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SUMMARY 

In this research an investigation is made into the feasibility of 

the use of the generalized positive impedance converter (GPIC) in the 

synthesis of the open-circuit voltage transfer function, the driving-

point admittance function, the multi-port open-circuit voltage transfer 

matrix, and the short-circuit admittance matrix. 

The active device, the GPIC, is defined in terms of its chain 

matrix. Several electronic circuits, two of which are thought to be 

novel, are presented. The circuits have as components differential-

input operational amplifiers, resistors, and capacitors. 

The approach used in developing the open-circuit voltage transfer 

function, T(s), synthesis procedure is similar to the one developed by 

5 
Antoniou in his T(s) synthesis procedure using the general immittance 

converter. The approach is to find a network whose short-circuit admit­

tance parameters, -y9, and y9Q9 can be equated respectively to the 

numerator and denominator polynomials of a. real rational T(s) function. 

Such a network is found and a synthesis procedure is developed. No 

factorization of the voltage transfer function is needed, and the net­

work elements are related simply to the transfer function coefficients. 

Each numerator coefficient of the voltage transfer function is propor­

tional to a distinct network element and each denominator coefficient is 

proportional to the sum of two distinct network elements. The synthesis 

procedure will realize any arbitrary T(s) which is a real rational func­

tion in the complex variable s. 
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The approach used in developing the driving-point admittance 

function, Y(s), synthesis procedure is similar to the approach used by 

7 
Hilberman and Joseph for realizing Y(s) with a circuit that contained 

two unity-gain amplifiers and a network with an open-circuit voltage 

transfer function, T(s). The ideal unity-gain amplifiers used by 

Hilberman and Joseph are replaced by two special GPIC's. Use of these 

two GPIC's allows the synthesis of the desired Y(s) to be transferred 

to the synthesis of a particular T(s). This T(s) function can be syn­

thesized according to the open-circuit voltage transfer function pro­

cedure. This procedure will realize any Y(s) which is a real rational 

function in the complex variable s. 

The synthesized networks for the T(s) and Y(s) synthesis proce­

dures use only GPIC's and resistors and are grounded. These realizations 

are producible by integrated-circuit fabrication techniques. The number 

of capacitors used in any synthesized network is equal to the order of 

T(s) or Y(s). Hence the synthesis procedures use the minimum number of 

capacitors. The capacitors are incorporated as internal elements in the 

GPIC devices. 

Sensitivity is defined and discussed. A sensitivity investigation 

of the resulting realizations of the T(s) and Y(s) synthesis procedures 

is made. 

For the network that realizes the unconditionally stable T(s), 

the coefficient sensitivity terms can always be made less than or equal 

to one in absolute value. In the case of the absolutely stable, second-

order T(s) network, the selectivity and, undamped natural frequency 
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sensitivity terms can always be made less than or equal to one in abso­

lute value. It is concluded that the T(s) synthesis realizations 

exhibit coefficient, selectivity, and undamped natural frequency sensi­

tivities of the same order of magnitude as the realizations of Antoniou, 

which are claimed to have low sensitivity. The T(s) realizations offer 

a definite improvement in selectivity sensitivity over a particular 

negative impedance converter circuit reported by Newcomb. It is demon­

strated that coefficient sensitivity terms of the resulting realizations 

of the Y(s) procedure can always be made les;s than or equal to one in 

absolute value, approximately. 

The fact that each GPIC used in the T(s) and Y(s) synthesis pro­

cedures has two degrees of freedom, namely the specification of the 

active gain constants k and k_, can be used in the control of component 

values external to the GPIC devices. The unrestricted assignment of 

GPIC gain constants allows the network realizations of the T(s) and Y(s) 

synthesis procedures to be completed with component values'external to 

the GPIC devices that fall into a prescribed range. 

For completeness, a synthesis procedure is developed for realiz­

ing any multi-port open-circuit voltage transfer matrix whose elements 

are real rational functions in the complex variable s. The approach 

used to realize the matrix is to realize the matrix one row at a time. 

i 

The networK realization for each row is very similar to the network used 

to realize T(s). Again no factorization of the row elements is needed, 

and the network elements are simply related to the coefficients of each 

of the row elements of the transfer matrix. Each numerator coefficient 
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of each row element is proportional to a distinct network element and 

each denominator coefficient of each row is proportional to "the sum of 

(n+1) distinct network elements 5 where n is equal to the number of row 

elements in the multi-port open-circuit voltage transfer matrix. The 

network realization is grounded. 

A synthesis procedure is developed for realizing any short-

circuit admittance matrix whose elements are real rational functions in 

the complex variable s. The approach used, in this development is simi-

7 
lar to the work done by Hilberman and Joseph. The ideal unity-gam 

amplifiers used by Hilberman and Joseph are replaced with special GPIC's 

Use of these GPIC's allows the synthesis of the desired short-circuit 

admittance matrix to be transferred to the synthesis of a multi-port 

open-circuit voltage transfer matrix. Again, the network realization is 

grounded. 

Numerical examples are included to illustrate each of the four 

synthesis procedures. The practicality of the T(s) and Y(s) synthesis 

procedures is demonstrated by experimental results. The results of the 

experimental realization through the use of the GPIC of the negative 

resistance and the inductance are presented. 
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CHAPTER I 

INTRODUCTION 

The rapid development of the transistor has generated consider­

able interest in active network theory. Low-cost active elements have 

made it possible for the network synthesist to replace the expensive, 

bulky inductor and to extend the range of realizable functions far 

beyond, "thai: possible wi-th RLC networks. 

The equally rapid development of thin-film and monolithic inte­

grated circuits has encouraged the network synthesist to go one step 

forward—to eliminate the capacitor to the extent possible. Once a 

circuit configuration for an integrated or thin-film circuit is obtained, 

the capacitance of the circuit is determined by capacitor area. Conse­

quently, it is desirable to minimize the total capacitance in the design 

of a circuit. Generally, this means a minimization in the number of 

capacitors; however, there may be special cases where this minimization 

in number may not yield the minimum total capacitance. 

It has been pointed out that processing and biasing for mono­

lithic capacitors almost always make the choice of minimum number of , 

capacitors over minimum capacitance the desirable one. Also, it is 

often desirable to have all capacitors with a common plate (terminal). 
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Both the monolithic and thin-film integrated-circuit fabrication 

technologies require that resistor values and capacitor values be within 

a certain range. Thus it becomes desirable to be able to control the 

range of the passive element values in order to make the network pro­

ducible with the new technologies. 

In all active circuits, groundedness and low sensitivity with 

respect to both active and passive parameters are of much importance. 

2 
Kerwin, Huelsman, and Newcomb addressed themselves to the 

integrated-circuit compatibility with an open-circuit voltage transfer 

function synthesis procedure based on the state-variable approach. The 

procedure renders a network that is grounded, contains the minimum num­

ber of capacitors, and uses only integrated-circuit operational ampli­

fiers, resistors, and grounded capacitors. The synthesis technique has 

low sensitivity but appears to have no control over the range of passive 

element values. . . 

3 ' 
Goldman and Ghausi have developed a procedure for the synthesis 

of grounded active RC N-ports with a prescribed range of element values. 

The procedure uses resistors, operational amplifiers, voltage amplifiers, 

and more than the minimum number of capacitors. 

The generalized positive impedance converter (GPIC) can be char­

acterized by the chain matrix 

Ik, 0 

0 ±k2f(s) 
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where the a l g e b r a i c s igns a s soc i a t ed with k and k are the same and 

f ( s ) i s a r a t i o n a l funct ion of s . The GPIC has been used in s y n t h e s i s 

. • 4 5 
procedures by Gorski -Popie l and Antoniou t o r e a l i z e the o p e n - c i r c u i t 

vo l tage t r a n s f e r func t ion . Gorski -Popie l used the GPIC t o r e a l i z e the 

inductance in an L-C s y n t h e s i s . Antoniou used i t d i r e c t l y t o r e a l i z e 

the o p e n - c i r c u i t vol tage t r a n s f e r funct ion in terms of the s h o r t -

c i r c u i t admittance pa ramete r s , ~y9 1 and y 9 9 - Nei ther Antoniou nor 

Gorsk i -Popie l has at tempted t o minimize the number of capac i to r s in h i s 

syn thes i s procedure . 

The p u r p o s e of - this r e s e a r c h i i s -to i n v e s t i g a t e t h e f e a s i b i l i t y 

and pos s ib l e advantages of using the GPIC in the s y n t h e s i s of the open-

c i r c u i t vo l tage t r a n s f e r func t ion , the d r i v ing -po in t admit tance func­

t i o n , the m u l t i - p o r t o p e n - c i r c u i t vol tage ti^ansfer m a t r i x , and the 

s h o r t - c i r c u i t admittance mat r ix . In t h i s t h e s i s , o p e n - c i r c u i t vo l tage 

t r a n s f e r funct ion and d r i v ing -po i n t admittance funct ion syn thes i s p ro ­

cedures w i l l be developed, which r e a l i z e a r b i t r a r y r e a l r a t i o n a l func­

t i o n s in the complex v a r i a b l e s and have the fol lowing d e s i r a b l e char­

a c t e r i s t i c s : 

1. The procedures r e q u i r e the minimum number of capac i to r s 

necessary for the s y n t h e s i s . 

2 . The procedures are compatible with i n t e g r a t e d - c i r c u i t f a b r i ­

ca t ion technology. 

3. The procedures have low s e n s i t i v i t y f ac to r s with r e spec t t o 

both a c t i v e and pass ive parameters of c e r t a i n funct ions of i n t e r e s t . 

4. The procedures can exe rc i se con t ro l over the range of element 

values e x t e r n a l t o the GPIC's. 
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5. The network realizations are grounded. 

The open-circuit voltage transfer function synthesis procedure 

will be extended to a synthesis procedure that will realize an open-

circuit voltage transfer matrix whose elements are real rational func­

tions in the complex variable s. The driving-point admittance function 

synthesis procedure will be extended to a synthesis procedure that will 

realize a short-circuit admittance matrix whose elements are real ra­

tional functions in the complex variable s.. The network realizations 

for these two synthesis procedures will be grounded. 

The approach used in developing each of the synthesis procedures 

is similar. In the case of the open-circuit voltage transfer function 

synthesis, a network is found whose short-circuit admittance parameters, 

-y and y99s can be equated respectively to the numerator and denomi­

nator polynomials of a rational open-circuit voltage transfer function. 
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CHAPTER II 

THE GENERALIZED POSITIVE IMPEDANCE CONVERTER 

The generalized positive impedance converter (GPIC) can be char­

acterized by the chain matrix 

±k 0 

0 ±k2f(s) 

(1) 

where-the algebraic signs associated with k and k are the same and 

f(s) is a rational function of s. If port 2 of the device is terminated 

in Z , then the impedance looking into port 1 is 
Li 

Jin " k2f(s) 
(2) 

If f(s) = 1, a special case of the GPIC known as the positive impedance 

converter (PIC) results. 

Antoniou has described a simple device (Figure 1) with the chain 

matrix 

ziS 
Z1Z3 

(3) 



(1 ) 

> 

(2) 

Figure 1. General Immittance Converter of Antoniou 

He refers to this device as the general immittance converter (GIC). The 

GIC is also a special case of the GPIC. In order to obtain the results 

of (3), it is assumed that the operational amplifiers are ideal. Name­

ly, the input impedance is infinite, the output impedance is zero, and 

the bandwidth is infinite. These same assumptions are made throughout 

the completion of this chapter in the analysis of any circuit which con­

tains an operational amplifier. 

The circuit of Figure 1 can be modified to yield a more versatile 

device with a chain matrix 
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VZ6 

Z2h 
hh 

(4) 

The modified circuit is shown in Figure 2. The development or deriva­

tion of this novel circuit is given in detail in Appendix II. 

0 1 

h L 

i:>-
— 

(1) 

1 "2-

i r i 
4 

0 

SjL^ *i 

d 6 Z 

—<J 

7 (2) 

— - o 

'7 " Z3+Z5 

Figure 2. Generalized Positive Impedance Converter 
with the Chain Matrix of (4) 



In Figure 3 there is shown a novel positive impedance converter 

(PIC) circuit with the chain matrix 

(5) 

-wvw 

R6 = R1 + R3 + 2(R2+R4) 

Figure 3. Positive Impedance Converter 
with the Chain Matrix of (5) 



9 

For a detailed analysis of this circuit, see Appendix III. 

R 

Cox, Su, and Woodward have developed a circuit which they have 

named the universal impedance converter (UIC). It can serve as both 

a PIC and a negative impedance converter (NIC). Now the UIC can be 

modified to yield the most general GPIC with the chain matrix of (1). 

Figure 4 shows the UIC so modified. With S open, S closed, the cir­

cuit has the chain matrix 

R10R12 
R9R11 

2R2R6 
aR^RR 

Z(s) 

(6) 

With S closed, S open, it has the chain matrix 

10 

2R2R6R7 

W? 
Z(s) 

(7) 

Matrices (6) and (7) result provided R is much larger than any loading 

impedance at port 1 of Figure 4. 

If f(s) in (1) is made equal to —, then it will be possible to 
s 

use the GPIC's developed in th i s chapter in open-circuit voltage t r ans ­

fer function and driving-point admittance function synthesis procedures 
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MA­

LI 

C?T^t 
Z ( s ) 

Z L 1 , Z - Loading a t Ports 1 and 2, respect ive ly . 

B R t S 

W _ _5N_ _ _1N_ 

R3N R6N R2N 

R2 R1 

R 3 + R i+ R 5 

* g » LI 

Figure M-. Generalized Positive Impedance 
Converter Based on the UIC 
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that use the minimum number of capacitors necessary for the synthesis. 

With this choice of f(s), (1) becomes 

±k. 

(8) 

It is obvious that the chain matrix of (8) can be realized by the 

modified UIC of Figure 4 if Z(s) is made the reactance of a capacitance. 

Note that this capacitor is grounded, an often desirable feature in 

hybrid integrated circuits. 

Now somewhat less complex realizations of the chain matrix of (8) 

can be obtained from the previously discussed circuits of Figures 1, 2, 

and 3. If Z = R , Z = — , Z = R , and Z = R in Figure 1, the chain 

matrix of (3) becomes 

s Rl R3 C 

"21 
(9) 

I f Zl = V Z2 = £ • Z3 = V h = V Z5 -' R5> h = V and Z7= R7TR, 
O \. 

in Figure 2, the chain matrix of (4) becomes 



12 

R 5 + R6 

sR1R3C 

L12 

•22 

(10 ) 

Now t h e c h a i n m a t r i x of t h e c i r c u i t o f F i g u r e 3 i s 

^ 0 

R, 

-k 
13 

-k 
23 

(11) 

The desired chain matrix of (8), when the positive algebraic 

signs and k. > 1 (the modification in Figure 2 necessary to set a k < 1 

is discussed in Appendix II) are required by the synthesis procedure, 

can be realized with the circuit of Figure 2. The chain matrix of (8) 

with associated negative signs can be realized by a cascade arrangement 
i 

of the circuits of Figures 1 and 3„ Such a cascaded circuit is shown in 

Figure 5. The chain matrix is given by 

R3R7 
SR1R2R5C 

'15 

"25 
(12) 
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R_ = R., + R_ + 2(R[.+R_) 8 4 7 b b 

Figure 5. Generalized Positive Impedance Converter 
with Negative Chain Matrix Terms 

The circuits of Figures 2 and 5 contain one capacitor each; however, the 

capacitor is not grounded. 

One degenerate case of the GPIC is of interest in the driving-

point synthesis procedure. It can be described by the chain matrix 

(13) 

If k = 1, then the matrix of (13) can be realized with the circuit of 

Figure 1 with Zn = R, , Zn = Rn, Z_ = R„iS Z = 0. Figure 1 so modified 

is shown in Figure 6. 
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( 1 ) 

* R 1 

J"2 
£> 

<X 
(2) 

-o 

Figure 6. Degenerate GPIC with k = 1 

If k * 1, the matrix of (13) can be realized with the circuit 

of Figure 2 with Z = R,, Z = 0, Z3 = R , Z^ = R^, Zg = Rfi, Zg = R&, 

\h 
a n d z7 = R7TT7- T h e n 

kl = 
R5 + R6 (14) 

Figure 2 so modified is shown in Figure 7. Note that this circuit gives 

a k greater than one. To get a k less than one, interchange ports 1 

and 2 in Figure 7. Then k± of (13) in terms of the elements of Figure 7 

becomes 
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R„ = 
R4R6 

7 VR5 

Figure 7. Degenerate GPIC with k * 1 

Note that each circuit that has been discussed for the possible 

realization of the GPIC devices contains only operational amplifiers, 

resistors, and capacitors. Thus each realization has the potential of 

being fabricated by the monolithic and/or thin-film integrated-circuit 

processes. 
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CHAPTER III 

SYNTHESIS OF THE OPEN-CIRCUIT 

VOLTAGE TRANSFER FUNCTION 

The approach used in developing the open-circuit voltage transfer 

function, T(s), synthesis procedure is similar to the one developed by 

5 
Antoniou in his T(s) synthesis procedure using the general immittance 

converter. The approach is to find a network whose short-circuit admit­

tance parameters, —y_ and y99j can be equated respectively to the 

numerator and denominator polynomials of a real rational T(s) function. 

Such â  network is found and a synthesis procedure is developed. No 

factorization of the voltage transfer function is needed, and the net­

work elements are related simply to the transfer function coefficients. 

Each numerator coefficient of the voltage transfer function is propor­

tional to a distinct network element and each denominator coefficient is 

proportional to the sum of two distinct network elements. The synthesis 

procedure will realize any arbitrary T(s) which is a real rational func­

tion in the complex variable s. 

Consider first the open-circuit voltage transfer function 

n 

E J aiS 

T(s) = =£= -^ (16) 
Ln m 
1 Ib.s] 

j = 0 D 
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From two-port network theory, 

"y21 T(s) = -f± (17) 
y22 

where y and y are the netwoi?k s h o r t - c i r c u i t admittance pa ramete r s . 

I t i s apparent t h a t any T(s) can be r e a l i z e d for a p a r t i c u l a r two-port 

network i f , 

-^=j 0 */ 
and (18) 

y22 = J b ŝ' 
:=o J 

If the numerator and denominator of T(s) are divided by s where q is 

the order of the transfer function [q=rnax(m9n) ], then T(s) is realized 

if,. 

-Y21 = j a/"* (19) 
1 = 0 

and . 

m 
y22= J b s ^ (20) 

j=o J 

Now consider the circuit of Figure 8 which employs a GPIC 

described by the matrix equation 
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' l r 

(21) 

' 2 r 

where kn and k^ can be p o s i t i v e or nega t ive cons tan ts but must have l r 2r r to 

the same a l g e b r a i c s i g n . The arrow in the GPIC block of Figure 8 and 

subsequent f igures i s d i r e c t e d from po r t 1 t o po r t 2 of each i n d i v i d u a l 

GPIC. This w i l l enable each GPIC t o be descr ibed by i t s chain mat r ix . 

' 1 s r 

/fc 

E i p r 
V 2 

V l 

I{ = I 2 

Vti 

E, 

Figure 8. Basic Network for Generating T(s) 

Analysis of the c i r c u i t of Figure 8 y i e l d s 

21 
2r —- Y 
s s r 

(22) 

and 
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'2r (Y +Y ) 
22 skn sr pr' 

lr * 

(23) 

Consider next the (q+1) cascaded GPIC's in the grounded network 

of Figure 9 which is to be used to realize the open-circuit voltage 

transfer function of order q. The GPIC's of Figure 9 are characterized 

as follows by their chain matrices: 

GPICQ : 

and 

kio ° 

"20 

(24) 

GPIC : 
r 

lr 

2̂r 
s 

where r=l,2,...,q. Analysis for the network of Figure 9 reveals that 

u v k21Ysl k21k22Ys2 k21k22...k Y 
y21 = " k20YsO ' — 2 "-••• 5 ( 2 5 ) 

s s^ 

and 

k20 k21 
= _i£. (y +Y ) + -==- (Y +Y ) 

22 k Us0 pO sk±1
 u s l pl; 

(26) 

k21k92 k21k22'"k2a 

0
2 1 22 (Y „+Y J + ... + - 21 ^ ^ _ (Y +Y ) 
2 s2 p2 oq sq pq 

s k k S kllk12"-klq 
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Figure 9. Network for Realizing qth Order T(s) 
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Hence, 

k Y + ^ y +
kJ^21, + . . . +

k 2 1 k 2 2 - - - k 2 q 
20 SO s s i 2 s2 • • • q sq 

T(s) = T jj ? j — ^ 2 : (27) 
90 91 ^V 99 

^ ( Y n + Y n ) + - T 1 - <Y.i+Y i> + - ^ - ^ ~ <Y o + Y o> •+ • • • k__ sO pO sknn si pi 2. . s2 p2 
10 11 s k k 

+
 k21k22---k2q' ( Y + Y ) 

S\lk12-klq SC1 ^ 

Now the admittance values of the network real izat ion can be obtained in 

terms of the coefficients of the transfer function and gain constants 

k 's of the GPIC's by equating term by term the equations of (25) and 

(19) and the equations of (26) and (20). Whence we have: 

(28) Ys0 = 

a 
q 

k20 

YPO = 

kio\ 
k20 

a 

k20 

Ysl = 
Vl 
k21 

k n b i a i 

Y = 1 1 q-1 a i l 
P I " k2 k 
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y . kllk12b
q-2

 a
q-2 

p2 k21k22 k21k22 

i-r 

sr k21k22...k2r 

, . kllk12---klrbq-r 
pr " k21k22...k2r 

q-r 
K _ -, K _ ,. . • • -K ~ 

21 22 2r 

where r=l,2,... ,q. 

From (28), it is apparent that a negative coefficient in the 

numerator of T(s), i.e., a 3 is accommodated by appropriately choosing 

the algebraic sign of k_ and consequently k in order to avoid a nega­

tive Y . Another point is revealed in (28). If b > 0, and kn can 

sr ^ q-r lr 

take on any value, then Y can always be made positive and real for 

r=0 ,1,2,. . . ,q . However, the range on k.n may be limited such that Y 
^ lr pr 

may need to be a negative admittance. Also, if b < 0, then Y may J & . . a q_r p r J 

need to be negative. Negative Y 's will require realizations by Kim's 

method (see Appendix I) which is grounded and employs a resistance and 

a GPIC with the chain matrix 

(29) 



23 

Several observations can be made regarding the open-circuit 

voltage transfer function synthesis. By virtue of the synthesis tech­

nique, it is obviously grounded,. The only GPIC circuits not shown in 

Figure 9 that may be required in the synthesis are those used in real­

izing negative admittances. These GPIC's do not require capacitors. 

Of the q+1 GPIC's shown in Figure 9, q require one capacitor each and 

can be realized by one of the configurations discussed in Chapter II. 

It was pointed out in Chapter II that each of the configurations are 

compatible with hybrid integrated-circuit fabrication technologies. The 

resistive network coupled to the GPIC's in Figure 9 is also easily-

handled by the integrated-circuit technology. Thus it is concluded that 

the overall network for the synthesis of the open-circuit voltage trans­

fer function is compatible with hybrid integrated-circuit technology. 

The minimum number of reactive elements for the transfer function 

has been discussed by Newcomb. He has pointed out that the minimum 

number of reactive elements needed to realize a rational transfer func­

tion of order q is q. The T(s) GPIC synthesis procedure realizes a qth 

order transfer function with q capacitors—the minimum number required. 

Since the minimum number of reactive elements is used in the syn­

thesis, all poles and zeros in the synthesized network.are accounted 

for. Hence the problem of unobservable or uncontrollable modes of pos­

sible oscillation does not exist. Therefore, if T(s) has stable poles, 

then the circuit does also. 

Some thought reveals that GPIC of Figure 9 is not always neces­

sary in the synthesis procedure. GPIC Ts functions are 
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(1) to eliminate the necessity for having to realize a negative 
admittance Y . for certain desired transfer functions, pO ' 

(2) to control the range of admittance values of Y ^ and Y n. 
sO pO 

These two functions of GPIC may not be desired or needed in certain 

applications. 
Elimination of GPIC is equivalent to letting 

k10 = k20 = X ( 3 0 ) 

in (28). Elimination of GPIC- results in a modification in Figure 9. 

This modification is shown in Figure 10. Hence, to synthesize the 

transfer function of (16) without GPIC of Figure 9, the network of 

Figure 10 can be used. The element values of Figure 10 for the success­

ful synthesis are given by the following: 

Ys0 = \ ( 3 1 ) 

Y = b - a 
pO q q 

a 
q-r sr k21k22...k2r 

kn,k10...k. b a 11 12 lr q-r _ q--r  
pr = k21k22...k2r '- k21k22...k2r 

for r=l,2,... ,q. 
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• s2 

"P2 

Y s l 

k/w 
X 

p i 

X sO 
O-L-VW 

<£„_» 

GPIC, 

E i < Y
P o 

O-
X 

Figure 10. Modified Network for Realizing qth Order T(s) 
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An Example 

To illustrate the open-circuit voltage transfer function synthe­

sis, 

T(s) = % + 3S ' 2 (32) 
s t 2s + 3 

will be synthesized according to the theory of this chapter. Now the 

order, q, of the transfer function is two. From (28) we obtain the 

expressions for the necessary parameter values. 

Y-° - i 
Y h£l !i. 

P° " k20 " k2o' 

s l k 2 1 

k l l b l a l 
p l k 2 1 k 

ao 
s2 k 2 1 k 2 2 

k l l k 1 2 b 0 a 0 
p2 k21k22 k21k22 

Comparing the T(s) to be synthesized with (16), it is apparent that 

a = -2 (34) 
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a1 = 3 

a2 = 1 

b Q = .3 

h-2 

b 2 = l 

Let 

k10 ~ k20 ~ kll " k21 ~ 1 

k12 = k22 = _ 1 

(35) 

Then the synthesis can be completed with the following parameter values 

in units of mhos. 

Y = 1 (36) 
sO 

Y n = 0 pO 

Y = 3. si 

Y = -1 
Pi 

Ys2 = 2 
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Now the negative admittance Y . can be handled by the negative resist-
Pl 

ance method discussed in Appendix I. If 

klN = k2N = 2 ( 3 7 ) 

for the negative resistance generating generalized positive impedance 

converter, GPIC , then the network shown in Figure 11 will realize the 

desired T(s). 
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2 
A * A 

4r— 

GPIC„ 
z 

1 __L_ 

3 

2 

3 

• 

. , ' • \ 

• < 

GPIC 

• 

GPIC,, 
N 

• 

• < 

GPIC 

_L _L 
O- r\ 
yfc 

E i 

« — — -

GPIC0 

/ s 

E 2 

o 
VJ _L -

Element values shown in mhos. 

Figure 11. Network for Realizing the T(s) of (32) 
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CHAPTER IV 
i 

DRIVING-POINT FUNCTION SYNTHESIS 

v 

In this chapter a synthesis procedure for realizing any arbitrary 

driving-point admittance which is a real rational function in the com­

plex variable s is discussed. The procedure shifts the synthesis of the 

driving-point function to the synthesis of the open-circuit voltage 

transfer function. 
If the ideal unity-gain amplifiers in the network of Joseph and 

7 

Hilberman for realizing the driving-point admittance Y(s) from a net­

work with an open-circuit voltage transfer function T(s) are replaced 

by GPIC's, the grounded circuit of Figure 12 is obtained. 

Y(s) -> GPIC, 

AA/WV 

A 

T(s) 
Netwo2?k 

GPIC, 

Figure 12. Network for Realizing any Rational Y(s) 
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If the chain matrices of GPIC and GPICR in Figure 12 are respectively 

klA ° 

0 0 

and (38) 

klB ° 

0 0 

then i t can be shown t h a t 

Y(s) = - [ 1 - . k ^ K s ) ] ( 3 9 ) 

Now if the desired Y(s) is given by 

Y(s) = 
P(s) 
Q(s) 

(40) 

analysis will show that it is only necessary to synthesize the network 

whose open-circuit voltage transfer, function is 

Q(s) - RP(s) 
T(s) = k1Ak1BQ(s)-

(41) 

Suppose that the desired driving-point admittance Y(s) is given by 
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n 
I cs1 

. « 1 

Y(s) = — (42) 
m 

j=0 : 

Then the open-circuit voltage transfer function to be synthesized is 

given by 

(d -Rc_) + (d.-Rc.)s + ... + (d -Re )sq 

T ( S ) = Q Q ,— i—±— a _ s — (if3) 
klAklB(d0+dlS+d2S + - - - + V q > 

where q is the order of Y(s). 

Now T(s) can be synthesized by the procedure discussed in Chapter 

III and the network of Figure 9. The identification of parameter values 

for the T(s) network of Figure 9 in terms of the coefficients of (M-2) is 

as follows: 

d - Re 

• n = v \ ^ <^> 
S° klAklBk20 

kin d - Re 
_10 d ^ _^g ô  

'P° k20 q ' klAklBk20 

d . - Re . 
Y = q-i ail 
S l klAklBk21 

kn nd d - Re n 

Y = n q-1 q-i ail 
P l k2.1 klAklBk21 
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r = scl azi 
3 2 k l A k l B k 2 1 k 2 2 

k k d d - Rc 
Y - 11 12 q-2 _ q -2 q-2 

P 2 k 2 1 k 2 2
 k i A

k i B k 2 1 k 2 2 

d - Rc 
Y = q - r q~ r 

S r k l A l B k 2 1 k 2 2 - " k 2 r 

k i n k 1 0 . . . k d d - Rc 
Y _ 11 12 l r q - r _ q - r q- r 
P r k21 k22* * *k2r klA klB k21 k22* ' *k2r 

where r=l,2,...,q. 

GPIC and GPIC-, of Figure 12 can be-realized with a circuit such 

as the one of Figure 7. 

Note that the order of the open-circuit voltage transfer function, 

T(s), of (43) is equal to the order of the driving-point admittance 

function, Y(s), of (42). The two additional GPIC's needed in the syn­

thesis of Y(s), GPIC and GPIC of Figure 12, require no capacitors. 
A. D 

Hence to realize a Y(s) of order q, we must realize a T(s) of order q. 

It was shown in Chapter III that this T(s) can be realized with q 

p 
capacitors. Newcomb has pointed out that the minimum number of reactive 

elements needed to realize a real rational driving-point admittance of 

order q is q. Therefore, the driving-point admittance synthesis proce­

dure of this chapter uses the minimum number of capacitors necessary 

for the synthesis. 
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The a c t u a l s y n t h e s i s in the d r i v i n g - p o i n t admittance procedure i s 

t h a t of syn thes i z ing a network with a c e r t a i n o p e n - c i r c u i t vo l tage 

t r a n s f e r func t ion . This t r a n s f e r funct ion network i s connected t o 

another network with two more GPIC's and a s i n g l e r e s i s t o r t o form the 

f i n a l network for the des i r ed admittance func t ion . Since the same types 

of a c t i v e devices and network elements appear here as in the vol tage 

t r a n s f e r funct ion s y n t h e s i s , the same arguments for compa t ib i l i t y with 

f a b r i c a t i o n by an i n t e g r a t e d - c i r c u i t technology hold here as was used 

in Chapter I I I . 

An Example 

To i l l u s t r a t e the d r i v i n g - p o i n t admittance funct ion s y n t h e s i s , 

2 
Y(s) = *s_J_±±l (45) 

s + 3s + 1 

will be synthesized according to the theory of this chapter. The order 

of Y(s), q, is equal to two. Comparing the Y(s) to be synthesized with 

(42), it is apparent that 

c0•= 2 (46) 

c l = 1 

c2 = 2 

d0 = 1 

d 1 = 3 



35 

d2 = i 

Arbitrarily letting 

R = 1 

(47) 

klA " klB ~ 2 

the following admittance parameters are obtained from (44) 

SO 4k2Q 

Y .!^io_li: 
PO 4k2Q 

•si 2K 2 1 

6k - 1 
Y = — — 
pl 2k21 

's2 4k2lk22 

y
 4kllk12 + X 

p2 4k2ik
22 

(48) 
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In order to make all Y Ts positive and real, make k^0 and k00 be 
sr r ' 20 22 

negative. Since k and k are negative and are GPIC parameters, k 

and kn. must be negative also. All other k. .'s must be positive. Arbi-
12 ° i] 

trarily make the absolute value of all k„ .'s be one. In other words, 

make 

k10 = k20 " k12 = k22 = _ 1 

kll = k21 = X 

(49) 

Then from (48) and (49), the following admittance values are obtained: 

Ys0 = k (50) 

Y -I 
pO 4 

Y = i 
si 2 

Y = i 
pi 2 

Y =i-
s2 4 

Y = 1 
p2 t 

The circuit of Figure 13 will realize the desired Y(s) 
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VNAAA 

Y(s). 

Element values shown in mhos. 

Figure 13. Network for Realizing Driving-Point 
Admittance Function of (45) 
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CHAPTER V 

SENSITIVITY 

In this chapter, sensitivity is defined and discussed. A sensi­

tivity analysis of the resulting network realizations of the open-

circuit voltage transfer function and driving-point admittance function 

synthesis procedures is made. 

Definition 

Sensitivity can be defined as the fractional change in perform­

ance resulting from a given fractional change in an independent variable 

9 
of the system. Geffe has presented an enlightening view on the topic 

of network sensitivity by comparing macroscopic sensitivity and differ­

ential sensitivity. 

Suppose that we are interested in the change in the performance 

parameter T of a network with respect to some fractional change in the 

element value x. The macroscopic sensitivity of T to x can be defined 

by 

x 

The macroscopic concept simply means that we intend to use realistic 

Ax 
magnitudes of — . Realistic magnitudes may fall in the range of 1 to 

AT 
T 
Ax 
x 

(51) 
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-T 
10 per cent, i.e., lumped resistors. ' If S were obtainable, we could 

get to the final quantity of interest, 

^ = S T - ^ (52) 
T x x 

-T 
Unfortunately, S is mathematically intractable in most situations; 

therefore, we are generally forced to abandon the idea of realistic mag-
Ax 

nitudes of — . If we let Ax be a differential quantity, then we can 

define the differential sensitivity of T to x as 

(53) 

As Ax approaches zero, (51) and (53) become identical. In the 

discussion of sensitivity which follows, sensitivity will have the 

meaning as defined by (53). 

In the investigation of active circuits, it is of interest to 

check sensitivity factors with respect to passive elements as well as 

the active parameters. It is desirable to have~all sensitivity factors 

low. High sensitivity with respect, to passive elements is cause for 

alarm. High sensitivity with respect to active parameters, such as 

gain, may not be a severe defect: in a network synthesis realization 

since gain can often be very well stabilized with feedback. 

3T 

RT = T 9T X 
i —— 

X 3x 
X 

9x T 
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Coefficient Sensitivity of the 
Open-Circuit Voltage Transfer Function 

Consider first the coefficient sensitivity of the network 'that 

realizes the qth order open-circuit voltage transfer function 

<1 

I ^ s 1 

T(s) = i=° (54) 
q 
Jb,8] 
j=0 " 

As discussed in Chapter III, the T(s) of (54) can be realized by the 

network of Figure 9. The element values needed are given in terms of 

the coefficients of the transfer function and the active gain constants 

of the GPIC's by (28). The equations of (28) can be solved to obtain 

the coefficients of the T(s) of (54) in terms of element values and GPIC 

gain constants. Doing so we obtain 

\ =k20YsO ( 5 5 ) 

q-1 21 si 

dq-2 = k21k22Ys2 

\-r = k21k22'**k2rYsr 

k 2 0 ( Y s 0 + V 
b = ;— e  

q k io 
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k 0 1(Y +Y ) 
b = 21 ,sl P1.. 
q-1 k 

k21k22(Ys2+Yp2) 

^ " kllk12^ 

k0 k ...k0 (Y +Y ) 
, - 21 22 2r sr pr 
q-r = k >< k 

where r=l,2,...,q. 

- Using the definition of (53) for sensitivity, the following coef­

ficient sensitivities are obtained: 

S V
r = S / - r = S k « -

r = - S k ' -
r = l (56) 

2r sr 2r lr 

b Y 
s q-r _ sr; 
Y Y • + Y 
sr sr pr 

b Y 
S q-r _ pr 
Y Y + Y 
pr sr pr 

for r=0,1,2,...,q. All other coefficient sensitivities are equal to 

zero. 

If all b > 0, and k. can take on .any value, then Y can 
q-r lr J pr 

always be made positive and real for r=0,1,2,...,q. (This point was 

discussed in Chapter IV.) Hence, the absolute value of all the coeffi­

cient sensitivities of (56) will be less than or equal to one. These 
5 

coefficient sensitivities are as low as the factors reported by Antoniou 
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in his RC-GIC realization for the open-circuit voltage transfer function 

of (54) restricted as follows: 

(1) b. > 0 
: 

(2) b. > la. 

(57) 

If we do not restrict the coefficients, b 's, and restrict the 
q-r 

range of k ' s, then it may be necessary to generate a negative Y 

Examination of the equations of (56) indicates that care must be taken 
in this case to assure that (Y +Y ) is as large in absolute value as 

pr sr ° 
possible in order to assure minimum coefficient sensitivity. 

Selectivity and Undamped Natural Frequency 
Sensitivities of the Second-Order 

Open-Circuit Voltage Transfer Function 

The general open-circuit voltage transfer function defined by 

(54) can be factored into first and second order poles and zeros. This 

factored transfer function can be realized by first and second order 

network sections cascaded through isolation buffer amplifiers. These 

first and second order sections can- be realized by the GPIC synthesis 

procedure for T(s) discussed previously. This decomposition of the T(s) 

is often done and in some cases results in reduced sensitivity. 

Since transfer functions of the first order can often be handled 

by simple passive RC sections, the transfer function of the second order 
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T(s) = 
a0 + a i S + a 2 S 

bQ + bx8 + b 2S : 

(58) 

has received considerable special a t ten t ion . When b n > 0, i t is cus­

tomary to write (58) in terms of the undamped natural frequency, oo , 

and the damping factor , a, as follows. 

T(S) = r±-
b 2 

aQ + a s + a2s 
2~— 2~ 

s + 2as + a) 
n 

(59) 

where 

00 = — -
n J b 2 

(60) 

and 

a - 2b. 
(61) 

In terms of the s e l e c t i v i t y , or Q, of the poles, (59) can be writ ten as 

T(s) = 
1 S0 + a l S + a 2 S 

(62) 

s 2
 + S + 0) 

where 
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If we consider the synthesis of the transfer function of (58) by 

the previously discussed open-circuit voltage transfer function synthe­

sis technique, we can identify the coefficients of (58) with the network 

elements of Figure 9 through the equations of (55). Using the results 

of (55) for q equal to two and substituting into (60) and (61), the fol­

lowing is obtained. 

Ys2 + Yp2 k21k22k10 

^ - k^i • J~w^ (64) 

Q ^ Y s Q + Y
P 0 - K Y s 2 + Y ^ f l l k

2 2
k 2 0 

( Y s l + V ' Jk12k21k10 
(65) 

The selectivity and undamped natural frequency sensitivities of the 

resulting network realizations are often used to judge the merits of a 

particular synthesis procedure. 

Again, using the differential sensitivity definition of (53), the 

following sensitivities are obtained. 

co co co , 

; n = s n - s n 4 (66) 
K10 K 21 K22 l 

CO CO CO 

S n = S n = S n = - -
k l l k 1 2 ^ k 20 2 
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n 1 J>2 
Y 0 2 .Y . + Y , p2 s2 p. 

sO 

sO 
2 Y + Y , 

sO pO 

YpO 2 Y s O + Y p O 

sQ = sQ = sQ = i 
k k k 9 Kll K22 k20 

SQ = SQ = SQ = - i 
k k k 2 K12 K21 K10 ^ 

sO 
2 Y + Y 

sO sO pO 

"pO 

'pO 
2 Y n + Y n sO pO 

s2 
r 2 Y + Y 
s2 ' s2 p2 

'P2 2 Y s 2 + Y
P 2 

si 

si 
Y + Y 
si pi 
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s9 = - _ ^ 1 _ 
Y n Y + Y n pi si pi 

If all Y Ts > 0 as before (i.e.. b. > 0 for i =0.1.2 and k, , 
pr ] J ' ' lr 

unrestricted in value for integer values of r between 0 and 2), then 

the absolute value of all Q and ui sensitivities will be less than or 
n 

equal to one. These sensitivity figures are almost the same as the low 

factors reported by Antoniou in his. RC-GIC synthesis realizations. 

Newcomb shows that for high Q circuits, the INIC realization 

of Figure 7.2.2 with assigned values from Table 7.2.1 in his book has 

s£| = 2Q2 ' (67) 

Further examination reveals that 

0 i ~ 9 
Ŝ J = 2Q (68) 

Now k is the current gain constant of the INIC and .r is a circuit 

resistor value. Therefore, the circuit is very sensitive to both active 

and passive parameters. 

It can be concluded that the resulting network realizations of-

the GPIC open-circuit voltage transfer function synthesis exhibit selec­

tivity and undamped natural frequency sensitivity figures of the same 

order of magnitude as Antoniou's realizations, which are claimed to have 

low sensitivity. The GPIC realization offers a definite improvement in 
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Q funct ion s e n s i t i v i t y over a p a r t i c u l a r INIC c i r c u i t r epor t ed by 

Newcomb. 

S e n s i t i v i t y of the Absolute Value 
of the Second-Order Al l -Po le 

Open-Circui t Voltage Transfer Function 

The second-order a l l - p o l e t r a n s f e r funct ion 

a
0 

T ( s ) = - - ( 69 ) 
b + b s + b 2 s 

can be synthesized by the GPIC procedure described previously and 

realized with the network of Figure 9. Assume that the transfer func­

tion is absolutely stable (i.e., b , b , b > 0) and that a > 0. The 

equations of (55) enable us to relate the coefficients of (69) to the 

network admittances and GPIC gain constants needed for the synthesis 

with the network of Figure 9. Namely, 

T(8) = J^!s2___ _ (?o) 

k21 k22 ( Ys2 + Y
P2

) , k21 ( Ysl + Ypl ) s , k20 ( YsO + YpO ) s 

kllk12 kll k10 

Now 

I V I I V I Y 

l T (^l = D(J — (71) 

where 

D(u) = JA2(U) + B2(u)) (72) 

and 
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A(oo) = 21 22 s2 p2 20 sO pQ 

kllk12 k10 
(73) 

and 

B(oo) = "
k21 ( Ysl + Ypl ) 

kl.l 
(74) 

Analysis will yield the following sensitivities. 

|T(jo))| _ 1 

"11 D2(o3) 

k21k22(Ys2+Yp2)
 u w R2 " 

— — _ £ — . A(oo) + B (a)) 
K11K12 

(75) 

T ( j w ) | _ 1 

•12 D2(w) 

k 2 1 k 2 2 ( Y s 2 + Y p 2 )
 A r , 

- — * A(co) 
k l l k 1 2 

s | T ( j a O | = 1 . s | T ( J 0 ) ) 
k 2 1 k l l 

s | T ( j . ) | = 1 _ s | T ( J c o ) 
k 2 2 k 1 2 

|T(joo)| _ _ 2 k20kllk12(YsO+YpO) |T(jaQ 

k10 " " U " k10k21k22(Ys2+Yp2) k12 

|T(ja))| _ c|T(joj) = - S, 
"20 '10 

|T(ju)| 2 k20kllk12YsO 

"SO ~ " ' k 1 0 k 2 1 k 2 2 ( Y s 2 + V 

T(ju>) 

:12 
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|TC jco> | _ 2 . k 2 Q k l l k 1 2 Y p Q |T(1oi) 

YpO ' k 1 0 k 2 1 k 2 2 ( Y ^ + Y p 2 ; r k 1 2 

i T / . NI Y (Y _+Y . ) ( a ) k 0 . ) 2 

c | T ( ] a ) ) _ si si pi 21 
b  

s i [ k r L D ( a ) ) r 

| T / . M Y 1 (Y e . +Y . ) ( u k 0 . ) 2 

0 T(]w) _ p i s i p i 21 
b 

p i [ k i ; L D ( u ) ] z 

Q | T ( j a ) ) | _ Y s 2 0 | T ( j a ) ) 
Y s 2 < Y s 2 + Y p 2 ) k 1 2 

o | T ( j u ) | _ Yp2 j T ( i u ) 
Y p2 " " ( Y s 2 + Y p 2 ) k 1 2 

No general statement can be made regarding the relative magnitude 

of the previously calculated absolute magnitude of T(s) sensitivity 

terms. That the network used to realize T(s) can be made to have low 

sensitivity terms can best be demonstrated through the following example. 

An Example 

The following open-circuit voltage transfer function 

T(s) = -= ± — (76) 
s + Q s + 1 

will be synthesized according to the procedure of Chapter III and the 

sensitivity factors of (75) will be computed. For the example, the 

undamped natural frequency, u) , is 1. The selectivity of the function 
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is Q. The T(s) synthesis procedure of Chapter III requires that 

Y . = 0 (77) 
sO 

Y 1 0 

•po k 2 Q 

Y n = 0 si 

k n 
Y pl Qk21 

S2 k21k22 

Y - kH k12 " 1 
p2 " ' k k 

Arbitrarily, make all k..'s = 1. Then in units of mhos 

Y = 0 (78) 
S(J 

Y . = 0 si 

Ys2 = 1 

YPO = 1 

Y = 1 
pl Q 
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YP2 = ° 

The equat ions of (75) i n d i c a t e d t h a t c e r t a i n s e n s i t i v i t y f a c t o r s 

are funct ions of the r ad ian frequency oo. Since i t would be impossible 

t o check the s e n s i t i v i t y f a c t o r s a t every frequency, t h r e e f requencies 

are usua l ly used: oo = 0 , oo = oo = 1 , and oo = °°. Using the r e s u l t s of 

(75) and s u b s t i t u t i n g the above network admittance values and GPIC gain 

c o n s t a n t s , Table 1 was ob ta ined . 

Table 1. S e n s i t i v i t i e s of Second-Order A l l -
Pole Transfer Function of (76) 

Element 
Element 
Value 00 = 

s|T(ja>)| 
Element 

=0 oo=l oo=°° 

1 C ) 0 1 

1 1 1 0 

1 1 0 0 

1 C ) 0 1 

1 C ) 0 1 

1 ( ) 1 1 

1 mho C ) 0 i 

-r- mho C ) 1 0 

1 mho C ) 1 l 

"10 

k l l 

"12 

'20 

' 21 

"22 

pO 

^ 1 

s2 
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Note that all sensitivity factors are less than or equal to one. Hence 

for realizing the T(s) of (76), the synthesis procedure yields a network 

whose transfer function magnitude, is very insensitive to the passive 

network elements and GPIC gain constants. It is significant to note 

that the selectivity, Q, of the transfer function does not appear in any 

of the sensitivity terms in Table 1. 

The transfer function of (76) can be realized with the INIC 

realization of Figure 7.2.2 in Newcomb's book when the circuit is 

assigned the values given in Table 7.2.1 of the same book. Examination 

|T(ju)) 
of 

k,r 

that for high Q 

of the transfer function of the INIC realization reveals 

and 

T(jl) 

T(jl) 

= 2Q' 

= 2Q' 

(79) 

where k = current gain of the INIC and r = resistor value. The network 

is therefore very sensitive to both active and passive parameters. 

From a sensitivity standpoint, the INIC network examined above is 

described by Newcomb as being typical of NIC type circuits. Very defi­

nitely, the GPIC network described previously that will realize the 

transfer function of (76) has superior sensitivity characteristics. 



53 

Coefficient Sensitivity of qth 
Order Driving-Point Function 

Consider the coefficient sensitivity of the realization for the 

qth order driving-point admittance function 

<1 

I 
i=0 

y c ^ 1 (80) 

Y(s) = 

•1 d r 
j=0 ] 

As discussed in Chapter IV, (80) can be realized by the circuit of 

Figure 12 which incorporates a network that must realize 

T(s) = (d°-RC°) + ( V R C l ) S + - - - + (V%)S<1
 (81) 

klAklB(d0 + dl S + d 2 s 2 + ••• ^ q ^ 

Now this T(s) can be realized by the network of Figure 9. The equations 

of (44) can be solved to obtain the coefficients of (80) in terms of the 

network elements needed for the synthesis of Y(s). Solving these equa­

tions we obtain 

k20 
Cq = ̂  {(1-k10klAklB)YsO + V (82) 

\ - ̂  <W 

91 99 * " 9r> 

c = n
 z ± . zz

 T
£ p r { ( l - k 1 1 L 0 . . . k 1 k n A L D ) Y + Y } 

q-r (k k . . . k R) 11 12 l r 1A IB s r pr 
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k21k22*'*k2r 
1 = rA-^ T^£ (Y +Y ) 
q-r ki:Lk12...klr sr pr 

for r=l,2,. ... ,q. Applying the differential sensitivity formula of (53), 

the following sensitivity factors are obtained. 

S q = 1 (83) 
k20 

S / = - 1 

*q . ^ ° : v , 
k!0 " " ^ - ^ A ^ s T 7 ^ 

, C q Y s O ( l - k 1 0 k . U k l B )  

Ys0 " { ( l-k10k lAk lB ) YsO + V 

c Y 0 

S Y P 0 = { ( 1 - k 1 0 k l A k l B ^ 7 r V 7 

•Cq _ k10klAklBYsO 
klA'klB {(l-k10klAklB)YsQ + Yp0} 

d d 
S q =-S * = -1 
k10 k20 

d Y n 

c q =
 s0 

Y Y + Y 
sO sO pO 

Y Y + Y 
pO sO pO 

c • 

s q"r = i 
k215k22'"'5k2r ' 



s q"r = - i 

c (Y +Y ) 
s q-r _ _ sr pr  

k l l 'k12'- ' ' ' k l r { ( 1"kllk12' ' •kl:rklAklB)Ysr + Y p r } 

c Y (l-k nk 0...k_ k..k ) q-r sr 11 12 lr 1A IB 
Y = {(l-k..k.0...k. k1flk77TY + Y } 
sr 11 12 lr 1A IB sr pr 

c Y 
s q-r Pr Y {(1 - k k10...kn k_.k_.jY + Y } 
pr 11 12 lr 1A IB sr pr 

S 
q-r _ _ 11 12 lr 1A IB sr  

klA'klB " " { ( 1- kll k12-VlA klB ) Ysr + Ypr} 

s q"r = -s q"r = -l 
klljk12'''''klr k21sk22''''sk2r 

d Y 
c °l"r = sr 
Y Y + Y 
sr sr pr 

d Y 
c °l-r = Pr 

Y Y + Y pr sr pr 

for r=l,2s...,q. 

In order to better judge the relative sensitivity values gi 

by (83), the results of (44) can be substituted into (83) by which 

obtained 

c 

*20 

S * = -1 

k_.k_.jY
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'10 

d 

Re 

q _ 

's0 
1 -

d 
_£_ 
Re 
qj 

1 -, 
klAklBk10 

q = 
r
Po 

I -
klAklBk10 

-q- + 1 
Rcq klAklBk10 

c d 
S q = 1 - - q-
klA'k03 % 

s,q = -s * = -i 
k10 k20 

i ^ = i 
Ys0 klAklBk10 

Re 
1 -

qj 

q = 
r
Po 

klAklBk10 

Re 
+ a 

klAklBk10dq 

s q_r • = i 
k 2 1 j k 2 2 J , , , j k 2 r . 

J q " r 

k l l j k 1 2 J , , , j k l r 

q -r 
Re 

q-r 
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q-r _ 

s r 
1 - q - r 

Re 
q-r j 

1 -
k l A k l B k l l k 1 2 " l r 

q- r _ 
T 

pr 
1 -

k l A k l B k l l k 1 2 " - k l r 

q-r + . l, 
Kc k..k._k..k._...k. q-r 1A IB 11 12 lr 

c d 
s q - r = i _ q-r 

klA'klB Rcq-r 

s q"r = -s q~r = -i 
kllsk12",,sklr k21'k22'"°'k2r 

d 
s q"r -
Ysr klAklBkllk12'"klr 

Re 
1 - q-r 

q-r J 

q-r _ 
T 

'pr 
1 -

klAklBkllk12'--klr 

Re 
^3ZT 

Kn .K.. _ K n K n _ . . »kn Q 

1A IB 11 12 lr q-r 

for r=l,2s...,q. 

It is not immediately evident from (84) that the coefficient 

sensitivities for the networks realizing the driving-point functions can 

be made low. To demonstrate that they can be made low, 

(1) choose R such that 

Re 

]-r 
Re 

< 0.1 

< 0.1 

(85) 

q-r 
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for r=l929...,q. 

(2) Choose kn_, kn in order that 10' lr 

lklAklBkl0l =
 1 0° 

Rc 
(86) 

!klAklBkllk12-"klr' = 10° 

Rc 
_ak-r 

q-r 

for r=l,2,...,q. Examination of the sensitivity terms of (84) which are 

not equal to one in absolute value with the restrictions of (85) and 

(86) reveals that 

L10 
< 0.1 (87) 

Y s O j k l A ' k l B 
= 1 

pO 
< 0.11 

' s0 
= 0.01 

"pO 
= 1 

, q - r 
k l l ' k 1 2 " * , 5 k l r 

< 0 .1 
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, q - r 
> Y s r ' k l A ' k l B 

= 1 

q-r 
T 

•pr 

< 0.11 

q-r 

sr 
= 0.01 

q-r 
T 

'pr 
= 1 

Hence, applying the restrictions of (85) and (86) to (84), it can be 

concluded that all coefficient sensitivity terms are low and approxi­

mately less than or equal to one in absolute value. TJie following 

example demonstrates the above conclusion. 

An Example 

Let it be desired to synthesize the following Y(s) according to 

the procedure of Chapter IV. Also, suppose that it is desired to have 

all coefficient sensitivity terms as defined by (8-4-) approximately less 

than or equal to one in absolute value. The desired driving-point func­

tion is 

'2 
Y(s) = -• 

s2 + s + 2 

s + 3s + 1 
(88) 

Applying the synthesis procedure of Chapter IV and the restrictions of 

(85) and (86), it is found that the following parameter values will 
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s a t i s f y t h e s y n t h e s i z e d ne twork r e q u i r e m e n t s (44 ) and t h e r e q u i r e m e n t s 

f o r t h e l o w ^ s e n s i t i v i t y [ ( 8 5 ) and ( 8 6 ) ] . 

k 1 A = k 1 B = 1 0 ( 8 9 ) 

k = -200 

k 2 0 = - 1 0 3 

, 100 
k. 1 1 3 

k21 = - i o 3 

k 1 2 = 6 

k 2 2 = l 

R = 100 ohms 

Y n = 1.99x10 3 mho 
sO 

Y n - 1 .9801X10" 1 mho 
pO 

Y n = 0 .97x10 3 rnho 
s i 
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Y n = 9.903x10'" mho pi 

Y _ = 1.99xio"3 mho 
s2 

Y _ = 1.9 801X10"1 mho 
p2 

The absolute value coefficient sensitivity table. Table 2, is obtained 

by computation of the sensitivity terms according to (83) or (84). 

Conclusion 

A sensitivity investigation of the resulting realizations of the 

GPIC open-circuit voltage transfer function and the driving-point 

admittance function synthesis procedures was made. The investigation 

revealed that the T(s) and Y(s) realizations are generally insensitive 

to changes in both passive element values and GPIC gain constants. 

For the network that realizes the unconditionally stable T(s), 

the coefficient sensitivity terms can always be made less than or equal 

to one in absolute value. In the case of the absolutely stable, second-

order T(s) network, the selectivity and undamped natural frequency sen­

sitivity terms can always be made less than or equal to>one in absolute 

value. It is concluded that the GPIC T(s) synthesis realizations 

exhibit coefficient, selectivity, and undamped natural frequency sensi­

tivities of the same order of magnitude as Antoniou's synthesis reali­

zations, which are claimed to have low sensitivity. The GPIC T(s) pro­

cedure realizations offer a definite improvement in selectivity sensi­

tivity over a particular INIC circuit reported by Newcomb. 



62 

T a b l e 2 . A b s o l u t e Value of C o e f f i c i e n t S e n s i t i v i t y 
Terms o f t h e Y ( s ) o f ( 88 ) 

C o e f f i c i e n t 

Element °0 C l c 2 dQ d l d 2 

R - 1 .1 1 

k l A 1 1 1 

k l B 

k i o 

k l l 

k 1 2 200 

k™ 20 

k 2 1 

k 22 

Y 

Y 

A 

l " 
A 

l " l " 

1 
200 

1 
200 

1 

3 
100 

s 2 100 

Y - —=— 1 
p2 - 200 

1 
s i 100 

Y 

s0 , • . 1 0 o 

p0 — -1 

A 

l " 

3 * 
100 

1 

1 » 
200 

A 

l " 
A 
4* 

1 

1 

Approximate v a l u e . 
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It was demonstrated that coefficient sensitivity terms of the 

resulting realizations of the Y(s) procedure can always be made approxi­

mately less than or equal to one in absolute value. 
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CHAPTER VI 

CONTROL OF ELEMENTS VALUES EXTERNAL TO GPIC'S 

In both the open-circuit voltage transfer function synthesis and 

the driving-point admittance synthesis, the actual network to be synthe­

sized was one with the qth order open-circuit voltage transfer function 

q 
T e.s 
. 1 

T(s) = ^ ' (90) 

I f-sj 

j=0 3 

According to the network synthesis procedure discussed in Chapter III, 

it was required that the network elements have the following values: 

e 
Y - cl 
sO k20 

k,rtf e 
Y _ 10 q <\ 
P0 k20 k20 

Y 
e -i 

q-.i 
si k21 

k„f n e 
Y _ 11 q-1 . i-1 

Pi 
• 
• 

k21 k21 

• e 
Y = q-n 
sn = k k 

21 22" 
•k2n 

(91) 
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y _ 11 12 In q-n q-n 

pn k2ik
22*--

k2n k21k22*-*k2n 

for n=l,2,...,q. 

Let it be required that the non-zero admittance parameter values 

of (91) satisfy the following equations. 

a < Y_ < 3 (92) 
sn 

and 

or 

a < Y < (3 (93) 
pn 

-Y < Y < -X (94) 
pn 

for a<3<Y-^ and n=0 ,1,2,...,q. 

Recall that negative Y 's can be realized by Kim's method as 
• p n J • 

discussed in Appendix I. For example, from Appendix I, we see that if 

kn = 3, k = 4, then Y = -2Y. If a<Y<35 then the negative Y range 1 2 ' pn & p n 

would extend from -23 to -2a. 

Examination of the Y equations of (91) for n=0 ,1,2,...,q reveals 

that all Y fs can be made to fall within a certain range by choosing 
sn 

the appropriate algebraic, sign and magnitude of k» . The algebraic sign 

of k, must be made the same as that of k_ . Combining the equations of 
In 2n 

(91) and (92) we obtain 

a < rf- < 3 (95) 
k20 
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for n=l,2,...,q. 

If 

then 

then 

and 

e 
a < SL2 < 

k 2 1 k 2 2 . . . k 2 n 

e = 0 
q 

Y = o 
sO 

and 

k = arbitrary. 

If (96) 

e = 0 
q-n 

Y = 0 
sn 

k. = arbitrary 
2n J-

for n=l,2,...,q. 

If e , e * 0, then Y _ and the Y ' s can be made to fall into 
q q-n sO sn 

the appropriate range by choosing k' [n=0 ,1,2,. .. ;,q] to satisfy the fol­

lowing restrictions: 

1 „ k20 < 1 
3 " \ 

a 

1 ^ k21k22** •k2n - 1 
3 e q-n a 

(97) 
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for n=l,2,...,q. 

Once the k^ values for n=0 ,1,2, „;.,q are selected according to 

the equations of (96) and (97), then the kn values must be selected to 
, In 

satisfy either (9 3) or (94). For all f_. 's of (90) that are positive, 

the corresponding Y 's can be made to satisfy (93). For those f.'s 

pn : 

that are nonpositive, the corresponding nonzero Y ' s will be negative 

and can be made to satisfy (94). 

First consider the case of the f_. "s of (90) that are positive. 

Substituting the appropriate equations from (91) into (93) and perform­

ing some algebraic steps, the following equations are obtained. 

e k._f e 

a + x < 1Q q-< B + -±-
K20 K20 K20 

(98) 

a + 9rR < 11 12 In iL-n < fl + q-n 

k21k22...k2n
 k2ik22''"k2n k21k22*',k2n 

for f , f > 0 and n=l,2,...,q. It is apparent from (98) that each 
q' q-n ' ' 9H ^^ '' 

k [n=0,1,2,...,q] must be calculated in ascending order of n. Hence 

the results of (9 8) must be used in conjunction with the procedure for 

calculating the k 's for nonpositive f_. 's. This procedure will now be 

discussed. 

Consider the case of the f.'s of (90) that are nonpositive. 

First consider the f.'s that are zero. Examination of (91) reveals 
: 

that if 



68 

t h e n 

and 

I f 

t h e n 

and 

f = 0 
<1 

Y = -Y (99 ) 
pO sO K J 

knn = a r b i t r a r y . 
10 J 

Y = -Y (100) 
pn sn 

k-i = a r b i t r a r y . 

for n = l , 2 , . . . , q . 

Next consider the nega t ive f . ' s . S u b s t i t u t i n g the app rop r i a t e 

equat ions from (91) i n t o (94) and performing the app ropr i a t e a l g e b r a , 

t he fol lowing equat ions a re ob ta ined . 

e k__f e 
_Y + __£_ < _ i l S < -x t -±-

K20 K20 K20 

e k . _ k . „ . . . k . f ' e 
-y + aiB < 1:L 1 2 iE_5-E < _A + aiB (loi) 

k 2 1 k 2 2 . . . k 2 n
 k 2 1 k 2 2 - " k 2 n k21 k22**- k2n 

for f , f < 0 and n = l , 2 , . . . , q . 
q q-n 

The case of most i n t e r e s t t o engineers i s the case where a l l 

f . ' s are p o s i t i v e , the abso lu te ly s t a b l e system. For t h i s case (96) and 

(97) can be used t o c a l c u l a t e a l l kn
 Ts and (98) can be used t o 

zn 
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calculate all kn 's. Using the values obtained from these three sets In 

of equations 5 the non-zero admittance parameter values will be in the 

range indicated below. 

a < Y < 3 sn 

a < Y < 3 
pn 

(102) 

for a<3 and n=05ls2s ,q. 

Example One 

Let it be required to synthesize 

2 
T(s) = S 2 "

 3s-±l- (103) 
s + s + 100 

with the following restrictions on the non-zero admittance values. 

1 < Y < 2 sn 

(104) 

1 < Y < 2 
pn 

Since all coefficients are present in the numerator and denominator and 

those present in the denominator are positive., the equations of (97) and 

(98) apply. In the above example, 
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q = 2 (105) 

eo = 2 

e1 = -3 

e2 = l 

f0 = 100 

V=l 

f 2 = 1 

a = 1 

3 = 2 

From (97), the results below are obtained. 

— < k < 1 
2 20 

-3 < k21 < - I (106) 

1 < k k < 2 
21 22 

The following values of k will satisfy (106i 

k?0 = 1 (107) 
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k21 = "3 

k22 

To get the corresponding k values, use (9 8) and obtain 

2 S k < 3 

-9 < k < -6 (108) 

A , k k • < - ! 
25 11 12 50 

Choose the kn values as follows. 
In 

kio = 2 

k±± = -6 (109) 

12 150 

As a check t o see i f the above kn , k^ values give Y and Y 
In 2n to sn pn 

values wi th in s p e c i f i c a t i o n , we s u b s t i t u t e the above c a l c u l a t e d values 

i n t o (91) and ob ta in in mhos 

Y = 1' (110) 
sO 
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Y . = 1 
si 

YS2 = 1 

V = 1 

Y = 1 
pi 

V = 1 

All the admittance values fall within specifications. In fact, by 

appropriately choosing values for k and k , all admittance values 

have been made equal to one. 

Example Two 

Let it be required- to synthesize 

2 
T(s) = ~ - ^ - — (111) 

s + 100 

with the following restrictions on the non-zero admittance values 

1 < Y < 2 
sn 

and 

-3 < Y < -1 (112) 
Pn 

or 

1 < Y < 2 
pn 
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Since the zero-order coefficient in the numerator and the first-

order coefficient of the denominator are missing, (96) , (97), (98), and 

(100) apply. For the above example, 

q = 2 (113) 

eo 0 

e l = - 3 

e 2 = 1 

V 100 

f i = 0 

f 9 
= 1 

ot = 1 

3 = 2 

Y = 3 

A = 1 
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From (96), it is concluded that 

Y
S2 = ° 

k = arbitrary 

since e~ = 0. From (97), it is found that 

— < k < I 
2 20 

•3 * k 2 1 * - f 

In order to sat isfy (114) and (115), choose 

k20 = 1 

From (98), i t is found tha t 

(114) 

(115) 

k2: = -3 (116) 

k - - i k22 7 3 

2 < k < 3 (117) 

From (100), the following are obtained. 
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and 

V = "Ysl (118) 

kn. = arbitrary (119) 
11 # 

since f = 0. From (98), it is found that 

1 < knnkno < r£- (120) 
100 11 12 100 

In order to satisfy (117), (119), and (.120) choose 

kio = 2 

k2J = 1 (121) 

1 
12 100 

Using (91) as a check to make sure the admittance parameter values 

fall into specification, the results below are obtained. 

Y = 1 (122) 
sO 

Ysl = 1 

Ys2 = 0 

Y n = ! pO 



76 

Y = -1 
pi 

V> = 1 

p2 

Once again the appropriate selection of values for k and k_ has 

resulted in all non-zero admittance values having an absolute value of 

one and thus within the given specifications. 

Conclusion v-

It has been shown that for both the T(s) and Y(s) synthesis 

procedures the synthesis can be successfully completed for any prescribed 

range of admittance parameter values external to the GPIC devices. This 

remarkable property of the synthesis procedures depends on the unre­

stricted assignment of GPIC gain constant values. 
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CHAPTER VII 

MULTI-PORT OPEN-CIRCUIT VOLTAGE 

TRANSFER MATRIX SYNTHESIS 

A synthesis procedure is developed for realizing any multi-port 

open-circuit voltage transfer matrix whose elements are real rational 

functions in the complex variable s. The approach used to realize the 

matrix is to realize the matrix one row at a time. The network reali­

zation for each row is similar to the network used to realize the open-

circuit voltage transfer function,, No factorization of the row elements 

is needed, and the network elements are simply related to the coeffi­

cients of each of the row elements of the transfer matrix. Each numer­

ator coefficient of each row element is proportional to a distinct net­

work element and each denominator coefficient of each row is proportional 

to the sum of (n+1) distinct network elements,, where n is equal to the 

number of row elements in the multi-port open-circuit voltage transfer 

matrix. The network realization is grounded. 

Consider the synthesis of the matrix [T] which relates the input 

voltages to the open-circuit output voltages of a network by the follow­

ing matrix equation 

E . ~[ = [T] E. "1 (123) 
outputl inputj 

or equivalently 
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n+1 

Jn+h 

n + r 

T ( n + l ) l T (n+1>2 

T ( n + h ) l T ( n + h ) 2 

T T • • • T 
( n + r ) l i ( n + r ) 2 

(n+l)n E i 

• • • E2 

(n+h)n 

• • 

• • • 

• 

(n+r)n E 
n 

(124 ) 

where 

n = number o f i n p u t v o l t a g e s of t h e ne twork 

r = number o f o u t p u t v o l t a g e s of t h e ne twork 
(125) 

Each row of the matrix [T] of (124) is augmented if necessary in order 

that each element of the row has the same common denominator. The hth 

row of [T] can be realized by the network of Figure 14. In Figure 14 

and in the discussion to follow, q is equal to the maximum order of the 

rational elements in the row. The ±E [k=l,2.,.. . ,n] needed in each row 
K 

synthesis can be realized by the networks of Figure 15 or Figure 16. 

The active blocks shown in Figure 15 are ideal phase-inverting unity-

gain amplifiers. The GPIC's shown in Figure 16 are each characterized 

by the chain matrix 

•1 0 

0 0 
(126) 

The GPIC's of Figure 14 are characterized by the following chain matrices. 
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Figure 14. Network for Realizing hth Row of Matrix [T] of (125) 



E n < > 
\ > 

80 

-O +E 
n 

-O -E 

E, O 

E! O 

1> 
-O +E. 

-O E 

-O +E. 

-O -E. 

Figure 15. Unity-Gain Amplifier Network 

O +E, 

O -E 

Eo O 
GPIC, 

•O +E, 

O E 

O +E. 

O -E. 

Figure 16. GPIC Voltage Network 



k10 
(n+h) 

GPIC, 
(n+h) 

"20 (n+h) 

(127) 

'lm (n+h) 

GPIC 
m (n+h) 

'2m 
(n+h) 

for m=l,2,...,q. 

Analysis of the network of Figure 1M- reveals that for each 

i=l,2,...,n and h=l,2,...,r 

=
 A(h»J-) 

(n+h)i B(h) 
(128) 

where 

A(h,i) = k Y 
^°(n+h) SU(n+h)i 

k21 Ysl 
^ - (n+h) S1(n+h)i L + + (129) 

k91 k22 Ys2 
^(n+h) Z (n+h) S^(n+h)i 

+ . . . + 

k k ...k Y 
21(n+h) 2 2(n+h)'" 2q(n+h) sq(n+h)i 

a* 
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"20 
B(h) = 

(n+h) 

k10 (n+h) 

n 

£ Ys0 
i=l (n+h)i 

+ Y 
pO (n+h) 

(130) 

'21 
(n+h) 

sk 11 (n+h) 

n 
I Y i + Y i 
• -i slr ^ \ - P1 

i=l (n+h)i * 
(n+h) 

k21 k22 
•'•(n+h) (n+h) 

S kll k12 
-U-(n+h) ± (n+h) 

n 
I Y 9 + Y o 
1=1 S'-(n+h)i p2(n+h) 

+ + 

k21 k22 *"k2a ^X(n+h) Z (n+h) Zq(n+h) 

sqk k .k 
X1(n+h) 12(n+h)" lq(n+h) 

I Y + Y 
i=l Sq(n+h)i Pq(n+h) 

Now each T, , N. of the matrix to be synthesized is the ratio of two (n+h)i 

polynomials in s as was the T(s) in Chapter III and is of the form 

y a s u - i 
u=0 ui 

(n+h)i " q 
(131) 

It 
v=0 

:J s 
v 
v-q 

Therefore the synthesis procedure becomes similar to that discussed in 

Chapter III, one of matching coefficients of a transfer function to net­

work element values. Comparing (131) with Equations (128), (129), and 

(130), we see that we can realize (131) with the network of Figure 14 as 

follows. For h=l,2,...,r and i=l,2,...,n, make 



83 

a. 

. V 
S 0(n +h)i

 k 2 0 ( n + h ) 

3 1 

q-ii 
Y 

(132) 

Sl(n+h)i
 k21 ( n + h ) 

v2 i 
S 2(n +h)i

 k 2 1 ( n + h )
k 2 2 ( n + h ) 

ao. 
1 

S^(n +h)i
 k 2 1 ( n + h )

k 2 2 ( n + h ) - - -
k 2 q ( n + h ) 

For any a, , v [k=0,1,...,q] encountered, which is algebraically nega­
te q-k J ̂  

tive, Y must be connected to -E.. All other Y , network 
S k(n+h)i 1 S*(n+h)i 

elements are connected to +E.. To complete the realization, make 

k.. b ./ 

= k ^"^ - - USQ (133) 
pU(n+h) K20, ̂ , i=l SU(n+h)i 

(n+h) 

ii/ v̂-i q-i n 

Y = (n+h) - I Y 
Pl(n+h) k21, _,_, . i=l Sl(n+h)i 

(n+h) 

k,, k_ _ D _ 
H / j.v'k I 2 / .vN q-'2 n 

Y - (n+h) (n+h) y y 
P 2 ( n + h ) "

 k 2 1 ( n + h )
k 2 2 ( n + ^ " i = l s 2 ( n + h ) i 
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pq (n+h) 

k k ...k b 
1:L(n+h)

 12(n+h) lq(n+h) ° 

"̂91 ^99 ' * '^On 

- (n+h) (n+h) ^q(n+h) 

n 
I Y 
i=l Sq(n+h)i 

The synthesis procedure can be summarized as follows: 

1. Identify the matrix elements of the multi-port open-circuit 

voltage transfer matrix [T] to be synthesized as in (124). 

2. Identify each coefficient of the ith element of the hth row 

of [T] according to (131). 

3. Evaluate all Y - [k=0,1,2,...,q] network elements of 
SK(n+h)i 

Figure 14 for the ith element of the hth row of [T] according to (132), 

noting that for any a, . [k=0,1,2,...,q] encountered, which is alge-
\Q~k). 

i 
braically negative, Y , must be connected to -E.. All other 

Sk(n+h)i X 

Y , network elements are connected to +E.. 
sk, . . i 

(n+h)i 
4. Repeat 2 and 3 for each matrix element of the hth row of [T], 

5. Evaluate all Y 
Pk (n+h) 

[k=0,1,2,...,q] network elements of 

Figure 14 for the hth row according to (133). 

6. Repeat 2 through 5 for each row of [T]. 

An Example 

Using the multi-port open-circuit voltage transfer matrix synthe­

sis procedure, a network will be found that realizes the following: 

s+l 

s2tl 

s 
s+ l 

2 
s - s + l 
s2

+lj 

E., 

(134) 
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For the synthesis procedure, n=2, r=2 and 

T T 
31 32 

T T 

m ^2 

s s 
s + 1 s + 1 

2 
2 

s -s+1 
s +1 s 2

+ l 

(135) 

For the row corresponding to h=l , i t is obvious that q=l. For 

h=l and i = l , 

T a s u u 
1 u=0 1 

u - 1 

3 1 1 4. 1 1 

1 + -- v v-1 
s ) b s ,L. v 

. v=0 

(136) 

Hence 

\-° (137) 

V1 

bo = 1 

b l = 1 

Using the results of (132) and (137), it is found that 

S°(3)l k20 
(3) 

(138) 
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Y _ = 0 
S l ( 3 ) l 

For h = l and i = 2 , 

1 i 

v u - 1 

T32 - f~ = H-%1_ 
1 + — r , v - 1 

s ) b s 
^ v 

v = 0 . . - • 
H e n c e , 

a = 0 
°2 

a = - 1 
2 

(140) 

S i n c e a i s a l g e b r a i c a l l y n e g a t i v e , c o n n e c t Y t o - E _ . Us ing t h e 
X2 ( 3 ) 2 ^ 

r e s u l t s o f (132) and ( 1 4 0 ) , i t i s found t h a t 

Ys0 = F"— ( 1 4 1 ) 

S ° ( 3 ) 2 k 2 0 ( 3 ) 

Y = 0 
S ± ( 3 ) 2 

To complete the row synthesis corresponding to h=l, use (133), (137), 

(138), and (141) in determining that 

k ' - 2 
10(3) 

Y . = —-^ (142) 
P°(3) k20 ( 3 ) 
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kll 
- (3) 

pl(3) k21 

For the row corresponding to h=2, q=2. For h=2 and i=l, 

H e n c e , 

? 
2 r u -2 

) a s _ — 
r u -2 
) a s 2 
r u -2 
) a s 

m S u=0 1 T — 41 " 1 ' o 
1 + —zr J b S

V"2 

« v 2 J b S
V"2 

« v 
s 

J b S
V"2 

« v 

v=0 

\-° 

bo = 1 

b l = 0 

b 2 = 1 

( I f 3) 

aQ = - 2 (144 ) 

v° 

Since a is algebraically negative, connect Yi to -E . By using 

°1 ? (4)1 X 

(132) and (144) the following results are obtained. 

Y . = 0 (145) 
S°(4)l 
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Y . = 0 
S l « l 

9 
Y 

s 2 (4 ) l k21 k22 

For h=2 and i=2 

1' 1 r u-2 
1 " * + ^ * au n

s 

T,2 = ^ - = ^ • (W6) 
1 + T b sV"2 

S " V 
v=0 

Therefore, 

a = 1 (147) 

a = -1 
-1- /% 

V = * 

Since a is negative, connect Y to -E . Using the results of 
X2 S 1 ( 4 ) 2 

(132) and (147), i t is found that 

Y n = T— (148) 
S°(4)2 k 2 0 ( ^ 

Y X 

S l(4)2 k21 ( 1 + ) 

Y L 

s 2 ( i i ) 2 k 2 1 k 2 2 ^)Z ZLW ^ ( 4 ) 
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Using the results of (133), (144), (145),.and (148), the following 

results are obtained. 

kio - 1 

Y _ 10W 
P°(4) k20 W ^U(4) 

Y = - _ i (149) 
Pl(4) k21 

kll k12 " 3 

Y = ^(4) ^(4)  
V2(i+) k21 k22 

W 21(4) ^(4) 

The network that realizes the desired multi-port open-circuit 

voltage transfer matrix is shown in Figure 17. The GPIC's of Figure 

17 have the chain matrices given by (127). 
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+E2G 

+E2<> 

k 2 1 ( . ) k 2 2 ( . ) 
• A A A A P 

2 

S^eo 

Figure 17. Mul t i -Por t Transfer Matrix Network 
for Rea l iz ing the Example of (134) 
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CHAPTER VIII 

SHORT-CIRCUIT ADMITTANCE MATRIX SYNTHESIS 

A synthesis procedure is developed for realizing any short-

circuit admittance matrix whose elements are real rational functions in 

the complex variable s. The approach used in this development is simi-
1 1 

lar to the work done by Hilberman and Joseph. The ideal unity-gain 

amplifiers used by Hilberman and Joseph are replaced with special 

GPIC's. Use of these GPIC's allows the synthesis of the desired short-

circuit admittance matrix to be transferred to the synthesis of a 

multi-port open-circuit voltage transfer matrix. The network realiza­

tion is grounded. 

The N*N short-circuit admittance matrix [Y] relates the N port 

voltages and N port currents of a network such as the one in Figure 18 

as follows: 

= IY] (150) 

n n 

where 
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Figure 18. NxN Short-Circuit Admittance Matrix Network 
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[Y] = 

Y Y 
11 12 

Y - Y 
21 22 

Y Y 
nl n2 

In 

zn 

rm 

(151) 

The network of Figure 18 is the N-port version of the network used to 

realize the driving-point admittance in Chapter IV. The network desig­

nated Multi-Port Open-Circuit Voltage Transfer Network performs the 

function as described in Chapter VII. The GPIC's shown in Figure 18 

have the chain matrix 

(152) 

Hence port 1 and port 2 voltages of each GPIC are identical and port 1 

currents of each GPIC are zero. Therefore, it is meaningful to relate 

the voltages E_ through E to E _ through E0 by the multi-port open-& 1 & n n+i 2n J r 

circuit voltage transfer matrix,, namely 

n+1 

Jn+2 

'2n 

T(n+l)l T(n+1)2 

T(n+2)1 T(n+2)2 

T(2n)l T(2n)2 

— 
(n+l)n E i 

(n+2)n E2 

• • • 
• • • 

(2n)n 
E n 

(153) 
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A n a l y s i s of t h e ne twork of F i g u r e 18 r e v e a l s t h a t 

n 

Y Y . . .Y 
1 2 n 

Jn+1 

"n+2 

'2n 

Y Y . . . Y 
1 2 n (154) 

I f we s u b s t i t u t e t h e r e s u l t s o f (153 ) i n t o (154 ) and c a r r y o u t t h e 

m a t r i x m u l t i p l i c a t i o n , E q u a t i o n (155) i s o b t a i n e d . 

n 

= C Y ' ] (155) 

where 

CY»] = (156) 

Y i ( 1 - W > - Y i T ( n + i ) 2 " Y l T ( n + l ) 3 

" Y 2 T ( n + 2 ) l Y 2 ( 1 T ( n + 2 ) 2 } ~ Y 2 T ( n + 2 ) 3 

-Y T -Y T 
n 1 ( 2 n ) l n 1(-2n)2 

-Y T 
r ( n + l ) n . 

-Y T I 2 i ( n + 2 ) n 

~ Y n T ( 2 n ) n - l Y
n

( 1 _ T ( 2 n ) n ) 

The m a t r i x r e l a t i n g t h e c u r r e n t s and v o l t a g e s i n (156) must b e e q u i v a l e n t 
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to the admittance matrix relating the same voltages and currents of 

(151). From (156) and (151), we obtain 

(157) 

T(n+l)l T(n+1)2 '" T(n+l)n 

T(n+2)1 T(n+2)2 '" T(n+2)n 

i • • • 

I * * • 
I • • • 

T(2n)l T(2n)2 "". T(2n)n 

Thus, the synthesis procedure for realizing the short-circuit 

admittance matrix [Y] is as1 follows: 

1. Identify the elements of the matrix [Y] as in (151). 

2. Use (157) to evaluate the elements of an open-circuit voltage 

transfer matrix [T]. 

3. Use the synthesis procedure of Chapter VII to find a network 

that will realize [T]. 

4. Use the network realization of [T] as in Figure 18 to obtain 

the [Y] network realization. 

An Example 

The following short-circuit admittance matrix will be realized 

by means of the synthesis procedure developed in this chapter. 

Y -Y 
1 11 

21 

nl 

1.2 

Y -Y 
2 22 

'n2 

13 

23 

• • • 
" Y l 

• • • 
Y2n 

" Y2 
• 
• 
• 

Yn(n-1) Y-Y n nn 
Y n Y 

n 1 
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[Y] = 

Y Y 
11 12 

Y Y 
21 22 

1 S ' 

s+1 s+1 

2 s 

s 2
+ l s2

+lj 

(158) 

Assume that all Y.' s [i=l,2] in the short-circuit admittance 

matrix synthesis procedure discussed in this chapter are equal to one 

mho. Then from (157) in the synthesis procedure development, we get 

31 

'41 

32 

'42 

s+1 

s2+l 

s 
s+1 

2 
s -s+1 

7 
s + 1 _ 

(159) 

The multi-port open-circuit voltage transfer network of Figure 18 needed 

in the synthesis must have the transfer matrix of (159). This particular 

transfer matrix was synthesized in Chapter VII and can be realized with 

the network of Figure 17. 

The network of Figure 19 will realize the admittance matrix of 

(158). All GPIC.'s [1=1,2,3,4] have the chain matrix of (152). 
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1 

-AAA/v 
i 

JVVSA-

ifci-
GPIC. K Multi-Port Open-Circuit E ^ 

Voltage Transfer Network•With 

GPIC. 

GPIC, t 

T 
3 1 

T 
32 

s 
s + 1 

s 
s + 1 

T 
41 

T 
42 

2 
2 , 

s +1 

1 S - S + 1 
T 

41 
T 

42 
2 
2 , 

s +1 s 2
+ l 

.t GPIC, 

Figure 19. Network for Realizing the Admittance Matrix of (158) 
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CHAPTER IX 

EXPERIMENTAL RESULTS 

In order to demonstrate that the realization procedures which 

have been developed are not only correct, but also practical, examples 

were worked using the procedures, and the resulting networks were con­

structed and tested. The test data obtained were compared with the 

predicted behavior. 

Example One 

The complete generality of the synthesis procedures has depended 

upon the capability of being able to realize the negative resistance. 

The theoretical aspects of realizing the negative resistance by means 

of the GPIC are discussed in Appendix I. A circuit configuration with 

a GPIC that can be used in the negative resistance realization is shown 

in Figure 2. Using that particular circuit configuration and the dis­

cussion from Appendix I, it is obvious that the network of Figure 20 

can be used in the realization of the negative resistance. The GPIC 

portion of the network in Figure 20 has the chain matrix 
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m 

R -^L. 
7 RQ+RC 

O D 

Figure 20. Network for Realizing the Negative Resistance 

From (A-7) of Appendix I, it is seen that the input impedance of the 

circuit under consideration is 

klNR8 

in (klN-1)(k2N-1) 
(161) 

Three values of negative resistance were realized. In each of 

the three realizations, k^ and k^ of (161) were made equal to two. 

For a particular value of negative resistance., the following parameter 

values were assigned to the circuit of Figure 20: 

a. For Z. = -200 ohms, R., = Ru = Rp = 100 ohms, R = 2 kilohms, 
in 1 M- B ^ 
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RQ = 1 kilohm, R_ = R_ = 10 kilohms, and R_ = 91 ohms were assigned. 

b. For Z. = -2 kilohms, R ' = R_ = R.. = R = 1 kilohm, R0. = 2 
in 1 3 4 8 2 

kilohms, Rr = R_ = 10 kilohms, and R„ = 909 ohms were assigned. o b / 

c. For Z. = -4 kilohms, R. = R. = R. = 1 kilohm, R_ = R0 = 2 
m o 1 3 4 2 8 

kilohms, Rc = R_ =10 kilohms, and R„ = 909 ohms were assigned. o b / 

The theoretical and measured values of magnitude and angle for 

the three realizations are shown in Figures 21 and 22. The measured 

curves are indicated by solid lines while the theoretical curves are 

indicated by broken lines. 

Example Two 

In order to demonstrate the practicality of the open-circuit 

voltage transfer function synthesis procedure of Chapter IV, the open-

circuit voltage transfer function 

10 6 

T(s) = T¥~^ W (162) 

10 s + 2,. 5s + 10 

was realized according to the synthesis procedure. Note that this 

T(s) has a Q of 40. Q has the definition given in (63). 

This transfer function can be synthesized with the network of 

Figure 10. The element values for the network are obtained from (16) 

and (31). 

Since the order of the transfer function is two, two GPIC's are 

needed, namely GPIC and GPIC of Figure 10. Let GPIC and GPIC have 

the chain matrices 



5 -

i c a l ^ m 
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w 
6 
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10 

and 

10 

respectively. Hence, in the synthesis procedure, 

(163) 

(164) 

kll. = 2 (165) 

k21 = 1 0 

k12 = 1 

k22 = 1 0" 

From (16) and (162), the coefficient identification for the syn­

thesis is made. 

ao ~" 10 

a l = 0 

a 2 = 0 

(166) 
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b = 2.5 

b 2 = 10~
2 

Substituting the results of (165) and (166) into (31), the element 

values external to the GPIC's are obtained and are given below in 

units of mhos. 

sO 

Y = 0 
si 

Ys2 = 10"2 

-2 
Y = 10 
pO 

-4 
Y n = 5x10 
Pi 

Yp2 = lO"
2 

GPIC, can be realized by the circuit of Figure 37, Appendix II, 

when the following element values are assigned: R. = R = 500 ohms, 

C = 0.01 microfarad, R0 = 10 kilohms, Rc. = R- = 5 kilohms, and R„ = 167 
' 3 5 6 7 ' 

ohms. 

From (9) it is seen that GPIC_ can be realized by the circuit of 

Figure 1 when Z = R , Z = — , Z_ = R„, Z = R and the following values 
l l ^ S U o O M - H 
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are ass igned: R = 560 ohms, C = 0 .01 microfarad , R_ = 10 k i lohms, and 
-L O , 

R^ = 560 ohms. 

The circuit that was used to realize the transfer function of 

(162) is shown in Figure 23. v 

Element values in ohms or microfarads, 

Trim if necessary to account for tolerances of other resistors 
and non-idealness of operational amplifiers. 

Figure 23. Realization of the Open-Circuit 
Voltage Transfer Function of (162) 

Note that it was necessary to trim R of GPIC , whose value was given as 

167 ohms, to 165 ohms in the circuit of Figure 23. This was necessary 

in order to make GPIC. of Figure 23 have a k» value equal to 10 in its 

chain matrix. This trimming results from the fact that the circuit was 

constructed with resistors with 5 per cent tolerances and non-ideal 

operational amplifiers. The role that R„ plays in the characteristics 
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of GPIC is discussed in Appendix II. The theoretical and measured 

values of magnitude and phase for the above example are shown in 

Figures 24 and 25, respectively. 

Example Three 

To demonstrate the practicality of the driving-point admittance 

synthesis procedure discussed in Chapter IV, the admittance 

Y(s) = Tlhoo (158) 

was realized according to the synthesis procedure. Note that (168) is 

the admittance of a one henry inductor with 100 ohms resistance. Using 

the results of (38), (39), (40), and (41), the open-circuit voltage 

transfer function that must be synthesized is 

„ , v s + 100 - R t-iCn\ 

T(s) = 7 r—r'lVnnV (169) 
k1Ak1B(s+100) 

To make the synthesis of T(s) of (169) relatively simple, let R = 100 

ohms and k . = k.. R = 1. Then (169) becomes 

T(s) = TTToo (170> 

Equation (170) can be synthesized according to the method discussed in 

Chapter III or by recognizing that (170) is the transfer function of the 

form of the simple RC high-pass section shown in Figure 26. 
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u-
(l) (2) 

Figure 26. R-C High-Pass Network for 
Realizing the T(s) of (17.1) 

The latter realization will be used. The open-circuit voltage transfer 

function of the network of Figure 26 is 

T(s) = (171) 
s + 

V 
Equating (170) and (171), it is seen that R C = 0.01. To get the 

necessary transfer function, let R^ = 10.0 kilohms and C = 0.1 microfarad. 

Since k and k were made equal to one, GPIC and GPICn must 

have the chain matrix 

(172) 

A GPIC with the chain matrix of (172) is discussed in Chapter II and is 

shown in Figure 6. Arbitrarily, R , R_, and R~ were made equal to one 
A. Z o 

kilohm in the circuit of Figure 6. 
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Combining GPIC., GPICg, R, and the T(s) network according to the 

theory of Chapter IV and the network of Figure 12, the desired driving-

point function of (16 8) was realized with the network of Figure 27. 

The theoretical and measured values of magnitude and angle for 

the above example are shown in Figures 28 and. 29, respectively. 

Example Four 

It is not always necessary to resort to the driving-point admit­

tance synthesis procedure of Chapter IV to realize driving-point func­

tions with GPIC's. The synthesis of the inductance can be handled quite 

simply with a single GPIC and a resistor. 

From (2), it is seen that when a GPIC described by the chain 

matrix 

±k 0 

k2 
(173) 

is terminated in IL at port 2, then the input impedance looking into 

port 1 is given by 

sk A 
Z. = —L— (174) 
in . k« 

Now k and k„ always have .the same a l g e b r a i c s i g n . Any one of the 

GPIC's d iscussed in Chapter I I which has the complex D term in i t s chain 

mat r ix could be used t o r e a l i z e the induc tance . 
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Figure 27. Network for Realizing the Driving-
Point Admittance Function of (16 8) 
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To illustrate the feasibility and practicality of the circuit of Figure 

5, the circuit of Figure 5 will be used. This circuit has the negative 

signs associated with its chain matrix terms. 

Let it be required to simulate 

Z i n = 0.15 (175) 

Let the chain matrix of the GPIC of Figure 5 be 

-k i ° -2 

:xio 
(176) 

According to (12), this would place the following restrictions on the 

elements of the circuit of Figure 5: 

*!-„ 
R6 1 

and (177) 

R3R7 4 
d ' = k„ = 2x10 f R1R2R5C 2 

Also, in the circuit of Figure 5, 

RQ = R. + R7 + 2(R +R_) 8 4 7 5 b 
(178) 
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With the following element values in ohms and microfarads, (177) and 

(178) can be satisfied: R = 560, R2 = 1.0K, R = 560, R^ = 10K, R5 = 

500, Rc = 5K, R_ = IK, R_ = 22K, and C = 0.01. Substituting the values 
b / o 

of k and k from (177) into (174) and equating this result to (175), 

it is seen that R. must be made equal to one kilohm. 

The network shown in Figure 30 was used to realize the desired 

driving-point function of (175). 

23. 5K 

IK 

nr 
Element values shown in ohms or microfarads 

Figure 30. Network for Realizing the 0=1 
Henry Inductor of (175) 

Note that R_, which was given as 22 kilohms, was trimmed in the circuit 
8 

L). 

of Figure 30 to 23.5 kilohms to make k,~ have a value of -2x10 . That R̂  

had to be trimmed to get the desired k,2 value can be explained by exam­

ining (178) and realizing that the resistors indicated by this equation 
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and which were used in the construction of Figure 30 had 5 per cent 

tolerances. Also (178) was obtained by assuming that the operational 

amplifiers to be used in Figure 30 were ideal. (See Appendix III.) 

Figures 31 and 32 show the theoretical, and measured values of 

magnitude and angle for the above example. 

Discussion of Techniques and Errors 

As mentioned previously, the object of the experimental part of 

this research was to test the validity and practicality of the synthesis 

procedures, and not to develop sophisticated examples. Consequently, 

the construction and measurement techniques employed were somewhat 

crude. However, the results obtained indicate that they were sufficient 

for the purposes. 

Unless otherwise noted on the circuit diagrams in this thesis, 

all the resistors used were carbon resistors with 5 per cent tolerances 

and all the capacitors were mylai1 capacitors with 10 per cent toler­

ances. The operational amplifieî s used throughout the research were the 

Burr-Brown 30 57/01 integrated-cii^cuit operational amplifiers. The Burr-

Brown 30 57/01 operational amplifiers have a D.C. gain, input resistance, 

and output resistance of approximately 9 3 dB, 0.2 megohms, and 5 kilohms, 

respectively. Each of the operational amplifiers used in the synthe­

sized circuits were phase compensated with a 470 ohm resistor in series 

with a 0.0025 microfarad capacitor. No attempt was made to select opti­

mum phase compensation since the largest possible bandwidth of operation 

was not an objective. All the circuits were laid out on a specially 

designed test board similar to those used)in analogue computers. 
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The board had s p e c i a l connectors t o accept the s t andard e i g h t - p i n 709 

type o p e r a t i o n a l a m p l i f i e r s . 

The magnitude and angle of t he impedances of Examples One, Three , 

and Four were measured as a funct ion of frequency in the fol lowing way. 

The network under t e s t was connected t o the app ropr i a t e t e s t equipment 

as shown in Figure 33. A Hewlett-Packard 200 CD audio o s c i l l a t o r was 

connected t o the network under t e s t through a s e r i e s r e s i s t a n c e R. To 

ob ta in the magnitude of the impedance of t he network under t e s t , a Tek­

t r o n i x 54-5-B o s c i l l o s c o p e with a 1A2 dual t r a c e p l u g - i n was used in con­

junc t ion with a Hewlet t-Packard *+00 D vacuum tube vo l tmete r t o measure 

the r e l a t i v e magnitudes of V and V-^Vo. The magnitude as a funct ion of 

frequency of the input impedance of the network under t e s t was then com­

puted by 

z • | V * 
i n I vJ_-v21 ( 1 7 9 ) 

To ob ta in the angle of the impedance of the network under t e s t , V,-V9 

from the v e r t i c a l output of the Tekt ronix 54-5-B o s c i l l o s c o p e was fed 

i n t o the h o r i z o n t a l input of the Hewlett-Packard Model 120-B o s c i l l o s c o p e 

while V9 was fed i n t o the v e r t i c a l i n p u t . The phase d i f fe rence between 

the two v o l t a g e s , which was the angle of the impedance of the network 

under t e s t , was then measured us ing a Hewlett-Packard Webb-Mask on the 

Hewlett-Packard o s c i l l o s c o p e . 

The magnitude and phase of the o p e n - c i r c u i t vo l tage t r a n s f e r 

funct ion of Example Two was measured as a funct ion of frequency with 
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Hewlett-
Packard 
200 CD 
Oscillator 

R 
•AAAA/V 

I 

Network 
Under 
Test 

Tektronix 545-B 
Oscilloscope with 
1A2 Dual Trace 
Plug-In 

Ch. 2 
-V V -V 

1 2 

••Ch. 1 V 4 

Ver. 
Out 

Selector 

V -V 
1 2 

or 

-V2 

Hewlett-
Packard 
400 D 
Vacuum 
Tube 
Voltmeter 

P 

Hewlet t-Packard 
Model 120-B 
Osc i l loscope 

Ver. 
Input 

Hor. 
Input 

All voltages measured 
with respect to ground.' 

Figure 33. Test Set-Up for Measuring Input Impedance 
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the t e s t set-up shown in Figure 34. The Burr-Brown 3057/01 operational 

amplifier in the c i r cu i t had the two-fold purpose of providing an almost 

ideal voltage source at port 1 of the network under t e s t and of func­

t ioning as a voltage divider c i rcu i t to aid in the measurement of the 

low signal level voltage V . The magnitudes of the voltages 100 V and 

V were measured by reading the voltages from the Hewlett-Packard Model 

120-B oscil loscope. The magnitude of the open-circuit voltage t ransfer 

function was then computed from 

| V 2 l | T ( s ) | = - • 100 (180) 
| i o o v . L | 

The phase of T(s) was measured by applying 100V and V9, respec­

t i ve ly , to the horizontal and ve r t i ca l deflection plates of the Hewlett-

Packard 120-B oscilloscope and reading the phase difference from the 

Hewlett-Packard Webb-Mask placed on the screen of the oscil loscope. 

The major d i f f i cu l t i e s noted in the experimental phase of t h i s 

research were making accurate phase measurements in general and in 

measuring the magnitude and phase of low level s igna ls . The l a t e r dif­

f icul ty was par t icu lar ly prevalent in the measurements of the t ransfer 

function in Example Two. Use of the Burr-Brown 3057/01 operational 

amplifier shown as used in Figure 34 greatly improved th i s troublesome 

s i tua t ion . Measuring phase at very low frequencies required tha t phase 

correction be made for the errors introduced by the amplifiers of both 

oscil loscopes. 
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100 

Hewlett-
Packard 
200 CD 
Oscillator 

100 V. 

Burr-Brown 
3057/01 

Operational 
Amplifier 

,i Selector 

„Vert. 
Input 

,Hor. 
Input 

Hewlet t -
Packard 

Model 120-B 
Osc i l loscope 

_F All voltages measured 
with respect to ground, 

Figure 3*+. Test Set-Up for Measuring Open-
Circuit Voltage Transfer Function 
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The data obtained from Example One which are shown in Figures 21 

and 22 as solid curves, agreed fairly well with'the theoretical predicted 

behavior which is shown as broken curves. From 10 to 20,000 hertz, the 

magnitude and angle of each of the negative resistances built were in 

error less than 12 per cent. From 20,000 to 30,000 hertz, the magnitude 

and angle of these same impedances were in no more error than 16 and 17 

per cent, respectively. 

The circuit constructed for Example Two also performed well, as 

can be seen by examining Figures 24- and 25. Examination of 24- reveals 

that the undamped natural frequency of the circuit of Example Two was 

1550 hertz. Theoretically it should have been 1590 hertz. Hence, the 

measured undamped natural frequency was in error less than 3 per cent. 

For Example Two, the measured Q, or selectivity, as defined by 

(63), was the magnitude of the transfer function at the resonant or 

undamped natural frequency. From Figure 24-, it is observed that Q was 

39.5. Theoretically, it should have been 4-.0. Hence, the measured Q 

was in error less than 2 per cent. 

An examination of the phase curves of Figure 25 reveals that the 

measured' phase curve of Example Two behaves as predicted by the theo­

retical curve of the same figure. As expected from the magnitude curves 

of Figure 2M-, the measured phase curve is jdisplaced slightly to the left 

of the theoretical phase curve. Note that the measured phase curve 

passes through -90 degrees at 1550 hertz, the measured undamped natural 

frequency, as it should. 
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The circuit constructed for Example Three was tested and found 

to be satisfactory. In Figures 28 and 29, the measured data are pre­

sented as dots and the predicted theoretical curves are presented as 

solid lines. Examination of Figure 28 reveals that there is very good 

agreement with the calculated curve and measured values of magnitude up 

to 2000 hertz. For example, at 100 hertz, the measured value is approx­

imately 2 per cent in error as compared to the calculated. From 2000 to 

5000 hertz, the measured values of magnitude deviate more from the cal­

culated. The maximum error in this range of frequency is around 18 per 

cent. 

Figure 29 indicates that the measured values of angle for 

Example Three agreed quite well with the calculated values. The largest 

percentage error in measured angle occurred at 10 hertz and was\approxi­

mately 10 per cent. 

The circuit constructed to simulate the inductance of Example 

Four performed very satisfactorily. The measured and calculated values 

of magnitude and angle of the impedance of Example Four are shown in 

Figures 31 and 32, respectively. From 200 to 14,000 hertz, the error in 

magnitude of the constructed circuit was less than 12 per cent. From 

200 to 8000 hertz, the error in angle of the constructed circuit was 

less than 12 per cent. From 8,000 to 14,000 hertz, this angle error 

increased but still was less than 23 per cent. 

Causes of the experimental errors are difficult to determine; 

however, most of them can be attributed to the following: 
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1. Deviation of elements from their design values. 

2. Non-idealness of the operational amplifiers—primarily the 

decrease of the open-loop gain at high frequencies brought about by the 

phase compensation network. 

3. Noise in the presence of low-level signals. 

4. Errors in reading instruments, particularly in the case of 

reading the phase from the Hewlett-Packard Webb-Mask. 

5. Electrical coupling due to the network layouts. 

A thorough investigation of the sources of error was not made 

since the only purpose of the experimental work was to verify the 

realization procedures and demonstrate their practicality. Certainly 

the data taken and presented in this chapter demonstrate these two 

points well enough to avoid further investigation. 
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CHAPTER X 

CONCLUSIONS AND RECOMMENDATIONS 

The rapid development of integrated circuits has generated a 

tremendous interest in the application of active RC synthesis methods to 

solve circuit design problems. Unfortunately, many of the active RC 

synthesis procedures in existence today concentrate on minimizing the 

number of active elements at the expense of using an excessive number of 

capacitors. Capacitors use much area in integrated circuits and are 

often difficult to fabricate. 

Many existing active RC synthesis procedures are very sensitive 

to both active and passive circuit parameter values. In integrated 

circuits, generally, active and passive parameter values have high 

tolerances. Hence, sensitivity figures with respect to these parameter 

values must be low in order to guarantee reasonable performance. 

For fabrication purposes in integrated circuits, the acceptable 

spread in element values is usually given to the circuit designer. Many 

active RC synthesis procedures do not have enough degrees of freedom to 

allow the designer to stay within the allowable range for element values. 

Hence, these synthesis procedures are of little use. 

Another group of the active synthesis procedures are impractical 

because of the fact that they are ungrounded. 

This investigation has made use of an active device, the gener­

alized positive impedance converter (GPIC), in network synthesis 
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procedures which are practical. In Chapter II, the GPIC was defined and 

electronic circuits using operational amplifiers, resistors, and capaci­

tors were developed which realized each GPIC discussed. 

In Chapter III and Chapter IV, synthesis procedures for the 

open-circuit voltage transfer function, T(s), and the driving-point 

admittance function, Y(s), were developed, respectively. The synthe­

sized networks are grounded, contain elements which are compatible with 

integrated circuits, and require the minimum number of capacitors neces­

sary for the synthesis. 

A.sensitivity investigation of the T(s) procedure and the Y(s) 

procedure was made in Chapter V. For an unconditionally stable T(s), 

the coefficient sensitivity terms can always be made less than or equal 

to one in absolute value. In the case of the absolutely stable, second 

order T(s), the selectivity and undamped natural frequency sensitivity 

terms can always be made less them or equal to one in absolute value. 

It was demonstrated through an example that the absolute value of T(s) 

sensitivity terms can be made low in the case of the all-pole, second-

order, absolutely stable transfer function. The coefficient sensitivity 

terms of the Y(s) function can always be made approximately less than 

or equal to one in absolute value. This investigation revealed that 

the T(s) and Y(s) synthesis procedures generally are insensitive to 

changes in both passive element values and GPIC gain constants. 

In Chapter VI, it was shown that for both the T(s) and Y(s) syn­

thesis procedures the synthesis could be successfully completed for any 

prescribed range of admittance values for the admittance parameters 
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external to the GPIC devices. This remarkable property of the synthesis 

procedures was shown to depend on the unrestricted assignment of GPIC 

gain constant values. 

Experimental verification of the T(s) and Y(s) synthesis proce­

dures was presented in Chapter IX. The experimental results demon­

strated the practicality and usefulness of the synthesis procedures. 

For completeness, the T(s) and Y(s) synthesis procedures were 

extended to the multi-port open-circuit voltage transfer matrix synthe­

sis procedure and the short-circuit admittance matrix synthesis proce­

dure, respectively. The multi-port open-circuit voltage transfer matrix 

synthesis procedure is found in Chaptei? VII and the short-circuit 

admittance matrix synthesis procedure is found in Chapter VIII. 

In the process of this investigation, several areas for further 

investigation have appeared. It is felt that more simplified circuits 

can be found for realizing the GPIC's than those presented in Chapter 

II. With a simpler and a more carefully designed GPIC circuit, the use­

ful frequency range of the synthesis procedures probably can be 

extended. 

Even though it appears that the synthesis procedures described 

in this research are generally insensitive to both passive and active 

parameter changes, the particular application should be examined care­

fully. The sensitivity discussed in Chapter V is the differential sen­

sitivity. In a practical application, perhaps an incremental sensi­

tivity analysis should be performed, if possible. There is no guarantee 

that low differential sensitivity always implies low incremental sensi­

tivity . 
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The circuit design of the GPIC devices will determine the possible 

GPIC gain constants. There genei?ally will be some range of gain constant 

values possible for each particular GPIC circuit design. Therefore, it-

is recommended that this range of gain constant values be incorporated 

into the work of Chapter VI in some future investigation. 

The synthesis procedures described in this research can very 

easily be implemented on a digital computer since the procedures only 

require matching coefficients of transfer functions to circuit element 

values and GPIC gain constants. A digital computer implementation of 

the work in Chapter VI (CONTROL OF ELEMENT VALUES EXTERNAL TO GPIC'S) is 

recommended for anyone who may make much use of the synthesis procedures. 

In summary, this work has resulted in another approach to the 

active RC synthesis problem. Synthesis procedures with practical elec­

tronic circuit realizations have been developed. The desirable charac­

teristics of the T(s) and Y(s) synthesis procedures and the experimental 

results of the network realizations indicate that the procedures should 

find use in integrated-circuit applications. 
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APPENDIX I 

REALIZATION OF THE NEGATIVE RESISTANCE BY KIM'S METHOD 

The following discussion is based on some work performed by C. D. 

Kim in the School of Electrical Engineering of the Georgia Institute of 

Technology. It will be presented by him in a later publication. 

Consider the circuit of Figure 35. 

R 
, A A A A 

' I - r 
I . 

' I - r 
I 

2 \ 

i n , f 
•"••"•* ^ * 

GPIC 

I 

h 
O 

Figure 35. Negative Resistance Circuit 

The chain matrix of the GPIC is assumed to be 

klN ° 

k2N 

(A-l) 
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From the chain matrix description, 

El = klNE2 (A"2) 

h - ̂ h (A"3) 

and 

Examination of the circuit of Figure 35 reveals that 

E 1 = I2R + E2 (A-4) 

I.n - h + I2 (A-5) 

Now, the input impedance of the circuit is given by 

Zin = TT- (A-6) 

in 

Equations (A-2), (A-3), (A-4), (A-5), and (A-6) can be solved to 

yield 

1 TT 

Zin = " '(K1N-l)(k2N-lT ' (A"7) 

It is obvious from (A-7) that Z... can be made a negative resist­

ance. For example, make k = k = 2. Then 

Z. = -2R (A-8) 
in 



133 

APPENDIX II 

GENERALIZED POSITIVE IMPEDANCE CONVERTER 

WITH POSITIVE CHAIN MATRIX TERMS 

Consider the circuit shown in Figure 36. 

z 

A 

fh 
1 

J3 r—i 4 v v. 

• 

E i 

i — — J > 

D 
> 

4 

^ N 

^SJ - y£ 
> 

0 '1 N 
o vj \S 

Figure 36. Generalized Positive Impedance Converter with 
Positive Chain Matrix Terms, for Analysis 

Assume that the operational amplifiers are ideal, i.e., infinite input 

impedance, infinite gain,.infinite bandwidth, and negligible output 

impedance. An analysis of the circuit yields that 
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which implies t h a t 

Now, 

a n d 

Also , 

and 

I t i s seen t h a t 

J i z i + hz2 = ° (A-9) 

I = - ^ -
3 Z 2 

(A-10) 

I . = 
Z 5 + Z 6 

( A - l l ) 

E^ = 
E1Z6 

Z 5 + Z 6 
(A-12) 

\ = h - h (A-13) 

h - \ - zT (A-14) 

hh" hh ' hh = ° (A-15) 

S u b s t i t u t i n g (A-13) and (A-14) i n t o (A-15) , the following' express ion 

r e s u l t s . 

( I 3 - I 5 ) Z 3 " 
X -"-I 

2 Z ? 

Z4 " I 5 Z 5 = ° 
(A-16) 
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Substituting (A-10), (A-11) and (A-12) into (A-16), the following result 

is obtained. 

T - T !2V K
 Z2 V 6 - W Z 5 ) 

1 2 Z,Z„ 2 Z,Z„ I Z„Z 
1 3 1 3 6 7 T 

(A-17) 

From Equation (A-12), it is obvious that 

El Z. E2 
(A-18) 

Now the desired results for the circuit of Figure 36 are 

d'x2j 

(A-19) 

If we make 

Z 3 = W 

\ - V 

h- V 

h- R6 

h- R„ = 7 
\ R 6 

h- R„ = 7 R 3 + R5 

(A-20) 
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R + R_ 
E -" 5 6 E 
h l R. h 2 

(A-21) 

and 

I = -£_L i 
1 Z l R 3

 l2 
(A-22) 

r e s p e c t i v e l y . 

For a d e s i r e d k.. ^ 1 9 l e t 

t h e n 

Z l = R l 

z - _L 
Z 2 " sC 

(A-23) 

R 5 + R 6 
R 

SW 
- I . 

(A-24) 

T h e r e f o r e , 

k' - ^ A 
k l " R„ 

(A-25) 

R. 
k„ = 

2 R l R 3 C 
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The desired circuit is shown in Figure 37. 

Figure 37. GPIC, k, * 1 

For a desired k.. ̂  1, interchange ports 1 and 2 of Figure 36, 

impose the restrictions of (A-20), and make 

Zl " sC 

Z2 = R2 

(A-26) 

Then, 

R 

VR6 

sCR2R4 

^2 

-I. 

(A-27) 
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R6 
kl Rc + R " o 6 

k„ = 2 R
2V 

(A-28) 

The desired circuit is shown in Figure 38 

(1) 

o-

r-O; 
• ^AA^ 

R. 

R, 
i i i «S\/S/*.-,—^. 

R,-

tt^ 
(2) 

R.. 

Figure 38. GPIC, k < 1 
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APPENDIX III 

POSITIVE IMPEDANCE CONVERTER 

WITH NEGATIVE CHAIN MATRIX TERMS 

Let it be desired to realize a two-port network described by 

-k.. 

0 -k, -I. 
(A-29) 

A two-port described as above is a positive impedance converter. 

It will be shown that the circuit of Figure 39 can be made to 

give the desired equation of (A-29). Assume that all operational ampli­

fiers of Figure 39 are ideal. Analysis of the circuit reveals that 

I3 = RT 
(A-30) 

I5 = R7 
(A-31) 

h-h-h- h (A-32) 

Substituting (A-30) and (A-31) into (A-32), it is found that 

h - h 
E i (W 

Rl"R5 
(A-33) 
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o—^ ^AA > > < 2 Q 

I "2 

T 
Figure 39. Positive Impedance Converter for Analysis 

Now, 

E = E - I, R, 
x 1 4 4 

(A-34) 

Substituting (A-r33) into (A-3M-), the expression to follow is obtained. 

E = En x 1 1 + 
<VR5 ) R4 

R 1 R 5 " h\ (A-35) 

Analysis y i e l d s t h a t 
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EnR_ 
1 b 

y - R( 

(A-36) 

E R 
E = - JL2. 

2 R l 

E - E 0 
T = JL—1 

•Rr 

(A-37) 

(A-38) 

E - E 0 x 2 
'7 R, 

(A-39) 

• Z 2 = I3 + h + 1
7 

CA-40) 

S u b s t i t u t i n g (A-36) and (A-37) i n t o ( A - 3 8 ) , i t i s found t h a t 

J 6 = R 

E. fR2 R61 

7 R l R 5 
(A-41) 

Substituting (A-35) and (A-37) into (A-39), the following result is 

" i 

obta ined . 

» • ' * 

(R1+R5)R I+ R2 

R 1 R 5 R l 
h\ (A-42) 

Substituting (A-30), (A-M-l) and (A-M-2) into (A-M-0), the following 

expression is obtained. 

•T2---h-+Ef 
1 l . ( R 1 + R 5 ) R 4 R 2 R 2 

+ =— + ^ - ^ + 7T-TT- + Rn R0 R, R0R r R-|R-> RnRn 
1 3 1 3 b 1 3 1 7 

R, 

R 5 R 7 
(A-43) 
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To obtain the desired result of (A-29)3l it is required that 

R6 = 
fR5R7 R5R7 W W R2R5R7 R2R

5] 

l R l 
R, R 1 R 3 R 1 R 3 

(A-44) 

Then (A-43) becomes 

- I . 
R0 

(A-45) 

o r 

v2 ' 1 R. 
(A-46) 

From ( A - 3 7 ) . i t i s o b v i o u s t h a t 

R 1 E 2 
1 R, 

(A-47) 

A comparison of (A-29), (A-46), and (A-47) reveals that 

h-T- (A-48) 

and 

k - ^ . k2 R.. 

Make 

R5 = Rl 

(A-49) 

R7 " R3 
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Substituting (A-48) and (A-49) into (A-44) it is seen that 

f- 2 l 1 2 I 
K = R, 1 + r— + R« 1 + i— 

b 1 I h\ 3 I k2) 
(A-50) 

The circuit that will yield the results of (A-29) is shown in 

Figure 40. 

T 
Figure 40. Positive Impedance Converter with. 

Negative Chain Matrix Terms 



Note that in this circuit 

1 R2 

k 2 =
 R ; 

only when (A-50) is satisfied. 
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(A-51) 
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