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SUMMARY 

 

Owing to their unique physical, chemical, and mechanical properties, 

nanoparticles (NPs) have been used, or are being evaluated for use, in many fields (e.g., 

personal care and cosmetics, pharmaceutical, energy, electronics, food and textile). 

However, concerns regarding the environmental and biological implications of NPs are 

raised alongside the booming nanotechnology industry. Numerous studies on the 

biological effect of NPs have been done in the last decade, and many mechanisms have 

been proposed. In brief, mechanisms underlying the adverse biological effect caused by 

NPs can be summarized as: (i) indirect adverse effect induced by reactive oxygen species 

(ROS) generated by NPs, (ii) indirect adverse effect induced by released toxic ions, and 

(iii) adverse effect induced by direct interactions of NPs with biological systems. Up to 

now, most efforts have been focused on the first two mechanisms. In contrast, adverse 

biological effects induced by direct nano-bio interactions are the least researched. This is 

largely because of the complexity and lack of suitable techniques for characterizing the 

nano-bio interface.  

This dissertation aims at advancing our understanding of the nano-bio interactions 

leading to the adverse biological effect of NPs. Specifically, it is comprised of three parts. 

Firstly, because the aggregation of NPs alters particle size and other physicochemical 

properties of NPs, the property of NPs reaching and interacting with biological cells is 

very likely different from that of what we feed initially. Consequently, as the first step 

and an essential prerequisite for understanding the biological effect of NPs, NP 

aggregation is investigated and models are developed for predicting the stability and the 

extent of aggregation of NPs. Secondly, interactions between NPs and cell membrane are 

studied with paramecium as the model cell. Due to the lack of cell wall, the susceptible 

cell membrane of paramecium is directly exposed to NPs in the medium. The extent and 
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strength of direct nano-cell membrane interaction is evaluated and quantified by 

calculating the interfacial force/interaction between NPs and cell membrane. A 

correlation is further established between the nano-cell membrane interaction and the 

lethal acute toxicity of NPs. We find NPs that have strong association or interaction with 

the cell membrane tend to induce strong lethal effects. Lastly, we demonstrate systematic 

experimental approaches based on atomic force microscope (AFM), which allows us to 

characterize nano-bio interfaces on the single NP and single-molecular level, coupled 

with modeling approaches to probe the nano-DNA interaction. Using quantum dots (QDs) 

as a model NP, we have examined, with the novel application of AFM, the NP-to-DNA 

binding characteristics including binding mechanism, binding kinetics, binding isotherm, 

and binding specificity. We have further assessed the binding affinity of NPs for DNA by 

calculating their interaction energy on the basis of the DLVO models. The modeling 

results of binding affinity are validated by the NP-to-DNA binding images acquired by 

AFM. The investigation of the relationship between the binding affinity of twelve NPs 

for DNA with their inhibition effects on DNA replication suggests that strong nano-DNA 

interactions result in strong adverse genetic effects of NPs.   

In summary, this dissertation has furthered our understanding of direct nano-bio 

interactions and their role in the biological effect of NPs. Furthermore, the models 

developed in this dissertation lay the basis for building an “ultimate” predictive model of 

biological effects of NPs that takes into account multiple mechanisms and their 

interactions, which would save a lot of testing costs and time in evaluating the risk of 

NPs. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Background of nanotechnology   

 Nanotechnology is defined by National Nanotechnology Initiative (NNI) as the 

“understanding and control of matter at dimensions between approximately 1 and 100 

nanometers, where unique phenomena enable novel applications” 1. NPs (NPs) are 

defined as primary particles with at least one dimension less than 100 nanometers 2, 3. 

Due to the size-endowed unique physicochemical properties of NPs compared to their 

bulk counterparts, NPs have sparked interests and found applications in numerous 

scientific and industrial areas such as pharmaceuticals, electronics, cosmetics, health care, 

energy, agriculture, environment, and many more others 4-9. According to the Project on 

Emerging Nanotechnologies, which has been tracking the number of consumer products 

containing engineered NPs since March 2006, the number increased 668% from 212 to 

1628 in just 7 years 10. In addition, the National Science Foundation projects that 

by 2020, the field of nanotechnology will employ some 6 million workers, 2 million of 

whom are expected to be in the United States 11, 12. A more shocking projection is that 

nanotechnology will impact more than over $2.5 trillion worth of manufactured goods by 

2015 according to Lux Research, although many of these goods may contain only minute 

amounts of intentionally engineered NPs 13, 14.  

 It is necessary to outline several of the many applications of NPs in order to 

broaden understanding of the importance that NPs have and will play in our future. The 

established applications and applications currently entering widespread use of NPs 

include but not limited to electronics 15-19, transportation 20, 21, microscopy 22, 23, 

biomedical fields 24-29, environmental remediation 30-33, cosmetics 34, coatings 35-38, 
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textiles 39-42, and paints 43-45. Some of the most widely used NPs and their applications 

were listed in Table 1.1. 

Table 1.1. Current applications of NPs in consumer goods 

NPs 

Number of 

Consumer 

Products10 

Applications 

Silver 408 

Textiles, clothing, shoes, supplements, personal 

care and cosmetics, food storage containers, home 

cleaning, filtration 

TiO2 184 

Colored pigments, personal care, cosmetics and 

sunscreen, toothpaste, food additives, nutritional 

supplements, paints, UV protection 

ZnO 38 
Personal care and sunscreens, paints, clothing 

(e.g., antibacterial & deodorant shoes),  coatings 

Silicon 38 

Computer hardware (e.g., memory and 

processors), personal care and cosmetics, 

supplements, sporting goods 

SiO2 29 

Paint and coatings, sporting goods, construction 

materials, computer hardware, home cleaning, 

supplements 

Gold 21 
Personal care and cosmetics, supplements, 

automotive catalysts 

CeO2 2 Automotive catalysts, coatings 

Polystyrene 

latex bead 
Not Available 

Electron microscopy, diagnostics, and biological 

carriers 
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1.2. Literature review of biological effects of NPs 

 Environmental and public exposure to engineered NPs will increase dramatically 

in the near future due to the ubiquity of NPs in many consumer products and applications 

4. Engineered NPs probably will be released into the environment through manufacturing 

processes, waste disposal or product uses 46, which lead to the exposure of many 

organisms to NPs in the environment. People could also get exposed to commercially 

available NPs in many settings, including silver (Ag) NPs in sheets and clothing, titanium 

dioxide (TiO2) NPs in cosmetics, sunscreens, and food, carbon NPs in bikes, and even 

clay NPs in beer bottles 10, 47. It is thus of paramount importance to thoroughly 

understand the biological effect and risk of NPs before their massive production and 

widespread consumer applications.  

Because of their very small size and other unique physicochemical properties, 

NPs have been identified as a distinct category from conventional chemicals and 

particulates 9, 48-50. Not only the chemical composition has an effect on the biological 

effect of NPs, but also size, surface properties, shape, crystal structure and other 

properties of NPs influence their biological effects 51-53. To deal with this unique class of 

toxicant, during the last decade, there are numerous studies investigating potential toxic 

impacts of NPs on biological and ecological systems with an emphasis on establishing a 

relationship between the physicochemical properties of the NPs and the toxicological 

responses 47, 48. The classical toxicity paradigm that was initially developed for the 

evaluation of chemical substances is often inadequate for the assessment of biological 

effects of NPs 48. Although numerous studies on biological effects of NPs have been 

published in the last decade, to date, there are still many unknowns about the underlying 

mechanisms, which can prohibit the development of nanotechnology 8, 54-57.  
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1.2.1. Environmental and ecological risks of NPs 

It is projected that the global production of NPs will grow to over half a million 

tons by 2020 58, 59. The increasing use of engineered NPs in industrial and commercial 

applications will very likely lead to the release of such materials into the environment, 

deliberately or accidentally. The NPs released to the environment will disperse in the 

environment including soil, water, and air, where they can persist for a long time or be 

uptaken by organisms, which may subsequently induce environmental and ecological 

risks 6, 8. Particularly, NPs have been shown to bioaccumulate in the body of 

environmental organisms and then transfer through the food chain or food web, reaching 

organisms in each level and finally being taken up by humans 60-64 (Figure 1.1).   

There are a variety of entry routes for engineered NPs into the environment, such 

as direct application in environmental remediation, wastewater treatment plant effluent 

and sludge, exhaust emission of NPs acting as fuel additives or catalysts, and spills from 

production, transport, and disposal of NPs or consumer products 6, 65-67. A number of 

environmental risk assessment studies have been done to model the predicted 

environmental concentrations (PEC) of NPs 65, 66, 68-75. For example, PECs of TiO2 NPs in 

surface water, wastewater treatment plant (WWTP) effluent, and WWTP sludge 

respectively ranged from 0.021 to 10 g/L, 1 to 100 g/L, and 13.6 to 64.7 mg/kg 6, 66, 68-

71, 74-76.  PECs of Ag NPs in surface water, wastewater treatment plant (WWTP) effluent, 

and WWTP sludge respectively ranged from 0.000088 to 10 g/L, 0.0164 to 17 g/L, 

and 1.29 to 39 mg/kg 6, 66, 72, 75, 76.  

Numerous studies have been published on the biological effect of NPs towards 

environmental organisms including bacteria, algae, plants, plankton, protozoa, fish, 

mussel, earthworm, and many others 76-83. These ecotoxicological studies show that many 

NPs such as Ag, fullerene, metal oxides are toxic to environmental organisms. Moreover, 

as mentioned above, a few studies found that NPs have the potential to accumulate in the 
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body of organisms and then transfer to organisms of higher tropical level through food 

chains, suggesting NPs may disrupt the whole ecosystem. Ecosystem processes 84 and 

environmental services 76 are potentially at risk as NPs enter the environments 85. Besides 

the ecotoxicity of NPs on the individual and population levels 85, they also have 

community level impacts, such as altered competition and predator-prey interactions, loss 

of biodiversity 86 or community function, symbiosis interferences 87, host community or 

disease pattern changes, and food web alterations 85.   

Biological 
effectsOrganism

Source of NPs

Release of NPs into the 
environment

Abiotic interactions 
(e.g., aggregation and 
adsorption of organic 
matter)

NP-cell surface 
interactions. Uptake. 
Intracellular fate. 

Biological effects of NPs

Transfer through food 
web. Ecological risk.

Environment

Population, 
community 

ecosystem

 

Figure 1.1. The logical chain of event accounting for the environmental and ecological 

risk of NPs.  
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1.2.2. Mechanisms of adverse biological effects induced by NPs 

Currently, there are nine primary mechanisms leading to adverse biological 

effects of NPs including the generation of reactive oxygen species (ROS) and oxidative 

stress 88-90, membrane disruption/leakage 91-94, protein binding/unfolding response 95-98, 

DNA damage and adverse genetic effects 99-102, mitochondrial damage (e-

transfer/ATP/PTP opening/apoptosis) 103-106, lysosomal damage (proton pump 

activity/lysis/frustrated phagocytosis) 107-111, inflammation (signaling 

cascades/cytokines/chemokines/adhesion) 88, 112-115, fibrogenesis and tissue remodeling 

116-119, and blood clotting 5, 120-123. These multiple mechanisms are not independent, 

rather, they interact among each other 120, which further entangles the biological effect 

study of NPs. For instance, NPs may indirectly damage DNA and biological membranes 

via generated ROS 124-126.  

The generation of ROS and oxidative stress is considered to be of major 

importance in the toxicological profile of NPs 90, 127. Up to now, this mechanism has been 

extensively studied on a wide range of NPs 105, 128-132. ROS can be generated by several 

mechanisms, including (i) direct generation of ROS by chemical reactions of the 

coatings, reactive surface groups or ions leached from the surface of NPs in the acidic 

environment of endo- or lysosomes, (ii) interference with redox active proteins such as 

NADPH oxidase, (iii) interactions with oxidative organelles such as the mitochondria, 

and (iv) interactions with cell surface receptors and the activation of intracellular 

signaling pathways 50, 127, 133, 134. However, not all NPs induce ROS. For example, CeO2 

NPs were found not to induce ROS but on the contrary showed a protective effect against 

ROS damage 135, 136.   

NPs contacting cell membrane can induce physical and chemical damages to the 

membrane, which may result in death of the cell 137. Because NPs possess numerous 

edges, defects, and other reactive sites 138, they may directly inflict physical damage to 

cell membranes. In addition, localization of NPs on the cell surface could result in ROS 
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accumulation and subsequent cellular damage 139; ROS formed close to the cell surface 

would have a greater toxic effect 139. Moreover, NPs may generate transient holes in the 

cell membrane during the uptake process and then induce a loss of membrane 

polarization and/or the leakage of cell contents, which can result in cell death 91, 92, 140. 

The NPs can also lead to the formation of “pits” in cell surface, which subsequently 

causes a significant increases in permeability and result in cell death 137. NPs also likely 

perturb membrane potential and result in increased intracellular Ca2+ concentration, 

which in turn modulates cellular signaling pathways 141. 

When NPs enter biological fluids, they are almost invariably coated with proteins, 

form the so called “protein corona”, with consequent structural and functional 

perturbations of the surface-bound proteins 97, 98, 142, 143. The large surface-to-volume ratio 

of NPs and the potentially high concentration of proteins adsorbed at the particle surface 

may lead to faster clustering of proteins or even radically new protein clusters 97. NPs can 

also influence protein self-assembly reactions, leading to perturbations of important 

biological processes 144. Additionally, disceases involving protein misfolding and 

assembly could be enhanced in the presence of NPs. For instance, amyloidosis, involving 

self-assembly of soluble proteins into large insoluble fibrils, could be promoted through 

the interaction with the particle surface of NPs 145, 146.  

Genetic effects of NPs may be produced by direct interactions of NPs with the 

genetic material (e.g., DNA and mRNA), or by indirect damage from ROS generated by 

NPs, or by toxic ions released from soluble NPs 147, 148. Secondary genetic effects can be 

induced by oxidative DNA attack by ROS via activated phagocytes 

(neutrophils, macrophages) during NP-elicited inflammation 149. NPs that were uptaken 

by the cell could reach the nucleus through diffusion across the nuclear membrane or 

transportation through the nuclear pore complexes, and subsequently directly interact 

with DNA molecules 127, 150. Particularly, NPs of small size could reach the nucleus 

through nuclear pores (~ 10 nm in diameter) 150, 151. Large NPs may also have access to 
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the DNA molecules in dividing cells during mitosis when the nuclear membrane 

dissolves 152, 153. Furthermore, NPs can also alter gene expression via interactions with 

signal transduction pathways or the transcriptional or translational machinery through 

perinuclear localization 152, 154. In detail, NPs can induce adverse genetic effects through 

the following mechanisms: (a) ROS generated by NPs can directly induce DNA point 

mutations or single or double strand breaks in DNA 152. (b) The perinuclear localization 

of the NPs may hinder the cellular transcription and translation machinery and hereby 

affect global protein synthesis 154. (c) Metal ions released from lysosomal located NPs 

can transfer to the cell cytoplasm where they can then alter protein or gene expressions 

155. (d) Interaction of NPs with cell surface located receptors may result in receptor 

activation and triggering of intracellular signaling cascades 156. (e) NP-mediated ROS 

induction may indirectly affect gene expression patterns by activation of stress response 

or repair genes 157. (f) NPs (such as gold NPs) may penetrate the nucleus and bind to and 

interact with DNA directly 127.   

Mitochondria play a key role in energy metabolism; they produce energy via the 

citric acid cycle and are critically dependent on redox reactions from the respiration chain 

158. They are responsive to even small stresses in multiple ways 159. NPs have been found 

to be in direct contact with and to produce damage within mitochondria 103-106. When 

cells are exposed to NPs, which can lead to the generation of ROS, mitochondria are 

among the first and most sensitive organelles affected 160. For instance, in quantum dots 

injured cells, the reduction of mitochondrial membrane potential and swelling of 

mitochondria have been detected 161, 162. NP-induced mitochondrial perturbation has 

important biological effects, including the initiation of apoptosis (which is a form of cell 

death) and decreased ATP production 163, 164.  

Lysosomes are organelles commonly associated with cell death. They play a key 

role in the engulfment and digestion of dead cells and in cellular autolysis during necrosis 

158. After taken up by cells via endocytosis, spherical NPs such as quantum dots, gold 
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NPs, and TiO2 NPs appear to be stored in lysosomes and they can accumulate there 165-

167. NPs were shown to damage lysosomes through the generation of ROS 89. Significant 

dilatation of the lysosomal system and reduced activity of lysosomal sulfatases were 

found after exposure to polystyrene NPs 168. The lysosomal membrane can potentially be 

disrupted by ROS generated by NPs internalized by endocytosis, which can result in the 

release of lethal hydrolyses from lysosomes and cause cell death 160.  

1.2.3. Relate physicochemical properties of NPs to their biological effects 

The physicochemical properties of NPs such as the size, surface properties, shape, 

chemical composition, dissolution, and crystal structure (Figure 1.1), influence the 

biological interaction of NPs and hence determine their biological effects 5, 169-171.  

Effect of size. Particle size is probably the most crucial material characteristic 

from the toxicological perspective because this is what differentiate NPs from their bulk 

counterparts and endows NPs with many unique properties 5. It is well known that the 

pathway through which NPs enter biological cells, such as direct penetration, endocytosis 

or phagocytosis, depends on particle size 167, 170, 172. The internalization efficiency of NPs 

is also influenced by particle size 173, 174. Hence, particle size determines how many 

intracellular NPs can be found and can interact with organelles at a certain time of 

cellular exposure to NPs.  Counterintuitively, it is not true that the smaller the particle, 

the higher the uptake efficiency. In general, the highest uptake efficiency with regard to 

particle size occurs at approximately 50 nm, which could be explained by different entry 

pathway of particles of different size into cell 167. The biological effect of NPs is also 

size-dependent 175, and generally, the smaller the particle, the higher its toxicity 50. This 

effect may originate from an increasing reactive surface area of smaller particles. As the 

particle size decreases, its surface area-to-volume ratio increases and allows a greater 

proportion of its atoms to be exposed to the exterior. Additionally, the number of 



 10

structural defects may increase as the particle size shrinks due to discontinuous crystal 

planes created by small size, which also increases surface reactivity of NPs 169.    

Effect of surface charge. Surface charge plays an important role in the biological 

effect of NPs 176, 177. It is a major determinant of colloidal stability; it determines the 

aggregation or agglomeration of NPs, and thus may change the size and shape of NPs 178. 

Additionally, surface charge regulates interaction of NPs with the biological 

environments, such as the adsorption of ions and biomolecules that may change cellular 

responses to particles, or it may change the protein conformation and incorporation of 

NPs by cells such as the uptake rate and pathway of internalization 169.  In general, 

cationic particles are believed to be more toxic to cells than their anionic or neutral 

counterparts 140. This may be due to the affinity of cationic particles to the cellular lipid 

bilayer, which carries a net negative charge, and thus cationic particles are easier to be 

internalized.  Moreover, the strong interaction of cationic particles with the cell 

membrane leads to hole formation, membrane thinning and/or erosion, damage to the 

acidifying endosomal compartments by the proton sponge effect, followed by 

mitochondrial injury, increase of intracellular Ca2+ concentration, or membrane 

depolarization 92, 94, 141.  

Effect of particle shape. Particle shape and aspect ratios are also key factors that 

determine the biological effect of NPs 5. NPs have different shapes including spheres, 

rods, tubes, rings, and planes. Shape can influence the membrane warping process during 

endocytosis or phagocytosis and thus the internalization of NPs 140. For instance, the 

endocytosis of spherical particles is found to be faster than rod-shaped NPs 179. This is 

because rod-shaped NPs have a larger contact area with the cell membrane receptors than 

spherical particles when the longitudinal axis of the rods interacts with the receptors. 

Hence, the ends with high curvature at the half-cup stage of endocytosis are very likely to 

cause a higher membrane surface energy, resulting in a large distorting force that exceeds 

the maximum force provided by the actin polymerization 5.  Shape can also influence 
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biological effects of NPs 169, 180. Silver NPs, for instance, were found to be more toxic as 

plates than spheres and wires 181.  

 Effect of surface coatings. By the incorporation of surface coatings, the toxic 

effects of NPs may be mitigated or eliminated 5. For instance, a recent study compared 

toxic effects of uncoated and PVP- and citrate-coated silver NPs in macrophage and 

epithelial cells. They found that uncoated silver NPs are more toxic than coated NPs. 

Also, the toxicity mechanisms are coating-dependent; while coated silver NPs induce 

toxic effects through up-regulation of cytokines, uncoated NPs enhance oxidative stress 

in test cells 182. Proper surface coatings can stabilize particles and avoid agglomeration. 

Coating is also an effective means of preventing the release of toxic ions 183. However, 

coating-dependent biological effects of NPs are entangled. The steric hindrance of 

coatings can inhibit the cellular internalization of NPs, but some coatings can facilitate 

NP endocytosis 5. Coatings modify the surface properties of NPs and subsequently 

impact intracellular distribution and the generation of ROS. Lastly, many coating 

materials are environmentally degradable and after exposure to acidic environments, they 

may shed or degrade and expose the core NP 5. 

 Effect of particle aggregation propensity or stability. Arguably, NP stability or 

aggregation is the crucial physicochemical property of NPs, as it influences most of the 

other properties, and thus has a great effect on biological effects of NPs 169, 184. 

Obviously, aggregation increases the size of NPs. Also the surface charge of NPs are 

strongly affected by aggregation 185. Aggregation also alters the shape and angle of 

curvature, and porosity and surface roughness of NPs. Additionally, the NP aggregation 

reduces the number concentration (a dose metric) of NPs to which the biological systems 

are exposed. Therefore, it is obvious that the aggregation of NPs plays a key role on their 

effects on biological systems.      

 NP aggregation is in turn determined by some physicochemical properties of NPs 

such as the particle size, shape, and surface charge. For instance, smaller particles 
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typically aggregate more than their large counterparts, and nanorods and fibres have been 

shown to aggregate more easily than spheres 186, 187. The characteristic of medium 

including ionic strength, pH, temperature, and the presence of organic molecules also 

influences NP aggregation 188-190. Aggregation is believed to be inevitable for the 

majority of the NPs in biological fluids 190. Hence, it is crucial to examine the 

aggregation of nanomaterals when evaluating their biological effects. 

 The NP aggregation influences cellular uptake of NPs. However, the impact of 

aggregation is not very straightforward; compared to the uptake of primary particles, the 

aggregates show either enhanced or inhibited uptake 186, 187, 191. This is consistent with the 

effect of particle size on the uptake. As discussed earlier, the effect of particle size on 

cellular uptake of NPs is complicated. Smaller particles do not necessarily lead to more 

efficient cellular uptake. This could be explained by different entry pathway of particles 

of different size into cell. Similarly, large aggregates do not enter the cell via the same 

mechanism as primary particles or small aggregates 191. Moreover, the uptake pattern of 

aggregates and primary particles is cell-type dependent. For example, Albanese and Chan 

found that there was a 25% decrease in uptake of aggregates with HeLa and A549 cells in 

comparison to single NPs. However, there was a 2-fold increase in MDA-MB 435 cell 

uptake for the largest aggregates 190.  From available data, it cannot be concluded whether 

aggregates or primary particles are uptaken in a more efficient way. The extent of 

aggregation, the size of the aggregates, and the cellular uptake mechanism collectively 

determine the uptake rate of NPs. Obviously, the aggregation of NPs may influence the 

biological effect of NPs by altering the uptake behavior of NPs.    

 Similarly, the role of NPs’ aggregation in their biological effects is not 

straightforward. For example, Taniguchi et al. shows that large TiO2 aggregates had a 

greater toxic effect on cell viability and gene expression compared to small aggregates 

192. In contrast, other studies show reduced cytotoxicity for aggregates. Cui et al shows 

that large gold aggregates were nontoxic to HeLa and E. coli cells while small gold 
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aggregates and single NPs were toxic 193. There is hence a huge need for understanding 

the aggregation propensity of NPs and the role of aggregation in their biological effects.  
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Figure 1.2. Physicochemical properties of NPs related to the biological effect of NPs 

 

1.3. Why predictive models are important in evaluating the biological effect of               

NPs?   

 Toxicological tests of NPs are time consuming and expensive. A complete set of 

toxicological assays for a single chemical, including assessment of carcinogenicity, 

chronic, reproduction and developmental effects could involve hundreds of animals and 

costs in the range of $1–3 million per test 120, 194. In the United States, it has been 
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estimated that the cost for testing existing NPs in 2009 ranges from $249 million to $1.18 

billion and requires 34-53 years to complete the toxicological testing 195.  Obviously, 

these values will continue to increase as new NPs are introduced.  

 By using a predictive toxicology approach, it is possible to significantly reduce 

the cost and time required for evaluating the biological effect and risk of NPs. Scientists 

are developing models to predict the behavior and effects of NPs in biological systems 

120, 194, 196-204, which would allow researchers to streamline the toxicological testing of 

NPs by prioritizing NPs that are most likely to be harmful. The predictive approach not 

only can supplement or replace some expensive and time-consuming assays, but also help 

and guide chemists and material scientists to design and manufacture safe NPs.  

Quantitative structure–activity relationships, abbreviated as QSARs, are 

theoretical models that can be used to predict the physicochemical and biological 

properties of molecules 198, 204-207. According to the QSAR paradigm, it is possible to 

interpolate the activity of chemical compounds from the molecular descriptors using a 

statistical model built on the experimental data on the activity of other compounds in the 

same group 207. In recent years, the concept of “nano-QSAR” was proposed and raised 

many interests 198, 201, 204. It is easy to conceive that nano-QSAR is the QSAR approach 

applied to NPs, i.e., using structural/physicochemical properties of NPs to predict their 

biological effects. For example, Puzyn et al. applied nano-QSAR to predict the toxicity of 

17 different metal oxides NPs to E. coli cells. Their theoretical model along with 

experimental data was able to describe the relationship between NP structure and toxic 

effect to E. coli cells 198. Sayes et al. used the QSAR method to develop mathematical 

models to predict cellular membrane damage resulting from several NP physicochemical 

features 199. They found that the size, concentration and zeta potential of particles in ultra-

pure aqueous medium are among the most influential factors on cytoplasm leaking 199.  

 However, nano-QSARs have some intrinsic or challenging limitations 202, 204: (i) 

QSAR methodology was developed for small organic compounds with diverse structural 
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types while the size of NPs are large and structurally limited in diversity, (ii) 

experimental data accumulated for NPs are far from sufficient for fully assessing their 

biological effects and many data are even contradictory, and (iii) classical QSAR 

descriptors that are applicable for small organic compounds are generally not suitable for 

NPs. Essentially, nano-QSAR is an approach built on data mining techniques; it, 

however, does not take into account the underlying mechanisms leading to the biological 

effect of NPs.  

We proposed an alternative “reductionism” approach for predictive modeling of 

the biological effect of NPs. Firstly, we identify the major mechanisms for the biological 

effects induced by NPs. Secondly, we develop predictive models for each mechanism. 

For instance, it is well known that NPs can induce gentoxicity by directly bind to DNA 

127. Towards this identified mechanism that results in toxic effects of NPs towards 

organisms, we can develop a model to predict the binding activity of NPs to DNA and 

further predict the genetic effects of NPs based on the physicochemical properties of NPs. 

Similarly, we can also develop predictive models for the other mechanisms such as the 

generation of ROS and membrane damage 208. Lastly, we link and combine those discrete 

models into one “ultimate” model that takes into account multiple mechanisms and their 

interactions for predicting the biological effect of NPs. 

1.4. Physicochemical interactions at nano-bio interfaces  

 The mechanisms for NPs to induce adverse biological effects can be briefly 

summarized as: (i) indirect adverse effects induced by ROS generated by NPs, (ii) 

indirect adverse effects induced by released toxic ions, and (iii) direct interactions with 

biological systems. Because this thesis will focus on the last mechanism, this section will 

discuss in depth the physicochemical interactions that occur at nano-bio interfaces, which 

ultimately lead to the adverse biological effects of NPs.  
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 The nano-bio interface comprises the dynamic physicochemical interactions and 

kinetic and thermodynamic exchanges between the surface of NPs and the surface of 

biological components (e.g. membrane, DNA, protein, and organelles) 209, 210. It is 

probably one of the most complex and the least understood interfacial systems. The 

characteristic and behavior of this interface depends on physicochemical properties of the 

NPs, the biological components, the surrounding medium, and most importantly any 

changes that occur because of mutual effects within the interfacial zone. In a given 

medium, the NP characteristics which predominantly determine the surface interactions 

include the material’s chemical composition, surface charge, size and state of 

aggregation, shape and surface curvature, porosity and surface crystallinity, heterogeneity 

and roughness, hydrophobicity or hydrophilicity, and surface functionalization with 

charged groups or ligands 209, 210. The most important properties of the biological 

components that govern the nano-bio interfacial interactions vary depending on the 

biomolecular moieties and their sequence, conformation, molecular charge distribution, 

molecular weight, and the configuration of the macromolecule and membranes or cells 

comprising them. Many of these properties are in turn determined by the characteristics 

of the suspending medium, including the pH, temperature, ionic strength, polarity, and 

the presence of large organic molecules. These media characteristics also govern 

important interfacial processes such as the adsorption of ions and organic molecules as 

well as the aggregation and dissolution of NPs. Indeed, it is the combined effect of the 

properties of NPs and biological components in the surrounding medium that shape the 

nano-bio interface 210.    

 The interactions at nano-bio interfaces are mediated and governed by large 

numbers of forces and molecular interactions 210. This suggests that in order to predict the 

nanotxicity induced by the direct interactions of NPs with biological systems, we may 

develop models bricked with these forces and interactions. The forces comprise of van 

der Waals force, electrostatic interactions, steric interaction, polymer bridging 
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interactions, and depletion and hydration interactions 211.  Van der Waals force originates 

from the quantum mechanical dance of the electrons, the fluctuations of which produce 

dipoles in the object and then induce a dipole moment in the atoms of interacting objects 

(e.g. NPs and biological components) and cause an attractive force 212, 213. Electrostatic 

interactions arise between charged surfaces across liquids.  An electrical double layer 

develops near the charged surfaces in aqueous solutions. When two charged surfaces 

approach one another, the double layer overlaps and a repulsive force develops 212, 213. 

Solvent interactions, including hydration and hydrophobic interactions, arise from the 

affinity of interacting surfaces for water molecules 211. Steric interactions are caused by 

polymeric groups or ligands on the surface of NPs and/or biological components, which 

give rise to spring-like repulsive interactions at nano-bio interactions 211. Polymer 

bridging interactions are also induced by surface polymeric groups or ligands, but they 

are attractive forces between oppositely charged moieties on two interacting surfaces 210. 

Lastly, the hydrodynamic interactions are very long-ranged, originating from the 

convective drag, shear, lift forces in the fluid and Brownian diffusion 210. The possible 

impacts of each force on the nano-bio interface are summarized in Table 1.2. By 

computing each force at the nano-bio interface and under the rule of additivity 210, 214, we 

can obtain a thorough depiction of the interface and may build predictive models for the 

toxic effects of NPs.  

 This dissertation will primarily focus on the characterization of direct nano-bio 

interactions and the assessment of subsequent biological implications. Considering the 

crucial role that NP aggregation plays in altering the physicochemical properties of NPs 

and determining the biological effect of NPs, this dissertation will firstly investigate the 

aggregation of NPs using both predictive modeling and experimental approaches. Then 

the nano-bio interactions leading to the adverse biological effects of NPs will be 

addressed. Chapter 2 will discuss in detail the objective and organization of this 

dissertation.   
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Table 1.2. Forces at nano-bio interfaces and their possible impact on the interface 

Force  Possible impact on the interface  

van der Waals (vdW) 

intractions  
Universally attractive in aqueous media  

Electrostatic interactions  

Overlapping double layers are generally repulsive as most 

materials acquire negative charge in aqueous media, but can 

be attractive for oppositely charged materials  

Solvent  

Interactions (Hydration 

and hydrophobic 

interactions)  

Hydrophilic materials are thermodynamically stable in water 

and do not aggregate; 

Hydrophobic materials are spontaneously expelled from the 

bulk of the water and forced to aggregate  

Steric interactions  

Generally increase stability of individual particles but can 

interfere in cellular uptake, especially when surface polymers 

are highly water-soluble  

Polymer bridging 

interactions  

Generally promote aggregation or deposition, particularly 

when charge functionality is carboxylic acid and dispersed in 

aqueous media containing calcium ions  

Hydrodynamic 

interactions  

Increase the frequency of collisions between NPs and other 

surfaces responsible for transport  
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  CHAPTER 2 

RESEARCH OBJECTIVES 

 

2.1. Research objectives 

 Among the mechanisms leading to the adverse biological effects of NPs discussed 

in Chapter 1, up to now, most efforts have been made and focused on the generation of 

ROS and oxidative stress, and toxic ion releases. In contrast, biological effects of NPs 

caused by direct nano-bio interactions is the least researched. This is largely because of 

the complexity and lack of suitable techniques for characterizing the nano-bio interface.  

 The overall goal of this dissertation is to gain better understanding of the nano-bio 

interactions leading to the adverse biological effect of NPs. Specifically, because the 

aggregation alters particle size and other physicochemical properties of NPs, the property 

of NPs reaching and interacting with cells is very likely different from that of what we 

feed initially. Consequently, as the first step, NP aggregation was investigated and 

models were developed for predicting the stability and the extent of aggregation of NPs. 

Then, nano-bio interactions including nano-cell membrane and nano-DNA interactions 

were investigated using novel modeling and experimental approaches particularly with 

the novel application of atomic force microscopy (AFM) in characterizing the nano-bio 

interface.    

2.2. Organization of this dissertation 

 Chapter 1 briefly introduced the background of nanotechnology and why there are 

great needs for the understanding of biological effects of NPs. The mechanisms 

underlying the biological effect induced by NPs and the role of their physicochemical 

properties were reviewed. Due to the crucial role that NP aggregation plays in the 

biological effect of NPs, I specifically reviewed in detail the effect of aggregation on the 
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biological effect of NPs. Then I discussed the need of predictive models in the 

assessment of biological effects of NPs. I further discussed a possible approach for 

building predictive models of the biological effect induced by direct nano-bio interactions 

on the basis of physicochemical principles governing the nano-bio interface. Chapter 2 

outlined the research objective, organization of the dissertation, and important 

contributions. 

 Chapter 3 investigated the aggregation of NPs (with CeO2 as a model NP) in 

monovalent and divalent solutions. By combining extended Derjaguin–Landau–Verwey–

Overbeek (EDLVO) with von Smoluchowski’s population balance equation, I developed 

a novel NP aggregation kinetics model. The model gave much better predictions than 

conventional models based on DLVO theory. 

 Chapter 4 investigated the effect of natural organic matter (NOM) on the 

aggregation of CeO2 NPs. The introduction of NOM complicates the aggregation system 

by bringing in additional interaction forces for depicting the aggregation of NPs. I 

incorporated the new forces including steric interaction and polymer bridging interaction 

forces into the EDLVO framework developed in Chapter 3 and built the first quantitative 

model for predicting the aggregation of NPs in the presence of NOM.  

 Chapter 5 studied the temperature effect on aggregation of CeO2 NPs. 

Temperature was an important yet previously neglected factor that influences NP 

aggregation; this chapter filled the knowledge gap. The EDLVO theory was used to 

interpret the fundamentals of the temperature effect on NP aggregation. Furthermore, the 

kinetic model developed in Chapter 3 was used to predict the aggregation kinetics of 

CeO2 NPs under different temperatures. 

 After characterizing and modeling the aggregation behavior of NPs, Chapter 6 

investigated the direct nano-cell membrane interactions with seven different types of 

engineered metal oxide NPs as the model NPs and Paramecium as the model cell. The 

interaction energies between NPs and cell membrane were calculated according to the 
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DLVO theory, and a further correlation was established between the nano-cell membrane 

interaction and the toxicity of NPs.         

 Chapters 7-9 demonstrated systematic experimental approaches based on the 

single-molecular imaging technique, atomic force microscope (AFM), coupled with 

modeling computation to probe the nano-DNA interaction. Using quantum dots (QDs) as 

a model NP, I examined the binding mechanism, binding kinetics, binding isotherm, and 

binding specificity of QDs to DNA with the novel application of AFM. I further assessed 

the binding affinity of NPs for DNA by calculating their interaction energy on the basis 

of the DLVO models. The modeling results of binding affinity were validated by the 

NP/DNA binding images experimentally derived by AFM. The investigation of the 

relationship between the binding affinity of twelve NPs for DNA with their inhibition 

effects on DNA replication indicated that strong nano-DNA interactions lead to adverse 

genetic effects of NPs.  

 Chapter 10 summarized findings in the dissertation and recommended future 

research direction to advance the understanding of nano-bio interactions. In brief, future 

work to advance the understanding of nano-bio interactions may include the following 

crucial issues: (a) Identify the real nano-induced effects. (b) Investigate the 

internalization amount and pathway of NPs into cell. (c) Development of predictive 

models for other toxicity mechanisms of NPs.  (d) Investigate the long term ecological 

and evolutionary consequences of NPs.  

2.3. Originality and merit of research 

 The findings of this dissertation are original and aimed at achieving better 

understandings of nano-bio interactions. The most important message to deliver from this 

dissertation is to underscore the important role of direct nano-bio interactions in the 

biological effects of NPs, which is somewhat neglected by previous studies. Specifically, 
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the knowledge gained from this dissertation is dedicated to the advancement of NP 

implication research from the following four major aspects: 

(1) Aggregation of NPs under various medium conditions; 

(2) Nano-cell membrane interactions and resulting cytotoxicity;  

(3) Development of novel approaches based on single-molecule imaging technique, 

AFM, to study nano-DNA interactions; 

(4) Predictive modeling of the binding affinity of NPs for DNA and correlation with the 

genetic effect of NPs 
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  CHAPTER 3 

EFFECT OF MONOVALENT AND DIVALENT SALTS ON THE 

AGGREGATION OF NANOPARTICLES 

 

3.1. Abstract 

 Aggregation of NPs is one of the most important processes that influence the 

environmental behavior and biological effects of NPs. This chapter investigates the effect 

of monovalent and divalent salts (KCl and CaCl2) on the aggregation kinetics of NPs 

using time-resolved dynamic light scattering (TR-DLS). CeO2 NPs were used as a model 

NP because of their extensive commercial applications.  The initial hydrodynamic radius 

of CeO2 NPs measured by DLS was approximately 95 nm. Attachment efficiencies were 

derived both from aggregation data and predictions based on the DLVO theory. The 

deviations of the DLVO predictions were corrected by employing the extended DLVO 

(EDLVO) theory. The critical coagulation concentration (CCC) of CeO2 NPs at pH = 5.6 

is approximately 34 mM for KCl and 9.5 mM for CaCl2. Furthermore, based on the 

EDLVO theory and the von Smoluchowski’s population balance equation, a model 

accounting for diffusion-limited aggregation (DLA) kinetics was established. For the 

reaction-limited aggregation (RLA) kinetics, a model that takes fractal geometry into 

account was established. The models fitted the experimental data well and proved to be 

useful for predicting the stability and the aggregation kinetics of CeO2 NPs. 

3.2. Introduction 

 The booming nanoscience and nanotechnology during recent years has 

demonstrated that nanotechnology will play a significant role in advancing the 

technologies of the 21st century in many sectors (e.g., pharmaceutical, energy, electronic 
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and textile) 215. Engineered NPs probably will be released into the aquatic environment 

through manufacturing processes, waste disposal or product uses; however, insufficient 

research has examined the environmental behavior of NPs 46. There are only limited data 

available on aggregation and deposition of NPs. Especially, theoretical analysis and 

quantitative models are insufficiently developed to quantify the environmental transport 

and fate of NPs 216.   

 Given the unique properties of NPs, they could constitute a new class of 

nonbiodegradable pollutants that aquatic organisms may uptake and food webs may 

transfer, and thus they could affect ecosystems and human health. It is imperative to 

evaluate the biological effect and risks of NPs to avoid repeating past environmental 

tragedies. Aggregation of NPs is arguably the most crucial process, as it influences most 

of the physicochemical properties of NPs, and thus has a great effect on the 

environmental behavior and toxicity of NPs 169, 184. However, current understandings of 

the aggregation of NPs are still limited 217, 218. 

 In aquatic environments, solution chemistry strongly influences the aggregation 

process. Studies have shown that electrolytes promote the aggregation of NPs 219-222, 

which is widely interpreted by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory 

212, 213. As electrolyte concentrations increase, the repulsive electrostatic double layer 

interaction between particles becomes weaker, and the attractive van der Waals force 

prevails. However, much evidence indicates that DLVO theory is limited to describing 

particle aggregation qualitatively; a sizable discrepancy exists between theoretical 

predictions and experimental observations 223-226. The EDLVO theory, which considers 

Lewis acid-base interactions in the total interaction energy, is gaining popularity due to 

its good agreement with experimental data 227-231. 

 Although the EDLVO theory can quantitatively predict the aggregation of NPs, it 

is not extensively employed in aggregation modeling studies, whereas the DLVO theory 

is still widely used. Specifically, particle collision efficiency, an important parameter in 
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von Smoluchowski’s population balance equation, commonly is calculated by the DLVO 

theory 232-234. Furthermore, two limiting regimes are distinguished in the aggregation 

process, the reaction-limited aggregation (RLA) and the diffusion-limited aggregation 

(DLA) regimes 235, 236. DLA occurs when the collision efficiency between particles is 

close to unity, whereas RLA dominates at very low collision efficiencies 237. The 

aggregation behavior in these two regimes is fundamentally different in both kinetics and 

aggregate structures, and thus they require different models.  

 The objective of this study is to investigate and model the aggregation kinetics of 

NPs in the presence of monovalent (KCl) and divalent (CaCl2) electrolytes using time-

resolved dynamic light scattering (TR-DLS). CeO2 was used as a model NP due to their 

extensive commercial applications. For instance, they are used as a fuel additive to 

enhance combustion efficiency 238, a constituent of catalytic converters 239, 240, and an 

oxygen conductor in solid oxide fuel cells (SOFCs) 241-243. The increasing applications 

will inevitably lead to CeO2 release into the environment, which will impose risks on 

humans and ecosystems. Therefore, the Organization for Economic Co-operation and 

Development (OECD) has listed CeO2 NPs as priority NPs for immediate testing 

244252254254254254254253 (List of Manufactured NPs and List of Endpoints for Phase One of 

the Sponsorship Programme for the Testing of Manufactured NPs: Revision. 2010).  

 The attachment efficiencies calculated from experimental data of the aggregation 

of CeO2 NPs were compared with the DLVO and EDLVO theoretical predictions. In 

addition, we established aggregation models for DLA and RLA regimes to predict the 

aggregation kinetics on the basis of von Smoluchowski’s population balance equation 

and EDLVO theory or of fractal geometry, respectively. Overall, this work enhances our 

knowledge of aggregation mechanisms of NPs in electrolyte solutions. 
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3.3. Modeling of NP aggregation 

 Von Smoluchowski’s population balance equation describes the irreversible 

aggregation kinetics of particles 245 and is expressed as  
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where nk (or ni and nj) is the number concentration of aggregates comprised of k (or i and 

j) primary particles (also called k-class or k-fold particles or aggregates),  (ri,rj) and  

(ri,rj) are the collision efficiency function and collision frequency function for class i and 

j particles, and ri and rj are the radii of class i and j particles. 

 For the same class of particles,  (i,i) is equal to 8kT/3, where k is Boltzmann’s 

constant (1.38×10-23 J/K), T is the absolute temperature (298 K), and  is the viscosity of 

the solution (1×10-3 Pa·s). Taking into account the van der Waals forces and 

hydrodynamic interactions, the collision frequency rate is then expressed as 246, 247:  
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where VA (h) is the van der Waals attraction energy (kT); h is the surface-to-surface 

separation distance between two particles (nm); r is the particle radius (nm); u=h/r; and  

(u) is the correction factor for the diffusion coefficient, which is related to the separation 

distance by the equation 248: 
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 The collision efficiency  is the reciprocal of the stability ratio, which is defined 

as 220, 249:  
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where VT (h) is the total interaction energy between particles separated with a distance h. 

In classical DLVO theory, VT (h) is the sum of the van der Waals attraction energy VA (h) 

and the electrical repulsion energy VR (h). However, as discussed above, DLVO may not 

quantitatively explain experimental observations. The EDLVO theory adopted includes 

an additional term, Lewis acid-base interaction energy VAB (h), such that VT (h) = VA (h)+ 

VR (h)+ VAB (h). 

 The interaction energies between two identical particles in a 1-1 electrolyte 

solution are expressed using Eq. (5a-e) 228, 232, 250, 251: 

 12 1 11.12 /A
c

Aa
V

h h 
 


    (5a)   

   
2

1 2
2

128
exp

2
B

R

k Tn r
V h h

r h

   


  


  (5b)   

tanh
4
i Si

i

z e

kT

    
 

     (5c) 

1 0
2

 
2

B

A

k T

N Ie

        (5d) 

 
0

0expAB
AB h

h h
V h r G 


    

 
   (5e) 

where A is the Hamaker constant and for CeO2 a value of A of 5.57×10-20 J was obtained 

from 252. a is the particle radius. h is the separation distance between the interacting 

surfaces. c is the “characteristic wavelength” of the interaction, often assumed to be 100 

nm 250. n is the concentration of electrolytes. kB is the Boltzmann constant, 1.38×10-23 

J/K; T is absolute temperature, 298 K. zi is the valency of the ith ion. e is unit charge, 

1.602×10-19 C. ψSi is the intrinsic constant surface potential (V) of the interacting particles 

in an aqueous medium. κ-1
 is the Debye length (nm). ε0 is the dielectric permittivity of a 

vacuum, 8.854×10-12 CV-1m-1. ε is the relative dielectric constant of water, 78.5; NA is 

Avogadro’s number, 6.02×10-23 mol-1. I is the ionic strength (M), I=0.5·ΣciZi
2, where ci is 
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the molar concentration of one species of ions (i). λ is the correlation length, or decay 

length, of the molecules of the liquid medium (for pure water, this value is estimated to 

be 1 nm 228); Gh0
AB is the polar or acid-base free energy of interaction between particles 

at the distance h0 
253, which is the minimum equilibrium distance due to Born repulsion, 

0.157 nm 228.  

 In 2-1 electrolyte solutions, Eqs. (5b) and (5c) are replaced by Eqs. (5f) and (5g), 

respectively 224, 254: 
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     Going back to Eq. (1), we can write the change rate of number concentrations of 

each class of particles.  
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where ij and ij stand for  (i,j) and  (i,j), respectively. 

 If the particle size distribution is not broad, e.g., the NP sizes differs by a factor of 

approximately two or less, it is safe to assume ij to be constant (ii) 
246. In the collision 

efficiency function ij approximation, the collision efficiency between two primary 
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particles (11) is used as a substitute under the assumption that only the two involved 

primary particles determine the interaction energy between aggregates (see Figure 3.1 for 

more illustrations) 232.  

 

 

Figure 3.1. Two primary particles (blue) determine the interaction energy between the 

two large aggregates (marked by black dashed boxes). 

 Under above approximations, we summed the terms in Eq. (6) and obtained a 

simple Eq. (7), which showed the rate of change of the total particle concentration. 
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 Replacing ii and 11 with Eqs. (2) and (4), respectively, we obtained the equation 

(8).  
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 We used a symbol “w” to represent the complex integration equation, and it is 

actually the classical expression of inverse stability ratio:  
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 Solving Eq. (10) yields: 
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where ntot is the total number concentration of various classes of particles, and n0 is the 

initial number concentration of primary particles. 

 The structures of aggregates have been recognized to be fractal and can be 

described as  nr-dFor n=cr-dF, where n is the number of aggregates, r is the radius of 

aggregates, dF is the fractal dimension 235, 236 and c is a constant. Thus, Eq. (11) can be 

rewritten as Eqs. (12a-e): 
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where a is the radius of the primary particles. The k, T, n0, ,and a are constants; and w 

can be calculated using EDLVO theory. 

 The aggregation kinetics in Eq. (12e) can be used to describe the growth of the 

aggregate radius over time. However, this equation can be applied only in regimes where 

the collision efficiency is relatively high or close to unity (i.e., in the DLA regime). In the 

RLA regime and at other conditions with very low collision efficiencies, a rigorous 

expression does not exist because the collision efficiency is determined by the aggregate 

structure in addition to the interaction forces 237, 255. In such regimes, a large number of 

collisions are required to achieve a successful aggregation, and the aggregates explore 

many possible mutual configurations before they stick together firmly. The aggregation 

rate coefficient in RLA (KRLA) is then directly proportional to the volume of the phase 

space Vc, over which the center of one aggregate can be positioned to reach a bondable 
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contact with another aggregate 255. For two solid spheres with similar radii (r1  r2 and 

both are equal to r), Vc is proportional to r2. Vc is expected to be larger for fractal 

aggregates with similar radii than for solid spheres because the surfaces of the former are 

rough. In the RLA regime, it is proposed that Vc  rdF 255.     

 Therefore, for two fractal aggregates with similar radii, the aggregation rate 

coefficient is given by KRLA Vc rdF. Combining this expression with ntot  r-dF yields 

Eq. (13): 

KRLA=kRLAntot
-1  (13)                                                                                                                          

where kRLA is the rate constant.  

 Eq. (13) is then substituted into the reduced von Smoluchowski’s population 

balance, Eq. (7), which yields  

tot
RLA tot

dn
k n

dt
     (14)                                                                                                                         

 Thus, the aggregation kinetics equation for RLA (r vs. t) is as follows: 

 0 exptot RLAn n k t     (15)     

2.303
log logRLA

F

k
r t a

d
    (16) 

3.4. Materials and Methods 

3.4.1. Materials 

 CeO2 NP suspension was purchased from Sigma Aldrich. The pH of the stock 

suspension was 4.5 as measured by pH meter (Accumet model 15, Fisher Scientific). The 

concentration of the stock suspension was 50 g/L, and for the aggregation experiments, 

10 mg/L dilutions were made with 18 MΩ deionized (DI) water unless otherwise 

indicated.  
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3.4.2. Characterization of CeO2 NPs 

 The morphology, particle size distribution (PSD), and zeta potential of CeO2 NPs 

were determined. Morphology was examined in liquid by atomic force microscopy 

(AFM). In each experiment, 10 µL of the liquid suspension was left on a clean silicon 

wafer for 15 min, and the silicon substrate was thoroughly rinsed with deionized water to 

remove weakly sorbed particles. The substrate was subsequently fixed on the AFM 

sample plate, and a liquid cell (Agilent, Santa Clara, CA) enabled the imaging in 

deionized water. Silicon nitride probes coated with gold/chromium (SiNi, BudgetSensors, 

Bulgaria) were used. The sample was analyzed on an Agilent 5500 Molecular Imaging 

AFM in acoustic alternating current (AAC) mode with a scanning speed of 2 m/s, an 

AC frequency of 56.72 kHz, and a setpoint amplitude of 3.17 V.  

 PSD was determined on a Zetasizer Nano ZS instrument (Malvern Instruments) 

using 1.5 mL CeO2 solution in a clean vial. The light scattering detector was positioned at 

a scattering angle of 173 from the incident laser beam, and the autocorrelation function 

automatically accumulated for at least 10 runs for each sample.  

 Zeta potentials were measured for a range of pH and salt concentrations with the 

Zetasizer Nano ZS instrument. Acid/base and salt solutions were added immediately prior 

to zeta-potential measurements. At least four measurements were made for each 

condition. 

3.4.3. Aggregation kinetics 

 The aggregation kinetics of CeO2 NPs was investigated using TR-DLS 

experiments. For each measurement, 1.5 mL of the dilution was added to a new vial, 

which was placed in the DLS instrument. A premeasured amount of electrolytes was 

added into the vial, and DLS measurements started immediately. The measurements were 

performed for at least 1 h for each sample, and hydrodynamic radius was monitored and 

recorded.  
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3.5. Results and Discussion 

3.5.1. Characteristics of CeO2 NPs 

 AFM imaging of the CeO2 NPs (the inset in Figure 3.2) shows that most of them 

were close to spherical in shape. The hydrodynamic radius of a single CeO2 NP was 

within the range of 40 to 100 nm. The PSD diagram of CeO2 NPs (Figure 3.1) shows that 

the size distribution was narrow with a low polydispersivity index (PDI) value. The mean 

initial hydrodynamic radius of CeO2 NPs was approximately 95 nm, which was in the 

range that determined by AFM in-liquid imaging.  

 The zeta potentials of CeO2 NPs as a function of pH and salt concentrations are 

presented in Figure 3.2b-c. As the solution shifted from acidic to basic, zeta potentials 

changed from positive to negative. The pH at the zero point of charge (pHZPC) was 

approximately 7.6, at which CeO2 NPs were nearly neutral and highly unstable. In the 

aggregation experiments, pH was approximately 5.6, and thus CeO2 NPs were positively 

charged and were supposed to be resistant to aggregation due to electrostatic repulsion. 

Increasing the monovalent and divalent electrolyte concentrations screened the 

electrostatic double layer and promoted aggregation.  

 The dashed lines and corresponding equations in Figure 3.2c show that the zeta 

potentials of CeO2 NPs vary linearly with the logarithm electrolyte concentration ( vs. 

log C). This is commonly observed and consistent with previous studies 256-258. The linear 

relation between  and log C can be used to estimate zeta potentials in an appropriate 

range of electrolyte concentrations.  
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Figure 3.2. Characterization of CeO2 NPs. (a) Particle size distribution of 10 mg/L CeO2 

NPs in DI water. The inset in (a) is an AFM image of CeO2 NPs. The white bar is equal 

to 100 nm. (b) The zeta potential of CeO2 NPs varies with pH in 0.001M KCl solution. 

(c) Zeta potential of CeO2 NPs in monovalent and divalent electrolytes (pH 5.6). The 

dashed lines and corresponding equations in (c) show the linear fit to the experimental 

data points for zeta potential vs. log C.  
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3.5.2. Aggregation kinetics and analysis with DLVO and EDLVO theories 

 The aggregation kinetics of CeO2 NPs was investigated with addition of KCl at 

concentrations of 0.001-0.25M and CaCl2 at concentrations of 0.003-0.05M. Figure 3.3 

present the aggregation curves. Distinct DLA and RLA regimes were observed in both 

monovalent and divalent electrolytes, and CeO2 NPs exhibited different aggregation 

kinetics in the two regimes.  
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Figure 3.3. Aggregation kinetics of CeO2 NPs in monovalent electrolyte (KCl) solution in 

the (a) DLA regime and (b) RLA regime, and in divalent electrolyte (CaCl2) solution in 

the (c) DLA and intermediate regimes and (d) RLA regime. 

 The initial slopes of the aggregation curves were taken from the starting point 

(primary radius, a) to the point at which the hydrodynamic radius reaches 1.3 fold of a 

219, 259. The attachment efficiencies (), or inverse stability ratios (1/W), were calculated 

by normalizing the slopes with those obtained in the DLA regime. Figure 3.4 shows that 

attachment efficiencies vary with KCl and CaCl2 concentrations. According to DLVO 
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and EDLVO theories, as the salt concentration increases, the electrostatic energy barrier 

is reduced (see Figure 3.5), which promotes aggregation so that the attachment efficiency 

gradually increases. as the salt concentration reaches the critical coagulation 

concentration (CCC), the energy barrier is completely eliminated, and the attachment 

efficiency is close to unity, from which the aggregation falls into in the DLA regime.  
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Figure 3.4. Attachment efficiencies (or inverse stability ratios) derived from experimental 

data and DLVO and EDLVO theories, as a function of (a) KCl concentration at pH 5.6 

and (b) CaCl2 concentration at pH 5.6. The CCCs based on the experimental data are 

approximately 34 mM KCl and 9.5 mM CaCl2. The dashed lines are a guide to the eye. 
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Figure 3.5. Interaction energy between CeO2 NPs under different KCl concentrations as 

calculated from (a) DLVO and (b) EDLVO theory, and under different CaCl2 

concentrations as calculated from (c) DLVO and (d) EDLVO theory. 

 The CCC, at which the energy barrier is just eliminated, can be obtained from the 

intersection of the lines extrapolated from the experimentally derived aggregation 

regimes. For CeO2 NPs, the CCC was approximately 34 mM for KCl and 9.5 mM for 

CaCl2. At pH 5.6, the CeO2 NPs were positively charged, and the Cl- ions were 

counterions, but the CCC for KCl was more than twice that for CaCl2. Because Ca2+ 

cations are unlikely to be adsorbed to the particle’s positive surface and unlikely to act as 

bridges between particles, the effect of valence on Debye length could be the explanation 

260. As valence increases, the inverse of the Debye length increases, which results in 

lower repulsive electrostatic energy that likely promotes aggregation. 

 The attachment efficiency can also be determined theoretically with DLVO. The 

Hamaker constant of 5.5710-20 J for CeO2 was employed in the DLVO calculation 252. 

Using Eqs. (3-5), the attachment efficiencies in various electrolyte solutions were 

calculated and then compared with those derived from experimental data (Figure 3.4). 
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The predicted attachment efficiency reached 1 at lower salt concentrations than did the 

attachment efficiency obtained from experiments, which was once observed in previous 

aggregation studies 220, 223. This could be caused by inherent limitations of the DLVO 

theory (i.e., lack of consideration of non-DLVO interactions). Because CeO2 NPs have 

hydrophilic surfaces, the AB interactions produce hydration repulsion 261 such that the 

adsorbed water clusters around particle surfaces repulse approaching particles 230. The 

total repulsive effects then arise from both electrostatic and AB interactions, and the 

repulsive energy barrier is higher than that caused by electrostatic repulsion alone. Higher 

electrolyte concentrations are thus required to eliminate the energy barrier. Therefore, we 

also employed EDLVO to determine the attachment efficiencies. Because no literature 

value for Gh0
AB could be found, we fit the experimental data with Gh0

AB as the only 

fitting parameter. The EDLVO theory predictions yielded an excellent fit to the 

experimental data (Figure 3.4). For KCl, the fitted value of Gh0
AB was 1.9 mJ/m2, and 

for CaCl2, Gh0
AB was 1.5 mJ/m2. The two values are similar and compare well with 

those of other metal oxides 262, 263. The Gh0
AB value for CaCl2 is slightly smaller than 

that for KCl, probably because the same characteristic decay length ( = 1 nm) was 

assumed when calculating the AB force under these two electrolytes. Actually, 

electrolytes may affect the decay length 264-267; nevertheless, precise values for decay 

lengths are too difficult to identify 266, and therefore we used the same value, i.e., 1 nm as 

suggested previously 230.  

3.5.3. Aggregation model 

 Eq. (12e) was used to model the aggregation kinetics of CeO2 NPs in the DLA 

regime. The fractal dimension dF was the only fitting parameter. A plot of log r vs. log 

(1+4kTwn0t/3) is shown in Figure 3.6a-b, and the experimental data points were fitted 

with the linear least squares method. The inset table of Figure 3.6a-b contains the fitting 

parameters. In the model, the dF values were the inverses of the slopes and were 
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calculated to be approximately 1.8 in both KCl and CaCl2 solutions. This is congruent 

with the commonly acknowledged dF value for the DLA regime 235, 236, 268, 269, which 

apparently validated our model.  
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Figure 3.6. Aggregation kinetics models (referring to Eqs. (1) and (3)) fitting the 

aggregation data of CeO2 NPs in the DLA regime in (a) KCl solution and (b) CaCl2 

solution, and in the RLA regime in (c) KCl solution and (d) CaCl2 solution. The insets in 

(a) and (b) show the linear fit parameters for the experimental data (log r vs. log 

(1+4kTwn0t/3)). The dashed lines and corresponding equations in (c) and (d) show the 

linear fit to the experimental data points. 

 An intermediate aggregation regime exists between the DLA and RLA regimes 

(Figure 3.3c); specifically, the aggregation of CeO2 in 0.008 M and 0.007 M CaCl2 

solutions resulted in attachment efficiencies between 0.2 and 0.4. Aggregation kinetics in 

these solutions could not be described well with either the DLA or RLA model 
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established in this paper. However, the power-law growth of hydrodynamic radii (i.e., the 

linear relationship of log r vs. log (1+4kTwn0t/3)) remains valid for the intermediate 

aggregation regime (as shown in Figure 3.7), which is consistent with previous studies 

268. A correction factor (f), which accounts for the aggregate structure effect, is thus 

needed to model the aggregation kinetics in the intermediate regime, and Eq. (12e) is 

rewritten as follows: 

0

4
log log 1 log

3F

f kT
r wn t a

d 
 

   
 

                                                                          (4) 

 In our case, the f value was approximately 1.6 to yield the best fit to the 

experimental data.      
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Figure 3.7. Aggregation kinetics model fitting the aggregation data for CeO2 NPs in the 

intermediate aggregation regime in 0.008M and 0.007M CaCl2 solution. The dashed lines 

and corresponding equations show linear fits to the experimental data points. 

 Eq. (16) was employed to simulate the aggregation kinetics of CeO2 NPs in the 

RLA regime. The plot of log r vs. t was fitted with the linear least squares method 

(presented in Figure 3.6c-d). The correlation coefficients (R2) that were 0.8~0.9 

indicating that the model could explain at least 80% of the variance of the experimental 

data.  For both KCl and CaCl2 solutions, the aggregation rate constant kRLA was larger in 
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high concentration solutions. The fractal dimension dF, which is generally known to be 

2.1 in RLA, could not be determined in our model, because kRLA was also unknown, 

which is dependent on ion species, ionic strength, NP properties, etc. However, by means 

of AFM, CeO2 aggregates formed in the DLA and RLA regimes were imaged and 

presented in Figure 3.8. The aggregates in the RLA regime had a more compact structure 

268, 270, indicating a larger fractal dimension value. Assuming that dF is equal to 2.1, kRLA 

can be obtained for each case and ranges from 0.0027 to 0.0055.  

(a) (b)

 

Figure 3.8. AFM images of CeO2 aggregates formed in the (a) RLA and (b) DLA regimes. 

White scale bars are equal to 50 nm. The aggregates in RLA have a more compact 

structure than those in DLA, indicating that the fractal dimension of CeO2 aggregates is 

larger in the RLA regime. 

 The models were then used to predict the aggregation kinetics of CeO2 NPs in the 

DLA and RLA regimes in both KCl and CaCl2 solutions. As discussed above, kRLA values 

in the RLA regime were unknown, so we assumed that they are proportional to the salt 

concentration. The model predictions and experimental data were in good agreement 

(presented in Figure 3.7).  
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3.6. Conclusions 

 The EDLVO theory overcame the discrepancy existing between the DLVO 

theoretical prediction and experimental observations of NP aggregation. 

  At pH 5.6, the critical coagulation concentration (CCC) of CeO2 NPs was 

approximately 34 mM for KCl and 9.5 mM for CaCl2. 

 The ELDVO-based DLA model agreed with the experimental data well in the 

diffusion limited aggregation regime. The RLA model, which considered fractal 

geometry of aggregates, also yielded good fitting results. 

 More efforts are required to improve the models especially in the RLA and 

intermediate aggregation regimes. In particular, we need to determine accurate f and kRLA 

values to obtain better predictions. 
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  CHAPTER 4 

EFFECT OF NATURAL ORGANIC MATTER ON THE 

AGGREGATION OF NANOPARTICLES 

 

4.1. Abstract 

 This chapter investigates the effect of natural organic matter (NOM) on the 

aggregation kinetics of NPs using time-resolved dynamic light scattering. CeO2 was used 

as a model NP and humic acid (HA) was used as a model NOM. In KCl solutions, 

regardless of their concentration, HA drastically reduces the aggregation kinetics of CeO2 

NPs. However, the effect of HA was more complicated in CaCl2 solutions. At low CaCl2 

concentrations, HA inhibited NP aggregation, whereas at high CaCl2 concentrations, HA 

promoted aggregation. The critical coagulation concentration (CCC) in KCl in the 

absence of HA is approximately 36.5 mM. In presence of both 1 ppm and 10 ppm HA in 

KCl solutions, extremely low aggregation kinetics were observed even at very high KCl 

concentrations (500 mM), implying KCl-CCCs in presence of HA were larger than 500 

mM. The CCCs under conditions of no HA, 1 ppm HA and 10 ppm HA in CaCl2 

solutions are approximately 9.5, 8.0 and 12.0 mM, respectively. These observations were 

analyzed in the framework of extended Derjaguin-Landau-Verwey-Overbeek (EDLVO) 

theory. Moreover, a kinetic model was used to predict the aggregation kinetics of CeO2 

NPs. The model predictions are in close agreement with experimental observations. To 

the best of our knowledge, this work is the first to model quantitatively the aggregation of 

NPs in the presence of natural organic matter. 
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4.2. Introduction 

 NOM such as humic acid (HA) and fulvic acids is ubiquitous in natural 

environments, and a more realistic investigation of NP aggregation may need to involve 

the NOM in the system. In solutions containing monovalent electrolytes (e.g., KCl and 

NaCl), HA probably increases the stability of NPs regardless of the ionic strength 221. 

However, aggregation becomes remarkably complicated in the presence of Ca2+ 219, 221, 

which is the predominant ion in groundwater and river water samples 271. For example, 

HA stabilized C60 NPs at low CaCl2 concentrations, whereas it enhanced C60 aggregation 

at high CaCl2 concentrations 221. NOM is expected to adsorb onto the NP surface, which 

alters the physicochemical properties of NPs and thus the interfacial forces/energies 

between them. It has been suggested that NOM might introduce a steric force 211 and a 

bridging force 272, 273 as well as perturb vdW attraction, EL repulsion and AB interaction 

273. Consequently, non-DLVO forces must be incorporated in a precise theoretical 

analysis of NP interaction and a quantitative description of the aggregation process. This 

analysis is known as the extended DLVO theory (EDLVO or XDLVO) approach 230, 

which provides a more solid theoretical basis. However, to the best of our knowledge, 

few published studies employ the EDLVO approach to model the aggregation of NPs 

theoretically.  

 CeO2 NP was used as a model NP in this study because it has many commercial 

applications 76, 239, 241 and thus is very likely to be released into the environment. The 

Organization for Economic Co-operation and Development (OECD) has listed CeO2 NPs 

as one of priority NPs for immediate testing 244. We investigated the effect of Suwannee 

River HA on the aggregation of CeO2 NPs in KCl and CaCl2 using time-resolved 

dynamic light scattering (TR-DLS). The aggregation tendency or attachment efficiency 

was derived from experimental results. Moreover, a kinetic model combining EDLVO 

theory and von Smoluchowski's population balance equation was used to predict the 

aggregation kinetics of CeO2 NPs, which were then compared with experimental data. To 
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the best of our knowledge, this study is the first to model quantitatively the aggregation 

kinetics of NPs in the presence of NOM. 

4.3.  Materials and methods 

4.3.1. Materials 

 CeO2 NP suspension with a nominal size of 25 nm was purchased from Sigma 

Aldrich. The atomic compositions of the sample were verified by X-ray diffraction 

technique (data not shown here). The pH of the stock suspension was 4.5 as measured by 

pH meter (Accumet model 15, Fisher Scientific). The concentration of the stock 

suspension was 109.5 g/L, and for the aggregation experiments, 10 mg/L dilutions were 

made with 18 MΩ deionized (DI) water unless otherwise indicated. KCl and CaCl2 stock 

solutions were prepared using ACS reagent-grade chemicals and were filtered through 

0.02-m filters before use. The Suwannee River Humic Acid (SRHA or HA) (standard II, 

2S101H, International Humic Substances Society) solution was prepared by dissolving 

100 mg SRHA standard II in 250 mL DI water; the solution was then filtered through 

0.4-m membrane filters that were pre-dried at 60C in an oven overnight. The 

membrane filters were dried under the same conditions after use. The final HA 

concentration was determined by the filter weight difference. The HA solution was stored 

in the dark at 4C. Primary properties of SRHA, such as the molecular weight (range of 

1–5 kDa) and composition, have been reported elsewhere 274.  

4.3.2. Characterization of CeO2 NPs 

 The morphology of CeO2 NPs was determined by transmission electron 

microscopy (TEM). Samples were prepared by depositing 5 μL of CeO2 NP suspension 

on a copper grid (400-mesh size) coated with carbon film (Ted Pella, Redding, CA). A 

Philips EM420 model TEM was operated at an accelerating voltage of 210 kV to acquire 

images. Particle size distribution (PSD) was obtained using DLS on a Zetasizer Nano ZS 
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instrument (Malvern Instruments). In brief, 1.5 mL of CeO2 NP suspension was injected 

into a clean cuvette, and the DLS instrument was then operated with a scattering angle of 

173 from the incident laser beam, and the autocorrelation function automatically 

accumulated at least 10 runs for each sample. The electrophoretic mobilities (EPMs) of 

CeO2 NPs were measured for a range of K+ and Ca2+ concentrations in the presence and 

absence of HA using the Zetasizer Nano ZS instrument. At least four parallel 

measurements were made for each condition. To minimize the interference of 

aggregation, measurements began immediately after the desired conditions were 

achieved. 

4.3.3. Aggregation kinetics 

 The aggregation kinetics experiments were carried out at pH 5.7, at which the 

CeO2 NPs are stable for at least 24 h. The pH values of the CeO2 NP, KCl, CaCl2 and HA 

solutions were pre-adjusted to 5.7 to ensure that each measurement could start 

immediately after addition of K+, Ca2+ and HA. For the aggregation experiments in the 

absence of HA, a premeasured amount of KCl or CaCl2 was added to 1 mL of CeO2 NP 

suspension in a cuvette. The NP suspension was then shaken slightly and placed in the 

Zetasizer. For the experiment in the presence of HA, a premeasured amount of HA stock 

solution was added to the NP suspension along with the KCl or CaCl2. The effect of HA 

concentration was investigated with two concentrations, 1 ppm and 10 ppm. 

4.3.4. Modeling the aggregation kinetics 

 The adsorption of HA alters the physicochemical properties of the CeO2 NP 

surface by introducing steric and bridging forces as well as by perturbing vdW attraction, 

EL repulsion and AB interaction 273. The vdW attraction is affected because HA 

adsorption alters the particle size and the Hamaker constant 266. The HA layer also alters 

the surface charge density, or surface potential, of NPs, which further affects the EL 

repulsion 254. In addition, HA adsorption alters the surface electron-acceptor or electron-
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donor properties, which changes the AB interaction 230. The total interaction energy (VT) 

between HA-coated particles is computed by assuming that each force acts individually 

and is thus additive: VT = VvdW + VEL + VHA + VAB. Detailed computation methods for 

each interaction energy are presented below. 

 The vdW attractive energy (VvdW) between two identical spherical particles can be 

computed using Eq. (1), which incorporates the retardation effect 275:  

   12 1 11.12 /VdW
c

Ar
V h

h h 
 

     (1)                                                                                   
 

where A is the Hamaker constant for CeO2 in water; a value of 5.57×10-20 J is obtained 

from ref 252. r is the particle radius. h is the separation distance between the interacting 

surfaces. c is the “characteristic wavelength” of the interaction, which is often assumed 

to be 100 nm 250. For HA-coated NPs, the Hamaker constant is calculated to be 6.6×10-21 

J as below, which is approximately eight times lower than that between bare particles.    

 For particles 1 in a medium consisting of material 2, the Hamaker constant is 

denoted as A121. A11 and A22 are used to denote the Hamaker constants of materials 1 and 

2 in a vacuum. Eq. (2) has been proposed as an approximation of A121 
276, 277. The 

Hamaker constant for water in vacuum (A22) is 3.710-20 J 266, 278. However, the Hamaker 

constant for HA (A11) cannot be found in the literature, and an estimate must be made. 

Because most reported Hamaker constants for soft polymers are within the range of 410-

20–1110-20 J 276, 279, we estimated A11 to be 7.510-20 J. Consequently, A121 is calculated 

to be 6.610-21 J. 

 2

121 11 12A A A           (2)    

 The EL repulsive energy (VEL) between two identical spheres of radii r in 1-1 

electrolyte solutions (e.g., KCl) is given by Eqs. (3a-c). However, in 2-1 electrolyte 

solutions (e.g., CaCl2), Eqs. (3a) and (3b) are replaced by Eqs. (3d) and (3e), respectively 

224, 254, 280:  
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         (3e)                                                                         

where n is the concentration of electrolytes; kB is the Boltzmann constant, 1.38×10-23 J/K; 

T is absolute temperature, 298 K; zi is the valency of the ith ion; e is unit charge, 

1.602×10-19 C; ψSi is the surface potential (V) of the interacting particles in an aqueous 

medium; κ-1
 is the Debye length (nm); ε0 is the vacuum permittivity, 8.854×10-12 CV-1m-1; 

ε is the relative permittivity of water, 78.5; NA is Avogadro’s number, 6.02×1023 mol-1; 

and I is the ionic strength (M), I=0.5·ΣciZi
2, where ci is the molar concentration of one 

species of ions (i). 

     The adsorption of negatively charged HA molecules onto CeO2 NPs will shift the 

positive surface potential of the NPs toward the negative domain. The surface potentials 

are calculated from the measured zeta potentials () of NPs under various water 

chemistries: ψSi = (1+z/r)exp(κz), where z is assumed to be 0.5 nm. 

    The forces contributed by the adsorbed HA layer can be computed with scaling 

theory 273, 281, 282, which is based on minimizing the surface free energy under the 

constraint that total amount of adsorbed HA is fixed in the region between two interacting 

surfaces. The interaction energy due to the HA layers (VHA) can be computed with Eq. 

(4): 
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    (4)                                                     

where  is thickness of the adsorbed-HA layer, αSc is a numerical constant, am is the 

effective monomer size, Φso is polymer concentration at a single saturated surface, DSc is 

the scaling length, Γ is total amount of HA adsorbed on a single surface, and Γ0 is the 

adsorbed amount at saturation. The first and the second terms within the brace in 

equation S3 represent bridging attraction and steric repulsion, respectively.  

 Finally, the acid-base energy (VAB) between two identical spheres is expressed in 

Eq. (5): 

 
0

0expAB
AB h

h h
V h r G 


    

 
   (5)                                                                                      

where λ is the correlation length or decay length of the molecules of the liquid medium 

(for pure water, this value is estimated to be 1 nm 228), and Gh0
AB is the polar or acid-

base free energy of interaction between particles at the distance h0 
253, which is the 

minimum equilibrium distance due to Born repulsion, 0.157 nm 228. The value of Gh0
AB 

is subject to change upon HA adsorption onto the NP surface.  

     Upon computing the total interaction energy (VT), the aggregation kinetics of 

CeO2 NPs can be obtained on the basis of Eq. (6) 283:  

1/

04
1

3

Fd

Bk Tn
r a t

W
 

   
 

  (6) 

where a is the primary particle radius, kB is the Boltzmann constant, T is the absolute 

temperature,  is the viscosity of the solution (8.90×10-4 Pas), n0 is the initial number 

concentration of primary particles, dF is the fractal dimension of aggregates, and t is the 

time. W is the stability ratio, which can be expressed as 220, 249:  
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where u is the normalized surface-to-surface separation distance (h) between two 

particles (u=h/a). VA(u) is the attractive energy. vdW energy is the only contributing term 

to VA(u) for bare particles. However, for particles coated with HA, the bridging attraction 

contributes as well. (u) is the correction factor for the diffusion coefficient, which is 

related to the separation distance by Eq. (8) 248:  
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    (8)                                                                                      

 Eq. (6) was derived to describe the diffusion-limited aggregation. In this study, 

we attempted to apply it in the initial radius-growth stage of reaction-limited aggregation 

as well. This is because the aggregate structure might not greatly influence the particle 

collision efficiency in the early stage of reaction-limited aggregation; moreover, a 

rigorous expression does not exist for describing the reaction-limited aggregation 237, 283. 

However, as aggregation proceeds, the aggregate structure indeed affects particle 

collision efficiency, which implies that Eq. (6) may be invalid in modeling reaction-

limited aggregation beyond the early stage.  

 The number concentration of CeO2 NPs is determined from the mass 

concentration. The lattice parameter (al) of CeO2 unit cells is 5.4087 Å 284, and each unit 

cell contains four Ce atoms and eight O atoms. The number of Ce atoms (N) per CeO2 NP 

with radius r can be calculated using Eq. (9).   

 33 34 16
4 / /

3 3l lN r a r a       (9) 

 The mass of a single CeO2 NP is then obtained, and the number concentration of 

NPs can be computed. 
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4.4. Results and discussion 

4.4.1. Characterization of CeO2 NPs  

 A TEM image of CeO2 NPs is presented in Figure 4.1. The NPs are close to 

spherical in shape and have a relatively uniform size distribution. The inset in Figure 4.1 

shows the PSD diagrams of CeO2 NPs in the absence and presence of HA; these 

diagrams are obtained from DLS measurements. The NP size measured with DLS is 

greater than that determined with TEM, which is consistent with previous studies 217, 285. 

This is probably caused by some minor particle aggregation or the thickness of the 

adsorbed water layer on the NP surfaces. The average hydrodynamic radii of CeO2 NPs 

in the absence of HA and in the presence of 1 ppm and 10 ppm HA are 50.7, 52.5, and 

55.0 nm, respectively. The polydispersivity indices (PDI) are quite small (0.1), 

indicating that CeO2 NPs are highly monodispersed.  

 

Figure 4.1. TEM image of CeO2 NPs. The inset is the particle size distribution of 10 

mg/L CeO2 NPs in the absence and presence of HA. The size peak increases slightly in 

the presence of HA, which indicates that the HA forms a coating around CeO2 NPs. The 

0

3

6

9

12

15

18

0.5 5 50 500

0 HA
1 ppm HA
10 ppm HA

Hydrodynamic radii (nm)

In
te

n
si

ty
 (

%
)

Peak  50-55 nm
PDI  0.1



 52

narrow particle size distribution and small PDI value in the presence of HA imply that the 

coating is almost uniform.  

 Figure 4.2 shows the EPMs of CeO2 NPs under different HA concentrations in 

KCl and CaCl2 solutions. In the absence of HA, the CeO2 NPs are positively charged at 

pH 5.7. However, with HA present, the surface charge (potential) of CeO2 NPs shifts to 

the negative domain, which indicates HA adsorption onto the CeO2 NPs. Because the HA 

was introduced into the NP suspension just before the EPM measurements, this verified 

that HA adsorption occurred almost immediately. The EPMs under all conditions tended 

to become less positive (no HA) or less negative (1 and 10 ppm HA) as ionic strength 

increased, which was caused by the compressed electrical double layer and by cation 

binding to the carboxylic functional groups of HA adsorbed on the NPs 221, 286. Although 

the magnitude of the EPMs is expected to decrease continuously with increasing ionic 

strength owing to compression of the electrical double layer and neutralization of surface 

charge, Figure 4.2 reveals that the general shape of the mobility curves exhibits an 

extremum at moderate ionic strength. Similar trends have been reported elsewhere 287, 288 

and might be explained by the preferential adsorption of co-ions onto the NP surface, 

which results in a decrease in the electrokinetic potential 288, 289. Figure 4.2 also reveals 

that the divalent ions (Ca2+) are more effective in screening the NP surface charge than 

monovalent ions (K+). The EPMs were further converted to zeta potential via the Henry 

equation 290. Although the presence of HA changed the sign of the particle surface 

charge, in CaCl2 solution the absolute values of the EPMs/zeta potentials changed only 

slightly, which means that the EL repulsion force did not change greatly in the presence 

of HA. However, the impact of HA on CeO2 NP stability was significant (see next 

section). This observation suggested that non-DLVO forces played an important role in 

the system. 
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Figure 4.2. Electrophoretic mobilities (EPMs) of CeO2 NPs under different HA 

concentrations in (a) KCl and (b) CaCl2. The small marks in the symbols of Figure 4.2 

are error bars. 

4.4.2. Influence of HA on the aggregation of CeO2 NPs in KCl and CaCl2  

 Figure 4.3 shows representative aggregation kinetics profiles of CeO2 NPs in KCl 

and CaCl2 solutions in the absence and presence of HA as obtained from TR- DLS 

measurements. The initial number concentration of CeO2 NPs is approximately 2.351015 

particles/m3 in all aggregation experiments. HA stabilizes CeO2 NPs at all KCl 

concentrations. In the presence of a relatively low concentration of HA (1 ppm), the CeO2 

NPs were stabilized, and no aggregation was observed even at a high KCl concentration 

(a) 

(b) 
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(0.1 M) (Figure 4.3a). When a higher HA concentration was applied (10 ppm), the 

aggregation of CeO2 NPs further decreased, and no aggregation was observed even when 

the KCl concentration increased to 0.5 M. This stabilizing effect of NOM also has been 

reported in other studies 221, 291. However, in CaCl2 solutions, the behavior of the NPs was 

more complicated. At low Ca2+ concentration (0.004 M), the aggregation rate of CeO2 

NPs is inhibited in the presence of HA, possibly because of steric repulsion due to the 

adsorption of HA molecules onto NPs, which greatly stabilizes the system. However, at 

high CaCl2 concentration (0.08 M), HA enhanced the aggregation of CeO2 NPs, probably 

owing to the bridging attraction between CeO2 NPs, which is induced by the HA 

aggregates formed through intermolecular bridging via Ca2+ complexation 221, 292.  
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Figure 4.3. Aggregation kinetics of CeO2 NPs in the absence and presence of HA under 

(a) 0.1 M KCl, (b) 0.004 M CaCl2 and (c) 0.08 M CaCl2.  

 The attachment efficiencies (), or inverse stability ratios (1/W), were calculated 

by normalizing the initial slopes of the aggregation curves with those obtained in the 

diffusion-limited aggregation regime (presented in Figure 4.4). Since extremely low 
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aggregation kinetics were observed even at high KCl concentrations in the presence of 

HA, the attachment efficiency profiles were not produced with KCl in the presence of 

HA. Two distinct aggregation regimes, diffusion limited and reaction limited, are 

observed in the absence of HA. The CCCs were determined by the intersection of two 

lines extrapolated through the reaction-limited and diffusion-limited regimes (not shown 

here owing to the crowding). In the absence of HA, the CCCs were approximately 36.5 

mM in KCl and 9.5 mM in CaCl2 solutions. In the presence of HA, diffusion-limited and 

reaction-limited regimes were also observed in CaCl2 solution, which was consistent with 

other studies 293. Moreover, in CaCl2 solution, the attachment efficiency was smaller in 

the presence of HA than in its absence in the reaction-limited regime but larger in the 

diffusion-limited regime. However, the enhancement of the aggregation rate by HA in 

high concentrations of CaCl2 was not as great as that in other NP systems, such as silicon 

and fullerene 221, 293. The CCCs under no HA, 1 ppm HA and 10 ppm HA conditions are 

approximately 9.5, 8.0 and 12.0 mM, respectively, which indicates that the HA 

concentration has an influence on the CCC.  
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Figure 4.4. Attachment efficiencies (or inverse stability ratios) of CeO2 NPs derived from 

experimental data in the absence and presence of HA in (a) KCl, (b) CaCl2 solutions. To 

give a clear differentiation of data points in the high concentration regime of CaCl2 

solutions, the attachment efficiency profiles in normal scale instead of logarithmic scale 

was shown in (c). 

4.4.3. Model parameter determination and interaction energy analysis 

 Because the aggregation process is fundamentally controlled by the interaction 

forces/energies between NPs, computing the interaction energy enables us to better 

understand the effect of HA on aggregation. Eqs. (1-4) were employed to compute each 

interaction energy term (VvdW, VEL, VHA and VAB) and the total interaction energy (VT). 

Those equations involve many parameters that could be measured experimentally or 

computed theoretically. However, some measurements and calculations are extremely 

challenging, and thus, inevitably, some parameters must be estimated. For example, 

Gh0
AB for bulk materials might be determined by contact angle measurements. However, 

for nanoscale materials, whose physiochemical properties greatly differ from their bulk 

counterparts, the contact angle measurement is not applicable. Although parameter 

estimation could have been achieved by “artificial” optimization, this can result in 

physically unrealistic values. In this study, most parameters were determined through 

experiments or obtained from the literature. In brief, the surface potentials (ψS) of CeO2 

NPs under different solution chemistries were calculated from the EPMs. The adsorbed 

HA-layer thicknesses () were measured by DLS rather than calculated from Ohshima’s 

soft particle theory 294, 295 because the primary NPs are highly monodispersed in the 

system. The  values obtained in this study are consistent with those reported earlier 296. 

Consistent with another study 273, a value of 0.5 was assigned to the fractional HA 

surface coverage (/0) in the presence of 10 ppm HA; in the presence of 1 ppm HA, 

/0 values were determined from adsorption experiments. The Hamaker constant of bare 
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CeO2 NPs, the term SckBT/am
3, the scaling length (DSc), and the HA volume fraction at 

the NP surface (S0) were obtained or estimated from the literature 252, 273, 297-299. The 

calculation of the Hamaker constant of HA-coated NPs is presented in section 4.3.4. The 

only remaining parameter, Gh0
AB, was adjusted to make the theoretically calculated 

attachment efficiencies match the experimentally derived ones. The attachment 

efficiencies, or the inverse stability ratios (1/W), were then computed according to Eq. 

(7). 

 VT(u), the total interaction energy between NPs separated by a normalized 

distance u, can be computed as discussed above. VA(u) is the attractive energy. For bare 

particles, vdW energy is the only contributing term for VA(u). However, for particles 

coated with HA, the bridging attraction should be incorporated as well. For the primary 

parameters used in the computation of attachment efficiencies, refer to Table 4.1. 

Table 4.1. Model parameters 

Parameter Value 

Boltzmann constant 1.38110-23 J/K 

Avogadro’s number 6.0221023 

Elementary charge, e 1.610-19 C 

Hamaker constant for bare CeO2 NPs 5.57×10-20 J 

Hamaker constant for HA-coated CeO2 

NPs 
6.6×10-21 J 

Dielectric constant of a vacuum 8.85×10-9 C/mV 

Viscosity of water (298 K) 8.90×10-4 Pas 

Scaling length, DSc 1 nm  

SckBT/am
3 3×105 N/m2 

Fractional HA surface coverage (/0) 0.5 under 10 ppm HA; 
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0.08–0.19 under 1 ppm HA* 

Adsorbed HA layer thickness,   
1.73 nm for 1 ppm HA;  

4.23 nm for 10ppm HA  

HA volume fraction at a single saturated  

surface, S0 
0.3 

Gh0
AB 

2.0–2.6 mJ/m2 in absence of HA in KCl; 

2.7–3.0 mJ/m2 in absence of HA in CaCl2; 

0.15–0.7 mJ/m2 in presence of HA in CaCl2 

* The surface coverage under 1 ppm HA was determined from adsorption experiments by 
assuming that it was proportional to the amount of HA adsorbed under the same ionic 
strength. 

     The Gh0
AB values fell into the narrow ranges of 2.0–2.6 mJ/m2 for bare CeO2 

NPs in KCl, 2.7–3.0 mJ/m2 for bare CeO2 NPs in CaCl2, and 0.15–0.7 mJ/m2 for HA-

coated CeO2 NPs in CaCl2, which have the same order of magnitude as the values for 

other metal oxides 258, 262. Although Gh0
AB is expected to be constant in the same type of 

electrolyte, it exhibits narrow distributions. This might be caused by error in EPM 

measurements, i.e., the EPMs we obtained were not 100% accurate owing to the 

instrument deviations. Moreover, converting EPMs to zeta potentials and then to surface 

potentials using approximation equations introduces deviations. Errors in the size 

measurements and adsorption experiments, the approximation equations in the EDLVO 

analysis, and the numerical integration used in Matlab also lead to the Gh0
AB value 

distributions. The Gh0
AB value for the bare CeO2 NPs used in this study is slightly larger 

than that for another type of bare CeO2 NPs that are larger, as discussed in our previous 

study 283; this is reasonable because the hydrophilicity of metal oxide NPs is size 

dependent, and larger size might lead to smaller hydrophilicity and thus a smaller Gh0
AB 

value 300.  
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 It is difficult to quantify the magnitude of each interaction energy term for cases 

in the presence of HA in KCl solution because almost no aggregation was observed under 

those conditions. Moreover, theoretical calculations showed that, regardless of the steric 

force, the increased EL force and decreased vdW force owing to the introduction of HA 

results in marked repulsion among CeO2 NPs and then stabilizes the system. 

Consequently, VHA, VAB, and relevant parameters cannot be determined in the presence of 

HA in KCl solution. 

 On the basis of the parameters listed in Table 4.1, the interaction energy profiles 

for CeO2 NPs under representative solution chemistries are computed and presented in 

Figure 4.5. The energy barrier reflects the aggregation tendency. In the absence of HA in 

0.1-M KCl solution, no energy barrier is observed, which indicates that the aggregation 

of CeO2 NPs is within the diffusion-limited regime. However, a high barrier 

(approximately 50 kT) arose with the introduction of HA into the system, and 

correspondingly, the aggregation of NPs did not occur under those conditions. In 0.004-

M CaCl2, the magnitude of the energy barrier decreases in the order 10 ppm HA, 1 ppm 

HA, and no HA, which implies that the aggregation rate increases in the same order. The 

experimental data shown in Figure 4.3b prove this. Moreover, in 0.08-M CaCl2 solution, 

no energy barrier is observed under all conditions; however, Figure 4.3c shows that the 

aggregation rate under 10 ppm HA is higher than that under the other two conditions. 

This indicates that the energy barrier cannot be used as a quantitative index. Therefore, a 

more complicated, but quantitative, index involving integration, as shown in Eq. (7), was 

used to compute the aggregation efficiency.  
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Figure 4.5. Interaction energy profiles of CeO2 NPs in the absence and presence of HA 

under (a) 0.1 M KCl, (b) 0.004 M CaCl2 and (c) 0.08 M CaCl2. The continuous, dashed 

and dotted lines are model simulations corresponding to 0, 1 ppm and 10 ppm HA, 

respectively. 

     To better understand the contribution of each interaction energy term, the 

representative profiles were plotted and are presented in Figure 4.6a. Steric repulsion 

clearly contributes greatly, whereas EL repulsion does not, which implies that screening 

surface charges by counter-ions may not be crucial for the aggregation. Figure 4.6b 

compares each energy term in the absence and presence of 10 ppm HA in 0.002 M CaCl2 

solution. The vdW attractive force decreased in the presence of HA, mainly because of 

the smaller Hamaker constant. EL repulsion remains almost constant because, although 

HA adsorption changed the sign of the NP surface charge, the absolute values are similar. 

In addition, owing to smaller Gh0
AB value for HA-coated NPs, the AB force decreased 

with HA present in the solution. The total energy barrier increased in the presence of HA, 
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which means that HA stabilized CeO2 NPs in the solution. In some other cases, the 

energy barrier decreased in the presence of HA, and thus HA destabilized NPs.           
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Figure 4.6.  (a) Representative profiles of total interaction energy and contributing energy 

terms (under 0.002 M CaCl2 and 10 ppm HA). (b) Comparison of interaction energy 

profiles in the absence and presence of HA. 

4.4.4. Modeling the aggregation kinetics of CeO2 NPs 

 Eq. (6) was used to model the aggregation kinetics of CeO2 NPs. The fractal 

dimension dF is widely acknowledged to be ~1.8 for diffusion-limited aggregation and 

~2.1 for reaction-limited aggregation 235, 236, 268, 269 (see Table 4.2). VT and n0 were 

computed as discussed earlier, and other parameters are located in Table 4.1.  

 

(a)

(b) 
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Table 4.2. Fractal dimension (dF) values used in the modeling 

  dF

Ionic strength (M) no HA 1 ppm HA 10 ppm HA 

CaCl2 

0.1 1.8 1.8 1.8
0.08 1.8 1.8 1.8 
0.06 1.8 1.8 1.8 
0.04 1.8 1.8 1.8 
0.02 1.8 1.8 1.8 
0.01 1.8 1.8 1.8 
0.008 1.8 1.8 1.8 
0.006 1.8 1.8 2.1 
0.004 2.1 2.1 2.1 
0.002 2.1 2.1 2.1 

KCl 

0.1 1.8

N/A 
0.03 1.8 
0.02 1.8 
0.015 2.1 
0.01 2.1 

   

 Representative computed results are compared with experimental data in Figures 

4.7 and 4.8. Model predictions and experimental observations closely agreed under 

various solution chemistries. The model predictions could be further improved to match 

the experimental observations by optimizing the dF values. However, we did not do that 

in order to avoid introducing any physically unrealistic values from the blind 

optimization. It is worth noted that Eq. (6) was derived for diffusion-limited aggregation. 

However, the close agreements shown in this study indicate that the equation also could 

be applicable to the initial aggregation stage (< 1.5 h) in the reaction-limited aggregation 

regime. The discrepancies between model predictions and experimental data can be 

attributed to several causes. First, it is difficult to accurately determine the surface 

potential of NPs, particularly in the presence of HA. Second, the primary NPs were 

assumed to be uniform in size, which is reasonable given the small PDI, but a narrow 

particle size distribution does exist. Third, HA adsorption was assumed to occur 

uniformly on all NPs, whereas in reality, non-uniform adsorption and disproportionate 

surface coverage occurred. Finally, to simplify the computation, HA adsorption was 
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assumed to reach equilibrium before the NPs aggregated, which is reasonable because the 

adsorption is fast and the preliminary experiments showed that a rough equilibrium is 

attained within minutes. However, the adsorption kinetics should be incorporated into a 

more accurate model.  
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Figure 4.7. Comparison of the simulated and experimental time evolution of the 

hydrodynamic radii of CeO2 NPs in the absence of HA in KCl solutions. The lines are 

model simulations. 
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Figure 4.8. Comparison of the simulated and experimental time evolution of the 

hydrodynamic radii of CeO2 NPs under (a) 0.08 M, (b) 0.008 M and (c) 0.004 M CaCl2 

solutions. The continuous, dashed and dotted lines are model simulations corresponding 

to the conditions of 0, 1 ppm and 10 ppm HA, respectively. 

4.4.5. Application of the aggregation kinetics model to other NP systems 

 The aggregation kinetics model was tested via application to other NP systems in 

the presence and absence of NOM. We compared our model computations with the 

experimental data of Chen et al. 221 and Saleh et al. 219, 291. In Chen et al. 221, the early-

stage aggregation kinetics of fullerene (C60) NPs in the absence and presence of HA was 

investigated, and the attachment efficiencies and representative aggregation profiles were 

presented. Because the study did not provide EPMs and HA adsorption data, we cannot 

calculate the particle interaction energy (VT) theoretically using equation 1. Instead, we 

obtained the value of the W in equation 1 from the attachment efficiency profile. The 

initial fullerene NP concentration, n0, is 1.6  1014 particles/m3. We calculated the 

aggregation kinetics according to equation 1 and compared it with the experimental data 

(presented in Figure 4.9). The fractal dimension dF was 1.8 and 2.2 for the conditions of 

no HA and 1 ppm HA, respectively; this is reasonable because in the presence of HA, the 

aggregates formed are in a loose structure and therefore have a higher dF value. It is 

worth noted that although HA may interact with Fullerene and CeO2 with - 

interactions and chemical bonding in the particle-HA intersurface, respectively, in our 

case the focus was the interaction between NPs coated with HA, which are analogous 

between Fullerene and CeO2. HA molecules were found to adsorb onto both types of 

NPs, thus both NPs would become HA-coated particles and the interaction between two 

such particles were analogous. 
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Figure 4.9. Comparisons of the simulated and experimental time evolution of the 

hydrodynamic radii of fullerene NPs in the absence and presence of HA (1 mg/L total 

organic carbon (TOC)) under solution conditions of 40 mM CaCl2. The continuous and 

dashed lines are model simulations corresponding to the conditions of 0 and 1 ppm HA, 

respectively. Good agreements were reached under those two conditions. The 

experimental data were obtained from Chen et al. 221.  

4.5. Conclusion 

 In summary, NP aggregation is governed by the interaction force/energy; through 

computation of this, we are able to determine the aggregation tendency and aggregation 

kinetics of NPs in different solutions. This work attempted to model the aggregation 

kinetics of CeO2 NPs by integrating surface force theories in the presence of HA. The 

model predictions were compared with experimental data and agreed well. To the best of 

our knowledge, this is the first attempt to quantitatively model the NP aggregation 

process in the presence of NOM, and the reported results indicate that the model could be 

applied in both monovalent and divalent ionic solutions. All of the parameters in the 

model are physically meaningful and were obtained, as far as possible, from experimental 

studies rather than blind optimization or fitting. Moreover, the computation is relatively 

less demanding than computer simulations, and thus the model is suitable for pre-
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evaluation of the aggregation tendency of NPs under different conditions. This theoretical 

analysis and modeling lays the groundwork for prediction of the aggregation process of 

NPs in complex media, which greatly influences their behavior and toxic effects as 

reported by a number of previous studies 140, 143, 210, 216, 301. Therefore, this work would 

contribute to the risk assessment of NPs.   
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  CHAPTER 5 

TEMPERATURE EFFECT ON THE AGGREGATION OF 

NANOPARTICLES 

 

5.1. Abstract 

 This chapter investigated the temperature effect on the aggregation kinetics of 

CeO2 NPs in KCl and CaCl2 solutions using time-resolved dynamic light scattering. The 

results show that in KCl and CaCl2, the aggregation rate became faster as the temperature 

increased. The critical coagulation concentration (CCC) of CeO2 NPs went down from 

approximately 100 to 10 mM in KCl and from approximately 10 to 2 mM in CaCl2 

solutions when the temperature increased from 4 to 37C. The observations were 

analyzed in the framework of extended Derjaguin-Landau-Verwey-Overbeek (EDLVO) 

theory in order to find out the mechanisms underlying the temperature effect. Moreover, 

a theoretical model developed on the basis of EDLVO theory and von Smoluchowski’s 

population balance equation was used to predict the aggregation kinetics of CeO2 NPs 

under different temperature. The model predictions agreed well with experimental data, 

suggesting that the model could be employed to predict the size change of NPs in 

solution. Overall, this work provides insights into NP aggregation using experimental and 

modeling approaches, and allows people to better understand and theoretically predict the 

environmental behavior and risk of NPs. 

5.2. Introduction 

 On the basis of EDLVO theory, our previous studies have addressed the effects of 

ionic strength and natural organic matter on NP aggregation with modeling approaches 

302, 303. It is well known that temperature also greatly influences the aggregation of NPs. 
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Understanding the temperature effect is important for environmental and health risk 

assessments of NPs, as both natural water and human body fluids can be at temperatures 

that are remarkably different from the typically used room temperature. For example, 

river waters in some cold areas may be only 4C, whereas the temperature of blood in the 

human body is as high as 37C. NPs in these solutions would undergo different 

aggregation processes. The temperature effect, however, has not gained much attention in 

NP aggregation studies.  

 In this study, we investigated the temperature effect on the aggregation of NPs in 

KCl and CaCl2 solutions using time-resolved dynamic light scattering (TR-DLS). We 

selected CeO2 NP as a model NP owing to its wide range of commercial applications 76, 

239, 241. We used the EDLVO theory to interpret the fundamentals of the temperature 

effect on NP aggregation. Furthermore, a kinetic model developed on the basis of 

EDLVO theory and von Smoluchowski's population balance equation was used to predict 

the aggregation kinetics of CeO2 NPs, which were then compared with experimental 

observations. Our aim was to fundamentally understand the temperature effect on NP 

aggregation and theoretically predict the aggregation kinetics of NPs under different 

temperature, which were anticipated to benefit the predictive modeling research of 

environmental behavior and toxicity assessment of NPs.  

5.3. Materials and methods 

5.3.1. Materials 

 CeO2 NPs with a nominal diameter of 25 nm were purchased from Sigma-

Aldrich. The atomic composition of the sample was verified using X-ray diffraction (data 

not shown). The pH of the stock suspension was measured to be 4.5 by pH meter 

(Accumet model 15, Fisher Scientific Co., USA). KCl and CaCl2 stock solutions were 

prepared using ACS reagent-grade chemicals (Fisher Scientific Co., USA) and were 

filtered through 0.02-m filters (VWR International, USA) before use.  
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5.3.2. Characterization of CeO2 NPs 

 The morphology and primary particle size of CeO2 NPs were determined using 

transmission electron microscopy (TEM). 5 μL of CeO2 NP suspensions were deposited 

on a copper grid (400-mesh size) coated with carbon film (Ted Pella, Redding, CA, 

USA). A Philips EM420 TEM was employed to acquire images. Particle size distribution 

(PSD) was obtained with DLS on a Zetasizer Nano ZS instrument (Malvern Instruments). 

Briefly, 1.5 mL of 10 mg/L CeO2 NP suspension was injected into a clean cuvette; the 

DLS instrument was then operated with a scattering angle of 173 from the incident laser 

beam, and the autocorrelation function automatically accumulated at least 10 runs for 

each sample. The electrophoretic mobilities (EPMs) of 10 mg/L CeO2 NPs were 

measured for a range of K+ and Ca2+ concentrations under different temperatures using 

the Zetasizer Nano ZS instrument. At least four parallel measurements were made for 

each condition. The measurement began immediately after the desired conditions were 

achieved to minimize the interference of aggregation. 

5.3.3. Aggregation kinetics 

 The aggregation kinetics experiments were carried out at pH 5.7, at which the 

CeO2 NPs are stable for at least 24 h. The pH values of the CeO2 NP, KCl and CaCl2 

solutions were pre-adjusted to 5.7 to ensure that each measurement could start 

immediately after addition of K+ and Ca2+. For the aggregation experiment, the sample 

holder of the Zetasizer Nano ZS instrument was preheated or precooled to the desired 

temperature. A premeasured amount of KCl or CaCl2 was added to 1 mL of CeO2 NP 

suspension in a cuvette. The NP suspension was then shaken slightly and placed in the 

sample holder.   

5.3.4. Modeling the aggregation kinetics 

 According to the EDLVO theory, the total interfacial force between two metal 

oxide NPs is comprised of the vdW force, EL force and AB force 230. The total interfacial 
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energy (VT) between NPs is computed by assuming that each force acts individually and 

is thus additive: VT = VvdW + VEL + VAB.   

 The vdW attractive energy (VvdW) between two identical spherical particles, which 

considers the retardation effect, can be computed using Eq. (1) 275:  

   12 1 11.12 /
H

VdW
c

A r
V h

h h 
 

      (1)                                                                              
 

where AH is the Hamaker constant, which is 5.57 × 10-20 J for CeO2 in water 252. r is the 

particle radius. h is the separation distance between the interacting surfaces. c is the 

“characteristic wavelength” of the interaction, which is often assumed to be 100 nm 250.  

 The EL repulsive energy (VEL) between two identical spheres of radii r in 1-1 

electrolyte solutions (e.g., KCl) is given by Eqs. (2a-c). In 2-1 electrolyte solutions (e.g., 

CaCl2), Eqs. (2a) and (2b) are replaced by Eqs. (2d) and (2e), respectively 224, 254, 280:  
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          (2e)                                                                      

where n is the concentration of electrolytes; kB is the Boltzmann constant; T is absolute 

temperature; zi is the valency of the ith ion; e is unit charge; ψSi is the surface potential of 

the interacting particles in an aqueous medium, which can be calculated from the EPMs 

of NPs (UE), the solution viscosity () and permittivity (εε0) of water by the 
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Smoluchowski equation: ψSi = (UE )/(εε0) 
254; ε0 is the vacuum permittivity; ε is the 

relative permittivity of water; κ-1
 is the Debye length; NA is Avogadro’s number; and I is 

the ionic strength (M), I = 0.5·Σcizi
2, where ci is the molar concentration of the ith ion. 

 Finally, the AB energy (VAB) between two identical spheres is expressed by Eq. 

(3): 
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where λ is the correlation length or decay length of the molecules of the liquid medium, 

which is estimated to be 1 nm for pure water 228, and Gh0
AB is the polar or AB free 

interaction energy between particles at the distance h0 
253, which is the minimum 

equilibrium distance due to Born repulsion, 0.157 nm 228.] 

     Upon computing the total interaction energy (VT), the aggregation kinetics of 

CeO2 NPs can be obtained by Eq. (4), which was developed on the basis of the EDLVO 

theory and von Smoluchowski's population balance equation 283: 
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where rt is the particle radius at time t, a is the primary particle radius, n0 is the initial 

number concentration of primary particles,  is the solution viscosity, and dF is the fractal 

dimension of aggregates. W is the stability ratio, which can be expressed by Eq. (5) 220, 

249:  

    
 

    
 

1

2 2
0 0

exp exp

2 2

T AV u kT V u kT
W u du u du

u u
 


    

    
       

           (5) 

where u is the normalized surface-to-surface separation distance (h) between two 

particles (u = h/a) and VA(u) is the attractive energy. Here, vdW energy is the only 

contributing term to VA(u) and thus VA = VvdW. (u) is the correction factor for the 

diffusion coefficient, which is related to the separation distance by Eq. (6) 248:  
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 The number concentration of CeO2 NPs is determined from the mass 

concentration. The lattice parameter (al) of CeO2 unit cells is 5.4087 Å 284, and each unit 

cell contains four Ce atoms and eight O atoms. The number of Ce atoms (N) per CeO2 NP 

with radius r can be calculated by N = 16 (r/al)
 3/3. The mass of a single CeO2 NP is 

then obtained, and the number concentration of NPs can be computed. 

5.4. Results and discussion 

5.4.1. Characterization of CeO2 NPs  

 A TEM image of CeO2 NPs is presented in Figure 5.1a. The NPs have a relatively 

uniform size distribution. The inset in Figure 5.1a shows the PSD diagram of CeO2 NPs, 

which was measured by DLS. Consistent with previous studies, the DLS-measured NP 

size is larger than that determined by TEM 217, 285. This is probably owing to particle 

aggregation and the water layer surrounding the NP surface. The polydispersivity index 

(PDI) is quite small (0.1), indicating that CeO2 NPs are relatively monodispersed in 

solution. Figure 5.1b shows the zeta potentials of CeO2 NPs under different temperatures 

in KCl and CaCl2 solutions. The CeO2 NPs are positively charged under all tested 

conditions. The divalent ion (Ca2+) is more effective than the monovalent ion (K+) in 

screening the surface charge of NPs. As ionic strength increased, the zeta potential 

became smaller due to the compression of the electrical double layer surrounding the NP. 

The temperature effect is apparent; as the temperature increased, the zeta potential 

became less positive, which was consistent with previous studies 304, 305. The reason could 

be that increasing temperature favors proton desorption from the particle surface 304. At 

higher temperature, the lower zeta potential of CeO2 NPs implies that the electrostatic 
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repulsion force between particles is weaker, and this probably promotes the particle 

aggregation. 
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Figure 5.1. Characterizations of CeO2 NPs. (a) TEM image of CeO2 NPs. The inset is the 

particle size distribution of 10 mg/L CeO2 NPs. The narrow particle size distribution and 

small PDI value imply that the NPs are relatively monodispersed. (b) Zeta potentials of 

CeO2 NPs under different temperatures in KCl and CaCl2 solutions.      

5.4.2. Effect of temperature on the aggregation of CeO2 NPs in KCl and CaCl2  

 The representative aggregation kinetics profile of CeO2 NPs in KCl and CaCl2 

solutions under different temperatures were presented in Figure 5.2. As the temperature 

increased, the NP aggregation became faster. The attachment efficiency (), or inverse 

stability ratio (1/W), was calculated by normalizing the initial slopes of aggregation 

kinetics curves with the slopes obtained in the diffusion-limited aggregation regime 

(shown in Figure 5.3). The critical coagulation concentration (CCC) for CeO2 NPs in KCl 

was ca. 100, 40 and 10 mM at 4, 25 and 37C, respectively. In CaCl2, CCCs were ca. 10, 

10 and 2 mM at 4, 25 and 37C, respectively. The substantially lower CCCs for CeO2 

NPs in Ca2+ solutions than those in K+ solutions is because divalent ions more effectively 

screen the surface charge of NPs and subsequently enhance the aggregation. Higher 

temperature leads to a smaller CCC and thus promotes NP aggregation.         
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Figure 5.2. Aggregation kinetics profiles of CeO2 NPs under different temperatures in 

0.01 M KCl (a) and 0.002 M CaCl2 (b).  
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Figure 5.3. Attachment efficiencies (or inverse stability ratios) of CeO2 NPs derived from 

experimental data under different temperatures in KCl (a) and CaCl2 (b) solutions.  

 Higher temperature promotes NP aggregation for two reasons. First, the solution 

viscosity  was smaller at higher temperature; according to Eq. (4), the particle 

aggregation was thus enhanced. Second, the interaction energy between NPs also changes 

as the temperature increases. The total interfacial energy VT can be calculated using Eqs. 

(1)-(3). Parameters involved in these equations could be either measured or computed. 

Surface potentials (ψS) of CeO2 NPs under different temperatures were calculated from 

(a) (b)

(a) (b)
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the EPMs with the Smoluchowski equation 254. The other major parameters are listed in 

Table 5.1.  

Table 5.1. Model parameters 

Parameter Value 

Boltzmann constant, kB 1.381  10-23 J/K 

Avogadro’s number, NA 6.022  1023 

Elementary charge, e 1.6  10-19 C 

Hamaker constant, AH 5.57 × 10-20 J 

Characteristic wavelength, c 100 nm 

Vacuum permittivity, 0 8.85 × 10-12 C/V/m 

Relative permittivity of water,  86.7 for 4C, 78.5 for 25C, 75.7 for 25C  

Viscosity of water,   
1.47 × 10-3 Pas for 4C, 8.90 × 10-4 Pas for 25C, 

8.59 × 10-4 Pas for 37C 

Decay length, λ 1 nm 

Gh0
AB 2.2 mJ/m2 in KCl, 2.8 mJ/m2 in CaCl2 

 

 The interaction energies for CeO2 NPs under different temperatures were 

computed and are presented in Figure 5.4, which shows that the interaction energy 

between NPs is lower at a higher temperature in both KCl and CaCl2 solutions. The 

energy barrier reflects the aggregation tendency. The energy barrier diminished as the 

temperature increased. When the temperature increased from 4 to 37C, the magnitude of 

the energy barrier decreased from 11 to 4 kBT and from 7 to 1 kBT in 0.01 M of KCl and 

0.002 M CaCl2, respectively. This suggests that NPs more easily overcome the energy 

barrier and aggregate at high temperatures. Moreover, according to Eqs. (1)-(3), the EL 

force is the only force that is influenced by the change in temperature (shown in Figure 

5.5). Parameters in Eq. (3), such as the surface potential of NPs, solution permittivity and 
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Debye length, are affected by temperature. The temperature has no impact on vdW and 

AB forces.               
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Figure 5.4. Interaction energy profiles of CeO2 NPs in 0.01 M KCl (a) and 0.002 M 

CaCl2 (b). The solid, dotted and dashed lines correspond to 4, 25 and 37C, respectively. 
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Figure 5.5. EL energy profiles of CeO2 NPs in 0.01 M KCl (a) and 0.002 M CaCl2 (b). 

The solid, dotted and dashed lines correspond to 4, 25 and 37C, respectively. 

 For a better understanding of the contribution of each energy term to the total 

interaction, the representative energy profiles are presented in Figure 5.6. Apparently, the 

AB repulsion energy contributes more relative to EL repulsion energy. This indicates 

that, compared with EDLVO theory, the conventional DLVO theory, which considers 

(a) (b)
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only EL and vdW energy, provides a less accurate description of the interfacial energy 

between CeO2 NPs.   

Separation distance between NPs (  )
0 20 40 60 80

In
te

ra
ct

io
n

 e
n

er
gy

 b
et

w
ee

n
 N

P
s 

(k
B
T

)

-100

-50

0

50

100 vdW
EL
AB
Total

Å

   
Separation distance between NPs (  )

0 20 40 60 80

In
te

ra
ct

io
n

 e
n

er
gy

 b
et

w
ee

n
 N

P
s 

(k
B
T

)

-100

-50

0

50

100 vdW
EL
AB
Total

Å

 

Figure 5.6.  Representative profiles of each energy term in 0.01 M KCl (a) and 0.002 M 

CaCl2 (b) at 4C.  

5.4.3. Modeling the aggregation kinetics of CeO2 NPs 

 Eq. (4) was used to model the aggregation kinetics of CeO2 NPs. The initial 

number concentration of CeO2 NPs is approximately 2.35  1015 particles/m3 in all 

aggregation experiments. The fractal dimension dF was reported to be ca. 1.8 235, 236, 268, 

269. The total interaction energy VT was computed according to Eqs. (1)-(3). The attractive 

energy, VA, equals the vdW energy (VvdW). The AB free interaction energy between 

particles at the distance h0, Gh0
AB, was consistent with our previous studies. Other 

parameters are listed in Table 5.1. The modeling results were further compared with 

experimental observations, and representative comparisons are presented in Fig. 5.7. At 

all temperatures, model predictions agreed well with experimental data. Some minor 

discrepancies between model predictions and experimental observations may be 

attributed to deviations in the surface potential of NPs and the size distribution of 

particles.  

(a) (b)
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Figure 5.7. Comparison of the simulated and experimental time evolution of the 

hydrodynamic radii of CeO2 NPs in 0.01 M KCl (a) and 0.002 M CaCl2 (b) solutions. 

The solid, dotted and dashed lines are model simulations corresponding to the conditions 

of 4, 25 and 37C, respectively. 

 In conclusion, this work investigated the temperature effect on the aggregation of 

CeO2 NPs with both experimental and modeling approaches. As the temperature 

increased from 4C to 37C, the CCCs for CeO2 NPs decreased from ca. 100 to 10 mM 

in KCl and from ca. 10 to 2 mM in CaCl2. The promotive effect of temperature on NP 

aggregation is ascribed to the smaller solution viscosity and lower interfacial energy 

barrier at higher temperature. For instance, the energy barrier height decreased from 11 to 

4 kBT in 0.01 M KCl and from 7 to 1 kBT in 0.002 M CaCl2, which resulted from the 

smaller repulsive EL energy at a higher temperature. The aggregation model based on the 

EDLVO theory gave fairly good predictions of NP aggregation under different 

temperatures. To the best of our knowledge, this is the first study to investigate the 

temperature effect on NP aggregation with modeling approaches, which is expected to 

benefit the theoretical predictions of the environmental behavior and biological effects of 

NPs and to further contribute to the environmental and biological risk assessment of NPs. 
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  CHAPTER 6 

INTERACTIONS OF METAL OXIDE NANOPARTICLES WITH 

CELL MEMBRANE AND CORRELATION WITH THEIR ACUTE 

CYTOTOXICITY 

 

6.1. Abstract 

 To better understand the role of cell membrane-nano interactions in the toxicity of 

NPs, we investigated the acute toxicity of seven different types of engineered metal oxide 

NPs against Paramecium multimicronucleatum, a ciliated protozoan, using the 48-h LC50 

(Lethal Concentration, 50%) test. Our results showed that the 48-h LC50 values of these 

NPs to Paramecium ranged from 0.81 mg/L (Fe2O3 NPs) to 9269 mg/L (Al2O3 NPs); 

their toxicity to Paramecium increased as follows: Al2O3 < TiO2 < CeO2 < ZnO < SiO2 < 

CuO < Fe2O3 NPs. On the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) 

theory, interfacial interactions between NPs and cell membrane were evaluated and the 

magnitude of interaction energy barrier correlated well with the 48-h LC50 data of NPs to 

Paramecium; this implies that metal oxide NPs with strong association with the cell 

surface might induce more severe cytotoxicity in unicellular organisms. 

6.2. Introduction 

 Recently, engineered NPs (NPs) have received enormous attention for their wide 

applications in cosmetics, sunscreens, toothpastes, food products, textiles and water 

treatment 306. Large-scale discharges of these NPs into the aquatic environment could 

potentially threaten human and environmental health 2.  

 Once in the environment, aquatic organisms would likely interact with and uptake 

those NPs 82, 307. Thereafter, the NPs might have toxic effects on the organisms 308. 
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Moreover, NPs probably bioaccumulate in higher-trophic-level organisms 309, which may 

affect the entire food chain and impose risks for human beings. The common model 

systems used in the research of the environmental toxicity of NPs include bacteria, algae, 

Daphnia, and zebrafish 310-315. However, a variety of other organisms in the aquatic 

environment are important to maintain the balance of ecological systems, and the toxicity 

of NPs against these organisms has not been extensively investigated yet. Of special note 

are aquatic protozoa, which differ from multicellular organisms (e.g., Daphnia) because 

they are composed of a single cell, but unlike single-celled algae, they do not possess a 

protective cell wall. Thus, NPs could enter protozoan cells more easily than bacterial and 

algal cells and then interact directly with the cellular structures and organelles. Species in 

the genus Paramecium are ciliated unicellular protozoa that are widely distributed in 

freshwater. Paramecium can absorb solid food particles using its cell membrane in a 

process called phagocytosis 316. Paramecium primarily feed on bacteria and algae and fall 

prey to multicellular animals such as copepods and larger protists such as dinoflagellates. 

Therefore, Paramecium and other ciliates represent a major link between microbial 

organisms and multicellular animals.  

 Various studies have explored the cytotoxicity mechanism of metal oxide NPs 88, 

139, 317-320. Although the exact toxicity mechanism is still unclear, it is recognized that the 

toxicity of metal oxide NPs to unicellular organisms (e.g. bacteria and ciliates) is 

ascribed, at least in part, to interactions between the NPs and the cell surface.139 Many 

studies reported that direct spatial contact between NPs and cell surface is necessary for 

manifestation of the cytotoxicity 139, 317, 319, 321, and their interaction is central to the 

cytotoxicity of NPs 139, 322, 323. An apparent mechanism relies on direct damages, either 

physical (e.g. pitting 137) or chemical (e.g. oxidative stress 139), of NPs to cell surface (cell 

wall or cell membrane), which can result in death of the cell 137. Prolonged contact 

between the cell and NPs likely alters the cellular surface properties or integrity 324, 325, 

and triggers the internalization of NPs through endocytosis 210 or direct penetration 326. 
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The internalized NPs may further exert adverse effects on organelles (e.g., lysosomes and 

mitochondria) 94, 210 as well as on DNA and other biomacromolecules 98, 327, 328.  

 The contact of NPs with bacterial cell surface is strongly dependent on the 

interfacial forces between them 317, 329. Prior work has revealed that NPs with positive 

charge induced more toxic effects than their counterparts with negative charge, which 

might be attributed to the attractive or repulsive interaction between the positively or 

negatively charged NPs and negatively charged cell surface 141, 322, 323, 330. Feris et al. 139 

modeled the interactions between ZnO NPs and four types of bacterial strains that carried 

different charge on outer cell surface, and found that the interfacial interactions greatly 

contributed to the cytotoxicity of NPs. Those previous studies compared NPs of the same 

type but of different surface charges or sizes, and suggested that the NPs with strong 

interaction with cell surface likely possessed higher cytotoxicity. However, to the best of 

our knowledge, there were no studies to compare and address the effect of the interfacial 

interaction on the cytotoxicity of different types of NPs. It is thus interesting to explore 

whether or not interfacial interactions between different types of NPs and cell surface 

correlate with the cytotoxicity of the NPs.  

 In this study, the acute toxicities of seven engineered metal oxide NPs to 

Paramecium were investigated, and the 48-h LC50 was determined for each NP. 

Furthermore, the interfacial interaction between each NP and the cell membrane was 

evaluated on the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, and a 

further correlation was established between the interaction energy and NP toxicity.  

Finally, we analyzed the underlying mechanisms of this correlation. 

6.3. Materials and methods 

6.3.1. Materials 

 Nano-sized ZnO (nZnO), TiO2 (nTiO2, anatase), SiO2 (nSiO2), CeO2 (nCeO2), 

CuO (nCuO) and Fe2O3 (nFe2O3) were purchased from Sigma-Aldrich (St. Louis, MO, 
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USA ). Nano-sized Al2O3 (nAl2O3, -form) was purchased from Nanostructured & 

Amorphous Materials, Inc (Houston, TX, USA).  

 The ciliated protozoan Paramecium multimicronucleatum (P. 

multimicronucleatum) was obtained from the American Type Culture Collection 

(Manassas, VA, USA). The culture medium was prepared using a formula of 0.55 g of 

protozoan pellet (Carolina Biological Supply Co., Burlington, NC, USA) per 1 L 

deionized (DI) water, and after autoclaving, the medium was inoculated with three 

bacterial species: Serratia marcescens, Bacillus cereus, and Bacillus subtilis, which were 

also obtained from Carolina Biological Supply Co.. The P. multimicronucleatum culture 

was contained in 250-mL glass bottles, which had been autoclaved and contained 100 mL 

of culture medium plus two wheat seeds, which slowly released nutrients into the 

medium 331. In the experiment, ca. 100 individuals of P. multimicronucleatum were used 

as a starting density. The culture was maintained at 22C in 12:12-h light:dark cycle. A 

stereoscopic microscope (Olympus SZX12, Center Valley, PA, USA) was used to count 

the number of P. multimicronucleatum in the solution.  

     The Dryl’s solution was prepared and autoclaved; it contained 1 mM NaH2PO4-

monobasic (Fisher Biotech, Pittsburgh, PA, USA), 1 mM Na2HPO4-dibasic (Fisher 

Chemical, Pittsburgh, PA, USA), 2 mM trisodium citrate dihydrate (Fisher Scientific, 

Pittsburgh, PA, USA), and 1.5 mM CaCl2 (Fisher Scientific, Pittsburgh, PA, USA) per 1 

L of DI water. The CaCl2 solution was autoclaved separately. 

6.3.2. Characterization of metal oxide NPs 

 The primary particle size and morphology of metal oxide NPs were determined by 

transmission electron microscopy (TEM). 5 μL of NP suspension was deposited on a 

copper grid (400-mesh size) coated with carbon film (Ted Pella, Redding, CA, USA). A 

Philips EM420 TEM was operated to acquire images.  
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 Number-averaged hydrodynamic radii of NPs were obtained using dynamic light 

scattering (DLS) on a Zetasizer Nano ZS instrument (Malvern Instruments, UK). In brief, 

1.5 mL of NP suspensions of 10 mg/L in the Dryl’s solution was injected into a clean 

cuvette, and the DLS was then operated with a scattering angle of 173 from the incident 

laser beam. The autocorrelation function automatically accumulated at least 10 runs for 

each sample. The electrophoretic mobilities (EPMs) of NPs of 10 mg/L in the Dryl’s 

solution were measured using the Zetasizer Nano ZS instrument. At least four parallel 

samples were measured for each condition in the NP size and EPM measurements. It is 

noted here that metal oxide NPs aggregation might occur in the aqueous solution, but in 

our preliminary experiments, the aggregation reached a plateau stage within 48 h after 

sample preparation (representative results shown in Figure 6.1), at which further 

aggregation was not observed. The measurement of NP size and EPM was thus 

conducted at the plateau stage. 
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Figure 6.1. Representative aggregation kinetics profiles of NPs in the Dryl’s solution. 
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 The ion releases from NPs were measured by inductively coupled plasma mass 

spectrometry (ICP-MS, Elan DRC II, PerkinElmer, USA) 332, 333. Since it might take up to 

48 h for the ion release from freshly prepared NPs suspensions to reach equilibrium 

according to preliminary results, we measured the ion release after 48 h. 4 mL of NP 

suspensions of 10 mg/L in the Dryl’s solution were sampled from plastic centrifugation 

tubes (Fisher Scientific, Pittsburgh, PA, USA), and the released ions were separated from 

the NPs using Amicon Ultra-4 centrifugal filter units with pore diameters of 1–2 nm 

(Amicon Ultracel 3K, Millipore, USA). After centrifugation for 30 min at 7000  g 

(5430R, Eppendorf, Germany), 3 mL of the filtrates were collected and mixed with 2 mL 

of 67% nitric acid for ICP-MS analysis.  

6.3.3. Acute toxicity tests  

 Acute (48-h) toxicity tests were conducted against P. multimicronucleatum by the 

static method, following Organisation for Economic Co-operation and Development 

(OECD) guidelines on aquatic toxicity testing of chemicals 334. P. multimicronucleatum 

individuals were removed from the stock culture with a micropipette, washed in Dryl’s 

solution, and inoculated into fresh Dryl’s solution containing different NPs at different 

concentrations in a clean petri dish. The concentration gradients of NPs were summarized 

in Table 6.1. Consistent with the size and EPM measurements, NPs in the aggregation-

plateau stage were used in the acute toxicity tests. For each test concentration, three 

replicates with 12 cells each were used. Simultaneously, control experiments were 

performed without NPs. P. multimicronucleatum was not fed with bacteria for both 

control and test groups during the tests. The sample solutions were mixed every three 

hours with a pipette, as some NPs might settle out of the suspension. The mortality was 

checked 48 h after inoculation under a stereomicroscope (Olympus, Center Valley, PA, 

USA) at low magnification. We counted swimming P. multimicronucleatum as the live 

cells, and accordingly, cells that were ruptured or could not be found were considered 
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dead. The median lethal concentrations (48-h LC50) were determined using probit 

analysis performed in the statistical program SPSS 13.0 (IBM Corporation, USA). 

Table 6.1. Concentration gradients of NPs in acute toxicity tests 

Tested NPs Concentration gradient (mg/L) 

nFe2O3 0.1 0.5 0.8 1 5 10 50     

nCuO 0.1 0.5 1 5 10 50 100     

nSiO2 1 10 100 300 500 1000 2000 2500 3000 5000 10000

nZnO 0.1 1 5 10 50 100 500 1000 1500 2000 5000 

nCeO2 1 10 100 300 500 1000 1300 1500 1800 2000 2500 

nTiO2 0.1 1 10 50 100 500 1000 1500 2000 3000 10000

nAl2O3 1 10 50 100 500 1000 1500 2000 3000 5000 30000

 

6.4. Results and discussion 

6.4.1. Characterization of metal oxide NPs 

 TEM images of tested metal oxide NPs are presented in Figure 6.2, which showed 

that although NP aggregation happened, the primary particle sizes were at the nanoscale. 

By examining forty randomly selected particles of each type of NPs from TEM images, 

we obtained the average radius of each NP, and the statistical results were tabulated in 

Table 6.2. The primary particle radius of all NPs except nAl2O3 is  15 nm. Number-

based hydrodynamic radii of NPs in Dryl’s solution, as measured by DLS, were also 

presented in Table 1. Consistent with previous studies 302, 303, the NP radius measured 

with DLS is remarkably larger than that determined with TEM. This is probably caused 

by particle aggregation and the water layer surrounding NP surface. The representative 

particle size distribution histograms were presented in Figure 6.3, which indicated that 

the aggregated NPs were dominant in the total number of NPs. Table 6.2 also listed 

EPMs of metal oxide NPs and P. multimicronucleatum in Dryl’s solution. All of these 
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NPs and P. multimicronucleatum were negatively charged. Thus, an electrostatic 

repulsion force would arise between NPs and the cell surface.  

(a) (b) (c)

(d) (e) (f)

(g)

 

Figure 6.2. TEM images of (a) nFe2O3, (b) nCuO, (c) nSiO2, (d) nZnO, (e) nCeO2, (f) 

nTiO2, and (g) nAl2O3. 

Table 6.2. Characterizations of tested metal oxide NPs in Dryl’s solution, including 

primary particle radii measured with TEM, hydrodynamic radii (number-based) of metal 

oxide NPs measured with DLS, and EPMs. 

NPs TEM radius (nm) DLS radius (nm) EPM (10-8 m2/Vs)

nFe2O3 4.7±1.8 74.5±21.5 -2.57±0.02 

nCuO 13.3±3.9 133.4±4.1 -2.01±0.11 
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nSiO2 8.2±1.7 236.4±6.3 -1.66±0.19 

nZnO 9.8±5.0 175.8±21.2 -1.75±0.16 

nCeO2 5.5±1.6 252.1±12.3 -2.19±0.04 

nTiO2 5.1±1.4 199.4±25.7 -2.04±0.09 

nAl2O3 83.5±21.4 508.8±38.5 -2.74±0.10 

P. multimicronucleatum N.A.a N.A. -0.99±0.17 
aN.A. means not applicable    
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Figure 6.3. Representative particle size distribution histograms of metal oxide NPs, as 

measured using DLS. 
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6.4.2. Acute toxicity of metal oxide NPs to P. multimicronucleatum 

 The acute toxicities of all tested metal oxide NPs to P. multimicronucleatum were 

found to increase as particle concentration increased, indicating a dose dependency 

(Figure 6.4). The 48-h LC50 values for these NPs are listed in Table 6.3. These NPs, 

except nFe2O3 and nCuO, are not highly toxic to P. multimicronucleatum; the large LC50 

values (>1000 mg/L) for some NPs are consistent with a prior study, which investigated 

the toxicity of metal oxide NPs to E. coli 335. The acute toxicity ranking of the tested NPs 

to P. multimicronucleatum has the order nFe2O3 > nCuO > nSiO2 > nZnO > nCeO2 > 

nTiO2 > nAl2O3. The order of nZnO > nTiO2 > nAl2O3 compares well with a previous 

study on the toxicity of six NPs to Daphnia magna (D. magna) 308. nTiO2 and nAl2O3 had 

the lowest toxicity (if any) among the tested metal oxide NPs, whereas nFe2O3 and nCuO 

were the two most toxic NPs. A previous study also found that nCuO was highly toxic to 

D. magna with the 48-h LC50 3.2 ± 1.6 mg/L 336, which was somewhat more toxic than 

that to P. multimicronucleatum in the current study. To our knowledge, the toxicity of 

nFe2O3 to aquatic organisms has not been reported previously in the literature. However, 

nFe2O3 was acutely toxic to rats 337, 338 and mouse hepatocytes 339. The extremely low 

toxicity of nAl2O3 was also reported on human lung cells 340. The acute toxicity of nTiO2 

was also quite low, consistent with a previous study on the toxicity of nTiO2 to D. magna 

which showed that even at the highest tested concentration of 500 mg/L, only 9% 

mortality of D. magna was observed 341. Although the confidence interval for nAl2O3 and 

nTiO2 was broad, it did not impact our analysis on their toxicity owing to the extremely 

high 48-h LC50 of nAl2O3 and nTiO2 to P. multimicronucleatum. nSiO2 was more toxic 

than nTiO2, which was also reported previously 342. nCeO2 was less toxic than nSiO2 but 

more toxic than nTiO2. A prior study showed that the 48-h LC50 of nCeO2 to D. magna 

was greater than 1000 mg/L 310, which agrees well with the present study. The toxicity of 

nZnO to P. multimicronucleatum was close to that of nSiO2.  
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 The ion release from NPs was measured with ICP-MS, and the results were 

presented in Table 6.4. Only nZnO and nCuO released detectable metal ions. Zn2+ and 

Cu2+ are thus possible sources for the toxicity of nZnO and nCuO, respectively. However, 

at the concentration of 48-h LC50 point, nZnO and nCuO released 108.5 ± 23.6 mg/L of 

Zn2+ and 3.2 ± 0.5 g/L of Cu2+, respectively; the concentrations of released ions were 

less than the 48-h LC50 values for Zn2+ (175.2 mg/L) and Cu2+ (19.5 g/L), which were 

measured in the current study using ZnCl2 and CuCl2. This suggested that the toxicity of 

nZnO and nCuO to P. multimicronucleatum might partially be attributed to particles. The 

other five types of metal oxide NPs did not release metal ions, implying that particles 

instead of released ions governed the toxicity of these NPs.  
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Figure 6.4. Mean survival ratios (± s.d.) of P. multimicronucleatum after 48-h exposure to 

NPs with varying concentrations. 
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Table 6.3. The 48-h LC50 of tested metal oxide NPs to P. multimicronucleatum, the 

magnitude of interaction energy barrier between NPs and cell surface, and the adsorption 

rate constants of NPs onto the cell membrane. 

NPs 
48-h LC50 

(mg/L) 

95% confidence 

intervals (mg/L) 

Energy 

barrier (kTa) 

Adsorption rate 

constant (m/s) 

nFe2O3 0.81 0.601.09 1.36 3.0510-5 

nCuO 0.98 0.841.25 1.61 9.2610-6 

nSiO2 442.6 337.0559.8 10.9 2.7510-10 

nZnO 573.8 448.6707.9 5.71 5.4610-8 

nCeO2 1832.5 1739.91925.1 7.81 5.1510-9 

nTiO2 7215.2 3730.138142.7 31.8 1.4510-19 

nAl2O3 9269.2 4783.135409.6 33.9 6.6210-21 
akT is an energy unit. k–Boltzmann constant (1.3810-23 JK-1); T–Absolute temperature 

 

Table 6.4. The ion release ratios of tested NPs suspended in Dryl’s solution, as measured 

with ICP-MS.  

Tested NPs Ion release ratio (%) 

nAl2O3 0 

nCeO2 0 

nSiO2 0 

nZnO 23.56  0.12 

nCuO 0.41  0.04 

nFe2O3 0 

nTiO2 0 

6.4.3. Calculation of interfacial interactions between NPs and cell membrane 

 Ion release and reactive oxygen species (ROS) production were recognized as two 

important mechanisms for the cytotoxicity of NPs in addition to interactions between NPs 

and cell surface 82, 343. We investigated the generation of three types of ROS (1O2, •OH, 
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and O2
•−) by metal oxide NPs using indicator method.  The results showed that under 

room light, even TiO2 NPs did not produce any of the three types of ROS that could be 

detected using the indicator method. This is probably owing to the antioxidant effect of 

citrate ions in the Dryl’s solution 344, 345. In addition, Paramecium species are relatively 

tolerant to oxidative stress 346. Therefore, in the current study, ROS may play a very 

minor role in the toxicity of tested metal oxide NPs to P. multimicronucleatum. Ion 

release, as discussed earlier, only occurred on nCuO and nZnO; also, released Cu2+ and 

Zn2+ ions were not the sole factor that contributed to the toxicity of nCuO and nZnO. 

Hence we proposed that in this study, the interaction between NP and cell membrane was 

an important mechanism for NP toxicity to P. multimicronucleatum. It is thus worth 

exploring whether or not the interfacial interactions correlate with the toxicity of NPs. 

 The interfacial interaction between two charged surfaces is widely described by 

the famous DLVO theory 213, 347, which characterizes the total interaction as the 

combination of van der Waals (vdW) and electrostatic double layer (EDL) interactions. 

Because the vdW interaction is always attractive while the EDL interaction can be 

repulsive in some cases, an energy barrier may arise in the total interaction energy 

profile. The energy barrier denotes the maximum height of the total interaction profile 

and has to be surmounted by the interacting objects to approach one another and adhere 

together. A low energy barrier between NPs and cell surface implies that the NPs would 

more easily approach the cell surface and subsequently result in a strong association. 

Hence the energy barrier is potentially used for evaluating the strength of interfacial 

interactions between NPs and cell surface.  

 Because P. multimicronucleatum is remarkably larger than NPs, their interaction 

can be approximated as a sphere-flat plate interaction. The vdW attractive energy (VvdW)  

of NP-cell membrane interaction, as a function of separation distance h, can thus be 

computed using Eq. (1) 262:  
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6

H
VdW

A r
V h

h
     (1) 

where AH is the NP-cell Hamaker constant in water; the computation of AH is given 

below. r is the radius of NPs, which in computation is replaced with the hydrodynamic 

radius as measured from DLS.  

 For materials 1 and 3 in a medium consisting of material 2, the Hamaker constant 

is denoted as A121 and A323, respectively. A11, A22, and A33 are used to denote the Hamaker 

constants of materials 1, 2 and 3, respectively, in a vacuum. Eq. (2) was proposed to 

obtain an approximate value of A123 
266.  

  123 11 22 33 22A A A A A      (2)                                                                 

     The Hamaker constant for water in vacuum (A22) is 5.010-20 J.348 The Hamaker 

constant for P. multimicronucleatum (A33) has not been reported in the literature, and thus 

an estimate must be made. The Hamaker constants for other unicellular microbial 

organisms were reported to range from 4.1310-20 to 8.0410-20 J,349 with a mean value 

of 6.810-20 J, which was used in our study. 

Table 6.5. The Hamaker constants for the particle-particle interaction in water (A121) and 

for the particle-cell interaction in water (A123) 

Tested materials A121 (10-20 J) A123 (10-21 J) 
nAl2O3 3.67 a 7.12 
nCeO2 5.57 b 8.77 
nSiO2 1.02 a 3.75 
nZnO 1.89 a 5.11 
nCuO 3.5 * 6.95 
nFe2O3 5.4 c 8.64 
nTiO2 0.35 d 2.20 

* The Hamaker constant for CuO was not found in the literature. Because most reported A121 
values for metal oxides fell into the range of 16 10-20 J, we used the mean value 3.510-20 J as 
the A121 for CuO. 
References: aBergström, 1997;350 bKarimian and Babaluo, 2007;252 cAmal, 1990;351 

dGómez-Merino et al., 2007;352 eMa, 2010.353 
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 The EDL repulsive energy (VEDL) of NP-cell membrane interaction is given by 

Eqs. (3a-c) 251.  
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where n is the concentration of electrolytes; k is the Boltzmann constant; T is absolute 

temperature; zi is the valency of the ith ion; e is unit charge; ε0 is the vacuum permittivity; 

ε is the relative permittivity of water; NA is Avogadro’s number; ψSi is the surface 

potential of NPs and cell in an aqueous medium, which can be calculated from EPMs of 

NPs (UE), the solution viscosity () and permittivity (εε0) of water by the 

Smoluchowski’s equation: ψSi=(UE )/(εε0);
254 κ-1

 is the Debye length; I is the ionic 

strength (M), I=0.5·ΣciZi
2, where ci is the molar concentration of one species of ions (i). 

Different EDL energy expressions exist for different types of electrolytes 254. However, 

Dryl’s solution is a complex mixture composed of 1-1, 1-2, 2-1, and 1-3 electrolytes, and 

thus an exact analytical expression was not obtained. We instead simplified the system 

and used Eqs. (3a-c), which was derived for a 1-1 electrolyte, to calculate the VEDL. Using 

different energy expressions might change the absolute values of the results, but the 

relative magnitude of the EDL energy among different NP systems would not change.   

 The NP-cell membrane interaction energy was calculated according to Eqs. (1) 

and (3), and the net interaction energy profiles were plotted in Figure 6.5. 

Physicochemical properties of NPs, such as particle size, surface charge, and the 

Hamaker constant, govern the interaction energy of NPs with cell surface. The magnitude 

of energy barrier, obtained from Figure 6.5, was then tabulated in Table 6.3. The 
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magnitude of energy barrier of each NP with cell membrane increases as follows: nCuO 

< nFe2O3 < nCeO2 < nZnO < nSiO2 < nTiO2 < nAl2O3. 
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Figure 6.5. Net interaction energy profiles between NPs and P. multimicronucleatum. 

6.4.4. Correlation between the interaction energy and NP toxicity and underlying 

mechanisms 

 We compared the relationship between the magnitude of energy barrier and the 

48-h LC50 in Figure 6.6, which shows that the 48-h LC50 increased linearly (note the log-

scale of the Y axis) with increasing energy barrier magnitude, as fitted with the least 

squares regression method. Depending on the magnitude of energy barrier, three zones 

can be distinctly divided in our case. The first zone, in which the magnitude of energy 

barrier is close to 0 and 48-h LC50 values were smaller than 1 mg/L, included nFe2O3 and 

nCuO. The second zone, which included nCeO2, nZnO, and nSiO2, had 48-h LC50 values 
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larger than 100 mg/L but smaller than 2000 mg/L. The magnitude of energy barrier was 

ca. 10 kT. The third zone, which included nTiO2 and nAl2O3, had 48-h LC50 values larger 

than 5000 mg/L, and the magnitude of energy barrier was larger than 20 kT. With atomic 

force microscopy (AFM), we examined three or more NP-treated P. multimicronucleatum 

cell surfaces for nCuO, nSiO2 and nTiO2, which respectively belonged to zones 1, 2 and 

3. Representative images of NP-treated P. multimicronucleatum cells are shown in Figure 

6.7. Clearly, many particles or aggregates were observed on P. multimicronucleatum after 

exposure to nCuO. However, on the surface of nSiO2–treated P. multimicronucleatum, 

less particles were observed, while there was almost no particles observed on the surface 

of nTiO2–treated cells. Since weakly associated-NPs were very likely washed away 

during the four-times washing cycles with DI water, these AFM results suggested that 

nCuO particles were more strongly associated with the cell surface relative to the other 

two NPs, which was consistent with the theoretical analysis on interaction energy barrier. 

In addition, we noticed that a number of previous studies have compared the toxicity of 

the same type of NPs in different sizes or with different surface charges 139, 141, 317, 322, 323, 

325, 330, 354-356. The reported results were consistent with the finding of the current study, 

namely, NPs with lower interaction energy barrier with the cell surface probably induced 

more severe cytotoxicity. We are investigating the toxicity of same type of NPs with 

different sizes and surface charges to Paramecium, which will make up an interesting 

follow-up analysis.     
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Figure 6.6. Relationship of the magnitude of energy barrier and the 48-h LC50 of metal 

oxide NPs to P. multimicronucleatum. The dashed line represents the linear regression (y 

= 271.1x-843.4, R2=0.9470). 
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Figure 6.7. AFM images of P. multimicronucleatum. (a) Untreated P. 

multimicronucleatum; (b) P. multimicronucleatum treated with nCuO of 0.5 mg/L; (c) P. 

multimicronucleatum treated with nSiO2 of 100 mg/L; (d) P. multimicronucleatum 

treated with nTiO2 of 100 mg/L. Black arrows indicate the location of NPs on the cell 

surface. 

 Although the magnitude of energy barrier is suitable for evaluating the strength of 

interfacial interactions between NPs and cell surface, it does not give a direct measure of 

the extent of NP’s contact or association with the cell surface. Does a lower energy 

barrier imply that more NPs will associate with the cell surface? To answer this question, 

we evaluated the adsorption of NPs onto P. multimicronucleatum membrane on the basis 

of the DLVO and interfacial force boundary layer (IFBL) theories 354. Given in Eqs. (4) 

and (5), the adsorption rate can be calculated with the model: 

a w

d
k C

dt


    (4) 

    
0

1 / exp / 1
IFBLa h TOT

Hh h

D
k

R h V h kT dh








   

  (5) 

where in Eq. (4) d/dt is the rate of NPs’ adsorption onto the cell surface in adsorbed 

number per unit surface area per time. Cw, the effective wall concentration of NPs, is the 

average local particle concentration within the IFBL. ka is the adsorption rate constant, 

which is expressed as in Eq. (5). D is the diffusion coefficient of bulk NPs, IFBL is the 

thickness of the interfacial force boundary layer, RH is the hydrodynamic radius of NPs, h 

is the separation distance between the interacting surfaces, k is the Boltzmann constant, T 

is the absolute temperature, and the VTOT is the total interaction energy determined from 

DLVO theory. The calculation of VTOT follows the same equations as that in the 

calculation of interaction energy barrier.  



 98

 The experimental determination of Cw is extremely difficult 354. Since Cw is much 

less than Cb, with the same bulk concentration, the greater adsorption rate constant 

correspond to higher adsorption rate. Thus, we directly compared the adsorption rate 

constant with the magnitude of energy barrier, which was plotted in Figure 6.8. A 

significant inversely exponential relationship is observed, indicating that a lower energy 

barrier results in faster adsorption of NPs to cell membrane and thus more NPs contacting 

the cell surface. 
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Figure 6.8. The adsorption rate constant of NPs onto Paramecium had an inverse 

exponential relation with the magnitude of interaction energy barrier.   

 NPs on the cell surface (cell wall or cell membrane) can induce physical and 

chemical damages to the cell, which may result in death of the cell 137. Because NPs 

possess numerous edges, defects, and other reactive sites 138, they may directly inflict 

physical damage to cell membranes. In addition, for the NPs that released ions, their 

adsorption on cell surface probably increased local ion concentrations and resulted in 

toxic effects. Moreover, NPs may generate transient holes in the cell membrane during 

the uptake process and then induce a loss of membrane polarization and/or the leakage of 
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cell contents, which can result in cell death 91, 92, 137, 140. NPs also likely perturb membrane 

potential and result in increased intracellular Ca2+ concentration, which in turn modulates 

cellular signaling pathways 141. The optical microscope was used to observe the 

morphology of the P. multimicronucleatum cells treated with NPs. Membrane disruption 

of P. multimicronucleatum was observed after treatment with nCuO and nSiO2 (shown in 

Figure 6.9). 

(a) (b)

(c)

 

Figure 6.9. Images of P. multimicronucleatum under optical microscope. (a) Untreated 

normal P. multimicronucleatum; (b) P. multimicronucleatum treated with nCuO of 1 

mg/L for 24 h; (c) P. multimicronucleatum cells treated with nSiO2 of 500 mg/L for 24 h. 
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6.5. Conclusion 

 This study has investigated the toxicity of seven metal oxide NPs to Paramecium, 

which filled in a gap in determining the NP toxicity using this important aquatic 

organism. Although many mechanisms may contribute to the toxicity of NPs, the 

importance of interfacial interactions of these NPs with cell surface was stressed in this 

study. The results presented here showed that metal oxide NPs with strong association 

with the cell surface tended to induce more severe cytotoxicity. The evaluation of the 

interfacial interaction between metal oxide NPs and the cell surface is thus of 

significance in the exploration of NP toxicity mechanisms. It is also implied that the 

modification of the physicochemical properties of NPs (e.g. surface charge and size) 

would be an effective approach for regulating the cytotoxicity of metal oxide NPs. 

Finally, although the current study was conducted on metal oxide NPs and unicellular 

organisms, there might be a possibility to extend the findings to other NPs and 

multicellular organisms, which is under further investigation in our lab.        
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  CHAPTER 7 

BINDING MECHANISMS OF QUANTUM DOTS WITH DNA: A 

SINGLE-MOLECULE IMAGING STUDY  

 

7.1. Abstract 

 The interaction between NPs and DNA is of significance for the toxicological 

implication research of NPs. In this study, a single-molecule imaging technique based on 

atomic force microscopy (AFM) was employed to probe the NPs-DNA interactions with 

quantum dots (QDs) as model NPs. Reproducible high-quality images of single DNA 

molecules in the air and in liquids were acquired on mica by optimizing sample 

preparation conditions. Furthermore, the binding of QDs to DNA was explored using 

AFM. DNA concentration was found to be a key factor influencing AFM imaging 

quality. The optimal DNA concentration for imaging DNA molecules in the air and in 

liquids was approximately 2.5 and 0.25 g/mL, respectively. For imaging DNA binding 

with QDs in the air and in liquids, the optimal DNA concentration was respectively 0.5 

and 0.25 g/mL. In the presence of QDs, DNA conformation was altered with the 

formation of DNA condensates. Finally, the fine conformation of QDs-DNA binding 

sites was examined for analyzing the binding mechanisms. This work is anticipated to 

advance the understanding of NP-DNA interactions and benefit the toxicity study of NPs 

induced by the direct NP-DNA interaction. 

7.2. Introduction 

 In the past decade, nanotechnology has achieved tremendous progress in 

biomedical areas through exploiting unique properties of NPs (NPs) 238. Of particular 

interest are small NPs (e.g. quantum dots and gold NPs) in the size range of 1-10 nm, 



 102

owing to their size-dependent properties and similar dimensions with biological 

macromolecules 238. The similarity stimulates interests for the applications of NPs in 

medical diagnostics, bio-labeling and bio-imaging, therapy and drug delivery by 

combining nanotechnology with biology and medicine 238. These NPs were often 

conjugated with DNA and other biomolecules for acquiring biocompatibility, molecular 

recognition capability and other new functions 357, 358. Understanding the structure of 

those bioconjugates is important for understanding their stability and functions 359-361.  

 On the other hand, concerns regarding the toxicity of those small NPs have been 

raised in view of their unique properties and potential routine applications 362, 363. The 

extraordinarily small size of those NPs favors their entry into cells and may subsequently 

result in adverse effects for intracellular structures 355, 364. A likely cytotoxicity 

mechanism of NPs is through their interactions with DNA molecules, which possibly 

causes DNA deformation and adversely affects the stability and biological functions of 

DNA 365-369. It is thus of significance to probe the interaction of NPs and DNA for both 

understanding the structure of NPs-DNA bioconjugates and evaluating the genetic effect 

of NPs. To this end, a single-molecule method based on atomic force microscopy (AFM) 

is employed for direct imaging of NPs-DNA interactions. 

 AFM has been widely used to image DNA molecules and study DNA-protein 

interactions 370-373. Besides three-dimensional visualization, an apparent advantage of 

AFM over many other high-resolution imaging microscopes (e.g., electron microscopes) 

is the possibility of observing samples in liquid, which makes it exceptionally suitable for 

biological molecules imaging 374.  Mica is the commonly used substrate for DNA studies 

in solutions because DNA can retain its native-like conformation on mica 375. Since both 

DNA and mica surfaces carry negative charges under physiological conditions, the 

binding of DNA onto mica was facilitated either with the aid of divalent ions (e.g. Mg2+ 

and Ni2+) 376 or by modifying mica surface (e.g. 3-aminopropyltriethoxysilane (APTES) 

modified mica) 377.  Many studies have explored the interaction of proteins and DNA 
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using AFM 371, 378, 379, but very few attempted to address that between NPs and DNA 380, 

381; to our knowledge, no studies have been done for probing the interaction of NPs and 

DNA in liquids with AFM.  

 In this study, we employed semiconductor NPs, also known as quantum dots 

(QDs), as model small NP, because QDs have unique photophysical properties and thus 

are especially promising in biological sensing, imaging and detection 359, 382-384. We 

firstly acquired reproducible high-quality DNA images in the air and in liquids with 

AFM, by thoroughly examining different sample preparation methods. Thereafter, we 

explored the binding of QDs to DNA in the air and in liquids using AFM. The current 

study is anticipated to benefit the future investigation of the structure of NPs-DNA 

bioconjugates, and the interaction of NPs and DNA and thus the genetic effect of NPs.  

7.3. Materials and methods 

7.3.1. Quantum dots 

 Water-soluble CdSe/ZnS core/shell QDs coated with 

polydiallydimethylammonium chloride (PDDA) were purchased from Ocean NanoTech, 

LLC. Size and morphology of QDs were characterized using dynamic light scattering 

(DLS), high-resolution transmission electron microscopy (HR-TEM) and AFM.  

7.3.2. DNA 

 A SacI-linearized plasmid DNA pGEMEX-1 of 3993 basepairs (Promega 

Corporation, Madison, WI) was diluted to 5 g/mL with sterile TE buffer (10 mM 

Tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl), pH 7.4, 1 mM 

ethylenediaminetetraacetic acid (EDTA)) (Fisher Scientific Co., USA) and with 10 mM 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer (Fisher Scientific 

Co., USA) for imaging in the air and in liquids, respectively.  DNA dilutions were stored 

in a 4C refrigerator for no longer than two months to maintain the intact structure. 
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7.3.3. Substrate 

 Unmodified mica (Highest grade V1, Ted Pella, Redding, CA) was glued to steel 

discs (Ted Pella, Redding, CA) with epoxy resin (Loctite, Rocky Hill, CT) and cleaved 

with adhesive tape immediately before use. APTES (TCI America, Portland, OR)-

modified mica was prepared according to previous studies 385, 386. Briefly, freshly cleaved 

mica was left in the APTES atmosphere generated by a small pool of APTES solution at 

the bottom of a glass desiccator for 2 h. Our preliminary results showed that the mica 

surface after treatment with APTES might become bumpy if the preparation is not 

delicately controlled. Hence for the sake of convenience, the unmodified mica with the 

aid of divalent ions was recommended for imaging DNA with AFM.  

7.3.4. Sample preparation 

 DNA immobilization on mica.  For imaging in the air, DNA stock solution was 

diluted to 2.5 g/mL with sterile TE buffer. MgCl2 (ACS grade, Fisher Scientific Co., 

USA) was added to a final concentration of 5 mM. 2.5 L of the DNA solution was 

deposited on a freshly cleaved mica substrate that was placed in a small covered Petri 

dish, and incubated for 30 minutes. The edge of the droplet might dry on the surface, but 

we only imaged a very small area of the central part of the droplet, which was far away 

from the edge and not affected by the drying. The mica surface was rinsed thoroughly 

with MilliQ pure water and then blown dry with ultrapure nitrogen gas. For imaging in 

the liquid, DNA stock was diluted to 0.25 µg/mL with sterial 10 mM HEPES buffer (pH 

7.4). MgCl2 was added to a final concentration of 4 mM. 5 L of the DNA solution was 

spotted onto a freshly cleaved mica substrate and incubated for 30 minutes. The sample 

was then rinsed with 1 mL of DNA imaging buffer (10 mM HEPES pH 7.4, 4 mM 

MgCl2, 2 mM NiCl2 (ACS grade, Boston Bioproducts, Worcester, MA)).  Thereafter, the 

sample was immediately fixed onto a liquid cell sample plate, which was further filled 

with 500 L DNA imaging buffer. These conditions were found to be optimal for 
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acquiring high-quality DNA images. Optimization involved varying the DNA 

concentration (0.1-5 µg/mL), incubation time (5-60 min), deposition volume (1-10 L), 

MgCl2 concentration (1-10 mM), and NiCl2 concentration (1-10 mM).   

 Binding of QDs to DNA. DNA of final concentration 0.5 g/mL and 0.25 g/mL, 

respectively for imaging in the air and in liquids, was mixed with QDs at a molar ratio of 

1:5 and incubated at 37 C for 1 h. The buffer solutions were the same as those used in 

the absence of QDs. 2.5 L of the mixture was applied to the mica substrates following 

the same procedures as above-mentioned DNA immobilization methods, except that the 

incubation time on the substrate was 45 min to achieve an optimal imaging quality.  

7.3.5. AFM imaging 

 Images were collected at room temperature in the air or in the liquid using an 

Agilent 5500 Molecular Imaging AFM in the acoustic alternating current (AAC) mode. 

Rectangular silicon cantilevers and triangular silicon nitride cantilevers (BudgetSensors, 

Bulgaria) were used for imaging in the air and in the liquid, respectively 371. The silicon 

cantilevers have a force constant of approximately 2–5 N/m and a tip radius smaller than 

10 nm, and the silicon nitride cantilevers have a force constant of approximately 0.27 

N/m and a tip radius smaller than 15 nm. For imaging in the liquid, it was helpful for 

improving image quality by manually engage the tip to sample until the trace and retrace 

signals are highly correlated. The deflection amplitude was 2.5 V and the scanning speed 

was 1-2 m/s. Images were processed by flattening to remove the background slope with 

the Picoview software. 

7.4. Results and discussion 

7.4.1. Characterization of QDs 

 HR-TEM image (Figure 7.1a) showed that QDs were close to spherical in shape 

and had a relatively uniform size distribution. The diameter of QDs was approximately 

3.4 ± 0.5 nm, based on the measurement of randomly selected 30 particles. AFM image, 
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presented in Figure 7.1b, showed that the diameter of QDs was in a range of 15-35 nm, 

remarkably larger than TEM-size, which is reasonable due to tip-induced broadening 

effect 387. The heights of QDs fell into a range of 3-5 nm (see the inset representative 

cross-sectional profile), which was close to the TEM-measured size. The particle size 

distribution of QDs in buffer was measured with DLS, which indicated the number-

weighted average hydrodynamic diameter of QDs were approximately 5.4 nm with a 

relatively uniform size distribution. The isoelectric point of QDs was 10.8. At pH 7.4, as 

used in the current AFM study, the QDs were positively-charged and stable, and particle 

aggregation was not observed.  
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Figure 7.1. (A) HR-TEM image of PDDA-coated QDs. (B) AFM image of PDDA-coated 

QDs. The inset in (B) is the height profile of the cross-section marked with white dashed 

line. 

7.4.2. Imaging DNA molecules in the air and in liquids with AFM 

 Figure 7.2a shows a typical AFM topographical image of SacI-linearized 

pGEMEX-1 DNA molecules immobilized by Mg2+ on mica in the air. Single DNA 

molecules are clearly visualized. The contour length of DNA was determined to be 

1414.8 ± 38.9 nm based on the measurement of randomly-selected 50 DNA molecules, 
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which was quite close to the theoretical length for B-form DNA (3993 kbp and 0.34 

nm/basepair). The heights of the DNA molecules were in a range of 0.7–1.2 nm by 

analyzing the cross-section topographical profiles (shown in Figure 7.2c); the height of 

DNA is much smaller than the expected value of 2 nm, which may result from the elastic 

deformation of DNA molecules when the tip tapped on DNA 388. Similar to other studies 

389, the width of DNA molecules was approximately 16–22 nm, which is much greater 

than 2 nm (theoretical width of double-stranded DNA) probably due to the tip-induced 

broadening effect. 
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Figure 7.2. AFM topographical images of DNA in the air (A) and in liquids (B).  (C, D) 

Height profiles of cross-sections marked with white dashed lines in (A) and (B), 

respectively. 
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 One major advantage of AFM is that it can image biological molecules in 

physiologically relevant buffers, which benefits the direct observation of some in situ 

biological processes 376, 390-392. Figure 7.2b showed the AFM images of DNA molecules 

immobilized by Mg2+ and Ni2+ on mica in liquids. The height of DNA molecules in liquid 

was in a range of 1.2–1.8 nm, which was larger than that in the air. The reason was 

probably that the liquid mitigated the compression of the DNA by the tip 393. Appropriate 

DNA concentration (0.25 µg/mL) was of primary significance for imaging DNA in 

liquids, as high concentration resulted in abnormal DNA conformation.  

7.4.3. Imaging the binding of QDs to DNA in the air and in liquids with AFM 

 AFM images of the binding of QDs to DNA immobilized by Mg2+ on mica in the 

air and immobilized by Mg2+ and Ni2+ on mica in liquids were shown in Figure 7.3a and 

3b, respectively. It is noted here that the binding of QDs onto DNA consists of both 

specific and non-specific bindings 394, 395; namely, all of the QDs associated with DNA 

molecules were counted as bound QDs. It is clearly visualized that many QDs bind onto 

DNA molecules as indicated by the white dots. The cross-section topographical profiles 

in Figure 7.3d and 7.3e show that the height of the binding site is approximately 3-4 nm. 

Phase images were simultaneously acquired along with the topography images. Relying 

on the phase shift of the cantilever oscillation relative to the driving signal, which is 

influenced by the material properties, e.g. stiffness, adhesion and other viscoelastic 

parameters 392, 396, the phase imaging could benefit for differentiating materials in the 

same image. As we see in Figure 7.3c, QD particles are apparently differentiated from 

DNA molecules by color. Phase images also likely have a higher signal-to-noise ratio 

over the topographical images, especially at lower imaging forces and less optimized 

conditions, e.g. fast scanning rate. As shown in Figure 7.4, the phase image shows better 

contrast than topography image at a fast scanning rate 397.  
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Figure 7.3. (A) AFM topographical image of QDs binding on DNA in air. (B, C) AFM 

topographical and corresponding phase images of QDs binding on DNA in liquid, 

respectively. Black arrows indicate representative binding sites of QDs on DNA. (D, E) 

Height profiles of cross-sections marked with white dashed lines in (A) and (B), 

respectively. 

 After interacting with QDs, DNA conformation probably changed; as we see in 

Figure 7.5, DNA condensations were generated by QDs, which likely further affect the 

regulation of many cellular processes involving DNA 398-400. Seeming DNA loops were 

also observed with QDs bound on the crossing points. It is challenging to determine 

whether those DNA loops were caused by QDs, because similar “loop-like” DNA 

conformations were also observed in the absence of QDs (shown in Figure 7.2). 

Nevertheless, we cannot rule out the possibility that the presence of QDs resulted in some 

DNA loops, which requires further investigation and validation.  
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(A) (B)

 

Figure 7.4. (a) and (b) are AFM topographical and corresponding phase images of DNA 

binding with QDs in the liquid, respectively. Green arrows indicated representative 

binding sites of QDs on DNA. 

A B

200 nm 200 nm  

Figure 7.5. AFM topographical images illustrating the change of DNA conformation after 

binding with QDs in air (A) and liquids (B). DNA condensates and DNA loops were 

observed after exposure to QDs. Green arrows indicate DNA condensations. Black 

arrows indicate apparent DNA loops that may be caused by QDs. 
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7.4.4. Binding mechanisms of QDs to DNA 

 The high-quality AFM imaging in liquids allows us to examine the fine 

conformation of QDs-DNA binding sites. From the representative images of binding sites 

shown in Figure 7.6, we found that QDs may bind onto DNA via four mechanisms: (1) 

QDs externally bind to DNA backbones; (2) DNA wraps around a QD; (3) QDs 

seemingly generate DNA loops by simultaneously binding to two different sites on a 

DNA molecule; (4) QDs form a bridge to connect two or more DNA molecules together. 

Those binding mechanisms were also observed in a previous study 381. The binding of 

QDs onto DNA resulted from the high affinity of QDs to DNA. At pH 7.4, PDDA-coated 

QDs carry positive charge while DNA molecules bear negative charge due to the 

phosphate group (PO4¯) in DNA backbone. Both electrostatic and van der Waals 

interactions between QDs and DNA are attractive, which favor the attachment of QDs 

onto DNA.     
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Figure 7.6. Representative images illustrating the binding sites of QDs on DNA. (A) QDs 

externally bind to the DNA backbone. (B) DNA wraps around a QD. (C) QDs seemingly 
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induce DNA looping by simultaneously binding to two different sites on a DNA 

molecule. (D) QDs connect two or more DNA molecules. In each panel, the left image 

shows the entire DNA molecule, the upper right image shows the “zoomed-in” binding 

site, and the bottom right figure shows the outline of binding sites. 

 We statistically examined over 300 DNA molecules to count the frequency of 

each binding mechanism. As shown in Figure 7.7, approximately 63% of DNA-QDs 

interactions belong to mechanism (1), namely, QDs directly binding onto the DNA 

backbone. In addition, approximately 16% of QDs binding to DNA would bridge two or 

more DNA molecules. The remaining 20% almost equally belong to mechanism (2) and 

(3).  
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Figure 7.7. Frequency of each binding mechanism. 

 To explore the underlying fundamentals on the unequal frequency of each binding 

mechanism, we further computed and analyzed the interaction energy between QDs and 

DNA molecules. As shown in the net energy profiles (Figure 7.8), no energy barrier 

exists for the interaction of QDs and DNA, indicating that the binding of QDs to the 

DNA backbone (i.e. mechanism (1)) was thermodynamically favorable. On the contrary, 

all of the other three mechanisms involve the approach of one section of DNA to another, 
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which can be viewed as two negatively charged cylinders approaching each other, as the 

double-stranded DNA is a rigid polyelectrolyte with a persistent length of approximately 

50 nm 401, remarkably larger than the separation distance between neighboring charges (~ 

0.17 nm) 402. The net interaction energy profiles for two parallel and crossed DNA 

molecules were presented in Figure 7.8, from which we can see that an energy barrier 

exists between two interacting DNA molecules regardless of their configuration. Hence 

the QDs-DNA configurations formed by mechanisms (2)-(4) is less energetically 

favorable than by mechanism (1), which is consistent with the experimental observations 

that mechanism (1) dominated the QDs-DNA binding mechanisms. 
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Figure 7.8. Net interaction energy profiles for QDs and DNA, two parallel DNA 

molecules, and two crossed DNA molecules. 
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4. Conclusion 

 This study presented detailed sample preparation methods for acquiring high-

quality AFM images of DNA and DNA binding with QDs in the air and in liquids. After 

interacting with QDs, DNA conformation would change with the formation of DNA 

condensates. By examining the conformation of QDs-DNA binding sites, four binding 

mechanisms of QDs with DNA were proposed, which could be helpful for investigating 

the genetic effect of QDs 381. This single-molecule imaging technique can be further 

extended to explore the binding of other NPs on DNA and the structure of NP-DNA 

bioconjugates, which likely benefit the research on both the implication and application 

studies of NPs.  
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CHAPTER 8 

PROBING BINDING CHARACTERISTICS OF QUANTUM DOTS 

WITH DNA: A NOVEL APPROACH USING ATOMIC FORCE 

MICROSOPY  

 

8.1. Abstract 

 Understanding the characteristics of NP-to-DNA binding is important for the 

toxicological assessment of NPs. In this study we employed a single-molecule imaging 

technique, atomic force microscopy (AFM), to determine the characteristics of NP-to-

DNA binding, including the binding kinetics, isotherm, and specificity. We demonstrated 

the capability of this AFM-based approach using quantum dots (QDs) as a model NP. 

The binding kinetics and binding isotherm of QDs to DNA were investigated by 

examining a large number of single DNA molecules after exposure to QDs using AFM; 

the models that we developed fit the experimental results well. According to the binding 

kinetics model, the average number of bound QDs per DNA molecule at equilibrium is 

approximately five, and the binding rate constant is approximately 0.35 s-1. Furthermore, 

from the binding isotherm the equilibrium binding constant and maximum number of 

QDs bound to DNA were determined to be approximately 0.23 nM-1 and 14, respectively. 

Finally, by examining the position of QDs on DNA molecules, i.e., the distance from a 

QD to the nearest DNA terminus, we found that the binding of QDs to DNA is 

nonspecific.  
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8.2. Introduction 

Owing to their unique physical, chemical, and mechanical properties, NPs (NPs) 

have been used, or are being evaluated for use, in many fields 403. In particular, the 

integration of nanotechnology with biology and medicine means that a diverse array of 

NPs, such as quantum dots (QDs), gold NPs, and iron oxide NPs, may be used in 

applications including drug delivery, biolabeling, imaging and tracking, and medical 

diagnostics 404-410.  However, concerns regarding the toxicity of NPs have been raised in 

view of their unique properties and potential routine applications 362, 363. The delivery of 

NPs into the human body for biomedical uses very likely results in NP entry into cells, 

which could subsequently cause damage to intracellular structures 411. One of the primary 

mechanisms of NP toxicity is through binding to and interaction with DNA molecules, 

which may induce DNA deformation and adversely affect the normal biological functions 

of DNA 365-369, 412, 413. Understanding the binding of NPs to DNA is hence essential for 

determining the toxicity mechanisms of NPs.  

The primary thermodynamic properties used in understanding DNA–NP 

interactions are binding constants and binding specificities. Several macroscopic 

methods, such as spectroscopic 414, 415 and electrochemical 416 techniques, have been 

employed to investigate these properties. Although powerful, these methods cannot 

determine the binding affinity of NPs for specific sites on DNA and are limited by the 

assumption that the change in an instrumental signal, such as absorbance, is directly 

proportional to the extent of binding 395.  

To overcome the limitations of these macroscopic methods, we proposed to use 

atomic force microscopy (AFM) to study the DNA-NP interaction by directly examining 

single molecules. Using AFM, it is possible to determine the extent of NP binding to 

DNA as well as binding location on the DNA molecule. The binding characteristics 

including kinetics, the isotherm, and the specificity can be hence determined. Although 

this approach has been used in DNA-protein interactions 370-373, 395,  to our knowledge, 
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this study is the first attempt to apply it to the DNA-NP interaction. In this study, we used 

QDs as a model NP because they have numerous potential applications in biology and 

medicine as imaging agents 359, 382-384. We first developed models to describe the binding 

kinetics and binding isotherm of NPs with DNA. The models were experimentally 

validated using data acquired from AFM. Essentially, AFM yielded reproducible, high-

quality images of the binding of QDs to DNA, and statistical analyses were performed on 

data from many individual DNA molecules, namely, the number and the position of QDs 

bound on each DNA molecule under different experimental conditions (e.g., varied 

incubation time and initial concentration of QDs); in this way we determined the DNA–

QD binding constants and specificities for different conditions. The current study is 

anticipated to benefit future investigations of the interaction of NPs and DNA and thus 

the toxicological assessment of NPs.  

8.3. Theory 

8.3.1. Binding kinetics 

 A DNA molecule may bind with 0, 1, 2,  i,  m NPs; corresponding 

concentrations of each class of DNA molecules (each class has a particular number of 

NPs bound to it) are denoted as [n0], [n1], [n2],  [ni],  [nm]. On the basis of von 

Smoluchowski’s coagulation equation 245, ith-class DNA molecules can be formed from 

the binding or absorption of (i–1)th-class DNA with an NP as well as from the 

dissociation or desorption of an NP from (i+1)th-class DNA; the loss of ith-class DNA 

stems from the binding or adsorption of an NP onto ith-class DNA as well as from the 

dissociation or desorption of an NP from ith-class DNA. Using ka and kd to represent the 

adsorption and desorption rate constants, respectively, we can determine the 

concentration change rate of each class of DNA molecules with the following 

expressions: 
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where [NPfree] represents the concentration of free or unbound NPs. Provided the 

adsorption and desorption rate constants for all classes of DNA molecules are the same, 

we can obtain the concentration change rate of the total absorbed/bound NPs on DNA by 

multiplying the ith term in Eq. (1) (excluding the 1st term) by the corresponding reference 

number i and then summing those terms:  

                    1 2 3 0 1 2 1 2 32 3 a free d

d
n n n k NP n n n k n n n

dt
                  (2) 

            0bind a tot bind d

d
NP k NP NP DNA k DNA n

dt
      (3) 

where [NPtot], [NPfree], and [NPbind] represent the total particle concentration, free particle 

concentration, and concentration of NPs bound on DNA, respectively. [DNA] represents 

the total DNA concentration.  

 The change in the concentration of DNA without any bound NPs ([n0]) is 

determined in Eq. (4) by solving the system of first-order differential equations in Eq. (1):  

    31 2
0 0 1 2 3+ + + + + ma t a ta t a t

mn DNA c c e c e c e c e      (4) 

 However, it is a formidable task to obtain the exact expression for all of the 

constants c0, c1, cm, a1, a2,  am. Hence, we directly substituted Eq. (4) into Eq. (3) to 

obtain Eq. (5):  
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    By solving Eq. (5), we can determine [NPbind]: 

       
31 2 0

0 1 2 3

1
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k
     

         (6) 

where a1, a2,  am, b0, b1,  bm are constants. Eq. (6) is actually a sum of exponentials; 

from the standpoint of data fitting, it can be reduced to a sum of two exponential 

functions, as data conforming to the sum of exponentials are fitted quite well by that type 

of exponential equation 417.   

    Furthermore, by dividing the concentration of bound NPs by the concentration of 

DNA, we can obtain the average number of NPs bound per DNA molecule, which is 

given by Eq. (7): 

 
     1 2

1 21 1bind k t k tNP
C e C e

DNA
       (7) 

where C1, C2, k1, and k2 are fitting constants accounting for the roles of adsorption and 

desorption. 

8.3.2. Binding isotherm 

 A single DNA molecule contains a number of binding sites, S. The “reaction” 

takes place through this mechanism: S + NP  S  NP. The equilibrium binding constant 

K is thus given by Eq. (8) 418:  

 
  
S NP

K
S NP


   (8) 

where [S], [NP], and [S – NP] represent the number of empty sites, the number 

concentration of NPs, and the number of occupied sites, respectively.  

 The number of total binding sites [S0] is the sum of the numbers of empty sites [S] 

and occupied sites [S – NP]:  
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 Because [S  NP]/[S0] = N/Nmax, where N and Nmax are the binding number and the 

maximum number of NPs bound per DNA molecule, respectively, we can obtain Eq. 

(11), which is actually a Langmuir-type adsorption equation: 
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N

K NP K NP
 

 
   (11) 

8.4. Materials and methods 

8.4.1. DNA and QDs 

 SacI-linearized plasmid DNA pGEMEX-1 (Promega Corporation, Madison, WI), 

which has 3993 base pairs, was diluted to 2 nM with sterile 10 mM Tris HCl (pH 7.4) and 

1 mM EDTA (TE) buffer (Fisher Scientific Co., USA).  AFM images showed that the 

DNA can be stored in a 4C refrigerator for two months without loss of structural 

integrity. 

 Water-soluble CdSe/ZnS core/shell QDs coated with 

polydiallydimethylammonium chloride (PDDA) were purchased from Ocean NanoTech, 

LLC. In our previous studies the QDs were thoroughly characterized using dynamic light 

scattering (DLS), high-resolution transmission electron microscopy (HR-TEM), Fourier 

transform infrared spectroscopy (FTIR), and AFM 333, 413.  

8.4.2. AFM imaging and analysis 

 DNA stock solutions were diluted to 0.4 nM with sterile TE buffer. MgCl2 was 

added to a final concentration of 5 mM. In the binding kinetics study, 0.4 nM DNA 

samples were incubated with 4 nM of QDs at room temperature for 0.5, 1, 3, 4, 7, 12 and 

20 h. In the binding isotherm study, 0.4 nM DNA samples were mixed with QDs at molar 
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ratios of 1:1, 1:2.5, 1:5, 1:7.5, 1:10, 1:15, and 1:20 and then incubated at room 

temperature for 12 h. In both binding kinetics and binding isotherm studies, 2.5 L of the 

DNA-QD mixture was deposited on a freshly cleaved mica surface and incubated for 45 

minutes at room temperature. The mica surface was rinsed thoroughly with MilliQ water 

and blown dry with ultrapure nitrogen gas, after which the sample was ready for AFM 

imaging.  

 Images were collected at room temperature in air using an Agilent 5500 

Molecular Imaging AFM in acoustic alternating current (AAC) mode. Rectangular 

silicon cantilevers (BudgetSensors, Bulgaria) with a force constant of approximately 2–5 

N/m were used for imaging.371 The deflection amplitude was 2.5 V, and the scanning 

speed was 1–2 m/s. Images were processed by flattening to remove the background 

slope with Picoview software.  

 For the statistical analysis of QDs bound to DNA, we counted only QDs that 

completely overlapped with the DNA and only DNA whose contour length was within 

the standard deviation of the DNA length, which was measured with ImageJ software 

(NIH).419 The average number of QDs bound per DNA molecule after different 

incubation times was determined by examining a large number of single molecules from 

at least three different DNA-QD samples prepared on mica (~150 total under each 

condition). A single binding isotherm was plotted by examining approximately 150 DNA 

molecules for each molar ratio of DNA to QDs from samples prepared in triplicate. 

Moreover, the number of DNA molecules in each class was counted under each 

experimental condition in both the binding kinetics and binding isotherm studies. These 

data were used to generate histograms, and the software SigmaPlot 10.0 was used to fit 

those histograms to a Gaussian distribution. Finally, we used ImageJ software to measure 

the distance of each bound QD on more than 500 molecules to the nearest DNA terminus 

to investigate whether QDs have a specific affinity to certain positions on DNA.    
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8.5. Results and discussion 

8.5.1. Binding kinetics of QDs to DNA 

 Representative AFM images of free DNA and DNA in the presence of QDs are 

presented in Figure 8.1. Clearly, some QDs are bound to DNA molecules, as indicated by 

the black arrows. By measuring 50 randomly selected DNA molecules, the contour length 

of the DNA was determined to be 1414.8 ± 38.9 nm. Thus, QDs might induce DNA 

condensation.413 Because it is impossible to measure the distance from the binding site to 

the DNA terminus in DNA condensates, we ignored such DNA molecules in the 

statistical measurement of distance. This should not have a significant impact on our 

statistical results because of the total DNA molecules, less than 10% are condensates. 

(a) (b)2.5

-0.8

-4.2

nm
3.0

-1.0

-5.0

nm

 

Figure 8.1. Representative AFM topographical images of (a) free DNA molecules and (b) 

QDs bound to DNA. Black arrows indicate representative sites of QD binding on DNA.  

 The average number of QDs bound per DNA molecule progressively increased 

with increasing incubation time until it finally reached a plateau indicating that the 

adsorption and desorption processes have reached equilibrium (Figure 8.2). The existence 

of this plateau, at which the concentration of bound QDs is far below that of total QDs, 

suggests that the adsorption of QDs onto DNA may not be irreversible and that 
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desorption can also occur. Eq. (7) was used to fit the experimental observations using the 

least squares method, which resulted in Eq. (12): 

 
     2.95 0.350.42 1 +4.77 1t tbind
NP

e e
DNA

       (12) 

 The correlation coefficient (R2) is 0.9883, indicating a good fit. We further 

decomposed Eq. (12) to the sum of the first and second exponential terms; the second 

term (  0.354.77 1 te ) is dominant while the first term (  2.950.42 1 te ) is nearly 

constant. Eq. (12) can be hence further approximated by 

     0.354.77 1 +0.42t

bind
NP DNA e  . Therefore, the average number of bound QDs at 

equilibrium is approximately five, and the rate constant is approximately 0.35 s-1. This is 

comparable to a previous binding kinetics study on protein-DNA interactions 420. 
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Figure 8.2. Experimental data and model fit for the kinetics of QDs binding to DNA 

molecules. The molar ratio of DNA to QDs is 1:10. The error bars represent the standard 
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deviation of the experimental data. The solid line in the figure is the model fit using Eq. 

(7), and the dashed lines represent the 95% confidence interval for the model prediction. 

 The number histograms for each class of DNA molecules at four different 

incubation times are presented in Figure 8.3. The histograms are well described by the 

Gaussian distribution, and the lines in the figure are the fits. The mean value (or location 

of the peak in those Gaussian fits) evolved from approximately 1 to 5 as the incubation 

time elongated from 0.5 h to 20 h, which was consistent with the aforementioned binding 

kinetics result. Also, the Gaussian distribution becomes broader over time, indicating that 

DNA molecules become more varied in terms of the number of QDs bound.  

Number of QDs bound per DNA molecule
0 1 2 3 4 5 6 7 8 9 10 11

C
ou

nt
s

0

20

40

60

80

0.5 h
3 h
7 h
20 h

 

Figure 8.3. Histograms of the number of each class of DNA molecules at four different 

incubation times. The solid, long dashed, short dashed, and dash-dotted lines are 

Gaussian distribution fits to the histograms for incubation times of 0.5, 3, 7, and 20 h, 

respectively. 
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8.5.2.  Binding isotherm for QDs to DNA 

 The binding of QDs to DNA was further examined using the binding isotherm 

(Figure 8.4), which characterizes the number of QDs per DNA molecule as a function of 

the free QD concentration. Based on the binding kinetics study discussed above, for 

isotherm development we selected the incubation time of 12 h, which was sufficient for 

the binding process to reach equilibrium. As the initial concentration of QDs increased 

from 0.4 to 8 nM, which corresponds to the DNA:QD molar ratio increasing from 1:1 to 

1:20, the average number of QDs bound to DNA increased from approximately 0.4 to 7. 

Eq. (11), the Langmuir-type equation, was used to fit the experimental data, resulting in 

Eq. (13): 

 
 

13.76

4.32

NP
N

NP



   (13) 

 The correlation coefficient (R2) is 0.9731, indicating a good fit. The maximum 

QD binding number per DNA molecule is approximately 14. The equilibrium binding 

constant K is approximately 0.23 nM-1, which is close to previously reported binding 

constants for the binding of proteins to DNA.421  

Concentration of free QDs (nM) 
0 1 2 3 4 5

N
u

m
b

er
 o

f 
Q

D
s 

b
ou

n
d

 
   

 p
er

 D
N

A
 m

ol
ec

u
le

0

2

4

6

8

10

Experimental data
Model fit
95% Confidence Band 

 



 126

Figure 8.4. Experimental data and model fit of the binding isotherm for QDs to DNA. 

The error bars represent the standard deviation of the experimental data. The solid line is 

the Langmuir-type model fit using Eq. (11), and the dashed lines represent the 95% 

confidence interval for the model prediction. 

 Figure 8.5 shows the number histograms for various classes of DNA molecules 

under different QD concentrations. The lines in the histograms are Gaussian distribution 

fits, which describe the data very well. As the DNA:QD molar ratio changed from 1:1 to 

1:20, the peak of the Gaussian distribution shifted from approximately 0 to 7; this is 

consistent with the average binding number data in Figure 8.4. Based on experimental 

observations, the maximum binding number for QDs on a single DNA molecule is 14, 

which agrees well with the theoretical prediction.  
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Figure 8.5. Histograms of the number of each class of DNA molecules under different 

molar ratios of DNA to QDs. The solid, long dashed, short dashed, and dash-dotted lines 

are Gaussian distribution fits to the histograms for the molar ratios 1:1, 1:5, 1:10, and 

1:20, respectively. 
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8.5.3.  Binding specificity of QDs to DNA 

 We further examined the positions of QDs on DNA to probe whether or not QDs 

have a specific affinity to certain sites on DNA. We defined the position of a QD as the 

ratio of the distance from its center to the closest DNA terminus to the contour length of 

the DNA, as the two DNA ends are indistinguishable in AFM images. After examining a 

large number of QDs (>500), position histograms were plotted with position ranging 

from 0 to 0.5 (Figure 8.6). Kolmogorov-Smirnov tests indicated that the position 

distribution conforms to a uniform distribution (p-value = 0.024) rather than a Gaussian 

distribution, and thus the binding of QDs to DNA is non-specific. This implies that 

binding specificity cannot explain the existence of a maximum binding number for QDs 

on a DNA molecule. We propose that the binding of a QD on DNA prevents another QD 

from binding to nearby positions owing to the repulsive electrostatic force between two 

positively charged QDs.  
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Figure 8.6. Histograms of the position of QDs on DNA. The distance of a bound QD to 

the DNA terminus is defined as the ratio of its distance to the closer DNA end to the 
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contour length of the whole DNA. The inset graph provides an example. In this case, the 

contour length of the DNA segment represented by the dotted line is obviously shorter 

than the segment of the DNA molecule represented by the solid line. The distance of the 

QD to DNA terminus is thus the ratio of the contour length of the dotted line to that of 

the whole line.  

8.6. Conclusions 

 In conclusion, this study proposed a single-molecule imaging approach based on 

AFM for examining the characteristics of NP binding to DNA that may overcome the 

intrinsic limitations of the macroscopic techniques used in previous studies on DNA-NP 

interactions. We investigated the kinetics and isotherm of NP binding to DNA, and 

further determined the binding constants and specificities, by conducting a statistical 

analysis on a sufficiently large number of single molecules imaged using AFM. The 

binding kinetics and isotherm are well described by a double-term exponential-rise type 

of equation and a Langmuir-type equation, respectively. Also, the binding was found to 

be nonspecific by determining the distance of bound QDs to the DNA terminus; a QD 

bound to DNA may prevent the binding of another QD to neighboring sites because of 

the electrostatic repulsion between the two QDs. This single-molecule technique can be 

further extended to investigate the binding of other types of NPs to DNA, which will 

benefit the genetic effect assessment of NPs. 
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  CHAPTER 9 

BINDING AFFINITY OF NANOPARTICLES FOR DNA AND 

CORRELATION WITH GENETIC EFFECTS OF NANOPARTICLES   

 

9.1. Abstract 

 Predictive models are beneficial tools for researchers to use in prioritizing NPs for 

toxicological tests; but experimental evaluation can be time-consuming and expensive, 

and thus priority should be given to tests that identify the NPs most likely to be harmful. 

For characterization of NPs, the physical binding of NPs to DNA molecules is important 

to measure, as interference with DNA function may be one cause of toxicity. Here, we 

determined the interaction energy between twelve types of NPs and DNA based on the 

Derjaguin-Landau-Verwey-Overbeek (DLVO) model and then predicted the affinity of 

the NPs for DNA. Using the single-molecule imaging technique known as atomic force 

microscopy (AFM), we experimentally determined the binding affinity of those NPs for 

DNA. Theoretical predictions and experimental observations of the binding affinity 

agreed well. Furthermore, the effect of NPs on DNA replication in vitro was investigated 

with the polymerase chain reaction (PCR) technique. The results showed that NPs with a 

high affinity for DNA strongly inhibited DNA replication, whereas NPs with low affinity 

had no or minimal effects on DNA replication. The methodology here is expected to 

benefit the genotoxicological testing of NPs as well as the design of safe NPs. 

9.2. Introduction 

 Nanotechnology is a new frontier in science and technology in the 21st century 

that creates the potential for novel materials with unique functions and superior 

performances. However, concerns regarding the safety and health effects of engineered 
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NPs arise alongside the booming nanotechnology industry. Numerous toxicological 

studies on NPs were published in the last decade, but many did not employ real nano-

sized materials, mainly because most NPs are subject to slow or fast aggregation in 

aqueous media 53, 422-426. The observed toxicity and related mechanisms in those studies 

are probably associated with the properties of aggregates/agglomerates 171, 427-429. At the 

interface between NPs and biological systems, some unaggregated NPs may have unique 

effects locally and exert different toxicity mechanisms compared with the aggregates; 

these mechanisms are not well documented yet. To explore the cytotoxic mechanisms of 

“real” NPs, we are developing systematic experimental approaches based on atomic force 

microscopy (AFM) to assess the effect of unaggregated NPs on single cells or 

biomolecules at the nanoscale 381, 430, 431.  

 Primary or unaggregated NPs are likely to enter into biological cells 432-434 and 

subsequently exert toxic effects on intracellular structures like DNA 82, 210, 435. Several 

mechanisms including oxidative stress and direct binding have been proposed to explain 

the adverse genetic effect of NPs 50, 127, 210, 436, 437. Up to now, the mechanism of oxidative 

stress has been extensively studied on a wide range of NPs 102, 124, 132, 438-445. In contrast, 

the significance of direct binding of NPs to DNA is somewhat underestimated and has 

received less attention. Below we summarized a few studies related to the adverse effects 

induced by the binding activity of NPs to DNA. Our previous study showed that small 

quantum dots with a radius of 10 nm could permeate into bacterial cells and bind to DNA 

381. NP binding changed the normal conformation as well as the local electrical properties 

of DNA molecules 381, 430. A recent study also found that the binding of gold NPs causes 

structural changes including local denaturing and compaction to DNA 446. Such changes 

may adversely interfere with the genetic functions of DNA, such as transcription, 

replication, and repair processes, that are crucial to maintain the normal metabolism of a 

living cell 365-369. Specifically, NPs that bind to DNA with a high affinity could prohibit 

the normal functions of some critical DNA-binding proteins, such as RNA polymerase 
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and DNA polymerase, by occupying protein-binding sites and impeding the movement of 

protein along the DNA, which could result in competitive inhibition of genetic functions 

367-369, 447. It has been reported that functionalized gold NPs completely inhibited DNA 

transcription in vitro owing to the electrostatic interaction of NPs with DNA 367-369. A 

computational simulation study also showed that C60 NPs strongly bind to DNA and 

might adversely impact the conformation and biological functions of DNA 366. 

Furthermore, the binding of NPs to DNA might intervene in long-range charge transport 

through the DNA and thus interfere with signaling processes 448. Thus, the interaction 

between NPs and DNA appears to play important roles in the toxicity of NPs and 

deserves a complete understanding of the underlying principle.  

 Because toxicological tests of NPs are time-consuming and expensive, scientists 

are developing models to predict the behavior and effects of NPs in biological systems 

196-198, which would allow researchers to streamline the toxicological testing of NPs by 

prioritizing NPs that are most likely to be harmful. Using theoretical models to describe 

the interaction between NPs and DNA is an important part of building an “ultimate” 

biological-effect-predicting model. Recently, several studies attempted to address the 

interaction of NPs with DNA using computational simulation techniques (mainly 

molecular dynamics simulations) 366, 446, 449. Although powerful, the application of these 

simulation techniques is restricted to ultrasmall NPs (< 5 nm) and short DNA fragments 

due to the limitations of computational efficiency and capacity 366, 446, 449. The complexity 

of these techniques also impedes their widespread use among researchers. Hence, it is 

necessary to develop some simpler techniques for investigating the NP-DNA interaction. 

It is well known that in typical colloid physics the interfacial forces or energies 

fundamentally control the interaction between two objects. The Derjaguin-Landau-

Verwey-Overbeek (DLVO) theory, for instance, is widely used to describe such 

interfacial interactions between charged objects in liquid 213, 347. According to the DLVO 

theory, the total interaction is comprised of van der Waals (vdW) and electrical double-
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layer (EDL) interactions. The interaction between spherical NPs and DNA can be 

described with the DLVO theory by treating the NP as a sphere and DNA as a uniformly 

charged cylinder 450-452 because the dimension of the DNA is significantly larger than the 

separation distance between its neighboring charges (~0.17 nm) 402. For example, Sushko 

and Shluger described DNA/mica interactions using a DLVO model for an interaction 

between a cylinder and a flat surface 453. It is reasonable to use the sphere-cylinder 

DLVO model to describe the NP-DNA interaction.  

 In this study, we determined the binding affinity of selected NPs [positively and 

negatively charged quantum dots, gold NPs capped with different surface groups 

(carrying different surface charge), latex beads, as well as silicon, silver, hematite, CeO2, 

ZnO, TiO2 and SiO2 NPs] for DNA on the basis of the DLVO model. The binding 

affinity of NPs to DNA was experimentally evaluated with AFM and then compared with 

the model prediction. Furthermore, the effect of NPs on DNA replication was 

investigated using the polymerase chain reaction (PCR) technique and then related to the 

binding affinity of NPs for DNA. The overall goal of this study is to predict the affinity 

of NPs for DNA and to provide insights into the prediction of the genetic effect of NPs. 

9.3. Materials and methods 

9.3.1.  Materials 

 Two types of water-soluble CdSe/ZnS core/shell quantum dots (QDs), 

respectively coated with polydiallydimethylammonium chloride (PDDA) and poly 

(ethylene glycol) (PEG) with a carboxylic acid terminal end group, were purchased from 

Ocean NanoTech, LLC (Springdale, AR). For convenience, we named the former “QDs 

(+)” and the latter “QDs (-)”, as the electrophoresis experiments showed the former 

carried positive surface charge while the latter carried negative charge. Citrate-stabilized 

gold NPs were purchased from Sigma-Aldrich (St. Louis, MO). Gold NPs functionalized 

with COOH surface group were purchase from Ocean NanoTech, LLC (Springdale, AR). 
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Also for convenience, we named the former “gold NPs (citrate)” and latter “gold NPs 

(COOH)”. Citrate-stabilized silver NPs were purchased from Ted Pella, Inc. (Redding, 

CA). CeO2 NPs were purchased from Alfa Aesar (Ward Hill, MA). TiO2, SiO2, ZnO NPs 

and latex beads (30nm) were purchased from Sigma-Aldrich (St. Louis, MO).  Silicon 

NPs were purchased from the US Research NPs, Inc (Houston, TX). Finally, hematite 

NPs were synthesized in our laboratory using the method of Penners and Koopal 454 with 

minor modifications 354. Briefly, 20 mM FeCl3 in 4 mM HCl was incubated at 120C in a 

flask coupled with a water-cooled condenser. The size of the hematite NPs was controlled 

by incubation time. Approximately 20 min were required to produce hematite NPs of size 

ca. 20 nm. 

 The sizes and morphologies of those NPs were characterized using AFM (shown 

in Figure 9.1). The other characterizations using transmission electron microscopy, 

dynamic light scattering, X-ray diffraction and/or fourier transform infrared spectroscopy 

were published in our previous work 332, 333, 354, 455, 456.  

 A SacI-linearized plasmid DNA pGEMEX-1 of 3993 base pairs was purchased 

from Promega Corporation (Madison, WI). The DNA was diluted to 2 nM with sterile TE 

buffer (10 mM Tris HCl, pH 7.4, 1 mM EDTA) (Fisher Scientific Co., USA). Images 

acquired by AFM showed that the DNA can be stored in a 4C refrigerator for two 

months without loss of structural integrity. Finally, the protein used in this study was T7 

RNA polymerase (RNAP) purchased from Promega Corporation (Madison, WI).  
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Figure 9.1. Representative AFM topographical images of (a) QDs (+), (b) QDs (-), (c) 

gold NPs (citrate), (d) gold NPs (COOH), (e) silver NPs, (f) hematite NPs, (g) CeO2 NPs, 

(h) ZnO NPs, (i) TiO2 NPs, (j) SiO2 NPs, (k) silicon NPs, and (l) latex beads.  

9.3.2.  Determination of the electrophoretic mobility (EPM) of NPs and protein 

 The EPM of NPs and protein in the TE buffer containing 4 mM Mg2+ was 

measured using a Malvern Zetasizer Nano ZS instrument. In brief, 1.5 mL of NP or 

protein suspensions of 10 mg/L in the TE buffer containing 4 mM Mg2+ were injected 

into a clean cuvette, and the instrument was then operated with a scattering angle of 173° 

from the incident laser beam. The autocorrelation function automatically accumulated at 

least 10 runs for each sample. At least four parallel measurements were made for each 

condition.  

9.3.3.  AFM imaging of the binding of NPs to DNA 

 DNA stock solution was diluted to 0.2 nM with sterile TE buffer containing 5 

mM Mg2+. The DNA was mixed with NPs at a molar ratio of 1:5 and incubated at 37C 

for 1 h. Then 2.5 L of the mixture was deposited on a freshly cleaved mica substrate and 

incubated for 30 minutes. The mica surface was thoroughly rinsed with MilliQ pure water 

and then blown dry with ultrapure nitrogen gas.430 AFM images were collected at room 

temperature using an Agilent 5500 Molecular Imaging AFM in the acoustic alternating 

current (AAC) mode. Silicon cantilevers (BudgetSensors, Bulgaria) with a force constant 

of approximately 2–5 N/m were used. AFM images were processed using the Picoview 

1.12 software from Agilent Technologies. 

9.3.4.  Effects of NPs on DNA replication in vitro 

 The SacI-linearized plasmid DNA pGEMEX-1 was used as template to perform 

the DNA replication assay. 50 ng of DNA template was used to incubate with serial 

dilutions of NPs for 5 min on ice. The concentrations of NPs used in PCRs are presented 

in Figure 3. After the incubation step, PCR amplifications were performed in 25 μL 
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reaction volumes with DNA-NP mix, 1 U Phusion® High-Fidelity DNA Polymerase 

(New England Biolabs, MA), 200 μM each dNTP, and 0.5 μM each primer on a 

Mastercycler pro (Eppendorf). The primers used in the PCR reaction amplify a 180 base 

pair fragment. The following are the primer sequences: 

EP 1: GGGGATCCGGTACCAGCACCAC 

 EP 2: GGGATGTTCCGGCTGCTGACCGT  

 PCRs began with a denaturation step at 98C for 30 s, and 30 cycles of 

amplification were performed using the following conditions: 30 s at 98C; 30 s at 58C; 

30 s at 72C. 15 ul of each amplified product was used for electrophoresis using 1% 

agarose gel that was stained with ethidium bromide for visualization. 

9.4. Results and discussion 

9.4.1.  Determination of parameters in the DLVO model 

 The interaction energy between each NP and DNA was computed based on 

DLVO models for the sphere-cylinder geometry 457 (see Appendix A for details of the 

model). A number of parameters are required by the model including the size and the 

surface potential of both NPs and DNA molecules, and the Hamaker constant for NP-

DNA interactions.     

 The sizes of those NPs were measured using AFM (shown in Figure 9.1) by 

examining at least 100 randomly picked particles. Statistically, the radii of QDs (+), QDs 

(-), gold NPs (citrate), gold NPs (COOH), silver NPs, hematite NPs, CeO2 NPs, ZnO 

NPs, TiO2 NPs, SiO2 NPs, silicon NPs, and latex beads are 8.54  2.46, 7.80  2.05, 2.76 

 0.54, 13.09  4.60, 6.41  3.19, 8.14  1.44, 42.12  15.20, 45.97  17.22, 12.72  

3.09, 13.20  4.13, 15.36  4.50, and 15.15  5.54 nm, respectively. 

 The surface potential (o) of DNA was determined from the Grahame equation 

458, which, under assumption of low potentials below 25 mV, simplifies to  
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where  represents the charge density; ε0 is the vacuum permittivity; ε is the relative 

permittivity of water; κ represents the inverse Debye length in the buffer solution, which 

is calculated to be 0.05 Å-1 according to the equation below: 
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where kB is the Boltzmann constant; T is absolute temperature; zi is the valency of the ith 

ion; e is unit charge; and i is the number concentration of the ith ion. 

 For double-stranded DNA molecules, a value of -0.15 Cm-2 was obtained for 

.459 Thus, o for DNA was calculated to be -21.5 mV, which agrees well with a 

previous study 460.  

 The surface potentials of NPs were determined from measured electrophoretic 

mobility (EPM) values via the Henry equation 461:  

 o f a


 

    (3)                                                                 

where  is EPM;  is the relative permittivity of water;  is the solution viscosity; and 

f(a) is Henry’s function, which is reasonably well approximated by 461
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where  is still the inverse Debye length and a is the particle radius 254, 290. From Eqs. (3) 

and (4), the average surface potentials of QDs (+), QDs (-), gold NPs (citrate), gold NPs 

(COOH), silver NPs, hematite NPs, CeO2 NPs, ZnO NPs, TiO2 NPs, SiO2 NPs, silicon 

NPs, and latex beads were determined to be 4.45  1.90, -40.90  2.85, -29.10  0.60, -

63.14  2.83, -21.50  0.75, -13.32  1.15, -9.52  1.52, -10.15  0.86, -12.33  0.99, -

17.09  0.40, -28.70  1.31, and -33.85  3.00 mV, respectively. 
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 The Hamaker constant (AH) for the interaction of NPs and DNA in water was 

determined with Lifshitz theory. For two media of dielectric constants or permittivity 1 

and 2 interacting in a third medium with dielectric constant 3, the Hamaker constant is 

given by 266 

   
   

   
   1

1 3 2 31 3 2 3

1 3 2 3 1 3 2 3

3 3

4 4H v

iv iv iv ivh
A kT dv

iv iv iv iv

      
        

       
                 

     (5) 

where (iv) are the values of  at imaginary frequencies, and v1 = 2kT/h =3.91013 s-1 at 

298 K. The first term in the equation represents the zero-frequency energy of the vdW 

interaction and includes the Keesom and Debye contributions. The second integration 

term represents the dispersion energy, i.e., the London contribution. The dielectric 

constant (iv) for non-metallic particles is expressed by 

     2 2 2
01 1 / 1 /iv n v v        (6)

 

where n represents the refractive index of the medium; v0 is the main absorption 

frequency of the medium. The n values for the DNA molecule, water, hematite, CeO2 

NPs, ZnO NPs, TiO2 NPs, SiO2 NPs, silicon NPs, and latex beads are 1.6, 1.33, 3, 2.276, 

2.004, 2.488 (anatase), 1.54, 3.5, and 1.59, respectively 462-464.  v0 values for DNA 

molecule and water are 1.15  1015 and 3.0  1015 s-1, respectively.266 The QDs, hematite, 

CeO2 NPs, ZnO NPs, TiO2 NPs, SiO2 NPs, silicon NPs, and latex beads used in this study 

respectively have maximum absorptions at 530, 190, 310, 190, 260, 230, 470, and 200 

nm, corresponding to v0 values of 5.66  1014, 1.58  1015, 9.68  1014, 1.58  1015, 1.15 

 1015, 1.30  1015, 6.38  1014, and 1.50  1015 s-1, respectively. The dielectric constant 

(iv) for metallic particles is expressed by 

  2 21 /eiv v v      (7)
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where ve
2 = nee

2/42me0 is the squared plasma frequency of a free electron gas of 

number density ne where me is the electron mass. The number densities of gold and silver 

are 5.90  1028 and 5.86  1028 m-3, respectively, giving plasma frequencies of ve = 2.18  

1015 and 2.17  1015 s-1, respectively.  

 The  values for the DNA molecule, water, hematite, CeO2 NPs, ZnO NPs, TiO2 

NPs, SiO2 NPs, silicon NPs, and latex beads are 2.56, 80, 12, 24.3, 8.34, 114, 3.9, 11.68, 

and 2.52 respectively 350, 465-467.  The  values for gold and silver are infinity. For 

CdSe/ZnS QDs, we take an average of the values of ZnS and CdSe, as to our knowledge 

no calculation method is available to obtain the n and  values for nano-heterostructures. 

The dielectric constants for CdSe and ZnS are 9.75 and 8.9, respectively. The refractive 

indices for CdSe and ZnS are 2.5 and 2.368, respectively 468. By taking an average, the 

dielectric constant and refractive index for CdSe/ZnS were respectively 9.325 and 2.434. 

By doing numerical integration in Matlab, the Hamaker constants AH for DNA interacting 

with QDs, gold NPs, silver NPs, hematite NPs, CeO2 NPs, ZnO NPs, TiO2 NPs, SiO2 

NPs, silicon NPs, and latex beads in liquid were calculated to be 4.0, 3.2, 3.2, 3.9, 2.6, 

1.6, 1.7, 2.0, 3.6, and 1.8 kT. The Hamaker constant of each type of NPs as well the 

particle size and surface potential were listed in Table 9.1. 

Table 9.1. Particle size, surface potential and Hamaker constants of NPs, and the 

computed energy barrier between each type of NPs and DNA 

NPs Radius (nm) 
Surface potential 

(mV) 
Hamaker 

constant (kT) 
Energy 

barrier (kT) 
QDs (+) 8.54  2.46 4.45  1.90 4.0 0 

QDs (-) 7.80  2.05 -40.90  2.85 4.0 0.18 

Gold 

(citrate) 
2.76  0.54  -29.10  0.60  3.2  0.06 

Gold 

(COOH) 
13.09  4.60 -63.14  2.83 3.2 0.39 
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Silver  6.41  3.19 -21.50  0.75 3.2 0.08 

Hematite 8.14  1.44 -13.32  1.15 3.9 0.02 

CeO2 42.12  15.20 -9.52  1.52 2.6 0.003 

ZnO 45.97  17.22 -10.15  0.86 1.6 0.04 

TiO2 12.72  3.09 -12.33  0.99 1.7 0.05 

SiO2 13.20  4.13 -17.09  0.40 2.0 0.10 

Silicon 15.36  4.50 -28.70  1.31 3.6 0.16 

Latex beads 15.15  5.54 -33.85  3.00 1.8 0.31 

   

9.4.2.  Binding affinity of NPs for DNA 

The energy barriers between NPs and DNA, as calculated from the DLVO model, 

are 0.39 kT for gold (COOH)-DNA, 0.31 kT for latex beads-DNA, 0.18 kT for QDs (-)-

DNA, 0.16 kT for silicon-DNA, 0.10 kT for SiO2-DNA, 0.08 kT for silver-DNA, 0.06 kT 

for gold (citrate)-DNA, 0.05 kT for TiO2-DNA, 0.04 kT for ZnO-DNA, 0.02 kT for 

hematite-DNA, 0.003 kT for CeO2-DNA, and 0 kT for QDs (+)-DNA (Figure 9.2). These 

theoretical calculation results suggest that gold NPs (COOH), latex beads, QDs (-), 

silicon NPs, and SiO2 NPs are more likely not to bind to DNA compared with the other 

NPs, owing to the high energy barrier between these NPs and DNA.  
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Figure 9.2. The interaction energy profiles between each NP and DNA. 

 AFM was used to verify the predicted binding affinity of NPs for DNA. DNA 

molecules looked curved and bent, while the NPs binding to the DNA appeared as large 

or small dark dots. The AFM results showed that NPs have quite different binding 

affinities for DNA. On one hand, as shown in Figure 9.3, the QDs (+), silver NPs, 

hematite NPs, gold NPs (citrate), CeO2 NPs, ZnO NPs and TiO2 NPs were observed to 

bind to DNA, which is consistent with our theoretical analysis. On the other hand, the 

SiO2 NPs, silicon NPs, QDs (-), gold NPs (COOH) and latex beads did not bind to DNA 

molecules, which also agreed well with model predictions. It is worth noting that the 

majority of NPs tested here for DNA interaction were “real” nano-sized particles, and 

therefore our models were applicable in the nanoscale. 



 142

 

(a) (b)

(d) (e)

(c)

(f)

(g) (h) (i)

(j) (k) (l)

 

Figure 9.3. AFM topographical images of DNA molecules after exposure to NPs. DNA 

molecules were observed under AFM after exposure to (a) QDs (+), (b) silver NPs, (c) 
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hematite NPs, (d) gold NPs (citrate), (e) CeO2 NPs, (f) ZnO NPs, (g) TiO2 NPs, (h) SiO2 

NPs, (i) silicon NPs, (j) QDs (-), (k) gold NPs (COOH), and (l) latex beads.  The dark 

dots in (a)-(g), as indicated by black arrows, are NPs, namely, the black arrows indicate 

representative binding sites of NPs on DNA molecules. SiO2 NPs, silicon NPs, QDs (-), 

gold NPs (COOH) and latex beads did not bind to DNA molecules, as observed from (h)-

(l). 

    We noticed from the AFM image that some NPs appeared to induce DNA 

bending. The subsequent binding activity of NPs to those bent DNA may not be well 

described by the sphere-cylinder interaction models proposed in the previous section. 

Instead, we used a section of torus to represent the bent DNA, and computed the 

interaction energy between NPs and bent DNA using the sphere-torus model (see 

Appendix B for details of the model). We found that the relative magnitude of the energy 

barrier between the bent DNA and each NP were the same as that between the straight 

DNA and each NP, i.e., the energy barrier height increased in the order of QDs (+) < 

CeO2 NPs < hematite NPs < ZnO NPs < TiO2 NPs < gold NPs (citrate) < silver NPs < 

SiO2 NPs < silicon NPs < QDs (-) < latex beads < gold NPs (COOH) under both 

scenarios.  

 NPs with a high affinity for DNA may interfere with normal DNA functions. The 

AFM images in Figure 9.3 show that the binding of NPs to DNA has the potential to 

dramatically change the DNA conformation. We can clearly observe the DNA bending or 

looping in the presence of QDs (+) and hematite NPs. In addition, when silver and ZnO 

NPs were present, DNA formed a more compact conformation compared to the native 

random coil conformation. Two additional AFM images were presented in Figure 9.4 for 

illustrating the compact DNA conformation induced by silver NPs and QDs (+). These 

observations were discussed in more details in our previous work 430.  

 Proteins that are requisite for DNA replication, transcription and repair processes 

may not function correctly owing to (1) pre-occupation of DNA by NPs in the binding 
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sites of proteins (e.g. DNA polymerase/RNA polymerase and sigma factor); (2) 

conformational changes in DNA resulting in inhibitory structures that block unwinding of 

DNA or traversing along DNA. In contrast, DNA molecules incubated with SiO2 NPs, 

silicon NPs, QDs (-), gold NPs (COOH) and latex beads did not show conformational 

changes; it is likely that these DNA molecules still allow for normal functions.  

     

Figure 9.4. Compact DNA conformation induced by silver NPs (left) and QDs (+) (right). 

 We performed the interaction energy calculation between protein and DNA using 

T7 RNAP as a model protein. Its surface potential was determined as -9.60  2.80 mV 

according to Eq. (3). The Hamaker constant (AH) for protein and DNA interacting in 

liquid was estimated to be 3 kT.469 Assuming RNAP has a spherical shape, its radius 

(nm) was approximated as 3 nm on the basis of its mass M (in Daltons) by the relation RS 

= 0.066M1/3.470 The result showed that the energy barrier between protein and DNA is 

0.01 kT; the binding affinities of QDs (+), silver, hematite, gold (citrate), CeO2, ZnO and 

TiO2 NPs for DNA are of similar magnitude and may compete for binding to DNA 

molecules with protein.  
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9.4.3.  Effects of NPs on DNA replication 

 The PCR method was employed to probe the effect of NPs on DNA replication. 

The agarose gel electrophoresis results (Figure 9.5) showed how the twelve types of NPs 

over a range of concentrations affected DNA replication. The quantity of PCR amplified 

DNA products was reflected by the intensity of each band. QDs (+) completely inhibited 

DNA replication at the concentration of 0.15 nM, agreeing with a previous study which 

showed that cationic QDs caused genotoxic effects 471. The DNA replication was 

completely inhibited by silver NPs at 0.05 nM. This is consistent with previous studies 

which showed silver NPs were genotoxic 102, 472, 473. Hematite NPs showed a complete 

inhibition at 0.2 nM; hematite NPs also have been found to induce adverse genetic effects 

441, 474. Gold NPs (citrate) affected DNA replication at 0.3 nM and completely impeded 

the replication process at the concentration of 0.5 nM. This agreed with a previous study 

showing that gold NPs associated with DNA and subsequently induced DNA bending 

and strand separation 446. CeO2 NPs significantly inhibited DNA replication at 0.05 nM. 

ZnO suppressed the DNA replication process at 0.2 nM. The latex beads also resulted in 

the inhibition of DNA replication at a high concentration of 1.5 nM. In contrast, other 

NPs did not show any signs of inhibition at their highest concentration employed in this 

study (1.4-1.6 nM). The most interesting result comes from TiO2 NPs. In the binding 

affinity experiment, we have observed many TiO2 NPs binding on DNA (Figure 9.3g), 

thus we expected that TiO2 NPs were likely inhibitory to DNA replication. These 

seemingly contradictory results could be explained by the enhanced thermal conductivity 

in the PCR. TiO2 NPs can induce a rapid increase in thermal conductivity sufficient to 

enhance PCR efficiency,475 which might offset their inhibitive effects on DNA 

replication.        
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Figure 9.5. Effects of NPs on DNA replication in vitro by quantification of PCR 

products. 50 ng of Linearized pGEMEX-1 was used in each reaction to amplify a 180 bp 

PCR fragment except for negative control. Each type of NPs was tested under a range of 

concentrations. From lane 1 to 5, the final concentrations of QDs (+) were 0.2, 0.15, 0.1, 

0.05, 0.01 nM, silver NPs were 0.05, 0.03, 0.02, 0.01, 0.002 nM, hematite NPs were 0.5, 

0.2, 0.1, 0.05, 0.01 nM, gold NPs (citrate) were 0.5, 0.3, 0.2, 0.1, 0.05 nM, CeO2 NPs 

were 0.5, 0.2, 0.1, 0.05, 0.01 nM, ZnO NPs were 2, 0.5, 0.3, 0.2, 0.05 nM, TiO2, SiO2 and 

silicon NPs were all 1.5, 1.0, 0.5, 0.3, 0.2 nM, QDs (-) were 1.6, 0.8, 0.16, 0.08, 0.016 

nM, gold NPs (COOH) were 1.4, 1.0, 0.5, 0.3, 0.2 nM, and latex beads were 1.5, 1.0, 0.5, 

0.3, 0.2 nM. N and P respectively represent the negative and positive controls for the 

PCR experiment. N: negative control without DNA template and NPs. P: positive control 

using 50 ng of DNA template without NPs.  
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 We further investigated the relation between the ability of NPs to inhibit DNA 

replication and the predicted binding affinity of NPs for DNA. As observed from Figure 

9.6, NPs that were predicted to have a high binding affinity (i.e., low energy barrier) for 

DNA molecules also had a high potential to inhibit DNA replication. This implied that 

(1) the binding of NPs to DNA is likely an important mechanism for causing the adverse 

genetic effects of NPs, and (2) the DLVO model may act as a simple and effective tool 

for predicting the  genetic effects of NPs induced by the direct binding activity of NPs 

with DNA. It is noted that the Ag NPs have a higher inhibition ability compared with the 

model prediction; this is reasonable, as Ag NPs released Ag ions, which may be also 

detrimental to the DNA replication 102, 456, 476, 477.  

 As mentioned earlier in this paper, oxidative stress resulted from reactive oxygen 

species (ROS) has been reported as an important cause of adverse genetic effects of NPs 

120. Our group has conducted a series of studies on the ROS production by NPs 455, 456. 

However, ROS do not appear to explain the effects of NPs observed here. It is well 

known that among the three primary ROS radicals (i.e., •OH, 1O2 and O2
•), •OH and 1O2 

are mainly responsible for DNA damage 478, 479. Our previous work showed that the 

ability of NPs to produce •OH and 1O2 increased in the order of QDs (+) / QDs (-) / CeO2 

NPs < hematite NPs < silver NPs < SiO2 NPs < ZnO NPs < gold NPs (citrate) < silicon 

NPs < TiO2 NPs 333, 455, 456. Apparently, the ROS production does not explain the PCR 

results, because the genotoxicity of NPs was shown to increase in the order of QDs (-) / 

TiO2 / SiO2 / silicon NPs < gold NPs (citrate) < ZnO NPs < hematite NPs < QDs (+) < 

CeO2 / silver NPs. Therefore, we may rule out ROS as the primary cause of adverse 

genetic effects of NPs in this study; rather, the direct binding activity of NPs to DNA is 

likely one reasonable genotoxicity mechanism. Overall, the methodology in this study 

can help researchers screen NPs and prioritize their genotoxicological testing. 
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Figure 9.6. Relationship between the tested concentration of NPs significantly inhibiting 

DNA replication in vitro and the determined energy barrier between NPs and DNA. A 

significant inhibition occurs when the intensity of the gel electrophoresis band in Figure 3 

is below 30% of that of the positive control. TiO2 NPs, SiO2 NPs, silicon NPs, QDs (-), 

gold NPs (COOH) and latex beads (open square) did not show a significant inhibition of 

DNA replication even at the highest concentration employed in this study, still those NPs 

were included in the figure for comparison with other NPs that have strong inhibition on 

DNA replication. Data points represent individual replicates. An exponential regression 

[y = 1.59(1-exp(-11.10x)), r2 = 0.62] was performed. 

9.4.4.  Two-dimensional diagrams to determine the energy barrier between NPs and DNA 

 We constructed two-dimensional diagrams (shown in Figure 9.7) to help 

researchers determine the interaction energy barrier between a certain type of NPs and 

DNA. Each diagram was produced under a certain NP Hamaker constant (e.g., 1, 3, 4, 

and 10 kT). Contour lines were also plotted in the diagram to clearly indicate the height 

of the energy barrier. As the surface potential of the particle shifts from negative to 
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positive or as the Hamaker constant increases, the energy barrier decreased, indicating 

that NPs with positive surface potential or a high Hamaker constant have a high affinity 

for DNA molecules. This is consistent with a previous study 469. However, the increase in 

particle size does not always result in an increase in the height of the energy barrier, 

which can be observed most obviously in the scenario in which the Hamaker constant of 

the NPs is 10 kT (Figure 9.7d). Provided the size, surface potential, and Hamaker 

constant of a certain type of NPs are known, we can determine the height of the energy 

barrier between the NPs and DNA molecules, and subsequently estimate the affinity of 

the NPs for DNA and further evaluate the potential  genetic effects of NPs.  

 The statement of particle size effect on the energy barrier, i.e., increased particle 

size does not always result in increased energy barrier, may be less intuitive, but it can be 

validated by comparing two tested NPs: ZnO and TiO2 NPs. Their Hamaker constants 

(1.6 versus 1.7 kT) and surface potentials (-10.15 versus -12.33 mV) are both quite close, 

but the particle size of ZnO is much larger than that of TiO2 NPs. The modeling results 

showed that ZnO NPs has slightly lower energy barrier with DNA than TiO2 does (Figure 

9.2). The AFM results showed that ZnO as well as TiO2 NPs were able to bind to DNA 

(Figure 9.3). This example validated the less intuitive size effect of NPs on their 

interaction energy with DNA. 

 It is worth noting that the ionic strength of the solution system used in this study 

is 0.4 M. If different slovent systems with different ionic strength were used, the 

computed interaction energy results would vary. Firstly, a different ionic strength would 

alter the Debye length in the solution and subsequently change the surface potential of 

NPs and DNA. This was addressed by Eqs. (1)-(4). In addition, particle size may also be 

altered due to particle aggregation under a high ionic strength. The aggregation kinetics 

modeling of NPs has been intensively investigated in our group 197, 303, 480. However, we 

did not incorporate the aggregation model into the theory in the present study, as particle 

size that we used as the model input was measured after the aggregation has reached 
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slow-aggregation stage, namely, the particle size was pseudo-stable. Provided that we 

determine the physicochemical properties (such as the size and surface potential) of NPs 

under pseudo-stable states in a new solution, we can still apply the theoretical approach 

proposed in this study to the new system. 

(a)

(d)

(b)

(c)

 

Figure 9.7. Representative two-dimensional diagrams characterizing the effect of NP size 

and surface potential on the height of the energy barrier between the particle and DNA. 

The Hamaker constants of the particles in (a)–(d) are 1, 3, 4, and 10 kT, respectively. The 

lines are contour lines representing the height of the energy barrier (in units of kT) 

between the particle and DNA. The color indicates the height of the energy barrier of 

each pixel.  
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 Biological systems are far more complex than the in vitro system used in the 

current study. However, for simplicity, the PCR experiments here employed “naked” 

DNA (histone-free DNA) similar to that which is present in bacterial cells. This may a 

less accurate depiction of human DNA, which is complexed with histones, forming 

nucleosomes, and further packaged into chromosomes. However, the nucleosome is not 

static and has been reported in dynamic equilibrium between wrapped and unwrapped 

state 481-483. Nucleosomes spontaneously undergo a conformational fluctuation process 

called “DNA site exposure”, in which a stretch of DNA transiently unwraps off the 

histone core.481 The NPs could gain access to DNA sites in such exposed states. We may 

reasonably infer that NPs that have a high affinity for naked DNA should also have a 

high affinity for the nucleosome. The experimental validation of this inference using 

AFM is very challenging, as the size of a chromosome is much larger than that of NPs 

(µm versus nm) and the chromosome has an irregular surface, which would likely makes 

it more challenging to locate NPs that bind with a chromosome.    

 Also, NPs in contact with biological fluids interact with proteins and form a 

dynamic protein corona, whose composition varies over time and finally reaches 

equilibrium 98, 484. The existence of the protein corona would reshape the nature of NPs 

such as the surface potential and particle size. Understanding the protein corona is crucial 

in predicting biological effects of NPs in biological systems 485. The theoretical 

methodology in the present study could also be applied to the interaction of NP-protein 

corona complex with DNA, provided that we know the surface potential, size and 

composition of the complex in equilibrium. The protein corona may introduce additional 

non-DLVO forces (especially the hydrogen bonding-induced specific interaction force) 

into the interaction of NPs with DNA, which under additivity assumption 214, can be 

incorporated into the theoretical interaction model for describing the interaction between 

NP-protein corona complexes and DNA 486. Currently, such studies as well as those using 

AFM as a tool to probe these interactions are under way in our group. 
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9.5. Conclusion 

 In conclusion, this study showed that NPs with a high binding affinity for DNA 

molecules also have a strong inhibitory effect on DNA replication, while NPs with a low 

binding affinity for DNA do not. The binding affinity can be predicted by calculating the 

interaction energy between NPs and DNA on the basis of DLVO models. NPs located in 

the blue-colored region of the two-dimensional diagrams (Figure 9.7) are more likely to 

result in adverse genetic effects compared with those in the red-colored region. In the 

future genotoxicological testing of NPs, researchers may be able to prioritize NPs in the 

blue-colored region, which are predicted to have a high binding affinity for DNA. Also, 

this study has applications for the rational design of functionalized NPs in DNA labeling, 

biological imaging and sensing, and drug delivery for medical and therapeutic 

applications. Finally, although we demonstrate here the effects of direct binding of NPs 

to DNA, this likely is one of many mechanisms by which NPs can induce adverse genetic 

effects in living cells. Additional work is required for a comprehensive understanding of 

the underlying toxicity mechanisms of NPs and to build an “ultimate” predictive model 

of the biological effect of NPs that takes into account multiple toxicity mechanisms and 

their interactions. 
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  CHAPTER 10 

MAJOR CONCLUSIONS AND FUTURE WORK 

 

10.1. Major conclusions 

 The key findings and conclusions of this dissertation are briefly summarized 

below: 

(i) Aggregation of NPs in aqueous media is greatly influenced by a variety of media 

conditions such as salts (or ionic strength), and organic molecules in the media, 

and temperature. The collective effect of multiple factors on NP aggregation can 

be very complicated. For instance, when both CaCl2 and natural organic matter 

are present, depending on the concentration of CaCl2, the NP aggregation can be 

either enhanced (high CaCl2 concentration) or inhibited (low CaCl2 concentration).  

(ii) The aggregation of NPs is in essential governed by the interfacial 

forces/interactions among NPs. Provided that we can depict these forces, we can 

predict the aggregation behavior of NPs. The conventional DLVO theory used for 

describing colloidal stability cannot well describe NP aggregation. Rather,  

extended DLVO (EDLVO) theory, which incorporated non-DLVO interactions 

(e.g., Lewis acid-base interactions, steric interactions, and polymer bridging 

interactions), overcame the discrepancy existing between the DLVO theoretical 

prediction and experimental observations of NP aggregation.  On the basis of the 

EDLVO theory and the von Smoluchowski’s population balance equation, we 

developed models for predicting the aggregation of NPs, which predicted well the 

aggregation kinetics of NPs under various conditions including monovalent and 

divalent salts, natural organic matter, and temperature. 
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(iii) Interactions between NPs and cell membrane played a crucial role in causing 

cytotoxicity towards unicellular organisms like paramecium. Due to the lack of 

cell wall, the susceptible cell membrane of paramecium is directly exposed to 

NPs in the medium. The extent and strength of direct nano-cell membrane 

interaction can be evaluated and quantified by calculating the interfacial 

force/interaction between NPs and cell membrane. We found NPs that have strong 

association or interaction with the cell membrane tended to induce more severe 

cytotoxicity.     

(iv) AFM is proved to be a powerful tool for characterizing nano-DNA interactions on 

the single NP and single-molecular level. With QD as a model NP, the NP-to-

DNA binding characteristics including the binding mechanism, binding kinetics, 

binding isotherm and binding specificity was examined using AFM. Some 

important kinetic and thermodynamic parameters for QD binding to DNA 

including binding rate constant, equilibrium constant, and maximum binding 

number were determined, which are in the similar order of magnitude as protein 

binding to DNA. The QD-to-DNA binding specificity was determined as non-

specific. 

(v) The binding of NPs to DNA or the direction nano-DNA interaction is an 

important mechanism for causing the adverse genetic effects of NPs. NPs with a 

high binding affinity for DNA molecules also has a strong inhibitory effect on 

DNA replication, while NPs with a low binding affinity for DNA do not. 

Moreover, the binding affinity can be predicted by calculating the interaction 

energy between NPs and DNA on the basis of DLVO models. The good 

relationship between the calculated energy barrier between NPs and DNA and the 

adverse genetic effects of NPs suggested that the modeling approach may act as a 

simple and effective method for predicting the genetic effects of NPs and further 

evaluating the biological effect of NPs. 



 155

 

10.2. Future work 

 Based on the current knowledge and challenges, future work to advance the 

understanding of nano-bio interactions may include the following crucial issues: 

(i) Identify the real nano-induced effects. As many NPs undergo aggregation in 

aqueous media, it is very challenging to differentiate the toxic effect induced by 

real single NPs from that induced by the aggregates. AFM, as shown in this 

dissertation, has been demonstrated as a powerful tool for probing the nano-bio 

interface on the single NP level. It thus has the potential to characterize the effect 

of single NPs on biological systems such as the change of conformational, 

mechanical and electrical properties of biological systems.    

(ii) Investigate the internalization amount and pathway of NPs into cell. It is difficult 

to know the exact amount of NPs internalized by the cell, because differentiating 

intracellular NPs from those adsorbed on cell surface is not easy. Moreover, it is 

useful to know the entry mechanism (e.g., endocytosis, phagocytosis, or direct 

penetration) of NPs into cell.   

(iii) Development of predictive models for other toxicity mechanisms of NPs. Up to 

now, we have made remarkable progress in modeling the direct nano-DNA and 

nano-cell membrane interactions. There are many other mechanisms leading to 

adverse biological effects of NPs such as protein binding/unfolding response, 

mitochondrial damage, lysosomal damage, and inflammation. Much more work is 

required for a comprehensive understanding and predictive modeling of these 

mechanisms. For instance, protein binding/unfolding induced by NPs is currently 

a hot research area. Numerous analytical and modeling efforts have been made to 

unveil the change of protein after binding to NP surface. Our ultimate goal is to 
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build an “ultimate” predictive model that takes into account multiple toxicity 

mechanisms and their interactions. 

(iv) Investigate the long term ecological and evolutionary consequences of NPs. 

Specifically, four basic questions need to be answered: (1) do NPs interfere with 

predator-prey interactions and affect their population dynamics? (2) do NPs 

influence the competition of multiple species? (3) do NPs restructure ecological 

community assembly? (4) do NPs affect the evolution of biodiversity?  
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APPENDIX A 

EVALUATION OF DLVO INTERACTION BETWEEN A SPHERE 

AND A CYLINDER 

 

A.1. Abstract 

 Van der Waals (vdW) and electrostatic double layer (EDL) interactions between a 

sphere and a cylinder are determined using the surface element integration (SEI) 

technique. Compared with Derjaguin approximation, the SEI technique gives more 

accurate predictions for the EDL interaction between a sphere and a cylinder. However, 

the SEI technique slightly overestimates the vdW interaction compared with predictions 

based on Hamaker’s approach. The curvature effect is important at small cylinder-to-

sphere size ratios, but when the ratio is greater than 10, both EDL and vdW interactions 

between a sphere and a cylinder can be approximated adequately by that between a 

sphere and a flat plate. In addition, as Debye length decreases, the EDL interaction 

energy between a sphere and a cylinder decays more quickly.  At small separation 

distances, a smaller Debye length leads to a stronger EDL interaction between a sphere 

and a cylinder, whereas at large separation distances, a larger Debye length results in a 

stronger EDL interaction. 

A.2. Introduction 

 It is important to compute the interaction force or energy between two surfaces to 

theoretically understand interfacial problems that are frequently encountered in physics, 

biology, and physical chemistry 266, 487. The Derjaguin-Landau-Verwey-Overbeek 

(DLVO) theory is widely used to describe such interfacial interactions between charged 

surfaces in liquid media 213, 347. DLVO theory characterizes the total interaction energy as 

the combination of van der Waals (vdW) and electrostatic double-layer (EDL) 
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interactions. The evaluation of the DLVO interaction between a sphere and a cylinder is 

important, as it is widely encountered in practice, e.g., in particle-hollow fiber interaction 

in membrane filtration, NP-nanotube interaction, and protein-DNA interaction. Hence, it 

is necessary to derive the expression for the interaction energy between a sphere and a 

cylinder to facilitate research on relevant systems. 

 The EDL energy between two macrobodies was derived from the well-known 

Poisson-Bolztmann equation 246, 254; however, an exact analytic solution to the equation is 

limited to the case of two infinite parallel flat plates 488. In this respect, the Derjaguin 

approximation technique was conventionally employed to estimate the interaction force 

or energy between two curved surfaces in terms of the corresponding interaction energy 

per unit area of two planar surfaces 489. However, Derjaguin approximation assumes that 

the range of the interaction energy is remarkably shorter than the radii of curvature of the 

particles, i.e., its applicability is limited to large particles and other geometries; it may not 

be a valid approximation in nanoscale studies 490. The limitation of Derjaguin’s approach 

can be circumvented by employing the surface element integration (SEI) technique 491, 

which rigorously considers the effects of the curvature and shape of interacting bodies 

and is thus valid for the interaction of small particles.  

 The SEI technique also can be employed to calculate vdW energy and other 

interaction energies 491. In addition, there are two conventional approaches to the 

calculation of vdW energy: Lifshitz’s quantum electrodynamics approach 492 and 

Hamaker’s microscopic approach 493. It is a formidable challenge to apply Lifshitz’s 

approach for vdW energy, which generally yields a detailed numerical solution 494. 

Hamaker’s approach is remarkably simpler, although it involves evaluation of six nested 

integrals. It assumes that the vdW interaction between two bodies of arbitrary geometry is 

the sum of the interactions between each molecular/atom pair in the system 493. Under 

this pairwise additivity assumption, the vdW energy of a sphere-cylinder interaction was 
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calculated by integrating the individual interactions between each molecule pair over the 

two macroscopic bodies 495.  

 Several previous studies have investigated the interaction of a sphere with a 

cylinder by calculating either EDL energy 496 or vdW energy 495, 497-499; the total 

interaction energy, however, was not evaluated. Moreover, although the SEI technique 

has been successfully used to derive the interaction energy expression for sphere-sphere 

490 and sphere-flat plate geometries 494, it has not been applied to the sphere-cylinder 

geometry. Therefore, we extended the SEI technique to calculate both EDL and vdW 

energies between a sphere and a cylinder. To assess the accuracy of this technique, 

Derjaguin approximation and Hamaker’s approach were employed to calculate the EDL 

and vdW energy, respectively, which were compared with SEI predictions.  

A.3. Theory 

A.3.1. SEI technique 

 The SEI technique, developed by Elimelech and Bhattacharjee 491, rigorously 

considers the curvature effects of interacting macrobodies and provides a remarkably 

accurate evaluation of interaction energies. In this approach, the surfaces of the 

interacting macrobodies are projected on two parallel planes, and the interaction energy 

(V) between two macrobodies with a separation distance D can be calculated by a double 

integral over the projection plane: 

   V =
A

D E r dA



 1 1

2 2
1 1

n k
n k

n k
  (1) 

where n1 and n2 represent the outward unit vectors normal to the surfaces, k1 and k2 

represent the unit vectors directed toward the positive z axes of each body-fixed 

coordinate system which is selected in such a way that the xy planes are parallel while the 

z axes face each other, E(r) is the interaction energy per unit area between two infinite 
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flat plates separated by a distance r, and A is the projected area of the macrobody on the 

xy plane.  

A.3.2. EDL energy between a sphere and a cylinder 

 The SEI technique was utilized to calculate the EDL energy between a sphere and 

a cylinder, as shown in Figure A.1. 
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Figure A.1. Schematic illustration of the EDL interaction between a sphere of radius RS 

and a cylinder of radius RC. The sphere is separated from the cylinder by a distance D. 

x1y1z1 and x2y2z2 are two body–fixed coordinate systems with the z1 and z2 axes directly 

facing each other and the x1y1 and x2y2 planes parallel to each other. The surface element 

in the sphere is denoted as dS, which has a corresponding z1 axis–projection surface 

element on the cylinder. The separation distance between the two surface elements is 

denoted as r. n1 and n2 represent the outward unit vectors normal to the surface element. 

k1 and k2 represent the unit vectors directed toward the positive z axes (facing each 

other).  and  are the angles between n1 and k1, and n2 and k2, respectively. The 

geometry is conveniently described with coordinates (y, ). y is the radius of the circle 
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(parallel to the xy plane) on the sphere on which the surface element is positioned.  is 

the angle between the reference direction on the circle (i.e., the y-axis direction) and the 

line from the surface element to the center of the circle. The area of the differential 

surface element in the sphere can be expressed as yddy/cos.  

 The EDL energy per unit area between two infinite flat plates separated by a 

distance r is given by Eq. (2) 488: 

     
2 2

1 2
, 0 1 2

1 2

csc 1 coth
2
o o

EDL surface surface r o o
o o

V r h r r
      
 

 
   

 
  (2) 

where r and 0 are the relative permittivity of the solution and the permittivity of a 

vacuum, respectively;  is the Debye-Hückel parameter of the electrolyte solution; and 

o1 and o2 are the unperturbed surface potentials of two interacting macrobodies.  

 The EDL energy for sphere-cylinder interaction was then derived according to Eq. 

(1). Because both n1·k1/n1·k1 and n2·k2 will assume a positive or negative value 

depending on at which semisphere or semicylinder the surface element locates, we 

determined the total interaction energy between the sphere and the cylinder by calculating 

the interaction energy between each semisphere and semicylinder. The interaction 

energies between semisphere PAQ and semicylinder PAQ, semisphere PAQ and 

semicylinder PAQ, semisphere PAQ and semicylinder PAQ, and semisphere PAQ and 

semicylinder PAQ are positive, negative, negative, and positive, respectively. Therefore, 

the total interaction energy can be determined using the following equation 490: 

' ' ' 'TOT PAQ PAQ PA Q PAQ PAQ PA Q PA Q PA QV V V V V         (3)
 

 The distance r between two surface elements, one each on the sphere and on the 

cylinder, is determined by Eq. (4):  
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 In addition, the terms n2·k2 and dA are calculated as follows: 

2 2 2sin
cos C

C

R y

R





  2 2n k    (5) 

1 2 cosdA dS dS yd dy      n k   (6) 

 By substituting Eqs. (1), (5), and (6) into Eq. (3), we obtain the interaction energy 

expression between a sphere and a cylinder: 

 
 

       

2 2 2

2
, 0 0

' ' ' '

sin
4

TBD cSEI
EDL sphere cylinder

c

PAQ PAQ PA Q PAQ PAQ PA Q PA Q PA Q

y R y
V D

R

E r E r E r E r dyd

 





   


 

    

 
   (7) 

where the upper limit of the integral term dy is to be determined (TBD), depending on the 

relative magnitudes of the sphere radius (RS) and cylinder radius (RC). Eq. (7) remains 

unaltered regardless of the physical origin of the interaction energy, namely, it can be 

applied to both EDL and vdW energies.  

 For RC  RS, integration of the term dy in Eq. (7) is conducted over the whole 

sphere: 
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  (8) 

 However, if RC < RS, integration of the term dy in Eq. (7) is conducted over only 

the part of the sphere for which the projected area is not beyond the cylinder.  
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(9) 

 Moreover, to verify the accuracy of the SEI technique, we also calculated the 

EDL energy for sphere-cylinder interaction with the Derjaguin approximation approach. 
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We applied Derjaguin’s integration method over the surface area of the semisphere facing 

the cylinder to calculate the EDL energy between a sphere and a cylinder (illustrated in 

Figure A.2) 496. 
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Figure A.2. Schematic representation of the EDL interaction between a sphere of radius 

RS and a cylinder of radius RC, which helps to illustrate the Derjaguin approximation 

approach. The sphere is separated from the cylinder with a distance D. The surface 

element in the sphere is denoted as dS, which has a corresponding z-axis–projection 

surface element on the cylinder. The separation distance between the two surface 

elements is denoted as r. The geometry is conveniently described with coordinates (y, ). 

y is radius of the circle (parallel to the xy plane) on the sphere on which the surface 

element is positioned.  is the angle between the reference direction on the circle (i.e., the 

y-axis direction) and the line from the surface element to the center of the circle.  
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2 2 2 2 2sinS S c cr D R R y R R y          (12) 

 For RC  RS, the EDL energy is expressed as Eq. (13):
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 For RC < RS, the EDL energy is given by Eq. (14):
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 Derjaguin approximation also can be used to calculate the EDL energy between a 

sphere and a cylinder by first determining the EDL energy between two parallel cylinders 

and then integrating the infinitesimal cylinder-cylinder interaction over the sphere, as 

illustrated in Figure A.3. For convenience, this method is denoted as DA-2; the earlier 

method is denoted as DA-1. 

 The EDL energy per unit length between two parallel cylinders with constant 

surface potential o1 and o2 at separation r is given by Eq. (15) 254, 500: 
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where Li is the polylogarithm function: 
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 The EDL interaction energy between a sphere and a cylinder with constant 

surface potential o1 and o2, respectively, at separation r is given by Eq. (17):

 



 167

    

 

 
,

2

1 2
1/2

2
0 2 2 20

1 2
1/2

2
4 2

2

S

EDL sphere cylinder

S

D R xo o

RsDA
r C

S C D R xo o

Li e
x

V D R x dx
R x R x

Li e





 

  
 

  



  

             
          

 (17) 

RC

D
Rs

x

 
Figure A.3. Schematic representation of the interaction between a sphere of radius RS and 

a cylinder of radius RC. The sphere is separated from the cylinder with a distance D. The 

EDL interaction between two infinitesimal differential circular rings is approximated by 

the interaction between two infinitesimal parallel cylinders. 

A.3.3. vdW energy between a sphere and a cylinder 

 Similar to EDL energy, the vdW energy for sphere-cylinder interaction also can 

be derived with the SEI approach. The non-retarded vdW energy per unit area between 

two infinite flat plates separated by a distance of r is given by Eq. (18) 493: 

  212
HA

E r
r

    (18) 

where AH is the Hamaker constant of the interacting media. 
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 By substituting Eq. (18) into Eq. (7), we can obtain the SEI expression for the 

vdW energy between a sphere and a cylinder. Similar to the derivation of EDL energy, if 

RC  RS, then integration of the term dy is conducted over the whole sphere:
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 If RC < RS, integration of the term dy is conducted over only part of the sphere, 

and the vdW energy is given by Eq. (20): 
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 To verify the accuracy of the SEI technique, the vdW energy between a sphere 

and a cylinder was also derived with Hamaker’s approach. This approach first determines 

the vdW energy between a point particle and a sphere and then integrates the point 

particle–sphere interaction over the cylinder, as shown in Figure A.4. The vdW 

interaction between a point particle and a sphere of radius RS is given by Eq. (21) 498, 499: 
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where r is the distance between the point particle and the center of the sphere. 
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Figure A.4. Schematic representation of the vdW interaction between a sphere of radius 

RS and a cylinder of radius RC. The sphere is separated from the cylinder by a distance D. 

The volume element in the cylinder is denoted as dV. The separation distance between 

the volume element and the center of the sphere is denoted as r. The geometry is 

conveniently described with cylindrical coordinates (, , z). The radial distance  is the 

Euclidean distance from the z-axis to the volume element. The azimuth  is the angle 
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between the reference direction and the line from the origin to the projection of the 

volume element on the plane. The height z is the distance from the volume element to the 

chosen plane. 

 In cylindrical coordinates, the volume element is d d dz   . 

   2 22 2cos sinS Cr D R R z           (22) 

 The vdW energy between a sphere and a cylinder is then given by Eq. (23): 
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 For the interaction of a sphere and an infinite cylinder, the above equation can be 

further integrated as Eq. (24): 
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A.4. Results and discussion 

A.4.1. EDL interaction between a sphere and a cylinder 

 Numerical integrations in this study were performed in Matlab. The surface 

potentials of both the sphere and the cylinder were assumed to be -25 mV. The curvature 

effect of the cylinder, as represented by the dimensionless parameter RC/RS, on the EDL 

interaction is shown in Figure A.5. When the cylinder radius RC is small relative to the 

sphere radius RS, a strong effect of curvature is observed on the EDL interaction energy is 

observed. When RC is one-tenth of RS, the EDL energy between the sphere and the 

cylinder is almost one order of magnitude smaller than that between the sphere and a flat 

plate. As the cylinder radius increases, the importance of the curvature effect is reduced, 

and subsequently the EDL interaction between a sphere and a cylinder asymptotically 

approaches that between a sphere and a flat plate. When RC is one hundred times larger 

than RS, the curvature effect becomes negligible. The EDL interaction between a sphere 

and a flat plate was calculated from an exact expression specified in Bhattacharjee and 

Elimelech’s study 491, which is a proof that our derivation of the EDL interaction between 

a sphere and a cylinder is accurate. In fact, by taking RC in Eq. (8) to infinity, we can 

obtain the exact same expression for the EDL interaction between a sphere and a flat 

plate given in the previous study 491.  
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Figure A.5. Effect of cylinder curvature on the EDL interaction energy between a sphere 

and a cylinder. The sphere radius is fixed at 10 nm.  is 1 nm-1, which is equivalent to a 

system of approximately 0.1 M mononvalent electrolyte. When the cylinder radius 

increases, the EDL interaction energy becomes larger and approaches that between a 

sphere and a flat plate. With an RC/RS ratio of 100, the EDL energy between a sphere and 

a cylinder was indistinguishable from that between a sphere and a cylinder.  

 Figure A.6 compares the dimensionless EDL interaction energy for a sphere and a 

cylinder obtained with the SEI technique and Derjaguin approximation. The EDL energy 

predictions obtained using the two techniques are markedly different, especially when the 

curvature of the cylinder is important; with a RC/RS ratio of 0.1, Derjaguin’s prediction 

deviates significantly from the SEI prediction. As expected, the SEI predictions are 

always smaller than Derjaguin’s predictions, as Derjaguin’s approach overestimates the 

interaction energy between two surfaces 490. In the DA-2 method, Derjaguin 
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approximation was used twice: once for approximation between two parallel cylinders 

and once for approximation between a sphere and a cylinder; accordingly, the DA-2 

method produced predictions that were worse than DA-1.  
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Figure A.6. Comparison of SEI and Derjaguin approximation approaches (DA-1 and DA-

2) for calculating the EDL interaction energy between a sphere and a cylinder.  is 1 nm-

1, which is equivalent to a system of approximately 0.1 M ionic strength.  

 Thereafter, we studied the effect of the ratio of sphere radius to EDL thickness 

(RS) on the EDL interation energy between a sphere and a cylinder. At a constant 

surface potential, an increase in Debye length (thicker EDL) leads to overlapping EDLs 

surrounding the sphere and the cylinder, and subsequently results in a longer-range EDL 

interaction. Figure A.7 shows the EDL interaction for a sphere and a cylinder with  

values of 0.033, 0.1, 0.33, 1 and 3.3 nm-1, which are equivalent to systems with ionic 

strengths of approximately 10-5, 10-4, 10-3, 10-2, 10-1, and 1 M, respectively.  As  
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increases, i.e., as the Debye length decreases, the EDL interaction energy decays faster 

and approaches zero at a smaller separation distance between the sphere and the cylinder.  

The relative magnitudes of EDL interactions with various  values depend on separation 

distance. At small separation distances, a larger  (or smaller Debye length) leads to a 

steeper potential gradient and results in a stronger EDL interaction. However, as the 

separation distance increases, the EDL interaction with a larger  may become smaller 

because EDLs surrounding the sphere and the cylinder are too thin to overlap 496.  
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Figure A.7. Effect of the ratio of sphere radius to EDL thickness (RS) on the EDL 

interaction energy between a sphere and a cylinder, each of radius 10 nm.  

 Investigation of the effect of sphere radius on the EDL interaction between a 

sphere and a cylinder is also useful, as the size effect is important in many practical 

problems, such as colloidal fouling in membrane filtration. By fixing the cylinder radius 

at 10 nm, we investigated how sphere radius influences the EDL interaction. The ionic 

strength of the system was set at 0.1 M. As shown in Figure A.8, the EDL interaction 
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between a sphere and a cylinder will increase as the sphere radius increases, i.e., larger 

spheres have a stronger EDL interactions with cylinders. 
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Figure A.8. Effect of sphere radius on the EDL interaction energy between a sphere and a 

cylinder. The cylinder radius is fixed at 10 nm..  is 1 nm-1, which is equivalent to a 

system of approximately 0.1 M ionic strength.  

A.4.2. vdW interaction between a sphere and a cylinder 

 The effect of curvature of the cylinder on the vdW interaction between a sphere 

and a cylinder is shown in Figure A.9. The vdW interaction between a sphere and a flat 

plate was predicted using an exact analytical expression given by Eq. (25) 491, 493: 

  ln
6 2 2

  
        

sphere flat p ed lat

vdW S SH

S S

R RA D
V D

D D R D R
   (25) 

 Compared with the vdW interaction for sphere–flat plate, strong curvature effects 

on the vdW interaction for sphere-cylinder are observed at small cylinder-to-sphere 
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radius ratios.  As the radius ratio increases, the curvature effect becomes weaker, and thus 

the vdW interaction asymptotically approaches that between a sphere and a flat plate.  

Calculation of the vdW interaction for sphere–flat plate geometry from an exact 

expression is a proof that our derivation and numerical integration of the vdW interaction 

for a sphere-cylinder geometry is accurate. By taking RC in Eq. (19) to infinity, we can 

obtain exactly the same expression as Eq. (25).  
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Figure A.9. The effect of cylinder curvature on the dimensionless vdW interaction energy 

(V/AH) between a sphere and a cylinder. The sphere radius is fixed at 10 nm. As the 

cylinder-to-sphere radius ratio increases, the vdW interaction becomes larger. When the 

radius ratio reaches a large value such as 100, the vdW interaction is indistinguishable 

from that between a sphere and a flat plate.  

 By combining the EDL and vdW interaction energies,  Figure A.10 shows the 

effect of cylinder curvature on the total interaction between a sphere and a cylinder. As 

the cylinder-to-sphere radius ratio increases, that is, the curvature effect becomes strong, 

the interaction energy barrier of the sphere–cylinder geometry diminishes and deviates 
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greatly from that of sphere–flat plate geometry. This demonstrates that use of the sphere–

flat plate interaction to approximate a sphere–cylinder interaction may greatly 

overestimate it. 
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Figure A.10. The effect of cylinder curvature on the dimensionless total interaction 

energy (V/kT) between a sphere and a cylinder. The sphere radius is fixed at 10 nm. The 

Hamaker constant of the sphere is set at 1 kT.  is 1 nm-1. As the cylinder-to-sphere 

radius ratio decreases, the energy barrier diminishes.  

 Figure A.11 compares the dimensionless vdW interaction energy, obtained using 

the SEI technique and Hamaker’s approach, for a sphere and a cylinder, each of radius 10 

nm. SEI predictions overestimate the interaction energy between two surfaces, owing to 

the assumption of pairwise interaction between surface elements. Hence, SEI predictions 

are always larger than Hamaker predictions. The error is small at both small and large 
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cylinder-to-sphere radius ratios, whereas it is relatively large (up to 20%) at a radius ratio 

of 1. 
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Figure A.11. Comparison of SEI and Hamaker’s approach for calculating the vdW 

interaction energy between a sphere and a cylinder. The sphere radius is fixed at 10 nm. 

 The effect of sphere radius on the vdW interaction between a sphere and a 

cylinder is shown in Figure A.12. By fixing the cylinder radius at 10 nm, we investigated 

how sphere radius influences the vdW interaction. As sphere radius increases, the vdW 

interaction increases, that is, large spheres have a large vdW interaction with the cylinder. 

Therefore, both EDL and vdW interactions will become stronger as the sphere radius 

increases.  
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Figure A.12. Effect of sphere radius on the vdW interaction energy between a sphere and 

a cylinder. The cylinder radius is fixed at 10 nm.  

A.5. Conclusion 

 This study derived expressions for both EDL and vdW interaction energies 

between a sphere and a cylinder with the SEI technique. The SEI technique better 

predicts the EDL interaction between a sphere and a cylinder than do Derjaguin 

approximation, especially when the effect of curvature is important. However, SEI 

predictions overestimate the vdW interaction for sphere-cylinder geometry as compared 

with Hamaker’s approach. Both EDL and vdW interactions between a sphere and a 

cylinder asymptotically approach that between a sphere and a flat plate as the cylinder-to-

sphere size ratio increases. The model presented in this study can be used to predict the 

interaction between a sphere and a cylinder, which occurs frequently in natural and 

engineered systems.  
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APPENDIX B 

EVALUATION OF DLVO INTERACTION BETWEEN A SPHERE 

AND A SECTION OF TORUS 

 

B.1. EDL energy between a sphere and a section of torus 

 The SEI technique, developed by Elimelech and Bhattacharjee 491, was utilized to 

calculate the EDL energy between a sphere and a section of torus. SEI technique 

considers the curvature effect of interacting bodies and provides accurate calculation of 

the interaction energy. According to this approach, the interaction energy (V) between 

two interacting macrobodies with a separation distance D can be calculated by a double 

integral over the projection plane of surfaces of the macrobodies: 

   V =
A

D E r dA



 1 1

2 2
1 1

n k
n k

n k
  (1) 

where xy is the projection plane; n1 and n2 represent the outward unit vectors normal to 

the surfaces; k1 and k2 represent the unit vectors directed towards the positive z axes 

(facing each other) of each body-fixed coordinate system; E(r) is the interaction energy 

per unit area between two infinite flat plates separated by a distance r; A is the projected 

area of macrobody on the xy plane. 

 Figure B.1 schemed the EDL interaction between a sphere and a section of a 

torus. Utilizing SEI technique expressed by Eq. (1), the EDL energy can be derived. 

Since both terms n1·k1 / n1·k1 and n2·k2 will assume positive and negative values 

depending on which semi-sphere or semi-torus the surface element locates at, we 

determined the total interaction energy between the sphere and the torus by calculating 

the interaction energy between each semi-sphere and semi-torus. The interaction energy 

between semi-sphere PAQ and semi-torus PAQ, semi-sphere PA’Q and semi-torus PAQ, 

semisphere PAQ and semi-torus PA’Q, and semi-sphere PA’Q and semi-torus PA’Q are 
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respectively positive, negative, negative and positive. Therefore, the total interaction 

energy can be determined by the following equation 490: 

' ' ' 'TOT PAQ PAQ PA Q PAQ PAQ PA Q PA Q PA QV V V V V         (2)
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Figure B.1. Schematic illustration of the EDL interaction between a sphere of radius RS 

and a section of a torus of major radius R and minor radius RT. The sphere is separated 

from the torus with a distance D. x1y1z1 and x2y2z2 are two body-fixed coordinate systems 

with z1 and z2 axes directly facing each other and x1y1 and x2y2 planes parallel to each 

other. The surface element in the sphere is denoted as dS, which has a corresponding z1 

axis-projection surface element on the tours. The separation distance between the two 

surface elements is denoted as r. n1 and n2 represent the outward unit vectors normal to 
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the surface element. k1 and k2 represent the unit vectors directed towards the positive z 

axes (facing each other).  and  are angles between n1 and k1, and n2 and k2, 

respectively. The surface element on the sphere is described with coordinates (y, ). y is 

radius of the circle (parallel to xy plane) on the sphere where the surface element is 

positioned.  is the angle between the reference direction on the circle (i.e. y-axis 

direction) and the line from the surface element to the center of the circle. The area of 

differential surface element in the sphere can be expressed as yddy/cos.  

 The distance r between two surface elements respectively on sphere and torus was 

determined by Eq. (3):  

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2
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          (3)

 

 Considering that n2i2 plane is normal to k2i2 plane, the term n2·k2 was calculated 

as below. 
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2 2n k    (4) 

 And dA was deterimined by: 

1 1 cosdA dS dS yd dy      n k   (5) 

Substituting Eqs. (1), (4) and (5) in Eq. (2), we obtain the interaction energy 

expression between a sphere and a section of torus: 
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      (6) 

where the upper limit of integral term dy is to be determined (TBD), depending on the 

relative magnitude of sphere radius (RS) and minor radius of the torus (RT).  Equation (6) 

is unaltered regardless of the physical origin of the interaction energy, namely it can be 

applied to both EDL and vdW energies.  

 The EDL energy per unit area between two infinite flat plates separated at a 

distance of
 
r is given by 488: 

     
2 2

1 2
, 0 1 2

1 2

csc 1 coth
2
o o

EDL surface surface r o o
o o

V r h r r
 

     
 

 
   

 
     (7) 

where r and 0 are the relative permittivity of the solution and the permittivity of a 

vacuum, respectively.  is the Debye-Hückel parameter of the electrolyte solution. o1 

and o2 are unperturbed surface potentials of two interacting macrobodies.  

 Substituting Eq. (7) in Eq. (6), we can obtain the interaction energy equation 

between a sphere and a section of torus. The upper limit of the integral term dy depends 

on the relative magnitude of sphere radius (RC) and the minor radius of torus (RT). If RT  

RS, the integration was conducted over the whole sphere: 
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 If RT < RS, the integration of dy was conducted over only part of the sphere, of 

which the projection area is not beyond the torus: 
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B.2. vdW energy between a sphere and a section of torus 

 The vdW energy between a sphere and a section of torus was derived with 

Hamaker’s approach, as schemed in Figure B.2. This approach first evaluates the vdW 

interaction between a point and a sphere, and then integrates the point-sphere interaction 

over the torus section volume. The vdW interaction between a point and a sphere of 

radius RS is given by 498, 499: 
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 In torus coordinates, the element volume is  cosd d R d      .  
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where u is the integration upper limit of . Setting u as /4 and /2 gives almost identical 

results, indicating that choosing any value of u between /4 and /2 does not have a 

significant effect on the integration result. To save the execution time in computational 

integration, u is set as /4. Moreover, although the above equation can be reduced to 

double integration form, we did not do that, as the double integration expression is too 

complicated. 
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Figure B.2. Schematic representation of the vdW interaction between a sphere of radius 

RS and a section of torus of major radius R and minor radius RC. The sphere is separated 

from the torus with a distance D. The volume element in the cylinder is denoted as dV. 

The separation distance between the volume element and the center of the sphere is 

denoted as r. The geometry is described with cylindrical coordinates (, r, , ). The 

radial distance  is the Euclidean distance from the center of the tube to the volume 

element. The azimuth  is the angle between the reference direction and the line from the 

center of the tube to the volume element on the plane. The azimuth  is the angel between 

the reference direction and the line from the volume element to the center of the circle 

composed of points all with the same distance to the origin of torus.  
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