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1. Introduction 
This technical report elaborates on the methodology and findings presented in “Sleepy 

Stack Reduction of Leakage Power” by J.C. Park, V. J. Mooney III and 

P. Pfeiffenberger [1].  The scope of this report includes test procedures and data on delay, 

dynamic and static power for all considered approaches and implementations as well as 

schematics and layouts for all considered approaches and implementations. 

 

2. Base case 
We chose to evaluate the sleepy stack approach on three flavors of gates: an inverter, a 

full adder and a 4-input multiplexer [1]. These gates were chosen to exemplify a 

straightforward "memory-like" case (the inverter, which is the basis of SRAM), addition, 

and a complex gate using NAND, NOR and INV gates (the multiplexer). 

 

The four leakage current reduction approaches considered in this report are compared to a 

basic CMOS implementation. In all approaches, transistors are placed in two rows, each 

parallel to continuous Vdd and Gnd contacts. When possible, corresponding Euler paths 

are chosen from the pull up and pull down networks in the schematic. Using these paths, 

transistors are placed so that NMOS and PMOS transistors driven by the same input can 

be connected with a vertical strip of poly and a single contact.  

 

Transistor sizes are specified as a ratio of Width / Length (W/L). In the case of the North 

Carolina State University (NCSU) [8] design kit targeting the Taiwan Semiconductor 

Manufacturing Company (TSMC) 0.18 µm process, the smallest possible transistor has a 

width of 270nm and a length of 180nm, resulting in a ratio of W/L = 270nm / 180nm = 

1.5. This ratio of W/L=1.5 signifies the smallest feasible transistor size throughout this 

report. 

 

Transistors are initially sized so that all circuits have rise and fall times equal to those of 

an inverter with NMOS W/L = 1.5 and PMOS W/L = 3. Two of the considered static 

current reduction approaches explained in Section 3 i.e., the stack [2][3] and sleepy 
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stack [1] approaches, typically use two transistors each half the width of a particular 

single transistor in the baseline approach. Since both NOR and INV gates contain 

transistors with W/L = 1.5, the widths of all transistors composing NOR (Appendix D) 

and INV (Appendix A), as well as NAND (Appendix C) (for uniformity in the 

multiplexer) are doubled. This doubling is not applied to the Cout’ and Sum’ circuits of 

the full adder (Appendix B). The Cout’ and Sum’ circuits do not contain any minimal 

width gates when sized to have rise and fall times equal to one inverter and would yield 

unreasonably large gate sizes if doubled.  Schematics for the networks and approaches 

mentioned in this section can be found in the respective Appendices. 

 

3. Static current reduction approaches 
The sleepy stack [1] approach is compared to the base case as well as three established 

static power reduction techniques: transistor stacking [2][3], Vdd gating via sleep 

transistors [4] and selective Vdd gating via alternating sleep transistors (the so-called 

“zigzag” approach) [5]. In order to fairly assess the area needed to implement each 

approach we chose to always place all transistors in a single line along Vdd and Gnd.  

 

3.1 Stack  

The stack approach is implemented by duplicating every transistor in the base case 

network, with both the original and duplicate bearing half the original transistor width.  

We chose to always place all transistors in a single row along Vdd and Gnd. Therefore, 

an increase of the number of transistors and slight decrease in transistor width forces an 

increase in row length and decrease in row height. E.g., an inverter in the base case 

(Appendix A.1.b) has a height of 4.7 µm and width of 5.0 µm while an inverter 

implemented using the stack approach (Appendix A.2.b) has a height of 4.0 µm and 

width of 6.7 µm 

Creating duplicate transistors in series with the original presents the advantage of 

maintaining the same layout structure as the base case, with both the original and newly 

formed transistor gates accessible via the same strip of poly.  Appendices A.2.b, B.2.b, 
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C.2.b and D.2.b illustrate how the base case layout in Appendices A.1.b, B.1.b, C.1.b and 

D.1.b is largely maintained after applying the stack approach. 

 

3.2 Sleep 

For the sleep approach, the transistor sizes of the base case are maintained with added 

transistors gating the Vdd and Gnd of the circuit.  The PMOS sleep transistor between 

Vdd and the rest of the pull-up network is driven by the Sleep (S) signal, forming a path 

to Vdd when S is low.  The NMOS sleep transistor between Gnd and the rest of the pull-

down network is driven by the Sleep’ (S’) signal, a direct inverse of S.  Both of these 

gating transistors will from hereon out be collectively referred to as “sleep transistors” 

and will take the width of the largest transistor in their respective base case network.   

Vdd and Gnd are disconnected from the circuit when S is high (the circuit is idle), 

reducing subthreshold leakage but also losing state.  Subthreshold leakage can further be 

reduced by raising the threshold voltage of sleep transistors. 

The area penalty incurred with the sleep approach is greater than that of the base case, 

stack or zigzag approach. In a transistor level layout, additional space is required for 

sleep transistors as well as S and S’ signal lines. Additionally, the gated Vdd/Gnd signal 

may run between Vdd/Gnd contacts and transistors, further increasing cell height. Layout 

structure is largely maintained (Appendix B.1.b vs. B.3.b) although the horizontal S and 

S’ lines force use of at least a second metal layer even in simple designs, such as the 

inverter in Appendix A.3.b.  

 

3.3 Zigzag 

The zigzag approach relies on placement of alternating Vdd/Gnd gating transistors in a 

way that minimizes leakage for a set of most probable input vectors.  In order to fairly 

assess the effectiveness of this approach, the minimal static power dissipated (and 

associated input vector) is chosen for comparison.  In layout, the alternating pull-up / 

pull-down Vdd/Gnd gating transistors should placed on abutting ends of adjacent 

circuits (Appendix A.4.b.). The gating transistors of these abutting circuits allow for a 

routing scheme similar to that of the sleep approach in Section 3.4.  This brings a small 

but noticeable savings in area over sleep approach. 
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3.4 Sleepy stack: 

The sleepy stack approach combines the stack and sleep approaches by dividing every 

transistor in the network and placing sleep transistors in parallel with one of the divided 

transistors [1]. Following the methodology of the sleep approach, sleep transistors are 

placed on the split transistor closest to the Vdd in the pull up, while the pull down 

network has sleep transistors placed in parallel with the transistor closest to Gnd.  A path 

from either Gnd or Vdd to output exists in sleep mode, formed by the transistors parallel 

to the sleep transistors.  The sleep transistors reduce resistance when the circuit is 

switching. 

As seen with even simple examples (NAND, Appendix C.1 vs. C.5) the network of the 

Sleepy stack approach bears little resemblance to that of the base case. In layout, area is 

increased considerably by the tripling of all transistors.  The addition of nodes with an 

odd number of vertices (by parallel placement of sleep transistors) can lead to elimination 

of Euler paths and breaks in n and p type regions.  As in the stack approach, stacked 

transistors are accessible by a single contact to a bridging strip of poly (Appendix C.1.b.) 

Due to placement of the sleep transistor, the stacked transistors can no longer be 

implemented as one active region with two fingers. As in the sleep approach, sleep 

signals should be routed horizontally across source/Gnd contacts to conserve space. 

(Appendix B.5.b.i) 

 

4. Experimental Methodology 
Schematics for all models and approaches are created in Cadence Virtuoso Schematic 

Editor [7] and sized in accordance with the approaches outlined in Section 2.  Netlists are 

extracted from the schematic using Cadence Virtuoso Analog Environment. These 

netlists are augmented with parameters extracted from the Taiwan Semiconductor 

Manufacturing Company (TSMC) 0.18 µm process, as well as those of the Berkeley 

Predictive Technology Model (BPTM) [9] 0.18, 0.13, 0.10 and 0.07 µm processes. The 

measurements outlined in Sections 4.1, 4.2 and 4.3 were performed using Avant! 

HSPICE [6]. Unless otherwise specified, input waveforms have a 4 ns period and rise/fall 

times of 100 ps. 
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4.1 Delay 

Input vectors and input and output triggers are chosen to measure delay across a given 

circuit’s critical path. Fall time is measured as the time between the trigger input edge 

reaching 50% supply voltage and circuit output edge falling to 50% supply voltage.  

Likewise, the time between the input edge reaching 50% and circuit output edge rising to 

50% supply voltage is recorded as the rise time.  This method of measuring delay is 

carried on throughout all experiments, with only the high/low patterns of the input 

vectors varying and triggers varying. 

 

4.2 Dynamic power 

Dynamic power is measured by asserting clocked semi-random input vectors for a period 

of 20ns and calculating the average power dissipated during this period.   

 

 

4.3 Static power 

Static power is measured by asserting a set of input vectors as DC sources in HSPICE 

and measuring the average power dissipated by the circuit during a period of 20 ns.   

 

4.4 Area  

Area is measured from full transistor level layouts for the base case as well as stack, 

sleep, zigzag and sleepy stack approaches.  The layouts are created using Cadence 

Virtuoso layout tool and North Carolina State University’s (NCSU’s) Cadence design 

toolkit for 0.18µm [8].  Layouts are verified with Virtuoso’s Digital Rule Checking 

(DRC) and Layout Versus Schematic (LVS). Because a design kit for sub 0.18µm sizes is 

unavailable at time of publication, layout sizes are scaled by ratio of squares with a 10% 

penalty applied for nonlinear technology components. 

 

5. Test Circuits   
Three test circuits of varying complexity are implemented as described in Sections 2 and 

3. A chain of three inverters is chosen as the most basic of logic gates and is indicative of 

single transistor level behavior and effectiveness. To assess effectiveness using a 
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complex arrangement of simple logic blocks, a 4-1 MUX is assembled from NAND, 

NOR and INV gates. Finally, a full adder is chosen as a representation of complex logic, 

composed of two complex logic gates and two inverters. The effectiveness of the five 

static power reduction approaches considered in this paper were assessed by applying the 

experimental methodology of Section 4 to test circuits in Sections 5.1, 5.2 and 5.3. 

 

5.1 Three Inverter chain 

Three inverters, equally sized (NMOS W/L = 3, PMOS W/L = 6 for the base case) are 

connected in series as shown in Figure 1. Measurements are made across the inverter 

chain, from the first inverter’s input to the last inverter’s output. 

 

 

 

 

Figure 1. Three inverter chain 

a a a’a’

 

a. Delay  

A square wave is set as input signal for the 3-inverter chain.  After four periods, 

the delay between the input and inverted output is measured. 

 

b. Static power 

Static power for the inverter is measured by asserting high and low DC signals 

and averaging the power dissipated by each input after a period of 20 ns. 

 

c. Dynamic power 

Dynamic power for the inverter is measured by asserting the same square wave 

used in delay assessment (Section 5.1.a.) to the inverter chain input.  Again, the 

average power dissipated over a period of 20ns is recorded as the Dynamic power 

of the 3 inverter chain. 

d. Area 

A full layout for a three inverter chain can be seen in Appendix A. 

 7



 

5.2 4-1 Mux 

The 4-1 Mux in Figure 2 is implemented using nine 2-input NAND gates, six 2-input 

NOR gates and two inverters as shown in Figure 2. In the base case, all gates are sized to 

have rise and fall times equal to an inverter with NMOS W/L = 3 and PMOS W/L = 6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Logic gate network and critical path for 4-1 MUX 
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a. Delay 

The 4-1 Mux delay is measured across the critical path shown in Figure 2, from S1 

(symmetric to S0) to the output.  Before delay is measured across the critical path, 

the input X0 is set high and input X2 is set low. Delay across the critical path is 

measured by asserting low to S1. The output signal is driven high across the path 

in Figure 2 and the delay is measured as in Figure. 3. 

 

 

 

 

 

Figure 3. Input/Output waveform used to measure the critical path delay. 

S1

Out

X2

X0
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b. Dynamic power 

Dynamic power is measured by asserting random values on all inputs for a period 

of 20ns.  The average power during this period is recorded as dynamic power. 

 

c. Static power 

From the set of 128 possible inputs, a sample of 8 is chosen and the static power 

dissipated by the DC signals over a period of 20ns measured.  These sample 

inputs are listed in Table 1. 

 

Table 1. Static power assessment inputs used for 4-1 MUX. 
X0 X1 X2 X3 S0 S1 E 

0 0 0 0 0 0 0 

1 0 0 0 0 0 0 

1 0 0 0 0 0 1 

1 1 0 0 0 0 1 

1 1 0 1 0 1 1 

1 1 0 1 1 1 1 

1 1 0 1 1 1 0 

1 1 1 1 1 1 1 

  

 

d. Area 

The area for a MUX layout is estimated by creating full layouts of components 

used, i.e. NAND, NOR and INV, and adding the areas of needed components. 

This sum-of-parts estimation does not take into account extra area needed to wire 

all components, but the absence of a wiring penalty equally affects all considered 

approaches.  To estimate the area, each component width is multiplied with the 

height of the tallest component for each approach.  For example, if for the stack 

approach the NOR gate has the largest height, an adjacent inverter would have to 

use the same source and drain and therefore have an area equal to its base 

multiplied by the height of the NOR gate.   
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5.3 4-bit Adder 

A series of full adders (Figure 4) is created from four logic blocks, one complex logic 

block that generates inverted Carry out (Cout’), one complex logic block that generates 

an inverted Sum (Sum’) and two inverters to create non-inverted signals from the outputs 

of the two complex blocks. While the inverters are sized to twice the original size (similar 

to the inverters in Section 5.1), the complex logic blocks are sized to have a rise and fall 

time equal to an inverter with NMOS W/L = 1.5, PMOS W/L = 3. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Network of complex gates and inverters composing a 1-bit full adder 
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a. Delay 

The critical path of the 4-bit adder is formed by the propagation of carry signals.  

To measure delay, carry propagation is forced across the chain as shown in 

Figure 5.  The delay between adder input signals and the formation of the last 

Cout is taken as the worst case delay. 

 

 

 

 

 

 

Figure 5. Inputs of 4-bit adder for critical path delay measurement 
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b. Dynamic power 

To assess the dynamic power dissipated by the circuit, a test vector covering 

every possible input is formed and asserted. A low signal is asserted on all inputs 

before any high signals to minimize states in which static power is dominant. The 

resulting waveform (Figure 6) is asserted cyclically for 20ns and the average 

power dissipated during this period recorded as dynamic power. 

 

 

 

 

 

 

 

 

Figure 6. Dynamic power assessment waveform for full adder 

C

B

A

Sum

Cout

 

 

c. Static power 

All eight possible inputs are in turn imposed as a DC source.  The average of the 

power dissipated for each input after 20ns is recorded as the static power 

dissipation of the circuit.   

 

d. Area 

A full transistor-level layout is created for a 1-bit adder.  The area for a four-bit 

adder is taken as the sum of areas for four 1-bit adders. 

 

5. Conclusions 
In terms of area, the sleepy stack approach is better suited for simple logic gates than 

complex logic gates, as shown in Figure 7.  The reason that simple networks are favored 

by the approach arises out of the sleepy stack structure. The structure of a sleepy stack 

transistor group consists of the original transistor, stacked duplicate and sleep transistor 
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connected between the original transistor and stacked duplicate. The center node 

connecting all three transistors has an odd number of vertices.   

Nodes with an odd number of vertices can be included in a Euler path, but only as 

starting or ending points of the path. Therefore, a Euler path can include at most two 

sleepy stack transistor groups, forcing separate paths for all other pairs of sleepy stacks. 

Since continuous active regions depend on Euler paths in the pull-up/pull-down network, 

the number of separate active regions will be proportional to half the number of sleepy 

stacked transistors.  

The sleepy stack approach could feasibly be implemented in a standard cell library of 

simple logic blocks. Due to the area penalty, the sleepy stack approach can be better used 

for applications where static power consumption is critical and cost can be paid in area 

and delay.  

 

 
Figure 7. Areas for considered static power reduction implementations and respective 

test circuits. 

Area for Static Power Reduction 
Implementations

1000 

Area (µm^2) 

100 
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3 Inverter Chain 23.59 
Base case Stack Sleep Zigzag Sleepy stack

40.73 26.91 48.09 33.32
301.60 753.40 4-1 MUX 345.06 445.50 447.00
138.00 396.00 Full Adder 186.00 186.00 166.00
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Appendices 
 
A) 3 Inverter Chain 

1) Base approach 
a) Schematic 
b) Layout 

2) Stack approach 
a) Schematic 
b) Layout 

3) Sleep approach 
a) Schematic 
b) Layout 

4) Zigzag approach 
a) Schematic 
b) Layout 

5) Sleepy stack approach 
a) Schematic 
b) Layout 

6) 3 inverter chain Data 
B) Full Adder 

1) Base approach 
a) Schematic 
b) Layout 

2) Stack approach 
a) Schematic 

(i) Cout’ 
(ii) Sum’ 

b) Layout 
3) Sleep approach 

a) Schematic 
(i) Cout’ 
(ii) Sum’ 

b) Layout 
4) Zigzag approach 

a) Schematic 
(i) Cout’ 
(ii) Sum’ 

b) Layout 
(i) Cout’ 
(ii) Sum’ 
(iii) Full Adder 

5) Sleepy stack approach 
a) Schematic 

(i) Cout’ 
(ii) Sum’ 

b) Layout 
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(i) Cout’ 
(ii) Sum’ 
(iii) Full Adder 

6) Adder Data 
C) NAND 

1) Base case 
a) Schematic 
b) Layout 

2) Stack approach 
a) Schematic 
b) Layout 

3) Sleep approach 
a) Schematic 
b) Layout 

4) Zigzag approach 
a) Schematic 

(i) PMOS Sleep 
(ii) NMOS Sleep 

b) Layout 
(i) PMOS Sleep 
(ii) NMOS Sleep 

5) Sleepy stack approach 
a) Schematic 
b) Layout 

D) NOR 
1) Base case 

a) Schematic 
b) Layout 

2) Stack approach 
a) Schematic 
b) Layout 

3) Sleep approach 
a) Schematic 
b) Layout 

4) Zigzag approach 
a) Schematic 

(i) PMOS Sleep 
(ii) NMOS Sleep 

b) Layout 
(i) PMOS Sleep 
(ii) NMOS Sleep 

5) Sleepy stack approach 
a) Schematic 
b) Layout 

E) MUX Data 
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A.1.a. Base approach 3 inverter chain schematic
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A.1.b. Base approach 3 inverter chain layout 
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A.2.a. Stack approach 3 inverter chain schematic 
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A.2.b. Stack approach 3 inverter chain layout 
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A.3.a. Sleep approach 3 inverter chain schematic 
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A.3.b. Sleep approach 3 inverter chain layout 
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A.4.a. Zigzag approach 3 inverter chain schematic 
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A.4.b. Zigzag approach 3 inverter chain layout 
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A.5.a. Sleepy stack approach 3 inverter chain schematic 
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A.5.b. Sleepy stack approach 3 inverter chain layout 
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TSMC 0.18µ Propagation delay (s) Static Power (W) Dynamic Power (W) Area (µ2)
Base case 9.56E-11 4.50E-11 3.16E-06 23.59

Stack 2.46E-10 8.99E-12 3.20E-06 26.91
Sleep 1.56E-10 1.44E-11 4.79E-06 48.09

ZigZag 1.34E-10 5.63E-12 5.43E-06 33.32
Sleepy Stack 1.78E-10 1.64E-11 3.46E-06 40.73

Sleep (dual Vth) 2.22E-10 1.09E-12 4.56E-06 48.09
ZigZag (dual Vth) 1.76E-10 1.06E-17 5.21E-06 33.32

Sleepy Stack (dual Vth) 2.19E-10 5.96E-16 3.18E-06 40.73

Berkeley 0.18µ Propagation delay (s) Static Power (W) Dynamic Power (W) Area (µ2)
Base case 7.73E-11 1.70E-09 4.94E-06 23.59

Stack 1.95E-10 2.31E-10 3.63E-06 26.91
Sleep 1.06E-10 5.48E-10 7.79E-06 48.09

ZigZag 1.01E-10 3.31E-10 8.69E-06 33.32
Sleepy Stack 1.38E-10 4.05E-10 4.85E-06 40.73

Sleep (dual Vth) 1.55E-10 1.11E-12 6.83E-06 48.09
ZigZag (dual Vth) 1.47E-10 4.14E-16 8.04E-06 33.32

Sleepy Stack (dual Vth) 1.87E-10 4.99E-14 3.99E-06 40.73

Berkeley 0.13µ Propagation delay (s) Static Power (W) Dynamic Power (W) Area (µ2)
Base case 7.00E-11 1.48E-09 2.15E-06 13.54

Stack 1.70E-10 1.00E-10 1.56E-06 15.44
Sleep 9.34E-11 2.64E-10 3.21E-06 27.59

ZigZag 8.14E-11 2.32E-10 4.03E-06 19.12
Sleepy Stack 1.20E-10 1.82E-10 2.03E-06 23.37

Sleep (dual Vth) 1.41E-10 6.73E-13 2.62E-06 27.59
ZigZag (dual Vth) 1.07E-10 8.92E-15 3.50E-06 19.12

Sleepy Stack (dual Vth) 1.64E-10 1.75E-13 1.77E-06 23.37

Berkeley 0.10µ Propagation delay (s) Static Power (W) Dynamic Power (W) Area (µ2)
Base case 5.36E-11 6.74E-09 1.67E-06 8.01

Stack 1.30E-10 2.87E-10 1.05E-06 9.14
Sleep 7.05E-11 6.77E-10 2.66E-06 16.33

ZigZag 6.21E-11 5.40E-10 2.80E-06 11.31
Sleepy Stack 9.28E-11 5.39E-10 1.60E-06 13.83

Sleep (dual Vth) 1.02E-10 5.39E-13 2.15E-06 16.33
ZigZag (dual Vth) 8.28E-11 3.44E-14 2.68E-06 11.31

Sleepy Stack (dual Vth) 1.22E-10 5.18E-13 1.17E-06 13.83

Berkeley 0.07µ Propagation delay (s) Static Power (W) Dynamic Power (W) Area (µ2)
Base case 4.61E-11 1.24E-08 6.56E-07 3.92

Stack 1.28E-10 9.89E-10 4.08E-07 4.48
Sleep 6.98E-11 2.40E-09 9.49E-07 8.00

ZigZag 5.99E-11 2.27E-09 1.05E-06 5.54
Sleepy Stack 8.75E-11 1.77E-09 6.35E-07 6.78

Sleep (dual Vth) 1.14E-10 4.32E-13 8.58E-07 8.00
ZigZag (dual Vth) 9.03E-11 3.84E-13 9.87E-07 5.54

Sleepy Stack (dual Vth) 1.38E-10 9.88E-13 4.88E-07 6.78
 

A.6. 3 inverter chain data 
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B.1.a. Base case full adder schematic 
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B.1.b. Base case full adder layout 
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B.2.a.i. Stack approach Full Adder Cout’ schematic 
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B.2.a.ii. Stack approach Full Adder Sum’ schematic 
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B.2.b. Stack approach Full Adder layout 
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B.3.a.i. Sleep approach Full Adder Cout’ schematic 
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B.3.a.ii. Sleep approach Full Adder Sum’ schematic 
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B.3.b. Sleep approach Full Adder layout 
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B.4.a.i. Zigzag approach Full Adder Cout’ schematic.  
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B.4.a.ii. Zigzag approach Full Adder Sum’ schematic
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B.4.b.i. Zigzag approach Full Adder Cout’ layout 
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B.4.b.ii. Zigzag approach Full Adder Cout’ layout 
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B.4.b.iii. Zigzag approach Full Adder layout 
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B.5.a.i. Sleepy stack approach Full Adder Cout’ Schematic 
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B.5.a.ii. Sleepy stack approach Full Adder Sum’ Schematic 
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B.5.b.i. Sleepy stack approach Full Adder Cout’ Layout 
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B.5.b.ii. Sleepy stack approach Full Adder Sum’ Layout 
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B.5.b.iii. Sleepy stack approach Full Adder Layout 
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TSMC 0.18µ Propagation delay (s) Static Power (W) Dynamic Power (W) Area (µ2)
Base case 6.97E-10 3.87E-10 1.51E-04 138.00

Stack 1.70E-09 2.24E-10 1.30E-04 186.00
Sleep 9.43E-10 1.10E-10 1.55E-04 186.00

ZigZag 9.45E-10 5.49E-11 1.43E-04 166.00
Sleepy Stack 1.36E-09 1.58E-10 1.31E-04 396.00

Sleep (dual Vth) 1.26E-09 1.86E-11 1.59E-04 186.00
ZigZag (dual Vth) 1.26E-09 1.21E-11 1.43E-04 166.00

Sleepy Stack (dual Vth) 1.73E-09 3.83E-11 1.21E-04 396.00

Berkeley 0.18µ Propagation delay (s) Static Power (W) Dynamic Power (W) Area (µ2)
Base case 5.07E-10 3.04E-08 1.41E-04 138.00

Stack 1.50E-09 2.96E-09 1.21E-04 186.00
Sleep 6.79E-10 4.51E-09 1.46E-04 186.00

ZigZag 6.83E-10 2.51E-09 1.35E-04 166.00
Sleepy Stack 1.18E-09 4.30E-09 1.27E-04 396.00

Sleep (dual Vth) 9.38E-10 1.33E-11 1.53E-04 186.00
ZigZag (dual Vth) 9.53E-10 8.12E-12 1.37E-04 166.00

Sleepy Stack (dual Vth) 1.63E-09 3.51E-11 1.18E-04 396.00

Berkeley 0.13µ Propagation delay (s) Static Power (W) Dynamic Power (W) Area (µ2)
Base case 4.15E-10 2.40E-08 6.10E-05 79.18

Stack 1.21E-09 9.69E-10 5.20E-05 106.72
Sleep 5.46E-10 1.98E-09 6.19E-05 106.72

ZigZag 5.43E-10 1.25E-09 5.83E-05 95.25
Sleepy Stack 9.35E-10 1.63E-09 5.42E-05 227.21

Sleep (dual Vth) 7.53E-10 6.96E-12 6.47E-05 106.72
ZigZag (dual Vth) 7.56E-10 1.66E-12 5.90E-05 95.25

Sleepy Stack (dual Vth) 1.21E-09 2.22E-11 4.94E-05 227.21

Berkeley 0.10µ Propagation delay (s) Static Power (W) Dynamic Power (W) Area (µ2)
Base case 3.08E-10 9.75E-08 3.68E-05 46.85

Stack 8.95E-10 3.20E-09 3.00E-05 63.15
Sleep 4.13E-10 5.26E-09 3.73E-05 63.15

ZigZag 4.17E-10 3.23E-09 3.54E-05 56.36
Sleepy Stack 7.01E-10 5.05E-09 3.19E-05 134.44

Sleep (dual Vth) 5.55E-10 5.72E-12 3.85E-05 63.15
ZigZag (dual Vth) 5.62E-10 4.94E-12 3.55E-05 56.36

Sleepy Stack (dual Vth) 9.14E-10 2.38E-11 2.92E-05 134.44

Berkeley 0.07µ Propagation delay (s) Static Power (W) Dynamic Power (W) Area (µ2)
Base case 2.91E-10 1.81E-07 1.52E-05 22.96

Stack 8.89E-10 9.25E-09 1.24E-05 30.94
Sleep 4.11E-10 1.69E-08 1.54E-05 30.94

ZigZag 4.06E-10 1.20E-08 1.47E-05 27.62
Sleepy Stack 6.79E-10 1.50E-08 1.31E-05 65.88

Sleep (dual Vth) 6.20E-10 3.31E-12 1.61E-05 30.94
ZigZag (dual Vth) 6.15E-10 4.92E-12 1.47E-05 27.62

Sleepy Stack (dual Vth) 1.03E-09 1.88E-11 1.22E-05 65.88  
 

B.6. Adder data 
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C.1.a. Base case NAND schematic 
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C.1.b. Base case NAND layout 
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C.2.a. Stack approach NAND Schematic 
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C.2.b. Stack approach NAND Layout 
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C.3.a. Sleep approach NAND Schematic 
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C.3.b. Sleep approach NAND Layout 
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C.4.a.ii. Zigzag approach NAND Schematic, NMOS sleep 
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C.4.b.i. Zigzag approach NAND Layout, PMOS sleep 
 
 

 
 

C.4.b.ii. Zigzag approach NAND Layout, NMOS sleep 
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C.5.a. Sleepy stack approach NAND Schematic 

 54



 

 
 

C.5.b. Sleepy stack approach NAND Layout 
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D.1.a. Base case NOR Schematic 
 
 
 

 
 

D.1.b. Base case NOR Layout 
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D.2.a. Stack approach NOR Schematic 
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D.2.b. Stack approach NOR Layout 

 58



 
 
 
 
 W/

 
 
 
 W/

 
 
 W/

 
 
 
 
 
 
 
 
 
 
 

ba W/L=3

L=12

S W/L=3

L=12

L=12

S

b

b

W/L=3

 
D.3.a. Sleep approach NOR Schematic 
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D.3.b. Sleep approach NOR Layout 
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D.4.a.i. Zigzag approach NOR Schematic, PMOS Sleep 
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D.4.a.ii. Zigzag approach NOR Schematic, PMOS Sleep 
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D.4.b.i Zigzag approach NOR Layout, NMOS Sleep 
 
 

 
 

D.4.b.ii. Zigzag approach NOR Layout, PMOS Sleep 
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D.5.a. Sleepy stack approach NOR Schematic 
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D.5.b. Sleepy stack approach NOR Layout 
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TSMC 0.18µ Propagation delay (s) Static Power (W) Dynamic Power (W) Area (µ2)
Base case 2.58E-10 2.89E-10 4.07E-05 301.60

Stack 7.26E-10 4.87E-11 3.45E-05 345.06
Sleep 3.63E-10 7.71E-11 3.40E-05 445.50

ZigZag 5.62E-10 4.75E-11 3.60E-05 447.00
Sleepy Stack 5.62E-10 8.31E-11 3.60E-05 753.40

Sleep (dual Vth) 4.87E-10 6.39E-12 3.47E-05 445.50
ZigZag (dual Vth) 7.41E-10 2.61E-14 3.37E-05 447.00

Sleepy Stack (dual Vth) 7.41E-10 3.67E-12 3.37E-05 753.40

Berkeley 0.18µ Propagation delay (s) Static Power (W) Dynamic Power (W) Area (µ2)
Base case 1.77E-10 2.23E-08 3.69E-05 301.60

Stack 5.50E-10 1.55E-09 3.06E-05 345.06
Sleep 2.39E-10 2.81E-09 3.06E-05 445.50

ZigZag 4.38E-10 1.49E-09 3.27E-05 447.00
Sleepy Stack 4.38E-10 2.63E-09 3.27E-05 753.40

Sleep (dual Vth) 3.36E-10 8.69E-12 3.16E-05 445.50
ZigZag (dual Vth) 5.76E-10 3.98E-13 3.04E-05 447.00

Sleepy Stack (dual Vth) 5.76E-10 3.42E-12 3.04E-05 753.40

Berkeley 0.13µ Propagation delay (s) Static Power (W) Dynamic Power (W) Area (µ2)
Base case 1.48E-10 1.84E-08 1.64E-05 173.05

Stack 4.71E-10 9.02E-10 1.38E-05 197.98
Sleep 2.07E-10 2.59E-09 1.36E-05 255.61

ZigZag 3.59E-10 1.48E-09 1.44E-05 256.47
Sleepy Stack 3.59E-10 1.58E-09 1.44E-05 432.27

Sleep (dual Vth) 2.87E-10 6.60E-12 1.40E-05 255.61
ZigZag (dual Vth) 4.86E-10 1.41E-12 1.37E-05 256.47

Sleepy Stack (dual Vth) 4.86E-10 2.61E-12 1.37E-05 432.27

Berkeley 0.10µ Propagation delay (s) Static Power (W) Dynamic Power (W) Area (µ2)
Base case 1.11E-10 8.62E-08 1.02E-05 102.40

Stack 3.51E-10 2.18E-09 8.03E-06 117.15
Sleep 1.57E-10 5.48E-09 8.39E-06 151.25

ZigZag 2.70E-10 3.16E-09 8.51E-06 151.76
Sleepy Stack 2.70E-10 3.97E-09 8.51E-06 255.78

Sleep (dual Vth) 2.12E-10 5.62E-12 8.50E-06 151.25
ZigZag (dual Vth) 3.59E-10 3.97E-12 7.95E-06 151.76

Sleepy Stack (dual Vth) 3.59E-10 5.46E-12 7.95E-06 255.78

Berkeley 0.07µ Propagation delay (s) Static Power (W) Dynamic Power (W) Area (µ2)
Base case 1.05E-10 1.72E-07 4.35E-06 50.17

Stack 3.39E-10 8.63E-09 3.43E-06 57.40
Sleep 1.56E-10 2.24E-08 3.66E-06 74.11

ZigZag 2.58E-10 1.41E-08 3.64E-06 74.36
Sleepy Stack 2.58E-10 1.51E-08 3.64E-06 125.33

Sleep (dual Vth) 2.35E-10 5.03E-12 3.73E-06 74.11
ZigZag (dual Vth) 3.97E-10 7.54E-12 3.43E-06 74.36

Sleepy Stack (dual Vth) 3.97E-10 8.19E-12 3.43E-06 125.33  
E. 4-1 MUX data 
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