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SUMMARY

Cardiovascular disease (CVD) is the leading cause of death across the globe

claiming 17.3 million lives every year. According to the most recent report from the

American Heart Association (AHA), heart disease strikes a person every 42 seconds

in the United States and the direct and indirect costs of heart disease total more than

$316.6 billion. Hence, it is of no surprise that AHA recommends home monitoring of

patients with heart failure (HF) and other heart disorders. Recently, many devices

have been proposed for monitoring hemodynamics at home. However, most if not all

of these are obtrusive and require trained experts to operate them. Moreover, for a

thorough assessment of cardiovascular function, it is important to monitor respiratory

parameters as well since both systems are functionally interconnected with each other

and cardiac diseases affect the respiratory system and vice versa.

This research focused on a variety of sensors to estimate mechanical parameters

related to respiration and cardiovascular health. Specifically, the work explored the

use of non-contact sensors for detection of sleep apnea, a pause in breathing during

sleep, and wearable and unobtrusive sensors for measuring body vibrations caused by

flow of blood into the vasculature.

Despite the presence of different types of sensors for sleep apnea monitoring, there

are still stringent requirements on position and placement of the sensors for the whole

night recording. Some of the sensors are a source of discomfort to the patients as they

require contact with the skin and also are a cause of concern for hygiene. Sensors

which do not require direct skin contact—such as radar based measurement of chest

wall movement, and microphones to record snoring and breathing sounds—would be

preferable, but require advanced processing methods to extract actionable information
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regarding sleep quality. In this work, such processing methods including feature

extraction and machine learning algorithms were developed and verified.

In parallel to the efforts focused on non-contact chest wall movement analysis for

sleep apnea detection, this work investigated the analysis and interpretation of car-

diogenic body vibrations caused by flow of blood into the vasculature. These minute

body vibrations are called ballistocardiogram (BCG) signals and the phenomenon is

termed as ballistocardiography (BCG). Specifically, this work delved deep into the

hemodynamic origins of these vibrations and used feature based methods and system

identification techniques to associate the BCG vibrations to more known phenomenon

related to flow and pressure of blood. A novel system was presented to estimate stroke

volume changes from the BCG signals. Further, the effect of posture on these vibra-

tions from wearable and / or unobtrusive sensors and how these affect the accuracy

of measured parameters was also investigated. Features of the signal specific to non-

ideal posture were identified, such that changes due to underlying patho-physiology

could be separated in future studies from changes related to posture.

The body vibrations are sensitive to motion artifacts and any movement on the

part of the subject can compromise the signal-to-noise ratio (SNR) of the measured

signal from any type of sensor. Novel algorithms were presented in this work to remove

walking related motion artifacts from the BCG signals measured using accelerometers.

These methods open the door for robust estimation of systolic time intervals from the

BCG during walking and can help in understanding the changes in cardiovascular

physiology in response to stressors caused by exercise or simple activities.

The algorithms and methods presented in this work for respiratory and cardiogenic

vibrations can be used to monitor cardiovascular patients at home using inexpensive

and compact sensors. This would decrease the number of re-hospitalizations each

year and also increase the quality of living.

xvii



CHAPTER I

INTRODUCTION

Cardiovascular and respiratory diseases are leading contributors of health problems in

the world. Cardiovascular disease (CVD) alone accounted for 25% of the total deaths

in the United States last year and heart-related healthcare expenditures totaled more

than $300B annually [64]. These numbers are expected to rise in the coming decades

and by 2030, 40% of the US population is predicted to be afflicted by some form of

CVD. This will lead to a further increase in the sky-rocketing costs of healthcare and

other health-related expenditures. At the same time there is an expected shortage of

healthcare providers per patient in the coming ten years [17]. This imminent problem

of mismatch between the number of patients and healthcare resources available per

patient can be addressed by inexpensive devices that enable assessment of patient

health in home settings and can be operated without the supervision of trained clini-

cians. However, most of the devices that exist today lack the capabilities to measure

a wide variety of physiological parameters required for assessment of respiratory and

cardiac function.

The recent advances in semiconductor fabrication processes and increase in the

number of computing tools has resulted in the advent of low-cost miniature sensors

that can be embedded into novel and unobtrusive wearable technologies or used with

existing devices that can be easily integrated into the infrastructure of a patient’s

home. These novel technologies, which include radars, miniature acoustic sensors,

accelerometers, pressure mats and other electro-mechanical sensors, can increase the

span of physiological parameters that can be measured via home monitoring without

causing any significant change or hindrance in a patient’s daily routine or activities.
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Home monitoring of CVD requires the sensing of both cardiovascualr and respi-

ratory health parameters, as these two systems are intertwined with each other. The

human cardiovascular system receives oxygenated blood from the lungs in the left

atrium while simultaneously receiving de-oxygenated blood in the right atrium from

the vessels [72]. The oxygenated blood is then pumped into the aorta through left

ventricle while the de-oxygenated blood is sent to the lungs through right ventricle

[72]. Hence, both the cardiovascular and respiratory system work in conjunction with

each other. Any issue that affects the respiratory system can also impact the cardio-

vascular system and, conversely, early symptoms of many cardiovascular health issues

also manifest in the respiratory system.

One such respiratory disorder that affects heart health is sleep apnea [92], which

is caused by involuntary cessation of breathing during sleep [8]. Approximately 92%

of women and 83% of men with sleep apnea remain undiagnosed imposing a burden

of $3.4B on the annual medical costs [77]. If left untreated, sleep apnea is linked to a

growing number of cardiovascular health problems that include high blood pressure,

diabetes, irregular heart rate and depression [63]. Moreover, recent studies have shown

that people with sleep apnea are at higher risk of developing coronary heart disease

and heart failure (HF) [38]. Accordingly, there is a growing need to have monitoring

systems which utilize minimally invasive and unobtrusive sensors for early detection

of sleep apnea.

Such early detection of sleep apnea can potentially reduce the incidence of down-

stream cardiovascular disorders including HF—a progressive condition in which the

heart cannot supply sufficient blood to meet the demand of the tissues and organs

[53]. In the early stages of HF, the contracting muscles of the heart get bigger and the

blood is pumped more strongly to meet the demand of the body. The body also tries

to compensate by diverting blood away from less important tissues. However, as the

HF condition worsens, there comes a time when the body and heart cannot keep up
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with each other. The compensatory methods of the body are the reasons people do

not notice their condition until the decline of the heart reaches its later stages. HF is

an archetypal example of a cardiovascular disorder that requires improved continuous

monitoring [19].

For both sleep apnea detection and HF monitoring, the major technological ob-

stacle is the inability to monitor the mechanical parameters of physiological function

outside of clinical settings. Home monitoring systems for both sleep apnea and CVD

include sensing modalities such as electrocardiography (ECG), nasal air flow sensors,

impedance cardiography (ICG), respiratory plethysmography and pulse-oximetry. Al-

though these sensors can provide accurate information regarding respiratory and car-

diovascular function, they are far from unobtrusive and require trained personnel for

operation. For example, ICG requires placement of eight electrodes on the neck and

thorax by a trained professional [43]. Patient discomfort and thus low acceptance

of the sensing modalities can also pose challenges: for example, wearing the nasal

air flow and respiratory plethysmography sensors can certainly cause discomfort and

possibly even vary the sleeping behavior of the subject.

The aim of this research is to not only explore signals from existing measuring

modalities, but also look for new sensors for measuring physiological parameters for

monitoring of sleep apnea and cardiovascular health. In this context, we aim to com-

bine the respiratory effort signals from a non-contact impulse-radio ultra-wide band

(IR-UWB) radar and acoustic signals from a microphone for screening and detection

of sleep apnea. Similarly, for HF we aim to investigate ballistocardiogram (BCG),

the measurement of reactionary forces of the body caused by ejection of blood into

the vasculature [43]. BCG is not a new methodology. In fact, it was first discovered

in the late 19th century by J. W. Gordon who observed fluctuation in the weighing

scale needle while a person stood on it [37]. Later in the mid 20th century, Starr and
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Figure 1: The organization of research work presented in this thesis.

his colleagues showed that BCG can be used for detection of cardiovascular anoma-

lies [95]. However, at that time, BCG measurement required heavy and cumbersome

instrumentation; on the other hand, there were rapid improvements in other cardio-

vascular measurement instruments such as ECG and imaging technologies. Hence,

the interest in BCG slowly waned as these other devices became commonplace. Re-

cent advances in sensing technologies have allowed for unobtrusive and even wearable

BCG measurement instrumentation to be developed over the past decade, and this

has in turn revived the interest in BCG as a tool for physiological monitoring. These

instrumentation advances are also bolstered by the fact that research in both the en-

gineering and clinical communities has demonstrated the potential clinical relevance

of BCG signal features.

Thus, the objectives of proposed research are two-fold: (1) to design signal pro-

cessing techniques and algorithms for detection of sleep apnea using a combination

of non-contact under-the-mattress IR-UWB radar and a microphone placed on the

side-table, and (2) to develop methods for accurate estimation of various cardiac pa-

rameters from the BCG signal obtained from variety of sensors and investigate the

physiological origins of the BCG. The step-by-step flow of research work in this thesis

is presented in Fig. 1.
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1.1 Major Contributions of the Study

There has been a considerable amount of work done on the use of non-contact sensors

and BCG for measuring mechanical parameters of physiological function. However,

there are important gaps in the existing framework of these methodologies that need

to be bridged in order to use them for continuous home monitoring of respiratory and

cardiovascular health.

The existing research has already explored the use of IR-UWB radars and mi-

crophone based snore analysis for the detection of sleep apnea. However, a major

limitation in this field has been the stringent constraints on the placement of sen-

sors during the recording process. Moreover, a combined system composed of both

IR-UWB radar and microphone has also not been investigated. Can a radar alone

provide excellent accuracy in detection of sleep apnea? Will adding other non-contact

sensors such as a microphone cause an improvement in the overall performance of the

system? Can multiple sensors provide relaxation in strict requirements placed on the

position of a single sensor? In this work we try to address these important questions.

Similarly, BCG has shown to be able to provide features that can be used for

cardiovascular assessment. But whilst the BCG provides parameters based on body

vibrations, clinicians and physicians are more interested in existing hemodynamic

parameters describing the cardiovascular function in terms of flow and pressure of

blood. Moreover, these body vibrations are affected by change in posture and move-

ment. This work focuses on expanding the number of parameters estimated from

the BCG for cardiovascular monitoring while exploring the relationship of BCG with

existing hemodynamic phenomenon and also on expressing these estimated BCG pa-

rameters in terms familiar to clinicians and cardiac experts. Moreover, methods are

presented to overcome the changes in the BCG signal induced by posture related

changes and walking to improve the accuracy of BCG-derived parameters in these

phases.

5



Thus, the major contributions of this work, and their potential impact in the field

of research and more broadly to society, are given below:

1. Designed algorithms for extraction of novel features from respiratory signal

measured using an IR-UWB radar. Combining these with features from non-

contact microphone sensors can lead to the design of a user-friendly and robust

system for automated detection of sleep apnea in home settings.

2. Demonstrated using system identification techniques that a linear relationship

in mapping BCG signals to ICG-based blood flow signals was preserved during

physiological perturbations, and significantly better than the corresponding re-

lationship between BCG and arterial blood pressure (ABP) signals. Converting

BCG signals to corresponding ICG signals can broaden the range of hemody-

namic features estimated from the BCG and also provide clinically relevant

insight into the BCG signal’s origin.

3. Designed and validated robust data driven algorithms for estimating systolic

time intervals (STIs) from BCG signals during walking at light to moderate

speeds and in non-ideal postural conditions. Specifically, the BCG data during

walking is either completely ignored due to very low signal-to-noise ratio (SNR)

or limited to heart rate estimation only. These algorithms can, for the first

time, capture changes in cardiovascular physiology during exercise or movement

intervals using BCG signals.

4. Demonstrated that wearable ECG / BCG based measures of pre-ejection pe-

riod (PEP) changes in response to the six minute walk test were significantly

(p < 0.05) lower for patients with decompensated heart failure (New York

Heart Association (NYHA) Class IV) as compared to compensated heart fail-

ure (NYHA Class I-II). Knowing that PEP changes in response to exercise

captured by a wearable patch can separate compensated from decompensated
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HF patients and lead to an automated wearable system to potentially predict

decompensation beforehand, allowing physicians to intervene accordingly.

1.2 Thesis Organization

The rest of the thesis is organized as follows: The previous work in both sleep apnea

detection and BCG based cardiovascular monitoring are reviewed in Chapter II. The

chapter also discusses important nomenclature for the BCG signals measured with

different sensors and from different locations on the body. Chapter III discusses the

detection of sleep apnea disorder with non-contact sensors. Novel algorithms are

presented for extraction of features from the IR-UWB radar signal along with the

effect of adding a microphone sensor on the overall performance of the system.

The hemodynamic origins of BCG are investigated in Chapter IV by exploring

the feature based relationship of BCG with pressure and flow of blood. Moreover,

the chapter also outlines a system identification approach for converting the BCG

waveforms to equivalent ICG waveforms which leads to estimation of stroke volume.

The method presented in Chapter IV can be extended for monitoring stroke volume

changes at home.

The effect of posture on BCG signals is analyzed in Chapter V. Two different types

of sensors are considered in this work. The first half of the Chapter focuses on the

BCG signals from a modified-weighing scale sensor while the later later half analyzes

the BCG signals from a wearable sensor. A novel method is presented for estimation

of cardiovascular parameters in sitting postures using the modified-weighing scale.

Similarly, novel features are extracted from the wearable BCG to improve the accuracy

of cardiovascular parameters during different standing postures.

Algorithms are presented to estimate cardiac parameters from the BCG during

walking in Chapter VI. As briefly mentioned earlier, the body vibrations measured

using any BCG sensor are extremely sensitive to motion. Almost all of the current
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research on the BCG based physiological monitoring focuses on the signals measured

during the resting state while ignoring the signals in the movement related periods.

Thus, data during these periods which has low SNR but contains extremely useful

information about changes in cardiovascular changes in response to simple activities

such as walking is discarded. In Chapter VI, we focus on removal of walking induced

noise by implementing empirical mode decomposition (EMD) algorithm from the

BCG signals measured with a wearable patch. The chapter lays the foundation for

future work on walking BCG signals and identifies how walking speed contributes

towards a decrease in time resolution of the estimates obtained from the de-noised

BCG signals.

Chapter VII discusses the work on monitoring of HF patients using BCG. The

work involves data from a pool of HF subjects at different stages of the disorder.

A novel method is presented that estimates PEP from wearable BCG signals before

and after a 6-minute walk test, commonly used in clinics for evaluation of an HF

patient, and quantifies the change in PEP that occurs due to the walking exercise.

Initial results show that wearable BCG can be used for assessing the condition of HF

patients and also indicate that features from the BCG can be used for prognosis of

the disease. Finally, conclusion and future work is briefly discussed in Chapter VIII.
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CHAPTER II

BACKGROUND

2.1 Sleep Apnea

Apnea is a Greek word that means ‘without breath’. Sleep apnea involves cessation

of breathing for 10 or more seconds [8]. There are three main types of apneas: (1)

obstructive sleep apnea (2) central sleep apnea, and (3) mixed sleep apnea. The

obstructive sleep apneas, with an estimated prevalence of 5-15% among adults [77],

are the most common occurrence of sleep related breathing disorders (SBD) in which

muscles such as soft palate and tongue relax and block the upper airway during sleep.

This causes a temporary pause in breathing. A 90% or greater drop in breathing

amplitude is termed as obstructive apnea (OA) while a 30% or greater decrease is

referred to as an obstructive hypopnea (OH) event [8]. Thus, obstructive apneas are

caused by complete obstruction of upper airway while hypopneas are due to partial

obstruction. In central apneas, the brain fails to send signals to breathing muscles

and an interruption in breathing occurs without narrowing of upper airway. The met-

rics to quantify the severity of the disorder includes Apnea-Hypopnea Index (AHI),

which is the number of apnea and hypopnea events in one hour [8]. The standard

approach of diagnosing sleep apnea is polysomnography (PSG), which monitors sleep

and respiration by measuring a number of physiological parameters including ECG,

blood oxygen saturation (SpO2), chest effort signals and nasal pressure. However,

PSG is an expensive procedure and requires sleeping in well equipped and technician

attended laboratories. However a large number of sensors are attached to body at

various locations that may cause discomfort and also vary the sleeping behavior for

that particular night.
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Research on monitoring and detection of sleep apnea at home can be divided into

three main categories based on physiological signals under consideration:

2.1.1 Heart Rate Variability (HRV)

The onset of sleep apneas are accompanied by decrease in heart rate (bradycardia) and

the culmination involves elevated heart rate (tachycardia). HRV is the most common

and highly used feature in automated detection of sleep apnea outside clinical settings.

It involves calculation of R-R time intervals from ECG signal [20, 106]. Statistical

features are then derived from time and frequency domain representation of the R-

R intervals [20] followed by application of classification algorithms. Research has

shown that HRV based features can accurately detect sleep apena events. Along

with ECG derived features, authors in [20] have also used features from respiration

signals estimated from the raw ECG data. The ECG signal, obtained from electrodes

attached to chest, contain the respiratory component which can be filtered out and

features can be derived from it to assist in HRV based sleep apnea detection.

2.1.2 Nocturnal Sound Analysis

Loud snoring has long been associated with monitoring of sleep apnea [74]. Vibrations

of soft-palate and uvula produce snoring sounds. Since obstructive sleep apnea is

caused by blocking of the upper airway due to tongue and soft palate, this narrowing

of the upper airway causes a change in the properties of the snores. Many researchers

have analyzed snoring sounds to differentiate between normal and apneic subjects.

The snores from apnea patients exhibit different acoustic attributes than those from

healthy subjects. The most prominent of these features include pitch of the snoring

sound [1, 2, 7], spectral features [69, 87, 91], mel cepstral coefficients (MFCCs) [2, 7]

and formant frequencies [68, 89, 90].

In order to record snores, a contact microphone, placed on neck, has been used

in [91] while a non-contact microphone has been utilized in [69]. The non-contact

10



microphone needs to be placed at an optimal position to avoid loss in efficiency of

the system [74].

2.1.3 Respiratory Signals

Respiratory signals, more commonly known as ‘Respiratory Effort’ signals, derived

from chest abdominal straps and nasal sensors, have been used in [67, 101] to success-

fully detect apnea events. Any change in the air volume in the lungs is measured by

the change in cross-sectional area of ribs and abdomen. Microwave radars (doppler

and IR-UWB) have gained a lot of popularity in measuring vital signs [56, 70, 94].

The radar signal, if directed towards a human torso, is reflected from the skin in-

terface and contains information about respiration [70]. Thus any change in chest

displacement, caused by apnea or any other respiratory disorder, will manifest itself

in the reflected signal. The main differences between the doppler and the IR-UWB

radars are the bandwidth, power, and the band of operation. The IR-UWB radar

signal can be spread throughout the 3 to 10 gigahertz band [15], which spans many

other licensed and unlicensed bands. The doppler radar must be used in either a

licensed band or an ISM (industrial, scientific and medical) band, and makes more

interference on other devices because of its more narrow bandwidth and also it is more

vulnerable to the interference from these other devices. Because of its extremely wide

bandwidth, the IR-UWB radar can be operated at a much lower average power than

the doppler radar, for the same SNR in the radar receiver, and it has higher time

resolution which translates to more sensitivity to small periodic movements of the

reflecting surfaces. A doppler radar has been used in [57] to detect different types

of breathing disorders that include apneas. Similarly two microwave radars are used

in [49] to detect sleep apneas. Doppler radar is used in [21, 107], in a device placed

on the bedside table named ‘Sleepminder’, developed by Biancamed for detection of

sleep and wake patterns along with apnea events.
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As discussed earlier, even though there are many portable devices for home mon-

itoring of the sleep apnea disorder, most of these still require contact with the skin

and thus may cause discomfort and skin irritation. On the other hand, the devices

like microphone and radars do not cause any skin contact but they still impose strict

constraints on placement of the sensors. The work in Chapter IV will try to address

these constraints by exploring combination of more than one measurement modality.

2.2 Ballistocardiogram

BCG is the measure of the whole body motion caused by the ejection of blood into

the vessels [37]. It was first discovered by J. W. Gordon in 1877 who observed a

fluctuation in the weighing scale needle due to heart beat [37] and proposed that

change in the weighing scale measurement is caused by ejection of blood. In 1940,

I. Starr [95] showed that BCG can be used to assess cardiac anomalies. However,

due to presence and advent of electrical and electromagnetic heart monitoring and

imaging techniques, the interest in BCG related sensors vanished. As the 20th century

approached its conclusion, the rapid growth in population and a resultant mismatch in

health resources triggered the need for home based unsupervised patient monitoring.

The concurrent developments in semiconductor and fabrication technologies ushered

an era of extremely small and low-cost sensors which can be integrated into existing

devices. In the last few decades, researchers have measured BCG using instrumented

chairs and beds [5, 11, 24, 60], weighing scales [36, 45], accelerometers [102], pressure

sensors [83] and force plates [98].

2.2.1 Cardiogenic Vibrations from Different Sensors

The choice and type of sensor and its placement on the human body dictates the

type of vibrations picked by it. The signals from a weighing scale, which can be

modeled as a second order mechanical system governed by Hook’s law [74], are directly

proportional to displacement [43]. On the other hand, the signals from a wearable
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accelerometer sensor [43], when placed anywhere, are acceleration measurements of

the surface of the skin. The position of the wearable sensor on the body such as

an accelerometer also affects the range of signals captured by it. For instance, if a

tri-axial accelerometer is placed on the sternum or anywhere in the chest region, the

vibrations in the head-to-foot direction (along the body) are low frequency signals

and contain information about hemodynamics. However, the vibrations in the dorso-

ventral direction (axis of the accelerometer perpendicular to the surface of the body)

not only contain vibrations due to flow of blood but these also have high frequency

components which are caused by opening and closure of the heart valves [13]. These

high frequency vibrations from the chest are given a specific name in literature and are

called seismocardiogram (SCG). It has been shown in [13] that a tri-axis accelerometer

can detect the first and the second heart sounds from the dorso-ventral axis signal if

placed on the sternum. It is important to mention here that the term SCG is only

used for dorso-ventral vibrations from the chest region. If the accelerometer sensor is

placed on any other location in the body, these vibrations will not be termed as SCG.

In fact, vibrations from other body locations will not contain heart sound components.

Hence, wearable ballistocardiography (W-BCG), a more generic term, is used in this

thesis for all types of signals measured from a wearable tri-axial accelerometer sensor

placed any where on the body including the sternum.

2.2.2 BCG based Cardiovascular Health Assessment

Since the BCG measurements are due to the flow of blood, these can provide reliable

estimates for hemodynamic assessment and can yield insight into the mechanical

health of the heart. The mechanical health refers to amount of time a human heart

spends during different phases of a cardiac cycle as shown in Fig. 2. The cardiac cycle

is composed of four distinct phases—isovolumic contraction, rapid ejection, isovolumic

relaxation, and passive filling. Measuring the time spent by the heart in each of
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Figure 2: Cardiac cycle showing different systolic time intervals.

these phases can provide great insight into the health and function of a person’s

cardiovascular and autonomic nervous systems [59]. The period of the isovolumic

contraction, also known as PEP, is the time between the electrical excitation of the

ventricular cardiomyocytes and the ensuing opening of the aortic valve. PEP is a

surrogate non-invasive measure of myocardial contractility [58]. The period of the

systolic ejection, also know as left ventricular ejection time (LVET), is the time taken

for the blood to be ejected from the ventricles, started by the aortic valve opening and

ended by its closing. PEP and LVET are called STIs. The sum of PEP and LVET is

the total time the heart spends in systole (ejection) as compared to diastole (filling)

and is an important parameter for monitoring of patients with heart disorders [19].

In the coming decades, the number of patients with heart disorders is expected

to increase dramatically [64] as is the corresponding cost of healthcare; accordingly,

there is an impending need for creating new, inexpensive and ubiquitous technologies

for continuously monitoring cardiovascular health parameters, such as STIs. Unfortu-

nately, STIs cannot be readily estimated from existing wearable cardiovascular sensing
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Figure 3: Important features and points on the ECG and BCG signals. The R-peaks
in the ECG signal are used to segment the signals from the BCG sensors. The BCG
signal shown in the figure is from a modified weighing scale sensor. The W-BCG
signal shown is from the dorso-ventral axis of an accelerometer placed on the chest.
The highest peak in the BCG signal is called the J-peak. Similarly, the features on
the dorso-ventral acceleration signal are the AO- and AC-points. The portions of
the BCG signals between two ECG R-peaks are extracted and averaged to assist in
feature extraction and noise reduction.

devices which typically focus on electrical measurements only (e.g. ECG based Holter

monitors or patches [30]). Recent research has demonstrated that BCG derived fea-

tures contain important information regarding myocardial contractility [29]. Authors

in [28] showed that the R-J interval (shown in Fig. 3)—defined as the time interval

between the ECG R-peak and the maximum peak of BCG signal, the J peak—is

highly correlated with PEP, and thus a surrogate measure of cardiac contractility

[72]. Similarly, the accelerometer signal along the dorso-ventral axis, as shown in Fig.

3, contains features corresponding to opening and closure of aortic valves, i.e., the

AO- and AC-points labeled in Fig. 3. The time difference between the ECG R-peak

and the AO-point on the signal gives an estimate of the PEP and the time interval

between the AO- and AC-points gives LVET. The choice of AO- and AC-points varies

in existing literature. Some authors prefer the global maximas in the first and second

half of the trace as AC- and AO-points while some choose minimas as features. In
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Fig. 3, the AO- and AC-points are illustrated as the minimas in the first and second

half of the dorso-ventral signal between two ECG R-peaks.

2.2.3 Processing of BCG

The common processing of BCG signals from all types of sensors usually involve

simultaneous measurement of the ECG which helps in the segmentation of the BCG

signals as shown in Fig. 3. The BCG signal between two ECG R-peaks is extracted

and the BCG traces within some time interval or a specific number of BCG traces

are averaged to reduce noise and get an averaged trace called ensemble average and

the whole process is called ensemble averaging [93]. The length of this BCG trace is

equal to the R-R interval duration obtained from the ECG. If other reference signals,

such as ICG or ABP are measured along with the ECG and BCG in a project, then

those undergo similar segmentation.

Most of the current research on the BCG focuses on features in the form of timing

intervals for cardiovascular monitoring. There is a compelling need to analyze how

different postures and simple activities such as walking affect these features. More-

over, clinicians are more concerned with parameters related to pressure and flow of

blood as compared to simple timing based measurements from vibrations. Hence, it

is important to deeply investigate the BCG relationship with pressure and flow of

blood and also to assess if there is a potential to estimate stroke volume from the

BCG.
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CHAPTER III

SLEEP APNEA DETECTION WITH NON-CONTACT

SENSORS

3.1 Introduction

Sleep apnea, as discussed earlier, is a respiratory disorder that can cause different

health and behavioral problems and also effects activities of daily living. It’s diagnosis

requires overnight monitoring in well equipped laboratories under the supervision of

sleep specialists or technicians. The home monitoring of this disorder can be done

with different devices most of which utilize contact sensors which may be a source of

nuisance for the patient.

The objective of this study was to use non-contact sensors such as a radar and a

microphone, placed at sub-optimal locations, and analyze if the features from both

the modalities can be combined to give a better performance in classification between

epochs belonging to normal sleep and those that contain an apnea or hypopnea event

in them. The following sections explain the experimental setup, data processing steps

and feature extraction methods used for both the IR-UWB radar and microphone

data. Later we discuss the classification results from radar only features and whether

including microphone based features can provide an improvement in classification

accuracy.

3.1.1 Measurement Setup & Protocol

The data for the project was collected at a sleep research laboratory (Neurotrials

Research Inc.) under a protocol approved by the Georgia Institute of Technology In-

stitutional Review Board (IRB). A shotgun microphone (Audio-Technica) was placed
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Figure 4: (a) Block diagram of the setup. (b) The IR-UWB radar signal in one epoch
of 60-sec duration. (c) The microphone signal in 60-sec epoch. The snores in the
signal are shown with a black dash on the top.

on the side-table adjacent to bed while an IR-UWB radar system, developed by Sen-

siotec Inc. [32] was placed under the mattress. The radar transmitted pulses were

13 ns long, centered at 4.2 GHz. At the receiver, the reflected signal was time-gated

and down-converted to baseband and then hardware-filtered into a respiration band

(low pass, cut-off frequency 0.7 Hz) and heart band (cut-off frequencies: 0.5 - 6 Hz),

respectively. Only the respiration band was considered in this research. Next, the

outputs of each filter band were sampled at 128 Hz and quantized for subsequent

digital signal processing. The microphone signal was sampled at 44.1 kHz, band-

pass filtered (cut-off frequencies: 70 - 2000Hz) and downsampled by a factor of 4 to

provide ease in processing and feature extraction. The PSG data was also collected

simultaneously. The data from the IR-UWB radar and the PSG data were both time

stamped. A specialist from Neurotrials scored the PSG and marked all the normal

and apnea epochs. A block diagram of the setup is shown in Fig. 4 (a).

3.1.2 Pre-processing of Data and Motion Detection

In order to facilitate the extraction of features, the quantization noise in time domain

respiratory signal was removed by filtering twice with a 20 tap triangular filter. To
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avoid changing the amplitude and shape of the signal, only the central tap was as-

signed a weight of two while the remaining taps had unity weights. An example of the

respiration signal produced by the IR-UWB radar after the application of triangular

filter is the blue oscillating waveform shown in Fig. 4 (b). The radar signal was very

sensitive to motion and showed clipping to the ADC maximum and minimum levels

whenever the subject made large muscle movements. The part of the IR-UWB data

that contained motion artifacts was detected and removed. All the maximas and min-

imas in the input time domain signal were compared against pre-defined thresholds.

If a maxima was above the upper threshold, then the portion of the signal containing

that maxima along with one previous and one next maxima were labeled as motion

corrupted. A similar approach was used for a minima that was found below the lower

threshold. The reason for including one previous and one next maxima or minima

was to make sure that the complete portion encompassing motion was removed. The

clean signal that fell between the two motion corrupted parts was standardized by

calculating the z-score of each data point in that portion. The z-score was calcu-

lated by subtracting the mean and dividing by standard deviation of the signal. The

reason for separate standardization of data that were separated by motion corrupted

regions was to avoid error in feature extraction stage as the radar signal’s amplitude

was different for different postures and varied across population, especially across

genders.

The microphone signal was manually analyzed to label snoring events. The fea-

tures from the microphone data were later extracted from these manually detected

snores. It is important to mention here that since the data set included only 4 sub-

jects, an automated snore detector was not developed for this study.
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3.1.3 Extraction of Normal & Apnea Epochs

Epochs of 60 second duration, that included the marked apnea event, were extracted

from the IR-UWB radar data and microphone data. More specifically, the 60 seconds

in each epoch were composed of ts − 20s to ts + 40s, where ts represented the apnea

start time which was obtained from the PSG. Also the 60 second duration epochs

corresponding to time intervals of normal sleep were extracted from both radar and

microphone sensors using information from the scored PSG. All the epochs corre-

sponding to both OA and OH were combined into one class, labeled as Apnea, and

the normal epochs were assigned class label Normal, thus making our task one of

binary classification.

3.1.4 Features Extracted from Radar Epochs

The features were extracted from both the time and frequency domains for each

epoch. A total number of 15 features were extracted from the epochs obtained from

the radar data. We defined fk to be the k-th feature (k = 1,2,...,15). The first eight

features were directly extracted from each epoch. The f9 − f13 were extracted by

first dividing each epoch into small parts of td duration (td = 10sec was chosen as

minimum duration of an apnea event must be 10sec). Let Ei denote a complete

epoch of 60 seconds (i is the epoch number) while em represent a small division of it

(m is the part number, m = 1, 2, ..., 6). Let the variance of time domain respiratory

signal in each em be denoted by σ2
em . Also let dm be the difference in the upper and

lower envelopes of the small epochs em and σ2
dm

be its variance. The envelopes were

obtained by cubic interpolation of maximas and minimas. The features f1 to f13 are

explained in Table 1.

In order to extract the features f14 and f15, the average energy of all epochs in the

training set corresponding to normal periods of sleep was calculated and used as a

normalization constant for all the apnea and normal epochs. The apnea epochs were
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Table 1: The first- and second-order features extracted from the IR-UWB epochs

Feature fk Description

f1 Mean Absolute Deviation (MAD) of respiratory signal.
f2 MAD of peaks values of respiratory signal.
f3 Number of times the signal crosses the mean.
f4 Variance of samples between mean crossings.
f5 Variance of maxima-minima intervals.
f6 Variance of maxima-minima amplitude values.
f7 The difference between 75th and 25th percentile of f3.
f8 The sum of power spectral density values between 0− 0.5 Hz.
f9 Variance of [σ2e1 , ..., σ

2
e6 ].

f10 Variance of [|σ2e1 − σ
2
e2 |, ..., |σ

2
e5 − σ

2
e6 |].

f11 Variance of frequency of the highest peak in spectrum of em.
f12 Variance of [σ2d1 , ..., σ

2
d6

].

f13 Variance of [|σ2d1 − σ
2
d2
|, ..., |σ2d5 − σ

2
d6
|].
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Figure 5: Algorithm for extraction of f15.

not considered in calculation of the normalization constant. The envelope difference

Di was estimated for each epoch Ei and the average envelope difference Bavg was

calculated for the normal epochs. The feature f14 was then calculated as |Di−Bavg|22.

The last feature f15 was extracted to capture the step-like changes in the envelope

at the beginning and ends of the apnea periods. Hence, only apnea epochs in the

training set were used for its extraction. In the processing stage, all the envelope

difference signals corresponding to apnea epochs in the training set were aligned by

apnea start times ts and a 10-second portion (ts−5sec to ts+5sec) was extracted from

each envelope difference signal. Principal component analysis (PCA) was performed

on these 10-second extracted signals. PCA reduces the number of dimensions in the

data set by transforming it into a new set of variables called principal components
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(a) (b)

Figure 6: (a) The principal components extracted from the training data. (b) For-
mation of peak pairs ζu(ηu, τu) (u is the pair number, ηu is the peak value while τu
represents peak position) from the correlation results: for a peak pg in γs, a pair
was formed with peak ph in γe, if pe was the first peak in γe for which τh > τg.
f15 = {ηg + ηh : ηg ∈ ζg, ηh ∈ ζh,max|τg − τh|}.

(PCs), which are statistically orthogonal to each other [48]. Let the principal compo-

nent loading vectors obtained from the 10-second extracted signal, aligned by start

times, be represented by vms , where m is the column or vector number. The envelope

difference signals for apnea epochs were then aligned by apnea end times te and prin-

cipal component analysis was performed on the extracted signals (te−5sec to te+5sec).

Let the loading vectors from PCA on the end signals be represented by vme . The

first PCs from both the start and end sets, i.e., v1s and v1e , were selected as these

captured the maximum variation in the data sets. After extracting these loading

vectors, in the feature extraction phase, the Di signal for each epoch was correlated

with both v1s and v1e . In general, the correlation of a signal x with y is given as

γ[τ ] =
∑∞

j=−∞ x[j − τ ]y[j], where τ indicates the correlation lag. Let the correlation

of Di with v1s be denoted by γs and that with v1e by γe for the i-th signal. These

results contained peaks characterized by magnitude and a position or lag value τ as

shown in Fig. 6 (b). In this next step, peak pairs were formed by choosing one peak

from γs and one from γe. In the process of pair formation, for a peak pg chosen from

γs, the peak ph selected from γe was the one that was located immediately after pg as

shown in Fig. 6 (b). Hence, some peaks were not selected in any of the resultant pairs
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evident from Fig. 6 (b). Finally the best peak pair was chosen as the one that had

maximum separation between its constituent peaks as shown in Fig. 6 (b). The sum

of the peak values was chosen as the last feature f15. It is important to mention here

that other features, such as the separation between constituent peaks and product

of peak magnitudes and separation between them in the pair were also considered in

the study. However, none of these were found useful and the best feature was the one

based on sum of the peak values.

3.1.5 Features Extracted from the Microphone

The 7 features extracted from the snores present in each 60-second microphone epoch

included:

3.1.5.1 Features Related to the Pitch of Snores

Each snore was divided into 100ms sliding windows / frames (25% overlap between

consecutive frames). The pitch of the signal in each frame was calculated by the

Autocorrelation Method [34]. First the signal was center-clipped, leaving only the

parts of the signal above the 70% of the maximum amplitude value present in the

signal [34]. The highest peak in the autocorrelation after the main peak was detected

and the position of the peak gave an estimate of the time period. The inverse of this

value was calculated as the pitch ‘P ’. The mean (µP ) of the pitch values across all

frames in a snore was calculated and the mean and standard deviation of µP values

across all snores in an epoch were used features.

3.1.5.2 Features related to Formant Frequencies

Existing research has shown that formant frequencies of snores can be used as a

distinguishing feature between benign and apneic snores. In this context, the first

three formant frequencies were estimated for each of the 100ms frames in the extracted

snores using linear predictive coding (LPC) [85]. The signal in each frame was first
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Figure 7: Division of data during the training and testing phases.

pre-processed by multiplying it with a Hamming window and then using a high-

pass all-pole filter. The linear prediction coefficients were then estimated for the

resulting signal in each frame. The angular frequencies from the roots of the prediction

polynomial were estimated. In this work, the first three formants, f1, f2 and f3, were

selected from each frame and the mean of these values (µf1, µf2, and µf3) were

obtained for each snore. The feature, thus derived from the snores present in each

60-second epoch were the means of the µf1, µf2, and µf3 values estimated from all

the snores present in it.

3.1.5.3 Ratio of Energies in the Power Spectral Density Estimate

The power spectral density (PSD) estimate for each snore was calculated using the

Welch’s periodogram method (100ms frame with 25% overlap) similar to the approach

in [88]. The ratio between the sum of PSD values in the 0 - 300 Hz band and the

sum of PSD values over the entire frequency range was calculated and denoted by rl.

Similarly, rh was calculated as the ratio between the sum of PSD values in the 300

- 800 Hz band and the sum of all PSD values. The mean values of rl and rh for all

snores in an epoch were calculated as a feature.

3.2 IR-UWB based Sleep Apnea Detection

For this section of the study, only the radar signal was processed and used for detection

of apnea events as shown in Fig. 7.
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3.2.1 Training & Testing

The number of apnea epochs na were more than twice the number of epochs ns

corresponding to normal sleep in the data collected for the study. In the training

phase, 10×5 cross-validation (CV) was used in training the classifier. Half the apnea

epochs, i.e., na

2
were randomly selected from the complete set of apnea epochs in

the first step. The randomly selected apnea epochs were divided into 5 folds in the

next step. All the normal epochs ns were also divided into 5 folds. Four folds from

each class were used to train the classifier while the remaining fold from each class

was used for validation. Once 5-fold CV was completed, the classifier was trained on

complete data set which included na

2
and ns normal epochs. The process of feature

subset selection was also embedded in this 5-fold CV step. The wrapper method was

used for feature subset selection [54]. The performance of the trained classifier was

checked on the remaining na

2
apnea epochs from the first step. The whole process

was repeated 10 times as shown in Fig. 7 and the results were averaged through all

iterations.

3.2.2 Results & Discussion

The Linear Discriminant Analysis (LDA) classifier was used for the classification task.

Data was collected from 4 subjects (3 male and 1 female, 48 ± 6.9 years, 210 ± 20.5

lbs and AHI 49 ± 29) who were previously diagnosed with sleep apnea. Full night

recordings (6 - 7 hours) were obtained and after pre-processing, motion detection

and removal, 476 OA, 392 OH and 361 normal epochs (NO) were extracted from the

Table 2: Classification results for apnea (OA & OH) and normal epochs

No. Avg. results cross-validation (validation folds) Test data
of Sensitivity Specificity Accuracy Sensitivity
fk (%) (%) (%) (%)

All 64.6 64 65.6 66
7 71.2 70.8 73.1 67
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recordings. The data was partitioned according to Fig. 7. The results of classification

between Apnea and Normal classes are summarized in Table 2. The classification

results with all features is indicated by “All” in Table 2. The selected feature subsets

have different numbers of features in each iteration. The average number of features

rounded to nearest integer in the selected subsets is shown in Table 2. The values

for sensitivity, specificity and accuracy in the table are for the data in validation

folds of CV phase and averaged through the iterations of 10×5-fold CV. Similarly the

sensitivity for the remaining na

2
apnea epochs in Step 4 of Fig. 7 (listed in the last

column of Table 2) is averaged by the number of iterations in the outer loop.

The results indicate that the classifier when used with complete bag of features

has an overall sensitivity of 64.6% and specificity of 64% during the CV steps and

a sensitivity of 66% for the epochs in the test folds of Step 4 in Fig. 7 . There is

an increase in overall sensitivity, specificity and accuracy when the LDA classifier is

used after feature subset selection. The number of features selected is almost half

the total number of features as the feature subset with lowest number of features is

selected during feature selection.

3.3 Combined IR-UWB radar and Microphone based Sleep
Apnea Detection

The results from the radar based sleep apnea detector did not show good accuracy in

detection of both normal and apnea epochs. One reason for this low accuracy could be

the presence of epochs containing OH events in the collected data set. OH is caused

by partial obstruction of the upper air-way and is accompanied with a less decrease

in respiratory signal amplitude as shown in Fig.8. It is evident from the diagram

that 60-sec epoch containing an OH event is similar to 60-sec epoch corresponding to

normal sleep.

In this part of the study, 7 features from the radar epochs were combined with

the 7 snore-based features from the acoustic data for 3 subjects. One subject did not

26



Figure 8: Three 60-sec epochs corresponding to normal sleep, containing a hypopnea
event and an obstructive apnea event.

have audible snores and hence was not included in the study. The 7 features from

the radar data included: f3, f4, f5, f6, f8, f9 and f11 from Table 1.

3.3.1 Training and Testing of the Combined Classifier

In order to check if the classifier worked with the combined feature set from radar

and acoustic data, 5-fold CV was employed and two LDA classifiers were trained as

shown in Fig. 9. In the first step, all the normal (NO), OA and OH epochs were

divided into 5-folds. In 5-fold CV, 4 folds from each class were used to train the

classifier while the remaining fold was used for testing. The process was repeated

until each fold was used as a test fold. In the training phase, two classifiers LDA1 and

LDA2 were trained. LDA1 was trained using radar features only. LDA2 was trained

for those normal and apnea epochs which had a snore present in their corresponding

microphone epochs. As the data were collected from patients with high AHI, the

number of normal epochs were less than the total OA and OH epochs. Hence, before

training, the number of normal epochs presented to LDA1 were upsampled. Let the

difference between the normal and apnea epochs be ∆N . Then ∆N normal epochs

were randomly chosen and replicated to make number of instants equal for both
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Figure 9: Flowchart for data division in training ans testing phases. The red boxes
indicate that features from snores were also included in classification.

classes. It was observed that snores were absent in more normal epochs as compared

to apnea epochs and hence in order to preserve this difference, the replication was

not done for LDA2 classifier that operated on radar and snore features. All features

were standardized before training with both classifiers. In the testing phase, all the

radar epochs in each test fold were analyzed with LDA1 while only those epochs were

analyzed with LDA2 which included snores in the corresponding microphone epochs.

The sensitivity, specificity and accuracy of both classifiers were calculated for the test

folds and the results were averaged across the 5 iterations of 5-fold CV.

3.3.2 Results & Discussion

A total of 320 NO, 156 OA and 285 OH were extracted from the collected data.

The radar alone classifier, LDA1, showed a sensitivity of 77%, specificity of 64% and

accuracy of 71%. There was an increase in the accuracy from 71% to 76% when the

features from the microphone data were combined with the radar features in LDA2.

Similarly, the sensitivity of LDA2 was found to be 80% for the radar epochs which had

snores present in the corresponding microphone epochs. The specificity for combined

classification was 70%.

It was observed that adding the snore features from the microphone epochs im-

proved the classification performance. The gain in accuracy was on average 5% and

might not indicate a significant increase. However, one contributing factor to it is the
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sub-optimal location of the microphone sensors in this work. Usually, the microphone

is placed on the neck or hung from a fixed support (such as ceiling) so that it stays

few inches away from subject’s face. The aim of this initial work was to come up with

a overall system that does not put stringent constraints on subjects with regards to

operation. Hence, future work should focus on adding multiple microphones placed

or attached at different locations near the bed. The signal from multiple microphones

can be combined, using beamforming techniques, to give better performance.

3.4 Limitations of the Work

One limitation of this preliminary work, was the small sample size involving only 3

subjects. Since it was a feasibility study, data should be collected more subjects which

will lead to improvement in the classification results. Future work should also focus

on using non-linear classifiers to assess the improvement in classification accuracy.
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CHAPTER IV

HEMODYNAMIC ORIGINS OF

BALLISTOCARDIOGRAM SIGNALS

4.1 Introduction

An important limitation in the field of BCG research is that while the BCG signal

measures forces of the body, the information desired by clinicians and caregivers

regarding mechanical health of the heart is typically expressed as blood pressure or

in terms of parameters related to the flow of the blood. The understanding of the

precise origin of the BCG signal and how the signal mathematically relates to blood

pressure and aortic blood flow is limited and represents a fundamental scientific gap

that must be addressed for the BCG to be adopted in clinical use.

The aim of this work was to explore the mathematical relationship between the

BCG signal and the better-understood ICG and ABP waveforms, with a series of hu-

man subjects studies designed to modulate cardiac output (CO) and blood pressure

asynchronously and with different magnitudes. One might consider directly mea-

suring the ABP or blood flow parameters such as CO in the home rather than to

measure the BCG in the first place and then attempt to relate it to these modalities.

However, the current tools and devices for measuring the ABP and CO continuously

are obtrusive, expensive and require a trained medical personnel to administer the

measurement. The ABP is measured using volume-clamping finger-cuffs [10], while

the CO (CO = stroke volume × heartrate), can be estimated from the ICG signals

[3, 33], using eight electrodes placed precisely on the neck and thorax by a medical

professional. Significant research efforts over the past several decades have led to

a strong understanding of the physical origin of both finger-cuff based continuous
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Figure 10: Physiological phenomena associated with the action of heart. The forced
ejection of blood into the aorta (represented by the force vector ~FH) is characterized
by blood pressure (derived from ABP, waveforms), blood flow (derived from ICG
waveforms) and whole body movement (derived from BCG waveforms). Analyzing
the relationship between BCG and ABP or ICG waveforms can provide insight into
the hemodynamic origin of the BCG and thereby improve the ability to derive car-
diovascular health parameters from this signal.

ABP and thoracic ICG waveforms. If the BCG waveform, which can be measured by

unobtrusive, inexpensive, and simple hardware readily deployable in home settings,

could be anchored to either of these well-understood measurement modalities, then

ABP and CO can be readily measured at home.

The objective of this study was to analyze if the BCG signal was more in accord

with the pressure of the blood or its flow, as shown in Fig. 10. It is important to

mention here that while pulse pressure (PP)—which is the difference between sys-

tolic (SP) and diastolic (DP) blood pressure values—is closely related to CO, the

relationship changes significantly throughout the day. For example, exercise, stress,

or even simply fluctuations in ambient temperature can cause total peripheral resis-

tance (TPR), the parameter that links PP to CO (specifically, PP = CO x PP), to

change dramatically. In order to better understand the origin of the BCG, we first

extracted features from the weighing scale BCG heartbeats and assessed correlations

of these features with the corresponding features from the ABP and ICG heartbeats.

Next, a method was designed to map the BCG heartbeats into corresponding ICG

and ABP waveforms. The performance of the method was analyzed by using the

BCG based ABP or ICG heartbeats to estimate changes in PP and stroke volume
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Figure 11: (a) Experimental setup and processing steps for the measured signals. (b)
Different phases of the data protocol used for collection of data from each subject.
The mean and standard deviation for change in PP and SV are shown for different
phases in the protocol. The values shown are for post-Valsalva recovery, handgrip
and post-handgrip recovery phases.

(SV). Finally, the performance of the proposed BCG-to-ICG mapping method was

assessed in a single-subject multi-day trial that involved estiamtion of cardiac out-

put using the modified-weighing scale sensor. This work could provide a tool, for

example, for monitoring HF patients at home following discharge from the hospital,

with the goal of potentially predicting exacerbations and thus reducing unnecessary

re-hospitalizations.

4.2 Protocol

The data for the study were collected from nineteen healthy subjects under an IRB

protocol approved by Georgia Institute of Technology (subject demographics: 5 fe-

males and 14 males, 24.4 ± 4.8 years old, 175 ± 8.8 cm tall and weighing 71 ± 12.5

kg). The aim of the protocol was to create changes in SV and blood pressure through

perturbations as shown in Fig. 11. It consisted of five phases with two perturbations
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separated by recovery time. Each subject stood on the BCG weighing scale in a rest-

ing state for 60 seconds. Then a Valsalva maneuver was performed for 15 seconds.

During a Valsalva maneuver, a person forcefully expires against a closed airway, usu-

ally done by closing one’s mouth and nose while ‘bearing down’ as blowing a balloon.

This causes changes in intrathoracic pressure and dramatically affects venous return,

arterial pressure, cardiac output and heart rate [76]. The Valsalva maneuver was

followed by a recovery period of 60 seconds. Finally, each subject performed a hand-

grip exercise for 30 seconds that was also followed by 30 seconds of recovery. The

handgrip exercise is an isometric (static) exercise that involves application of force

without a change in muscle length. During an isometric exercise, the blood pressure

rises due to increase in intramuscular pressure caused by stiffening of active muscle

fibres [84]. The data in these phases was then used to analyze if the BCG captured

more of the variability in SV or PP. The subjects stood in an upright posture on

the weighing scale during the whole protocol. The ECG, ICG and ABP were all col-

lected simultaneously with the BCG. A volume-clamping finger-cuff device was used

to continuously measure the ABP.

4.3 Hardware & Data Processing

The ECG and ICG signals were measured using the BN-EL50 and BN-NICO wireless

measurement modules (BIOPAC Systems, Inc., Goleta, CA) and then transmitted

wirelessly to the data acquisition systems (MP150WSW, BIOPAC Systems, Inc.,

Goleta, CA). The ABP was measured non-invasively and on a continuous beat-by-

beat basis with the A2SYS Nexfin Monitor (Edwards Lifesciences, Irvine, CA) that

uses the volume-clamping technique on one finger [10]. The BCG signal was measured

with a modified weighing scale using the strain gauge bridge and an analog amplifier

[42]. All the signals were sampled at 1 kHz.
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The signals from three measurement modalities, ICG, BCG and ECG, were fil-

tered with finite impulse response (FIR) Kaiser window band-pass filters (cut-off

frequencies: 0.8-35 Hz for the ICG, 0.8-15 Hz for the BCG and 2.5-40 Hz for the

ECG). The ABP signals were only low-pass filtered (FIR, Kaiser window, cut-off:

20Hz) to preserve the DC value and to estimate the accurate values of systolic and

diastolic blood pressure values. The R-peaks in the ECG signal, denoted by Ri (i

represented the peak index), were detected using a simple peak detection algorithm

and results were manually verified to make sure all peaks were detected correctly.

Specifically, local maximas in the ECG signal above a pre-defined threshold (50% of

the maximum signal amplitude) were detected as R-peaks. The R-peaks which were

closer than 300ms were later discarded as false positives. The minimum R-R interval

was calculated in each phase of the data collection protocol for each subject. Let the

minimum R-R interval in each phase be denoted by winα (α represents the phase,

i.e., α ∈ [rest, V alsalva, recovery, handgrip, recovery]). With the ECG R-peaks as

reference, the BCG, ICG and ABP signals were segmented into individual heart-

beats or frames [47]. Each frame contained samples from 300ms before the R-peak

and winα samples after the R-peak, i.e., one heartbeat = Ri − 300ms to Ri + winα,

as shown in Fig. 11 (a). The first 300ms portion in the extracted heartbeats are

refered to as pre-R samples in Fig. 11 (a). All the beats extracted in each of the

phases were ensemble averaged [93] to reduce noise and features were extracted from

the ensemble-averaged traces. The data from the 15-second Valsalva period were not

analyzed as these included noise caused by subject-induced movement during the Val-

salva maneuver. Hence for each subject, four ensemble-averaged traces corresponding

to rest, post-Valsalva recovery period, handgrip and post-handgrip recovery period

were obtained from the BCG, ICG and ABP signals.
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Figure 12: (a) Extraction of features from the heartbeats of three measurement
modalities. (b) Block diagram from system identification based mapping of the BCG
heartbeats to the ICG and ABP heartbeats. The system was trained for data in
the resting phase of each subject and then tested on the data from the perturbation
phases.

4.4 Extraction of Features from the BCG, ICG & ABP

In order to better understand the BCG-to-ICG and BCG-to-ABP relationships, we

extracted a number of features from the BCG heartbeats and correlated (Pearsons

correlation) these with the features obtained from the ICG and ABP. The annotated

BCG, ICG and ABP heartbeats are shown in Fig. 12 (a). The features extracted

from these three modalities are explained in the following sections:

4.4.1 Features derived from the BCG

The three features extracted from the BCG heartbeats included: (1) the I-J amplitude

normalized by root mean square (RMS) energy in the heartbeat, i.e., I-J/ERMS, where

ERMS represented the root mean square energy in the BCG heartbeat / frame and is

given by ERMS =

√
1
n

n∑
i=1

b2i (n is the total number of samples in a BCG heartbeat b),

(2) the R-J interval, i.e., the time interval between the ECG R-peak and the J-peak

on the BCG heartbeat, and (3) the (M-K interval × I-J amplitude)/ ERMS, where M

corresponded to the point of maximum slope. The hypothesis behind multiplying the
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BCG amplitude value and time interval feature was to design a feature that could

capture the energy of the main BCG complex and to quantify the mechanical energy

in each heartbeat, which could potentially increase with increased SV.

4.4.2 Features derived from the ICG

The three features extracted from the ICG heartbeats included: (1) the maximum

peak value in the heartbeat, i.e., the dz
dtmax

value corresponding to the maximal speed

of blood ejection, (2) the PEP, i.e., the time difference between the ECG R-peak and

the B-point on the ICG called the R-B interval, and (3) the time difference between

the X- and the B-point representing the LVET. These features characterized the blood

flow in the vessels and were required for estimation of SV from the ICG [3].

4.4.3 Features derived from the ABP

The three features from the ABP heartbeats included: (1) the systolic blood pressure

value obtained by detecting the maximum peak Sp in the heartbeat, (2) the foot

value Dp before the maximum peak, denoting the diastolic blood pressure, and (3)

the difference between Sp and Dp values called the PP [81].

4.5 Mapping the BCG to Other Modalities

In order to further analyze the relationship between the BCG and ICG / ABP, the

BCG heartbeats were separately mapped to the corresponding ICG and ABP heart-

beats using subject-specific FIR system identification methods. An impulse response

was estimated for a subject-specific linear FIR filter that converted the BCG heart-

beats to the ICG heartbeats and another impulse response for the BCG to ABP

conversion.

In general, the output vector y of a linear filter of order Q operating on an input

vector x is obtained by convolving the impulse response w of the filter with the input

(x,y ∈ RN and w ∈ RQ). In the least squares terminology, the output is given by

36



the equation

y = Xw, (1)

where X is the convolution matrix whose entries are made up of elements of x. If

the input vector is zero-padded to account for unavailable data during the convolution

operation, then this method is called the Auto-correlation method [40]. If the elements

of output y, input x and impulse response w are represented by corresponding italic

letters, then the matrices involved in equation (1) will be given by

y =

[
y0 y1 ... yN−1

]T
, (2)

w =

[
w0 w1 ... wQ−1

]T
, (3)

X =



x0 0 ... 0

x1 x0 ... 0

...
...

. . .
...

xN−1 xN−2 ... xN−Q

0 xN−1 ... xN−Q+1

...
...

. . .
...

0 0 ... xN−1



. (4)

Let the desired output signal be ŷ, then the optimum solution (impulse response)

ŵ can be obtained by minimizing the expression

min
w
‖Xŵ − ŷ‖2. (5)

The impulse response ŵ of the filter is then obtained as

ŵ = (XTX)−1XT ŷ. (6)
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Since ordinary least squares is highly sensitive to noise, ŵ can be regularized by

adding a term λ to the minimization expression in equation (5). This process is

called Tikhonov regularization [35]. In other words, the solution approaches ordinary

least squares solution as λ → 0 and to 0 as λ → ∞. The objective of λ, called

regularization constant, is to avoid over-fitting. The modified minimization expression

and the Tikhonov regularized solution are now given as

min
w
‖Xŵ − ŷ‖2 + λ‖ŵ‖2, (7)

ŵ = (XTX + λI)−1XT ŷ. (8)

In this study, the heartbeats from the 60-second resting portion of the BCG, ICG

and ABP data for each subject were used to train the systems. We employed 5×2-

fold CV [4] in the training phase and the performance of the trained systems was

checked on the perturbation phases of the data protocol as shown in Fig. 12 (b). The

objective was to find the optimum filter length (Q), number of samples before the

Ri peak in each frame (pre-R samples) and the value of the regularization constant

λ that provided the least error in mapping the BCG heartbeat (one frame) either

to the ICG heartbeat or to the ABP heartbeat. This was accomplished by sweeping

through filter lengths from 1 to 500 samples, 0 to 300 pre-R samples and values of

λ(10−6 to 10−1) in the training phase using 5×2 CV.

In subject-specific BCG to ICG mapping, for each combination of the above men-

tioned three parameters (Q, pre-R samples and λ), the BCG and ICG heartbeats

in the resting phase data of each subject were randomly partitioned into 2-folds re-

spectively. One fold from each modality was used in training while the other fold

was used in validation phase. In the training phase, ensemble-averaged traces from

one of the BCG and ICG folds were used as the input x and output y. The filter

impulse response ŵ was then estimated according to equation (8). Once the ŵ was
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obtained, the ensemble-averaged trace from the other BCG fold was converted to

an ICG trace (say ŷ) and the error (Euclidean distance) was calculated between ŷ

and the ensemble-averaged trace from the remaining ICG fold. The above process

was repeated for the different combinations of Q, pre-R and λ values using 5×2-fold

CV. The combination of the three parameters that gave the minimum error was then

chosen to design a BCG-to-ICG filter (FIR) for that subject. A similar process was

adopted to obtain subject-specific FIR filters to convert the BCG heartbeats to the

corresponding ABP heartbeats.

Once subject-specific FIR filters were generated, they were used to convert the

ensemble-averaged traces in the post-Valsalva recovery, handgrip and post-handgrip

recovery phases into the corresponding ICG and ABP waveforms. For the ICG, the

points of interest that include the B-, dz
dtmax

and the X-point as shown in Fig. 12 (a),

were detected on the true ICG traces and also on the waveforms obtained from the

FIR filters. The SV was then calculated using the Sramek’s equation [18]

SV =
(0.17H)3

4.25Zo
.(

dz

dtmax
).LV ET, (9)

where H denotes the subjects height and Zo represents the base impedance. The

Zo value was estimated as the foot of the ensemble averaged heartbeats of the raw

impedance signal obtained from the ICG [3]. The value of Zo, which could be con-

sidered as a constant, was estimated only in the resting phase for each subject and

the same value was used during the perturbation phases. Let SV during the first

60-seconds of rest be represented by SVrest and during the other phases be denoted

by SVα. The percentage change in SV during phase α was then calculated using the

equation ∆SV = (SVα − SVrest)/SVrest. A linear regression / correlation analysis

(Pearsons) was done between the values ∆SVICG obtained from the ICG waveforms

and ∆SVSys values obtained from the trained filters from all subjects. The outliers

in ∆SV estimates from both the ICG and the trained systems were detected using
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the minimum-covariance distance (MCD) estimator [79] and were removed before

correlation analysis.

Similarly, the points corresponding to Sp and Dp were detected in the true ABP

waveforms and the ABP waveforms obtained from the FIR filters trained for mapping

the BCG to ABP. The percentage change in PP for phases other than resting state

was calculated as ∆PP = (PPα − PPrest)/PPrest and correlation analysis was done

for ∆PP data points obtained from the true and converted ABP waveforms for all

subjects. The MCD method was again used to detect and remove outliers from the

analysis.

4.6 Single-Subject Multi-Day Hemodynamic Assessment

In order to analyze the long-term performance of the above system identification

based mapping method, we also collected data from one subject (24 years, 58kg,

162cm height) for five consecutive days. The objective was to assess the feasibility

of training an FIR filter on the first day to convert BCG heartbeats to the ICG

heartbeats and then assessing its performance on the remaining days for estimation

of SV from the BCG. On all 5 days, the subject was asked to stand still for 2 minutes

on the BCG weighing scale while BCG, ECG and ICG data was collected from him.

An impulse response to map the BCG heartbeat to the ICG heartbeat was obtained

from the first day using the method described earlier. The data on each of the

remaining 4 days was ensemble averaged and used as input for the trained filter from

the first day.

4.7 Results

4.7.1 Correlation Results from Waveform Features

The features extracted from the BCG heartbeats of 19 subjects in the post-Valsalva,

handgrip and recovery phases showed good statistically significant correlation with the

ICG-derived features while none of the BCG-derived features correlated well with the
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Figure 13: (a) Correlation results for SV values obtained from the BCG mapped
waveforms and the ICG waveforms. The relationship is statistically significant (p <
0.05) (b) Correlation results for change in PP from the BCG mapped and original
ABP waveforms. N represents the total number of data points while n denotes the
number of data points considered in the analysis after outlier rejection.

features from the ABP heartbeats. The I-J amplitude normalized by the root mean

square energy of the BCG heartbeat showed a correlation value of r = 0.61 (p < 0.05)

with dz
dtmax

and also a value of r = 0.58 (p < 0.05) with the LVET from the ICG. The

ICG maximum peak dz
dtmax

also showed a good correlation (r = 0.71, p < 0.05) with

(M-K interval × I-J amplitude)/ERMS. The R-J intervals obtained from the BCG

heartbeats displayed a correlation of 0.75 (p < 0.01) with PEP (R-B interval) from

the ICG, which is in agreement with a previous study [28].

All the amplitude and time based features from the BCG showed poor correlation

with Sp, Dp and PP and hence are not explicitly reported here. The correlation values

for all such comparisons were less than 0.05 and were also not statistically significant,

i.e., p > 0.05.
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Figure 14: Single subject multi-day trial results. The system was trained on the 1st
day and tested on the remaining 4 days for estimation of SV from the BCG signals.

4.7.2 BCG Mapping Results

The subject-specific BCG-to-ICG mapping FIR filters, obtained from the resting

phase heartbeats, were tested on the ensemble-averaged BCG traces from the post-

Valsalva recovery period, handgrip and post-handgrip recovery phases for each sub-

ject. The ∆SV values were estimated from the filter generated and the true ensemble-

averaged ICG traces in the three phases. Hence, three data points were obtained for

each subject. The correlation results for percentage change in SV are summarized

in Fig. 13 (a), which shows a correlation value of 0.73 (p < 0.05) for all subjects.

Similarly, the BCG ensemble-averaged waveforms in the post-Valsalva, handgrip and

recovery phases were also converted to the corresponding ABP waveforms using the

subject specific BCG-to-ABP FIR filters. The percentage change in the PP estimated

from the converted waveforms shows a correlation value of 0.25 with the corresponding

values from true ABP waveforms in these phases.

4.7.3 Single-Subject Results

The results for single subject multi-day trial using the proposed system identification

method are shown in Fig. 14. The ICG waveforms obtained from the BCG-to-ICG
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FIR system were used to calculate SV on the test days. The results were compared

with the corresponding SV values from the measured ICG. The trained system per-

formed well on the testing days as the errors in SV from the ICG measurements and

SV from the system estimated waveforms are very small on 3 of the 4 test days. There

is a difference of 7 ml in the FIR based estimated and ICG based SV on the third day.

The reason for this huge error on the third was found to be the low signal-to-noise

ratio of the BCG signals due to the presence of motion artifacts.

4.8 Discussion

From the results derived in the previous sections, we conclude that leveraging the

common features of BCG and ICG waveforms may provide a methodology by which

hemodynamic parameters such as SV, pre-ejection period and left-ventricle ejection

time can be extracted from BCG waveforms. The mapping technique presented in

this study also shows that the BCG waveforms can accurately capture corresponding

changes in ICG waveforms and, thus, changes in hemodynamic parameters. On the

contrary, the features derived from the arterial blood pressure waveforms which in-

clude systolic blood pressure, diastolic blood pressure and PP associated with them

do not show any significant relationship with the BCG-derived features and the BCG

waveforms do not capture the change in blood pressure parameters. It has been

shown in recent research that the BCG waveforms be used to provide a proximal

timing reference for measurement of pulse transit time (PTT) to assist in ubiquitous

monitoring for blood pressure [51, 65]. The pulse transit time, defined as the time

interval required for a pressure wave to travel between two points on the arterial tree,

has been shown to have a strong inverse relationship with blood pressure. To the

best of our knowledge, this is the first time the BCG-to-ABP relationship has been

explored on the basis of features derived from the two measurement modalities.

The results also suggest that the BCG phenomenon is more related with blood flow
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curve as compared to the arterial pressure curve. The methods used for extraction

of features from the ICG and ABP waveforms in this study are based on the existing

literature regarding these two measurement modalities [3, 51]. On the other hand, the

BCG based features, which are composed of different time intervals and amplitudes

of different points on the BCG wave, are extracted to capture changes in the flow of

blood.

The data for this study were collected from 19 healthy subjects which included 5

females and 14 males. However, no gender related differences were observed in the

results. Another highlight of the work presented is that the proposed methods can be

used with other BCG measuring sensors, such as wearable accelerometers, and also in

settings other than the home for continuous assessment of hemodynamic parameters.

However, correct estimation of these hemodynamic parameters require that the signal

is free from all motion artifacts. The results from the single subject multi-day trial

also corroborate this notion as an error of 7ml in the BCG- and ICG-estimated SV was

observed on one of the test days. After further investigation into that days results, it

was found that presence of motion artifacts in the measured signals, caused by even

the slightest inadvertent subject motion, introduced errors in the mapping technique

and thus rendered incorrect results. Hence, either the data should be free from all

types of motion artifacts or algorithms should be designed to adaptively mitigate the

effect of these artifacts and also improve the estimation accuracy.

4.9 Conclusion

In this study, we have systematically compared the BCG measurements obtained

from a modified electronic weighing scale with the hemodynamic measurements from

the ICG and ABP sensors. The results derived in this study not only provide insight

into the physiological origin of the BCG but can also lead to design and implementa-

tion of algorithms and methods for using the BCG measurements for cardiac output
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evaluation as well as cardiac contractility in unsupervised environments outside of

the clinic.

An important limitation of this study was that data was collected from relatively

young and healthy subjects. Hence, future work should include a more diverse group

of participants and also subjects with cardiovascular disease. Moreover, work with

additional subjects is also needed to validate the findings of the multi-day trial fea-

sibility study presented in this work. The methods presented in this manuscript

represent early translational work with the aim of providing a solution to monitoring

HF patients at home and potentially predicting exacerbation using the BCG-derived

cardiac output estimates. Predicting an HF exacerbation fundamentally requires the

accurate measurement of cardiac output, and / or the components that it is derived

from. Accordingly, the ability to accurately derive cardiac output changes from BCG

recordings is a central element towards BCG-based scales being translated into use

for monitoring HF patients at home.
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CHAPTER V

POSTURE INDUCED DISTORTION IN

BALLISTOCARDIOGRAM SIGNALS

5.1 Introduction

As the BCG is a measurement of the mechanical vibrations of the body in response

to the heartbeat, the posture of the subject during the measurement can impact the

quality of the signals. While intuitively this concept is sound, an in-depth, quan-

titative study of posture-induced distortion in BCG measurements has never been

conducted. Understanding the nature of these distortions can greatly improve the

ability to interpret BCG recordings in unsupervised settings—such as the home—by

allowing the automatic identification of measurements taken from subjects with in-

correct posture. These measurements can then be flagged and treated differently such

that the distortion due to posture is not confused with changes in the BCG signal

associated with changing cardiovascular health.

The requirement to stand in an upright posture poses limitations on the use of

BCG in non-clinical environmens. In addition to a subject accidentally slouching

forward for a measurement, it is possible that some subjects will have reduced physical

strength, and thus the measurements must be taken in a seated position instead. It

has been shown in different studies that the BCG signal can be affected by posture,

using various measurement hardware such as fiber optic sensors [24, 55]. However,

these postural effects have not been studied in depth.

In this study, we focused on the posture induced changes in the BCG signals from

two sensors: (1) weighing scale, and (2) wearable accelerometer. The weighing scale

form factor offers many benefits which include: (1) weighing scales are common in
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almost every household in the US, (2) the sensors present in the weighing scale are

already very sensitive and require slight addition and modifications for measuring the

BCG, and (3) other sensors can be integrated into the weighing scale assembly for

multi-modal patient monitoring at homes. The accelerometers, on the other hand,

have emerged as a front-runner among sensors for wearable health monitoring. Their

low-cost, miniature size and extreme sensitivity to vibrations make them ideal for

wearable BCG measurements.

In the next section, we shall discuss the effect of different postures, standing and

seated, on the weighing scale BCG. This will be followed by analysis of posture on

wearable BCG from accelerometer signals in three different standing postures.

5.2 Effect of Posture on Weighing Scale BCG

The weighing scale BCG, as discussed earlier, provides many benefits which not only

include benefits related to form factor and cost, but also that weighing scales are

popular in millions of homes in the world. The objective of this work was to (1)

investigate the changes in the BCG signal and derived parameters under different

postures and positions, and (2) demonstrate novel methods based on our recent work

[104, 103] to improve the system performance for seated postures. Specifically, we

focus on improving the estimation of R-J intervals from the ECG and BCG, as a

surrogate measure of contractility [44, 60], and evaluate our results based on standard

measurements of the PEP from the ICG signals [3, 18]. The novel methods described

in this work can improve the usability of the BCG scale in unsupervised settings (i.e.

the home), by improving robustness to seated posture, as well as enabling high quality

seated BCG measurements which would expand the available patient population.

5.2.1 Protocol for Data Collection

The data for the work were collected from 13 healthy subjects (12 male and one female,

24 ± 4 years, 75 ±10 kg, 177 ± 7.7 cm height). The data collection protocol was
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Figure 15: (a) Experimental setup. Three standing postures: upright (θS ≈ 0◦),
slightly slouched (θS = 20 − 40◦) and heavily slouched (θS = 40 − 60◦). Two seated
postures: upright(θk = 90◦) and bent knee upright(θK = 60 − 80◦). (b) The BCG
heartbeats in standing postures.

approved by Georgia Institute of Technology IRB and written consent was obtained

from each subject before data collection. Each subject was asked to stand on the

weighing scale in three different postures characterized by the angle θS made by

upper back (more specifically the angle formed between the line joining the T2-T4

vertebrae) and sit on the weighing scale in two different postures defined by the knee

angle θK as shown in Fig. 15. Each subject was asked to keep his or her back in an

upright position for the two seated postures. Thus the five postures considered in the

study are described below:

• Posture 1 (P1): Upright standing position where θS ≈ 0◦.

• Posture 2 (P2): Slightly slouched standing position where θS = 20 ∼ 40◦.

• Posture 3 (P3): Heavily slouched standing position where θS = 40◦ ∼ 60◦.

• Posture 4 (P4): Seated position where knee angle θK ≈ 90◦.

• Posture 5 (P5): Seated position where knee angle is θK = 60◦ ∼ 80◦.
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The standing upright posture can be considered as a “gold-standard” posture

and provides the best coupling of vertical (head-to-foot) cardiac forces to the scale

as shown in previous studies [43, 44, 45, 36]. The two other standing postures, P2

and P3, were considered as these would simply represent the user accidentally taking

measurements without standing completely upright or due to back problems. The

upright sitting posture (P4) was considered since some patients are not able to stand

still on the scale. Such seated BCG measurements have also been considered in

the literature [45, 75], but these do not consider the important comparison of signal

quality and feature accuracy from the measured BCG signal. Finally, the last posture

P5 in this study was used to explore the increase in pressure wave reflections at the

femoral bifurcation and how these reflections affect the BCG.

In the standing upright posture (P1) and the upright sitting posture (P4), each

subject was asked to stand still for 30 seconds and then perform a Valsalva maneuver

for 15 seconds. This was followed by a recovery period of 30-40 seconds in stationary

state. In the remaining standing and sitting postures, each subject was asked to stand

or sit in a stationary state for 30-40 seconds. The data from the 15s Valsalva period

was not analyzed due to motion artifacts. The purpose of Valsalva was to modulate

the hemodynamic parameters.

5.2.2 Hardware Design & Data Processing

The BCG was measured using a custom analog amplifier as described in the previous

chapter. The ECG and ICG signals were measured using the BN-EL50 and BN-

NICO wireless measurement modules (BIOPAC Systems, Inc., Goleta, CA) as in the

study of Chapter IV and then transmitted wirelessly to the data acquisition system

(MP150WSW, BIOPAC Systems, Inc., Goleta, CA). All the signals were sampled at

a frequency of 1 kHz.

Once the data was recorded, the processing steps for the measured signals were
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the same as in previous chapter. The ECG, ICG and BCG signal were band-pass

filtered with FIR filters (Kaiser window with cut-off frequencies: 2.5 - 40 Hz for the

ECG, 0.8 - 35 Hz for the ICG and 0.8 - 15 Hz for the weighing scale BCG. After

the signals were filtered, the R-peaks, Rr (r was the peak index), in the ECG signal

were automatically detected with a QRS complex detection algorithm and used as

fiduciary points for segmenting the BCG data. Specifically, the signals in Rr + 600ms

frames or “heartbeats” following each R-peak were extracted over the entire data

period and aligned to form a collection or an ensemble. Let the individual frames or

heartbeats from the BCG, ICG signals be represented by small letters bk,m and ik,m,

respectively (bk,m ∈ RM×d, where k denotes posture, k ∈ [1, 2, ..., 5], m represents the

number of heartbeats in one posture for a subject, m ∈ R and maximum number of

heartbeats is M). Each sample in a BCG or ICG heartbeat be denoted by bk,m[l],

where l is the sample number, l ∈ Rd and d = 600 due to frame size. Let the BCG

trace obtained by averaging all the heartbeats bk,m in one posture be denoted by the

bold letter Bk. Similarly, Ik be the averaged ICG trace.

5.2.3 Time Domain Posture-Induced Differences

In order to analyze posture-induced differences in the time domain, we calculated for

each subject and posture the RMS difference between each normalized BCG frame

bk,m and its corresponding average Bk. We termed this difference as an “error” in

shape of individual BCG frames and the corresponding average trace. The normal-

ization constant was calculated in the form of a scaling factor for each frame that

minimized this RMS error. Because of this normalization, the RMS error quantified

shape distortion that could not be corrected by a scaling factor. For the m-th unnor-

malized BCG frame bjk,m for subject j in posture k and average Bj
k, the amplitude

scaling factor am was calculated for each individual beat [42] by the formula
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am =
Rbk,mBk

RBkBk

. (10)

where R denoted the cross-correlation operator. The RMS error ek between individual

beats weighted by am and the average for that posture was then calculated by

ek =

√√√√ 1

Md

M∑
m=1

d∑
l=1

(Bk[l]− ambk,m[l])2. (11)

The RMS errors thus calculated by (11) for postures P2, P3, P4 and P5 for each

subject. These values were then normalized by division from the corresponding error

in posture P1 for that subject. Let ẽk represented this normalized error for a subject

in posture k-th posture. The mean and standard deviation of ẽk was then calculated

for all subjects in the k-th posture.

5.2.4 Frequency Domain Posture-Induced Differences

The PSD was estimated using the Discrete Fourier Transform (DFT) of BCG average

Bk of each subject only in the three standing postures. The PSD estimates were

interpolated to increase the resolution by a factor of four. Let Xk[f ] denoted the

PSD estimate, where k again denoted the posture (k ∈ [1, 2, 3]) and f represented

the frequency index. The mean and the standard deviation of PSD for f = 0 → 14

Hz were calculated for each of the standing posture for all the subjects.

5.2.5 Parameter Extraction

The R-J intervals and PEP were calculated from the extracted heartbeats for each

subject in all postures. However, instead of using the average trace for all the heart-

beats for a subject, the heartbeats in 5-second periods were averaged to increase the

number of data points. Since the 15 second post-Valsalva period was also included
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in the data for P1 and P4 for all subjects, the heartbeats from the post-Valsalva 15

second period were also divided into sub-ensembles.

The J-peak in the BCG ensemble-averaged waveform was detected as the global

peak in the first 400ms portion of the signal. Apart from the R-J interval, the R-K and

the R-I intervals were also calculated. However, the R-J interval measurement was

a more consistent feature in the BCG signal and the J-wave was larger in amplitude

than either the I- or the K-wave. Thus the J-peak was more easily identifiable as

it was less corrupted by noise and motion artifacts. Additionally, the R-J interval

had been shown in previous papers [28, 36, 44] to be correlated to the PEP both for

subjects at rest and with the use of physiological perturbations.

The PEP was extracted from an ICG waveform using the same method as in

Chapter IV. The PEP was defined as the time elapsed from the R-point in the ECG

to the B-point on the ICG signal.

5.2.6 Improved Feature Estimation from Seated BCG

It was observed from the data collected in the study that the J-wave amplitude and

morphology for the seated BCG signals was significantly different from the standing

measurements from the same subjects. In order to improve the noise reduction per-

formance of the ensemble averaging, we employed weighted averaging techniques as

described in [93]. It was also observed that the J-wave could split into two smaller

peaks in some heartbeats leading to peak detection errors. In order to mitigate this

problem, we devised a simple algorithm for consistently detecting J-wave peak based

on low order polynomial fitting. First, the highest peak (p′) was detected between

150 and 400ms portion of the weighted ensemble averaged BCG waveform. The zero-

crossings before and after p′ were then determined and a polynomial of order 2 was

fitted across the waveform between these zero-crossings containing p′ as shown in

Fig. 16. Finally, the highest peak in the fitted waveform was detected as the new
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Figure 16: Modified R-J interval estimation method from the weighing scale BCG in
sitting postures.

J-peak (say J′-peak) and the R-J interval was estimated as the time period between

the newly detected J′-peak and the ECG R-peak.

Along with the improvement of R-J interval from seated postures, a system iden-

tification based method was designed for improved estimation of R-J intervals from

the two slouched postures [47]. However, since it was collaboration work, the method

along with the results will not be discussed here. The interested readers are referred

to [47] for more details.

5.2.7 Statistical Analysis of Estimated Parameters

In order to analyze the improvement with the above modified method of J-peak

detection in the seated postures, a paired t-test was conducted on absolute values

of residuals of PEP from the regression line before and after the application of the

polynomial fitting method. To remove the outliers in the linear regression model

fitting the R-J interval to PEP, the mean (µ) and standard deviation (σ) of both

PEP and R-J intervals was calculated for all subjects in each of the two sitting

postures. The data points for which either PEP values or the R-J intervals were

beyond their respective µ ± 2σ values were then removed from the analysis for that
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(a) (c) (b) 

Figure 17: Average power spectra with standard deviations for all subjects. (a)
Upright standing. (b) Slightly slouched standing. (c) Heavily slouched standing.

sitting posture. In order to remove additional outliers, the data points for which the

squared Mahalanobis distance [22] was greater than χ2
0.95 were also removed from the

analysis.

The objective for implementing this 2-tier outlier detection was that Mahalanobis

distance, which finds outliers in multivariate regression, depended on the joint mean

of the multivariate data and was affected by one or two erroneous points occurring at

the extremes. Since the paired t-test required equal number of data points, the union

set of outliers were removed from the R-J intervals and PEP data points before and

after the application of improvement methods.

5.2.8 Results

It was observed that the mean and standard deviation of the normalized error ẽk

exhibited an increasing trend across postures indicating more shape distortion in

the measured BCG for bad postures. The values of normalized error calculated for

slouched and seated postures were : 0.85 ± 0.25 (slightly slouched), 1.1 ± 0.5 (heavily

slouched), 1.7± 1.1 (upright sitting) and 2.5± 1.8 (knees raised). The PSD results for

the three standing postures are summarized in Fig. 17 which show the appearance of

an additional peak, beyond 6 Hz, in the power spectra of slouched standing postures.
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Figure 18: Correlation results. (a) Upright standing. (b) Slightly slouched standing.
(c) Heavily slouched standing. (d) Upright sitting (e) Bent knees sitting. N is the
total number of data points while n is the number of data points used in linear
regression after removing the outliers.

The correlation between R-J interval and PEP for upright standing posture was

r = 0.85, while the system identification based methods discussed in [47] resulted

in correlation values of 0.65 and 0.54 for posture P2 and P3 respectively. The avid

reader is referred to [47] for more details. The correlation results between the R-J

interval from the BCG heartbeats and the PEP from the ICG in the seated postures

are shown in Fig. 18. There was a statistically significant increase in correlation

between the R-J interval and PEP for upright sitting posture when the modified R-J

interval estimation is employed. The correlation increased from 0.7 to 0.84 for the

upright sitting. There was a small increase from 0.65 to 0.7 in correlation between

the R-J intervals and PEP for the knees raised sitting posture. However, this increase

was not statistically significant.

5.3 Discussion & Limitations

The results derived in this work with weighing scale BCG indicated the presence

of features in the measured signals that can be used to detect change in posture
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as compared to a change in cardiovascular physiology. Specifically, the frequency

domain analysis showed the appearance of second peak beyond 6Hz, in addition to

the global spectral peak in the 0-6 Hz band, for the slouched standing postures. The

peak became more prominent as the posture became more slouched indicating that

more distortion was present in the weighing scale BCG signal. These additional peaks

could also be contributed to other modes of vibration present in the slouched standing

postures. A similar effect has been observed in the seated postures in previous studies

[52, 61].

It can also be concluded from the results that with the help of suitable methods

such as the polynomial fitting based R-J estimation method presented in this work,

the J-peak can be detected more accurately for the sitting postures. This is evident

from the increase in the correlation for the upright sitting posture. The improved

correlation for the upright sitting posture approached the value of correlation between

the R-J intervals and PEP for the “gold-standard” upright standing posture. Hence,

similar methods can be employed with the weighing scale BCG signal to be used with

the subjects who have difficulty in standing in an upright posture.

One important limitation of this work was the homogeneous nature of the pool

of subjects selected for data collection. Future studies should focus on the inclusion

of people with cardiovascular problems to better differentiate the posture related

features from the physiological changes present in the BCG signal.

5.4 Effect of Posture on Wearable BCG

Wearable BCG, which includes local chest vibrations caused by the beating heart,

can be easily measured with wearable accelerometers. Prior work [43] has shown

that the cardiogenic vibrations measured from wearable sensors comprise multiple

physiological origins. The SCG signals from a tri-axial accelerometer, placed at the

sternum, contain components based on blood flow, but also from the heart sounds
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Figure 19: Experimental setup and processing steps.

produced by valve closure. Thus the signal from an accelerometer can be used to

derive information about various mechanical events taking place in the heart—closing

of mitral, tricuspid, aortic and pulmonary valves—and also regarding hemodynamics.

When a tri-axial accelerometer is attached to various locations on the chest, the

three components of acceleration from the accelerometer can contain a mixture of

these vibrations.

Even though the wearable BCG signal is extremely sensitive to motion artifacts,

change in posture can also affect the measured signal and parameters estimated from

it. In this small study, we extend the work on posture induced distortion in the

weighing scale BCG signal to wearable BCG and analyze the effect of three standing

postures on the measured accelerometer signals.

5.4.1 Protocol & Experimental Setup

A small study was designed to examine the effects of postural and body position

changes on SCG signals, with a particular focus on the ability to accurately extract

STI features from the waveforms. The SCG signals were measured simultaneously

for a set of 9 subjects with ICG and ECG reference measurements (see Fig. 19).

The accelerometer for sensing SCG was placed on the sternum of each subject. Each

subject was asked to stand in three different postures denoted by Pi: standing upright

as in previous study with weighing scale BCG [36, 42], and slouching forward at two
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different angles θ between the tangent to the thoracic spine (the tangent to the T2−T4

vertebrae) with the vertical axis. The three postures are summarized below:

• P1: Upright standing posture i.e., θ ≈ 0◦.

• P2: Slightly slouched standing posture i.e., θ = 20 ∼ 40◦.

• P3: Heavily slouched standing posture i.e., θ = 40◦ ∼ 60◦

Data were collected from 9 subjects (27± 4.2 years, 166± 20.8 lbs, 177± 7.7 cm

height). In all postures, each subject was asked to breathe normally in a resting state

for 40 - 60 seconds. The values of angle θ in the measured data for all subjects were

θ = 35◦ ± 3◦ for P2 and θ = 52◦ ± 4.5◦ for P3.

5.4.2 Hardware Design & Data Processing

The ECG and ICG signals were measured using the BN-EL50 and BN-NICO wireless

measurement modules (BIOPAC Systems, Inc., Goleta, CA), then transmitted wire-

lessly to the data acquisition system (MP150WSW, BIOPAC Systems, Inc., Goleta,

CA) for subsequent digitization at 1 kHz. The SCG signal was measured using a

small tri-axial accelerometer (356A32, PCB Piezotronics, Depew, NY) used in previ-

ous studies [44]. The acquired signals were sampled at frequency fs of 1 kHz.

The ICG and ECG signals were filtered with FIR filters (Kaiser window, pass band

cut-off frequencies: 0.8 - 35 Hz and 2.5 - 40 Hz). For the tri-axial accelerometer, the

acceleration was measured along three axes as shown in Fig. 19. The three axes

were: (1) the axis perpendicular to chest surface called dorso-ventral (D-V) direction,

(2) the longitudinal axis along the surface of the body called head-to-foot (H-F)

direction, and (3) the lateral axis called the right-to-left (R-L) direction. The D-V

component was denoted by SCGD-V and H-F component was denoted by SCGH-F.

Both these components were band-pass filtered separately (FIR, Kaiser window, cut-

off frequencies: 0.8 - 20 Hz for H-F and 0.8 - 40 Hz for D-V) as shown in Fig. 19.
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The reason for choosing higher cut-off frequencies for the D-V signals as compared to

H-F component was the presence of high-frequency vibrations in the former due to

heart valves. The R-L signals were not analyzed in this study. Once the measured

signals were filtered, the R-peaks in the ECG signal of each subject in every posture

were detected with a simple QRS detection algorithm. These peaks were used as

reference points for segmenting the ICG, and H-F and D-V components of SCG

signals in the corresponding posture for that subject; i.e., the signal traces in ECG

R-peaks+600ms, referred to as heartbeats or frames. Since the PEP period is different

during the exhalation and inhalation phases of respiration, the PEP intervals were

estimated for individual ICG beats. The mean µ and standard deviation σ of PEP

values were calculated and the ICG beats were divided into three bins as shown in

Fig. 20 (a): (1) ICG heartbeats with PEP values within µ± 0.25σ were assigned to

Bin 1 (2) ICG heartbeats with PEP values greater than µ + 0.25σ were assigned to

Bin 2, and (3) ICG heartbeats with PEP values less than µ− 0.25σ were assigned to

Bin 3. The SCGD-V and SCGH-F heartbeats corresponding to the ICG heartbeats of

Bin 1 were also labeled as Bin 1 beats while those corresponding to Bin 2 and Bin 3

ICG heartbeats were labeled accordingly. Thus, rather than obtaining one ensemble

or collection of ICG, SCGD-V and SCGH-F heartbeats, three ensembles (bins) for each

of these were obtained according to PEP values. The ICG, SCGD-V and SCGH-F

heartbeats in each bin were then averaged to obtain the respective ensemble averaged

traces. Hence, three ensemble averaged heartbeats for ICG, SCGD-V and SCGH-F

were obtained for each subject in every posture as shown in Fig. 20 (b).

5.4.3 Feature Extraction from ICG & SCG

Features were extracted from the ensemble averaged traces of ICG, SCGD-V and

SCGH-F signals for all subjects in each posture. The following subsections will explain

these features in detail:
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Figure 20: (a) The division of heartbeats into three bins based on mean and standard
deviation of PEP values from individual ICG heartbeats. (b) Extraction of features
from the ICG heartbeats and different components of sternal acceleration.

5.4.3.1 Features from ICG

The features extracted from the ICG signal included the PEP and LVET. The point

of maximum acceleration before the global peak in the ICG frame was detected by

filtering the ICG heartbeat twice with a Savitzky-Golay differentiator filter. The

highest peak in the differentiated signal was selected as the B-point and PEP esti-

mated was denoted by PEPICG. The X-point was detected as the mimima after the

global peak in the heartbeat as shown in Fig. 20 (b). The difference between B and

X points was estimated as LVET and denoted by LVETICG.

5.4.3.2 Feature from SCGD-V

The most common methods for derivation of features from accelerometer data involve

detection of peaks in the SCG traces [3]. These include the location of peaks cor-

responding to AO and AC events on the dorso-ventral SCG frames [43, 98] and the

J-peak on the estimated BCG signal from H-F acceleration [13].

Accordingly, the features extracted from each ensemble averaged SCGD-V frame

were the points corresponding to the AO and AC events. The AO-point was detected
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as the positive peak that immediately followed the lowest negative peak in the first

200ms portion of the SCGD-V frame. The time between the R-peak of ECG and AO-

point gave an estimate of the PEP interval and was denoted by PEPD-V. In order

to detect the location of the AC-point, the maximas and minimas in the SCGD-V

heartbeat were detected. The upper and lower envelopes, Eu and El, of the SCGD-V

frame were estimated by cubic interpolation of the maximas and minimas. The

envelope difference signal was then obtained as Ed = Eu − El. The highest peak in

E2
d , located after the first 200ms portion, was detected and 150ms portion of SCGD-V

frame on both sides of the peak was extracted. The maxima that preceded the lowest

minima in the extracted portion of SCGD-V was chosen as the AC-point. The LVET

was then estimated as LVETD-V = AC - AO (see Fig. 20 (b)).

5.4.3.3 Features from SCGH-F

The H-F ensemble averaged acceleration traces were converted into displacement

signals by integrating each trace twice using the trapezoidal rule [100]. Every trace

was high-pass filtered before each integration step and also after the last integration

step to remove the DC offset as in previous studies [103, 104]. The displacement

trace thus obtained was the equivalent estimated BCG trace for the H-F acceleration

signal. Let each estimated displacement trace be denoted by B̂CGH-F i.e. B̂CGH-F =∫∫
SCGH-F. The method of detecting the J-peak in the trace was similar to the method

used in previous studies involving weighing scale BCG [28]. The J-peak was detected

as the highest positive peak in the first 300ms portion. The time interval between

ECG R-peak and the estimated J-peak formed the R-J interval denoted by R-JH-F.

5.4.4 Results

5.4.4.1 Correlation Results between ICG and SCG Parameters

The heartbeats / frames were extracted for every subject in each of the three stand-

ing postures from the ICG and accelerometer signals and features were extracted
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Figure 21: Correlation results: (a) LVETD-V vs LVETICG for P1 (b) PEPD-V vs
PEPICG for P1 (c) R-JH-F vs PEPICG for P1 (d) LVETD-V vs LVETICG for P2 and P3

(e) PEPD-V vs PEPICG for P2 and P3 (f) R-JH-F vs PEPICG for P2 and P3.

from the ensemble averaged traces of ICG, SCGD-V and B̂CGH-F. The correlation

coefficients were calculated using linear regression analysis between LVETD-V and

LVETICG, PEPD-V and PEPICG, and R-JH-F and PEPICG in all three postures. The

results for these are shown in Fig. 21. The results show no significant change in

the correlation coefficient value for correlation between LVETD-V and LVETICG in

slouched standing postures P2 and P3 (Fig. 21(d)) compared to correlation coeffi-

cient of good standing posture P1 (Fig. 21(a)). The PEPD-V, however show low

correlation coefficient with PEPICG in all three postures (Fig. 21(b) for P1 and Fig.

21(e) for P2 and P3). This is contrary to results obtained in previous studies [99, 96].

The correlation between R-J intervals from B̂CGH-F and PEP periods from ICG again

show no change across all three postures in Fig. 21(c) & (f). The red data points in

all the correlation plots of Fig. 21 indicate data outliers which were not included in

the correlation analysis.

62



Figure 22: Bland-Altman plot for comparison of LVET estimated from SCGD-V and
ICG in different postures.

5.4.4.2 LVET Comparison

LVET was estimated from both ICG and SCGD-V signals. Fig. 22 shows the Bland-

Altman plot for LVET values estimated from SCGD-V and ICG beats for all subjects

in each of the three postures. The plot indicates that LVET from SCGD-V shows

similar level of agreement with LVET from ICG in all three postures. Thus based on

features from SCGD-V beats, there is not much difference in the accelerometer signals

acquired in all three postures.

5.4.5 Discussion & Limitations

The results from this wearable BCG study suggest that for PEP estimation, the

double-integrated H-F component, which approximates a BCG waveform, provides a

better surrogate for PEP than the D-V component. Interestingly, the H-F compo-

nent has largely been ignored for estimation of hemodynamic parameters from the

wearable BCG in the existing literature. These results put an important emphasis

on utilizing this component, which is simultaneously measured with the D-V signals,

in estimation of hemodynamic parameters. On the other hand, the dorso-ventral

component in the acceleration domain provides a robust estimate of LVET in the

three different types of standing postures. Thus as suggested before, the combination

of cardiogenic accelerations in both axes, with a physiology-driven treatment of the
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components, is recommended for future studies aimed at comprehensive systolic time

interval estimation from wearable accelerometers.

An important limitation of this study was the small sample size and the homo-

geneity of subject demographics. Future work should focus on expanding this work

with larger data sets including patients with cardiovascular diseases.
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CHAPTER VI

QUANTIFICATION AND REDUCTION OF MOTION

ARTIFACTS FROM BALLISTOCARDIOGRAM SIGNALS

MEASURED DURING WALKING

6.1 Introduction

A major challenge for wearable BCG, SCG and other mechanical measurements of

cardiovascular function is that high fidelity signals can only be obtained typically

when the user is stationary. Motion artifacts related to walking or other types of

movements can reduce the SNR and even sometimes render the measured signals

unreadable. Hence, most of the studies on wearable BCG using accelerometers report

results only when the subject is at rest [23, 97] and in a good posture. Authors in [73]

demonstrated a method to only extract heart rate from a chest-worn accelerometer.

However, as we have discussed earlier, heart rate is not the only important parameter

describing the cardiac function. It is also important to accurately estimate STIs

during movement.

Analyzing BCG / SCG signals during movement is challenging, since the signals

can be corrupted by motion artifacts associated with footsteps and other external

vibrations coupling into the sensor. Nevertheless, such data during motion is of

paramount importance for understanding how a person’s cardiovascular system re-

sponds to exercise-induced stress; accordingly, the inability to analyze the BCG and

SCG signals during motion is a technical obstacle that, if addressed, can greatly en-

hance the value of wearable BCG and SCG recordings. Rather than only measuring

STIs at rest, the changes in STI associated with particular activities—even simple
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activities such as walking—can potentially provide an earlier indication of cardiovas-

cular disorders, and a more specific tool for monitoring patients outside of clinical

settings. In particular, enabling the estimation of STIs during movement, when the

cardiovascular system is stressed due to the increased demands of the skeletal muscles

and skin for blood flow, can likely provide deeper insight into cardiovascular function

for patients with CVD than measurements at rest alone.

In this chapter, we focus on estimation of STIs from wearable BCG using ac-

celerometers. We first discuss the results of a pilot study that combined estimates

from multiple accelerometers, placed at different locations on the body, during walk-

ing and employed a dynamic time warping (DTW) based algorithm to estimate STIs

during walking at three different speeds. In the later sections, we present a data

driven method for de-noising wearable BCG signals from a small patch that used a

single accelerometer and ECG sensor. We also discuss a simple method for improving

the time resolution of estimates from the wearable sensor during walking.

6.2 Motion Noise Reduction using Multiple Accelerometers

In this pilot study, we processed simultaneously acquired signals from more than one

accelerometer under the condition of walking at slow to moderate speeds. The objec-

tive of this initial study was to find the best position for placement of accelerometer

on the body and also analyze the recorded signals during walking for feasibility of

designing more complicated algorithms (discussed later in section 6.3) for removal of

motion artifacts. Hence, multiple accelerometers were placed at different locations

on the body in this initial work. The features of interest in the accelerometer signals

were detected in the resting phase and then these features were tracked during walk-

ing phases using a novel algorithm involving DTW pattern matching technique. We

also demonstrated that fusion of data from more than one accelerometer could pro-

vide robust estimate of STIs and compared these against the corresponding reference
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standard ICG estimates using correlation and linear regression analysis.

6.2.1 Protocol

The data for the pilot study were collected from 4 subjects (demographics: 27 ± 5.3

years, 171 ± 10.3 cm height, 170 ± 22.7 lbs). Each subject was asked to stand in a

resting state for 1 minute and then walk on a treadmill for 3 minutes at three different

speeds: 0.44 m/s during the first minute and then increased to 0.89 m/s and 1.34 m/s

in the second and third minute as shown in Fig. 23 (a). Five accelerometers were

placed on the body at various locations as shown in Fig. 23 (b). The specific body

locations for placement of accelerometers in this study as shown in Fig. 23 (b) were

chosen in consonance with the existing literature. Most of the prior work on wearable

BCG using one of the five positions used in this study. The H-F data was analyzed

for all 5 accelerometers since it contained the BCG component while the D-V data

was analyzed only for the accelerometers placed on the chest area (sternum, neck and

clavicle) due to presence of vibrations caused by closure of semi-lunar valves. The

protocol was repeated twice on each subject to generate two sets of data due to only

three accelerometers being available for the measurements. Data from the arm, neck

and sternum positions were recorded in the first set while clavicle and ear data were

collected in the next set. Each subject was given 10-15 minutes to relax between

the two sets of data. The ECG and ICG data were also collected to assist in the

processing of the BCG data and also for comparison of results.

6.2.2 Hardware Design & Data Processing

The ECG and ICG signals were measured using the BNEL50 and BN-NICO wireless

measurement modules (BIOPAC Systems, Inc., Goleta, CA) while small tri-axial

accelerometers (356A32, PCB Piezotronics, Depew, NY) were used to measure the

body vibrations. The acquired signals were sampled at 2 kHz.

The ECG, ICG and accelerometer signals, like studies in the previous chapters,
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Figure 23: (a) Block diagram of the setup. Data were collected in resting and walking
states. (b) Position of accelerometers on the body.

were band-pass filtered using FIR filters (Kaiser window, cut-off frequencies: 0.8 -

40 Hz for the ECG, 0.8 - 35 Hz for the ICG and D-V, and 0.8 - 20 Hz for the H-

F). The R-peaks in the filtered ECG signal were detected and the minimum R-R

interval was calculated for each subject. With R-peaks as reference markers and

R-R interval as the frame length, the ICG and accelerometer data were segmented

into individual frames called heartbeats and ensemble averaged to reduce noise [93],

as shown in Fig. 23 (a). All the heartbeats in the resting state for each subject

were ensemble averaged to give one trace while 15-second ensemble size was used for

0.44 m/s walking and a 30-second ensemble size for higher speeds. A larger ensemble

size was chosen for 0.89 m/s and 1.34 m/s walking speeds to reduce noise. The H-F

acceleration heartbeats were converted to the corresponding displacement traces by

integration twice with high pass filtering (FIR, Kaiser window, cut-off: 6Hz) before

and after each integration step to remove the constant terms [104]. The displacement

traces will be referred to as the H-F heartbeats in the rest of the sections.
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6.2.3 BCG Feature Extraction & DTW based Algorithm

As discussed in Sec. 5.4.3, the most common features extracted from the wearable

BCG signals are related to the positions of peaks in the heartbeat. Hence, in this

study, the highest peak located in the first half of the H-F heartbeat was selected

as the J-peak. Similarly, in the D-V component during the resting phase, the peaks

that best corresponded to the opening and closing of aortic valves were chosen as the

AO- and AC-points. However, during walking, the motion artifacts present in each

heartbeat caused the selection of incorrect peaks and led to errors in estimation of

systolic time intervals.

In order to overcome this problem, we employed DTW, which is a time series

alignment algorithm [66, 82]. DTW finds similarities between two time series of

equal or unequal lengths by warping the time axis and finding the optimal match

under some restrictions. It was assumed that the BCG heartbeats did not change

morphologically and were only translated along the time axis during walking. A

portion of the BCG signal in the resting state of each subject was extracted and used

as a known sequence or template ψ. The feature of interest fψ was then detected
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in ψ. In order to detect the same feature from the BCG heartbeats during walking,

DTW was performed between ψ and the motion corrupted heartbeat. The point

on the motion corrupted heartbeat that mapped to fψ in ψ was detected as the

feature. This process is described in Fig. 24 and explained in detail in the following

subsections:

6.2.3.1 Feature Estimation & Tracking in H-F Heartbeats

The first τh ms portion (τh = 250) of the resting H-F ensemble-averaged heartbeat

was extracted as a template, denoted by ψh, as shown in Fig. 24 (a). The highest

peak in ψh was detected as the J-peak. Let this peak be denoted by fψh
. For an

ensemble-averaged H-F heartbeat during walking, DTW was performed between its

first τ ′h ms portion (τ ′h = τh) and ψh. The peak in the walking heartbeat that mapped

to fψh
in ψh after the application of DTW was then selected as the J-peak. The R-J

interval was then estimated as the time difference between the detected J-peak and

the ECG R-peak. If more than one point in the walking H-F heartbeat mapped to

fψh
due to DTW, then an average of all these points was estimated as the J-peak.

6.2.3.2 Feature Estimation & Tracking in D-V Heartbeats

The D-V heartbeats involved the detection and tracking of two features corresponding

to AO- and AC-points. Hence, two templates needed to be generated from the D-V

heartbeat in the resting state for each subject as shown in Fig. 24 (b).

In order to detect the AO-point, the first τo ms portion (τo = 125) of the D-V

beat was extracted from the D-V heartbeat of each subject in the resting phase.

The portion was first de-trended and then standardized (set to zero mean and unity

variance by subtracting the mean and dividing by standard deviation) to remove any

low frequency noise that was not filtered out by the band-pass filter. The extracted

portion was used as the first template ψo and the lowest minima in it was chosen as the

AO-point denoted by fψo . For the walking phases, the first τ ′o ms portion (τ ′o = τo) of
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each D-V heartbeat was de-trended and standardized. DTW was performed between

the extracted portion and ψo and the minima in the extracted portion from the

walking heartbeat that matched to fφo in φo was chosen as the AO-point. Again,

if more than one point mapped to fψo , then average of these was estimated as the

AO-point.

For the detection of AC-point, the upper and lower envelopes of the whole D-

V heartbeat were estimated by cubic interpolation of maximas and minimas. The

envelope difference ED was calculated and the second highest peak in the ED signal

was denoted by pc as shown in Fig. 24 (b). A portion of τc ms (τc = 100), denoted by

ψc, was extracted from the original D-V signal around the position of pc. This portion

was again de-trended and standardized and the lowest minima in it was chosen as

the AC-point, denoted by fψc . For the walking D-V heartbeats, a τ ′c ms (τ ′c = 2τc)

portion around the pc time instant (obtained from the resting state of each subject)

was extracted. The portion was de-trended and standardized. The template φc was

slid along the extracted portion and DTW was performed at each instant to find the

best match. Once the instant of best match was found, the lowest minima in the part

of the extracted portion that mapped to fφc was chosen as the AC-point. LVET was

the time difference between the AC- and AO-points.

6.2.4 Data Fusion from Multiple Accelerometers

The D-V axis data from the neck and sternum accelerometers were used for calculating

the LVET estimates while the H-F data from all accelerometers were used to estimate

the RJ-intervals. The ICG features, which included PEP and LVET, were estimated

using the feature extraction methods described in chapter 4 and 5 (Sec. 4.4 and

5.4.3.1). In order to improve the correlation between the accelerometer and ICG

estimated parameters during walking, data fusion was employed by averaging the

estimates from two or more simultaneously collected accelerometers data.
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Figure 25: (a) Correlation plot between RJ-intervals from arm combined with ster-
num and the PEP from the ICG. (b) Correlation plot between RJ-intervals from ear
combined with clavicle and the PEP from the ICG. (c) Correlation between LVET
from sternum combined with neck and the LVET from the ICG. The red data points
indicate the outliers and were not used in correlation analysis. n is the number of
data points used in correlation. α = β = 1
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6.3 Results & Discussion

Linear regression based correlation analysis was performed between the R-J intervals

from the H-F data for each accelerometer and the corresponding PEP values from

the ICG and also between linear combinations of the RJ-intervals from two or more

accelerometers and the PEP from the ICG. Similarly, LVET estimates from the D-V

data of neck and sternum accelerometers and their combinations were also correlated

with the LVET estimates from the ICG. The best correlation results are shown in

Fig. 25. For linear combination, averaging (α = β = 1
2
) provided the best results

for two accelerometers. No significant increase in correlation was observed when

estimates from more than two accelerometers were combined. The correlation plots

indicate that DTW and linear combination of two accelerometer estimates achieve a

correlation value greater than 0.7 (p < 0.01) for both types of systolic intervals.

6.3.1 Discussion & Limitations

The results suggest that combining estimates of the same axes from more than one

accelerometer during physical activity provide a better surrogate for PEP and LVET
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intervals. However, using more than one sensor has some disadvantages as well. It

will lead to an increase in the cost of the overall system. Moreover, if one of the

sensors is not attached properly to the body, the error due to motion artifacts in

one sensor will propagate to the overall estimate. In order to reduce noise caused by

walking, the time period during which the heartbeats were averaged was increased

from 15-seconds to 30-seconds as the speed increased from 0.89 m/s to 1.34 m/s.

However, such a larger ensemble size will not be able to track transient changes in

the cardiovascular parameters. Hence, using better de-noising algorithms to remove

motion noise becomes of paramount importance for wearable BCG to be used during

movement periods. We shall discuss such an algorithm in the following sections.

6.4 Removal of Walking Noise

As discussed in previous section, the walking induced distortion in the wearable BCG

signals can be reduced by using ensemble averaging. However, even for walking at a

very slow speed of 0.44 m/s, an ensemble size of 15-seconds was considered for the

averaging process. This is a large time interval considering the cardiovascular physi-

ology undergoes transient changes during exercise. Hence, for robust and continuous

cardiovascular monitoring, a smaller time duration or number of beats will be ideal

to capture such small changes in the cardiovascular function corresponding to exer-

cise stressors. This will only be possible if a signal or heartbeat de-noising algorithm

processes the BCG heartbeats to remove movement related noise.

In this extension of the pilot study presented in the previous sections, we used a

small wearable patch adhered on the sternum to simultaneously measure ECG and

wearable BCG signals during walking at two different speeds. We focused initially on

walking, since it is the most common form of motion that nearly all people perform

during the day, and is the basis for the commonly-used clinical stress test named the

6-minute walk test [25, 39] for patients with cardiovascular problems. The 6-minute
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walk test has emerged as a non-invasive and inexpensive method for assessment of

submaximal exercise capacity of HF patients [39]. Previous studies have shown that

different parameters obtained from the test, such as walking distance and left ventricle

ejection fraction, can provide prognosis of the disease in HF patients [9, 12]. In

addition to walking at a normal pace, data were also collected from each subject

walking at 1.34 m/s on a treadmill for 5 minutes.

The objectives of this research were: (1) to provide a framework, using data

driven methods such as EMD [41, 78, 105], to reduce motion-artifact corruption in the

wearable BCG signals during walking, (2) to compare the performance of the wearable

BCG with a state-of-the-art, commercially available ICG sensor for estimation of STIs

during walking, and (3) to provide a method to objectively determine the minimum

number of heartbeats before an accurate estimate of STIs can be generated using

different techniques for feature detection. This work focused on methods that can be

used with wearable BCG signals, but can also be extended to other sensing modalities

such as ICG as well for de-noising signals during walking and, concordantly, assessing

cardiovascular and respiratory health parameters during movement.

6.4.1 Protocol

Data were collected from 10 young, healthy subjects (Gender: 4 males and 6 females,

Age: 24.9±4.3 years, Weight: 65.8±12.8 kg and Height: 1.68±0.10 m) under a pro-

tocol approved by the IRB at the Georgia Institute of Technology. Two sets of data

were collected from each subject. In the first set, each subject was asked to stand

in a resting state for 1 minute and then walk for 6 minutes at his / her normal pace

followed by 2 minutes of rest (recovery period). In the second set, 1 minute of initial

rest was followed by 5 minutes of walking at 1.34 m/s on a treadmill and subsequent

recovery for 1-2 minutes. The objective of collecting two sets from each subject was

to analyze acceleration signals under two scenarios: (1) normal subject-specific speed
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Figure 26: (a) The wearable patch that houses ECG and accelerometer sensors. Three
adhesive electrodes are used with the device. (b) The inside assembly of the wearable
patch houses a Micro-SD card on which the data is recorded. (c) The wearable patch
attached to the sternum with three adhesive electrodes. (d) Block diagram of the
setup. Two sets of data, which comprised of walking at normal speed (the speed at
which each subject usually walked) and walking at 1.34 m/s on the treadmill, were
collected from each subject.

of walking, and (2) controlled (treadmill) environment at a higher and uniform speed

for all subjects. Each subject was given 10-15 minutes of relaxation time between the

two sets of data.

6.4.2 Hardware & Data Processing

In both sets of data, the ECG and acceleration signals were collected with a novel

wearable patch as shown in Fig. 26 (a - c) [27]. Along with the ECG and BCG signals

from the wearable patch, ECG and ICG signals were also simultaneously measured

using the BNEL50 and BN-NICO wireless measurement modules (BIOPAC Systems,

Inc., Goleta, CA) to provide a reference gold-standard for the assessment of PEP
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and LVET. The two ECG signals, from the wearable patch and Biopac, were used to

synchronize data from Biopac and wearable sensor. This was done by tapping both

the sensors before and after the start of measurements for both types of walking, and

performing re-sampling in post-processing accordingly. All the signals from both the

custom wearable patch and Biopac sensors were sampled at 1 kHz.

Once the signals from the sensors were aligned using the tapping artifacts intro-

duced at the beginning and end of each data recording, the initial data processing

steps included band-pass filtering of the ECG, ICG and accelerometer signals using

FIR filters (Kaiser window, cut-off frequencies: 0.8 - 40 Hz for the ECG, and, 0.8 -

35 Hz for the ICG and D-V component of acceleration signals). The ECG R-peaks

in the data from the custom patch and Biopac systems were detected using a simple

thresholding algorithm and manually validated to correct for errors. With R-peaks

as fiduciary points, R-peak+win ms frames, where win was the frame size, were ex-

tracted from the accelerometer and ICG sensors. The value of win was estimated

as the minumum R-R interval in the portion of the ECG signal under consideration.

Thus, the overall recording from each measurement modality was segmented into in-

dividual frames or heartbeats. Note that the accelerometer signals from the wearable

device were segmented using the R-peaks of the ECG from the wearable patch while

the ICG signals were segmented using the R-peaks from the Biopac wireless system

as shown in Fig. 26 (d). The set or subset of heartbeats or frames thus obtained

were then averaged to obtain ensemble-averaged traces, based on time intervals or

the number of heartbeats to reduce noise in the individual heartbeats [93].

6.4.3 Signal De-Noising using EMD

EMD, an analytical and adaptive method, involves breaking down or decomposing

a signal into components, and was developed by Huang et. al in 1998 for analysis

of non-stationary signals [41]. The components which are obtained after EMD are
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specific only to the signal from which they are generated. Specifically, EMD decom-

poses a non-stationary signal into a set of amplitude modulated (AM) and frequency

modulated (FM) tones [78, 31], and these generated components are called intrinsic

mode functions (imfs). The algorithm for obtaining the imfs from the given signal x

is given below [78]:

1. Extract the local maximas and minimas in the signal x.

2. Form the upper eu and lower el envelopes of the signal from interpolation of

maximas and minimas, respectively.

3. Estimate the mean of the two envelopes, i.e., em = (eu + el)/2.

4. Subtract em from x, i.e., h = x− em.

5. Repeat steps 1-4 on h, i.e., x = h.

The above steps (1–4) are called the sifting process and are repeated until h

becomes a zero-mean signal or until some stopping criteria. Once the sifting process is

completed, the signal h yields the first intrinsic mode function (imf ). Let the first imf

be denoted by I1. This imf is subtracted from x to obtain the residue r1 and the steps

(1–5) are repeated on r1 to obtain the second intrinsic mode function. The process

of generating imfs can be stopped if the residue becomes a monotone from which no

further imfs can be generated. Thus, the signal can be decomposed into finite number

of components and can be reconstructed using the equation x =
∑n

i Ii + ri.

In this study, EMD was used to decompose the ensemble-averaged D-V heartbeat

during the walking phase into imfs as shown in Fig. 27 (a). Each ensemble-averaged

walking heartbeat produced 4 or 5 imfs. However, as shown in Fig. 27 (a), only the

first imf closely resembled the resting state D-V heartbeat and thus was used for

further analysis and feature extraction.
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In order to assess the improvement in signal quality before and after the appli-

cation of EMD, DTW was employed to find structural likeness between the walking

heartbeats and resting heartbeat for each subject. DTW, as explained in the previous

section, is a time series alignment method used to find similarities between two time

series [82]. The D-V heartbeats in the resting portion of each subject’s data were

ensemble averaged to obtain an ensemble-averaged resting heartbeat. The walking

heartbeats were divided into 15-second ensembles to obtain ensemble-averaged. The

length of each ensemble-averaged walking heartbeat and resting heartbeat were made

equal by clipping the later portion of the larger heartbeat. The warping distance

between each walking heartbeat and resting heartbeat was calculated and normalized

by the total number of samples present in both heartbeats. Let this normalized warp-

ing distance be denoted by dα. The normalized warping distance was also calculated

between walking heartbeat, after the application of EMD, and the resting heartbeat

and was denoted by dβ. The process was repeated for all subjects and for both user-

specific and 1.34 m/s data sets. The mean and standard deviation was calculated for

dα and dβ for all subjects and for both data sets.

6.4.4 Dorso-Ventral Feature Detection and Tracking

The typical method of feature detection from the D-V acceleration data involves

detection of maximas or minimas in the D-V heartbeat [43]. Since the D-V heartbeats

contain information about both the opening and closure of heart valves, the first half

of the heartbeat was used to find the AO-point while the second half was used to find

the AC-point. In this study, features or points corresponding to AO- and AC-points

were detected from the heartbeats in the resting state for each subject and these

features were tracked during the walking and recovery phases. The methods used for

detecting the AO- and AC- points are described in the next subsections.
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6.4.4.1 AO Feature

For the AO-point, the maximum or minimum with the highest absolute magnitude

in the first 150ms of the heartbeat (as expected for aortic valve opening based on the

physiology) was selected as a feature and denoted by fa (see Fig. 27 (b). Note that

we shall refer to the selected feature (maximum or minimum) as a peak in the rest

of this chapter. The peak from this first segment was defined by two attributes that

will be used as described below for identifying similar peaks in the motion-artifact

corrupted signals acquired during walking: (1) its position in the frame denoted by

pa, i.e., the position of maximum or minimum which ever one was chosen on the basis

of absolute magnitude, and (2) the sign of the maximum or minimum. A ‘+’ sign

was used if the selected peak was a maximum while a ‘−’ sign was used if a minimum

was selected as the peak. The time difference between fa and the ECG R-peak was

estimated as the PEP.

In the walking (after the application of EMD algorithm) and the exercise recovery

heartbeats, the AO-point was detected by tracking the peak selected initially from

the resting heartbeat. Specifically, we searched for a peak with same sign as fa and

in a window of wa (ms) around the position pa of fa as shown in Fig. 27 (b). The

peak which was closest to pa was chosen as the desired AO-point, denoted by f ′a in

the walking and recovery heartbeats. In case two peaks were found closer to fa in

wa, the preference was given to the peak on the left, i.e., the peak whose position was

less than pa was chosen as the AO-point. The reason for this was that a decrease in

contractility (or, in other words, an increase in PEP) is very unlikely during exercise,

and thus setting the earlier peak as the preferred selection is more physiologically

sound.
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Figure 27: (a) De-noising of the D-V heartbeat during walking using EMD algorithm.
Four intrinsic mode functions were generated after the application of EMD. The first
intrinsic mode function (I1) was chosen as the de-noised D-V heartbeat for feature
extraction. (b) Extraction of features from the resting state D-V heartbeat. The
features were tracked during the heartbeats measured while the subjects were walking.
The values of wa and wc were chosen as 60ms and 100ms for user-specific walking and
100ms and 120ms for 1.34m/s walking.

6.4.4.2 AC Feature

An approach similar to the selection of the AO-point was implemented for the de-

tection of the AC-point. The heartbeat was first divided into two parts according

to the envelope based methods discussed in [46]. The AC-point was detected as

the maximum or minimum with highest absolute magnitude in the second half of the

heartbeat. Then, as for the AO-point, the AC-point, denoted by fc, was characterized

by a peak position and peak sign.

In the walking and recovery heartbeats, the peak with similar sign and closer

to pc was searched for in a window of wc ms around the resting state AC-point.

Again, preference was given to the peak which was less than fc in terms of position,

since systolic ejection is likely to shorten, not lengthen, with increased heart rates

associated with exercise.
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6.4.5 Comparison of ICG and Accelerometer Data

In order to compare the ICG and accelerometer data, the ICG heartbeats from the

Biopac were partitioned into 15-second ensembles and averaged to obtain ensemble-

averaged traces. Since, the data from the Biopac and the wearable patch sensor were

time-synchronized, the D-V heartbeats from the accelerometer were also partitioned

into 15-second portions and averaged to obtain ensemble-averaged acceleration traces.

In order to detect the B-point on the ICG ensemble-averaged heartbeats, the heart-

beats were twice differentiated with a Savitzky-Golay filter [28]. The position of the

global peak in the double-differentiated signal was chosen as the B-point and the time

difference between this peak and the ECG R-peak was estimated as the PEP from

the ICG. The PEP from accelerometer was estimated as the time difference between

the AO point and the ECG R-peak.

6.4.6 Quantitative Determination of Ensemble Size

Based on the ICG and accelerometer comparison, a method was devised to estimate

the minimum ensemble size in terms of number of heartbeats required for the ac-

celerometer data to yield accurate estimation of PEP and LVET intervals. In resting

conditions, ensemble averaging is usually performed by using as many beats as are

available, such that the extraction of features can be as accurate as possible. It is

assumed that the cardiovascular state is relatively static, and thus a single ensemble

average can capture all of the information required for assessing that state. However,

during exercise, the cardiovascular state is changing dynamically, with heart rate,

contractility, and stroke volume typically increasing to meet the increased demands

of the skeletal muscles and skin for blood flow. This presents a major challenge from

a feature extraction standpoint. On one hand, capturing the transient information

associated with these changes—such as the time constant with which PEP decreases
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at a given exercise intensity—can provide deep information regarding cardiovascu-

lar health, and the ability of the cardiovascular system to respond to the stress of

exercise; thus, not using ensemble averaging at all would be ideal as one would ob-

tain beat-by-beat information regarding these transients. On the other hand, motion

artifacts are more significant during exercise and thus the noise and interference in

the data is more substantial; thus, using ensemble averages with a high number of

beats would be ideal as one would provide the maximal reduction of such noise and

interference in the measured signals. We therefore aimed to provide a data-driven

methodology for objectively determining the optimal number of beats that should be

used in ensemble averaging during exercise for BCG signals.

Specifically, the optimum ensemble size for each subject was determined by first

sweeping through overlapping window ensemble sizes composed of different number

of heartbeats. Then, to determine the minimum ensemble size for PEP estimation,

ensemble sizes of 64 to 4 heartbeats were traversed with 25% overlap, i.e., each ensem-

ble contained 25% of heartbeats from the previous ensemble. The objective of using

overlapping ensembles or moving average is to increase the number of estimates in the

analysis. For each ensemble size, PEP was estimated by detecting the AO feature in

the heartbeat obtained after the application of EMD algorithm. Once all the PEP es-

timates were obtained for a certain ensemble size during the walking phase, the mean

(µ) and standard deviation (σ) of PEP estimates was calculated and the data points

beyond µ ± 1.75σ were removed from the estimated set. A third degree polynomial

was then fitted to the remaining estimates to capture the trend in the estimated PEP

values with respect to time, with an order low enough to avoid over-fitting. The time

values were chosen as the mean of time index for the first and last heartbeat in the

ensemble and were denoted by the variable tm.

The distance of each point from the best fit line was estimated and root mean

square error (RMSE) was calculated for the data points for that specific ensemble size.
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Figure 28: (a) The PEP estimates from the wearable patch and the Biopac ICG
sensor for one subject during different phases of the 6 minute walk test. The data
was divided into 15-s ensembles for both types of sensors. (b) The mean and standard
deviation of PEP estimated from the accelerometer and ICG sensor for all subjects.
The accelerometer estimates PEP with better accuracy for both types of walking tests
and these are significantly different (p << 0.05) from the ICG estimates.

In order to further remove outliers and improve the polynomial fitting, one data point

was iteratively removed from the estimated PEP estimates and RMSE was derived

for the remaining data points. Hence, one data point for which the RMSE decreased

considerably was excluded from the data set and final RMSE error was calculated

for the remaining points. The process was repeated for different ensemble sizes and

RMSE errors were derived for the PEP estimates for each subject.

A similar method was used to find the optimum ensemble size for LVET estimates

by sweeping through ensemble sizes of 80 to 32 heartbeats (25% overlapping windows).

After outlier rejection, a third order polynomial was fitted to the LVET estimates from
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the wearable D-V heartbeats, and RMSE error was derived for each subject.

6.4.7 Results

6.4.7.1 EMD based De-noising

The normalized warping distance between the resting heartbeat and walking heart-

beats, before and after the application of EMD, i.e., dα and dβ, was calculated for all

subjects. The warping distance decreased significantly after the walking heartbeats

were de-noised using the EMD algorithm for all subjects. Since, warping distance

indicates the cost of aligning two time series, a lower cost indicates greater similar-

ity. The mean and standard deviation of normalized warping distance for walking at

user-specific speed was 0.58± 0.27 and 0.32± 0.15 before and after the use of EMD

based de-noising method outlined in this chapter. A paired t-test on dα and dβ arrays

for all subjects also showed statistical significance (p << 0.01). A similar analysis

was done for walking at 1.34m/s and estimated mean and standard deviation of dα

and dβ were 0.48± 0.28 and 0.31± 0.17 (p << 0.05), respectively.

6.4.8 ICG vs Accelerometer

The PEP estimates from the ICG and accelerometer sensors are compared in Fig.

28. The PEP values for one subject during the 6-minute walk test, obtained from the

accelerometer using methods discussed in this chapter, are shown in Fig. 28 (a). These

accelerometer estimates show a strong correlation with the corresponding estimates

from the ICG sensor in accordance with existing literature [97]. However, during the

walking period, the ICG-based PEP estimates are not consistent with physiological

expectations due to motion artifacts—for example, there are several data points where

the PEP values fall below 10ms, and there are increasing and decreasing short-term

spurts that are not consistent with what one would expect from the heart of a healthy

person walking at a fixed rate. Indeed, for this reason, the ICG data could not be
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Figure 29: Determination of minimum ensemble size using the polynomial fitting
approach for one subject. (a) 64 heartbeats. (b) 32 heartbeats. (c) 16 heartbeats.
(d) 4 heartbeats. The data points in blue are outliers. In order to have same y-axis
scale for each plot, the outliers for some plots are not shown in the above figures but
are explained as follows: 2 data points were detected as outliers in (a), 1 data point
as outlier in (b), 2 data points as outliers in (c) but are not shown, and, 5 data points
as outliers in (d) which are not shown. An outlier was detected by removing the data
point which was more than 1.75 standard deviation away from the mean of all data
points.

used as a gold standard for assessing the BCG estimates during walking. The de-

noised D-V heartbeats from the accelerometer, on the other hand, not only show a

decreasing trend in the PEP as with the ICG during walking, but also provide precise

and accurate estimates that are more in line with physiological expectations during

the walking phase. This observation can be extended to the complete pool of subjects

in this study as shown in Fig. 28 (b), where the standard deviation in relative changes

in PEP at user-defined and 1.34 m/s walking speeds were significantly lower for the

accelerometer as compared to the ICG based measurements.
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Table 3: Results For Minimum Number of Heartbeats Ne in an Ensemble for PEP
and LVET

Sub. Age Weight Height
Min. Ne for

PEP
Min. Ne for

LVET

(Gender) (years) (lbs.) (inches)
User

specific
1.34m/s

User
specific

1.34m/s

M 31 200 70 12 36 32 68
F 24 115 63 12 8 32 64
M 24 150 69 8 8 32 32
M 22 172 70 8 12 32 32
M 33 171 73 8 4 36 36
F 19 160 66 20 32 48 72
F 22 115 60 8 48 56 44
F 27 165 64 32 52 36 80
F 24 120 63 12 12 32 44
F 23 140 65 8 24 32 36
µ 25 145.3 66.3 12.8 23.6 36.8 50.8
σ 4 28.3 4.1 7.7 17.5 8.4 18.3

6.4.8.1 Minimum Ensemble Size Analysis

The results for the minimum ensemble size methodology for one representative subject

during the 6-minute walking phase are illustrated in Fig. 29. The minimum number

of heartbeats Ne in an ensemble during walking were estimated for each subject by

fitting a third order polynomial on the PEP values with respect to time. The value of

Ne was decreased from 64 to 4 and the error was estimated at each value. However,

Fig. 29 only shows the PEP estimates for 4 different values of Ne. As the number

of heartbeat were decreased from 64 to 32 in Fig. 29 (b), the estimated values follow

a similar trend as in Fig. 29 (a) without any considerable increase in error. Similar

result is obtained as the number of heartbeats is decreased further in the Fig. 29 (c)

and (d).

The results for all subjects are summarized in Table. 3. We chose an RMSE

threshold of 2ms for PEP estimates for both the 6-minute and 5-minute walking tests,

i.e., the lowest number of heartbeats were chosen for each subject as long as these
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provided an RMSE of less than 2ms from the line of best fit (3rd degree polynomial).

In order to determine the number of heartbeats for the LVET, a sweep of heartbeats

from 80 - 32 was done as compared to 64 - 4 heartbeats and also the threshold for

acceptable RMSE was taken as 10ms. The reason is that the LVET requires detection

of AC-point which is prone to more errors than the detection of AO-point due to low

SNR. The table shows that, if an RMSE of 2ms can be tolerated in PEP estimation,

then on average 12 heartbeats are required while the person is walking at normal

pace. Similarly, accurate LVET estimation within a tolerable 10ms RMSE can be

achieved with an ensemble size of 28 heartbeats during normal walking speeds. As

the speed increases, the number of heartbeats for accurate estimation of both the

PEP and LVET also increase.

6.4.9 Discussion & Limitations

The results suggest that the wearable BCG signals processed using our de-noising

and feature extraction techniques can provide improved estimation of systolic intervals

during walking as compared to the commercially available Biopac ICG system. Recent

research has shown that the D-V heartbeats can be used to extract features for

calculating STIs during resting scenarios [97, 99]. However, the major hurdle in

using wearable BCG for continuous monitoring has always been the exclusion of data

during motion periods. The data during these movement periods can not only provide

additional insight into cardiovascular health but also indicate how different stressors

related to exercise affect cardiac function. In fact, to the best of our knowledge, recent

efforts in this area have focused only on heart rate estimation during the movement

periods. Though heart rate provides useful information about the electrical aspects

of cardiovascular health, there is a strong need to also continuously estimate further

parameters related to cardiac function. This chapter outlines a data driven signal

decomposition method for non-stationary signals that can be used to reduce the
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motion artifacts in wearable BCG measurements taken during walking.

The methods described in this chapter achieve a sufficiently fine time resolution

for the PEP and LVET estimates from the acceleration signals to facilitate analyzing

changes in cardiovascular function associated with walking. During stationary peri-

ods, the acquired signals have a high SNR and accurate estimates can be obtained

on beat-by-beat basis. As the signal SNR decreases during walking or non-stationary

periods, the need to perform ensemble averaging becomes unavoidable. The meth-

ods described in this work can readily be leveraged to obtain a minimum number

of heartbeats that must be captured before an accurate and precise estimate, within

some acceptable error thresholds, can be made for the STIs.

The results provided in the previous sections indicate that the number of heart-

beats required for LVET during both self-paced and 1.34 m/s walking are more than

the number of heartbeats for PEP. This is expected as estimation of LVET hinges on

accurate detection of the point of closure of the aortic valve (the AC-point) in the

heartbeat, which is associated with the relatively quiet second heart sound (i.e., quiet

compared to the first heart sound).

The results in Table. 3 also show that the number of heartbeats required for ac-

curate PEP estimates during 1.34 m/s walking are on average twice the number of

heartbeats for self-paced walking (typically at a much slower pace than 1.34 m/s).

One reason for this large difference can be attributed to the fact that treadmill repre-

sents an artificial controlled environment for walking. While walking on the treadmill,

people actively adjust their gait and balance to overcome the mismatch in their nat-

ural pace and the treadmill speed. Such constraints are not present in the natural

walking surfaces such as side-walks and jogging tracks. These inconsistent adjust-

ments during walking on the treadmill add noise to the measured signals. To further

investigate this hypothesis, we collected data for 1.34 m/s walking on a jogging track

from a subject who had already provided data for the results in Table I. The same
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User-specific pace 1.34m/s (treadmill) 1.34m/s (track)

Figure 30: Comparison of minimum ensemble size for the PEP during walking at a
self-determined pace and at 1.34 m/s on treadmill and track for one subject. The
dotted grey line shows a threshold of 2ms RMSE for the PEP estimates. The minimum
number of heartbeats required for the self-determined pace is greater than 8 while
walking at 1.34 m/s in an uncontrolled environment such as a jogging track requires
more than 16 heartbeats in the ensemble.

procedure for minimum ensemble size estimation was repeated and the results are

summarized in Fig. 30. It can be observed that as the number of heartbeats are de-

creased in the ensemble, the error curves for self-paced walking and 1.34 m/s walking

on a track are quite similar to each other while the treadmill walking curve shows

abrupt changes in RMSE. The minimum ensemble size requirements for this subject,

as observed from Fig. 30, are Ne > 12 (self-determined pace), Ne > 16 (1.34 m/s

track) and Ne > 36 (1.34 m/s treadmill).

The perturbations such as walking or light exercises cause small changes to car-

diovascular function of both healthy people and patients with CVDs. These brief

changes can yield great insight into cardiovascular health. The common practice in

existing research to overcome noise present in the signal involves ensemble-averaging

heartbeat frames. The averaging operation, either performed on some specific num-

ber of frames or on frames present in some time interval, results in improved SNR,

but fails to capture transients in the small changes in cardiovascular parameters from

the measured signals. One of the results presented in this chapter shows that the

number of heartbeats required in averaging operation to increase SNR is inversely
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proportional to the speed of walking. Walking at higher speeds requires a greater

number of heartbeats. Hence, it can be concluded that some measure of intensity of

the activity (speed of walking in this instance) can be incorporated into algorithms

for better estimation of parameters. Thus future work should build on the ideas pre-

sented in this chapter and focus on ‘smart ensemble-averaging ’ of heartbeats which is

adaptive in nature and captures necessary changes in the cardiovascular physiology

while maintaining a good SNR in the signal under analysis.

A limitation of this work is the homogeneous nature of the data set which in-

cludes only healthy and young subjects. The next chapter will include subjects with

cardiovascular disorders and also investigate other feature tracking techniques based

on subject specific parameters. Nevertheless, this work delineates novel methods for

accelerometer signal recovery during motion which can form a foundation for these

future studies and readily extended to other measurement modalities as well.
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CHAPTER VII

WEARABLE MONITORING OF LEFT VENTRICULAR

FUNCTION FOR HEART FAILURE SUBJECTS

7.1 Introduction

Heart failure is a progressive disorder in which heart cannot supply sufficient blood

to meet the demands of the tissues and organs in the body [19]. As a result, fluid

tends to accumulate at different locations in the body. In order to treat HF, diuretics

are often used to get rid of excess fluid [6]. However, diuretics are accompanied with

side-effects which include fatigue, dehydration and dizziness [71]. HF patients need

to be monitored continuously and unobtrusively to assess their condition followed by

modification in treatment and medications.

An important test for cardiovascular assessment is physical exercise, which pro-

duces a large burden on the cardiovascular system [14]. During exercise, the blood

flow is directed towards working muscles. This increased blood flow makes the heart

beat faster. It also causes an increase in the blood volume returning to the heart

[80]. With the passage of time, the left ventricle adapt to higher blood volume and

heart rate falls back towards normal value as more blood can be delivered in one

beat. Hence, exercise is an excellent methodology to study the changes in circulatory

system and how it interacts with respiratory and other systems of the body [62].

The 6-minute walk test, discussed in the previous chapter, is one of the most

common exercise based tests to assess the cardiovascular health of people suffering

from HF disease. The test provides parameters such as change in heart rate and

percentage predicted values of the distance walked, which can be used to deduce

important information about the condition of the HF patients.
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The ultimate goal of this work is to develop a non-invasive wearable system for

monitoring HF patients at home that can measure sufficiently rich information to

enable titration of care. While several studies have attempted to use body weight,

bio-impedance, heart rate variability, and other indirect methods for assessing left

ventricular (LV) function at home for this purpose, none of these approaches has been

successful in improving outcomes. The study uses a wearable patch that measures

ECG and BCG signals, and can compute—from the time delay between the peaks of

these signals —an index of myocardial contractility based on the PEP of the heart.

We hypothesized that changes in PEP following an exercise stressor, specifically a

6-minute walk test, would be significantly muted for New York Heart Association

Class IV HF patients as compared to Class I-II patients [16]. Our rationale was that

in advanced HF (Class IV), the heart is less capable of increasing its performance to

meet the increased demand for blood flow during exercise.

7.2 Protocol

A total number of 23 HF subjects (85±18.7 kg, 7 females) were recruited for this

study. This pool was composed of both inpatients and outpatients. There were 9

patients in the Class I-II group, and 12 patients in the Class IV group. All patients

were asked to stand in a resting state for 1 minute for the baseline readings. This was

followed by 6 minutes of walking at normal pace. At the conclusion of the walking

phase, each subject was asked to recover by standing stationary for 5 minutes. The

distance walked by each subject was also recorded for the 6-minute walk test. Two

of the subjects were morbidly obese, a factor which skews the percent predicted

values for the 6-minute walk test; accordingly, these subjects were not included in the

analysis.
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7.3 Hardware & Data Processing

The wearable device used in the study was the same as shown in Fig. 26 (a) of chapter

6. The device measured ECG and wearable BCG signals. All the signals were sampled

at 1 kHz. The ECG, H-F and D-V signals from the wearable BCG were band-pass

filtered (Kaiser window, cut-offs: 0.8 - 40 Hz for ECG, 0.8 - 35 Hz for the D-V

signals). This was followed by ECG R-peak detection and heartbeat segmentation.

All the heartbeats in the resting 1-minute data were ensemble-averaged to obtain one

trace while the post-walking data was averaged using an ensemble size of 16 beats.

The data during the 6 minute walking period was not analyzed in this initial phase of

this study. Also, only the D-V component of the accelerometer data was considered

for this work. A simple algorithm was implemented to reject extremely distorted and

noisy heartbeats from the ensemble averaging process.

7.4 Algorithm for Selective Heartbeat Ensemble Averaging

The objective of ensemble averaging which involves averaging a specific number of

waveform traces or averaging all waveform traces present in a certain time interval is

to reduce the noise present in each individual heartbeat. If the number of waveform

traces / frames is increased, ensemble averaging gives a cleaner averaged trace as

most of the noise is averaged out. However, this comes with a loss of time resolution

as changes present in each waveform tend to average out during the process. Hence,

there is a trade-off between the number of frames and time resolution required for each

application. Increasing the time resolution implies a decrease in number of heartbeats

for averaging operation and results in a noisy averaged signal. One reason for this

noise is the presence of one or more extremely distorted heartbeats in the ensemble

as shown in Fig. 31. In order to reject those heartbeats, following algorithm was

implemented for ensemble averaging of ne heartbeats present in the ensemble:
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Rejecting heartbeats with 𝛾𝑛% datapoints

beyond 𝜇𝑒 +𝜎𝑒 and 𝜇𝑒 − 𝜎𝑒

New averaged trace

Averaged trace

𝜇𝑒 +𝜎𝑒

𝜇𝑒 − 𝜎𝑒

Figure 31: New method of ensemble averaging that involves rejection of extremely
distorted or noisy heartbeats. The heartbeats which have more than γn % of total
data points beyond one standard deviation above or below the mean trace are rejected.
γn = 40% was chosen for the data set. The cleaner ensemble averaged trace is then
calculated using the remaining heartbeats.

1. Calculate the averaged trace for the ne heartbeats. The data point at a particu-

lar location in the averaged trace is the mean of all data points at that location

from individual traces. Let this averaged trace be denoted by µe.

2. Calculate the standard deviation of each data point in ne heartbeats. Let the

trace formed by sum of mean and standard deviation of each data point be

represented by µe + σe. Similarly, the trace formed by difference between mean

and standard deviation of each data point be represented by µe−σe. These are

shown in Fig. 31.

3. For each individual heartbeat, find the number of data points beyond the µe+σe

and µe − σe regions.

4. If the percentage of data points for any individual heartbeat beyond the specified
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regions is greater than a threshold γn, then reject the heartbeat.

5. Calculate the new ensemble-averaged trace using the remaining heartbeats in

the ensemble.

7.5 Pre- and Post-Walk PEP Comparison

For each subject, we computed the percent changes in PEP following the 6-minute

walk test (normalized to their baseline PEP value at rest), as well as the percent pre-

dicted value of the distance (based on age and subject demographics). The estimation

of these two parameters is explained in the next sub-sections.

7.5.1 PEP Estimation

In order to estimate the PEP, the minima or maxima with the highest absolute value

was detected as the AO-point from the ensemble averaged trace of the heartbeats in

the first minute of baseline readings. The time difference between this feature and the

ECG R-peak was estimated as the PEP in the resting state and denoted by PEPrest.

This AO-point detected from the resting state data for each subject was tracked using

DTW based algorithm (used in Chapter VI) in the post-walk recovery period. For

this study, the first 16 heartbeats immediately following the 6-minute walking period

were considered for the post-walk PEP estimation. Let the PEP estimated from the

ensemble-average of these 16 heartbeats be denoted by PEPpost. The change in PEP

was then calculated as ∆PEP = (PEPpost − PEPrest)/PEPrest.

7.5.2 Percentage Predicted Walking Distance

The distance walked by each subject was measured during the 6-minute walk test. Let

this distance be denoted by dw. Also the distance supposed to be covered during the

6-minute walk test by each subject according to their respective gender, weight and

height statistic was calculated as explained in [26]. The expected distance covered by

each subject, denoted by d′w, is given by the following equations [26]:
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Figure 32: ∆ PEP vs % Predicted Distance for HF subjects. The class IV subjects are
concentrated in the lower right corner of the figure with mean and standard deviation
of −0.11± 0.06 for ∆ PEP and 0.35± 0.11 for the % Predicted Distance. Similarly,
the class I-II subjects are concentrated in the upper left corner of the figure with
mean and standard deviation of −0.26 ± 0.15 for ∆ PEP and 0.78 ± 0.25 for the %
Predicted Distance.

d′w(male)
= (7.57×H)− (5.02× A)− (1.76×W )− 309 (12)

d′w(female)
= (2.11×H)− (2.29× A)− (5.78×W ) + 667 (13)

where H is the height in centimeters, A is the age in years and W is the weight in

kilograms. The percentage predicted distance was then estimated as the ratio of the

true and calculated distance, i.e., dw/d
′
w.

7.5.3 Analysis & Discussion

The results supported our hypothesis: the changes in PEP were significantly lower for

the Class IV patients as compared to the Class I-II patients (Figure 1 (c), p < 0.05).

As expected, we also found that the difference in percent predicted 6-minute walk

test distance was significant between the two groups of patients, as was the average

distance walked (p < 0.05). We did not find any significant difference in the heart rate

96



response in the two groups, supporting the importance of measuring a combination

of electrical and mechanical signals from the heart (i.e., ECG and BCG).

While the 6-minute walk test requires the patients to perform a prescribed activity,

changes in PEP can potentially be observed in response to any natural activity that

patients are performing on their own while wearing the system; this may increase

patient adherence as it will require less involvement, while still providing an indication

of whether a patients condition may be worsening, and whether an exacerbation is

imminent.

7.6 Future Work

The initial results obtained in this study indicate the potential of the wearable BCG

methodology, used in tandem with sub-maximal exercise stressors, for monitoring

heart failure patients at home following discharge. The next step involves a study

with a larger pool of heart failure patients at different stages of the condition, and

examining longitudinal changes in their PEP response to activity. The longitudinal

trends in BCG based parameters can yield important insight into how these features

can be used to track improvement or worsening of the condition in non-clinical set-

tings. This will also lead to design of algorithms which can indicate the need for

re-hospitalization or a clinical visit. Moreover, the daily report from the monitoring

system can be sent to the patient’s physician who can advise changes in medication

or therapy with the changing state of the condition.
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CHAPTER VIII

CONCLUSION & FUTURE DIRECTIONS

8.1 Conclusions

The work presented in this thesis lays the groundwork for augmenting the care of

patients having respiratory disorders and heart failure. Specifically, algorithms were

developed for extraction of features to detect sleep apnea with an under-the-mattress

IR-UWB radar and a microphone placed on the side-table. Such a non-contact system

can be used in home settings for whole night monitoring. However, in order to

derive statistically significant results, future work would include a study of substantial

size and duration. In cardiovascular disease monitoring, the BCG methodology was

revisited with novel algorithms for improved estimation of STIs to compensate for

posture and movement related artifacts.

The most important study, described in Chapter VI, deals with the removal of

movement induced noise in the measured signals from a wearable accelerometer. Ac-

tivity such as walking makes the wearable BCG signals completely unreadable. This

work provides the basis for how data during the periods of simple exercise, such as

walking, can be used to have a complete and thorough assessment of cardiovascular

function. The device can be calibrated periodically during the stationary periods and

this information can then be used with noise reduction algorithms, such as EMD, for

accurate estimation of STIs during walking. The wearable accelerometer based BCG,

when coupled with proper noise removal algorithm, worked better than the existing

ICG methodology during the walking phases. Moreover, the results in Chapter VI

also indicated that walking speed is inversely proportional to the accuracy and res-

olution of STI estimates from the wearable BCG. Thus, features related to speed of
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walking can be incorporated in the estimation algorithms to adaptively change the

resolution of obtained parameters with speed.

Another important contribution of this work involves the assessment of left ven-

tricular function for HF patients in different stages of the disorder. Chapter VII briefly

discusses the use of wearable BCG to assess the changes in PEP before and after a 6-

minute walk test. The results from the study indicate that changes in PEP measured

from the dorso-ventral axis of the wearable accelerometer are statistically significant

for Class IV HF group as compared to Class I-II patients. This work, combined with

algorithms for quantification and removal of noise from wearable BCG during walk-

ing, can herald the use of BCG methodology for continuous and robust cardiovascular

assessment at home.

New methods for improved estimation of STIs in different standing postures were

also conceived and developed. The BCG signals from weighing scale based sensors

and wearable accelerometer were also analyzed during different postures to determine

features which can be indicative of posture as compared to physiological changes.

These features involve changes in power spectral density of measured signals in higher

frequency bands during non-ideal postures which can potentially be used with posture

detection algorithms.

The methods described in this dissertation, specifically for the BCG based mea-

surements, can be readily extended to other measurement modalities. Moreover,

parameters from different sensors can be combined with the BCG-derived features to

further increase the range of physiological indicators for cardiovascular and respira-

tory assessment.

8.2 Future Directions

Future work in the sleep monitoring aspects of this thesis should focus on including

more sensors to improve the quality of information obtained, increasing the number of
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subjects studied and widening the subject demographics. In the cardiovascular mon-

itoring application of this work, longitudinal data should be collected and analyzed

from heart failure patients both in the hospital and at home; this data, combined with

the intellectual contributions of this dissertation, can potentially lead to predicting

and preventing exacerbations for patients at home, thus improving the quality of care.

Future work should also focus on intelligent algorithms that can change adap-

tively to stationary and activity periods and also incorporate the intensity of the

exercise or activity for accurate estimation of parameters from the wearable sensors.

8.3 Final Remarks

The methods and algorithms developed and discussed in this work could significantly

improve home monitoring of cardiovascular and respiratory diseases, and advance our

understanding of basic physiology by providing a platform for easy and unobtrusive

measurements of important mechanical parameters of physiological function. The

rapidly growing need for inexpensive health care solutions in the developed world

today, coupled with the exploding population and reducing health care resources is

the main motivation behind this work. Many low-cost, miniature and easy-to-use

sensors are available for unobtrusive monitoring at home. However, there are still

gaps and limitations in using these for continuous monitoring and also during different

phases of daily living. This dissertation addresses many of these limitations through

the use of both novel algorithms and measurement modalities that can potentially

improve the accuracy of health parameters measured outside of clinical settings.
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