, there are many people in Georgia Tech to whom I am

thankful. First of all, I would like to express enormous appreciation to my adviser, Dr.

Vincent J. Mooney III, from the bottom of the heart. In addition to his enthusiasm

and professionalism dedicated to all members of our Codesign group, Dr. Mooney has

been supporting and encouraging me to develop my thesis. With our weekly regular

meeting, he has been listening to my idea patiently, and we have been brainstorming

by short question and answer session. He has been also helping me improve my

writing with logical reasoning and has been correcting my English pronunciation. His

technical acumen, integrity and concern for all members of Codesign are remarkable

and exemplary.

Second of all, I am also grateful to all my committee members, Dr. George F.

Riley, Dr. Sung Kyu Lim, Dr. Mary Ann Ingram and Dr. Santosh Pande. Especially,

Dr. Riley is the coauthor of two of my papers and has been supportive to enhance

our paper quality by developing a switch arbiter simulator.

Also, I have to express thank to all members of the Codesign group. Mohamed

Shalan, the coauthor of one of my papers, has been helpful me with productive discus-

sion of our research interest and the provision of constructive advice for simulations.

Pramote Kuacharoen, Tankut Akgul and his wife Bilge Saglam Akgul have been en-

couraging me with helpful advice and hilarious joke and have been broadened my

research interest. Jun Cheol Park and Kyeong-Keol Ryu have been supportive for

every aspect besides the power estimation and debugging my design.

Finally, I wish to thank my parents who gave me a birth and have been supportive

for my entire life. Without their encourage and support, I doubt that I have could

iv

bring my thesis into final form. They have believed in my ability to complete my

thesis and have made me confident in pursuing my goal. I also thank to my brother,

Eung Seok Shin and my sister, You Yong Shin, for their encouragement.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ABBREBIATIONS . xii

SUMMARY . xiv

I INTRODUCTION . 1

1.1 Problem Statement . 1

1.2 Thesis Contributions . 2

1.3 Motivation . 3

II TERMINOLOGY FOR AN ARBITER 6

III RELATED WORK . 15

3.1 Arbiters . 15

3.1.1 Arbitration for Network Packet Switching: PPA, PPE and
others . 15

3.1.2 Logic Synthesis . 21

3.1.3 Token Rings . 22

3.2 On-chip Communication . 22

IV ROUND-ROBIN ARBITER DESIGN 26

4.1 2x2, 3x3 and 4x4 Bus Arbiter Design 26

4.2 Switch Arbiter Design . 31

4.3 Hierarchical Bus Arbiter Design . 46

4.4 Impact on Logic Synthesis: Priority Logic Specification 48

4.4.1 Hierarchical SA versus PPE 49

4.4.2 Hierarchical SA versus PPA 51

vi

4.5 Fairness in Arbitration . 53

V RAG: ROUND-ROBIN ARBITER GENERATOR 58

VI X-GT: CROSSBAR SWITCH GENERATOR FOR MULTIPRO-
CESSOR SOC . 66

6.1 The Xbar . 67

6.2 Methodology . 69

6.3 Integration with DMMU and its generation tool 72

6.3.1 Target Architecture . 73

6.3.2 Tool Integration . 75

VII EXPERIMENTAL RESULTS . 79

7.1 Arbiter Experiment . 79

7.1.1 BA Area and Delay Considerations 80

7.1.2 SA Area and Delay Comparisons 80

7.1.3 Power Dissipation of the Arbiters 84

7.1.4 Speedup for a Chip Implementing a 32x32 Network Switch . 92

7.1.5 Fairness Simulation for Hierarchical SAs 100

7.2 Xbar Synthesis . 104

7.2.1 Xbar Area . 104

7.2.2 Xbar Delay . 105

7.2.3 MP-SoC with Xbar and DMMU 109

VIII CONCLUSION . 111

REFERENCES . 116

vii

LIST OF TABLES

Table 1 Truth table of a 4x4 priority logic block 29

Table 2 Simulation results, continuous requests 101

Table 3 Simulation results, bursty on-off traffic 101

Table 4 Simulation results, TCP traffic using the GTNets log file 103

viii

LIST OF FIGURES

Figure 1 Internal structure of (32x32)x32 crossbar switch fabric and thirty-
two 32x32 SAs of 32x32 network switch 6

Figure 2 HOL blocking example: without VOQs and with VOQs 8

Figure 3 32x32 network switch architecture 9

Figure 4 (3x2)x2 crossbar switch fabric and two 3x3 SAs (Note: reset signals
for the SAs not shown) . 10

Figure 5 (2x3)x3 crossbar switch fabric and three 2x2 SAs (Note: reset signals
for the SAs not shown) . 12

Figure 6 2x2 ack-req SA block . 13

Figure 7 2x2 root SA . 13

Figure 8 32x32 network switch architecture (Note: Figure 8 is exactly same
as Figure 3) . 16

Figure 9 32x32 Switch Arbiter (SA) . 17

Figure 10 AR2: 2-input PPA and its internal logic 20

Figure 11 A binary tree structured PPA . 21

Figure 12 Octagon bus . 23

Figure 13 A processing tile with crossbar interconnect 24

Figure 14 Block diagram and logic diagram of a 4x4 Bus Arbiter 27

Figure 15 4x4 Bus Arbiter (BA) architecture 28

Figure 16 Four processors with a shared memory system (Note: bus and 4x4
BA details shown only as needed for Example 4.1.) 31

Figure 17 Ack-req SA blocks . 32

Figure 18 Root SA blocks . 34

Figure 19 Detailed view of a 4x4 root Switch Arbiter 34

Figure 20 A 7x7 SA configuration (Note: reset signal not shown) 35

Figure 21 A 7x7 SA with a different placement of the AND gates (Note: reset
signal not shown) . 35

Figure 22 A 4x4 SA implemented by three 2x2 switch arbiter blocks (Note:
reset signal not shown) . 36

ix

Figure 23 Hierarchical Switch Arbiter for 32 x 32 switch (Note: reset signal
not shown) . 38

Figure 24 The critical path of Figure 23 . 39

Figure 25 Switch Arbiter algorithm . 42

Figure 26 Flowchart of Switch Arbiter algorithm 44

Figure 27 8x8 hierarchical BA . 46

Figure 28 4x4 ack-req BA . 47

Figure 29 4x4 PPA . 51

Figure 30 AR2 block diagram . 52

Figure 31 4x4 Bus Arbiter (BA) architecture (Note: Figure 31 is exactly same
as Figure 15) . 53

Figure 32 The pointer update scheme of PEE 55

Figure 33 Flow of RAG tool . 59

Figure 34 Flowchart of Algorithm 2 . 62

Figure 35 The example of 4x4 Xbar with four processors and four memory
blocks each with a single port . 66

Figure 36 Internal structure of a 4x1 switch 68

Figure 37 Linked-list data structure for Example 6.2 70

Figure 38 The SoC target architecture . 74

Figure 39 The target architecture of four processors and four memory blocks
each with a single port . 75

Figure 40 The SoC configuration tool flow . 76

Figure 41 Flowchart of DX-Gt . 77

Figure 42 MxM Bus Arbiter area . 81

Figure 43 MxM Bus Arbiter delay . 81

Figure 44 MxM Switch Arbiter area . 83

Figure 45 MxM Switch Arbiter longest delay 83

Figure 46 Methodology of power estimation 85

Figure 47 MxM hierarchical BA and BA static power dissipation 86

Figure 48 MxM hierarchical BA and BA dynamic power dissipation 87

x

Figure 49 Total power dissipation of BA versus hierarchical BA 87

Figure 50 Total energy required for one arbitration of BA versus hierarchical BA 88

Figure 51 MxM hierarchical SA, PPE and PPA static power dissipation . . . 90

Figure 52 MxM hierarchical SA, PPE and PPA dynamic power dissipation . . 90

Figure 53 Total power dissipation of hierarchical SA, PPE and PPA 91

Figure 54 Energy required for one arbitration of MxM hierarchical SA, PPE
and PPA . 91

Figure 55 32x32 crossbar switch and its longest delay path 94

Figure 56 The floorplan of the 64-bit 32x32 switch fabric, VOQs, controllers
and SAs . 95

Figure 57 The internals of the 64-bit 32x32 switch fabric 97

Figure 58 The internals of the 4-stage interconnect box 97

Figure 59 The grant-connect pipeline including an input interconnect and a
control wire pipelines . 98

Figure 60 The 4-stage pipeline of a control wire 99

Figure 61 Area of Mx1 switch . 106

Figure 62 Area of MxM Xbar . 106

Figure 63 Back-annotation Flow . 107

Figure 64 The snapshot of 4x4 Xbar layout 108

Figure 65 Delay of MxM Xbar . 108

Figure 66 The floorplan of an SoC that utilizes the SoCDMMU and the Xbar 110

xi

LIST OF ABBREBIATIONS

ASIC Application Specific Integrated Circuit

BA Bus Arbiter

CAD Computer-Aided Design

CSMA/CD Carrier Sense Multiple Access with Collision Detection

DMMU Dynamic Memory Management Unit

DX-Gt Dynamic memory management unit and Xbar Generator

GUI Graphical User Interface

HOL Head-of-Line

IP Internet Protocol

LAN Local Area Network

MAC Medium Access Control

NoC Network-on-a-Chip

PCB Printed Circuit Board

PE Processing Element

PPA Ping-Pong Arbiter

PPE Programmable Priority Encoder

RAG Round-robin Arbiter Generator

RTL Register Transfer Level

xii

SA Switch Arbiter

SAIF Switching Activity Interchange Format

SASim Switch Arbiter Simulator

SDF Standard Delay Format

SIP Silicon Intellectual Property

SoC System-on-a-Chip

TCP Transport Control Protocol

VOQ Virtual Output Queue

X-Gt Xbar Generator

xiii

SUMMARY

The objective of this thesis is to automate the design of round-robin arbiter

logic. The resulting arbitration logic is more than 1.8X times faster than the fastest

prior state-of-the-art arbitration logic the author could find reported in the litera-

ture. The generated arbiter implemented in a single chip is fast enough in 0.25 µm

CMOS technology to achieve terabit switching with a single chip computer network

switch. Moreover, this arbiter is applicable to crossbar (Xbar) arbitration logic. The

generated Xbar, customized according to user specifications, provides multiple com-

munication paths among masters and slaves.

As the number of transistors on a single chip increases rapidly, there is a produc-

tivity gap between the number of transistors available in a chip and the number of

transistors per hour a chip designer designs. One solution to reduce this productivity

gap is to increase the use of Silicon Intellectual Property (SIP) cores. However, a SIP

core should be customized before being used in a system different than the one for

which it was designed. Thus, to reconfigure the SIP core, either an engineer must

spend significant effort altering the core by hand or else an enhanced CAD tool can

automatically customize the core according to customer specifications. In this thesis,

we present SIP generator tools for arbiter and Xbar generation.

First, we introduce a Round-robin Arbiter Generator (RAG). The RAG can gen-

erate a hierarchical Bus Arbiter (BA) which is faster than all known previous ap-

proaches. RAG can also generate a hierarchical Switch Arbiter (SA) which is faster

than all known previous approaches. Using a 0.25 µm TSMC standard cell library

from LEDA Systems, we show the arbitration time of a 32x32 SA and demonstrate

that our SA meets the time constraint to achieve terabit throughput. Furthermore,

xiv

using a novel token-passing hierarchical arbitration scheme, our 32x32 SA performs

better than the Ping-Pong Arbiter and Programmable Priority Encoder by factors of

1.8X and 2.3X, respectively, with less power dissipation.

Finally, we present an Xbar switch Generator (X-Gt) tool that automatically con-

figures a crossbar for a multiprocessor System-on-a-Chip (SoC). An Xbar is generated

in Register Transfer Level (RTL) Verilog HDL.

xv

CHAPTER I

INTRODUCTION

1.1 Problem Statement

In a multiprocessor System-on-a-Chip (SoC) environment, a silicon CMOS chip de-

signer typically uses an arbiter to resolve conflicts on shared resources (i.e., bus or

equivalent communication channels) among multiple bus masters (e.g, processors). In

a bus-based system, processors could be stalled because of bus conflicts. Thus, a high-

performance arbiter is needed to resolve bus contentions among bus masters; such a

fast arbiter can also reduce processor stall time by shortening arbitration delays.

In computer networks, such a fast and efficient arbiter commands more attention

to resolve contention for crossbar switch(es) of a fast network switch as the amount

of user traffic continues to double every year [35]. If the network switch capacity

fails to increase with user traffic, then internet service providers may have to increase

the number of switches in their network each year. Alternatively, the capacity of a

single network switch needs to increase instead, and a fast and efficient arbiter plays

a key role in increasing such switch capacity. Considering power consumption, such

an arbiter is also preferably implemented in a single chip since the power budget of

a network switch is about 10 kW per rack. A recent single rack of network switches,

which aims at terabit switching, have already reached this limit [20]. As mentioned

in [7, 20, 26, 29, 66], arbitration delay is one of the major obstacles to achieving

terabit switching.

In the era of billion transistor chips, reducing the productivity gap between the

number of transistors available in a chip and the number of transistors per hour that

a designer can design is a challenging issue to a silicon CMOS chip designer. The

1

productivity gap can be reduced by enhancing Silicon Intellectual Property (SIP)

core reusability, e.g., by developing CAD tools that can automatically configure and

customize a core according to customer specifications.

Primarily, this thesis focuses on round-robin arbiter design and automatic arbiter

generation. Secondarily, we extend automatic arbiter generation to CAD tool de-

velopment for a crossbar (Xbar) switch that employs our generated arbiter for its

arbitration logic.

1.2 Thesis Contributions

The contributions of this thesis are summarized as follows.

• In the era of multiprocessor SoC, the importance of fast and powerful arbiters
commands more attention. We have designed a fast hierarchical round-robin

arbiter, which can also be employed for a high-speed network switch. Our fast

arbiter addresses arbitration delay, one major obstacle in the drive to achieve

terabit switching in a single chip [7, 20, 26, 29, 66].

• As billion transistor chips begin to appear, the customization of Silicon Intel-
lectual Property (SIP) cores by chip designers becomes much more complicated

and difficult, resulting in longer time-to-market. Thus, the automatic generation

of a hierarchical round-robin arbiter can reduce the time required to properly

customize the arbiter. Also, to the best of our knowledge, we present the first

published work on the automatic generation of a round-robin arbiter.

• We also developed a crossbar (Xbar) switch generator for on-chip communica-
tion. Since the generated Xbar is orthogonal to processor types, the Xbar is

valuable in the sense that it can easily be integrated into a heterogeneous multi-

processor SoC. The automated customization of an Xbar according to customer

specifications is presented in a tool called Xbar Generator (X-Gt).

2

1.3 Motivation

In a year or so integrated circuits will appear with more than one billion transistors

on a single chip [42]. Such chips give designers the opportunity to integrate many

functionalities, each of which used to be implemented on different chips, into the

same chip. In other words, a digital system that was previously implemented on a

Printed Circuit Board (PCB) will be integrated into a single chip, i.e., System-on-

a-Chip (SoC). One opportunity for such chips is building an SoC that has multiple

processors of different types, large memory, custom digital logic and interfaces con-

nected by one or more on-chip buses.

Most Processing Elements (PEs) in an SoC communicate with each other via

buses and memory. As the number of bus masters increases in a single chip, the

importance of fast and powerful arbiters commands more attention to achieve a high-

speed on-chip bus. Especially, a fast arbiter is one of the more dominant factors for

high-performance network switches [7, 20, 26, 29, 66]. Also, fast and efficient switch

arbiters are needed to switch packets in a Network-on-Chip (NoC) [11, 18]. However,

to design with high performance and fairness in arbitration is a very tedious and

error-prone task for designers.

Fast arbitration schemes are intensively studied in computer networks. A major

concern in computer networks today is the design of ultra high-speed switches, which

provide a high speed and cost-effective contention resolution scheme when multiple

packets from different input ports compete for the same output port. This issue is

extremely important in order to provide multimedia services for future Broadband

Integrated Services Digital Networks (B-ISDN) [48, 59]. We will show how our Round-

robin Arbiter Generator (RAG) can help in the design of a terabit switch.

Most of the current prevailing buses such as VME [63] and PCI [38] were designed

for system level buses. While VME connects PCBs in large systems, PCI connects

discrete devices on a PCB. A System-on-a-Chip (SoC) allows designers to overcome

3

the drawbacks of PCBs by implementing many or most chips of a PCB onto a single

silicon chip. SoC technology allows one to take advantage of increased bus speed and

decreased area compared with a PCB.

In the implementation of a multiprocessor SoC, an on-chip network comes to

the forefront because the performance of the system is not dependent only on the

CPU speed but also on the on-chip network, which may cause system degradation

resulting from communication bottlenecks in the system. An efficient bus architecture

and arbitration for reducing contention plays an important role in maximizing the

performance of the system. We predict that in next five years multiprocessor SoCs will

be dominated by designs with four to eight processors and on-chip SRAM or DRAM

of 16Mbytes to 128Mbytes. In such multiprocessor SoCs, multiple communication

channels may be desired so that communication among processors does not become

a system bottleneck. We utilize a crossbar (Xbar) switch for an efficient on-chip

network solution.

As the number of transistors on a single chip increases rapidly, there is a produc-

tivity gap between the number of transistors available in a chip and the number of

transistors per hour a designer can design. In other words, it is almost impossible for

human designers to cope with number of available transistors in a chip which doubles

every 18 months by Moore’s Law [65], while the number of transistors per hour that a

designer designs increases 21% per year [42]. One solution to reduce this productivity

gap is to increase the reusability of Silicon Intellectual Property (SIP) cores. However,

an SIP core should be customized/configured before being used in a system different

than the one for which it was designed. Thus, to reconfigure the SIP core, either an

engineer must spend significant effort altering the core by hand or an enhanced CAD

tool (SIP generator) can automatically configure and customize the core according

to customer specifications. For example, memory and I/O generators by Artisan [2]

4

and processor generators by ARC [1] and Tensilica [57] supply application-specific

SIP cores that can be highly tuned for specific applications.

To the best of this author’s knowledge, this thesis presents the first published work

on automatic generation of an Xbar switch coupled with a round-robin arbiter. More

specifically, reconfiguring an Xbar is more than reconfiguring bus parameters such as

address bus width and data bus width. An MxN Xbar must be configured to support

an exact number of masters (processors), M, and an exact number of slaves (memory),

N. Thus, to configure an MxN Xbar, one must generate (i) an arbiter able to handle

the exact number of requests in an Xbar and (ii) wires (address bus, data bus and

some control lines) between masters and slaves.

5

CHAPTER II

TERMINOLOGY FOR AN ARBITER

In this chapter, we define terms that we use in this thesis. A reader who is already

very familiar with computer network switch terminology may skip this chapter.

32 x 32 SA_0

. . .

gr
an

t (
0,

 0
)

gr
an

t (
1,

 0
)

gr
an

t (
31

, 0
)

VOQ (0, 0)

VOQ (1, 0)

VOQ (31, 0)

.

.

.

.

.

.

32 x 32 SA_31

. . .

gr
an

t (
0,

 3
1)

gr
an

t (
1,

 3
1)

gr
an

t (
31

, 3
1)

VOQ (0, 31)

VOQ (1, 31)

VOQ (31, 31)

.

.

.

.

.

.

(32x32)x32 Crossbar Switch Fabric

Thirty-two 32x32 SAs

output port 0

output port 31

. . .

.

.

.

.

.

.

Figure 1: Internal structure of (32x32)x32 crossbar switch fabric and thirty-two
32x32 SAs of 32x32 network switch

We define terms to describe Figure 1. Figure 1 shows the inputs and outputs

of the crossbar switch fabric in a 32x32 network switch. We briefly describe the

network switch structure in order to later show how our generated arbiter is applied

to a network switch. Note that we use the terms “switch” and “network switch”

6

interchangeably throughout this thesis. Also, note that this thesis focuses only on an

arbiter (equivalently, a scheduler) for a network switch or for a bus.

1. An MxN switch is an M-input by N-output switch. For example, a 32-input

by 32-output device is a “32x32” device. Thus, there are 1024 (322) different

possible connections where a “connection” is between a particular input port

and a particular output port. A switch is able to pass data (packets) from any

of the M inputs to any of the N outputs. A network switch is a switch that

implements packet passing via a specific network protocol, e.g., the Internet

Protocol (IP). All the switches we consider in this thesis are network switches.

2. Virtual Output Queues (VOQs) are typically employed in a packet switch

to mitigate the head-of-line (HOL) blocking problem. HOL blocking occurs

when a single FIFO input queue is used for each input port, and the packet

at the head of the queue is blocked from being forwarded to its corresponding

output port because of port contention, thereby blocking the entire FIFO. By

using separate input queues for each input/output port pair, the HOL blocking

problem can be solved [56].

3. VOQ (m, n): m is the input port index, and n is the output port index.

VOQ (1, 0), for example, is VOQ of input port 1 and queues packets destined

to output port 0 as shown in Figure 1.

Example 2.1 Figure 2 describes HOL blocking problem (Without VOQs) and the

solution of this problem (With VOQs). For this example, assume that input port 1

is granted when output port contentions occur. A numbered rectangle in Figure 2

corresponds to a packet with the destination specified by the number. Thus, the

packet numbered ‘1’ indicates that this packet is destined to output port 1. For the

Without VOQs case, packet 1 in the queue at input port 0 is blocked by packet 0

7

01

0

input port 0

input port 1

output port 0

output port 1

Without VOQs

0

1

0

input port 0

VOQ (0, 0)

VOQ (0, 1)

input port 1

VOQ (1, 0)

VOQ (1, 1)

output port 0

output port 1

With VOQs

Figure 2: HOL blocking example: without VOQs and with VOQs

located at the head of the queue, even though output port 1 is available at this point.

Therefore, only packet 0 is sent to output port 1 in the current cycle. To remove HOL

blocking, multiple VOQs are placed at input ports. In the With VOQs case, packet 1

at VOQ (0, 1) is forwarded to output port 1 simultaneously as packet 0 at VOQ (1,

0) is delivered to output port 0. Consequently, multiple packets can be delivered to

the appropriate unique destinations by employing VOQs. ✷

4. (MxV)xN: M is the number of input ports of an MxN switch. V is the number

of VOQs per input port, and N is the number of output ports of an MxN switch.

Note that the number of VOQs per input port (V) is typically equal to the total

number of output ports (N) that can be requested from one input port - i.e.,

typically V equals N. The multiplicative product of M multiplied by V is the

total number of VOQs in an MxN switch. As the name of Virtual Output

Queue (VOQ) implies, an input port considers its V VOQs as output ports.

Also, the VOQs dedicated to a certain input port have the same input port

index as shown in Figure 3. For example, input port 0 as shown in Figure 3 has

thirty-two VOQs with the same input port index: from VOQ (0, 0) to VOQ (0,

8

31). Theoretically, to completely remove the HOL block problem, each input

port requires N dedicated VOQs.

Network Switch (32x32)

Crossbar
Switch
Fabric

(32x32)x32

32 (32x32 arbiter)s

… … …

VOQ(0,31)

VOQ(0,0)

.

.

.input port 0

VOQ(31,0)

.

.

.
VOQ(31,31)

input port 31

.

.

.

.

.

.

output port 31

output port 0

.

.

.

.

.

.

.

.

.

req(0, 0)

req(31, 31)

grant(0, 0-31) grant(31, 0-31)

Figure 3: 32x32 network switch architecture

Example 2.2 Suppose we design a 3x2 network switch. Each input port is allocated

two VOQs since there are two output ports. The VOQs for input port 0 are VOQ (0,

0) and VOQ (0, 1); the VOQs for input port 1 are VOQ (1, 0) and VOQ (1, 1); and

the VOQs for input port 2 are VOQ (2, 0) and VOQ (2, 1). Thus, the total number

of VOQs for this 3x2 switch is equal to 6 (= 3 ∗ 2). If we group VOQs based on the

output port index as shown in Figure 1, VOQ (0, 0), VOQ (1, 0) and VOQ (2, 0)

are grouped together for output port 0 as shown in Figure 4. ✷

5. (MxV)xN crossbar switch fabric: There are connections between M ∗ V

inputs (from VOQ (0, 0) to VOQ (M-1, V-1)) and N outputs, the number of

output ports in the switch fabric. Again, VOQ (l, m) implies a VOQ at the

9

3x3 SA_0

gr
an

t (
0,

 0
)

gr
an

t (
1,

 0
)

gr
an

t (
2,

 0
)

(3x2)x2 Crossbar Switch Fabric

VOQ (0, 0)

VOQ (1, 0)

VOQ (2, 0)

output port 0

VOQ (0, 1)

VOQ (1, 1)

VOQ (2, 1)

output port 1

gr
an

t (
0,

 1
)

gr
an

t (
1,

 1
)

gr
an

t (
2,

 1
)

req (0, 0)
req (1, 0)
req (2, 0)

clock

req (0, 1)
req (1, 1)
req (2, 1)

3x3 SA_1

Figure 4: (3x2)x2 crossbar switch fabric and two 3x3 SAs (Note: reset signals for
the SAs not shown)

lth input port destined to mth output port. As an example, Figure 1 shows a

(32x32)x32 crossbar switch fabric1.

6. An MxM Switch Arbiter (SA) is a part of an (MxV)xN switch with V=N.

An MxM SA controls M specific transmission gates between M VOQs and a

particular output port in an (MxN)xN switch. Thus, the number of requests

is typically equal to the number of input ports, M. At most one transmission

gate is turned on out of M transmission gates at a time. Hence, the number

of grant signals controlling the M transmission gates to a particular output

port is always equal to M. In Figure 1, for example, signal grant (0, 31) from

1The crossbar switch fabric shown in Figure 1 might be different from the switch fabric of a real
network switch. We assume that control signals are required to turn on a connection between a
specific VOQ and a particular output port.

10

SA 31 turns on or off the transmission gate between VOQ (0, 31) and output

port 31. Signals grant (1, 31) through grant (31, 31) control the other thirty-

one transmission gates. The inputs of an MxM SA are req[M-1:0], clock and

reset signals, and the outputs of an MxM SA are grant[M-1:0] signals. The

clock input is employed to rotate, in round-robin fashion, which request out of

the M request signals (req[M-1:0]) receives the highest priority in a given clock

cycle. The total number of MxM SAs needed for an (MxN)xN switch is equal

to the number of output ports, N.

Example 2.3 (Continued from Example 2.2) There are six (= 3 ∗ 2) inputs (equiv-

alently, the total number of VOQs in the switch) to the crossbar switch fabric in

our 3x2 network switch. To resolve conflicts among VOQ (0, 0), VOQ (1, 0) and

VOQ (2, 0) in the case that all three request output port 0 (by req (0, 0), req (1,

0) and req (2, 0), respectively) in the same cycle, a 3x3 SA controls the connections

as shown in Figure 4. Note that 3 (= M) is equal to the number of input ports of a

3x2 switch. The grant signals from the SA are concatenated as follows: grant (2, 0),

grant (1, 0), grant (0, 0). In Figure 4, if a grant signal from the 3x3 SA 0 is 3’b010,

only the transmission gate between VOQ (1, 0) and output port 0 is turned on. Also,

to resolve conflicts among VOQ (0, 1), VOQ (1, 1) and VOQ (2, 1), another 3x3 SA

(3x3 SA 1) is required for output port 1 as shown in Figure 4. Thus, a total number

of two 3x3 SAs are needed for this 3x2 switch. ✷

Example 2.4 For a 2x3 network switch, one 2x2 SA is needed per output port. In

Figure 5, 2x2 SA 0 is used to resolve contentions between VOQ (0, 0) and VOQ (1,

0) in the case that both request output port 0 in the same cycle. Again, 2 (= M) is

equal to the number of input ports of a 2x3 switch. ✷

7. An MxM distributed SA, equivalently an MxM hierarchical SA, fulfills

the same role as and has exactly the same inputs and outputs as an MxM SA.

11

(2x3)x3 Crossbar Switch Fabric

2x2
SA_0

gr
an

t (
0,

 0
)

gr
an

t (
1,

 0
)

output port 0VOQ (0, 0)

VOQ (1, 0)

output port 1VOQ (0, 1)

VOQ (1, 1)

output port 2VOQ (0, 2)

VOQ (1, 2)

2x2
SA_1

gr
an

t (
0,

 1
)

gr
an

t (
1,

 1
)

2x2
SA_2

gr
an

t (
0,

 2
)

gr
an

t (
1,

 2
)

req (0, 0)

req (1, 0)

clock

req (0, 1)

req (1, 1)

req (0, 2)

req (1, 2)

Figure 5: (2x3)x3 crossbar switch fabric and three 2x2 SAs (Note: reset signals for
the SAs not shown)

However, an MxM hierarchical SA is composed of smaller SAs in the form of a

hierarchical tree structure. We call smaller SAs switch arbiter blocks.

8. An ack-req SA block has an extra request (“req”) output and an extra ac-

knowledgment (“ack”) input, as shown in Figure 6. We only use 2x2, 3x3 and

4x4 ack-req SA blocks in this thesis.

9. A root SA can be a 2x2, 3x3 or 4x4 SA. We call the 2x2 (3x3 or 4x4) SA a

2x2 (3x3 or 4x4) root SA for two reasons: (i) a root SA is built directly from

logic gates (no hierarchy) as shown in Figure 7 for the 2x2 case, and (ii) a root

SA is used as the “root” SA in the tree structure of an MxM hierarchical SA;

this use will become more clear later in Section 4.2.

12

2x2
Bus

Arbiter

ack

req0[0]
req0[1]

grant0[1]

grant0[2]

req0

2x2 ack-req SA
clock

reset

Figure 6: 2x2 ack-req SA block

2x2
BA

without
D flip-flop

ack0

ack1

req0

req1

2x2 root SA
clock

ring counter
reset

token[1:0]

Figure 7: 2x2 root SA

10. We use a switch arbiter block as a superset of an ack-req SA, ack-req BA

and a root SA.

11. A Bus Arbiter (BA) resolves bus conflicts when multiple bus masters request

a bus in the same cycle. A BA allows access to a bus for the bus master

whose request is granted. The input/output logic function of a BA and an

ack-req SA block are the same except that an ack-req SA block has an extra

“request” output. The use of this extra “request” output will become clear later

in Section 4.2. The main difference between a BA and an ack-req SA block is

in typical use: a BA typically arbitrates buses, while an ack-req SA block is a

component of an MxM hierarchical SA that typically resolves conflicts between

input ports and output ports in a switch.

13

12. A hierarchical BA is nearly the same as a hierarchical SA. The only difference

is that a hierarchical BA has an extra ack input, taking the ack input from the

owner of the bus (the bus master). In short, while a hierarchical SA rotates

priorities every clock cycle, a hierarchical BA rotates priorities (which include

rotating the highest priority among the potential bus requestors) only after a

rising edge seen on the ack input. Thus, the bus requestor given control over

the bus may use the bus for multiple bus clock cycles.

13. An ack-req BA, a component of a hierarchical BA, has the same functional-

ity as an ack-req SA. However, the logic of an ack-req BA has extra gates to

guarantee the possession of multiple bus clock cycles to the granted bus master.

In addition to an (MxV)xN crossbar switch fabric, the internal structure of an

MxN network switch consists of VOQs and arbiters (there may be additional hard-

ware components such as memory at the input port in case of the occurrence of VOQ

overflows). In Figure 1, we intentionally delete request connections to the 32x32

Switch Arbiters (SAs) from VOQs to present a more compact and easy-to-read dia-

gram. In Figure 9in Chapter 3, however, we show request connections to the SAs in

more detail.

14

CHAPTER III

RELATED WORK

In this chapter, we present some of previous work in arbiter design and crossbar switch

customization. For the arbiter design, we emphasize the Ping-Pong Arbiter (PPA) [7]

and the Programmable Priority Encoder (PPE) [13] which implements the iSLIP

algorithm [29]. The iSLIP algorithm is arguably the best current state-of-the-art

arbitration algorithm in computer network theory and, from the author’s informal

search of the literature, seems to be the most referenced arbitration algorithm in

recent network switch papers, including [7, 8, 66] . In Section 3.2, we focus on Smart

Memory which is the closest related work in terms of the customized Xbar.

3.1 Arbiters

3.1.1 Arbitration for Network Packet Switching: PPA, PPE and others

Current designs in Network-on-Chip (NoC) typically use standard round-robin to-

ken passing schemes for bus arbitration [11]. In computer network packet switching,

previous research in round-robin algorithms have reported results on an iterative

round-robin algorithm (iSLIP) [29] and a dual round-robin matching (DRRM) al-

gorithm [8]. Furthermore, Chao et al. describe a design of a round-robin arbiter

for a packet switch [7]. Chao et al. refer to their hardware design as a Ping Pong

Arbiter (PPA).

In general, the goal of a switch arbiter in a packet switch is to provide control

signals to the crossbar switch fabric as shown in Figure 3. In a packet switch design,

one must keep in mind that each input port can potentially request connections to

all output ports (e.g., in the case of broadcast). Theoretically, to avoid the HOL

15

blocking problem in a packet switch with M input ports and N output ports, each

input is allocated N VOQs (one per output) for a total of the multiplicative product

of M times N VOQs in the packet switch [27, 56]. By employing VOQs, it is reported

that the throughput of an input-queued switch increases from 58.6% to 100% [27, 30].

In general, an MxN switch can have fewer VOQs than N per input port to save cost

and area at some slight cost of occasional HOL blocking. However, we assume V = N

VOQs per input port in an MxN switch in this thesis.

Network Switch (32x32)

Crossbar
Switch
Fabric

(32x32)x32

32 (32x32 arbiter)s

… … …

VOQ(0,31)

VOQ(0,0)

.

.

.input port 0

VOQ(31,0)

.

.

.
VOQ(31,31)

input port 31

.

.

.

.

.

.

output port 31

output port 0

.

.

.

.

.

.

.

.

.

req(0, 0)

req(31, 31)

grant(0, 0-31) grant(31, 0-31)

Figure 8: 32x32 network switch architecture (Note: Figure 8 is exactly same as
Figure 3)

Figure 3 is repeated here as Figure 8: Figure 8 shows a 32x32 network switch with

32 input ports and 32 output ports. Each input port can request between zero (none)

and thirty-two (all) connections to output ports. To accomplish this, thirty-two

32x32 Switch Arbiters (SAs), as shown in the bottom right hand side of Figure 3,

take as input 322 requests (req (0, 0), req (0, 1), . . . , req (31, 30), req (31, 31) – 32

requests per input port, or one request per VOQ) and translates those requests into

16

322 (=4096) grant signals (one grant signal per possible VOQ to output connection)

where at most one grant signal per output port is set to ‘1’ on each clock cycle (thus,

of the 322 grant signals, at most 32 are set to ‘1’ each clock cycle).

Figure 9 shows one 32x32 SA out of the thirty-two 32x32 SAs in Figure 3. Each

SA grants one request out of at most thirty-two requests from thirty-two VOQs. Each

input of the 32x32 SA in Figure 9 is connected to a specific VOQ (one per input port)

which may request output port 0. The thirty-two outputs of the 32x32 SA are grant

signals indicating which of the 32 VOQs is granted output port 0 (note that if no

VOQ requests the output port, then all grant signals will be ‘0’ in this case). For

example, grant (31, 0) can signal the crossbar switch fabric in Figure 3 to connect

VOQ (31, 0) to output port 0.

32x32 SA

req (0, 0)

req (1, 0)

req (31, 0)

gr
an

t (
0,

 0
)

gr
an

t (
1,

 0
)

gr
an

t (
31

, 0
)

…

…

Figure 9: 32x32 Switch Arbiter (SA)

3.1.1.1 Network Packet Switching Arbitration: PPE

The iSLIP algorithm [29] uses in its implementation MxM SAs. The iSLIP algorithm

focuses on the efficient and fast scheduling of best-effort traffic and is developed to

satisfy the following properties:

• High throughput for a network switch: an algorithm should keep the backlog

low in the VOQs.

17

• Starvation-free VOQs: a nonempty VOQ should not remain unserved indefi-

nitely.

• Fast arbitration scheme: to achieve a high speed network switch, an arbitration
algorithm should not be a performance bottleneck.

• Simplicity of implementation: an arbiter plus some network switch compo-
nents (e.g., VOQs and crossbar switch fabric) are preferably implemented in a

single chip.

The iSLIP authors implement an MxM SA in hardware that they call a Pro-

grammable Priority Encoder (PPE) [13]. PPE was used in the Tiny Tera proto-

type [28]. Tiny Tera employs an input queued 32-port crossbar switch and a central-

ized scheduler, PPE. PPE is composed of an M-input simple Priority Encoder [64]

and a thermometer encoding logic [13] which rotate priority levels of inputs. The

thermometer encoding logic eliminates the long critical path resulting from the pro-

grammable priority level. A log2M-bit-wide vector x is translated into an M-bit-wide

vector y by a thermometer encoding according to the following equation.

y[i] = 1 iff i < value(x) for all 0 < i < M, otherwise y[i] =0

Since the area and delay of an M-input priority encoder rapidly increases as M

increases, the authors of PPE propose a recursive decomposition of PPE for large M.

An M-input PPE can be decomposed into two M/2-input subblocks. One subblock

takes care of inputs 0 through (M/2)-1, while the other serves inputs M/2 through and

M-1. This idea can be extended to further decompose an (M/2)-input subblock into

two (M/4)-input subblocks. Each decomposition adds one stage of multiplexers to

combine final output. However, the authors do not show their detailed design nor area

and delay comparison in [13]. Please note that after [13], subsequent papers from the

authors of [13] do not have a logic diagram of PPE. Instead, subsequent publications

18

of the authors of [13] focus on routing and packet classification algorithms [12, 14,

16, 17, 21, 36].

3.1.1.2 Network Packet Switching Arbitration: PPA

Chao et al. observe that a traditional arbiter (centralized arbiter) handles all request

inputs together with arbitration delay increasing proportionally to the number of

requests [7]. Consequently, a fixed amount of allowable arbitration delay limits the

network switch capacity for large M. Therefore, in PPA, inputs are divided into

groups and each group has its own arbiter. An arbiter in a group is named as AR2.

Figure 10 shows the block diagram of AR2 and its internal logic. AR2 handles two

request inputs (r0 and r1) with two external grant inputs (Gg0 and Gg1). The

outputs of AR2 are two grant signals (g0 and g1), a request output (r01) and a flag

signal (Fo) which is fed back to AR2 (Fi) via the D flip flop.

The request signals of each AR2 are summed as a group request signal by use of

an OR gate (r01 in Figure 10). PPA is binary tree structured as shown in Figure 11

and is composed of AR2 in each layer of hierarchy.

Under the assumption of M = 2k, Figure 11 describes a k -layer complete binary

tree with each group handling two requests. In an AR2, an internal feedback signal

indicates which input has a higher priority in the current cycle. If an input is granted

in the current cycle, the other input has a higher priority in the next cycle. The

priority is indicated by 1-bit flag; if flag is ‘0’, input 0 of AR2 (left input of AR2) in

Figure 11 has a higher priority. There are 2k−1 leaf AR2 s. The arbiter at the highest

layer is called the root AR2. Other arbiters placed other than the first and the last

layers are called intermediate AR2 s.

The grant signal from an AR2 in a location other than the lowest layer is fed back

to the corresponding AR2 located at the lower layer. Thus, each intermediate and

leaf AR2 has external grant inputs from an upper layer (Gg0 and Gg1 in Figure 10)

19

r0
r1

Fi

Gg0

Gg1

g0
g1 Fo

AR2

Q D

clock

r0

r1

g0

g1

Fi Fo

Gg0 Gg1

r01

r01

Figure 10: AR2: 2-input PPA and its internal logic

20

1613 14 15129 10 1185 6 741 2 31 2

external grant signals

layer 1

layer 2

layer 3

layer 4

root AR2 intermediate AR2 leaf AR2

Figure 11: A binary tree structured PPA

which is ANDed with an AR2 ’s internal grant signal to reflect the arbitration result

of an upper layer. The other important usage of an external grant is for a flag update.

If an AR2 receives a valid external grant, the AR2’s group request is granted from

upper layers. Thus, the flag of the AR2 must be updated (toggled). However, the flag

should be unchanged if the external grant is invalid to maintain the current priority.

The PPA structure shown in Figure 11 is for the case of k = 4. If all inputs request

a grant, request inputs are granted in the order of 1→3→5→7→9→11→13→15→2→4
and so on which is in round-robin fashion.

Additional details of PPE and PPA will be described in Chapter 4 in the context

of comparing PPE and PPA with our approach.

3.1.2 Logic Synthesis

Logic synthesis transforms a logic level description of a digital circuit into a gate

level specification [3]. For large varieties of logic designs, logic synthesis provides

fast design of logic at area and performance suitable for many Application-Specific

Integrated Circuit (ASIC) designs [3, 15, 32]. For some classes of designs, such as

21

multipliers and dividers, chip designers have devised custom logic structures that are

much faster with much lower area, when compared to what a logic synthesis tool can

deliver given the boolean description of the design.

The author could not find any prior research in logic synthesis focusing on arbi-

tration logic or using token-passing in a multi-level logic network. Thus, while this

thesis only presents a small focused tool able to generate custom arbitration logic and

is not a general-purpose logic synthesis tool, nevertheless no prior work on logic syn-

thesis known to the author focuses on synthesis of specialized arbitration logic using

token-passing.

3.1.3 Token Rings

Since the 1970s, Local Area Networks (LANs) [24, 48] have been developed using a

token ring networks. In a token ring, there are many stations which are connected by

point-to-point links in a ring topology. Transmission links in a ring topology shared

by many stations require Medium Access Control (MAC) which coordinates access

to the shared medium in order to prevent collisions. Only the station which has

possession of the token has the privilege to transmit at any given time. A “token,”

the key idea used in a token ring, is used for the token ring MAC and travels around

the ring-topology network.

We apply the “token” concept to our hierarchical BA and SA designs in order to

rotate the priority level among input request signals. The token enables a particular

logic block in our design, which specifying the priority order in request signals. The

details of exactly how we use a “token” are discussed in Chapter 4.

3.2 On-chip Communication

Considering multiple paths for on-chip communication, Karim et al. propose the “Oc-

tagon” bus which provides multiple on-chip communication channels for a multipro-

cessor SoC [19]. The octagon bus can support up to eight PEs and is scalable by

22

sharing one port with another octagon bus as shown in Figure 12. There are bi-

directional channels between ports, and each port has three queues: one for the route

to cross, another for the route to the left and a third for the route to the right. Uti-

lizing three queues is analogous to the VOQ concept in order to remove the HOL

blocking problem. For applications whose communication patterns map closely to

the Octagon bus structure, the Octagon bus can be an attractive and lower area

alternative when compared to a full crossbar switch network.

Figure 12: Octagon bus

There are few approaches to reduce design time for an SoC crossbar switch. Mai

et al. propose reconfigurable crossbar switch and memory blocks [25]. In [25], a

processing tile consists of a processor, crossbar interconnect and sixteen 8Kbytes

SRAM blocks as shown in Figure 13. The processor is composed of two integer clusters

and a floating point cluster. The processor block is connected to sixteen SRAMs via

a crossbar switch such that a different number of SRAMs can be remapped to two

integer clusters and a floating point cluster depending on an application. A quad

has four processing tiles, and each processing tile communicates via a quad network.

There are many 2.5 mm x 2.5 mm processing tiles with 0.1µm CMOS technology.

However, the authors do not give details about their crossbar switch design.

Dally et al. propose a Network-on-Chip (NoC) in [11] which consists of network

logic and tiles (similar to Mai et al. [28]). Dally et al. propose a tile structured NoC:

23

crossbar interconnect

processor

…

…

16 8Kb
SRAMS

Quad
interface

Figure 13: A processing tile with crossbar interconnect

sixteen 3 mm x 3 mm tiles in a 12 mm x 12 mm chip using 0.1µm CMOS technology

with a 0.5µm minimum wire pitch. A tile can have client logic such as processors,

DSPs, peripheral controllers and memory subsystems. With no top level connections

other than the network logic, tiles communicate to one another by sending packets

over the network logic. Each tile has one input controller at the west edge of a tile

and four output controllers: one for the other directions (North, East and South) and

one for the tile. The area overhead resulting from the on-chip network is estimated

to be 6.6%. The arbitration scheme for a router is not explicitly mentioned in [11].

All literature discussed above present approaches to efficiently communicate on-

chip. Compared with [25], which appears to be designed by hand, our MxN cross-

bar (Xbar) switch is automatically generated with bus parameters specified by a user

to support an exact number of masters and an exact number of slaves. Also, our

generated Verilog code for an Xbar is synthesizable, resulting in a reduction of design

24

time. Thus, from the above discussion, an Xbar switch Generator (X-Gt: the subset

of DX-Gt described in Chapter 6) provides the first automated approach to Xbar

switch generation.

In this chapter we showed previous arbiter designs and approaches to on-chip com-

munication with multiple channels from Karim et al. [19] and from Mai et al. [25].

In Chapter 4, we will show how our arbiter design is different from others, espe-

cially PPE and PPA. We will present how our arbiter is automatically generated in

Chapter 5. In Chapter 6, we will describe how our Xbar is customized according to

customer specifications.

25

CHAPTER IV

ROUND-ROBIN ARBITER DESIGN

A round-robin token passing bus or switch arbiter guarantees avoidance of starvation

among masters and allows any unused time slot to be allocated to a master whose

round-robin turn is later but who is ready now. The protocol of a round-robin token

passing bus or switch arbiter works as follows. In each cycle, one of the masters

(in round-robin order) has the highest priority (i.e., owns the token) for access to a

shared resource. If the token-holding master does not need the resource in this cycle,

the master with the next highest priority who sends a request can be granted the

resource. At the end of the cycle, the highest priority master then passes (in round-

robin order) the token to the next master which then will have the highest priority

for the next time slot.

Section 4.1 (the next section) shows the design of 2x2, 3x3 and 4x4 Bus Ar-

biters (BAs) generated by our tool. In Section 4.2, we present a sample design of

a 32x32 hierarchical SA generated by our tool. In Section 4.3, we describe how a

hierarchical SA is modified to become a hierarchical BA. We discuss how our arbiter

design approach impacts on logic synthesis in Section 4.4. Finally, we discuss the

fairness issue in arbitration in Section 4.5. MxM hierarchical SAs and BAs generated

by our Round-robin Arbiter Generator (RAG) have a hierarchical structure for values

of M greater than four.

4.1 2x2, 3x3 and 4x4 Bus Arbiter Design

Figure 14 show a BA generated to handle four requests. The top figure of Figure 14

shows a BA block diagram for bus arbitration among four masters. To generate a

26

Figure 14: Block diagram and logic diagram of a 4x4 Bus Arbiter

27

hierarchical BA, RAG takes as input the number of masters and produces synthe-

sizable Register Transfer Level (RTL) Verilog code. For synthesis of the logic for a

four-master BA, the bottom of Figure 14 shows the logic synthesized by the Synop-

sys Design Compiler [51] with a TSMC 0.25µm standard cell library [60] from LEDA

Systems [23] (now Qualcore Logic).

The four small blocks on the left side of the logic diagram in Figure 14 are the

four “priority logic” blocks in Figure 15, and the block on the top right side of the

logic diagram in Figure 14 is a ring counter. The functionality of a priority logic

block is the same as that of a priority encoder [64] without output encoding; please

see Table 1 for a truth table for a priority logic block for a 4x4 case.

The BA consists of a D flip-fop, priority logic blocks, an M-bit ring counter and

M M-input OR gates as shown in Figure 15 where M=4. A 4x4 priority logic block is

Priority
Logic 0

req[0]
req[1]
req[2]
req[3]

Ring Counter

to
ke

n
[0

]

to
ke

n
[1

]

to
ke

n
[2

]

to
ke

n
[3

]

Priority
Logic 2

Priority
Logic 3

Priority
Logic 1

EN

EN

EN

EN

grant[0]

grant[1]

grant[2]

grant[3]

4x4 BA

ack

reset

output[0]

output[1]
output[2]

output[3]

in[0]
in[1]

in[2]
in[3]

D-FFclock

Figure 15: 4x4 Bus Arbiter (BA) architecture

28

Table 1: Truth table of a 4x4 priority logic block

EN in[0] in[1] in[2] in[3] output[0] output[1] output[2] output[3]
0 X X X X 0 0 0 0
1 1 X X X 1 0 0 0
1 0 1 X X 0 1 0 0
1 0 0 1 X 0 0 1 0
1 0 0 0 1 0 0 0 1

implemented incombinational logic implementing the logic function of Table 1. The

priority of inputs is placed in descending order from in[0] to in[3] in the priority logic

blocks (Priority Logic 0 through 3) shown in Figure 15. Thus, in[0] has the highest

priority, in[1] has the next priority, and so on. To implement a BA, we employ the

token concept from a token ring in a network. The possession of the token allows

a priority logic block to be enabled. Since each priority logic block has a different

order of inputs (request signals), the priority of request signals varies with the chosen

priority logic block. The token is implemented in a 4-bit ring counter as shown in

Figure 15.

Example 4.1 When token = 4’b0100, processor 2 (req[2]) has the token and thus has

the highest priority in this arbitration cycle. In other words, Priority Logic 2 in Figure 15

is enabled and req[2] has the highest priority because req[2] is connected to in[0] of the

priority logic block, Priority Logic 2. ✷

The outputs (four bits) of the ring counter act as the enable signals to the priority

logic blocks. Thus, only the single enabled priority logic block can assert a grant

signal. The ack signal to the bus arbiter is clocked by a D flip-flop as shown in

Figure 15. The ack signal pulls a trigger to the ring counter so that the content of

the ring counter is rotated one bit for the next arbitration cycle. Thus, the token bit

is rotated left each cycle with 4’b1000 rotating to 4’b0001 in Figure 15, and the token

is initialized to one at the reset phase (e.g., 4’b0001 for a four-bit ring counter) so that

29

there is exactly one ‘1’ output by the ring counter. In the round-robin algorithm, each

master must wait no longer than (M − 1) time slots, where a time slot is the period
of time allocated to the chosen master, until the next time it receives the token (i.e.,

highest priority). The assigned time slot can also be yielded to another master if the

owner of the time slot has nothing to send [47]. This round-robin protocol guarantees

a dynamic priority assignment to bus masters (requestors) without starvation.

In Figure 15, request inputs are connected with different levels of priority so that

the priority levels are equally distributed over all request signals. In other words, the

probability of being the highest priority is 0.25 for all request signals (req[0] – req[3]).

Likewise the probability of being the second highest priority is also 0.25, and so on.

Example 4.2 In Figure 15, req[0] has the highest priority in the top priority logic block

(Priority Logic 0) and has the lowest priority in the next priority logic block (Priority

Logic 1). Also, req[1] has the second highest priority in the top priority logic block and

has the highest priority in the next priority logic block. The outputs of priority logic blocks

are ORed together in the same order of the request inputs to priority logic blocks. In other

words, for example, grant[0] is the output of a 4-input OR gate whose four inputs are out-

put[0] (corresponding to req[0] input to in[0] of Priority Logic 0), output[3] (corresponding

to req[0] input to in[3] of Priority Logic 1), output[2] (corresponding to req[0] input to

in[2] of Priority Logic 2) and output[1] (corresponding to req[0] input to in[1] of Priority

Logic 3). ✷

Example 4.3 Consider a scenario with four processors as bus masters connected to the

same bus with one large shared memory as a slave on the bus as shown in Figure 16.

Suppose the token is 4 (token = 4’b0100, which means processor 2 has the token), and

only processor 0 (which uses req[0]) and processor 1 (req[1]) want to access the memory at

this cycle. Token=4’b0100 enables only Priority Logic 2 in Figure 15. In Priority Logic 2,

the connection to in[0] (req[2] from processor 2) indicates the highest priority. Since req[3]

30

Processor 2

req[0]

Processor 0 Processor 1 Processor 3

Memory

PL 2

token[2]

ring counter

grant[0]

4x4 BA

req[1]
output[2]

ack

Figure 16: Four processors with a shared memory system (Note: bus and 4x4 BA
details shown only as needed for Example 4.1.)

is connected to in[1] of Priority Logic 2 in Figure 15, processor 3 has the next highest

priority. However, since neither processor 2 nor processor 3 makes a request, in[2] which

is connected to req[0] is next in line in priority. Thus, processor 0 is granted access to the

memory. After processor 0 finishes, the memory controller of the accessed memory sends an

ack signal, whose connection to the BA is shown in Figure 15, indicating when the memory

transaction is successfully completed. Next, which could be several processor clock cycles

later, the token is passed to processor 3 (the 4-bit ring counter is rotated left when the ack

signal is received) in which case the token is 4’b1000. Note that only the asserted signals

of this example are shown in Figure 16. ✷

4.2 Switch Arbiter Design

We use 2x2, 3x3 and 4x4 switch arbiter blocks as basic modules to implement an MxM

hierarchical Switch Arbiter (SA). Figure 17 shows how 2x2, 3x3 and 4x4 bus arbiters

are modified to implement 2x2, 3x3 and 4x4 ack-req SAs by adding some AND and

OR gates to a BA (note that the 2x2 ack-req SA in Figure 17 is exactly the same as

Figure 6). In Figure 17, request input signals are ORed together to generate a single

request output (whose use will become clear later), and grant signals are ANDed

31

2x2
Bus

Arbiter

ack

req0[0]
req0[1]

grant0[1]

grant0[2]

req0

2x2 ack-req SA
clock

reset

3x3
Bus

Arbiter

ack
grant0[0]

grant0[1]

grant0[2]
req0[0]
req0[1]
req0[2]

req0

3x3 ack-req SA
clock

reset

4x4
Bus

Arbiter

ack
grant0[0]

grant0[1]

grant0[2]
grant0[3]req0[3]

req0[0]
req0[1]
req0[2]

req0

4x4 ack-req SA
clock

reset

Figure 17: Ack-req SA blocks

32

together with an ack input (active high) which indicates that the corresponding ack-

req SA is acknowledged in order to be enabled. Finally, the ack-req SA grants a

master only if the ack input is asserted.

A root SA is placed at the top level of the hierarchy in a hierarchical SA. Specif-

ically, a root SA is placed on the top of the hierarchical tree structure (an example

of which will be shown in Figure 20). A root SA has no ack input nor req output.

The input/output logic of a 2x2 root SA, a 3x3 root SA and a 4x4 root SA are the

same as that of a 2x2 BA and a 4x4 BA except that there is no ack input and no

D flip-flop in front of the ring counter as shown in Figure 18: thus, the clock input is

used to rotate the content (the token bits) of the ring counter as shown in detail in

Figure 19 for the case of a 4x4 root SA.

With the 2x2, 3x3 and 4x4 switch arbiter blocks shown in Figures 17 and 18, we

can design an MxM hierarchical SA. Figure 20 shows how a 7x7 hierarchical SA is

implemented and demonstrates a tree structure rotated clockwise by 90 degree. We

call the 4x4 ack-req SA placed on the left side a “leaf” arbiter, and the final switch

arbiter placed on the right side we call the “root” SA. We consider the “level” of a

switch arbiter block to increase or go up moving toward the right. Thus, a “leaf”

arbiter is always located at the lowest level. As shown in Figure 20, req 0 and req 1

signals act as request inputs to a switch arbiter block at the next highest level (in

the case of Figure 20, the 2x2 root SA is the next highest level). The grant signals

output by the higher level switch arbiter block(s) – in Figure 20, the 2x2 root SA is

the only case – are used as inputs to the ack signals for lower level switch arbiter

blocks – in Figure 20, ack0[0] and ack0[1]. Intuitively, the higher-level switch arbiter

blocks activate, in round-robin fashion, lower-level switch arbiter blocks.

We can redraw Figure 20 with 4x4 BAs by placing AND gates and OR gates as

shown in Figure 21 (the AND gates and OR gates shown explicitly in Figure 21 were

previously contained in the 4x4 ack-req SAs in Figure 20). Note in Figure 21 that

33

2x2
BA

without
D flip-flop

ack0

ack1

req0

req1

2x2 root SA
clock

ring counter
reset

token[1:0]

3x3
BA

without
D flip-flop

ack0

ack1

ack2

req0
req1
req2

3x3 root SA
clock ring counter
reset

4x4
BA

without
D flip-flop

ack0
ack1
ack2
ack3

req0
req1
req2
req3

4x4 root SA
clock ring counter
reset

Figure 18: Root SA blocks

Priority
Logic 0

req[0]
req[1]
req[2]
req[3]

Ring Counter

to
ke

n
[0

]

to
ke

n
[1

]

to
ke

n
[2

]

to
ke

n
[3

]

Priority
Logic 2

Priority
Logic 3

Priority
Logic 1

EN

EN

EN

EN

grant[0]

grant[1]

grant[2]

grant[3]

4x4 root SA
reset

output[0]
output[1]

output[2]
output[3]

in[0]

in[1]

in[2]
in[3]

clock

Figure 19: Detailed view of a 4x4 root Switch Arbiter

34

4x4
ack-req

SA

req0[0]
req0[1]
req0[2]
req0[3]

ack0[0]

3x3
ack-req

SA

ack0[1]

req1[0]
req1[1]
req1[2]

2x2
root

SA

grant0[0]
grant0[1]
grant0[2]
grant0[3]

grant1[0]
grant1[1]
grant1[2]

req_0
req_1

7x7 SA
clock

Figure 20: A 7x7 SA configuration (Note: reset signal not shown)

req0[0]

req0[1]

req0[2]

req0[3]

ack0[0]

ack0[1]

req1[0]

req1[1]

req1[2]

2x2
root

SA

grant0[0]

grant0[1]

grant0[2]

grant0[3]

grant1[0]

grant1[1]

grant1[2]

req_0req_1

7x7 SA

clock

4x4
BA

counterD

3x3
BA

counterD

Figure 21: A 7x7 SA with a different placement of the AND gates (Note: reset
signal not shown)

35

ack0[0] and ack0[1] are fed back to a D flip-flop for the next arbitration cycle to

rotate the ring counter. However, the grant signals grant0[3:0] and grant1[3:0] are

not fed back but instead are outputs in Figure 21.

Considering Figure 21, the two critical path candidates for the 7x7 SA are (i) a

4-input OR gate, a 2x2 root SA and an AND gate, or (ii) a 4x4 BA followed by a

2-input AND gate. It turns out that the critical path when using a TSMC 0.25µm

standard cell library from LEDA Systems is (i) a 4-input OR gate followed by a 2x2

root SA followed by an AND gate. Note that ack0 signals from the 2x2 root SA feed

into D flip-flops in the 4x4 BAs and thus do not affect the present arbitration cycle.

In Chapter 5, we will give a formal algorithm to design a hierarchical SA. For

now note that to reduce the number of levels in the hierarchical SA, we use as many

4x4 switch arbiter blocks as possible because both the speed and area of a 4x4 switch

arbiter block are less than the speed and area of employing two levels of 2x2 switch

arbiter blocks to handle four requests, for a total of three 2x2 switch arbiter blocks:

two leaves and one root as shown in Figure 22. For example, the delay of a 4x4 switch

arbiter block is 0.34 ns in a TSMC 0.25µm library [60] from LEDA Systems [23] which

2x2
ack-req

SA

req0[0]

req0[1]

ack0[0]

2x2
ack-req

SA

ack0[1]

req1[0]

req1[1]

2x2
root

SA

grant0[0]

grant0[1]

grant1[0]

grant1[1]

req_0
req_1

4x4 SA
clock

rootleaves

Figure 22: A 4x4 SA implemented by three 2x2 switch arbiter blocks (Note: reset
signal not shown)

36

is less than the delay of two levels of 2x2 switch arbiters implementing Figure 22:

0.46 ns using the same TSMC 0.25µm library from LEDA Systems. Also, comparing

a 16x16 SA versus a combination of 4x4 switch arbiter blocks implementing a 16x16

hierarchical SA yields the following: a 16x16 SA with a 16-input priority logic block

synthesized using the Synopsys Design Compiler leads to 1.49 ns gate delay using

a TSMC 0.25µm library from LEDA Systems, while a 16x16 hierarchical SA yields

only 0.76 ns gate delay using the same standard cell library. So, apparently, for fast

implementation, it is best to keep MxM hierarchical SAs built out of 2x2, 3x3 and

4x4 switch arbiter blocks, with a preference for 4x4 switch arbiter blocks. This will

be discussed in more detail in Chapter 5.

For a larger example, consider the 32x32 hierarchical SA shown in Figure 23. The

2x2 and 4x4 switch arbiter blocks are composed into a tree structure in Figure 23

(the leftmost blocks are the leaves and the rightmost block is the root). Non-root 2x2

and 4x4 ack-req SA blocks receive an acknowledgment from a switch arbiter block at

the next higher level (which translates to being further toward the right hand side

of Figure 23) for the next arbitration cycle. Since the root switch arbiter block in

the hierarchy does not receive an acknowledgment (because there is no higher level

switch arbiter block), the root arbiter uses the clock input to pass the token (i.e.,

highest priority) to the next master in every arbitration cycle in round-robin order.

In Figure 23,“l0.sa0” denotes switch arbiter (“sa”) 0 in level 0 (the lowest level in

the hierarchy where the left hand side of Figure 23 is the lowest). The 4x4 ack-req SAs

placed on the left side of Figure 23 are the lowest level (l0.sa0 through l0.sa7) in the

hierarchy, and the level goes up moving toward the right. At most one grant out of the

32 grants (outputs) is allowed to be set to logic ‘1’ at a time. This hierarchical SA is a

distributed switch arbiter whose individual 2x2 and 4x4 switch arbiter blocks operate

in parallel with one another. In other words, the upper level switch arbiters (l1.sa0,

l1.sa2 and the root arbiter) only arbitrate their own ORed requests (for example,

37

4x4
ack-req

SA
l0.sa0

req0[0]
req0[1]
req0[2]
req0[3]

ack0[0]

4x4
ack-req

SA
l0.sa1

ack0[1]

4x4
ack-req

SA
l0.sa2

ack0[3]

4x4
ack-req

SA
l0.sa3

4x4
ack-req

SA
l1.sa0

req1[0]
req1[1]
req1[2]
req1[3]

req2[0]
req2[1]
req2[2]
req2[3]

req3[0]
req3[1]
req3[2]
req3[3]

ack0[2]

4x4
ack-req

SA
l0.sa4

req4[0]
req4[1]
req4[2]
req4[3]

ack1[0]

4x4
ack-req

SA
l0.sa5

ack1[1]

4x4
ack-req

SA
l0.sa6

ack1[3]

4x4
ack-req

SA
l0.sa7

4x4
ack-req

SA
l1.sa1

req5[0]
req5[1]
req5[2]
req5[3]

req6[0]
req6[1]
req6[2]
req6[3]

req7[0]
req7[1]
req7[2]
req7[3]

ack1[2]

2x2
root

SA

grant0[0]
grant0[1]
grant0[2]
grant0[3]

grant1[0]
grant1[1]
grant1[2]
grant1[3]

grant2[0]
grant2[1]
grant2[2]
grant2[3]

grant3[0]
grant3[1]
grant3[2]
grant3[3]

grant4[0]
grant4[1]
grant4[2]
grant4[3]

grant5[0]
grant5[1]
grant5[2]
grant5[3]

grant6[0]
grant6[1]
grant6[2]
grant6[3]

grant7[0]
grant7[1]
grant7[2]
grant7[3]

up_req[0]
up_req[1]

req_0
req_1

req_2
req_3

req_4req_5

req_6
req_7

up_ack0

up_ack1

clock

Figure 23: Hierarchical Switch Arbiter for 32 x 32 switch (Note: reset signal not
shown)

38

req 0 through req 3 for l1.sa0) from the lower level switch arbiters (l0.sa0 through

l0.sa3) regardless of the ack signals from the higher level. Note that, for example, the

ORed request req 0 indicates whether any of req0[3:0] is currently making a request;

thus, req 0 indicates to l1.sa0 that l0.sa0 has at least one active request which l0.sa0

can grant if ack0[0] is set high, enabling l0.sa0. Also, ack signals from higher levels

are fed back to D flip-flops in each ack-req SA in order to potentially rotate the token

bit in the next arbitration cycle.

ack1[1]

grant5[1]

clock

2x2
root

SA

up_req[0]

up_req[1]

req5[0]

req5[1]

req5[2]

req5[3]

4x4
BA

counterD

req_4

req_5

req_6

req_7

4x4
BA

counterD

up_ack0

up_ack1

l1.sa1.output[1]

l0.sa5.output[1]

Figure 24: The critical path of Figure 23

For critical path considerations, we synthesized an RTL Verilog description of

Figure 23 using the Synopsys Design Compiler [51] with a 0.25 µm TSMC standard

cell library [60] from LEDA Systems [23]. The longest logic delay in Figure 23 given

by the Synopsys Design Compiler [51] is shown in Figure 24: two levels of ORed

requests req 5 (ORed req5[0] through req5[3]) and up req[1] (ORed req 4 through

req 7), the gate delay of the 2x2 root arbiter, up ack1 ANDed with l1.sa1.output[1]

finishing with ack1[1] ANDed with l0.sa5.output[1] which produces signal grant5[1].

This critical path is indicated by the bold line in Figure 24.

39

This scheme of Figure 23 results in area savings and delay savings compared with

a centralized arbiter. Even more, the design of a class of hierarchical SAs similar to

Figure 23 is automated by our RAG tool, which will be described in Chapter 5.

We compare the performance and the area of our SA with those of the Pro-

grammable Priority Encoder (PPE), implementing iSLIP, and Ping-Pong Arbiter (PPA)

in Chapter 7. We do not compare our SA with dual round-robin matching (DRRM).

As mentioned in [7] by Chao, who is the first author of both DRRM [8] and PPA [7],

PPA is proposed to reduce complexities due to the centralized arbitration algorithms

like DRRM and iSLIP; thus, Chao claims that the arbitration of PPA is faster than

that of DRRM. Hence, we do not compare our solution to DRRM but only to PPA,

since, presumably according to Chao [7], if our solution is faster than PPA, then our

solution is also faster than DRRM by the same or greater margin of speedup.

We chose to design our hierarchical SAs in the way shown in the previous two

examples (Figure 20 and Figure 23) for two reasons. First, we want to reduce the

number of levels in a hierarchical SA. As we showed in the comparison of a 4x4 SA

with a 4x4 hierarchical SA composed of three 2x2 switch arbiter blocks as shown in

Figure 22, a hierarchical 4x4 SA has longer logic delay than a 4x4 SA made using

a single 4x4 BA (i.e., without any hierarchy). However, since PPA uses only 2x2

switch arbiters, PPA has more levels in its hierarchy resulting in longer logic delay

than our SA. Hence, we prefer to use as many as 4x4 switch arbiter blocks possible

in our hierarchical SA in order to reduce delay.

Employing priority encoders is one way of implementing an arbiter. However, the

number of gates and the logic stages in a priority encoder rapidly increases as the

number of masters increases, which leads to the longer critical path delay. Thus,

we found that overall delay was the smallest when we limit the size of priority logic

blocks to 2-input, 3-input or 4-input blocks to avoid the rapid increase in gate delay

and area for PPE (which uses a single large priority encoder) as shown in Figure 45 of

40

Algorithm 1 Pseudo code for token passing of the 2x2 root SA and a 4x4 switch
arbiter blocks
2x2 root token
begin
1: /*Initialization*/
2: root token = 2’b01;
3: if (positive edge of clock) then
4: rotate token;
5: end if

end

4x4 ack-req SA token
begin
1: /*Initialization*/
2: ack-req token = 4’b0001;
3: if (positive edge of clock) then
4: if (ack) then
5: rotate token;
6: end if
7: end if

end

Chapter 7. Furthermore, we use 2x2, 3x3 and 4x4 switch arbiter blocks to implement

an MxM SA. Note that 3x3 switch arbiter blocks are utilized only when M is not a

power of two.

Algorithm 1 presents in pseudo code how the 2x2 root SA and an 4x4 ack-req SA

tokens are passed. The 2x2 root token is rotated every clock cycle using a 2-bit ring

counter, while the token of a 4x4 ack-req SA is rotated using a 4-bit ring counter

whenever the 4x4 ack-req SA is acknowledged from the higher level.

Example 4.4 If the current token state of l1.sa1 (the ring counter outputs token[3:0], see

Figure 15 which shows the 4x4 Bus Arbiter of 4x4 ack-req SA in Figure 17) in Figure 23

equals 4’b1000 implying that req 7 has the highest priority, the token will be rotated to

give req 4 the highest priority in the next arbitration cycle if up ack1 is asserted. ✷

Figure 25 describes in pseudo code an algorithm for a subset of the 32x32 SA

shown in Figure 23. Specifically, Figure 25 describes more details on the token values

of l0.sa0 and l1.sa0. Since an asserted request is granted according to the priority

41

Switch_Arbiter{
if (root_token==1) {
/*l1.sa0 has the highest priority if */
/*up_req[0] equals ‘1’. Otherwise l1.sa1 */
/*has the highest priority */

if (up_req[0]) {
up_ack0=1;
if (l1.sa0.token==1) {

/*l0.sa0 has the highest priority */
if (req_0) {

/*if one of requests from l0.sa0 is ‘1’ */
ack0[0]=1;
if (l0.sa0.token==1) {

if (req0[0]) grant0[0]=1;
else if (req0[1]) grant0[1]=1;
else if (req0[2]) grant0[2]=1;
else grant0[3]=1;

}
else if (l0.sa0.token==2) {

if (req0[1]) grant0[1]=1;
else if (req0[2]) grant0[2]=1;
else if (req0[3]) grant0[3]=1;
else grant0[0]=1;

}
else if (l0.sa0.token==4) {

 req0[2] has the highest
priority;

}
else if (l0.sa0.token==8) {

 req0[3] has the highest
priority;

}
}//if (req_0)
else if (req1) {

ack0[1]=1;
if (l0.sa1.token==1) {

if (req1[0]) grant1[0]=1;
else if (req1[1]) grant1[1]=1;
else if (req1[2]) grant1[2]=1;
else grant1[3]=1;

}
else if (l0.sa0.token==2) {

req1[1] has the highest
priority;

}
else if (l0.sa0.token==4) {

 req1[2] has the highest
priority;

}
else if (l0.sa0.token==8) {

 req1[3] has the highest
priority;

}
}//else if (req1)
else if (req2) {

ack0[2]=1;
one of req2[3:0] has the
privilege to be granted;
req2[3:0] is granted according
to the value of l0.sa2.token in
round-robin order;

} // else if (req2)
else { //else if (req3)

ack0[3]=1;
one of req3[3:0] has the
privilege to be granted;
req3[3:0] is granted according
to the value of l0.sa3.token in
round-robin order;

} // else

}//if (l0.sa0.token==1)
else if (l1.sa0.token==2) {

if (req1) {
ack0[1]=1;
one of req1[3:0] has the
privilege to be granted;
req1[3:0] is granted according
to the value of l0.sa1.token in
round-robin order;
} // if (req1)

else if (req2) {
ack0[2]=1;
one of req2[3:0] has the
privilege to be granted;
req2[3:0] is granted according
to the value of l0.sa2.token in
round-robin order;

} // else if (req2)
else if (req3) {

ack0[3]=1;
one of req3[3:0] has the
privilege to be granted;
req3[3:0] is granted according
to the value of l0.sa3.token in
round-robin order;

} // else if (req3)
else { //else if (req_0)

ack0[0]=1;
one of req0[3:0] has the
privilege to be granted;
req0[3:0] is granted according
to the value of l0.sa0.token in
round-robin order;

} // else
}//else if (l0.sa0.token==2)
else if (l1.sa0.token=4) {

req2[3:0] has the highest priority;
req3[3:0] is the second priority;
req0[3:0] is the third priority;
req1[3:0] has the lowest priority;

}//else if (l0.sa0.token==4)
else if (l1.sa0.token==8) {

req3[3:0] has the highest priority;
req0[3:0] is the second priority;
req1[3:0] is the third priority;
req2[3:0] has the lowest priority;

}//else if (l0.sa0.token==8)
}//if (up_req[0])
else if (up_req[1]) {

up_ack0=1;
if (l1.sa1.token==1) {

req4[3:0] has the highest priority;
req5[3:0] is the second priority;
req6[3:0] is the third priority;
req7[3:0] has the lowest priority;

}//if (l1.sa1.token==1)
else if (l1.sa1.token==2) {

req5[3:0] has the highest priority;
req6[3:0] is the second priority;
req7[3:0] is the third priority;
req4[3:0] has the lowest priority;

}//else if (l1.sa1.token==2)
else if (l1.sa1.token==4) {

req6[3:0] has the highest priority;
req7[3:0] is the second priority;
req4[3:0] is the third priority;
req5[3:0] has the lowest priority;

}//else if (l1.sa1.token==4)
else if (l1.sa1.token==8) {

req7[3:0] has the highest priority;

req4[3:0] is the second priority;
req5[3:0] is the third priority;
req6[3:0] has the lowest priority;

}//else if (l1.sa1.token==8)
}//else if (up_req[1])
else

set all grant signals to ‘0’s;
}//if (root_token==1)
else { //root_token==2

if (up_req[1]) {
up_ack1=1;
if (l1.sa1.token==1) {

req4[3:0] has the highest priority;
req5[3:0] is the second priority;
req6[3:0] is the third priority;
req7[3:0] has the lowest priority;

}//if (l1.sa1.token==1)
else if (l1.sa1.token==2) {

req5[3:0] has the highest priority;
req6[3:0] is the second priority;
req7[3:0] is the third priority;
req4[3:0] has the lowest priority;

}//else if (l1.sa1.token==2)
else if (l1.sa1.token==4) {

req6[3:0] has the highest priority;
req7[3:0] is the second priority;
req4[3:0] is the third priority;
req5[3:0] has the lowest priority;

}//else if (l1.sa1.token==4)
else if (l1.sa1.token==8) {

req7[3:0] has the highest priority;
req4[3:0] is the second priority;
req5[3:0] is the third priority;
req6[3:0] has the lowest priority;

}//else if (l1.sa1.token==8)
}//if (up_req[1])
else if (up_req[0]) {

up_ack0=1;
if (l1.sa0.token==1) {

req4[3:0] has the highest priority;
req5[3:0] is the second priority;
req6[3:0] is the third priority;
req7[3:0] has the lowest priority;

}//if (l1.sa0.token==1)
else if (l1.sa0.token==2) {

req5[3:0] has the highest priority;
req6[3:0] is the second priority;
req7[3:0] is the third priority;
req4[3:0] has the lowest priority;

}//else if (l1.sa0.token==2)
else if (l1.sa0.token==4) {

req6[3:0] has the highest priority;
req7[3:0] is the second priority;
req4[3:0] is the third priority;
req5[3:0] has the lowest priority;

}//else if (l1.sa0.token==4)
else if (l1.sa0.token==8) {

req7[3:0] has the highest priority;
req4[3:0] is the second priority;
req5[3:0] is the third priority;
req6[3:0] has the lowest priority;

}//else if (l1.sa0.token==8)
}//else if (up_req[0])
else

set all grant signals to ‘0’s;
}//else

Figure 25: Switch Arbiter algorithm

42

state of the corresponding switch arbiter block, we begin with an explanation of the

priority state of a switch arbiter block. The priority state is determined by the token.

We start by explaining the priority state of the root SA since the root SA is on the

top of the hierarchy and acknowledges one of its children based on its token status.

Figure 25 shows the following: which asserted request signal receives the highest

priority in a given cycle is based on the token values of switch arbiter blocks. From a

high level perspective, each switch arbiter block grants one of its requests according

to its current token values and, at the same time, generates an ORed request to the

corresponding switch arbiter block in the higher level; which request is granted by a

switch arbiter block is independent of the outputs of other switch arbiter blocks. The

output of a switch arbiter block only needs to be approved by the assertion of the

ack signal input, which is equivalent to a “grant” signal from the higher level switch

arbiter block.

The 2x2 root SA has a token, token[1:0], which determines the priority state and

is output from the ring counter shown in 2x2 root SA in Figure 18. According to

the token value of the 2x2 root SA, one of the 2x2 root SA’s children is granted if

there is at least one asserted request from its children. Also, each 4x4 ack-req SA

in Figure 23 has a token (the ring counter outputs token[3:0], see Figure 15 which

shows the 4x4 Bus Arbiter of 4x4 ack-req SA in Figure 17) inside of the 4x4 Bus

Arbiter in the ack-req SA. Similar to the grant operation of the 2x2 root SA, a 4x4

ack-req SA grants one of its request inputs according to its token value. In Figure 25,

the top if-else block, if(root token==1), first checks the token of the 2x2 root SA in

Figure 23. Then, the 2x2 root SA acknowledges one of its children (l1.sa0 or l1.sa1)

by granting one of request signals (up req[0] or up req[1]) according to the values of

its token and request input signals. Likewise, the acknowledged 4x4 ack-req SA (say,

l1.sa0) authorizes one of its children (say, l0.sa0 through l0.sa3) by asserting one

of ack signals (say, ack0[0]) depending on the values of its token and input requests

43

root_token

up_req[0]up_req[1] 0

1

l1.sa0.token

1

req0 req1 req2 req3
0 0 0

1

l0.sa0.token

1

req0[0]
0 0 0

req0[1] req1[1]req1[0]

1

grant0[0]=1

1

grant0[1]=1 grant1[0]=1 grant1[1]=1

1 1 1

All grants = 0s

0

… …

1

l0.sa0.token

1

Figure 26: Flowchart of Switch Arbiter algorithm

(say, req 0 through req 3). Similarly, the acknowledged 4x4 ack-req SA (say, l0.sa0)

at the level 0, grants one request signal based on the token status and the values of

input request signals (say, req0[3:0]). In general, the values of ack signals and grant

signals are determined according to the value of input request signals (including ORed

request) and the token status of each switch arbiter blocks. We explain in detail two

specific examples (Example 4.5 and Example 4.6) with a simplified flowchart version

of Figure 25 as shown in Figure 26.

Example 4.5 We describe the case where req0[0] has the highest priority and all 32

request signals (req0[3:0] through req7[3:0]) in Figure 23 are asserted. We assume that in

the previous cycle, no request was asserted and thus all grant signals (grant0[3:0] through

grant7[3:0]) are zero. Suppose the token of the 2x2 root SA in Figure 23 is equal to 1

(i.e., token[1:0]=2’b01); recall that token[1:0] is an internal value output by the two-bit ring

44

counter of the 2x2 root SA in Figure 23. Also, in order to give specific priority orders to all

4x4 ack-req SAs, assume that token (token[3:0]) of each 4x4 ack-req SA is equal to 4’b0001.

Then the 32x32 hierarchical SA in Figure 23) works as follows. Since the token of the 2x2

root SA is equal to 1 (2’b01), l1.sa0 has a higher priority than l1.sa1 in Figure 23. Since

all bits of req0[3:0] are asserted, req 0 (the bit-wise OR of req0[3:0]) is equal to logic ‘1’

resulting in up req[0] set to ‘1’. In this case, the 2x2 root SA grants l1.sa0 by setting up ack0

equal to ‘1’ since up req[0] is equal to ‘1’ and l1.sa0 has higher priority. Thus, l1.sa0 has

been acknowledged and has the privilege to grant one of its children, l0.sa0 through l0.sa3.

Similarly, l1.sa0 acknowledges l0.sa0 by setting ack0[0] equal to ‘1’ because l0.sa0 has the

highest priority since the token of l1.sa0 is equal to 4’b0001. Then, l0.sa0 grants one of

requests signals (req0[0] through req0[3]) based on the priority. Since req0[0] is prior to

other request inputs to l0.sa0 (the token of l0.sa0 is equal to 4’b0001) and req0[0] is equal

to ‘1’ by our assumption, req0[0] is the final winner and only grant0[0] is set to logic ‘1’. ✷

Example 4.6 This example shows the same case as Example 4.5, except that only req0[3:0]

are not asserted, under the same condition of priority orders (tokens) assumed in Exam-

ple 4.5 (the token of the 2x2 root SA is equal to ‘1’ and tokens of all 4x4 ack-req SAs are

equal to 4’b0001). In the same way described in Example 4.5, l1.sa0 is acknowledged to

grant one of its children by the up ack0. Since the highest priority request input, req 0,

is negated, l1.sa0 must look for a child switch arbiter in the descending order of priority.

First, l1.sa0 checks if req 1 is ‘1’. If so, l1.sa0 acknowledges l0.sa1 by setting ack0[1] equal

to ‘1’. Otherwise, l1.sa0 checks whether req 2 is ‘1’. Since req 1 is equal to ‘1’, l1.sa0 sets

ack0[1] equal to ‘1’. The acknowledged switch arbiter l0.sa1 then grants one of its request

45

signals (req1[0] – req1[3]) based on priority. Since req1[0] has the highest priority (because

the token of l0.sa1 is equal to 4’b0001), req1[0] is the final winner. ✷

4.3 Hierarchical Bus Arbiter Design

The basic logic of a hierarchical Bus Arbiter (BA) is the same as that of a hierar-

chical SA. However, a hierarchical BA has an extra done input which indicates the

completion of a single use of the bus for the current bus owner. Thus, the current bus

owner can hold a bus for multiple cycles in a hierarchical BA; in a hierarchical SA,

on the other hand, the granted input port can take a specific output port only for a

single cycle, and thus no done input is needed. Figure 27 shows an 8x8 hierarchical

BA.

req0[0]

req0[1]

req0[2]

req0[3]

ack0[0]

ack0[1]

req1[0]

req1[1]

req1[2]

req1[3]

2x2
root

SA

grant0[0]

grant0[1]

grant0[2]

grant0[3]

grant1[0]

grant1[1]

grant1[2]

grant1[3]

req0
req1

8x8 hierarchical BA

clock

4x4
ack-req

BA 0

counterD

4x4
ack-req

BA 1

counterD

done

Figure 27: 8x8 hierarchical BA

46

Note that a hierarchical BA still uses a root SA. However, the root SA in a

hierarchical BA takes an done input that rotates a root token only after a rising edge

is seen on the done input, while a root SA in a hierarchical SA takes a clock input

to rotate the root token every clock cycle. In addition, a hierarchical BA employs

ack-req BA(s) instead of ack-req SA(s) in order for the granted bus master to hold a

bus for multiple cycles. Figure 28 shows a 4x4 ack-req BA.

D4x4
Bus

Arbiter D

D

D

ack
clock

req0[3]

req0[1]
req0[2]

req0[0]

reset

4x4 ack-req BA

grant0[3]

grant0[1]

grant0[2]

grant0[0]

req0

D ring

Figure 28: 4x4 ack-req BA

Let us briefly describe how an ack-req BA functions. First note that the assertion

of an ack input (from a higher level in the hierarchy) to an ack-req BA acknowledges

that one of its requests was granted. Thus, the token (the content of ring counter in

Figure 28) of an ack-req BA must be updated after a data transfer completion noted

by the acknowledgment (ack0[0] for BA 0 or ack0[1] for BA 1 in Figure 27). The

acknowledgment remains asserted (logic ‘1’) during the use of the bus. Unlike 4x4

ack-req SA, the ring counter of the 4x4 ack-req BA takes the Q output from a D flip-

flop and the ring counter consists of rising-edge D flip-flops. Thus, the falling edge of

the acknowledgment (ack0[0] or ack0[1] in Figure 27) triggers the ring counter for a

token update. The 4x4 ack-req BA also has additional logic, four D latches as shown

on the right-hand-side of Figure 28, compared with an ack-req SA. These D latches

that are placed between a bus arbiter and AND gates to hold grant outputs from

a bus arbiter until the rising edge of the acknowledgment signal; this is necessary

because the output of a 4x4 Bus Arbiter, depending on request inputs, could change

47

during the use of the bus. In this manner, a granted bus master can hold the bus

until the completion of a single bus usage (which may consume multiple bus cycles).

Example 4.7 Consider a scenario where eight processors as bus masters are connected to

a single bus with one large shared memory and an 8x8 hierarchical BA that arbitrates bus

requests from the eight masters. In the 8x8 hierarchical BA, there are two 4x4 ack-req BAs

and one 2x2 root SA as shown in Figure 27. Suppose req0[1] from processor 1 is granted;

thus, grant0[1] is asserted. Next, processor 0 and processor 4 request a bus by the assertions

of req0[0] and req1[0], respectively. The token of the 2x2 root SA - currently, the token of

the 2x2 root SA is equal to 2’b01 - is not rotated until the done input from processor 1

is received. Thus, 4x4 ack-req BA 0 remains activated by the assertion of ack0[0]. Since

req0[0] is asserted, the output of 4x4 Bus Arbiter in 4x4 ack-req BA 0 becomes 4’b0001

granting req0[0]. However, grant0[1] is still asserted because of the D latches in the 4x4

ack-req BA 0. After processor 1 completes its transfer by asserting the done input to the

8x8 hierarchical BA, the token of the root SA is rotated to 2’b10. Finally, the 2x2 root SA

deactivates 4x4 ack-req BA 0 and activates 4x4 ack-req BA 1 which serves processor 4 by

asserting ack0[1] since the token of the 2x2 root SA becomes 2’b10. ✷

4.4 Impact on Logic Synthesis: Priority Logic

Specification

As noted in Section 4.2, a 16x16 SA with a 16-input priority logic block synthesized

using the Synopsys Design Compiler leads to critical path gate delay of 1.49 ns using

a TSMC 0.25µm standard cell library from LEDA Systems, while a 16x16 hierarchical

SA yields a critical path gate delay of only 0.76 ns. This large decrease – from 1.49 ns

down to 0.76 ns in this case – holds in general for powers of two above M = 4 as will

48

be shown empirically in Chapter 5 and Chapter 7 (for M = 4 and M = 2 the logic

structure and thus delay is non-hierarchical and exactly the same).

4.4.1 Hierarchical SA versus PPE

Consider our hierarchical 32x32 SA shown in Figure 23 as compared to the equivalent

32x32 PPE Switch Arbiter, which is basically composed of a 32x32 priority encoder

plus some associated control logic. Considered from a logic synthesis perspective [3,

15, 32], the logic of which grant signal is selected, given a sequence of requests, is

roughly equivalent. Yet the worst-case delay of the logic synthesized for Figure 23 is

less than half of the delay of the logic synthesized for a 32x32 PPE (see Chapter 7

for detailed results)! Clearly, then, the difference lies in the logic structure input to

the logic synthesis tool.

Consideration of logic structure in PPE versus our hierarchical SA leads us to

focus on what is by far the largest and most complicated logic component of each:

priority encoder(s). In the priority encoder of PPE, a single priority encoder is used

with a number of inputs equal to the number of inputs to the switch arbiter. In our

hierarchical SA, on the other hand, the number of inputs to any priority logic block

is limited to two, three or four; thus, in our case, the logic synthesis tool is biased

toward considering two-input, three-input and four-input logic gates. With a single

priority encoder with many (much greater than four) inputs, on the other hand, the

logic synthesis heuristics must search for a logic structure to minimize delay and area

given boolean equations with much greater than four boolean inputs; thus, more is

asked of the logic synthesis heuristics in terms of finding the best mapping. In a

sense, more freedom is given to the logic synthesis heuristics; in our hierarchical SA,

on the other hand, a more constrained problem is given (namely, the synthesis of 2x2,

3x3 and 4x4 SAs with a clearly specified interconnect netlist). In short, this is one

large difference: the logic equations given in the case of PPE are much larger, while

49

the logic equations given in the case of our hierarchical SA are more constrained to a

specific structure.

Consideration of logic structure in PPE versus our hierarchical SA leads to another

perhaps less important but nonetheless very clear difference: the tokens and internal

acknowledge signals in our hierarchical SA are simply not present in PPE. Note that

none of the current logic synthesis algorithms such as heuristic logic minimizations [32,

15] consider the token passing method that we employed in this thesis. From a high

level point of view, a parent token enables one of its children by assertion of an ack

signal. Exemplified with Figure 23, the root SA (parent) acknowledges either l1.sa0

or l1.sa1 (child) by the up ack0 or up ack1 signal according to the token state. On

the other hand, the token of each 2x2 or 4x4 switch arbiter block consequently grants

one of its inputs by enabling one of its priority logic blocks according to the token

state. Moreover, the token – updated by an ack signal from the higher level for

ack-req SAs and the clock signal for a root SA– is a kind of state stored locally and

updated by the next clock edge. Such local information gained by the passing of tokens

back to internal inputs (states) seems to help to reduce the longest path delay. In a

sense, our hierarchical SA keeps a distributed “state” in its tokens and acknowledge

signals. This internally distributed state is updated each cycle and may also be a

reason for achieving a shorter critical path as compared to PPE which does not save

any internal state values at all. PPE employs thermometer encoding logic [13] which

rotates the priority order based on the pointer value. This thermometer encoding logic

causes extra delay in the current cycle compared with our token passing approach.

Furthermore, this approach – namely, inclusion of specialized internal distributed

state values – is definitely not an approach which is explored or in any way considered

by traditional logic synthesis algorithms.

50

In short, the difference of our approach versus PPE lies in (i) a more constrained

logic structure biased toward four-input logic blocks and (ii) a distributed internal

state used as part of the decision of which input receives the grant.

4.4.2 Hierarchical SA versus PPA

PPA also uses hierarchy but limits its priority logic blocks to 2-input. Thus, the

major difference of our approach versus PPA is that we use as many 4-input priority

logic blocks as possible, thus biasing logic synthesis toward four-input logic gates.

This is one main difference.

Another difference relates to the use of 4-input priority logic blocks can be seen

in Figure 29. Figure 29 shows that a single 4-input priority logic structure, which is

implemented as one base 4x4 unit (e.g., Figure 15 or Figure 19) with critical path

delay through one 4-input priority encoder in our approach, results in a critical path

delay through two AR2 s in PPA. Thus, as the number of inputs becomes large (e.g.,

16 or 32), the number of logic stages on the critical path in PPA is roughly twice the

number of critical path stages in our approach.

AR2
r0

r1

g01

AR2

g23

r2

r3

g0

g1

g2

g3

r01

r23

4x4 PPA

AR2

Figure 29: 4x4 PPA

51

AR2

Q D

clock

r0

r1

g0

g1

Fi Fo

Gg0 Gg1

r01

Figure 30: AR2 block diagram

Similar to our token-passing approach in our 2x2, 3x3 and 4x4 switch arbiter

blocks, each AR2 has a D flip-flop which keeps track of the previous granted input

shown in Figure 30. Thus, for the top left AR2 in Figure 29, r0 has the higher

priority over the other input (r1) if r1 were granted in the previous cycle.

In conclusion, the hierarchical SA approach is better than the centralized SA

approach (e.g., PPE) in a priority encoder based arbiter design. Also, a hierarchical

SA with careful consideration of technology library mapping (e.g., a bias toward four-

input logic gates) is preferable to the tendency toward two-input logic gates (e.g., the

PPA approach) in logic synthesis. Detailed synthesis and timing comparisons are

presented in Chapter 7. The goal of this section, Section 4.4, was to explain to

the reader the main high-level differences in our hierarchical SA logic specification

resulting in such dramatic speedups when the arbitration logic is synthesized.

52

4.5 Fairness in Arbitration

In this section, we discuss the absolute fairness issue. We define an arbiter to be ab-

solutely fair if the number of grants per request is equally distributed over m requests

in m cycles, where m ≤ M , for all cases. However, all published switch arbiters which

are implemented based on priority encoder(s) show unfairness for certain cases. The

following examples show unfairness occurrences in our SA, PPE implementing the

iSLIP algorithm and PPA, respectively.

Priority
Logic 0

req[0]
req[1]
req[2]
req[3]

Ring Counter

to
ke

n
[0

]

to
ke

n
[1

]

to
ke

n
[2

]

to
ke

n
[3

]

Priority
Logic 2

Priority
Logic 3

Priority
Logic 1

EN

EN

EN

EN

grant[0]

grant[1]

grant[2]

grant[3]

4x4 BA

ack

reset

output[0]

output[1]
output[2]

output[3]

in[0]
in[1]

in[2]
in[3]

D-FFclock

Figure 31: 4x4 Bus Arbiter (BA) architecture (Note: Figure 31 is exactly same as
Figure 15)

To explain the unfairness case of our SA, we begin with the priority rotation of

an ack-req SA. Figure 31 (repeated from Figure 15) shows a 4x4 BA which is the

internal logic of a 4x4 ack-req SA. The priority allocation scheme in Figure 31 is

53

not perfectly fair for the case of 4x4 when less than four inputs to a 4x4 BA make

requests. Nonetheless, in the worst case the number of grants per request is one in

four cycles. Example 4.8 shows a case where the fairness problem occurs.

Example 4.8 Suppose only req[0] and req[1] in Figure 31 request continuously. Further-

more, suppose that initially the content of token[3:0] is equal to 4’b0001. Then req[0] is

granted in the first cycle. In the next cycle, req[1] is granted by the enabling of Priority

Logic 1 since token[3:0] is equal to 4’b0010. At the third and fourth cycles, Priority Logics 2

and 3 are enabled, respectively, resulting in req[0] being granted in the next two consecutive

cycles. Consequently, req[1] is granted once every four cycles while req[0] is granted three

times per four cycles because req[1] has a higher priority than req[0] only when Priority

Logic 1 is enabled, and Priority Logic 1 is enabled only when token[3:0] equals 4’b0010. ✷

A centralized arbiter, PPE implementing the iSLIP algorithm, also shows unfair-

ness in arbitration for some cases. The pointer in iSLIP indicates which request signal

has the highest priority. In [13], the pointer is incremented by one regardless of the

latest granted request. We show unfairness occurrence for a case in Example 4.9.

Example 4.9 Consider a 4x4 PPE where the pointer is incremented by one. Figure 32

shows how the pointer is updated as described in [29]. Numbers in Figure 32 correspond

to request signal numbers. The request pointed to by the pointer has the highest priority

and the priority order becomes lower clockwise. Suppose only input ports 0 and 1 compete

for output port 0 continuously, and the pointer initially points to 0 indicating input port 0

has the highest priority at the 1st cycle. Thus, input port 0 is granted in the 1st cycle and

the pointer is incremented by one. In the 2nd cycle cycle, input port 1 is granted since the

pointer points to 1. Now the pointer points to 2 and input port 2 has the highest priority

54

0

12

3

1st cycle

0

12

3

2nd cycle

0

12

3

3rd cycle

0

12

3

4th cycle

Figure 32: The pointer update scheme of PEE

but port 2 does not request output port 1. Thus, input port 0 is granted in the 3rd cycle

because input port 0 has a higher priority than input port 1 in the PPE. Similarly, input

port 0 is granted again in the 4th cycle where the pointer points to 3. Consequently, input

port 0 is granted three times while input port 1 is granted once in four consecutive cycles.

This unfair number of grants per request becomes worse for a larger PPE. For a 32x32

PPE with the same scenario, input port 0 is granted thirty-one times while input port 1 is

granted only once in thirty-two consecutive cycles. ✷

The next example shows the fairness problem in a distributed arbiter such as PPA

and our SA.

Example 4.10 Consider a 4x4 PPA as shown in Figure 29. Suppose the 4x4 PPA resolves

contention at output port 0, and only r0, r1 and r2 request output port 0 continuously.

Each AR2 is supposed to grant two request inputs one after another. Assume that initially

the token state indicates that r0, r2 and r01 have the highest priority in each AR2 shown

in Figure 29. In the first cycle, r01 (ORed request of r0 and r1) and r0 are granted

resulting in the assertion of g0 ; thus, input port 0 wins in the competition. In the second

cycle, r23 has the highest priority because r01 was granted in the previous cycle. Thus,

r2 is granted by the assertion of g2 in the second cycle. Likewise, since r01 has the higher

priority than r23 in the third cycle, g1 is asserted to grant r1. Similar to the second cycle,

55

r23 has the higher priority than r01 in the fourth cycle. Thus, g2 is asserted to grant r2

again. Consequently, input port 2 is granted twice in four consecutive cycles, while input

port 0 and input port 1 are granted once. This unfairness becomes worse for larger cases.

Consider a 32x32 PPA where all 16 request signals (r0 – r15) are asserted from the top

half and only one request, say r16, is asserted from the bottom half. Then, r16 is granted

sixteen times while each of 16 request signals (r0 – r15) is granted only once in thirty-two

consecutive cycles. The case described in this example also applies, with the same result,

to the hierarchical SA presented in this thesis. ✷

From the above examples, we can see that none of the high-performance arbiters

reported in the literature and known to this thesis author is absolutely fair when

less than all inputs to a 4x4 arbiter make requests. However, note that under no

circumstances do arbiters discussed in this section give priority to an input less often

than in the fully congested case (i.e., all inputs requesting all the time). Therefore, all

inputs achieve throughput at least as high as the fully congested case. In Chapter 7,

we show that the impact of not having an absolutely fair arbiter turns out to be

insignificant for uniform and burst traffic loads in a network switch.

In addition, the Transport Control Protocol/Internet Protocol (TCP/IP) itself

does not have any mechanism associated with fairness issues [10]. TCP/IP involves

five layers: application layer, transport layer associated with TCP, internet layer

associated with IP, network access layer and physical layer [48]. When a host, say

A, wants to send user data to another host, there are several steps which the user

data have to go through involving the five layers. A host A first sends user data

down to TCP with an appropriate encapsulation. Then, TCP sends a TCP segment

down to IP. Next, IP hands an IP datagram down to the network access layer, where

Ethernet is the most popular network access layer for a LAN system. Carrier-Sense

56

Multiple Access with Collision Detection (CSMA/CD) is the most common medium

access control technique for Ethernet. In CSMA/CD, a station can transmit if the

medium is idle. Otherwise a station listens to the medium until the channel is idle.

If a collision occurs during transmission, the channel owner stops transmitting and

backs off for a random amount of time. Obviously, there is no guarantee of fairness

in the CSMA/CD protocol.

Consequently, as long as there is no potential occurrence of starvation (there is

not), it is reasonable to conclude that the relative performances of PPA, PPE and

our SA are roughly equivalent in terms of fairness: for an M-input PPA, PPE or

our SA, each input always receives a grant at least 1/M of every M cycles, and, in

the case that some inputs are not asserted, the assignment of the “extra” grants are

distributed in a way that is not perfectly fair.

In this chapter, we have described how we design our hierarchical SA and BA.

We also identified how we reduce the critical path delay of our design. We further

discussed unfairness issues with our SA, PPE and PPA, concluding that while none

is perfectly fair, no request is satisfied less often than the fully congested case (thus,

none suffers from starvation either). In the following chapter, Chapter 5, we will

present how our hierarchical SA and BA are automatically generated.

57

CHAPTER V

RAG: ROUND-ROBIN ARBITER GENERATOR

Guided by user specifications, our Round-robin Arbiter Generator (RAG) tool can

generate synthesizable Verilog for an MxM hierarchical BA able to handle M simul-

taneous requests. RAG can also combine switch arbiter blocks (2x2, 3x3 and 4x4

switch arbiter blocks) to produce synthesizable Verilog for an MxM hierarchical SA

according to user specifications.

Figure 33 shows the flow of RAG. First, the user chooses the arbiter type (bus or

switch) and the number of masters for the chosen arbiter type. The truth table shown

in Table 1 in Section 4.1 shows a regular pattern as M increases and is implemented

with simple logic equations in Verilog for the generation of a Bus Arbiter (BA). From

Figure 42 and Figure 43, it turns out that employing a hierarchical BA to implement

the BA logic is better in terms of area and speed when the number of masters (M) is

greater than 4. We will discuss area considerations in more detail in Section 7.1.1.

Using the function, interpret sa() in Figure 33, the tool first calculates the number

of levels in the hierarchy by dividing M by 4 for an MxM hierarchical Bus Arbiter (BA)

or Switch Arbiter (SA). Then, the remainder of the previous division is divided by

4 iteratively until the quotient of the division reaches zero. The tool prefers to use

as many 4x4 switch arbiter blocks as possible per each level. However, 3x3 switch

arbiter blocks are utilized for a level in a hierarchy if the number of request inputs

in the level is not a multiple of 4 but instead is a multiple of 3. If (the number of

request inputs per level) modulo 4 is equal to 3, a 3x3 switch arbiter is used. If (the

number of request inputs per level) modulo 4 is less than 3, a 2x2 switch arbiter is

utilized. However, if (the number of request inputs per level) modulo 4 is less than 2

58

User input:
1. Type of the arbiter:
3. Number of masters

Library
2x2 ack-req SA
3x3 ack-req SA
4x4 ack-req SA
2x2 ack-req BA
3x3 ack-req BA
4x4 ack-req BA
2x2 root SA
3x3 root SA
4x4 root SA

integrate M x M
hierarchical switch arbiter
integ_arb();

integrate M x M
hierarchical bus arbiter
integ_bus_arb();

calculate the number of
levels and the number of
basic arbiter blocks for
each level
Interpret_sa();

SABA

BA SA

Figure 33: Flow of RAG tool

59

but not equal to 0, one remaining request signal is advanced to next highest level. In

other words, RAG does not employ any switch arbiter block to serve one request.

Example 5.1 This example shows how the number of levels in a hierarchy and the number

of switch arbiter blocks per level are determined when M = 7. First, RAG divides 7 by 4.

Then, the remainder equals 3. Since the remainder is not equal to 0, RAG divides 3 by 4.

Now the quotient of the second division equals 0. Thus, RAG determines the number of

levels to be 2 since divisions are executed twice.

After RAG determines the number of levels, RAG calculates the number of switch

arbiter blocks per level. For the first level, RAG divides 7 by 4 and employs one 4x4 ack-

req SA since the quotient is not zero. Then, since the remainder equals 3 which is not a

multiple of 4 but instead is a multiple of 3, RAG utilizes one 3x3 ack-req SA after dividing

the remainder (=3) by 3. After the calculation for the first level, RAG moves on to the

second level. Since there are two ack-req SAs in the first level and there are two levels,

RAG can utilizes neither a 4x4 root SA nor 3x3 root SA. Therefore, RAG uses a 2x2 root

SA which serves the two ack-req SAs in the first level. ✷

Algorithm 2 describes the algorithm Num In Level called by the function inter-

pret sa() as shown in Figure 33. This algorithm calculates the number of levels in the

hierarchy and the number of 4x4, 3x3 and 2x2 switch arbiter blocks employed in each

level. The number of levels in the hierarchy is determined in the while loop (line 6 of

Algorithm 2) that divides the number of masters by 4, recursively. The details of this

algorithm are described in Algorithm 2 and Example 5.2. Finally, RAG generates a

Verilog top file to integrate the selected 2x2, 3x3 and 4x4 switch arbiter blocks into an

MxM hierarchical SA or BA. A top file instantiates 2x2, 3x3 and 4x4 switch arbiter

blocks based on the data passed from the function, interpret sa().

60

Algorithm 2 Pseudo code for the calculation of number of 2x2, 3x3 and 4x4 switch
arbiter blocks and the number of levels in the hierarchy
Num In Level(number of masters)
begin
1: /*Initialization*/
2: number of levels = 0;
3: dividend = number of masters;
4: remainder = (dividend modulo 4);
5: /*calculate the number of levels in the hierarchy*/
6: while (dividend ! = 0) do
7: dividend = floor(dividend/4);
8: number of levels = number of levels + 1;
9: if ((dividend == 1) and (remainder == 0)) then
10: break;
11: end if
12: end while
13: /*calculate the number of 4x4, 3x3 and 2x2 SAs in each level*/
14: dividend = number of masters;
15: for (n = 0 to number of levels-1) do
16: if (dividend>3) then
17: /* if dividend is a multiple of 4*/
18: if ((remainder = (dividend modulo 4)) == 0) then
19: dividend = (dividend/4);
20: /* 4by4 SA in level[n] is equal to the number of 4x4 SAs in level n */
21: 4by4 SA in level[n] = dividend;
22: /* if dividend is a multiple of 3*/
23: else if ((remainder = (dividend modulo 3)) == 0) then
24: dividend = (dividend/3);
25: /* 3by3 SA in level[n] is equal to the number of 3x3 SAs in level n */
26: 3by3 SA in level[n] = dividend;
27: /*if number of masters is not a multiple of 4 nor 3*/
28: else
29: remainder = (dividend modulo 4);
30: dividend = floor(dividend/4);
31: 4by4 SA in level[n] = dividend;
32: if (remainder == 3) then
33: 3by3 SA in level[n] = 3by3 SA in level[n] + 1;
34: else if (remainder == 2) then
35: 2by2 SA in level[n] = 2by2 SA in level[n] + 1;
36: else
37: unserved[n] = 1;
38: end if
39: end if
40: else if (dividend > 2) then
41: dividend = floor(dividend/3);
42: 3by3 SA in level[n] = dividend;
43: else if (dividend > 1) then
44: dividend = floor(dividend/2);
45: 2by2 SA in level[n] = dividend;
46: else
47: unserved[n] = 1;
48: end if
49: dividend = 4by4 SA in level[n] + 3by3 SA in level[n] + 2by2 SA in level[n] + unserved[n];
50: end for
end

61

number-of_levels ← 0;
dividend←number_of_masters;
remainder← (dividend modulo 4);

dividend=0?

No

dividend ←floor(dividend/4);
number_of_levels ++;

dividend=1 and remainder=0 ?

dividend←number_of_masters;
n← 0;

Yes

dividend>3?

remainder ← dividend modulo 4;
dividend← (dividend/4);
4by4_in_level[n]← dividend;

Yes

dividend modulo 3 =0 ?

No Yes

Yes

dividend modulo 4=0?

Yes
No

remainder ← dividend modulo 3;
dividend← (dividend/3);
3by_in_level[n]← dividend;

remainder ← dividend modulo 4;
dividend← floor (dividend/4);
4by_in_level[n]← dividend;

No

remainder=3 ?

2by2_in_level[n]++; Yes

3by3_in_level[n]++;

No

dividend>2?

No

dividend← (dividend/3);
3by3_in_level[n]← dividend;

Yes

dividend← floor (dividend/2);
2by2-in_level[n]← dividend;

No

dividend = 4by4_in_level[n] + 3by3_in_level[n] + 2by2_in_level[n] ;

n = number_of_levels-1 ?

Yes

No

Generate Hierarchical Arbiter

Yes

Figure 34: Flowchart of Algorithm 2

62

Figure 34 shows the flowchart of Algorithm 2. We explain this flowchart with

references to the line number(s) of Algorithm 2. In the flow chart, all variables are

initialized to appropriate values (from line 2 to line 4 in Algorithm 2). The first loop

in the flow chart implements the while loop in the Algorithm 2 (line 6). In the while

loop, the number of levels value in a hierarchy is calculated iteratively by dividing

number of masters iteratively by 4.

After the calculation of the number of levels in a hierarchy in the flowchart, div-

idend is set back to be equal to number of masters (line 14 in Algorithm 2). Then,

the for loop (line 15 of Algorithm 2) is executed for number of levels times to cal-

culate the number of 4x4, 3x3 and 2x2 switch arbiter blocks in each level. This for

loop corresponds to the second loop in Figure 34. In the for loop, Algorithm 2 first

check if the dividend is greater than or equal to 4 (line 16 in Algorithm 2). If a level

requires more than one 4x4 switch arbiter, the algorithm checks whether dividend

is a multiple of 4 or a multiple of 3 (line 18 and line 23, respectively). If dividend

is a multiple of 4, 4by4 SA in level[n] is set to the outcome of dividend/4 (line 21).

If dividend is a multiple of 3, 3by3 SA in level[n] is set to of dividend/3 (line 26).

Otherwise (line 28), the algorithm sets 4by4 SA in level[n] to dividend/4 (line 31) in

order to utilize as many 4x4 switch arbiter blocks per each level. If the remainder

after division is equal to 3 (line 32), another 3x3 switch arbiter block is employed

(line 33) to provide arbitration scheme for the remaining requests (remainder). If the

remainder after division equals 2 (line 34), another 2x2 switch arbiter block is utilized.

Otherwise (line 36), one remaining request (unserved[n]) for level n is recorded.

Example 5.2 This example describes the Num In Level() algorithm called by interpret sa()

to show how the number of levels is calculated for a 32x32 hierarchical SA. First, variable

number of levels is initialized to zero (line 2) in Algorithm 2. Line 3 shows that dividend

is set to number of masters (32 in this example). The variable remainder is initialized to

63

dividend modulo 4 in line 4. The while loop (line 6) iterates three times; (dividend=32)/4

is equal to 8 at the first iteration; (dividend=8)/4 is equal to 2 at the second iteration;

finally, in the third iteration (dividend=2)/4 is equal to 0 by the floor function. Thus,

number of levels is determined to be 3. After the while loop, dividend is set back to

32 (line 14). The for loop (line 15), iterates as many as the number of levels in the

hierarchy. At the first iteration, since dividend is greater than 3, the outer if block is

executed (line 16). Then, since 32 is a multiple of 4, dividend is set to 8 (line 19), which

is assigned to 4by4 SA in level[0] where 4by4 SA in level[0] indicates the number of 4x4

switch arbiters needed for level 0. Since remainder is 0, no more switch arbiters are needed

for level 0. Thus, 3by3 SA in level[0] is equal to zero and 2by2 SA in level[0] is equal to

zero. In the second iteration, the outer if block is executed again, setting n =1. Next,

the if block starting at line 18 is executed again and returns 4by4 SA in level[1] as 2,

3by3 SA in level[1] as 0, 2by2 SA in level[1] as 0 and dividend as 2. In the last execution,

the elseif block starting at line 43 is executed since dividend is not greater than 3 nor 2.

2by2 SA in level[2] is set to 1 at line 45. Thus, Num In Level() determines that eight 4x4

switch arbiters are needed for level 0, two 4x4 switch arbiters are needed for level 1 and one

2x2 switch arbiter is needed for level 2 which is the root. ✷

After the tool determines the number of 2x2, 3x3 and 4x4 switch arbiter blocks

for each level in the tree structure as described by Algorithm 2, the tool will integrate

switch arbiters for each level and produce a 32x32 hierarchical SA.

The next example describes how RAG generates a hierarchical SA when M is not

a power of two.

64

Example 5.3 For an 11x11 hierarchical SA, RAG first determines the number of levels

to be 2 in the while loop (line 6). The for loop (line 15) is executed twice because num-

ber of levels is equal to 2. For the level 0 (first iteration), the else block of line 28 is executed

because dividend (=11) is greater than 3 and it is neither a multiple of 4 nor 3. At line 29,

remainder is set to 3, and 4by4 SA in level[0] is set to 2 in the following two lines. Since re-

mainder is equal to 3, 3by3 SA in level[0] is set to 1 at line 33 (note that 3by3 SA in level[0]

is initially set to 0). After the first iteration, dividend is set to 3 at line 49. Since dividend is

equal to 3, in the second iteration the else if block (line 40) is executed resulting in setting

3by3 SA in level[1] to 1. Thus, the final outcome of Num In Level() is that two 4x4 and

one 3x3 switch arbiter blocks are needed for a level 0 and one 3x3 switch arbiter block (a

root arbiter) is required for level 1 (note that the last highest level – in this case, level 1 –

is always a root arbiter). ✷

Even though the algorithm of our tool is straightforward, RAG nevertheless

quickly generates a hierarchical SA according to user specifications. Thus, the result

is RTL Verilog for a hierarchical SA of custom size, without requiring rewriting of

any Verilog code by hand. Even better, the resulting hierarchical SA arbitrates faster

than PPE and PPA each of which need to be customized to a specific configuration

by hand.

65

CHAPTER VI

X-GT: CROSSBAR SWITCH GENERATOR

FOR MULTIPROCESSOR SOC

This chapter is focused on the design of a CAD tool for the generation of an MxN

Crossbar (Xbar) switch. Xbar switch Generator (X-Gt) generates MxN Xbar switch

based on user specifications. Figure 35 shows an example of a 4x4 Xbar switch

generated by the X-Gt, which consists of four 4x1 switches. All switches directly

interface to four PEs. Each switch compares physical addresses from PEs and judge

if addresses belong to the address space of the attached memory block.

P
E3

P
E2

P
E1

P
E0

4x4 Xbar

4x1sw
itch

3
4x1sw

itch
2

mem0

mem1

mem3

mem2

4x1sw
itch

0
4x1sw

itch
1

Figure 35: The example of 4x4 Xbar with four processors and four memory blocks
each with a single port

66

Later in this chapter, we will show how X-Gt is integrated with an SoC Dynamic

Memory Management Unit (DMMU). Shalan et al. has designed SoCDMMU [44, 43]

and developed its generation tool.

6.1 The Xbar

Our generated MxN Xbar switch consists of N Mx1 switches. M is equal to the number

of PEs and N equals the number of memory blocks. An Mx1 switch chooses one pro-

cessor out of M processors to which to grant access to the attached memory block [46].

Figure 36 shows the internal structure of a 4x1 switch; in Figure 36, pe indicates wires

from a processor. Also, a number appended to the signal name identifies a signal from

the corresponding processor. The operation of an Mx1 switch is as follows. First,

a comparator (comp) compares the M addresses from M processors (pe addr0[w-1:0]

through pe addr(M-1)[w-1:0]) only if the corresponding pe req[m] signal is asserted

where 0 ≤ m < M and w = address bus width. If a pe addr[m] input whose pe req[m]

is asserted belongs to the address space of the attached memory block, mem req[m]

is asserted. The mem req[m] signal asks an arbiter to grant a single bus attached

to the corresponding memory block. An MxM hierarchical Bus Arbiter (BA) (see

Section 4.3) is employed in an Mx1 switch. Thus, an MxM hierarchical BA handles

up to M requests from M processors and grants one request in round-robin order by

asserting the appropriate mem on[m] signal. A mem on[m] signal turns on switch

blocks (shown in Figure 36 for the 4x1 case) (addr bus switch, data bus switch, wire

switches for read and write signals and wire ta switch for memory transfer acknowl-

edgment) which are Mx1 multiplexers with decoded select (mem on[M-1:0]) signals

in order to connect signals from the mth processor to the memory signals.

Example 6.1 Suppose PE0 and PE3 both try to access SRAM0, PE1 tries to access

SRAM2, and PE2 tries to access SRAM1 in Figure 35. Then, pe addr0 through pe addr3

from the SoCDMMU are compared in the comparator of 4x1 switch0. Consider Figure 36

67

pe_req[0]

pe_req[3]

arbiter

comp
.
.
.

pe_addr0

pe_addr3

addr
bus

switch

mem_on[0]

mem_on[3]

mem_data

mem_req[3]

...

...

.

.

.

...

pe_data0

pe_data3

data
bus

switch

.

.

.

pe_re0

pe_re3

wire
switch

.

.

.

...

pe_we0

pe_we3

wire
switch

.

.

.

...

pe_ta0

pe_ta3

wire_ta
switch

.

.

.

...

mem_we mem_ta

mem_req[0]

mem_addr mem_re

Figure 36: Internal structure of a 4x1 switch

to describe 4x1 switch0. Then, in this case as described so far, only pe addr0 and pe addr3

are matched to the address space of SRAM0 resulting in the assertion of mem req[0] and

mem req[3]. Likewise, only mem req[1] and mem req[2] are asserted in 4x1 switch2 and 4x1

switch1, respectively. In this case, the arbiter of 4x1switch0 grants the request mem req[0];

mem req[3] will be next in round-robin order. Thus, PE0’s request is granted. Then,

mem on[0] turns on the corresponding switch blocks so that pe addr0 is connected to

mem addr, pe data0 to mem data, pe re0 to mem re, pe we0 to mem we, and pe ta0 to

mem ta.

At the same time, only mem req[2] is asserted for 4x1 switch1 since only pe addr2

is matched to SRAM1. Likewise, only mem req[1] is asserted for 4x1 switch2 since only

68

pe addr1 is matched to SRAM2. Thus, PE2’s and PE1’s memory access requests to SRAM1

and SRAM2 are both granted. Thus, in this example, three concurrent memory transfers

are supported. ✷

6.2 Methodology

X-Gt processes the user inputs, validates them and generates an MxN Xbar switch

in a Register Transfer Level (RTL) Verilog Hardware Description Language (HDL).

The following is a list of the user specified parameters:

• The number of PEs that determines M in an MxN Xbar

• The number of the global on-chip memory blocks that determines N in an MxN
Xbar

• The sizes of the global on-chip memory blocks that determine the address bus
widths between Mx1 switches and memory blocks

• The total memory size that determines address bus widths between PEs and
Mx1 switches

• The PE types that determine data bus width of Mx1 switches

The Xbar hardware is generated by calling the function gen xbar(). The function

gen xbar(bus parameters), as shown in Algorithm 3, generates N (number of memory

blocks) Mx1 switches, where M is equal to the number of processors

The function gen xbar() makes use of a linked-list to store the wire names for

processors, memory blocks and bus lines. To generate an MxN Xbar, first the function

gen xbar() calls the function gen Mx1() N times to generate N Mx1 switches; then,

gen xbar() integrates these N Mx1 switches (submodules in Verilog) into an Xbar by

generating a top file.

69

To generate Mx1 switches, the function gen Mx1() first fills the wire names linked-

list with the processors’ wire names, the memory blocks’ wire names and the bus

lines’ wire names by calling the functions: gen proc wires(), gen mem wires() and

gen bus wires(), respectively. Then, gen Mx1() invokes a set of functions to generate

address bus switches, data bus switches, wire switches and wire ta switches (defined

in Section 6.1) in Figure 36. These switches are hand-coded beforehand. Finally,

gen Mx1() calls gen arbiter(M) to generate the appropriate arbiter using the Algo-

rithm 2 described in Chapter 5. Note that specific user input for the arbiter is not

required because the arbiter type is set to a bus arbiter and the number of masters

is set to M as shown in Chapter 5.

prev_req[0]
prev_addr0
prev_data0
prev_read0
prev_write0
prev_ta0

m=0

prev_req[1]
prev_addr1
prev_data1
prev_read1
prev_write1
prev_ta1

m=1

prev_req[2]
prev_addr2
prev_data2
prev_read2
prev_write2
prev_ta2

m=2

prev_req[3]
prev_addr3
prev_data3
prev_read3
prev_write3
prev_ta3

m=3

mem_addr0
mem_data0
mem_read0
mem_write0
mem_ta0

n=0

mem_addr1
mem_data1
mem_read1
mem_write1
mem_ta1

n=1

mem_addr2
mem_data2
mem_read2
mem_write2
mem_ta2

n=2

mem_addr3
mem_data3
mem_read3
mem_write3
mem_ta3

n=3

Figure 37: Linked-list data structure for Example 6.2

Example 6.2 Suppose a user wants to build a system with two MPC750s and two ARM9TDMIs

and four memory blocks with sizes 2Mbytes, 2Mbytes, 4Mbytes and 8Mbytes. X-Gt first

determines the data bus widths to be 64 bits for MPC750 and 32 bits for ARM9TDMI.

Also, the address bus widths are set to be 32 bits for both processors. The memory address

bus widths of the four memory blocks are set to 21 bits, 21 bits, 22 bits and 23 bits. The

order of memory blocks attached to the generated Xbar is clock-wise as shown in Figure 35.

70

Algorithm 3 X-Gt Pseudo Code for the MxN Xbar Generation
gen xbar(bus parameters)
begin
1: n=0;
2: while (n < N) do
3: gen Mx1(bus parameters);
4: end while
5: integrate();

end

gen Mx1(bus parameters)
begin
1: gen proc wires(M);
2: gen mem wires(N);
3: gen bus wires(M);
4: gen addr bus switch(M);
5: gen data bus switch(M);
6: gen wire switch();
7: gen wire ta switch();
8: /* This function is the subset of RAG for a hierarchical BA generation. The detailed description

of RAG is available in Chapter 5*/
9: gen arbiter(M);
10: gen comp();
end

gen proc wires(M) begin
1: m = 0;
2: while m < M do
3: fill in data structure for processor wire names;
4: end while

end

gen mem wires(N) begin
1: n = 0;
2: while n < N do
3: fill in data structure for memory wire names;
4: end while

end

gen bus wires(M) begin
1: m = 0;
2: while m < M do
3: fill in data structure for processor wire names;
4: end while

end

71

Next, X-Gt calls gen xbar(). The function gen xbar() calls gen Mx1() which, as shown in

Algorithm 3, fills the data structure for wire names by gen proc wires(), gen mem wires()

and gen bus wires(). Figure 37 illustrates how wire names are stored in the data struc-

ture by the linked-list. Then, gen Mx1() generates the switch blocks shown in Figure 36.

gen Mx1(), as seen in Algorithm 3, also invokes RAG as described in Chapter 5 to generate

an arbiter handling 4 requests and generating a comparator comparing 4 addresses. The

arbiter parameters (the number of requestors and the arbiter type) are passed to RAG. All

generated submodules are connected together by wire names in gen Mx1(). For example,

pe req signals are input signals to an Xbar, the top module, from an SoCDMMU. Also,

pe req signals are input signals to four 4x1 switches and are input signals to the compara-

tor as well, the submodule of 4x1 switches as shown in Figure 36. Thus, pe req signals

are connected to all four 4x1 switches (submodules of an Xbar) in the top module and are

connected to a comparator (the submodule of a 4x1 switch) in each 4x1 switch. In this

way, the same wire names are connected. After M = 4 iterations, four 4x1 switches are

generated with corresponding bus parameters. Finally, the function integrate() creates the

top file so that the generated four 4x1 switches are wired together by bus wire names. ✷

6.3 Integration with DMMU and its generation

tool

We combine the crossbar (Xbar) generation tool (X-Gt)with Dynamic Memory Man-

agement (DMMU) generation tool developed by Mohamed Shalan [44, 43]. We name

this tool the Dynamic memory management unit-Xbar Generator (DX-Gt). The

first contribution of DX-Gt is to provide an automatic generation of SoC Dynamic

Memory Management Unit (SoCDMMU). The second contribution is the automatic

72

generation of a crossbar (Xbar) switch. The Xbar generation is also integrated with

an arbiter generation tool [46]. Both SoCDMMU and Xbar are generated in an RTL

Verilog HDL. Our generated Silicon Intellectual Properties (SIPs) (SoCDMMU and

Xbar) require interfaces for masters and slaves. We assume that the effort to connect

a new SIP core to the custom SIP generated by DX-Gt is almost the same as that of

SIP based design such as adding other SIP cores to CoreConnect.

6.3.1 Target Architecture

As shown in Figure 38, our target SoC architecture consists of multiple Processing El-

ements (PEs) of various types (i.e., general purpose processors, domain-specific CPUs

such as DSPs, and custom hardware), large configurable global on-chip memory blocks

and the SoC Dynamic Memory Management Unit (SoCDMMU) to manage the mem-

ory allocation and deallocation among the PEs. An SoCDMMU remaps processor

addresses (virtual addresses) to physical addresses which are passed to Level 2 (L2)

on-chip memory via an MxN Xbar. To achieve the maximum concurrent transfers

between processors and memory blocks, N should be equal to M. The memory co-

herency problem due to concurrent accesses of global memory blocks is reduced by

using the SoCDMMU [44]. The combination of the SoCDMMU and the Xbar for

a multiprocessor SoC showed an overall speedup of 4.4X during application transi-

tion time when compared to a fully shared memory system with the same memory

organization and number of processors [43].

Our SoC configuration tool can generate an architecture like that of Figure 38 with

any number of processors and any number of memory modules of different types (e.g.,

SRAM and DRAM) and different numbers of ports. DX-Gt automatically configures

both the SoCDMMU and the MxN Xbar. Currently, DX-Gt only supports two kinds

of processors: MPC750 and ARM9TDMI. However, DX-Gt can be easily extended

to additional processors. The SoCDMMU and the Xbar have a generic bus interface.

73

SoCDMMU

PEM

Cache

PE2

Cache

PE1

Cache

.

Configurable
Xbar

. . .

M
em

or
y

M
od

ul
e N

M
em

or
y

M
od

ul
e 2

M
em

or
y

M
od

ul
e 1

. . .

. . .

co
nt

ro
l

Global On-Chip L2 Memory

Figure 38: The SoC target architecture

Each PE in our target architecture has a wrapper that converts the PE’s bus interface

signals into the SoCDMMU and Xbar generic bus interface signals. Supporting a new

PE is just a matter of developing a new wrapper for the PE’s bus interface (which is

an easy task).

Figure 39 shows a system that is generated by DX-Gt. Note that four 4x1 switches

in Figure 39 are grouped together into the configurable Xbar (4x4 Xbar in this case)

in Figure 38. A PE is connected to four 4x1 switches via an SoCDMMU (1-to-4

connections) and sends an address, data and controls (read, write and byte selection)

to all four 4x1 switches at the same time. Each 4x1 switch translates each address

to check if the address belongs to the corresponding address space of the attached

SRAM. The system consists of four processors and four single port SRAM modules.

Each processor block in Figure 39 can be either MPC750 or ARM9TDMI depending

on the user input. In Figure 39, the generated 4x4 Xbar switch, which consists of four

4x1 switch blocks, provides four concurrent accesses to four SRAM modules by four

74

SoCDMMU

P
E3

P
E2

P
E1

P
E0

4x4 Xbar

4x1sw
itch

3

4x1sw
itch

0

4x1sw
itch

2

4x1sw
itch

1

mem0

mem1

mem3

mem2

Figure 39: The target architecture of four processors and four memory blocks each
with a single port

processors. The generated SoCDMMU manages the dynamic allocation/deallocation

of memory in the four SRAM modules.

The target architecture runs the Atalanta Real-Time Operating System (RTOS)

which is an open source RTOS developed at the Georgia Institute of Technology for

a shared memory multiprocessor SoC [49]. DX-Gt can configure Atalanta to support

the SoCDMMU – if used – and tune its different modules to reflect the user settings.

6.3.2 Tool Integration

Figure 40 gives an overview of the flow of our configuration tool. A Graphical User

Interface (GUI), which consists of a set of HTML forms, captures the user’s inputs and

passes them to the Dynamic memory management unit and crossbar (Xbar) switch

Generator (DX-Gt) application (developed in C-Language). DX-Gt processes the

user inputs, validates them and generates the SoC hardware files in an RTL Verilog.

75

DX-Gt

H
/W D
B

R
T

O
S

D
B

V
P

P Config.
SoC H/W

(*.v)

Config.
RTOS

(*.c, *.S)

DCTM Script
CVE *.cve

Report *.rpt

Figure 40: The SoC configuration tool flow

Moreover, DX-Gt generates Synopsys DC [51] synthesis scripts and a Mentor Graphics

Seamless CVE [31] configuration file for simulation of the resulting SoC design.

The following is a partial list of the user specified parameters required for DX-Gt

other than parameters for X-Gt specified in Section 6.2 :

• System wide parameters:

– The number of PEs which determines M in an MxN Xbar and the number

of the SoCDMMU ports

– The number of the global on-chip memory G blocks which determines the

size of the SoCDMMU memory allocator

– The sizes of the global on-chip memory G blocks which determines the

address bus widths between Mx1 switches and memory blocks

– The number of memory ports which determines N in an MxN Xbar

– The PE types which determines processor interfaces to SoCDMMU chosen

from a hardware database

– The memory type which determines the memory controller chosen from a

hardware database

76

– The choice of use of SoCDMMU, Xbar, both or none

• SoCDMMU related parameters:

– The scheduling scheme to resolve concurrent memory requests from differ-

ent PEs (first come first served scheme or priority scheme)

– Memory G blocks initially assigned to the PEs (initial memory assignment

for the PEs)

In order to generate the hardware files, a “hardware database (HWDB)” of param-

eterized Verilog files of each system component – SoCDMMU sub-modules, processor

bus wrappers, memory controller and Xbar switches and comparators in Figure 36 –

is being used. The Xbar arbiter in Figure 36 is generated in a way that described in

Chapter 4 and [46]. The Verilog files in the database are written in such a way that

a custom version of the file can be generated using a Verilog PreProcessor (VPP).

User Input

Validation

SoCDMMU?

Fetch the required
*.v *.vpp files

Change the
parameters of
each *.vpp file

Xbar?

Pass the *.vpp
files to VPP for

processing

gen_xbar()

Generate top level
file and compress

all Verilog files

No No

YesYes

O/P files to
user

Figure 41: Flowchart of DX-Gt

77

Once the user configurations and settings are captured using a set of HTML

forms, DX-Gt selects from the database the hardware components that satisfy the

user specified configurations. Next, DX-Gt sets the parameters of each component

to reflect the user input. The hardware components (preprocessed Verilog files) are

passed to the Verilog PreProcessor (VPP) [62] which processes them and generates

new customized Verilog files. The detail use of VPP is described in [45]. Figure 41

shows the flowchart of DX-Gt.

We synthesize an Xbar in an RTL Verilog HDL, the output of the function

gen xbar() to report areas and delays. We also backward annotate Resistances and

Capacitances of interconnect wires for the more accurate timing analysis. These

results are presented in Chapter 7.

78

CHAPTER VII

EXPERIMENTAL RESULTS

This chapter consists of arbiter and Xbar experimental results. In Section 7.1, we

consider area, delay and power dissipation of our hierarchical Bus Arbiter (BA) and

Switch Arbiter (SA). We also show how our hierarchical SA achieves terabit switching

and show various speedups our SA achieves over the-state-of-the-art arbiters. In order

to prove that the lack of perfect fairness in arbitration does not significantly affect

typical network traffic, we simulate our hierarchical SA with uniform, bursty and

Transport Control Protocol (TCP) traffics.

For an Xbar, we report area and delay of an Xbar generated by X-Gt in the

second subsection, Section 7.2. In order to report accurate delay, we perform back

annotation by extracting Resistance and Capacitance (RC) values after layout.

7.1 Arbiter Experiment

In this section, we compare area and delay between a Ping-Pong Arbiter (PPA) [7], a

Programmable Priority Encoder (PPE) [13] for iSLIP [29], and our generated Switch

Arbiter (SA). Since PPA outperforms DRRM as mentioned in [7], we do not consider

including dual round-robin matching (DRRM) algorithm in this comparison. Thus,

we will show a speedup for our generated SA over a PPA and a PPE.

In Section 7.1.1, we compare areas and delays of a hierarchical arbiter versus a

centralized arbiter to explain why we limit switch arbiter blocks to 2x2, 3x3 and 4x4

in RAG. In Section 7.1.2, we explain areas and delays of the three switch arbiters.

Then, in the following section, we show speedups achieved by our 32x32 hierarchical

SA generated by RAG for a 32x32 network switch. Finally, in Section 7.1.5, we

79

present simulations which show that the lack of perfect fairness of a switch arbiter is

not a problem under typical TCP/IP workloads.

7.1.1 BA Area and Delay Considerations

We synthesized different configurations of BAs and hierarchical BAs using the Synop-

sys Design Compiler [51] with a TSMC 0.25µm library [60] from LEDA Systems [23].

Figure 42 and Figure 43 show the area and delay, respectively, of BAs and hierar-

chical BAs. The area increases more than linearly as the number of masters (M)

increases for a BA. As can be seen in Figure 43, the delay of a BA increases linearly

as M increases, while the delay of a hierarchical BA increases less than linearly. The

area and delay gaps between a BA and a hierarchical BA increase as the number of

masters increases.

As shown in Figure 43, we found that limiting the size of the switch arbiter

blocks (ack-req BAs and root SAs, for terminology clarification please see Chapter 2)

used as the components of a hierarchical BA to 2x2, 3x3 and 4x4 yielded the fastest

arbitration speeds. From this result, we use 2x2, 3x3 and 4x4 switch arbiter blocks for

a hierarchical SA as well. Our RAG tool favors the utilization of 4x4 switch arbiter

blocks rather than 2x2 and 3x3 switch arbiter blocks. Employing a 4x4 switch arbiter

block gives 16% area savings and 36% gate delay reduction compared with using three

2x2 switch arbiter blocks (two for leaves and one for a root to implement a 4x4 switch

arbiter block, see Figure 22 in Chapter 4).

7.1.2 SA Area and Delay Comparisons

In order to estimate area and delay, we synthesize our SAs generated by RAG using

a 0.25µm TSMC standard cell library [60] from LEDA Systems [23]. For PPA, we

modeled PPA by writing Verilog code based on the PPA logic diagram in [7] and

synthesized PPA to estimate the area and delay using the aforementioned 0.25µm

TSMC standard cell library from LEDA Systems. PPE reports results for synthesis

80

0

500

1000

1500

2000

2500
3000

3500

4000

4500

5000

0 5 10 15 20 25 30 35

Number of Masters

B
A

 a
re

a
in

 t
h

e
n

u
m

b
er

 o
f

IN
V

E
T

E
R

 g
at

es
 e

q
u

iv
al

en
ts

 w
it

h

T
S

M
C

 .
25

u
m

BA

Hierarchical BA

Figure 42: MxM Bus Arbiter area

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35

Number of Masters

B
A

 d
el

ay
 i

n
 n

s
w

it
h

 T
S

M
C

 .
25

u
m

BA

Hierarchical BA

Figure 43: MxM Bus Arbiter delay

81

using Texas Instruments TSC5000 0.25µm technology; thus, for the area of PPE we

simply report the area results stated in [13]. However, for PPE delay estimation we use

the same library with which our SA and PPA are synthesized; thus, we modeled the

priority encoder and additional logic shown for PPE in Figure 11 of [13] to measure

the delay of PPE with TSMC 0.25µm technology. The delay we measured is well

matched with Table 2 in [13] for PPE except for the case where M=32 (32% longer

delay in our experiment)1. In all cases the Synopsys Design Compiler [51] is used.

Figure 44 and Figure 45 show the area and the longest switch arbiter logic delay

for SA, PPE and PPA, respectively, for varying values of M equal to a power of two.

PPA uses a 2x2 switch arbiter as a basic switch arbiter block. PPA applies 2x2 switch

arbiters to a binary tree structure to form an MxM hierarchical SA. Whenever one

master (say, req0[0]) is granted by a 2x2 switch arbiter, the other master (req0[1]) has

the highest priority for the next cycle. The treatment of upper-level grant signals in

the binary tree is similar to SA in Figure 23. The major difference is that every 2x2

switch arbiter of PPA receives acknowledgments from two higher levels when M > 4

and ANDs them together with the current level grants. If M ≤ 4, PPA receives

acknowledgment from at most one higher level.

In [7], Chao et al. compare the throughput of PPA with that of iSLIP [29]. The

performance of PPA is very competitive with speedup c = 2 for both uniform and

burst traffic as shown in Figure 2 in [7]. The speedup c of the switch fabric is the

ratio of the switch fabric bandwidth to the input link bandwidth. In this section, we

first compare the area and the longest delay of our hierarchical SA with those of PPA

and PPE for iSLIP in different MxM configurations. In Section 7.1.4, we compare

the throughput of our hierarchical SA, PPA and PPE for a 32x32 network switch.

1We are not sure exactly why this difference exists for M=32. But it may have to do with
differences in the TSC5000 0.25µm process and/or standard cell library used versus the TSMC
0.25µm process and/or standard cell library used. Unfortunately, we lack access to TSC5000.

82

0

1000

2000

3000

4000

5000

6000

0 50 100 150

MxM switch arbiter

A
re

a
o

f
ar

b
it

er
 i

n
 t

h
e

n
u

m
b

er
 o

f
IN

V
E

R
T

E
R

eq

u
iv

al
en

ts
 w

it
h

 T
S

M
C

 .
25

u
m

PPE

PPA

SA

Figure 44: MxM Switch Arbiter area

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150

MxM switch arbiter

A
rb

it
ra

ti
o

n
 D

el
ay

 w
it

h
 T

S
M

C
 .

25
u

m

PPE

PPA

SA

Figure 45: MxM Switch Arbiter longest delay

83

The areas of all three switch arbiters increase linearly as M increases. The area of

SA is almost the same as that of PPE and increases more rapidly than PPA. However,

SA shows the shortest logic delay when compared with PPA and PPE, and the logic

delay increases the slowest (compared with PPA and PPE) as M increases. This is

because we first limit the size of switch arbiter blocks to 2x2, 3x3 and 4x4 to reduce

the critical path delay due to the expansion of priority logic blocks as M increases and

apply the 2x2, 3x3 and 4x4 switch arbiter blocks to a distributed structure so that

the number and delay of the switch arbiter block(s) in the critical path is minimized.

Since PPE is a centralized switch arbiter, its delay is longest. Even though PPA is

also a distributed switch arbiter, it has more levels than SA causing more gate delays

to connect switch arbiters in different levels.

7.1.3 Power Dissipation of the Arbiters

We can classify a power dissipation into i) static power and ii) dynamic power [6]. A

gate dissipates static power when it is not switching (inactive). The large portion of

static power dissipation is from source-to-drain subthreshold leakage resulting from

the reduction of threshold voltage which prevents a gate from being completely turned

off. Static power is also dissipated from the current leakage between the diffusion

layers and substrate. On the other hand, dynamic power is dissipated when the

circuit is active. The dynamic power consists of switching power and internal power.

The switching power is dissipated by charging and discharging of a load capacitance

at the output of the cell. Internal power is dissipated by charging and discharging of

any internal capacitances of the cell. Internal power also includes power dissipation of

momentary short-circuit power between P and N transistors during signal transition.

Figure 46 illustrates the methodology we take for the power estimations of arbiters.

First, an RTL Verilog file is read by the Synopsys Design Compiler [51]. Then, the

Synopsys Power Compiler [53] creates a power model with the assigned technology

84

RTL Verilog
RTL Simulation

using of
Synopsys VCS

Power Compiler

Back Annotation
SAIF file

Power
Estimation

Technology
Library

Design Compiler

Figure 46: Methodology of power estimation

library mapping. We use a TSMC 0.25 µm standard cell library [60] from LEDA

Systems [23] for the power estimation. In order to capture switching activity, an RTL

Verilog file is simulated using Synopsys VCS [54] with stimulus input. The switching

activities of arbiters are captured by VCS and are saved to a Switching Activity

Interchange Format (SAIF) file.

7.1.3.1 Hierarchical BA vs. BA

In addition to area and delay comparisons in Section 7.1.1, we estimate power dissipa-

tion and compares power dissipation of hierarchical Bus Arbiters (BAs) with those of

centralized BAs. For this estimation, we assert all request inputs of the MxM arbiters

and randomly generate an acknowledgment signal so that the granted bus master can

be an owner of the bus for a random number of cycles. Under this assumption, an

SAIF file is generated by Synopsys VCS. The SAIF file is backward annotated to the

Synopsys Power Compiler.

85

Static Power Dissipation

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40

Number of Masters

p
W

Hierarchical BA

BA

Figure 47: MxM hierarchical BA and BA static power dissipation

Figure 47 shows the static power dissipation of (flat, non-hierarchical) BAs and

hierarchical BAs from M = 4 to M = 32. Note that the 4x4 BA design is exactly

same as those of hierarchical BAs. Since the static power dissipation is proportional

to area, our hierarchical BA, which uses far less area compared with BA, dissipates

much less static power compared with BA.

However, a BA, regardless of its larger area compared with a hierarchical BA,

dissipates less dynamic power as shown in Figure 48. This is because a hierarchical

BA has more switching activity – switches more transistors – than a BA. In order

words, “work done” by a hierarchical BA per second is larger than that by a BA per

second.

Figure 49 shows total power dissipation of BA versus hierarchical BA. This figure is

almost same as the plot of dynamic power dissipation since static power dissipation is

very small (on the order of about 10−6) compared with the portion taken by dynamic

power dissipation for TSMC 0.25 µm technology.

Since the power consumed by a device is equivalent to the “work done” by a

device per second and energy consumption is important for portable and embedded

86

Dynamic Power Dissipation

0

2

4

6

8

10

12

0 10 20 30 40

Number of Masters

m
W Hierarchical BA

BA

Figure 48: MxM hierarchical BA and BA dynamic power dissipation

Total Power Dissipation

0

2

4

6

8

10

12

0 10 20 30 40

Number of Masters

m
W Hierarchical BA

BA

Figure 49: Total power dissipation of BA versus hierarchical BA

87

Total Energy Required for One Arbitration

0

5

10

15

20

0 10 20 30 40

Number of masters

p
J Hierarchical BA

BA

Figure 50: Total energy required for one arbitration of BA versus hierarchical BA

processors because a battery life is a key concern, it is important to compare energy

consumption as well as power consumption [4]. Note that the overall energy con-

sumption equals the power dissipation multiplied by the execution time (Figure 43).

Figure 50 shows an energy required for one arbitration of BA versus hierarchical BA.

Energy consumption increases as M increases for a BA and a hierarchical BA. The

energy consumed by a hierarchical BA becomes less than that by a BA when M is

larger than 16.

7.1.3.2 Hierarchical SA vs. PPE and PPA

In this section, we compare power dissipation of our hierarchical SA with those of

PPE and PPA for values of M from 4 to 128. We estimate PPE’s power dissipation

with a Priority Encoder preceded by priority rotation logic implemented with ring

counters (note that while this captures PPE’s functionality, we are not sure if this is

the exact actual PPE logic since the detailed logic design is not available in [13] nor

in any subsequent publications [12, 14, 16, 17, 21, 36]). The output of a ring counter

(only one output equals ‘1’ at a time for an M-bit ring counter) is bitwise ANDed

88

with request inputs. In this scheme, only one request input (the request pointed to

by the pointer) to a priority encoder is asserted.

To capture a SAIF file, we utilize stimulus in which all input request signals are

asserted continuously since it is reasonable to estimate power dissipation under the

condition that all inputs of a network switch are saturated. This SAIF file is backward

annotated to Power Compiler to have more accurate switching power estimation.

After Power Compiler reads a SAIF file, power dissipation is estimated with separate

reporting of static power and dynamic power dissipation.

We plot static power and dynamic power dissipation separately since the portion

taken by static power dissipation of a hierarchical SA, PPE and PPAs is too small

(on order of 10−6) compared with dynamic power dissipation in TSMC 0.25 µm

technology. Figures 51 and 52 show static power dissipation and dynamic power

dissipation, respectively. Static power dissipation increases linearly as M increases in

the same way that the areas of hierarchical SA, PPE and PPA increase. Since our

hierarchical SA takes more area than PPA as shown in Figure 44, our hierarchical SA

dissipates more static power than PPA as expected. The static power dissipation of

PPE is almost equal to that of PPA.

However, the increase in dynamic power dissipation depends both on clock speed

and switching activity of an arbiter. Thus, the dynamic power dissipation does not in-

crease linearly as M increases. Apparently, a faster clock speed which is determined by

the logic delay of an arbiter results in more frequent occurrences of internal switching

activity per second. However, our hierarchical SA shows much less switching activity

compared with PPA and PPE even though our hierarchical SA operates much faster

than PPA and PPE. Our hierarchical SA consists of 2x2, 3x3 and 4x4 switch arbiter

blocks. In each switch arbiter blocks, there are multiple Priority Logic blocks. For the

case of a 4x4 ack-req SA, there are four Priority Logic blocks in the 4x4 Bus Arbiter

(see Figures 17 and 15). Only one Priority Logic block is enabled at a time. Therefore

89

Static Power Dissipation with TSMC 0.25um

0

2000

4000

6000

8000

10000

0 50 100 150

MxM

p
W

SA

PPA

PPE

Figure 51: MxM hierarchical SA, PPE and PPA static power dissipation

Dynamic Power Dissipation with TSMC 0.25um

0

5

10

15

20

25

30

35

0 50 100 150

MxM

m
W

SA

PPA

PPE

Figure 52: MxM hierarchical SA, PPE and PPA dynamic power dissipation

90

Total Power Dissipation

0

5

10

15

20

25

30

35

0 50 100 150

Number of Requests

m
W

SA

PPA

PPE

Figure 53: Total power dissipation of hierarchical SA, PPE and PPA

Energy Required for One Arbitration

0
10
20
30
40
50
60
70
80
90

0 50 100 150

Number of masters

p
J

SA

PPA

PPE

Figure 54: Energy required for one arbitration of MxM hierarchical SA, PPE and
PPA

91

switching activity is associated with outputs of the Priority Logic block enabled in

the current cycle and the Priority Logic block enabled in the previous cycle. Under

the condition that all inputs are asserted continuously, the outputs of a Priority Logic

block are switching every four cycles. However, the internal logic of AR2 (the basic

switch arbiter block of PPA) switches every cycle. Thus, PPA dissipates larger dy-

namic power than our hierarchical SA due to more frequent switching activity. For

PPE, it seems that the most switching activity caused by thirty-two ring counters

that we add for the priority order rotation. Since a hierarchical BA consumes lower

power than a BA shown in Section 7.1.3.1, an M-input proority encoder, the internal

logic of PPE, presumably comsumes less power. Thus, our power estimation of PPE

could be incorrect.

Figure 53 shows total power dissipation of hierarchical SA, PPE and PPA. The plot

of total power dissipation is almost same as the plot of dynamic power dissipation since

dynamic power contributes to most part of total power dissipation. However, static to

dynamic power dissipation could be changed with deep submicron technologies since

leakage becomes more significant in 0.13 µm and 0.09 µm technologies.

Figure 54 shows the energy required for one arbitration of hierarchical SA, PPE

and PPA. Energy consumption increases as M increases for all three switch arbiters.

7.1.4 Speedup for a Chip Implementing a 32x32 Network Switch

In this section we consider the design of a 32x32 network switch chip. For comparison

purposes with PPA and PPE, we first model a “64-bit 32x32 switch fabric” which

consists of 64 32x32 crossbar switches, “input interconnect” (from network switch

input ports – i.e., VOQs – to input ports of 64 crossbars), “output interconnect”

(from output ports of 64 crossbars to network switch output ports) and control wires

from SAs. A 32x32 crossbar switch connects a 1-bit wide input to a particular output

according to control (grant) signals from a 32x32 SA. We will use 64 of these 32x32

92

crossbar switches in order to transmit a single 64-bit cell (a cell is a piece of a packet;

we assume a packet is chopped into fixed size cells) per clock cycle.

Section 7.1.4.1 presents the delay through the 32x32 crossbar switch and the pro-

posed floorplan for VOQs, SAs and 64-bit 32x32 switch fabric. From our experiment,

it turns out that the delay of the input interconnect in the switch fabric contributes to

the longest delay path. Thus, in Section 7.1.4.2, we show how we handle this longest

delay path (input interconnect) with the insertions of pipeline registers. Since a cell

travels through the input interconnect in a pipelined fashion, control (grant) signals

from an SA should be delayed with D flip-flops in order to switch a specific cell to

the corresponding output port at the right time. This is explained in detail in Sec-

tion 7.1.4.3. Finally, in Section 7.1.4.4 we compare our hierarchical SA performance

with PPE and PPA performances in terms of switching throughput based on a 32x32

network switch.

7.1.4.1 32x32 Crossbar Switch Delay

In order to estimate the delay through a crossbar switch, A 4x4 crossbar layout and

then extract interconnect line lengths from the layout [55]. This layout is done using

TSMC 0.25µm technology. By using of generic interconnect formulas [61], the delay

calculation of a 32x32 crossbar switch is performed. It turns out than the longest

delay path would be between the first input and the last output (e.g., between I0 and

O31 in a 32x32 crossbar switch) as shown in Figure 55.

The C program written by Talpasanu iteratively generates the correct number of

Resistance, Inductance, Capacitance (RLC interconnect model) and transistor com-

ponents [55]. This RLC interconnect model is used to create an HSPICE input file

to find the longest path delay. The HSPICE parameters used in this simulation are

available from the MOSIS 0.25µm TSMC technology website [34]. These parameters

include metal resistances per unit length, capacitances per unit area, capacitances per

93

32x32
Crossbar
Switch

322

inputs
outputs

controls

longest delay path

I0

I31

O0

O31

Figure 55: 32x32 crossbar switch and its longest delay path

unit length as well as other parameters needed in the HSPICE simulation. HSPICE

level 49 transistor models are used in all delay simulations [34].

For a 64-bit cell switching, the 64-bit 32x32 switch fabric consists of 64 32x32

crossbars, input and output interconnects and control wires. For the 64-bit 32x32

switch fabric, a manufacturing process using six metal routing layers is assumed in

order to approximate routing channel widths and lengths. A routing wire width of

1µm was chosen in order to reduce interconnect resistance. A routing pitch of 2µm is

used in the calculation of routing width for interconnect channels. These parameters

are used in the calculation of the 64-bit 32x32 switch fabric longest path delay. The

delay through the input interconnect is reduced by inserting an optimal number of

repeaters. The same optimization is applied to the output interconnect.

After an HSPICE simulation, the delay through one 32x32 crossbar switch is

found to be 0.27 ns which is measured. from the start of the input pulse to the 50%

switching point for an output inverter. Following this simulation, the estimated area

for a 32x32 crossbar switch is 0.153 mm2 (542.45 mm x 281.60 mm).

Figure 56 shows a floorplan of the 64-bit 32x32 switch fabric with 32 32x32 hi-

erarchical SAs and 322 VOQs. Each 64-bit wide VOQ maintains four precedence

packets similar to a VOQ in Tiny Tera [28]. The areas of the thirty-two 32x32 SAs

94

and the 322 VOQs are 1.40 mm2 and 41.31 mm2, respectively. Considering the 64-

bit 32x32 switch fabric, the overall fabric area is approximately 125.64 mm2 which

is roughly 171 mm2 smaller than the area of an Alpha 21364 processor [22]. This

area approximation includes the input and output interconnects, 64 crossbars, and

pipeline registers, but excludes I/O pads.

V
O

Q
 C

on
tr

ol
le

rs

32 32x32 SAs

64-bit 32x32 Switch Fabric

32
2

64
-b

it
V

O
Q

s

Figure 56: The floorplan of the 64-bit 32x32 switch fabric, VOQs, controllers and
SAs

7.1.4.2 Pipelined Input Interconnect for the 64-bit 32x32 Switch Fabric

For the 64-bit 32x32 switch fabric, the input interconnect length is found to be

16.58 mm. This interconnect line is optimized by inserting two repeaters on the

input interconnect line, and the delay is found to be 2.21 ns. The interconnect delay

of the longest output path (length = 4.1mm) is found to be 0.63 ns with one repeater

inserted [55].

95

Since the input interconnect from the VOQ to the 32x32 crossbar switch gives the

longest delay (2.21 ns) in a 64-bit 32x32 switch fabric, the input interconnect delay

contributions may be reduced by inserting pipeline registers periodically. Considering

the longest delay path through the 64-bit 32x32 switch fabric to be through a one bit

input interconnect, one 32x32 crossbar switch and through one bit output intercon-

nect, the largest delay contributions would be those from the input interconnect. To

minimize the delay through the input interconnect, a four-stage input interconnect

pipeline is employed.

Figure 57 shows the input and output interconnects of the 64-bit 32x32 switch

fabric including pipeline registers. The details of each “4-stage interconnect” box

in Figure 57 are shown in Figure 58. Note that 4-stage interconnect in Figure 57

includes 32 “4-stage pipeline” blocks for all 32 input ports of a 32x32 crossbar. Each

4-stage pipeline block consists of four D flip-flops arranged in series and spaced equally

along an input interconnect. The individual stage delay for the input interconnect is

approximately 0.63 ns.

7.1.4.3 Pipelined control signals from SAs

Since there are pipeline registers on the input interconnect, registers are also required

to be inserted on the control lines (grant signals from thirty-two 32x32 SAs) which

control the transmission gates of the crossbar switch. These registers are inserted

so that the arbitration of the crossbar switch will happen in the same time slice in

which the cell to be switched arrives at the input of the crossbar. Thus, four pipeline

stages inserted on the control interconnect ensure that cells are being switched by the

correct control signals. Each pipeline register is comprised of a D flip-flop triggered

by a clock signal. The area of all pipeline registers is equal to 14.99 mm2. This is

included in the 64-bit 32x32 Switch Fabric shown in Figure 56.

96

32x32
crossbar

0

32x32
crossbar

8

32x32
crossbar

7

32x32
crossbar

15

4-stage
interconnect

. . .

. . .

32

32 32

3232

32

32

32

32x32
crossbar

48

32x32
crossbar

56

32x32
crossbar

55

32x32
crossbar

63

. . .

. . .

32

32 32

3232

32

32

32

. . .
. . .

. . .
. . .

. . .

32

32

32

32

32

32

32

32

. . .
4-stage

interconnect

4-stage
interconnect

4-stage
interconnect

4-stage
interconnect

4-stage
interconnect

4-stage
interconnect

4-stage
interconnect

Figure 57: The internals of the 64-bit 32x32 switch fabric

D D D Dinput 0 crossbar port 0

4-stage pipeline

D D D Dinput 31 crossbar port 31

4-stage pipeline

.

.

.

.

.

.

.

.

.

Figure 58: The internals of the 4-stage interconnect box

97

Accordingly, the different parts of the longest delay path are also pipelined.

Namely, pipeline registers are inserted along the longest delay path. These pipeline

stages are inserted before and after the 32x32 crossbars in order to reduce the overall

64-bit 32x32 switch fabric delay to the delay of a single pipeline stage.

Figure 59 shows the pipeline stages which would be inserted on every path to

a 32x32 crossbar in order to reduce the delay. These stages are the SA delay, the

t t+1 t+3 t+4time slice

input interconnect
pipeline stage

crossbar
pipeline stage

output interconnect
pipeline stage

SA delay
pipeline stage

t+5

input i

grant (i, j)

t+2

grant interconnect
pipeline stage

t+6

Figure 59: The grant-connect pipeline including an input interconnect and a control
wire pipelines

segmented input interconnect (4 stages), the 32x32 crossbar stage, and the output

interconnect stage. A cell from a VOQ can be forwarded to the first stage of an input

interconnect after being granted. Note that grant (i, j) signal controls the specific

transmission gate between the ith input port of a crossbar and the jth output port

at time t+5.

Figure 60 shows how one control (grant) signal out of 322 controls from 32 32x32

SAs in Figure 56 turns on the corresponding transmission gate in a 32x2 crossbar with

a four stage pipeline delay. Four D flip-flops are utilized for a control wire pipeline.

In conclusion, with four stages of input and control interconnect as shown in

Figure 59, the maximum throughput of the 32x32 network switch is limited either by

the stage input interconnect delay (0.63 ns) or the arbitration delay.

98

32 32x32 SAs

64-bit 32x32 Switch Fabric

32x32
crossbarD D D D

t t+1 t+2 t+3 t+4 t+5

Figure 60: The 4-stage pipeline of a control wire

7.1.4.4 Switching Performance Comparison

From our delay measurements of the 64-bit 32x32 switch fabric, the maximum through-

put of this high-speed network switch is limited by the arbitration logic delay. Thus,

the throughput of one port of the network switch with our 64-bit 32x32 switch fab-

ric is equal to 64 bits (an eight-byte cell) divided by the 32x32 switch arbiter delay.

The arbitration delay of our SA equals 0.94 ns where the arbitration delays of PPA

and PPE are equal to 1.30 ns and 2.17 ns, respectively. Then, the aggregated bits

per second (bps) capacities of 32x32 network switches with SA, PPA, and PPE are

2.18 Tbps, 1.20 Tbps and 0.94 Tbps, respectively. This can be verified by using the

delays for SA, PPA and PPE shown in Figure 45. Thus, the RAG generated SA

achieves speedups of 1.8X over PPA and of 2.3X over PPE, respectively.

Currently some commercial terabit switches are available. One is from Mindspeed,

M21155 [33, 40]. M21155 is a 144-port x 144-port switch, each port delivering a data

rate of up to 3.125 Gbps; the aggregate capacity is 0.45 Tbps. TeraCross, the partner

of Mindspeed, built a 64x64 SA in a single chip (12 mm2 die size) called TXS-1400

640Gbps Scheduler with 0.18µm Technology [58]. The other is PetaSwitch [39] from

PetaSwitch Solutions, Inc. PetaSwitch claims that their chipset allows configuration

of a switch for data rates from Gigabit Ethernet/OC-48 to OC-3072 and port numbers

from 2x2 to 256x256. The aggregate bandwidth, PetaSwitch claims, can be configured

from 40 Gbps to 10.24 Tbps depending on the number of ports and the data rate of

port. Unfortunately, no information about the switch arbitration logic nor the process

99

technology (e.g., 0.25µm) used is publicly available for either of these chips regardless

of our effort (information was requested from the web and through phone calls, but

no reply was ever received).

7.1.5 Fairness Simulation for Hierarchical SAs

In this section, we describe a simulator developed by G. F. Riley and Peng Cheng [9]

to test the fairness of our hierarchical SA. The basic design of an arbiter, using priority

encoder logic, is known to exhibit some unfairness if the order of request inputs to the

priority encoder is fixed, thus giving a bias to lower numbered requests over higher

ones in some cases. The goal of this simulation was to test the hypothesis that,

under realistic network traffic assumptions, this theoretical unfairness would not be

observed in any statistically significant way.

“Switch Arbiter Simulator” (SASim) implemented in C++ to model the behavior

of our hierarchical SA design for an arbitrary number of inputs and outputs. SASim

simulate a 32-port SA as shown in Figure 23, using a variety of input conditions for

the network switch. Each of the experiments is described in detail below.

For the experiments, the measured metric is either the total number of grants or

the “average delay per grant.” The grant count metric is used for the first set of

experiments, and the grant delay is used for the second set. Since we are interested in

analyzing fairness under the priority allocation scheme described in Chapter 4, all of

the results are summarized by the “4x4 ack-req SA input pin number.” For a 32-input

Switch Arbiter, 8 of the 32 inputs map to “input 0” on a 4x4 ack-req SA denoted by

reqx [0] in Figure 23; 8 of the 32 inputs map to “input 1” on a 4x4 ack-req SA denoted

by reqx [1] in Figure 23, etc. As we explained in Chapter 4, there is unfairness in the

network protocol itself. Nevertheless, although we focus only on the unfairness of

our SA which could occur within a single 4x4 ack-req SA, we can compare the grant

rate and delay values for all of the “input 0” requests as an aggregate. All of our

100

Table 2: Simulation results, continuous requests

Run 1 Run 2 Run 3
4x4 ack-req input Grants, Grants, Grants,

All Asserted 0, 1 Asserted 0, 1, 2 Asserted
0 250000 749000 499999
1 250000 250000 250000
2 250000 0 250000
3 249999 0 0

Table 3: Simulation results, bursty on-off traffic

4x4 ack-req Delay, Delay, Delay, Delay, Delay,
input ρ = 2.0 ρ = 1.0 ρ = 0.9 ρ = 0.5 ρ = 0.1
0 31.43 16.65 4.46 1.98 1.05
1 31.23 15.59 4.60 1.93 1.10
2 30.95 17.14 4.61 1.82 1.01
3 31.11 16.44 4.63 2.00 1.10

simulation experiments were executed for 1 million clock cycles, and all results are

given in the tables below.

The first set of experiments simply asserted the requests continually. For the first

experiment, all 32 inputs are asserted. Clearly, with this input pattern, the total

number of grants should be approximately equal to the total number of clock cycles,

and each input should receive an approximately equal number of grants. The results

given in Run 1 of Table 2 confirm these hypotheses. The next experiment in this set

asserts only those requests that map to “inputs 0” and “input1” on the 4x4 ack-req

SAs. This is precisely the case that can cause some unfairness in the 4x4 ack-req SA,

and the results shown in Run 2 of Table 2 demonstrate this clearly. The grants given

to “inputs 0” is three times that of requests mapping to inputs 1. Then we asserted

inputs 0, 1, and 2 (but not 3) continually, and again observed the unfairness with

input 0 receiving more than the average grant count as shown in Run 3 of Table 2.

101

However, since the target application for our switch arbiter design is a high-speed

internet router, we are more interested in request models based on internet traffic. To

simulate this, we created a simulation model of bursty, on-off traffic with exponential

distributions of on and off times and uniform distribution of packet sizes. The request

pin for each switch input is driven by these on-off sources, with a separate source

driving each of the 32 inputs. By varying the average off time of the sources, it is

possible to vary the overall traffic load on the switch. This so-called traffic intensity

(usually denoted ρ) is a measure of the demand on the switch relative to the maximum

capacity of the switch. The 32x32 switch was simulated with ρ values of 2.0, 1.0, 0.9,

0.5, and 0.1, and the results are shown in Table 3. For these experiments, the metric

is the average delay (in clock cycles) per request.

Clearly, the traffic intensity of 2.0 is sending twice as much data to the switch

than can be processed, and thus this experiment degenerates to the “all requests

asserted continuously” that we described above. The results confirm this, showing

in the second column of Table 3 the average delay per request to be nearly 32 clock

cycles as expected. The lower ρ values show correspondingly lower delays, also as

expected. The ρ value of 0.1 represents a lightly loaded switch, and shows an average

grant delay of just over 1 clock cycle per request.

The important point to notice for the bursty traffic experiments is that the un-

fairness found in the 4x4 ack-req SA does not in fact result in unfairness in average

request latency, when presented with realistic traffic requests.

Our 32x32 hierarchical SA was also simulated under GTNets which is a network

simulator [41]. In essence, it functions like SASim. The difference is that SASim

simulates the internal behavior of the switch arbiter [9], whereas GTNets is a com-

prehensive simulation of the entire internet network [41]. Protocol layers such as

TCP and UDP are also embedded into GTNets. In this particular experiment, we

use GTNets to test the functionality of a network switch that uses the round-robin

102

Table 4: Simulation results, TCP traffic using the GTNets log file

4x4 ack-req Delay, Delay, Delay, Delay, Delay,
input ρ = 2.0 ρ = 1.0 ρ = 0.9 ρ = 0.5 ρ = 0.1
0 18.12 16.75 11.68 1.95 1.10
1 19.91 19.48 11.29 1.95 1.10
2 20.44 19.71 10.69 1.93 1.10
3 19.22 17.54 12.13 1.94 1.10

switch arbiter. The network designed for simulation is as follows. There are 32 nodes

(stations) in the network. All the 32 nodes are connected to a 32x32 router. For every

client node, there are 31 applications requesting access other nodes; each application

requests from a different server. Each node also has a server. This configuration

allows each node to send packets to all the other nodes, and node is also receiving

packets from all the other nodes. Note that the web-applications are requesting pack-

ets in a rate depending on the traffic intensity, ρ. The nodes have to send packets

fast enough in order to reach certain traffic intensity. In GTNets, an application may

make a request to a server, and then wait for a certain period, and then start to make

another request to the same server.

For the first run of this simulation, the traffic intensity of the network switch is ρ

of 2.0 to see if SAs inside the network switch still maintain fairness under an overflow

of packets. Then, the traffic intensities with 1.0, 0.9. 0.5 and 0.1 are simulated.

The results of TCP traffic simulations with different traffic intensities are displayed

in Table 4. The average delay (in clock cycles) per request is used as the metric. For

these experiments, first, SASim creates a 32x32 switch arbiter, and then it proceeds

to parse through the log file to schedule packet arrivals. All the packets whose desti-

nation is node 1 are scheduled into SASim. For the case where ρ approaches 1 (the

maximum capacity of the switch), note that the maximum difference of the average

delays occurs between reqx [0] and reqx [2] when ρ = 1. Also, the average delay per

103

each input more slowly increases as ρ increases from the maximum capacity of the

switch (ρ = 1) because of transport control mechanism in TCP. The sliding window

mechanism is one of the most well-known transport control protocol where a server

puts packets into the network based on the window size. In the sliding window pro-

tocol, the window size is decreased multiplicatively if the network is congested (i.e.,

if the sender does not receive the acknowledgment in a certain time) and is increased

additively when the congestion is relieved. Therefore, when the network becomes

congested, the number of packets arrives at the switch becomes converged to the

maximum switch capacity. The differences in the average delays among inputs with

high traffic intensities (columns 2, 3 and 4 in Table 4) are not because of the lack of

perfect fairness in our SA design but because of unfairness in TCP transport control.

Low traffic intensities experiments (columns 5 and 6 in Table 4) confirm that our SA

is fair enough for TCP traffic.

We conclude that the unfairness problem described in Section 4.5 does not show

up under realistic traffic flows.

7.2 Xbar Synthesis

This section presents the synthesis results of various configurations of Xbars generated

by X-Gt. We use the Synopsys Design Compiler [51] with a 0.25 µm TSMC standard

cell library [60] from Artisan Components [2]. We use the “TSMC25 Conservative”

model for a wire load to provide more accurate area and delay results at the logic

synthesis stage.

7.2.1 Xbar Area

In this section we first present the area of Mx1 switches to provide the guideline for X-

Gt user to estimate the area of an MxN Xbar. Then, we show the areas of MxM Xbars

estimated by Synopsys Design Compiler. We also perform the placement and route

to report the accurate area including the area taken by interconnect area. We utilize

104

Cadence Silicon Ensemble [5] for the placement and route. For logic synthesis and

physical synthesis we use TSMC 0.25 µm SAGE standard cell library from Artisan

Components [2].

Figure 61 shows the synthesis results of the area of Mx1 switches for increasing

number of processors. The total area of an MxN Xbar can be easily calculated by N

times the area of an Mx1 switch, where N is the number of memory ports.

As shown in Figure 61, the area of an Mx1 switch increases almost linearly with

the number of PEs except when M = 8. The area of Xbar, as shown in Figure 62,

increases almost linearly as the number of PEs and the number of memory ports

increase for an MxM Xbar configuration.

The area discrepancies between the area reported at the logic synthesis stage

(noted as Cell Area) and the area reported after the placement and route (noted

as Chip size) results from the interconnect areas between the wire area estimated

at the logic synthesis stage using of “TSMC25 Conservative”wire load model and

the actual wire area after route. The area difference between pre-layout and post-

layout increases as M increases. The area discrepancies between logic syntheses and

physical syntheses shown in Figure 62 are up to 23 % (when M=8). Thus, it turns

out that using a wire load model at the logic synthesis stage for the interconnect area

estimation provides insufficient accuracy for a wire-centric design such as an Xbar

and a bus.

7.2.2 Xbar Delay

In the high level synthesis, the performance of a design is measured by summing delays

of the operations on the critical path, while additional delay elements such as registers,

multiplexers and buffers are considered in the RTL design [37]. However, interconnect

delays are only included in the physical design. As deep submicron technology is

evolving, interconnect delay becomes more significant portion of the total delay since

105

0

1000

2000

3000

4000

5000

6000

2 3 4 5 6 7 8 9

Number of processors

M
x1

 s
w

it
ch

 a
re

a
in

 t
h

e
n

u
m

b
er

 o
f

IN
V

E
R

T
E

R
 e

q
u

iv
al

en
ts

 w
it

h
 T

S
M

C

.2
5u

m

Figure 61: Area of Mx1 switch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 4 6 8 10

Number of processors and number of
memory blocks

M
xM

 X
b

ar
 a

re
a

in
 s

q
u

ar
e

m
m

 w
it

h

T
S

M
C

 .2
5u

m

Gate area

Gate + Wire area

Figure 62: Area of MxM Xbar

106

interconnect delay stays constant while gate delay becomes shorter [42]. Thus, in this

section, we perform timing analysis of generated Xbars in an RTL Verilog to minimize

the gap between the high level synthesis and the physical level synthesis caused by

added delays as a design goes down to lower level implementation.

Logic Synthesis

Place & Route

Extract
RC values

Design Compiler

Silicon Ensemble

timing analysis

RTL VerilogX-Gt

Back annotate SDF and set load files

Figure 63: Back-annotation Flow

For delay analysis at the logic synthesis level, we first estimate the delay of an

MxM Xbar with “TSMC25 Conservative” model for a wire load. Then, we extract

Resistances and Capacitances (RC) values after place and route. We use Cadence

Silicon Ensemble [5] for the placement and route. The RC values extracted from

Silicon Ensemble are backward annotated to estimate more accurate wire delays in

the form of Standard Delay Format (SDF) and set load files. Figure 63 shows the

flow of our methodology.

Design Compiler converts an Xbar in an RTL Verilog file into a netlist of reg-

isters and logic gates by technology mapping. The Xbar Verilog file compiled with

“TSMC25 Conservative” wire load is an input to Silicon Ensemble in the form of the

107

Figure 64: The snapshot of 4x4 Xbar layout

0

5

10

15

20

25

30

35

2 3 4 5 6 7 8 9

Number of processors and number of memory blocks

M
xM

 X
b

ar
 d

el
ay

 in
 n

s
w

it
h

 T
S

M
C

.2

5u
m

w/o back annotation w/ back annotation

Figure 65: Delay of MxM Xbar

108

netlist. After place and route, layout information is exported to files in the type of

set load and SDF. In the resynthesis process, this set load file is used to overwrite the

capacitive net load values estimated with the wire load model by Design Compiler

at the logic synthesis phase. In order to overwrite, the include command is used at

the Design Compiler script prompt (dc shell). The SDF file exported from Silicon

Ensemble is also back annotated with rising delay and falling delay information of

nets and ports. After replacing the estimated RC values with the exact RC values,

we perform timing analysis of an Xbar again. Figure 64 shows the snapshot of 4x4

Xbar layout.

Figure 65 shows delays of Xbars for “without back-annotation” and “with back-

annotation.” In this figure, the differences are from the first iteration of the loop as

shown in Figure 65. The maximum of 23% discrepancy occurs at the 5x5 Xbar.

Consequently, timing analysis with a wire load model at the logic synthesis phase

gives inaccurate delay information for a long wire.

7.2.3 MP-SoC with Xbar and DMMU

Creating a high clock rate working chip containing millions of logic gates, whose

functionality used to be implemented by multiple chips, is a time consuming task

for Integrated Circuits (IC) designers. Usually designers start with floorplanning

the chip by partitioning it into portions each of which presents a functional entity

in the SoC (e.g., CPU, DRAM, caches or custom peripheral logic). Also, this step

involves pin assignment, global routing and global clock tree generation. Tools such

as Synopsys Chip Architect [50] can help the SoC designer to accomplish such tasks.

The floorplanning and global routing provides useful timing information required for

the RTL logical and physical synthesis of each functional entity using tools such as the

Synopsys Design/Physical Compiler [51, 52] and the Cadence Silicon Ensemble [5].

Finally the layout of each unit is integrated into the SoC floorplan.

109

ARM9tdmi
+

Caches

DRAM
bank 0

ARM9tdmi
+

Caches

MPC750
 +

Caches

MPC750
+

Caches

SoCDMMU w/o
Addr. Conv.

Addr. Conv. Addr. Conv. Addr. Conv. Addr. Conv.

Memory CTRL

Peripherals
(e.g., Network Interface)

DRAM
bank 1

DRAM
bank 2

DRAM
bank 3

Xbar

Custom Logic

Figure 66: The floorplan of an SoC that utilizes the SoCDMMU and the Xbar

DX-Gt generates an RTL Verilog HDL of the SoCDMMU and the Xbar which are

parts of the SoC presented in Figure 38. These RTL models with the RTL models

of the other system components can be used to generate the layout of the SoC IC

using the design flow described in the previous paragraph. As a sample effort to

show part of the methodology described in the previous paragraph, we synthesized

the RTL Verilog of the SoCDMMU (customized for 256 G blocks and 4 PEs) and

the Xbar and then placed and routed the layout using a 0.25 µm TSMC technology

library. Figure 66 shows the floorplan of the system with four processors and four

memory blocks of Example 6.2 including the layouts of the SoCDMMU and the Xbar.

Since DRAM cores are not available, Figure 66 presumably describes how 4x4 Xbar

is interleaved into DRAM modules. From our layout of a subset of Figure 66 (i.e.,

SoCDMMU plus Xbar), the area of 4x4 Xbar is 0.19 mm2 and the area of SoCDMMU

is 1.43 mm2.

110

CHAPTER VIII

CONCLUSION

As the number of transistors on a single chip increases rapidly, there is a produc-

tivity gap between the number of transistors available on a chip and the number of

transistors per hour a designer can design. In other words, it is almost impossible for

human designers to cope with the number of transistors available in a chip which dou-

bles every 18 months by Moore’s Law [65], while the number of transistors per hour

which a chip designer designs increase 21% per year [42]. One solution to reduce this

productivity gap is to increase the reusability of Silicon Intellectual Property (SIP)

cores. However, an SIP core should be customized/configured before being used in a

system different than the one for which it was designed. Thus, to reconfigure the SIP

core, either an engineer must spend significant effort altering the core by hand or else

an enhanced CAD tool (SIP generator) can automatically configure and customize

the core according to the customer specifications.

In a multiprocessor System-on-a-Chip (SoC) environment, a silicon CMOS chip

designer should consider the need for an arbiter to resolve conflicts on shared re-

sources (i.e., bus or equivalent communication channels) among multiple bus masters

(e.g, processors). In a bus-based system, processors could be stalled because of bus

conflicts. Thus, a high-performance arbiter is needed to resolve bus contentions among

bus masters; such a fast arbiter can also reduce processor stall time by shortening

arbitration delays.

In computer networks, such a fast and efficient arbiter commands more attention

to resolve contention for crossbar switch(es) of a fast network switch as the amount

of user traffic continues to double every year [35]. If the network switch capacity

111

fails to increase with user traffic, then internet service providers may have to increase

the number of switches in their network each year. Alternatively, the capacity of a

single network switch needs to increase instead, and a fast and efficient arbiter plays a

key role in increasing such switch capacity. Considering power consumption, such an

arbiter plus other network switch components (e.g, VOQs and crossbar switch fabric)

are preferably implemented in a single chip since the power budget of a network switch

is about 10 kW per rack. A recent single rack of network switches, which aims at

terabit switching, have already reached this limit [20]. As mentioned in [7, 20, 26, 29,

66], arbitration delay is one of the major obstacles to achieving terabit switching.

The primary objective of this thesis is to automate the design of round-robin ar-

biter logic. The resulting arbitration logic is more than 1.8X times faster than the

faster prior state-of-the-art arbiters the author could find reported in the literature.

The generated arbiter implemented in a single chip is fast enough in 0.25 µm CMOS

technology to achieve terabit switching with a single chip computer network switch.

Moreover, this arbiter is applicable to crossbar (Xbar) switch arbitration logic. The

generated Xbar, customized according to user specifications, provides multiple com-

munication paths among masters and slaves.

In order to achieve our goal, we design and develop a tool for the automatic

generation of a round-robin arbiter for a bus. Our arbiter is also applicable to high-

speed network switches. We call this tool Round-robin Arbiter Generator (RAG).

The RAG can generate a hierarchical Bus Arbiter (BA) which is faster than all

known previous approaches in a Register Transfer Level (RTL) Verilog code for a

bus. The RAG can also generate a hierarchical Switch Arbiter (SA), a high-speed

network switch arbiter (scheduler) which is faster than all known previous approaches.

Finally, a crossbar (Xbar) switch generation tool is developed that is integrated with

RAG for the generation of its arbiter to resolve conflicts among masters. We name

the tool Xbar Generator (X-Gt) which generates an MxN Xbar in an RTL Verilog.

112

A hierarchical BA generated by RAG provides a fast and reasonably fair arbi-

tration scheme for both on-chip and off-chip buses. We discussed the BA logic and

showed the logic of 2x2, 3x3 and 4x4 switch arbiter block components. RAG can

also generate a parallel hierarchical MxM SA. We presented how RAG utilizes 2x2,

3x3 and 4x4 switch arbiter blocks to produce an MxM hierarchical BA or an MxM

hierarchical SA. We compared the area and delay of our generated SAs with PPA

and PPE, respectively. It turns out that our distributed switch arbiters generated by

RAG lead to significant delay improvement using a novel token-passing hierarchical

arbitration scheme when compared with other switch arbiters such as PPA and PPE.

Specifically, RAG can be used to generate a SA for a 32x32 terabit switch which

achieves speedups of 1.8X over PPA and of 2.3X over PPE for the same 32x32 con-

figuration. In general, the speedup of our generated SA over PPA and PPE increases

slightly as M increases in an MxM switch arbiter; for example, for a 128x128 switch

arbiter, our generated SA has a 1.9X speedup over PPA and 2.4X speedup over PPE.

We also compare the power dissipation of our generated SA with PPA and PPE.

The experimental results shows that our SA dissipates less power compared with PPA

and PPE even though the area of our SA is biggest.

To prove that the fairness issue of arbitration scheme is relatively insignificant,

we demonstrate with a set of simulation experiments that the overall grant latency

of our SA exhibits reasonable fairness when presented with a bursty and TCP traffic

models.

For the SoC design aspect, we described an SoC SIP generation tool that enables

a silicon CMOS chip designer to configure a crossbar, a subset of bus systems, to meet

the design constraints with ease. Thus, our thesis is also focused on the provision of a

CAD tool for an MxN Xbar switch named X-Gt. Hierarchical bus arbiter generator,

the subset of RAG, is included in X-Gt to provide fast arbitration scheme for our

Xbar.

113

Also, we showed the integration of the SoCDMMU and the Xbar into one system.

The combination of the SoC Dynamic Memory Management Unit (DMMU) and the

Xbar for a multiprocessor SoC has been shown to have an overall speedup of 4.4X

during the application transition time when compared to a fully shared memory

system with the same memory organization and number of processors [44]. Our

X-Gt is integrated with SoCDMMU generator and is named as Dynamic memory

management unit and Xbar Generator (DX-Gt). DX-Gt automatically generates an

RTL Verilog file. Also, DX-Gt generates a Verilog file required to enable standard

EDA tools to implement the system.

As a billion transistors on a single chip begin to appear, the customization of SIP

cores becomes much more complicated to a silicon CMOS chip designer, resulting in

longer time-to-market. Thus, the automatic generation of a hierarchical round-robin

arbiter and an Xbar will significantly reduce the time taken by customization. Au-

tomatic arbiter generation results in fast arbitration compared with standard logic

synthesis techniques. A brief but interesting comparison with logic synthesis algo-

rithms reveals that a key insight of our approach lies in our customized hierarchy.

Our novel token-passing hierarchical arbitration scheme using priority logic blocks

with at most four inputs yields the reported speedups. Not surprisingly, traditional

logic synthesis algorithms do not consider our customized hierarchy; thus, given a

logic description of a specific bus- or switch-arbiter, logic synthesis algorithms do not

automatically consider our custom hierarchical logic structure. Also, to the best of

our knowledge, we present the first published work on the automatic generation of a

round-robin arbiter and an Xbar.

Since the generated Xbar is orthogonal to processor types, the Xbar is valuable

in the sense that it can easily be integrated into a heterogeneous multiprocessor SoC.

The automation of customizable and configurable versions of the Xbar according to

the customer specifications: our thesis presents an SIP-generator, called X-Gt.

114

In conclusion, our hierarchical SA generated by RAG shows the improvements of

performance and power dissipation compared with the hand-coded SIPs such as PPA

and PPE. Also, upon the user specifications, X-Gt generates an Xbar on-the-fly for

an multiprocessor SoC.

115

REFERENCES

[1] ARC Inc., Available HTTP: http://www.arc.com.

[2] Artisan Components Inc., Available HTTP: http://www.artisan.com.

[3] Brayton, R. K. and Sangiovanni-Vincentelli, A. L., “Multilevel logic
synthesis,” Proceedings of the IEEE, Vol. 78, pp. 264–300, February 1990.

[4] Brook, D., Tiwari, V., and Martonosi, M., “Wattch: A framework for
architectural-level power analysis and optimizations,” in Proceedings of ACM
International Symposium on Computer Architecture, pp. 83–94, June 2000.

[5] Cadence Silicon Ensemble. Available HTTP: http://www.cadence.com/products
/sepks.html.

[6] Chandrakasan, A. and Brodersen, R. W., Low-Power CMOS Design. NY:
Wiley-IEEE Press, 1998.

[7] Chao, H. J., Lam, C. H., and Guo, X., “A fast arbitration scheme for ter-
abit packet switches,” in Proceedings of the IEEE Global Telecommunications
Conference, pp. 1236–1243, December 1999.

[8] Chao, H. J. and Park, J. S., “Centralized contention resolution schemes for a
larger-capacity optical atm switch,” in Proceedings of the IEEE ATM Workshop,
pp. 11–16, May 1998.

[9] Cheng, P., Shin, E. S., Riley, G. F., and Mooney, V. J., “Sasim: Switch
arbiter simulator,” in Georgia Institute of Technology, Atlanta, GA, Technical
Report GIT-CC-03-38. Available HTTP: http://www.cc.gatech.edu/tech report
s/index.03.html.

[10] Commer, D. E., Internetworking with TCP/IP Principles, Protocols and Ar-
chitecture, Vol.I. NJ: Prentice Hall Inc, 1995.

[11] Dally, W. J. and Towels, B., “Route, packets, not wires: On-chip intercon-
nection networks,” in Proceedings of the IEEE Design Automation Conference,
pp. 684–689, June 2001.

[12] Gupta, P., Algorithms for Routing Lookups and Packet Classification. CA: Ph.
D. Thesis, Stanford Univeristy, 2000.

[13] Gupta, P. and McKeown, N., “Designing and implementing a fast crossbar
scheduler,” IEEE Micro, Vol. 19, pp. 20–28, January - February 1999.

116

[14] Gupta, P. and McKeown, N., “Algorithms for packet classification,” IEEE
Network Special Issue, Vol. 15, pp. 24–32, March – April 2001.

[15] Hachtel, G. D. and Somenzi, F., Logic Synthesis and Verification Algo-
rithms. MA: Kluwer Academic Publishers, 1996.

[16] Iyer, S. and McKeown, N., “Maximum size matching and input queued
switches,” in Proceedings of the Allerton Conference on Communication, Control
and Computing.

[17] Iyer, S. andMcKeown, N., “Using constraint sets to achieve delay bounds in
cioq switches,” IEEE Communications Letters, Vol. 7, pp. 275–277, June 2003.

[18] Jantsch, A. and Tenhunen, H., Networks on Chip. MA: Kluwer Academic
Publishers, 2003.

[19] Karim, F., Nguyen, A., Dey, S., and Rao, R., “On-chip communication
architecture for OC-768 network processors,” in Proceedings of the IEEE Design
Automation Conference, pp. 678–683, June 2001.

[20] Keslassy, I., abd K. Yo, S.-T. C., Miller, D., Horowitz, M., Sol-

gaard, O., and McKeown, N., “Scaling internet routers using optics,” in
Proceedings of the ACM SIGCOMM, pp. 189–199, August 2003.

[21] Keslassy, I., Zhang-Shen, R., and McKeown, N., “Maximum size match-
ing is unstable for any packet switch,” IEEE Communications Letters, Vol. 7,
pp. 496–498, October 2003.

[22] Krewell, K., “Alpha ev7 processor: A high-performance tradition continue,”
in In-Stat/MDR, 2003. Available HTTP: http://h18003.www1.hp.com/hps/dow
nload/Compaq EV7 Wp.pdf.

[23] LEDA Systems, Available HTTP: http://www.ledasys.com.

[24] Leon-Garcia, A. and Widjaja, I., Communication Networks: Fundamental
Concepts and Key Architecture. OH: McGraw-Hill Inc., 2000.

[25] Mai, K., Paaske, T., Jayasena, N., Ho, R., Dally, W., and Horowitz,

M., “Smart memories: A modular reconfigurable architecture,” in Proceedings
of ACM International Symposium on Computer Architecture, pp. 161–171, June
2000.

[26] McKeown, N., “Optics inside routers,” in Proceedings of the European Con-
ference and Exhibition on Optical Communucation, September 2003.

[27] McKeown, N., Anantharam, V., and Warland, J., “Achieving 100%
throughput in an input-queued switches,” in Proceedings of the IEEE INFO-
COM, pp. 13–27, March 1996.

117

[28] McKeown, N., Izzard, M., Mekkittikul, A., Ellersick, W., and
Horowitz, M., “Tiny tera: A packet switch core,” IEEE Micro, Vol. 17, pp. 26–
33, January/February 1997.

[29] McKeown, N., Varaiya, P., and Warland, J., “The islip scheduling algo-
rithm for input-queued switch,” IEEE/ACM Transaction on Networking, Vol. 7,
pp. 188–201, April 1999.

[30] Mekkittikul, A. and McKeown, N., “A practical scheduling algorithm for
achieving 100% throughput in input-queued switches,” in Proceedings of the
IEEE INFOCOM, pp. 792–799, March 1998.

[31] Mentor Graphics Seamless, Available HTTP: http://www.mentor.com/seamless.

[32] Micheli, G. D., Synthesis and Optimization of Digital Circuits. NJ: McGraw-
Hill Inc., 1994.

[33] Mindspeed, Available HTTP: http://www.mindspeed.com.

[34] The MOSIS Service. Available HTTP: http://www.mosis.org/products/fab/vend
ors/tsmc/tsmc025/index.html.

[35] Odlyzko, A. M., “Comments on the larry roberts and caspian networks study
of internet traffic growth,” in The Cook Report on the Internet, pp. 12–15, De-
cember 2001. Available HTTP: http://cookreport.com.

[36] P. Gupta, B. P. and Boyd, S., “Near-optimal routing lookups with bounded
worst case performance,” in Proceedings of the IEEE INFOCOM, pp. 1184–1192,
March 2000.

[37] Park, S., Kim, K., Chang, H., Jeon, J., and Choi, K., “Backward-
annotation of post-layout delay information into high-level synthesis process for
performance optimization,” in Proceedings of the IEEE International Conference
on VLSI and CAD, pp. 25–28, October 1999.

[38] PCI Special Interest Group, Available HTTP: http://www.pcisig.com.

[39] PetaSwitch, Available HTTP: http://peta-switch.com.

[40] Rigby, P., “Mindspeed unveils terabit switch chip,” in Network World Fusion
Newsletter, December 2001. Available HTTP: http://www.nwfusion.com/newsle
tters/optical/2001/ 01142734.html.

[41] Riley, G. F., “The Georgia Ttech Network Simulator,” in Proceedings of Work-
shop on Models, Methods, and Tools for Reproducible Network Research, p. to
appear, August 2003.

[42] Semiconductor Industry Association, The International Technology Roadmap for
Semiconductors, 2001. Available HTTP: http://www.semichips.org/pre stat.cfm
?ID=183.

118

[43] Shalan, M. and Mooney, V. J., “A dynamic memory management unit for
embedded real-time system-on-a-chip,” in Proceedings of the International Con-
ference on Compilers, Architecture and Synthesis for Embedded Systems, pp. 180–
186, November 2000.

[44] Shalan, M. and Mooney, V. J., “Hardware support for real-time embedded
multiprocessor system-on-a-chip memory management,” in Proceedings of the
Tenth International Symposium on Hardware/Software Codesign, pp. 79–84, May
2002.

[45] Shalan, M. A., Shin, E. S., and Mooney, V. J., “Dx-gt: Memory man-
agement and crossbar switch generator for multiprocessor system-on-a-chip,” in
Proceedings of Workshop on Synthesis And System Integration of MIxed Tech-
nologies, pp. 357–364, April 2003.

[46] Shin, E. S., Mooney, V. J., and Riley, G. F., “Round-robin arbiter de-
sign and generation,” in Proceedings of the International Symposium on System
Synthesis, pp. 243–248, October 2002.

[47] Silberschatz, A., Galvin, P., and Gagne, G., Applied Operating System
Concepts. NY: John Wiley and Sons Inc., 2000.

[48] Stalling, W., Data and Computer Communications. NJ: Prentice Hall Inc,
1999.

[49] Sun, D., Blough, D., and Mooney, V. J., “Atalanta: A new multiprocessor
rtos kernel for system-on-a-chip applicationsn,” in Georgia Institute of Technol-
ogy, Atlanta, GA, Technical Report GIT-CC-02-19. Available HTTP: http://ww
w.cc.gatech.edu/tech reports/index.02.html.

[50] Synopsys Chip Architect, Available HTTP: http://www.synopsys.com/product
s/designplanning/designplanning.html.

[51] Synopsys Design Compiler. Available HTTP: http://www.synopsys.com/produc
ts/logic/design comp cs.html.

[52] Synopsys Physical Compiler. Available HTTP: http://www.synopsys.com/prod
ucts/unified synthesis/unified synthesis.html.

[53] Synopsys Power Compiler. Available HTTP: http://www.synopsys.com/produ
cts/power/power ds.html.

[54] Synopsys VCS Logic Simulator. Available HTTP: http://www.synopsys.com/pr
oducts/ simulation/vcs ds.html.

[55] Talpasanu, A., Davis, J. A., Shin, E. S., and Mooney, V. J., “Crossbar
switch interconnect delay calculation,” in Georgia Institute of Technology, At-
lanta, GA, Technical Report GIT-CC-03-37. Available HTTP: http://www.cc.g
atech.edu/tech reports/index.03.html.

119

[56] Tamir, Y. and Chi, H.-C., “Dynamically allocated multi-queue buffers for vlsi
communications switches,” IEEE Transaction on Computers, Vol. 41, pp. 725–
737, June 1992.

[57] Tensilica Inc., Available HTTP: http://www.tensilica.com.

[58] Teracross, “TXS-1400 640 Gbps Scheduler,” Available HTTP: http://www.tera
cross.com/web/pdfs/TXS-1400.pdf.

[59] Tobagi, F. A., “Fast packet switch architectures for broadband integrated
services digital networks,” Proceedings of the IEEE, Vol. 78, pp. 133–167, January
1990.

[60] TSMC IP Services, Available HTTP: http://www.tsmc.com/design/ip.html.

[61] Uyemura, J., Introduction to VLSI Circuits and Systems. NY: John Wiley and
Sons Inc., 2002.

[62] Verilog PreProcessor, Available HTTP: http://www.surefirev.com/vpp.

[63] VITA-VME bus International Trade Association. Available HTTP: http://www.
vme.com.

[64] Wakerly, J., Digital Design Principles and Practices. NJ: Prentice Hall Inc.,
1990.

[65] Wolf, W., Modern VLSI Design: Systems on Silicon. NJ: Prentice Hall Inc,
1998.

[66] Yun, K., “A terabit multiservice switch,” IEEE Micro, Vol. 21, pp. 58–70,
January - February 2001.

120

