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ABSTRACT
Towards the goal of fast, vision-based autonomous flight, localization, and map building to support local planning and
control in unstructured outdoor environments, we present a method for incrementally building a map of salient tree trunks
while simultaneously estimating the trajectory of a quadrotor flying through a forest. We make significant progress in
a class of visual perception methods that produce low-dimensional, geometric information that is ideal for planning and
navigation on aerial robots, while directing computational resources using motion saliency, which selects objects that are
important to navigation and planning. By low-dimensional geometric information, we mean coarse geometric primitives,
which for the purposes of motion planning and navigation are suitable proxies for real-world objects. Additionally, we
develop a method for summarizing past image measurements that avoids expensive computations on a history of images
while maintaining the key non-linearities that make full map and trajectory smoothing possible. We demonstrate results
with data from a small, commercially-available quad-rotor flying in a challenging, forested environment.

1. INTRODUCTION
We are working towards the goal of fast, vision-based autonomous flight, localization, and map building to support local
planning and control in unstructured outdoor environments. With its wide range of important applications in both military
and civilian services, research in Unmanned Aerial Vehicles (UAVs) has been growing significantly in recent years. De-
spite many common characteristics, the problems of automatic navigation, obstacles avoidance, map building, and action
planning in an aerial robot are much harder than in a typical ground robot. This is mainly because of the limited payload,
limited power consumption, and the extra degrees-of-freedom motion of an aerial robot.

In the context of a vision-equipped quadrotor flying through a forest, we present a method for incrementally building a
map of salient tree trunks while simultaneously estimating the quadrotor’s trajectory. Towards this overall goal, we make
significant progress in a class of visual perception methods that produce low-dimensional, geometric information that is
ideal for planning and navigation on aerial robots, while directing computational resources using motion saliency, which
selects objects that are important to navigation and planning. By low-dimensional geometric information, we mean coarse
geometric primitives, which for the purposes of motion planning and navigation are suitable proxies for real-world objects.

Mapping tree trunks in a forest from a flying quadrotor, and more generally perception from small robots in many real-
world outdoor scenarios, are difficult problems due to platform limitations and challenging properties of the environment.
The limited payload capacity and limited power of small aerial robots makes it difficult to use laser scanners and cameras
with large, high-quality lenses. Furthermore, while current state-of-the-art autonomous mapping and navigation methods
build 3D point clouds from point image features, such features often do not appear, are unstable, or are not discriminative
enough for matching on important objects in many real-world situations when viewed through miniature, lightweight cam-
eras. As an example of this, compare the photograph from a high-quality camera in Fig. 1a to the view from the quadrotor’s
on-board miniature camera in Fig. 1b. Additionally, computational power as well as wireless network bandwidth make
processing on-board or transmitting high-quality images very challenging or impossible.

Our method specifically addresses the limited computational resources of small aerial robots. It improves upon the
state-of-the-art by directly estimating low-dimensional geometric information in the form of vertical cylinders modeling
tree trunks as well as the robot’s trajectory. This avoids the aforementioned problems with perceiving point clouds, making
it possible to track featureless edges, as well as produces geometric information about occupied space that is immediately
useful to a motion planner or controller. Furthermore, we use a bio-inspired measure of motion saliency to limit mapping
to trees that are nearby to the robot, and thus important for motion planning. Additionally, we develop a method for
summarizing past image measurements that avoids expensive computations on a history of images while maintaining the
key non-linearities that make full map and trajectory smoothing possible.
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(a) Photograph of the environment taken by a high-quality camera. (b) View of the environment from the quadrotor’s
on-board lighweight, miniature camera.

Figure 1: Point image features often do not appear or are not discriminative enough for matching in many real-world
situations when viewed through the miniature cameras that are suitable for lightweight aerial robots. Our method targets
such platforms, and instead directly estimates low-dimensional geometric information that is immediately useful to a
motion planner. We present results in this forest setting, mapping tree trunks and estimating the quadrotor’s trajectory, with
a commercially-available and inexpensive UAV, the Parrot AR.Drone.

2. RELATED WORK
Many systems use laser scanners on the UAV to navigate in indoor1–3 or outdoor4 environments. Unfortunately, laser
scanner is not suitable for long-term use on small aerial robots due to their limited power and payload capacity. Moreover,
in many applications (e.g., military) active sensors, such as laser scanners, are to be avoided. For example, multiple laser
scanners can interfere with each other and are not suitable for covert operation.

Our interest in lightweight UAVs precludes the use of heavy and power-hungry sensors such as laser scanners. Instead,
we target vision sensors combined with an IMU, due to their lightweight, low-power and wide availability in popular UAVs
like the AR.Drone. Typical work utilizing the light-weight on-board camera for navigation either relies on a ground robot
for map-building,5 or performs full SLAM using the downward camera capturing the ground.6–9 Unfortunately, the map
of the ground obtained from the downward camera is insufficient for obstacle avoidance task. Many other work utilizes the
Parallel Tracking and Mapping Algorithm (PTAM)10 to build point-cloud based maps of the environment.7–9 This imposes
an area restriction, since PTAM is limited to a small workspace.10 The goal of Langelaan and Rock11 to enable autonomous
UAV flight in the forest using only light-weight sensors like IMU and camera is most closely related to ours. Unfortunately,
their paper11 only demonstrates results on ground robots with synthetic data or balloons as tree replacements.

Model-based object tracking for localization has also been shown to be a powerful tool in aerial robots. Kemp12 uses
a 3D model of the environment, projects that onto the image and optimizes the pose parameters through a likelihood
function of the SSD distances from sampled points on the projected edges to nearby edges. One key to robustness during
fast motions was to retain multiple hypotheses about which image edge corresponded to each model edge. Similarly,
Teulière et al.13 also uses model-based edge tracking for indoor flight.

Unfortunately, these edge-based methods only work well in a controlled indoor environment with a small number of
easily detectable edges. In our forest situation, binary edges such as that of Canny,14 are undesirable since they might
contain many unwanted edges from leaves and branches in the forest while discarding lots of useful information from the
original image measurements. Hence, instead of detecting edges in the image, our model-based approach uses a likelihood
function to maximize image gradients along the tree boundaries to estimate the 3D geometry structure.15–17

Our work is inspired in part by studies on the visual and spatial reasoning systems of animals including humans.
Psychologists know that optical flow sensation occurs early in the visual pipeline, and Gibson proposed that optical flow
provides crucial information for animals to perceive and avoid looming obstacles, pursue prey, and perform a number of
other higher-level tasks.18 Optical flow reasoning over the entire visual field, similar to the peripheral flow we model,
allows perception of ego-motion and basic control laws such as avoiding obstacles, following walls and tunnels, and
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Figure 2: Factor graph for the tracking system, where xt is the pose of the Ar.Drone at time t and θ j comprises the
parameters of the jth tree. The current original measurement factors (red thick edges) will be turned into the approximate
summary factors (blue thin edges) after optimization. Consecutive poses are connected by odometry measurement factors.

landing. Besides optical flow, humans and other animals additionally keep track of the positions of distinct objects.19 This
information about individual objects is complementary to coarse, wide-field optical flow.

The peripheral-foveal system of Gould et al.20 shares with us many similar ideas of combining peripheral and fovea
tracking mechanisms, but their goal is object recognition and tracking, whereas ours is map building and outdoor navigation
on UAVs. We also note the classic work of Itti et al.21 which proposes a computational model for the visual attention
system. Furthermore, another paper of Itti and Koch22 also reviews different related models for the saliency map, attention
and eye movements, and the inhibition of return for scene understanding and object recognition.

3. MAPPING THE FOREST
Our goal is to map salient trees, i.e. those that are nearby to the robot. We want to infer the planar positions and radii
θ j ∈ R2×R+ of salient trees (indexed by j) as well as the trajectory of the robot described by the poses xt ∈ SE(3) at
every time step t. All positions and poses are expressed in a global coordinate frame. We obtain measurements zt of the
robot’s odometry from an on-board pose filter, and image measurements It at each time step. Specifically, we wish to infer

p(x,θ |I,z) , (1)

where x is the set of all poses, θ the set of all salient trees that have been detected, z the set of all odometry measurements,
and I the set of all images.

We decouple the detection and tracking problems. During inference of the map and trajectory, we assume that the set
of salient trees observed in each frame is known. At every new time step, we propagate new observations of all trees that
were observed in the current time step. Additionally, we formulate a model-based tree detector, making use of motion
saliency, to instantiate newly-observed trees.

4. INFERRING THE TREE PARAMETERS AND ROBOT TRAJECTORY
We formulate this estimation problem as a factor graph comprised of pose nodes xt and tree nodes θ j, which are the vari-
ables we want to estimate. Those nodes are connected via three different types of binary measurement factors, which
represent constraints between the respective variables: odometry measurement factors connecting two poses, image mea-
surement factors connecting a pose and a observed tree, and summary factors, which are the aforementioned approxima-
tions of the image factors. The formulation of this problem as a factor graph allows us to solve for the unknown variables
using the GTSAM library.23



We assume that an image measurement It depends only on the robot pose xt and tree parameters θt from the same
time step, and that an odometry measurement zt depends only on the previous and current† poses xt−1 and xt . Using these
conditional independence assumptions, Eq. 1 factors as

p(x,θ |I,z) ∝

T

∏
t=1

p(It |xt ,θ)
T

∏
t=2

p(xt |xt−1,zt) p(θ)p(x1), (2)

where p(It |xt ,θ) is the image measurement model of how likely an image It is given a robot pose xt and set of trees θ ,
p(xt |xt−1,zt) is a motion model to predict the current pose xt from the previous pose xt−1 given the current Gaussian-noise
odometry measurement zt , and p(θ) and p(x1) are priors on the tree parameters and the first pose respectively. In our
experiments, p(x1) serves only to anchor the first robot pose.

Note that in this smoothing framework, Eq. 2 requires us to re-compute the likelihoods p(It |xt ,θ) for all past images at
every time step and every optimization iteration. This is very expensive due to many pixel-based operations in the likelihood
computation. In the following sections, we describe the measurement model p(It |xt ,θ), and an efficient approximation of
the past likelihood p(It |xt ,θ) , t = 1..T −1, based on the current best estimates of x1..T−1 and θ , that makes full trajectory
and map smoothing tractable without “baking in” linearization errors.

4.1 The Measurement Model p(It |xt ,θ)

We define the measurement likelihood directly on the image gradients, in terms of the projected edges predicted by the
robot pose and tree parameters. We model trees as vertical cylinders, which we predict to produce strong image edges.
Similarly to Dellaert and Thrope,15 we directly define the energy of the measurement likelihood as the negative absolute
value of the summed image gradient strength along the projected left ΠL

t j and right ΠR
t j image edges of the cylindrical tree

trunk,

eIt (xt ,θ j)
∆
= α

 ∑
u∈ΠL

t j

∇I−t (u)− ∑
u∈ΠR

t j

∇I+t (u)

 . (3)

Here, ∇I−t = min(0,∇It) is the image of negative gradients, ∇I+t = max(0,∇It) is the image of positive gradients, and α

is a weight, which we choose empirically to be 1000 in our experiments. After splitting the image into these positive and
negative gradients, we separately convolve each gradient image with a Gaussian blurring kernel (in our experiments with
σ = 3 pixels) to increase the basin of attraction during optimization. The measurement likelihood is then

p(It |xt ,θ) ∝ ∏
j

exp(−eIt (xt ,θ j)) . (4)

4.2 Image Measurement Summarization
To perform the full trajectory and map smoothing in Eq. 2, we must evaluate the likelihoods p(It |xt ,θ) for all t = 1..T −1
on the full trajectory and map given all past images. This is too expensive to compute regularly during incremental mapping
as it is the product of the measurement likelihoods on all previous frames, which involve computations with many pixels.

Instead, we approximate each past likelihood in Eq. 2 as a product of approximate summary factors L̃t j (xt ,θ j) ≈
p(It |xt ,θ j) for each tree in each frame. The summary factors L̃t j (xt ,θ j) are good approximations of the original mea-
surement likelihoods in Eq 4 but are much cheaper to evaluate. We do this by developing an approximate energy function
ẽI (xt ,θ j) that is cheap to compute but is still a good approximation, near the energy minimum, of the original highly
non-linear energy function, i.e. L̃t j (xt ,θ j) = exp(−ẽI (xt ,θ j)).

To make this approximation, we “split” the true likelihood function into a part depending on the image, which is
expensive to compute but easy to approximate, and a part involving a geometric transform and projection function, which
is cheap to compute but highly non-linear. To do this, we note that because the true measurement likelihood depends only

†This Markovian assumption is actually an approximation since the on-board pose filter maintains higher-order state information
such as velocities and angular rates, which we do not marginalize out. For the purpose of this paper though we assume this discrepancy
can be modeled by zero-mean Gaussian noise on the odometry, but note that the full state could easily be approximated in this framework
given appropriate control and sensor models.
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Figure 3: The relative parameters for a summary factor. The robot is viewing in its x direction (red). With fixed ratio r/d,
the tree could be anywhere along the bearing dotted line.

on the projected tree edges in the image Πt j, it varies only with the relative rotation of the tree to the robot, and additionally
the size/distance ratio capturing that well-known ambiguity of monocular image (Fig. 3). Hence, we reparameterize the
image likelihood energy function in Eq. 3 in terms of these “relative tree parameters” θ r

t j ∈ SO(3)×R+,

eI (xt ,θ j) = er
I
(
θ

r
t j (xt ,θ j)

)
, (5)

where θ r
t j : SE(3)×R3 → SO(3)×R+ is the function converting a robot pose and tree into the corresponding set of

relative tree parameters. This function is highly non-linear but very cheap to compute.

More specifically, the relative tree parameterization is θ r
t j =

(
Rr

t j,
r
d

)
∈ SO(3)×R+, where Rr

t j is the relative rotation

of the tree to the robot and r
d is the size/distance ratio. The relative distance is d =

√
α2 +β 2, where[

α

β

]
=

[
θ j (x)− xt (x)
θ j (y)− xt (y)

]
. (6)

The relative rotation is
Rr

t j = xt (R)
−1 R j, (7)

in which the non-relative tree rotation R j is defined by a coordinate system fixed to the tree, whose x-axis points away from
the robot’s position in the global x-y plane and whose z-axis points along the world z-axis, and is thus

R j =

 α/d −β/d 0
β/d α/d 0

0 0 1

 . (8)

While the image likelihood is expensive to evaluate (due to pixel operations), its log-likelihood is very well-approximated
by a quadratic function of these relative tree parameters, and this quadratic approximation need only be computed once if
the position in each image of the tree edges does not change much during optimization. To ensure a good and unbiased
approximation, we non-linearly optimize the relative tree parameters to maximize the true measurement likelihood before

computing and replacing the likelihood with its quadratic approximation. Given the current best estimate (
◦
xt ,

◦
θ j) and its

relative tree parameters
◦
θ r

t j = θ r
t j(
◦
xt ,

◦
θ j), we approximate the energy function as:

eI (xt ,θ j) = er
I
(
θ

r
t j (xt ,θ j)

)
≈ ◦

er
t j + ft jδθ

r
t j +(δθ

r
t j)

T Ft jδθ
r
t j, (9)

where
◦
er

t j = er
I

(
◦
θ r

t j

)
= eI(

◦
xt ,

◦
θ j) is the energy at the approximation center, ft j = ∂er

I

(
θ r

t j

)
/∂θ r

t j is the 4× 1 Jacobian,

Ft j = ∂ 2er
I

(
θ r

t j

)
/∂θ r2

t j is the 4×4 Hessian matrix of the energy function at
◦
θ r

t j, and δθ r
t j = θ r

t j (xt ,θ j)�
◦
θ r

t j is the change

in the relative tree parameters from the approximation center. The quadratic approximation comprised of
◦
et j, ft j, and Ft j,

is only computed once, while δθ r
t j is recomputed as the optimization and incremental map-building progresses.
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Figure 5: The three basis flows of the rotational flow subspace, for rotation about canonical camera axes for a spherical
imaging surface. Each basis flow is one column of the flow matrix V .

In practice, the effect of this approximation is that during optimization, the range to trees from the robot trajectory can
change and become more certain dramatically as a widening baseline improves the range information. Also, the trajectory
can bend and rotate as needed as the trajectory is refined, without introducing significant approximation errors into the
summary factors. This makes full trajectory and map smoothing tractable without “baking in” linearization errors.

5. SALIENCY FROM IMMERSIVE OPTICAL FLOW
To reduce the amount of computation, we use a bio-inspired motion saliency measure to focus on nearby trees and ignore
innocuous objects that are far away from the robot. We identify motion-salient image regions nearby to the camera by their
motion parallax. To do this, we simultaneously estimate the camera rotation and segment image regions containing nearby
structure from those with distant structure. To avoid the aperture problem of optical flow, instead of directly estimating
image motion, we instead directly infer the camera rotation and segmentation from spatial image gradients. This is a
modification of the method presented by Roberts et al.24

Our goal is to label each pixel with the probability that it belongs to the background, p(λit |It−1, It), given image
intensity measurements of the previous It−1 and current frame It . The foreground/background label λit is a binary indicator
variable. Observing the previous and current images It−1 and It , we infer these labels in the generative model in Fig. 4,
where the foreground/background labels are drawn I.I.D. from a binomial distribution, image velocities are consistent with
rotational motion if part of the background, and the image velocities are consistent with constant brightness of image
locations corresponding between the previous and current images.

Exact inference of the labels would be intractable, requiring summing over all combinations of the label λit for
every pixel, so instead we apply Expectation Maximization, which alternates between inferring the label probabilities
p(λit |ω̂t , It−1, It) given an estimate of the angular velocity ω̂t , and estimating the angular velocity by maximizing its ex-
pected log-likelihood with respect to the current estimate of the label probabilities. EM avoids the combinatorial search
over the labels of all pixels and is guaranteed to converge to a local minimum.25

5.1 Inferring the Labels p(λit |ω̂t , It−1, It) in the E-Step
Using Bayes’ law, we can rewrite the label probabilities as

p(λit=1 |ω̂t , It−1, It) =
p(It−1, It |λit , ω̂t) p(λit)|λit=1

∑λit={0,1} p(It−1, It |λit , ω̂t) p(λit)
, (10)



where p(It−1, It |λit , ω̂t) is an image likelihood model measuring how consistent a pair of frames is with a given fore-
ground/background labeling and camera rotational velocity, as described above. Also as outlined above, we factor this into
a probabilistic brightness constancy constraint and a rotational image motion model at each pixel,

p(It−1, It |λit , ω̂t) = ∏
i

ˆ

vit

p(It−1, It |vit) p(vit |λit ,ωt) . (11)

The probabilistic brightness constancy constraint‡ is

p(It−1, It |vit) = N (It−1 (ui + vit)− It (ui) ; 0,σI) , (12)

where ui ∈ R2 is the image location of the ith pixel, vit ∈ R2 is the image velocity of the ith pixel at time t, and σI is
a small amount of Gaussian noise on the pixel intensity. Like the standard brightness constancy constraint from optical
flow estimation,26 when the image is warped between frames due to camera rotation, the brightness of any image location
should not change as it moves, except with a small amount of Gaussian noise.

The rotational image motion model is

p(vit |λit ,ωt) =

{
N (vit ; Viωt ,Σb) , if λti = 1
N
(
vit ; 0,Σ f

)
, if λti = 0,

(13)

Σb ∈ R2×2 is the covariance of the small noise expected for background rotational flow, and Σ f is the covariance of the
large noise expected for foreground flow including motion parallax. Vi ∈ R2×3 is a matrix mapping angular velocity to
the optical flow vector at the ith image location. For the perspective camera we use in our experiments, we can directly
calculate the flow matrix, given by,27 as

Vi =
1
f

[
xiyi − f 2− x2

i f yi
f 2 + y2

i −xiyi − f xi

]
, (14)

where xi and yi are the horizontal and vertical image location and f is the camera focal length. It is also straightforward
to learn this “flow matrix” V as well as the noise parameters Σb and Σ f from data, for imaging systems with near-arbitrary
optics, as discussed in.24

The linearity of optical flow with respect to rotational velocity is key to efficient inference. Fig. 5 shows the three basis
flows of this linearity for a spherical imaging surface; they combine linearly to produce any observable rotational optical
flow field, and the coefficients of their linear combination are the components of the angular velocity vector ω .

In order to marginalize out the unknown image velocity vit in Eq 11 in closed-form, we approximate the probabilistic
brightness constancy likelihood as a Gaussian about an optical flow estimate

◦
vt =V

◦
ω t , where

◦
ω t ← ω̂t is the last estimate

of the angular velocity, linearizing the image at each image location,

p(It−1, It |vit)≈N
(

Iit

(
ui +

◦
vit

)
+
◦
Iitδvit ; Ii,t−1 (ui) ,σI

)
, (15)

where the shorthand
◦
Iit = ∇It

(
ui +

◦
vti

)
is a 1× 2 horizontal vector of the spatial image gradients evaluated at

◦
vit , and

δvit = vit −
◦
vit is the offset from the linearization point.

5.2 Estimating the Rotational Velocity ω in the M-Step
In the M-step we update the rotation estimate by minimizing the negative expected log-likelihood of the rotation given the
labels and images

ω̂t ← argmin
ωt
〈log p(ωt |λit , It−1, It)〉λit

= argmin
ωt

∑
λit∈{0,1}

p(λit |ω̂t , It−1, It) log p(ωt |λit , It−1, It) . (16)

‡We use the notation N (x; µ,Σ) for the PDF of a Gaussian with mean µ and covariance Σ, evaluated for the expression x.



Subtly but importantly, ω̂t on the right-hand-side is the rotation estimate from the previous EM iteration, while ωt on the
right-hand-side is the update being estimated at each iteration. Using the same methods as in Section 5.1, we write the
rotation likelihood as

p(ωt |λit , It−1, It) ∝ p(It−1, It |λit ,ωt) p(ωt) = ∏
i

ˆ

uit

p(It−1, It |vit) p(vit |λit ,ωt) p(ωt) . (17)

Minimizing Eq 16 is a non-linear least-squares problem, so like above in Eq 15, we linearize the image about the cur-
rent estimate of the rotational velocity

◦
ω t (approximating the image likelihood p(It−1, It |uit) as a Gaussian), to give an

approximate linear least-squares problem. This comprises one iteration of a Gauss-Newton method. To reduce the total
number of iterations, we perform only a single Gauss-Newton update in each M-Step, only relinearizing after updating the
foreground/background labels λit .

6. DETECTING TREES IN SALIENT REGIONS
Given the probabilistic saliency map computed in the previous Section 5, our detector selects pairs of candidate lines in the
salient image regions that have high probability of being a left border and a right border of a tree. Beside picking up trees
only in salient regions, we further reduce the amount of computation by only looking for trees in unexplored areas and
ignoring regions that might contain previously detected trees. By focusing on unpopulated image regions, we can reduce
the chance of detecting and adding similar objects into the system, which might both corrupt the map and increase the
amount of computation unnecessarily.

Knowing that tree trunks are mostly vertical in the image, we generate projections of 3D vertical lines in the image
using the predicted robot orientation obtained from the mapper, then compute the probabilities of these lines to be either
left or right borders of new salient trees. These probabilities are computed from the gradient images ∇I−t ,∇I+t as in Eq 3,
the saliency map of foreground/background probability from Section 5, and the non-inhibited regions projected from our
current best estimate of existing trees θ .

Specifically, the probability of a line to be a left border of a new salient tree is computed as:

p
(
new_left_border |∇I−t ,〈λit〉 ,θ

)
= p

(
left |∇I−t

)
p(foreground | 〈λt〉) p(non_inhib |θ) , (18)

and the probability of a line to be a right border of a new salient tree is also computed in a similar way using the positive
image gradient ∇I+t .

We then apply non-maxima suppression on these probabilities and select non-overlapping pairs of lines with probabil-
ities higher than a fixed threshold, and instantiate new trees from them. This threshold could also be learned from the data,
but we choose it empirically as 0.75 for our experiments.

We compute the probabilities p
(
left |∇I−t

)
and p(foreground | 〈λt〉) using logistic function:

p(left |∇I−t ) = Q
(

1
N ∑

i∈l
∇I−t (i) ; ale f t ,ble f t

)
, (19)

p(foreground | 〈λt〉) = Q
(

1
N ∑

i∈l
(1−〈λit〉) ; as,bs

)
, (20)

where N is the number of pixels along the line l, and Q is the logistic function defined as:

Q(x; a,b) =
1

1+ eax+b ,

where a and b are parameters. The logistic function can intuitively be seen as a “soft threshold” that directly approximates
the conditional density of a binary variable given a continuous one. In our experiments we choose the parameters a and b
by inspection of the statistics of the data, but they can also be easily learned from supervised data.

Finally, the probability of a line not being inhibited by existing trees is computed as:

p(non_inhib |θ) = max
(

1, ∑
θi

exp
−1
2

σ
−2
R d2

θi

)
, (21)

where dθi is the distance from the line to the ith tree, and σR is a parameter that controls the extent of inhibition of a tree.
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Figure 6: Comparison of ground truth tree positions (green circles) and solution of our system (red circles), along with the
robot trajectory. Maps were hand-aligned to the ground truth.

7. EXPERIMENTS AND RESULTS
For the evaluation of our approach, we manually flew the commercially-available and inexpensive AR.Drone through a
small forest as can be seen in Fig. 1. The AR.Drone is a small, lightweight quadrotor equipped with a front-facing camera
and an on-board pose filter and controller that integrates information from an accelerometer, gyroscope, downward-ranging
sonar, and downward-facing camera. We stream wirelessly from the quadrotor 320×240 pixel grayscale frames from the
front facing camera at 10 Hz as well as pose filter and IMU sensor data to a laptop, where they are stored for offline
processing. The IMU data comprises acceleration as well as rotation speed data in all three respective axes, while the
pose filter data includes 6-DOF pose. The angular rate data from the 3-DOF gyroscope was used to obtain initial rotation
estimates for the motion saliency estimation in Section 5. The offline processing of the datasets was done on a 2.2 GHz
Core i7 laptop. Our research implementation runs at approximately one third of real-time, but the implementation has
known inefficiencies and can be made significantly faster.

In addition to the methods described above, we use a simple heuristic to stop estimation of trees when their image
measurements yield energy functions with negative curvature, meaning that they have diverged from energy minima. This
typically occurs when a tree begins to become occluded or occludes another tree. After the trees are unoccluded, our
method typically redetects them but we do not attempt to re-associate them with existing trees. This causes some duplicate
trees in our maps, and could make a motion planner overly cautious but would not cause collisions. Our system produces
a small local map around the robot in a global coordinate frame, with the first robot pose fixed to the origin.

7.1 Local Tree Maps
As described in Section 1, the goal is that our maps contain low-dimensional geometric information immediately useful to
obstacle avoidance and path planning. Therefore, we build local maps of the trees around the robot, which could be used
as input to a planner or controller. Figure 6 shows a comparison of one of these local maps with ground-truth locations for
the trees in the vicinity of the robot. Figure 7 shows typical success and failure cases for our vision system.

We also claimed that motion saliency segments the nearby objects, which are important for local motion planning, from
the distant ones, which are not. Fig. 8 shows how the computation of motion saliency in the image aids the detection and
tracking of nearby trees. In the saliency images, white color depicts closeby motion salient regions, whereas black shows
distant areas which exhibit no or only slow motion. Comparing the original image from the AR.Drone camera with the
respective saliency image clearly shows that motion saliency is a good predictor for closeby trees.



(a) Successful detection and local map estimation (b) Successful detection and local map estimation

(c) Successful detection and local map estimation (d) Detection failed for several trees due to lack of sufficient motion
parallax for saliency estimation. Tracking also failed for a nearby
tree due to revealing of an occluded faraway tree.

Figure 7: Success and failure cases in detecting salient trees and building local maps.

Figure 8: Images 1 and 3 from the left show the greyscale image obtained from the AR.Drone camera, whereas images
2 and 4 show respective saliency field. Highly motion salient regions are colored white, whereas distant areas with no or
only slow motion are depicted black. The cyan lines in all images depict the newly-detected salient trees.



8. CONCLUSION AND FUTURE WORK
We have presented a system that makes significant progress towards the goal of fast, vision-based autonomous flight,
localization, and map building to support local planning and control in unstructured outdoor environments. We estimate
low-dimensional geometric information about trees viewed by a quadrotor flying through a forest, which do not exhibit
point features suitable for building point clouds. We use motion saliency and developed nonlinear image summary factors
to keep computational complexity down while mapping relevant objects and maintaining accuracy.

We intend this work as a demonstration of what information can be estimated using only these methods, and to identify
where it makes sense to augment these methods with additional information to improve accuracy and consistency. Having
better pose estimates would allow us to track through occlusions, and thus our future work is to track a small number of
point features to aid in pose estimation.

Additionally, while we currently decouple the image motion reasoning that takes place in computing motion saliency
from map inference, we believe that the map accuracy, reliability, as well as computational efficiency, could be improved
by integrating the image brightness and motion models discussed in Section 5 with the full joint inference problem. Not
only would this improve pose estimates, but image motion information from the tree edges could also inform estimates of
the tree positions relative to the robot.

Finally, while we gear our methods towards low computation, as stated previously we perform all processing offline on
a laptop. In future work we will address performing these computations entirely on-board the quadrotor.
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