
FROM IMAGES TO AUGMENTED 3D MODELS:
IMPROVED VISUAL SLAM AND AUGMENTED POINT

CLOUD MODELING

A Thesis
Presented to

The Academic Faculty

by

Guangcong Zhang

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
December 2015

Copyright c© 2015 by Guangcong Zhang

FROM IMAGES TO AUGMENTED 3D MODELS:
IMPROVED VISUAL SLAM AND AUGMENTED POINT

CLOUD MODELING

Approved by:

Professor Patricio A. Vela, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Panagiotis Tsiotras
School of Aerospace Engineering
Georgia Institute of Technology

Professor Erik I. Verriest
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Fumin Zhang
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Anthony J. Yezzi
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: Octorber 22, 2015

To my family,

and the people who have faith in me.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to extend my sincerest gratitude to my adviser,

Patricio A. Vela, for his support over the course of my Ph.D. studies. He introduced

me to various interesting research topics and afforded me the opportunity to work

with many excellent researchers. Most importantly, he encouraged me to explore and

pursue the research areas where my passions and motivation lay. This thesis would

not be possible without his insightful guidance and faith in my abilities.

I would also like to thank Dr. Panagiotis Tsiotras for serving on my dissertation

committee. I collaborated with Dr. Tsiotras for an extended period of time on

the vision-only robot navigation project. He not only gave me theoretical guidance

related to many key problems, but also served as a role model through his rigorous

research mindset. I am indebted to my committee members, Prof. Erik Verriest, who

served as the chair of my proposal committee and provided very helpful feedback; Prof.

Anthony Yezzi, who was also in my proposal reading committee and introduced me to

computational computer vision through his remarkable course “PDEs for Computer

Vision”; and Prof. Fumin Zhang, who provided significant support for my thesis

work. I am also grateful to Prof. Ioannis Brilakis in University of Cambridge, UK,

for his advice and collaboration on the point-cloud modeling project during my early

years of doctoral research.

I am grateful to many of the collaborators and colleagues I have befriended and

worked with. Particularly, I am thankful to Dr. Hassan Kingravi, whom I treat as

my mentor, for his advice on both work and life; Dr. Michail Kontitsis for many

valuable discussions and collaborations on challenging robotics experiments; as well

as my long-term friends and lab-mates, Miguel Serrano and Gbolabo Ogunmakin, for

iv

their generous day-to-day support over the years.

My appreciation also goes out to my other lab-mates, Peter Karasev, Alex Chang,

Fu-jen Chu, and Luisa Fairfax; my colleagues in the robot navigation project, Dr.

Nuno Filipe, Dr. Dae-min Cho, and Alfredo Valverde; and my colleagues in the

point-cloud modeling project, Dr. Habib Fathi, Dr. Abbas Rashidi, Dr. Fei Dai, etc.

I am additionally grateful to individuals I have met during my internships, especially

Dr. Qingfeng (Elden) Yu, who extended selfless support in training me and advising

my career path.

My research has been supported by the National Science Foundation and U.S.

Air Force Research Laboratory, without whom this work would never have been

completed.

Last, but most importantly, I am deeply grateful to my family. Over the years,

regardless of the distance that separated us, they have always been the closest people

in my heart. Their unconditional support has always given me the utmost motivation

and courage to face new challenges and continue moving forward in my life. In

particular, I would like to thank my dearest wife, Yiwei Yan. She continues to always

love me, care about me, and believe in me. She is the sunshine of my life.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . x

LIST OF FIGURES . xi

SUMMARY . xv

I INTRODUCTION . 1

1.1 Monocular Visual Simultaneous Localization and Mapping (VSLAM) 1

1.1.1 Problem formulation and typical VSLAM systems 1

1.1.2 Challenges in VSLAM and my solution 7

1.2 Point cloud modeling . 10

1.2.1 PCD modeling Problem . 10

1.2.2 Challenges in modeling PCD from VSLAM 10

1.2.3 My strategists . 12

1.3 Outline of the thesis . 13

II VISUAL SLAM SYSTEM MODELING AND COMPLETELY OB-
SERVABLE CONDITIONS . 15

2.1 Background . 15

2.2 VSLAM System Modeling . 16

2.2.1 Motion and Observations for SE〈3〉 SLAM 16

2.2.2 Computation of Process and Measurement Matrices in VS-
LAM PWLS . 19

2.3 VSLAM System Observability . 23

2.4 Conclusion . 29

III OPTIMALLY OBSERVABLE AND MINIMAL CARDINALITY
(OOMC) VSLAM . 31

3.1 Introduction . 31

vi

3.2 Background . 33

3.3 Optimally Observable and Minimal Cardinality (OOMC) SLAM . . 34

3.3.1 OOMC Formulation . 34

3.3.2 Observability Score . 35

3.3.3 Triplet Selection Strategy . 35

3.3.4 OOMC SLAM in EKF Framework 37

3.4 Experiments . 39

3.4.1 6-DOF Experiment with Comparison to 1-Point RANSAC . . 39

3.4.2 Long distance experiment against GPS 45

3.5 Conclusion and Future Work . 48

IV GOOD FEATURES TO TRACK FOR VSLAM ALGORITHM . 51

4.1 Introduction . 52

4.2 Background . 54

4.2.1 Individual Feature Selection in VSLAM 54

4.2.2 VSLAM System Designs . 55

4.3 Good Features to Track for Visual SLAM 57

4.3.1 Temporal Observability Score 57

4.3.2 Rank-k Temporal Update of Observability Score 58

4.4 Submodular Learning for Feature Grouping 59

4.5 Integration into VSLAM Systems 63

4.6 Evaluation . 64

4.6.1 Synthetic Experiments with EKF-VSLAM for Ego-motion Es-
timation . 64

4.6.2 Real-world Experiments with EKF-VSLAM for Data-association 66

4.6.3 Experiments with Keyframe BA Based VSLAM 68

4.7 Conclusion . 91

V PCD MODELING BASED ON PLANAR PATCHES VIA SPARSITY-
INDUCING OPTIMIZATION . 92

5.1 Introduction . 93

vii

5.2 Background . 94

5.3 Point Clouds Segmentation by Clustering Sparse Linear Subspaces . 96

5.3.1 Recovering PCD linear subspaces 98

5.3.2 Subspace segmentation via spectral clustering 99

5.3.3 Illustration of procedure on a synthetic PCD 100

5.4 Plane Detection and Model Estiamtion via Maximum Likelihood Sam-
ple Consensus . 103

5.4.1 Planes detection and estimation from PCDs 103

5.4.2 Illustration of Algorithm 5 on the synthetic PCD 105

5.5 Determine Plane Boundaries via QR Decomposition based Projected
α-Shape . 106

5.5.1 Maximum projected variance α-shape algorithm 107

5.5.2 Illustration of Algorithm 6 on a synthetic PCD 107

5.6 Evaluation . 108

5.6.1 Evaluation metrics . 108

5.6.2 Evaluation results on the synthetic PCD 111

5.6.3 Evaluation results on real-world PCD from VSLAM/SfM . . 113

5.7 Conclustion . 116

VI PCD MODELING WITH QUADRATIC SURFACE PRIMITIVES
AND SEMANTIC INFORMATION 120

6.1 Related Work . 121

6.2 Surface Primitive Extraction from Point Cloud Data 123

6.2.1 Over view of the algorithm 123

6.2.2 Fast Segmentation of PCDs 123

6.2.3 PCDs Pose Recovery . 125

6.2.4 Robust Fitting with Quadric Models 125

6.2.5 Classification of Surface Primitives 127

6.2.6 Model Merging . 127

6.3 Semantic Modeling of Point Cloud Data 128

6.3.1 Features . 129

viii

6.3.2 Classification with Adaboost 131

6.3.3 Decision Tree Induction . 132

6.3.4 Classification and Output Generation 133

6.4 Evaluation . 134

6.4.1 Results of surface primitive modeling. 134

6.4.2 Results of semantic recognition and final augmented models. 135

6.5 Conclusion . 135

VII CONCLUSION . 137

REFERENCES . 141

ix

LIST OF TABLES

1 Errors of OOMC SLAM against GPS data on 620 meter sequence. . 48

2 Configurations of the new sequences without loop-closures. ∗Frame
indices: corresponding indices in the original KITTI sequences. . . . 70

3 Results on original KITTI sequences. Keyframe numbers and transla-
tion RMSE are reported for both original ORB-SLAM and GF-ORB-
SLAM with different GF selected. 79

4 Numbers of features (mean ± std. dev.) used for pose optimization in
the original KITTI sequences. 79

5 Results on none-loop-closure sequences. Keyframe numbers and trans-
lation RMSE are reported for both original ORB-SLAM and GF-ORB-
SLAM with different GF selected. 85

6 Numbers of features (mean ± std. dev.) used for pose optimization in
the none-loop-closure sequences. 85

7 Timing results (mean ± std. dev). The time statistics of each experi-
ment combination is collected from all five executions. 90

8 Evaluation results on the synthetic PCD. 112

9 Parameter configurations for the building PCD experiment 116

10 Evaluation results on the building PCD 116

11 Descriptions and classification criteria for quadric surface primitives.
a, b, c 6= 0. 128

12 Evaluation of experimental results on the bridge PCD. 134

x

LIST OF FIGURES

1 The pipeline of the solution to 3D modeling from image sequence. The
whole pipeline is composed of two key components: monocular visual
simultaneous localization and mapping, and point cloud data modeling. 2

2 An illustration of the dynamics and measurements process involved in
the VSLAM problem. 3

3 Matching the visual features across two consecutive frames, as part of
the data-association process. 4

4 Constant velocity assumption . 4

5 A typical design of a filtering based VSLAM system. 5

6 An example of EKF-VSLAM: RT-SLAM system [81]. Top: current
frame plotted with tracked visual features. Bottom: estimated camera
trajectory and 3D positions of the features. 6

7 A typical design of a keyframe based bundle adjustment VSLAM sys-
tem. 7

8 An example of keyframe based BA VSLAM: PTAM (parallel tracking
and mapping) system [60]. Top: current frame plotted with tracked
visual features. Bottom: estimated camera trajectory and 3D positions
of the features. 8

9 An example showing that not all the features contribute in the same
level to the localization accuracy. Left: features detected and tracked
in the current frame. Right: the incorrect camera trajectory estimated. 9

10 A PCD of a bridge, captured by a profession total station. 11

11 A PCD of a building, generated using VSLAM techniques. 11

12 VSLAM system completely observable condition #1. 28

13 VSLAM system completely observable condition #2. 29

14 At each time segment, the OOMC algorithm identifies the feature
triplet (defines the triangles) which forms the subsystem of optimal
observability and minimal cardinality with the camera state. Lo-
calization and mapping is then performed with this subsystem. . . . 32

15 The triplets (depicted as blue triangles) selected for EKF update in
example frames from the 1pRANSAC dataset. The measurements are
plotted in eclipses of 1-σ regions with various markers: thick red – low-
innovation inliers; thin red – high-innovation inliers; magenta: rejected
spurious matches; blue – no match found by cross-correlation. 42

xi

16 Camera localization results of 1pRANSAC SLAM and OOMC SLAM 43

17 Differences in camera localization results of 1pRANSAC SLAM and
OOMC SLAM . 44

18 Left: execution time of 1pRANSAC and OOMC, and the map size.
Right: speedup of OOMC over 1-Point RANSAC. 44

19 Inlier ratios of 1pRANSAC algorithm and OOMC algorithm, and their
comparison. The inlier ratios are from the maximum support consensus
sets for each frame. 45

20 Illustration of the 620-meter trajectory (in red). 46

21 Example frames from 620m sequence. The detected features are plot-
ted in blue circles and the selected triplets are plotted in red triangles. 46

22 Estimated trajectory from the OOMC SLAM compared to trajectory
from a RTK Differential GPS. 47

23 Errors of OOMC SLAM compared to the GPS ground truth. Top:
histogram of instantaneous error. Bottom: cumulative errors with 1-σ
range along the trajectory. 49

24 Overview of my approach. The proposed method can be plugged in
as a sub-step in the SLAM process. In a time step (T3 in the figure),
for features which are initially matched, the algorithm first examines
the rank conditions for them, i.e. whether the feature is completely
observable to the SLAM system. If the rank condition of a feature is
satisfied (depicted in green/purple), the τ -temporal observability score
is evaluated by considering the relative motion of the feature in the past
τ local frames. Features with high observability scores are selected as
good features (depicted in green). If the number of highly observable
features is too few, feature grouping with a submodular learning scheme
is applied to collect more good features. These subset of good features
provide the near-optimal value for SLAM estimation. 52

25 In spatial grouping, selecting one more feature as anchor results in
an additional row-block in the measurement Jacobian, which further
expands the SOM. 60

26 Simulated scenario #1 for ego-motion estimation experiment. Results
shown have 1.0 pixel measurement standard deviation and Ka = 10.
Column 1: reconstructed maps at time steps when camera is perform-
ing circular movement; features are depicted with estimated mean and
covariance; points in red are selected as anchors. Column 2: corre-
sponding camera frames with observability scores shown for all mea-
surements. Column 3: interpolated maps of observability score on
image plane showing how it changes during the motion. 72

xii

27 Simulated scenario #2 for ego-motion estimation experiment. Results
shown have 1.0 pixel measurement standard deviation and Ka = 10.
Column 1: reconstructed maps at time steps when camera is perform-
ing circular movement; features are depicted with estimated mean and
covariance; points in red are selected as anchors. Column 2: corre-
sponding camera frames with observability scores shown for all mea-
surements. Column 3: interpolated maps of observability score on
image plane showing how it changes during the motion. 73

28 Results of simulation scenario #1 with cumulative translation errors
and cumulative orientation errors. “ObsStd”stands for the standard
deviation of observation noise in pixel units. 74

29 Results of simulation scenario #2. 75

30 Example frames from data-association experiment. The strongly ob-
servable features are illustrated in yellow, retrieved inlier set is in cyan,
and the outlier set is in purple. Column 1: camera is moving away from
the desktop. Column 2: camera is rotating w.r.t. the optical axis. Col-
umn 3: camera is rotating w.r.t. the x axis of camera. 76

31 Relative improvements of inlier ratios versus [22]. 77

32 Three example frames from the KITTI visual odometry sequences. . 77

33 Two examples of the keyframe BA VSLAM system in action, on the
KITTI dataset. In each sub-figure, top: current frame plotted with
tracked visual features; bottom: estimated camera trajectory and 3D
positions of the features. 78

34 Inlier ratios of the GF-ORB-SLAM on original KITTI. 80

35 Results on original KITTI 00, 02, and 03: estimated trajectory, ground
truth, and translation errors. Row 1: 20% GFs. Row 2: 30% GFs.
Row 3: 40% GFs. Row 4: 50% GFs. Row 5: 60% GFs. Note that
the X and Z axes are of different unit lengths, for better illustration of
localization error. 81

36 Results on original KITTI 04, 05, and 06: estimated trajectory, ground
truth, and translation errors. Row 1: 20% GFs. Row 2: 30% GFs.
Row 3: 40% GFs. Row 4: 50% GFs. Row 5: 60% GFs. Note that
the X and Z axes are of different unit lengths, for better illustration of
localization error. 82

37 Results on original KITTI 07, 09, and 10: estimated trajectory, ground
truth, and translation errors. Row 1: 20% GFs. Row 2: 30% GFs.
Row 3: 40% GFs. Row 4: 50% GFs. Row 5: 60% GFs. Note that
the X and Z axes are of different unit lengths, for better illustration of
localization error. 83

xiii

38 Comparison of drifts: an example from sequence 05. (a)(b): Estimated
trajectory before loop-closure. (c) Estimated trajectory after loop-
closure (which is almost the same for the original ORB-SLAM and
GF-ORB-SLAM). 84

39 Inlier ratios of the GF-ORB-SLAM on none-loop-closure sequences. . 86

40 (Continued in Figure 41.) Estimated trajectory, ground truth, and
translation errors on none-loop-closure sequences. Note that the X and
Z axes are of different unit lengths, for better illustration of localization
error. 88

41 Continued from Figure 40. 89

42 Role of planar patches extraction in the automatic conversion from raw
PCDs to 3D models. 94

43 Illustration of linear subspace clustering on a synthetic PCD. 102

44 Illustration of Algorithm 5 on the synthetic PCD. 106

45 Boundaries found using QR decomposition based projected α-Shape
algorithm (Radius=3Dpp). 108

46 Illustration of Algorithm 6 on synthetic PCD. 108

47 Volume between two planar patches. 110

48 Misclassification rate w.r.t. different numbers of linear elements in
constructing the similarity graph. 113

49 A sample image used to reconstruct a building. 114

50 Raw PCD representation of a building. 115

51 Extracted planar patches for the building PCD using different methods,
plotted with the raw PCD (in magenta). 117

52 Planes measured using total stations to provide ground truth data. . 118

53 Flowchart of the surface primitive-based PCD modeling algorithm. . . 124

54 Pipeline of the algorithm for semantic recognition of PCDs based on
Surface Primitives. 129

55 Results of surface primitive modeling. Left: input PCD. Middle: down-
sampled PCD. Right: detection and classification results. 134

56 Left: query PCDs. Middle and right: augmented models consisting of
a collection of CAD entities colored by semantic labels. 135

xiv

SUMMARY

Vision only navigation and modeling is an important problem in computer

vision and robotics. This problem can be divided into two parts. The first part in-

volves the monocular visual simultaneous localization and mapping (VSLAM), which

takes image sequence as input, and outputs the estimated camera poses as well as the

point cloud data (PCD) mapping the environment. Although research efforts have

been devoted to data-driven algorithms for solving the VSLAM problem, it remains

an open problem which features can result in more accurate estimate of camera poses

and thus more accurate mapping results. The second part of the problem is the PCD

modeling, which converts a raw PCD to an augmented model as the final output.

Challenges exist in building compact, precises, and geometric-driven models from

raw point clouds, which is particularly important when applied to as-built building

information models.

The work in this thesis is dedicated to solve the above two problems. In the first

part of the thesis, I propose algorithms to select the features of the most utilities to

VSLAM estimation, using the system observability theories. I first model the VS-

LAM process by building a piece-wise linear system (PWLS) based on the camera

SE〈3〉 dynamics and measurements. Then I derive the necessary conditions to make

the PWLS model completely observable. Based on the conditions, I designed two

algorithms to improve the VSLAM by selecting the subset of features which form

the strongest observable sub-system and result in a more accurate estimate. The

first algorithm, dubbed “Optimally Observable and Minimal Cardinality (OOMC)

SLAM”, exploits the instantaneously completely observable condition. The OOMC

algorithm is formulated into an Extended Kalman Filter (EKF) based SLAM, and

xv

is demonstrated to improve both the data association and localization. The second

algorithm, called the “Good Features (GF) to track for VSLAM” algorithm, utilizes

the temporally completely observable condition to rank each feature by the proposed

τ -temporal observability scores. I evaluate this algorithm by integrating it with dif-

ferent designs of VSLAM systems, including the traditional filtering based VSLAM

and the recent keyframe Bundle-Adjustment (BA) based VSLAM. Extensive evalua-

tions are performed on large-scale benchmark data sets, demonstrating that the GF

algorithm improves the accuracy in different VSLAM systems, with very little loss in

runtime.

The second part of this thesis focuses on solving the PCD modeling problem

in a geometry-driven manner. I address the PCD modeling by first developing an

algorithm to model PCD with planar patches, the basic geometric elements, by for-

mulating a sparsity-inducing optimization to retrieve the linear subspaces embedded

in the PCD. Then I extend the family of geometric elements to all quadric surface

primitives (e.g. ellipsoid, quadric cones, etc.). An algorithm to detect, fit, and clas-

sify these shape primitives from PCDs is presented. With these two algorithms, an

approach is further designed for semantic modeling of PCDs, with applications in

as-built building information models (BIM).

xvi

List of Acronyms

BA Bundle Adjustment

BIM Building Information Model

CAD Computer-Aided Design

DOF Degrees of Freedom

EKF Extended Kalman Filter

KF Key Frames

GF Good Features

MLESAC Maximum Likelihood Sample Consensus

OOMC Optimally Observable and Minimal Cardinality

PCD Point Cloud Data

PWLS Piece-Wise Linear System

RANSAC Random Sample Consensus

SfM Structure from Motion

SLAM Simultaneous Localization and Mapping

SOM Stripped Observability Matrix

SSC Sparse Subspace Clustering

TOM Total Observability Matrix

VSLAM (monocular) Visual Simultaneous Localization and Mapping

xvii

CHAPTER I

INTRODUCTION

3D modeling from image sequences is a challenging problem which can be divided

into two key problems in robotics and computer vision. The first problem is referred

as “(monocular) visual simultaneous localization and mapping” [32, 5, 27]. For sim-

plicity, I directly refer “monocular VSLAM” as “VSLAM” in this thesis. The second

problem is point cloud data modeling [84]. As depicted in Figure 1, given an image

sequence from a monocular camera, the VSLAM solves the localization by estimating

the camera SE〈3〉 poses, and simultaneously building the map of the environment

represented by a collection of 3D points, i.e. a PCD. It is important to note that

the localization and mapping are coupled in one estimation problem. The output of

the VSLAM, especially the 3D point cloud, is then fed into the point cloud modeling

algorithm, which converts the raw spatial information into high level information by

building a geometry-driven model with semantic labels. Notice that although the

localization result is not directly used in the PCD modeling, it is of great significance

in some applications such as robot navigation and control, etc. In this chapter, I will

introduce first the VSLAM problem and then the PCD modeling problem, together

with brief discussions of my solutions to these two problem. This chapter will be

concluded with the outline of the remaining parts in this thesis.

1.1 Monocular Visual Simultaneous Localization and Map-
ping (VSLAM)

1.1.1 Problem formulation and typical VSLAM systems

Monocular Visual Simultaneous Localization and Mapping (VSLAM) [27] refers to

the problem of estimating camera poses and building a 3D map representing the

1

Figure 1: The pipeline of the solution to 3D modeling from image sequence. The
whole pipeline is composed of two key components: monocular visual simultaneous
localization and mapping, and point cloud data modeling.

environment simultaneously, given a sequence of images captured by a calibrated

monocular camera. A similar problem is the “Structure from Motion (SfM)” [51]

problem, which is often referred in computer vision community.

Figure 2 visualizes the dynamics and measurement process underlying this prob-

lem. As depicted in the figure, the camera moves in the 3D space with unknown 6

degrees-of-freedom (DOF) poses (3 DOFs in translation and 3 DOFs in orientation).

The camera is assumed to be calibrated, meaning its intrinsic parameters are known.

At each time instance, the camera captures objects in the 3D space by projecting

them onto the 2D image plane through a pinhole projection model. The pinhole

project is characterized by the camera SE〈3〉 transformation followed by a 3D-to-2D

projective transformation. However, the connections between points across images,

and the connections between 2D image points and the actual 3D objects, are both

unknown.

The VSLAM problem is usually tackled in the following way. Given a frame during

the VSLAM process, visual keypoints are first detected. Then the data-association

problem is solved by matching the visual keypoints between the current and previous

frames (as shown in Figure 3) as well as matching the 2D visual features with the

3D points based on the current estimates. With the data-association, an SE〈3〉

2

Figure 2: An illustration of the dynamics and measurements process involved in the
VSLAM problem.

3

Figure 3: Matching the visual features across two consecutive frames, as part of the
data-association process.

Figure 4: Constant velocity assumption

transformation of the camera poses from the previous frame to the current frame

(i.e. localization), as well as the 3D positions of the features (i.e. mapping), can

then be solved. This process continues to the next frame by predicting the next

transformation. A key assumption here is the “constant velocity assumption” [27],

as depicted in Figure 4, which assumes that for a camera with high enough frame

rates, two consecutive transformations are approximately the same with very small

deviations.

Researchers have proposed various ways to solve the core estimation problem of

localization and mapping. In the early VSLAM systems, this problem is solved using

4

Figure 5: A typical design of a filtering based VSLAM system.

filtering methods. In the state-space model, the state vector is composed of both

the camera state (including the pose and velocity) and 3D positions of the features.

Figure 5 depicts a typical design of the filtering based VSLAM system. A milestone

work is the “MonoSLAM” [27], in which the estimation is solved using an Extended

Kalman Filter (EKF). Figure 6 shows an example of EKF-VSLAM system [81] in

action, in which each feature is tracked and indexed across the whole trajectory.

The major disadvantage of EKF-VSLAM is that it does not scale well as the map

grows. Accordingly, [34] proposed to improve the filtering based VSLAM using a

particle filter. Other methods also improve the filtering based VSLAM in different

aspects: using a better landmark parametrization [21, 88], using other features like

edges [33], reformulating the estimation problem as a smoothing [28]/ incremental

smoothing [59, 58] problem, etc.

In recent years, as the computation capability develops, more sophisticated de-

signs of VSLAM systems have been proposed. The most prevalent framework is the

keyframe based bundle adjustment (BA) [101]. BA minimizes the image reprojection

errors using nonlinear least-squares algorithms [62]. The keyframe approach selects

a subset of frames for which the BA is solved, and thus greatly reduces the com-

putational intensity compared to the frame-to-frame approach. Figures 7 illustrates

a typical system design of keyframe based bundle adjustment VSLAM. The design

features in multiple processing threads including a faster thread for frame-to-frame

motion tracking, and a slower thread for mapping on keyframes with BA [60]. More

5

Figure 6: An example of EKF-VSLAM: RT-SLAM system [81]. Top: current frame
plotted with tracked visual features. Bottom: estimated camera trajectory and 3D
positions of the features.

6

Figure 7: A typical design of a keyframe based bundle adjustment VSLAM system.

recent systems also have a third thread for loop-closure detection [70]. This type of

system will be discussed in details in Chapter 4. Figure 8 provides an example from

a representative keyframe based BA VSLAM system, from which it can be seen that

keyframe based BA systems are able to track and map more points than filtering

based systems.

1.1.2 Challenges in VSLAM and my solution

From the previous section, one can see that no matter what the system design is, the

localization and mapping directly depend on the data-association results. However,

in reality data-association may not be completely correct. For example, outliers can

happen due to the feature mis-matching. Traditionally people use randomized data-

driven methods, such as Random sample consensus (RANSAC) [39, 22] to remove

the outliers. Such randomized methods are computational intensive. Moreover, even

if the feature matching is correct without any outliers, not all the features contribute

7

Figure 8: An example of keyframe based BA VSLAM: PTAM (parallel tracking
and mapping) system [60]. Top: current frame plotted with tracked visual features.
Bottom: estimated camera trajectory and 3D positions of the features.

8

Figure 9: An example showing that not all the features contribute in the same level
to the localization accuracy. Left: features detected and tracked in the current frame.
Right: the incorrect camera trajectory estimated.

in the same level to the localization accuracy and thus the mapping accuracy. An

example is described by Figure 9. In the example, the camera is moving forward

approximately along the optical axis. Most of the visual features are detected from

the area in front of the camera. These features are barely useful in the ego-motion

estimation (heuristically they have very small baselines across frames). This results

in failure of estimating the camera forward motion. Therefore, it is important to

select the features with the most utility to the estimation process. Previously feature

selection approaches such as information gain based methods [25] were proposed.

However, as Chapter 4 will show, these approaches may not effectively solve the

problem. Thus, selecting the useful features remains an open problem.

My solution differs from previous approaches in that it selects the most useful

features via system observability. Observability is a condition which, when achieved,

means that an estimation process will arrive at the correct estimate [121]. Often

associated with observability are means to estimate the degree of observability, which

provide a means to rate the degrees of informativeness of measurements. By analyzing

the SLAM process we establish observability conditions that make the SLAM system

9

completely observable while also providing an observability score. Using the score, we

are able to select a subset of tracked features to form a strongly observable subsystem.

This subsystem provides the estimate of the whole SLAM state but with the best

conditioning for improved noise tolerance and accuracy.

1.2 Point cloud modeling

In this section I will briefly discuss the PCD modeling problem and my solution.

1.2.1 PCD modeling Problem

The point cloud data (PCD), encoding raw spatial information and possibly with color

information, has attracted more and more research effort in the recent years, as the

depth sensors became more popular and cheaper. In this thesis, the scope is restricted

to the PCDs with only spatial information but no color information. Moreover, the

work focuses on the applications of as-built modeling for civil infrastructures.

A PCD can be captured using direct depth sensors such as professional total

stations, time-of-flight cameras, or integrated RGB-D sensors (e.g. Microsoft Kinect).

Alternatively, a PCD can be generated indirectly from image sequences using VSLAM

or SfM systems. The most obvious advantages of using a VSLAM system versus a

direct sensor are that, VSLAM can generate PCD in a much larger scale than the

time-of-flight cameras or RGB-D sensors, and VSLAM uses a much cheaper sensor,

i.e. a monocular camera, than a professional total station.

The problem of PCD modeling in the scope of this thesis, is to convert the

raw PCDs from VSLAM with only spatial information, to augmented models with

computer-aided design (CAD) representations and the semantic labels.

1.2.2 Challenges in modeling PCD from VSLAM

Figures 10 and 11 show two PCDs collected using a profession total station and a

VSLAM system respectively. A PCD generated from VSLAM algorithms is typically

10

Figure 10: A PCD of a bridge, captured by a profession total station.

Figure 11: A PCD of a building, generated using VSLAM techniques.

11

of lower quality than a PCD captured with profession instruments. This lower quality

results in challenges of modeling the PCDs from VSLAM, which can be summarized

as:

1. A PCD from VSLAM has outlier points. This is due to the wrong data associ-

ation or mapping estimation.

2. The distribution of 3D points in a PCD from VSLAM is not uniform. This is

because VSLAM mapping relies on visual keypoints, which are not uniformly

distributed on a real object especially man-made objects.

3. A PCD from VSLAM is usually incomplete, due to occlusions, feature-less

facets, etc.

4. A PCD from VSLAM has a much larger reconstruction error (in centimeter

levels) than a PCD from professional instruments (in millimeter levels). In

nature, the pixel quantization effect of images limits the PCD accuracy.

5. The PCD has no scale information, as shown in Figure 11, because VSLAM is

ambiguous to the absolute scale.

In addition to the above, a PCD of an infrastructure is of large scale, typically

with millions of points. This makes the problem more challenging.

1.2.3 My strategists

My solution is based on a key observation that, most of the shapes in civil infrastruc-

tures are composed by surface primitives which can be represented by either planar

patches or the more general quadratic surfaces. By imposing the constraints of surface

primitives, together with the robust estimation framework, we can effectively handle

the issues of outliers, non-uniform distributions of points, and large reconstruction er-

rors. Moreover, models with only surface primitives can reach a much more compact

12

representation of shapes compared to a large collection of points. Notice that the scale

ambiguity is not handled in my method, but can be easily addressed by recognizing

an object in the scene with known absolute scale. On top of this geometry-driven

approach, I further enhance the model with semantic labels.

1.3 Outline of the thesis

The rest of this thesis is organized as follows.

Chapter 2, 3 and 4 are devoted to the problem of feature selection in VSLAM. In

particular,

• In Chapter 2, I start from the SE〈3〉 dynamic model and camera pinhole pro-

jection, to reach a piece-wise linear system modeling the VSLAM. Based on this

model, I further derive two necessary conditions to make the VSLAM system

completely observable with a detailed proof.

• In Chapter 3, I develop an algorithm called “Optimally Observable and Mini-

mal Cardinality (OOMC) SLAM” based on the first condition, which tells us

the minimum required number of features to make the instantaneous system

completely observable. The OOMC algorithm is casted in the EKF-VSLAM

framework to improve VSLAM localization accuracy and data-association.

• In Chapter 4, I further develop a more sophisticated algorithm dubbed “good

features (GF) SLAM” to exploit the second condition of complete observability,

which tells us as few as one tracked anchor across two time segments (three

frames) is required to form a completely observable system. Based on this, I

propose a score to rank each individual feature, along with an efficient algorithm

to compute this score. I further propose an approach to group features when not

enough good features are present, so as to reach a better conditioned system.

Theoretical support is provided to prove that the approach is near-optimal.

13

Finally, I integrate the GF method into the two prevalent VSLAM systems:

filtering based VSLAM and keyframe based BA VSLAM. Performance of the

GF method is evaluated on large scale benchmark data sets, demonstrating that

it outperform the former state-of-the-art.

Chapter 5 and Chapter 6 are for the problem of PCD modeling. In particular,

• In Chapter 5 I design an algorithm for modeling the PCD with planar patches.

The algorithm is based on a sparsity-inducing optimization to retrieve the linear

subspaces embedded in a raw point cloud. Then I apply the method on a

PCD which is generated by VSLAM for a real building. Evaluation metrics are

further proposed to quantitatively evaluate the performance. The experiments

show promising results with better performance compared to other methods.

• Chapter 6 further extends the PCD modeling from planar patches to quadratic

surface primitives. I use the general quadric model to accommodate widely-seen

shapes in civil infrastructure; then develop an algorithm to detect and robustly

fit these surface primitives to the PCD. In addition, I present the method for

learning simple semantic labels for the PCD with surface primitives.

Finally, the whole thesis is concluded in Chapter 7 with further discussions and

directions for future research.

14

CHAPTER II

VISUAL SLAM SYSTEM MODELING AND

COMPLETELY OBSERVABLE CONDITIONS

During the VSLAM process, the measured image feature points used for estimation

have varying degrees of informativeness and are subject to different levels of noise.

Some of the detected and tracked feature points are detrimental to estimation and

should be rejected as viable measurements. Therefore, finding the features that pro-

vide the best values for estimation is important when SLAM is to be used for practical

purposes.

As the foundation, this chapter focuses on the state-space modeling of SE〈3〉

VSLAM and deriving the conditions to make the system completely observable. Par-

ticularly, given the nonlinear and time-varying nature of SE〈3〉 VSLAM, I model it

as a piece-wise linear system. Such an approximation preserves the system character-

istics but with little loss of accuracy [46]. Based on this, I examine its observability

using the stripped observability matrix (SOM). Since the system is completely ob-

servable when its SOM is full-rank, by checking the full-rank conditions I obtain two

necessary conditions for the system to be completely observable.

2.1 Background

System theory, especially observability theory, have been seen in robotics literature,

but mostly restricted to 1D SLAM [45] and 2D (planar motion) SLAM [3, 64, 76, 106,

2] or for multi-sensor based SLAM [14, 53, 13], rather than monocular camera SLAM

on SE〈3〉. Moreover, observability theory has mainly been for full rank observability

condition analysis, much as in [106] which analyzes bearings-only SLAM.

15

For visual SLAM on SE〈3〉, [72] provides an analysis of observability, but it is for

stereo-vision SLAM with planar displacement instead of full 6-DOF. [90] discusses ob-

servability tests for camera ego-motion from perspective views at time instances. Few

works use observability in algorithm design rather than merely observable condition

analysis /observability tests. [54] presented a framework for improving the consis-

tency of EKF-based planar SLAM.The method focused more on the linearization

step. EKF linearization points are selected in a way that ensures the observable sub-

space is of appropriate dimension for the linearized system. The authors solved this

problem via two methods: observability constraints and First-Estimates Jacobian.

The work in this chapter was more inspired by [106] and the fundamental work

in [46]. [46] investigates into the properties of piece-wise linear systems (PWLS). It

proves that the Total Observability Matrix (TOM) can be used to characterize the

observability properties of a PWLS; more importantly it proves that under certain

conditions, Stripped Observability Matrix (SOM) can be used as a proxy of TOM,

which avoids the expensive computation of TOM but with little loss in system char-

acteristics. The work in [106], though mainly focuses on planar SLAM, formulate

the continuous-time 2D SLAM system as a PWLS and successfully applies the SOM

theories to examine the observable conditions of planar SLAM.

2.2 VSLAM System Modeling

2.2.1 Motion and Observations for SE〈3〉 SLAM

Here, the SLAM scenario with features and anchors is considered. The SLAM system

dynamics are modeled under the hybrid SE〈3〉 state common to robotics (position in

world frame W , with orientation in body frame R) [71], with a perspective camera

measurement model.

16

2.2.1.1 Dynamic and Measurement Models

For a system with discrete observations, a constant velocity motion model suffices [27].

Accordingly, given the SE〈3〉 position and orientation rW
Rk

, qW
Rk

(vector, quaternion),

and associated velocities vW
Rk

, ωR , at time t, the camera state

xW
Rk

=

(
rW

Rk
qW

Rk
vW

Rk
ωR

)T

(1)

is updated per:

xW
Rk+1

=



rW
Rk+1

qW
Rk+1

vW
Rk+1

ωR


=



rW
Rk

+ (vW
Rk

+ VW)∆t

qW
Rk
× exp

([
ωR + ΩR

]
∆t
)

vW
Rk

+ VW

ωR + ΩR


, (2)

where VW ,ΩR are zero-mean Gaussian noise. The measurement model for the i-th

feature (i)pW
k ∈ R3 is pinhole projection:

(i)pRk = [pRk
x , p

Rk
y , p

Rk
z]T = RRk

W

((
qW

Rk

)−1
)(

(i)pW
k − rW

Rk

)
, (3)

hRk
i = Distort


u
v


 = Distort


u0 − fku p

Rk
x

p
Rk
z

v0 − fkv fp
Rk
y

p
Rk
z


 , (4)

where R(q) is the rotation matrix of q; fku, fkv, u0, v0 are the camera intrinsic pa-

rameters; and Distort[·] is nonlinear image distortion [26]. Given the camera position

rW
Rk

and orientation described by the quaternion qW
Rk

, Equation (3) formulates the

relationship between the 3D coordinates (i)pW
k of a feature point in the world frame

and the transformed 3D coordinates (i)pRk in the camera/robot frame. Then, as de-

scribed by Equation (4), the 3D coordinates (i)pRk are projected to the 2D image place

through a 3D-to-2D projective transformation followed by a 2D-to-2D nonlinear dis-

tortion. The camera intrinsic parameters, including the (skewed) focal lengths (fku

and fkv) and the principal point offsets (u0 and v0) fully determine the relationship

between the 3D coordinates (i)pRk and the undistorted 2D image coordinates (u, v)T.

The final measurement hRk
i = (ud, vd)

T ∈ R2 is obtained by distorting (u, v)T.

17

2.2.1.2 Piece-wise Linear System (PWLS) modeled for SLAM

Assume the system has Nf features and Na anchors. An anchor is a 3D point in W

whose position is known, while a feature is 3D point whose position is not certain (at

least initially). Both are observed by the camera as per Equation (4).

For the k-th time segment Tk ≡ [tk, tk+1) (from time k to time k+1), the dynamics

of the whole system with input uk are

XW
k+1 ,

xW
Rk+1

PW
k+1

 = f


xW

Rk

PW
k

∣∣∣∣AW
k

+ uk, (5)

hRk+1 = hRk+1


xW

Rk

PW
k

∣∣∣∣AW
k

 , (6)

where PW
k , ((1)pW

k ,
(2)pW

k , ...,
(Nf)pW

k)T ∈ R3Nf is the map state vector by stacking

the feature vectors, AW
k , ((1)aW

k ,
(2)aW

k , ...,
(Na)aW

k)T ∈ R3Na is the anchor state

vector, and hRk+1 , (h
Rk+1

1 ,h
Rk+1

2 , ...,h
Rk+1

N)T ∈ I2(Nf+Na) is the measurement vector

at time k + 1 with measurements from both features and anchors.

With the smooth motion assumption, the system at each time segment Tk is

linearized. The linearized systems across time segments form the piece-wise linear

system (PWLS) in (7) below, which approximates the time-varying system in (5). XW
k+1 = FRkXW

k + uk

δhRk = HRkXW
k

for t ∈ Tk (7)

The PWLS preserves the characteristic behavior of the original time-varying system

with little loss of accuracy [46].

18

2.2.2 Computation of Process and Measurement Matrices in VSLAM
PWLS

2.2.2.1 Process Matrix in PWLS

For SSLAM(F ;GSE〈3〉cam) with Nf features and Na anchors, the PWLS matrices are

FRk =

 FxW
Rk

013×3Nf

03Nf×13 I3Nf×3Nf

, (8)

and

FxW
Rk

=


I3×3 03×4 ∆t · I3×3 03×3

04×3 Q4×4 04×3 Ω4×3

06×7 I6×6


13×13

, (9)

For simplicity, denote ω = ωR .

To compute Q, let ∆ω = ωR ×∆t, and

∆qω =

 cos(||∆ω||
2

)

sin(||∆ω||
2

) · ∆ω
||∆ω||

 , (qRω , q
x
ω, q

y
ω, q

z
ω)T ∈ R4×1 (10)

then,

Q =



qRω −qxω −qyω −qzω

qxω qRω qzω −qyω

qyω −qzω qRω qxω

qzω qyω −qxω qRω


, (11)

To compute Ω, let qW
Rk

= (qRk , q
x
k , q

y
k , q

z
k)

T; then

Ω =



qRk −qxk −q
y
k −qzk

qxk qRk −qzk qyk

qyk qzk qRk −qxk

qzk −qyk qxk qRk


· fq(ω,∆t). (12)

19

Given ∆t and ω (and thus ||ω|| is known), fq(ω,∆t) can be expressed with the fol-

lowing generator functions:

ζ1(x) = −∆t

2
· x

||ω||
· sin

(
||ω||∆t

2

)
(13)

ζ2(x) =
∆t

2
· x2

||ω||2
· cos

(
||ω||∆t

2

)
+

1

||ω||

[
1− x2

||ω||2
· sin

(
||ω||∆t

2

)]
(14)

ζ3(x, y) =
xy

||ω||2

[
∆t

2
cos

(
||ω||∆t

2

)
− 1

||ω||
sin

(
||ω||∆t

2

)]
(15)

where x, y are elements in ω, and thus ζ1(x), ζ2(x), ζ3(x, y) ∈ R. With these generator

functions, we have

fq(ω,∆t) =



ζ1(ω1) ζ1(ω2) ζ1(ω3)

ζ2(ω1) ζ3(ω1, ω2) ζ3(ω1, ω3)

ζ3(ω2, ω1) ζ2(ω2) ζ3(ω2, ω3)

ζ3(ω3, ω1) ζ3(ω3, ω2) ζ2(ω3)


(16)

2.2.2.2 Measurement Matrix in PWLS

The measurement Jacobian is

HRk = (17)

∂h
Rk
1

∂rW
R

∂h
Rk
1

∂qW
R

02×6
∂h

Rk
1

∂pW
k

· · · 02×3

...
...

...
...

. . .
...

∂h
Rk
Nf

∂rW
R

∂h
Rk
Nf

∂qW
R

02×6 02×3 · · ·
∂h

Rk
Nf

∂pW
k

∂h
Rk
(Nf+1)

∂rW
R

∂h
Rk
(Nf+1)

∂qW
R

02×6

...
...

... 02Na×3Nf

∂h
Rk
(Nf+Na)

∂rW
R

∂h
Rk
(Nf+Na)

∂qW
R

02×6


. (18)

The first Nf rows are w.r.t. the features while the last Na rows are w.r.t. the anchors.

When Nf = 0, the measurement Jacobian for one anchor is:

H =

(
∂hRk

∂rW
R

∂hRk

∂qW
R

02×6

)
,

(
∂h
∂r

∂h
∂q

02×6

)
(19)

20

. In details, the first block of H is

∂h

∂r
= − ∂h

∂pRk
·Rr

w = −
(
∂h

∂hu
· ∂hu
∂pRk

)
· R
[
qW

Rk

]
(20)

and

∂hu
∂pRk

=

−
f ·ku
p

Rk
z

0 −f ·ku·p
Rk
x(

p
Rk
z

)2

0 f ·kv
p

Rk
z

−f ·kv ·p
Rk
y(

p
Rk
z

)2

 (21)

where [pRk
x , p

Rk
y , p

Rk
z]T = pRk =

(
R
[
qW

Rk

])−1 (
pW
k − rW

Rk

)
, and R[q] is the conversion

function converting the quaternion to rotation matrix as define in 22.

R[q] =


(
qR
)2

+ (qx)
2 − (qy)

2 − (qz)
2

2(qxqy − qRqz) 2(qzqx + qRqy)

2(qxqy + qRqz)
(
qR
)2 − (qx)

2
+ (qy)

2 − (qz)
2

2(qyqz − qRqx)

2(qzqx − qRqy) 2(qyqz + qRqx)
(
qR
)2 − (qx)

2 − (qy)
2

+ (qz)
2


(22)

∂h
∂hu

is computed according to the wide-angle camera model [26]:

∂h

∂hu
= (Jundist)

−1 (23)

where Jundist is the Jacobian matrix of the distortion function.

Given the pixel measurement of the anchor on the current frame as [zx, zy], and

the camera intrinsic parameter set [f, Cx, Cy, dx, dy, k1, k2], we have

xd = (zx − Cx)dx, (24)

yd = (zy − Cy)dy, (25)

rd = d2
x(zx − Cx)2 + dy2(zy − Cy)2; (26)

and

∂hux
∂x

= (1 + k1rd + k2r
2
d) + (zx − Cx) · (k1 + 2k2rd) · (2d2

xzx − Cx), (27)

∂hux
∂y

= (zx − Cx) · (k1 + 2k2rd) · 2d2
y(zy − Cy), (28)

∂huy
∂x

= (zy − Cy) · (k1 + 2k2rd) · 2d2
x(zx − Cx), (29)

∂huy
∂y

= (1 + k1rd + k2r
2
d) + (zy − Cy) · (k1 + 2k2rd) · 2d2

y(zy − Cy); (30)

21

then,

∂h

∂hu
= (Jundist)

−1 (31)

=

∂hux
∂x

∂hux
∂y

∂huy
∂x

∂huy
∂y


−1

(32)

The second block of H is

∂h

∂q
=

∂h

∂pRk
· ∂pRk

∂q
=

∂h

∂hu
· ∂hu
∂pRk

· ∂pRk

∂q
(33)

where ∂h
∂hu

and ∂hu
∂pRk

have been discussed.

To compute ∂pRk

∂q
, first denote the conjugate of q as:

q̄ , conj(q) =

(
qR,−qx,−qy,−qz

)T

(34)

and

∂pRk

∂q̄R
=


2q̄R −2q̄z 2q̄y

2q̄z 2q̄R −2q̄x

−2q̄y 2q̄x 2q̄R

 (35)

∂pRk

∂q̄x
=


2q̄x 2q̄y 2q̄z

2q̄y −2q̄x −2q̄R

2q̄z 2q̄R −2q̄x

 (36)

∂pRk

∂q̄y
=


−2q̄y 2q̄x 2q̄R

2q̄x 2q̄y 2q̄z

−2q̄R 2q̄z −2q̄y

 (37)

∂pRk

∂q̄z
=


−2q̄z −2q̄R 2q̄x

2q̄R −2q̄z 2q̄y

2q̄x 2q̄y 2q̄z

. (38)

Let p̃ = pW
k − rW

Rk
, then ∂h

∂q
is computed as in Eq 39.

22

∂h

∂q
=

(
∂pRk

∂q̄R
· p̃ | ∂pRk

∂q̄x
· p̃ | ∂pRk

∂q̄y
· p̃ | ∂pRk

∂q̄z
· p̃
)

3×4

·



1

−1

−1

−1


(39)

2.3 VSLAM System Observability

The observability and complete observability of a system are defined as below.

Definition 2.3.1. A system is observable at time t0 if the state vector at time t0,

x(t0), can be determined from the output function y[t0,t1] (or the output sequence in

discrete time case), where t1, t0 < t1 is some finite time. If this is true for all t0 and

x(t0), the system is said to be completely observable.

For a discrete PWLS, the observability condition is characterized by the Total

Observability Matrix (TOM).

Definition 2.3.2. [46] The Total Observability Matrix (TOM) of a discrete PWLS

is defined as

QTOM(j) =



Q1

Q2F
n−1
1

...

QjF n−1
j−1 F

n−1
j−2 · · ·F n−1

1


(40)

where Fj is the process matrix and Hj is the measurement matrix for time segment

j. Qj is the linear observability matrix, QT
j =

[
HT
j |(HjFj)

T| · · · |(HjF
n−1
j)T

]
.

The sufficient and necessary condition for the system to be completely observable

is given by the following Theorem:

Theorem 2.3.1. A discrete PWLS is completely observable if and only if TOM is

full-rank.

23

Computation of the TOM is expensive. However, for the SLAM system described

in Equation 7, N (Qj) ⊂ N (Fj). In this case, the Stripped Observability Matrix

(SOM) defined below can be used to analyze the observability of a VSLAM PWLS.

Definition 2.3.3. The Stripped Observability Matrix (SOM) of a discrete PWLS is

defined as

QSOM(r) =



Q1

Q2

...

Qr


(41)

where QT
j =

[
HT
j |(HjFj)

T| · · · |(HjF
n−1
j)T

]
; Fj is the process matrix and Hj is the

measurement matrix for time segment j.

The following theorem justifies that SOM provides a proxy to examine the full

rank condition of the system.

Theorem 2.3.2. [46] For PWLS, when N (Qj) ⊂ N (Fj), the SOM has the same

nullspace as TOM, i.e.

N (QSOM(j)) = N (QTOM(j)) (42)

For the SE〈3〉 VSLAM, Theorem 2.3.2 applies.

Based on the previous two theorems, the following theorem for the necessary

conditions of SE〈3〉 VSLAM can be proved.

Theorem 2.3.3. When Nf = 0, within r time segments, the necessary conditions for

system (7) to be completely observable are:

1. r = 1 and Na ≥ 3, or

2. r ≥ 2 and Na ≥ 1.

24

Proof. Consider the linear observability matrix in one time segment:

Q =



H

HF

...

HF12


∈ R26×13. (43)

Note that in the actual computation, each block of Q can be computed efficiently

with

HFn =

(
H<1:3> H<4:7>Qn H<1:3>n∆t H<4:7>

∑n−1
i=0 QiΩ

)
(44)

where H<i:j> is a sub-block of H composed by columns from i to j.

By examining the rank condition of the a single linear observability matrix, we

know that

rank(Q) = 8 (45)

In particular, the first eight rows of Q are of rank eight.

Based on this, we examine the rank conditions of SOM in two cases: (1) single

time segment, multiple anchors, and (2) single anchor, multiple time segments.

Case # 1: single time segment, multiple anchors.

In this case, the F matrices of all anchors are the same. Assume the measure-

ment jacobians subblocks that corresponding to anchors A1, A2, A3, · · · , ANa are

HA1,HA2,HA3, · · · ,HANa ∈ R2×13, and assume that the measurements and estimated

positions of all anchors are different, the overall measurement jacobian is then

H =



HA1

HA2

...

HANa


∈ R2Na×13 (46)

25

The rank of SOM in this single time segment with all Na anchors is

rank (QSOM(1|Na)) = rank



H

HF

...

HF12


= rank



Q(F,HA1)

Q(F,HA2)

...

Q(F,HANa)


(47)

where Q(F,H) denotes the linear observability matrix generated by Jacobians F and

H.

By examining the rank conditions of Eq. 47, we have:

When Na = 1

rank

(
Q(F,HA1)

)
= 8 (48)

When Na = 2

rank

Q(F,HA1)

Q(F,HA2)

 = 11 (49)

When Na = 3

rank


Q(F,HA1)

Q(F,HA2)

Q(F,HA3)

 = 13 (Full-rank) (50)

When Na > 3, the SOM remains full-rank.

Thus, within one single time segment (r = 1), the necessary condition for the

SLAM system to be completely observable is Na ≥ 3.

Case # 2: single anchor, multiple time segments.

In this case, assume the anchor is tracked across r time segments, and the Jacobian

matrices across time are F1,F2, · · · ,Fr and H1,H2, · · · ,Hr. To derive the necessary

condition, we also assume that all F and H matrices are different, i.e. they are

26

generated by different camera states and features measurements and estimates. The

SOM is then

QSOM(r|1) =



Q(F1,H1)

Q(F2,H2)

...

Q(Fr,Hr)


∈ R26r×13 (51)

When r = 1,

rank

(
Q(F1,H1)

)
= 8 (52)

When r = 2,

rank

Q(F1,H1)

Q(F2,H2)

 = 13 (Full-rank) (53)

When r > 2, the SOM remains full-rank.

Thus, for a single anchor, the necessary condition for the SLAM system to be

completely observable is r ≥ 2, i.e., the anchor is tracked across no less than two time

segments.

Remark 2.3.1. In Theorem 2.3.3, the first condition is consistent with the well-

known result for recovery of rigid body motion: for each pair of images, if there

are more than or equal to three known scene-to-image (3D-to-2D) correspondences,

localization and mapping can be solved [6, 118, 18, 114]. Condition #1 is illustrated

in Figure 12.

Remark 2.3.2. According to the second condition, if a feature is tracked across three

frames, the system composed of the camera motion and the feature may become ob-

servable, and the corresponding SOM full-rank [115]. Degenerate conditions such

as the point lying on the translation vector of a camera undergoing pure translation

would fail to be observable (as would pure rotation). Condition #2 is illustrated in

Figure 13.

27

Figure 12: VSLAM system completely observable condition #1.

28

Figure 13: VSLAM system completely observable condition #2.

2.4 Conclusion

In this chapter, the observability conditions of the SE〈3〉 VSLAM systems are inves-

tigated. I start from the process model based on constant velocity assumption and

the measurement model based on pinhole projection, and reach a piece-wise linear

system model for VSLAM. In particular, the details for computing the PWLS are pre-

sented. Then, the observability of the VSLAM system is analyzed with the stripped

observability matrix. To investigate the conditions for making the VSLAM system

completely observable, I examine the full-rank conditions of the stripped observability

matrix. Finally, two necessary conditions are obtained. The conditions state that the

VSLAM system can be completely observable if (1) no less than three anchors are

tracked in one time segment (i.e. between two frames), or (2) as few as one anchor is

tracked across two time segments (i.e. across three frames).

Based on the results in this chapter, an algorithm dubbed “Optimally Observable

29

and Minimal Cardinality (OOMC) SLAM” [116] is developed in Chapter 3 by ex-

ploiting the first condition, and a feature selection algorithm dubbed “good features

(GF) SLAM” [115] is developed in Chapter 4 by exploiting the second condition.

30

CHAPTER III

OPTIMALLY OBSERVABLE AND MINIMAL

CARDINALITY (OOMC) VSLAM

The work in this chapter utilizes system observability condition #1 derived in Chap-

ter 2 to guide monocular SLAM [116]. Instead of providing all measured features then

performing data-driven outlier rejection (such as with RANSAC), I propose to iden-

tify only the minimal subset of features which form an optimally observable SLAM

subsystem for localization in each time instance. A means to test the observability

conditioning of candidate feature point groupings is proposed. Based on the condi-

tioning, an efficient algorithm for picking the optimally observable feature subset is

derived by incorporating the image geometric measures. The proposed monocular

SLAM algorithm, called Optimally Observable and Minimal Cardinality (OOMC)

SLAM is formulated as an EKF process. OOMC SLAM is first validated using a

6-DOF localization experiment; the results demonstrate accuracy comparable to the

state-of-art SLAM algorithm with significantly improved computational efficiency. A

longer sequence on a 620-meter trajectory is also tested. The algorithm achieves

0.9178% relative error against the GPS ground truth.

3.1 Introduction

Conventional monocular SLAM like MonoSLAM [27] deals with feature rejection by

using data-driven and randomized approaches like RANSAC [39, 19] to increase the

accuracy and robustness of SLAM estimation. Randomized, data-driven, model fit-

ness approaches make little use of prior information and result in high computation

31

Figure 14: At each time segment, the OOMC algorithm identifies the feature triplet
(defines the triangles) which forms the subsystem of optimal observability and
minimal cardinality with the camera state. Localization and mapping is then
performed with this subsystem.

cost. Thus in recent years, research efforts have sought to incorporate prior infor-

mation into SLAM to facilitate the feature selection process. These methods include

prior probability of camera state [22] or information gain [25]. However, they only

seek to mitigate the cost of randomized estimation and still rely on it to increase

robustness.

The work described herein is motivated by the same goal: the exploitation of

known computable measures to select the most informative and reliable features for

localization and mapping. The solution differs from previous approaches in that it

selects the most informative features in a deterministic fashion via two properties:

system observability, and reliability of feature detection and matching.

Using the score, it is able to select a minimal subset of tracked features to form an

optimally observable subsystem, c.f. Figure 14. This subsystem provides the estimate

of the whole SLAM state but with the best conditioning for improved noise tolerance

and accuracy.

In particular, this chapter presents

1. a framework for using observability to guide SLAM, which can increase both

the accuracy (better inlier ratio) and efficiency. This is done by identifying

32

the subsystem with optimal observability and minimal cardinality for

localization and mapping;

2. a scoring strategy based on the first condition of VSLAM system complete

observability;

3. the presentation of OOMC SLAM with efficient selection of observable triplets

cast using an EKF, with evaluation results demonstrating the OOMC EKF

VSLAM improves over previous methods

3.2 Background

Since the related work of using system observability in SLAM has been reviewed in

Chapter 2, here I discuss other work of searching feature consensus in SE〈3〉 VSLAM.

Other work focuses on fusing prior information to improve the feature consensus

search. Active Matching [25] improves the search by guiding the search action at

each step according to Shannon information gain. The Shannon information gain

is derived from a Bayesian framework modeling the dynamics. However, the Active

Matching approach is expensive. Later Scalable Active Matching [50] was proposed

to increase the efficiency and scalability by relaxing the Active Matching method.

Nevertheless, these two methods focus on the feature matching step of the SLAM

system, instead of the overall estimation process.

The most similar work is the 1-Point RANSAC based EKF SLAM [22]. Estima-

tion (i.e., the EKF update step) incorporates the prior motion model information.

By doing so, the claim is that the minimal sample size for RANSAC is reduced to

one, gaining a large computational savings with little loss of discriminative power.

Though theoretical justifications of the algorithm were not provided, the authors

demonstrated the high localization accuracy of 1-Point RANSAC by comparing to

bundle adjustment results in a 6-DOF test. Due to its solid performance, 1-Point

RANSAC is the baseline method used for comparison.

33

3.3 Optimally Observable and Minimal Cardinality (OOMC)
SLAM

3.3.1 OOMC Formulation

Consider a set of point features F matched across two frames. The key idea of

the algorithm stems from the fact that different subsets of F provide different de-

grees of informativeness. Instead of using all features in a randomized method (e.g.

RANSAC), using only the most reliable and informative subset of F should provide

a better conditioned subsystem. The degree of informativeness is reflected in the ob-

servability conditioning of the SLAM system. Our algorithm aims to find the subset

of features F ′ maximizing SLAM system (SSLAM) observability in order to increase

the robustness to noise and thus increase the accuracy of estimation. Concurrently,

for improved efficiency, the cardinality of this subset is minimized to the minimal car-

dinality allowed for the system to be completely observable (ℵCompletelyObservable).

Our objective function is therefore:

F ′ = arg max
F ′⊂F

ObsScore
(
SSLAM(F ′;GSE〈3〉cam)

)
s.t. |F ′| = min (ℵCompletelyObservable)

(54)

Recall that the VSLAM system SSLAM(F ;GSE〈3〉cam) is modeled as a piece-wise linear

system as follows  XW
k+1 = FRkXW

k + uk

δhRk = HRkXW
k

for t ∈ Tk. (55)

According to condition #1 in Theorem 2.3.3, which states that a necessary condi-

tion to make SLAMsys completely observable is that no less than three anchors are

tracked in one time segment (i.e. between two frames). Therefore, in Equation 54,

|F ′| = min (ℵCompletelyObservable) = 3. (56)

34

3.3.2 Observability Score

In a typical SLAM scenario, the number of scene-to-image correspondences is usually

more than three. Thus, the first condition is easy to guarantee. When the completely

observable conditions hold, the degree of observability can be further evaluated: the

more observable the system is, the more accurate the motion estimation is. Within

one time segment (when Na > 3), a total of Na choose three subsystems can be

generated with three anchors in each subsystem. Ideally, each of these subsystems

gives the exact camera localization result. However, in presence of noise, the system

with the most favorable observability matrix conditioning gives the most accurate

estimate of camera motion among all the subsystems. In order to find the triplet that

forms the most observable subsystem, the degree of observability is measured by the

smallest singular value of SOM:

ObsScore (SSLAM) = ψ = σmin(QSOM(r)) (57)

Here QSOM(r) is from one time segment (r = 1) and three anchors.

The score ψ reflects how sensitive the state estimate is w.r.t the process and

measurement noise. The larger ψ is, the less sensitive the estimate is to the noise,

and thus the more accurate the estimated state is. Since both FRk and HRk are

sparse, and QSOM(r) is of low dimension for three anchors, the computation of ψ

is efficient. Thus there is little overhead in evaluating the observability score for

candidate triplets.

3.3.3 Triplet Selection Strategy

The complete observability conditions and score presented in Theorem 2.3.3 may

guide the visual SLAM estimation process. In practice, anchors may not be available.

However, at each time instance the features with scene-to-image correspondences

can play the role of anchors (a convenience used in conventional visual SLAM/SfM

35

Algorithm 1: Top NT strongest observable triplets {Ts} selection algorithm

Data: {Z} – Initial matched feature set (mismatches may exist);
{S} – Matching scores for initial matches {Z};
NT – Number of required triplets.

Result: {Ts}NT
s=1 – a set of triplets that form the strongest observable

subsystems.

1 [Stage 1. Generate triplet pool {T′s′}]
2 {SP} ← Compute the pairwise sums of matching scores {S} for each pair in
{Z} ; // O(N2

Z)
3 {P}NP

← Find the NP pairs of features from {Z} with the largest SP ;
// O(N2

Z logNP)
4 {A} ← For each pair in {P}, compute triplet area A with a third feature in
{Z} ; // O(NZNP)

5 {T′s′} ← Get triplets with top NT′ area from {A} ; // O(NZNP logNT′)

6 [Stage 2. Select strongest observable triplets {Ts}NT
]

7 {ψs′} ← Compute the observability scores for each triplet candidate in {T′s′} ;
// O(NT′)

8 {Ts} ← Select NT with largest ψ ; // O(NT′ logNT)

systems). At each time, a subset of scene-to-image correspondences are used to solve

camera localization. This subset is usually selected in a randomized and data-driven

process, such as using RANSAC paradigms [27, 22]. Instead the algorithm presented

here promotes only three features (denoted as a triplet Ts) to be anchors, such that

the subsystem with Ts forms the optimally observable subsystem. This deterministic

strategy of constant computational cost eliminates the random selection step, thereby

gaining computational savings while having a systematic guarantee of the estimation

accuracy.

In addition to the observability score of Ts, the SLAM estimate is also affected by

the feature matching step (it must be correct). Thus, the proposed triplet selection

strategy also considers the feature matching score S of the matching algorithm used.

In our system, the initial matched feature set {Z} is obtained via an individually

compatible matching similar to [27], which matches wrapped image patches using

normalized cross-correlation as the matching score S. Moreover, to avoid the selected

36

features being too close on the image, triplets with larger area is favored, where the

triplet area for the triplet composed of features i1, i2, i3 is

A<j1,j2,j3> =
1

2

(
(hRk

i1
− hRk

i2
)× (hRk

i1
− hRk

i3
)
)

(58)

To incorporate the above two scoring system into OOMC triplet selection, a two-

stage triplet selection algorithm is proposed. In the first stage of the algorithm,

matching score S is used to find pairs of features which are best matched; then the

triplet candidates {T′s′} are generated by finding the third feature that forms the

largest A with each previously selected pair. Because the S comes directly from the

feature matching step and computation of A is trivial, this stage is computationally

efficient. In the second stage, the observability metric ψ of each triplet candidate in

{T′s′} is computed. TheNT triplets that forms theNT strongest observable subsystems

are selected and output. The two-pass strategy avoids exhaustive search for triplets

with high Observability Score by first finding the most likely candidates.

The triplet selection algorithm is summarized in Algorithm 1. The final compu-

tation complexity order is dominated by line 3, which has the order O(N2
Z logNP).

This complexity is due to the Top-K selection algorithm with max-heaps and each

atomic operation is trivial. Thus the overall algorithm is efficient.

3.3.4 OOMC SLAM in EKF Framework

With the completely observable conditions presented in Theorem 2.3.3, visual SLAM

process can be guided by the observable status of the system. In practice, anchors

may not be available. However, in each time instance the features with scene-to-image

correspondences can be seen as the anchors. This strategy is used in conventional

visual SLAM/SfM systems in a way that: at each time, a subset of scene-to-image

correspondences are used to solve camera localization. This subset is usually selected

in a randomized and data-driven process, such as using RANSAC paradigms [27] [22].

Different from the conventional approaches, the algorithm presented here augments

37

only three features (denoted as a triplet Ts) as anchors, such that the subsystem with

Ts forms the strongest observable subsystem. This deterministic strategy gets rid of

the randomized manner used in conventional approaches. Thus, the algorithm is able

to gain a great computational saving over the conventional approaches while have a

systematic guarantee of the estimation accuracy.

With Algorithm 1, once the strongest observable triplets are selected, the system

state vector can be estimated with the triplets. For state estimation, an Extended

Kalman Filter (EKF) estimator is used to update the system state. Note that al-

though the EKF is used here, other pose estimators can also be used as long as

they can perform pose estimation with three scene-to-image correspondences. Exam-

ples include the nonlinear optimizer for poses used in PTAM [60] and the coupled

estimator used in CLAM [6].

The EKF estimator is formulated as prediction:

X̂W
k|k−1 = f(X̂W

k−1|k−1) + uk, (59)

Pk|k−1 = FRkPk−1|k−1FRk
T

+ GkQkG
T

k, (60)

ĥRk

k = hRk(X̂W
k−1|k−1), (61)

Sk = HRkPk|k−1HRk
T

+ Rk; (62)

followed by update:

Kk = Pk|k−1HRk
T
(

HRkPk|k−1HRk
T

+ Rk

)−1

, (63)

X̂W
k|k = X̂W

k|k−1 + Kk

(
(s)hRk − (s)hRk(X̂W

k|k−1)
)
, (64)

Pk|k =
(
I−KkH

Rk
)
Pk|k−1; (65)

where P is the covariance matrix of state vector in the multidimensional Gaussian

distribution, Q is the covariance matrix of process noise in a zero-mean Gaussian

distribution, G is the Jacobian of process noise w.r.t. the state vector; R is the

covariance matrix of measurement noise, S is the covariances of the corresponding

38

image projections; K is the estimated Kalman gain.

In each time segment, Equation (64) is used to update both the camera pose

and the map. (s)hRk

k represents the subset s of measurements used to update the

state vector. The key difference with respect to the standard EKF-SLAM is that

the state vector is first partially updated with the strongest observable triplets Ts

from Algorithm 1. To increase the robustness, the estimation is performed with a set

of strongly observable triplets {Ts}NT
s=1 in a two-phase process, similar to two-phase

model estimation in a RANSAC iteration. However, this process is performed in a

deterministic manner instead of randomized manner as in RANSAC paradigm: In the

first phase, for each Ts ∈ {Ts}, only the state vector is updated using Equation (64)

with s = Ts; then a consensus set is retrieved from the updated model. In the second

phase, after all the triplets have been tested, both the state vector and covariances

are fully updated with the most supported consensus set. This fully deterministic

algorithm overcomes the problem of expensive computation and unstable frame-rates

due to the randomized process, resulting in a more efficient and stable algorithm. The

proposed OOMC-SLAM using the EKF framework is summarized in Algorithm 2.

3.4 Experiments

OOMC-SLAM using EKF is validated through two sets of experiments: one for 6-

DOF localization in a smaller-scaled indoor environment, and the other one for a

larger-scaled outdoor environment. Both experiments use publicly available datasets

for benchmarking.

3.4.1 6-DOF Experiment with Comparison to 1-Point RANSAC

This experiment has two goals. Firstly, it validates the performance of OOMC in 6-

DOF SLAM. Secondly, a thorough comparison under a controlled experiment is made

between OOMC and the state-of-art algorithm 1-Point RANSAC (1pRANSAC) [22].

1pRANSAC is compared to because of its balance of efficiency and high accuracy

39

Algorithm 2: OOMC-SLAM under EKF framework.

Data: {Ik} – Image source;
{uk} – Excitation source;
Πcam – Calibrated camera intrinsic matrix.

Result: {X̂W
k|k} – Sequence of estimated state vectors with 6-DOF camera

poses and features in the scene.
1 while {I} 6= ∅ do

2 (X̂W
k|k−1,Pk|k−1, ĥ

Rk

k ,Sk)← EKF prediction ; // Equations (59)∼(62)
3 {Z} ← Match features on Ik;

4 {Ts}NT
s=1 ← Select strongest observable triplets ; // Algorithm 1

5 Kk ← Compute Kalman gain;

6
(T∗)hRk

cs ← ∅;
7 for each Ts in {Ts} do

8
(Ts)X̂W

k|k ← Partially update EKF state with Ts ; // Equation (64)

9
(Ts)hRk

cs ← Retrieve consensus set of (Ts)X̂W
k|k ;

10 if
∣∣(Ts)hRk

cs

∣∣ > ∣∣(T∗)hRk
cs

∣∣ then
11

(T∗)hRk
cs ← (Ts)hRk

cs

12 ; // Most supported concensus set

13

(
X̂W
k|k,Pk|k

)
← Fully update EKF with (T∗)hRk

cs ; // Equation (64),(65)

40

compared to other methods. Moreover, both 1pRANSAC and OOMC SLAM are

formulated with EKF framework.

To control the comparison experiment, the 1pRANSAC dataset (https://openslam.

org/ekfmonoslam.html) is used. Furthermore, for comparison of execution time,

I implemented the codes for this experiment with the same tool (MATLAB) as

1pRANSAC source codes. Both methods share the same camera calibration, fea-

ture detector, and initial feature matcher. Therefore, the differences in performance

between these two methods are mainly due to the difference of algorithms themselves.

Frames numbers 101 to 2100 of the dataset were used. The triplet selection

parameters were NP = 50, NT′ = 400, NT = 30. Example frames from OOMC are

shown in Figure 15 with the triplet plotted. One observation is that the triplets alway

span a large area in 3D space (but may not in image space). Empirically, the triplet

selection was temporally consistent over small time, i.e. the features augmented as a

triplet in one frame were more likely to be augmented in consecutive frames.

The localization results of OOMC and 1pRANSAC are shown in Figure 16 and the

absolute differences are in Figure 17. The mean and standard deviation of position

differences are [0.0013±0.0017, 0.0003±0.0017, 0.0003±0.0012], while the orientation

differences are [0.0011± 0.0018, 0.0002± 0.0016, 0.0002± 0.0014] (rad).

The processing time of both methods are compared in Figure 18, with the map

size plotted. The result shows that OOMC has a better stability in speed than

1pRANSAC. Further more, the speed of OOMC is significantly faster than 1pRANSAC.

For 1pRANSAC, the average processing time is 0.4345 sec. Compared to this, the av-

erage processing time of OOMC is 0.0596 sec. The speedup of OOMC over 1pRANSAC

is 7.4776± 1.6190 times.

Finally, the inlier ratios (denoted as Γ) of max-support consensus set are compared

in Figure 19. This metric reflects the degrees of informativeness of the features

used for EKF partial updates. The higher Γ is, the more informative the selected

41

Figure 15: The triplets (depicted as blue triangles) selected for EKF update in
example frames from the 1pRANSAC dataset. The measurements are plotted in
eclipses of 1-σ regions with various markers: thick red – low-innovation inliers; thin
red – high-innovation inliers; magenta: rejected spurious matches; blue – no match
found by cross-correlation.

42

0 500 1000 1500 2000
−1

−0.5

0

0.5

#Frame

Position x
W

1−Point RANSAC
OOMC

0 500 1000 1500 2000
−4

−2

0

2

4

#Frame

Yaw ψW (rad)

1−Point RANSAC
OOMC

0 500 1000 1500 2000
−0.4

−0.2

0

0.2

0.4

#Frame

Position y
W

1−Point RANSAC
OOMC

0 500 1000 1500 2000
−1

−0.5

0

0.5

1

#Frame

Pitch θ
W (rad)

1−Point RANSAC
OOMC

0 500 1000 1500 2000
−0.5

0

0.5

1

#Frame

Position z
W

1−Point RANSAC
OOMC

0 500 1000 1500 2000
−1

−0.5

0

0.5

1

#Frame

Roll φW (rad)

1−Point RANSAC
OOMC

Figure 16: Camera localization results of 1pRANSAC SLAM and OOMC SLAM

43

500 1000 1500 2000

−0.02

0

0.02

#Frame

Position diff. rWOOMC − r
W

1pRANSAC

∆x
W

∆y
W

∆z
W

500 1000 1500 2000
−0.02

−0.01

0

0.01

0.02

#Frame

Orientation diff.ΘW

OOMC −ΘW

1pRANSAC

∆ψW (rad)

∆θW (rad)

∆φW (rad)

Figure 17: Differences in camera localization results of 1pRANSAC SLAM and
OOMC SLAM

0 500 1000 1500 2000
0

0.5

1

#Frame

T
im

e
(s
ec
)

Time & Map Size

0 500 1000 1500 2000
0

50

100

#
F
ea
tu
re
s

1−Point RANSAC
OOMC
Map size

0 500 1000 1500 2000
0

10

20

#Frame

T
1
p
R
A
N
S
A
C
/T

O
O
M
C

Speedup (T1pRANSAC/TOOMC)

0 500 1000 1500 2000
0

50

100

#
F
ea
tu
re
s

Speedup
Map size

Figure 18: Left: execution time of 1pRANSAC and OOMC, and the map size. Right:
speedup of OOMC over 1-Point RANSAC.

44

0 500 1000 1500 2000
0

0.5

1

#Frame

In
li
er

R
at
io

Γ

Inlier Ratios Γ Comparison (Γ = #inliner
#inlier+#outlier)

0 500 1000 1500 2000
0

0.5

1

1.5

2

Γ
O
O
M
C
/
Γ
1
p
R
A
N
S
A
C

Γ1pRANSAC
ΓOOMC
ΓOOMC/Γ1pRANSAC

line at 1

Figure 19: Inlier ratios of 1pRANSAC algorithm and OOMC algorithm, and their
comparison. The inlier ratios are from the maximum support consensus sets for each
frame.

features are. For OOMC, these features are the selected triplet; for 1pRANSAC,

they are the features of the best supported hypothesis. In the result, ΓOOMC is

higher than Γ1pRANSAC for 1469 out of 2000 frames. The statistics of their ratio is

(ΓOOMC/Γ1pRANSAC) = 1.0884± 0.1436.

3.4.2 Long distance experiment against GPS

Validation of the algorithm on a larger dataset use the public benchmark RAWSEEDS [17].

A sequence with a loop-closure scenario is selected for validation. The illustrative tra-

jectory is plotted with a map image in Figure 20. The trajectory is about 620 meters

long and captured outdoor under natural lighting. It consists of 21000 images with

resolution 320×240, captured by a Unibrain camera with a wide-angle lens at 30 fps.

Ground truth of the trajectory is collected with a Real Time Kinematics GPS.

For every frame, 50 triplets are generated for EKF partial update. Some example

frames with the final selected triplet are shown in Figure 21. The results from OOMC

SLAM are plotted against GPS ground truth in Figure 22. The estimated trajectory

45

Figure 20: Illustration of the 620-meter trajectory (in red).

Figure 21: Example frames from 620m sequence. The detected features are plotted
in blue circles and the selected triplets are plotted in red triangles.

46

Figure 22: Estimated trajectory from the OOMC SLAM compared to trajectory
from a RTK Differential GPS.

47

is benchmarked against GPS as in [22].

The estimation errors are computed by the l2-distance between the estimated po-

sition rW
OOMC from OOMC and the corresponding GPS reading. This error is only

computed at frames with available GPS records. In Figure 22, points on GPS tra-

jectory marked in thick marker are the points with GPS records. Figure 23 (top)

shows the histogram of the instantaneous errors. Some error statistics are listed in

Table 1. The OOMC SLAM achieves a high accuracy with 0.92% relative error (rel-

ative to trajectory length). This accuracy is comparable to the benchmarking results

reported [22].

The cumulative error versus trajectory distance is demonstrated in Figure 23

(bottom). As the trajectory gets longer, the mean of cumulative error increases with

the 1-σ range expanding, but the growth of the error is of sub-linear order.

Mean
error (m)

Error
Std (m)

Maximum
error (m)

Relative mean
error over
trajectory (%)

5.6904 3.3449 14.6547 0.9178

Table 1: Errors of OOMC SLAM against GPS data on 620 meter sequence.

3.5 Conclusion and Future Work

Based on the system complete observable condition #1 in Theorem 2.3.3, this chapter

investigates into the idea of selecting and using the optimally observable but mini-

mal subsystem for camera localization and mapping. Using the minimal cardinality

needed for observability and the observability score, the Optimally Observable and

Minimal Cardinality (OOMC) SLAM procedure is presented. In each time segment,

three features that form the optimally observable subsystem are augmented as the

anchor triplet, then used for localization and mapping. For more robust and efficient

triplet selection, a two-phase triplet selection algorithm is developed by incorporating

48

Figure 23: Errors of OOMC SLAM compared to the GPS ground truth. Top:
histogram of instantaneous error. Bottom: cumulative errors with 1-σ range along
the trajectory.

49

image geometric measures. The final OOMC SLAM is cast as an EKF. A 6-DOF ex-

periment with controlled comparison to 1-Point RANSAC method is discussed. The

OOMC demonstrates the same level of localization accuracy but with a significant

runtime speedup. Finally, OOMC SLAM is applied to a 620-meter long outdoor im-

age sequence with RTK Differential GPS ground truth. Using only a small set of

triplets, the proposed algorithm achieves comparable accuracy to the state-of-the-art

algorithms benchmarked with the dataset.

50

CHAPTER IV

GOOD FEATURES TO TRACK FOR VSLAM

ALGORITHM

The work in this chapter utilizes system observability condition #2 derived in Chap-

ter 2 to develop a feature selection algorithm for SE〈3〉 VSLAM. The condition #2

states that if an individual anchor is tracked across two time segments then the VS-

LAM system can be completely observable [115]. Selection of features which give the

best conditioned SLAM system is expected to increase estimation accuracy with the

same feature cardinality, or increase the efficiency by with more informative feature

subset. This chapter describes a method for selecting a subset of features that are

of high utility for localization in the SLAM/SfM estimation process. It is derived by

examining the observability of SLAM and, being complimentary to the estimation

process, it easily integrates into existing SLAM systems. The measure of estimation

utility is formulated with temporal and instantaneous observability indices. Efficient

computation strategies for the observability indices are described based on incremen-

tal singular value decomposition (SVD) and greedy selection for the temporal and

instantaneous observability indices, respectively. The greedy selection is near-optimal

since the observability index is (approximately) submodular.

I further demonstrate how to integrate the proposed algorithm into two prevalent

types of VSLAM systems, along with extensive evaluations on both data association

and localization accuracy. Experiments include: (1) controlled synthetic experiments

using filtering-based VSLAM with ground truth, demonstrating the improved lo-

calization accuracy; (2) filtering-based VSLAM experiments on real-world datasets,

51

Figure 24: Overview of my approach. The proposed method can be plugged in as a
sub-step in the SLAM process. In a time step (T3 in the figure), for features which
are initially matched, the algorithm first examines the rank conditions for them,
i.e. whether the feature is completely observable to the SLAM system. If the
rank condition of a feature is satisfied (depicted in green/purple), the τ -temporal
observability score is evaluated by considering the relative motion of the feature in
the past τ local frames. Features with high observability scores are selected as good
features (depicted in green). If the number of highly observable features is too few,
feature grouping with a submodular learning scheme is applied to collect more good
features. These subset of good features provide the near-optimal value for SLAM
estimation.

demonstrating the improved data association; (3) lifelong experiments with integra-

tion into a modern multi-thread VSLAM system (ORB-SLAM[70])on a benchmark

dataset (KITTI dataset), demonstrating improvements in both localization/mapping

accuracy and data association, especially improvements in combating drifts in se-

quences without loop-closures.

4.1 Introduction

The accuracy of the converged SLAM estimate is determined by the operator mapping

the projective space of image observations to the space of camera motion and feature

3D positions, and its temporal dynamics, as indicated in the right block in Figure 24.

Intuition then indicates that the better conditioned this operator is, the more tolerant

the output space is to the perturbations in the input space. This operator encodes the

camera motion across frames due to temporal coupling of SLAM estimates. To exploit

nature of SE〈3〉 SLAM operator to feature ranking, I study the SLAM problem using

system theory to define the temporal observability scores for feature selection.

52

Using systems theory, I develop a feature ranking criterion for selecting individual

features which provide good conditioning for visual SLAM ego-motion estimation.

The overview of my method is depicted in Figure 24. The contributions of this paper

is three-fold: I

1. propose a feature ranking criterion based on observability scores using the

second completely observable condition in Theorem 2.3.3 for SE〈3〉 SLAM;

2. describe an efficient algorithm for computing temporal observability based on

incremental SVD;

3. describe an efficient algorithm for computing instantaneous observability via

submodular learning.

The algorithm is called the “Good Features (GF)” algorithm and can be integrated

into most existing VSLAM systems to arrive at “GF-SLAM”.

The GF algorithm is extensively evaluated to demonstrate performance gains re-

garding ego-motion estimation and data-association in VSLAM. Section 4.6 includes

three sets of experiments:

• Controlled synthetic experiments (in Sec.4.6.1) with EKF-VSLAM, which demon-

strate the accuracy gain in ego-motion estimation over the information gain

method.

• Real-world experiments with EKF-VSLAM (in Sec.4.6.2) on sequences with

various dynamics, which demonstrate the improvements in data association and

investigate into how the temporal-length affects the performance under different

dynamics.

• Comprehensive long-term experiments(in Sec.4.6.3) by integrating with a multi-

thread VSLAM system (ORB-SLAM), to demonstrate the utility of GF algo-

rithm in the recent VSLAM system design. The experiments validate both

53

the performance in ego-motion estimation accuracy and data-association, on

(1) the original KITTI visual odometry datasets with loop-closures, and (2)

re-generated long sequences from the KITTI datasets without loop-closures in

order to emphasize on improvements for drifts.

4.2 Background

In this section I first review the previous work on feature selection for VSLAM; then

discuss VSLAM system designs is presented, because the designs concern how the GF

algorithm can integrate into actual SLAM systems.

4.2.1 Individual Feature Selection in VSLAM

The earlier VSLAM systems are mostly filtering-based [27]. In such systems, infor-

mation gain is widely used to select the features to be used in ego-motion estimation,

since the information gain can be directly obtained from the filter such as the Ex-

tended Kalman Filter (EKF). Representative work includes [25, 57]. Information gain

is also used to guide the feature matching by imposing the prior uncertainty informa-

tion in matching range [68, 50]. Recently information gain is also used in landmark

and pose reduction in graph-based SLAM [20]. The rationale behind information

gain is that selecting the features which maximize the information gain in estima-

tion will maximize the uncertainty reduction for both the camera pose and landmark

positions. Thus, the convergence rate in terms of entropy is maximized, and within

the same amount of iterations, the estimate with feature selection should be closer to

the final converged estimate than estimate without the selection. Nevertheless, low

uncertainty and fast convergence in estimation is not equivalent to high accuracy. For

instance, if drift exists in the estimate from the selected feature set, the converged

estimates with lowest uncertainty still suffer from the drift.

For bundle adjustment [101], which perform post-optimization assuming global

information is available, various methods have been proposed for selecting the features

54

globally. Feature “visibility/co-visibility” is often exploited based on the assumption

that features viewed by more cameras are more reliable. Such features also result

in a better conditioned least-square system in the batch optimization. To exploit

the co-visibility of features, [16] proposed to select the best subset of points from

the complete structure of features-camera graph. ORB-SLAM [70] maintains a co-

visibility graph in its keyframe BA thread to assist the points and keyframe selections

using the “survival of the fittest” approach. While the co-visibility approach improves

the BA, it only works for post-optimization of the camera trajectory.

Heuristic methods are also used in feature selection for VSLAM. LSD-SLAM [36],

being a direct method which uses intensity discrepancy for ego-motion estimation,

selects the features with large baselines between frames so that the SIM〈3〉 opti-

mization will be better posed.

Besides ranking and selecting individual features, RANSAC-like estimation frame-

works can also be viewed as feature selection methods. These methods select features

by retrieving the inlier set with the maximum support or the most probable hypoth-

esis. Traditional RANSAC methods [99, 39] are expensive for real-time VSLAM, and

thus various approaches [103, 22] were later proposed to improve the computational

efficiency, mainly by exploiting prior information of motion models. Such random-

ized methods are popular for ego-motion estimation in earlier VSLAM systems e.g.

MonoSLAM [27] and 1-point RANSAC [22], and is still used in recent VSLAM, e.g.

PTAM [60] ORB-SLAM [70], when no frame-to-frame information is available, espe-

cially during the map initialization or the recovery after tracking loss.

4.2.2 VSLAM System Designs

The major types of sequential VSLAM systems are reviewed in this section, in order

to facilitate the discussion in Section 4.5 on how the GF algorithm can be integrated

into these designs.

55

Filtering based VSLAM [27, 25, 68, 50, 22, 6, 116, 88] formulates the process

dynamics and measurement with pinhole projection into a state-space model. The

state vector consists of both the camera pose and velocity as well as the 3D position

vectors of all feature points in the probabilistic map. Localization and mapping are

performed simultaneously by a filter (such as EKF). Block updates can be used in

the filter update step [22, 88, 116], so that the ego-motion sub-vector is updated

with only a subset of features, and then mapping sub-vector is updated assuming the

ego-motion is fixed.

Keyframe BA based VSLAM has recently become popular due to the computa-

tion and accuracy gains [92]. These systems, represented by PTAM [60] and ORB-

SLAM [70], factor the VSLAM process into multiple parallel threads. PTAM operates

two threads in parallel: a faster camera tracking thread responsible for estimating the

camera pose locally, and a slower keyframe BA thread for global optimization. ORB-

SLAM has a third thread responsible for loop-closure detection. Once a loop-closure

is detected, constraints are imposed to the BA with feature fusion, which improves

the posterior localization accuracy.

As compared to keyframe BA based systems, another type of SLAM systems

which performs smoothing for every frame is represented by the work (incremental)

smoothing and mapping, including
√

SAM [28] and iSAM/iSAM2 [59, 58]. The recent

work concurrent filtering and smoothing [107] also structures the local filtering and

global smoothing into different threads. This body of work focuses more on multi-

sensor navigation such as Vision and Inertial Navigation (VIN) and is out of the scope

of this paper.

Another branch of typical VSLAM design is the “feature-less” monocular VS-

LAM, including semi-direct VSLAM [40] and direct VSLAM [36, 37]. These methods

eliminate the feature extraction step, and optimize poses by minimizing photometric

errors. The representative designs such as SVO [40] and LSD-SLAM [36] both divide

56

the local motion estimation and global mapping into separate threads. LSD-SLAM,

the state-of-the-art direct method, is reported to have significant lower localization

accuracy than “feature-based” including ORB-SLAM and PTAM [70].

In Section 4.6, I will demonstrate the results of integrating the GF algorithm into

both filtering based VSLAM (particularly EKF-VSLAM) and keyframe BA based

VSLAM (particularly ORB-SLAM).

4.3 Good Features to Track for Visual SLAM

Let F be the set of features being tracked during the monocular SLAM process. Much

like [87] sought good features within an image for data association across frames, the

Good Features algorithm here aims to find the subset of features which aids most the

SLAM camera ego-motion estimates across time (in terms of accuracy and robustness

to noise). This subset is selected by ranking features according to their contribution

to system observability (higher system observability means better conditioned estima-

tion). The score is formulated based on the observability of the subsystem composed

of the camera and each individual feature.

4.3.1 Temporal Observability Score

Condition #2 in Theorem 2.3.3 states that, if a feature is tracked across two time

segments (i.e. three frames), the VSLAM system with that feature can become com-

pletely observable. The degenerate conditions are typically of measure zero in the

observation space. Tracking multiple features would guarantee observability for some

subset of the tracked set. Under the observable condition for a feature, the value of

a feature towards ego-motion estimation is reflected by the conditioning of the SOM.

Thus, I define the τ-temporal observability score of a feature across τ local

frames, τ ≥ 2 with the minimum singular value of SOM:

ψ(f, τ) = σmin(QSOM(τ |f)), (66)

57

where at time k, QSOM(τ |f) is defined on the time segments (k− τ), (k− τ + 1), ..., k.

This temporal observability score measures how constrained the SLAM estimate

is w.r.t. the feature observation in the projective space, when considering the relative

poses of the feature and camera over a recent period of time. The temporal nature

of the measure is important because the SLAM estimate, in both the filtering and

smoothing versions, is performed across time, with the current estimate affected by

the previous

4.3.2 Rank-k Temporal Update of Observability Score

Computation of the τ -temporal observability score is efficient.

Firstly, due to the sparse nature of the process matrix F , each subblock in Q can

be computed iteratively with Equation 44.

Secondly, the running temporal observability score of a feature can be computed

efficiently with incremental SVD. Computation of the τ -temporal observability score

is divided into the following phases:

1. In the first two frames that a feature is tracked, the observability cannot be

full-rank. Build the SOM;

2. In frame three, the full rank condition of SOM may be satisfied. Compute SVD

of the SOM;

3. From frame 4 to frame τ + 1 (in total τ time segments), for each new time

segment a block of linear observability matrix is added to the SOM. Instead of

computing SVD on the expanded SOM, perform a constant time rank-k update

of the SVD [11], as per below.

The SVD of QSOM(j) is USV T = QSOM(j)T, where S ∈ Rr×r with r = 13

(camera state). For the new row aT, compute

m , UTa; p , a−Um; P , p/||p||. (67)

58

Let

K =

S m

0 ||p||

. (68)

Diagonalize K as

U′TKV′ = S′ (69)

and update

[QSOM(j)T|a] = ([U P]U′)S′([V̄ Q]V′)
T

(70)

where V̄T = [VT,0], Q = [0, · · · , 0, 1]T. Diagonalization of K takes O(r2) [47].

Expanding the SOM with more time segments results in adding 2r new rows

into SOM. Each new row requires a rank-1 update, leading to rank-2r update

for the whole SOM.

4. After frame τ + 1, for each new frame, update the SOM by replacing the

subblock from the oldest time segment with the linear observability matrix

of the current time segment. For example, let SOM at time k be Q(k)
SOM(τ) =[

QT
k−τ+1|QT

k−τ+2| · · · |QT
k

]T
, then at time k+1,Q(k+1)

SOM (τ) =
[
QT

k+1|QT
k−τ+2| · · · |QT

k

]T
.

Computing the SVD of Q(k+1)
SOM (τ) given the SVD of Q(k)

SOM(τ) can also be

done with a rank-2r update similar to phase 3. Let row b be replaced by row

vector c in this case, by setting a = (c− b)T, the updated SVD is generated via

(67)-(70).

After updating the τ -temporal observability scores of the features and ranking

them, the top Ka features over a selected threshold are upgraded to be anchors.

If the anchor set has less than (Ka − 2) elements passing the threshold test, then

additional features will need to be added to complete the anchor set.

4.4 Submodular Learning for Feature Grouping

A key remaining problem is how the system should handle when there are not enough

individually observable features. In this case, grouping more than two feature may

59

Figure 25: In spatial grouping, selecting one more feature as anchor results in an
additional row-block in the measurement Jacobian, which further expands the SOM.

result in a completely observable VSLAM system, according to condition #1 in The-

orem 2.3.3.

The group completion step selects more features as anchors by maximizing the

minimum singular value of SOM over the selected features. Upgrading a feature to

be an anchor will expand the dimension of F and H in Equation (8)-(17), resulting

in additional rows in SOM.

The group completion problem can be formulated as follows: Let X be the SOM

of the features with high observability score, X ∈ Rn×m, n ≥ m. Adding a feature

results in adding a row-block Rk to the SOM as in Figure 25. Denote the set of all

candidate row-blocks as R = {R1, R2, ..., RK}, Rk ∈ Rn′×m. Finding K∗ features

which form the most observable SLAM subsystem is equivalent to finding a subset

of the candidate rows that maximize the minimum singular value of the augmented

matrix

R∗ = argmax
R∗⊆R,|R∗|=K∗

σmin
(
[XT|R∗T1 |R∗T2 |...|R∗TK∗]

T
)

(71)

Such a combinatorial optimization problem is NP-hard. However, the problem has

nice submodular properties.

Definition 4.4.1. [61] (Approximate submodularity)

A set function F : 2V 7→ R is approximately submodular if for D ⊂ D′ ⊂ V and

60

v ∈ V \D′

F (D ∪ {v})− F (D) ≥ F (D′ ∪ {v})− F (D′)− ε (72)

Theorem 4.4.1. When X∩R = ∅, the set function Fσmin
(·) : 2X∪R 7→ R is approx-

imately submodular,

Fσmin
(X ∪R∗) = σmin

(
[XT|R∗T1 |R∗T2 |...|R∗TK∗]

T
)
. (73)

The proof requires the following two lemmas.

Lemma 4.4.1. [10] (Concavity of min eigenvalue function) For any real sym-

metric matrix G ∈ Rm×m, let f(G) , λmin(G), f(G) is a concave function of G.

Lemma 4.4.2. [42] (Eigenvalues of sum of two matrices) Let A, B, C be

Hermitian n by n matrices, denote the eigenvalues of A by α : α1 ≥ α2 ≥ ... ≥ αn,

and similarly write β and γ for eigenvalues of B and C, then:

γi+j−1 ≤ αi + βj whenever i+ j − 1 ≤ n. (74)

Proof. (Theorem 4.4.1) WLOG consider the two row-blocks R1 and R2 from R.

Denote the Gram matrices G◦ as:

GX = XTX, GR1 = RT

1R1, and GR2 = RT

2R2.

Also define the augmented Gram matrices as

GXR =

(
XT|RT

)
·

X
R


It holds that GXR1 = GX + GR1 , GXR2 = GX + GR2 , GXR1R2 = GXR1 + GR2 ,

and GXR2R1 = GXR2 + GR1 . Let the minimum eigenvalue of GX be λmin(GX) ≡

λm(GX), the maximum eigenvalue be λmax(GX) ≡ λ1(GX). Since X is a real matrix,

61

λmin(GX) = σ2
min(X), and likewise for the augmented matrices. From Lemma 4.4.1,

λmin (GXR1) = λmin (GX +GR1) (75)

≥ (λmin (GX) + λmin (GR1))

≥ λmin (GX)

Thus, Fσmin
(X ∪ {R1}) ≥ Fσmin

(X).

From Lemma 4.4.2, and the fact that the Gram matrices are real-symmetric and

hence Hermitian, the following holds:

λmin (GXR1R2) = λm+1−1 (GXR1R2) ≤ λm (GXR2) + λ1 (GR1) (76)

Combining (75) and (76),

λmin (GX) + λmin (GXR1R2) ≤ λmin (GXR1) + λmin (GXR2) + dρ(R1),

where dρ(R1) = λmax(R1)− λmin(R1). Similarly,

λmin (GX) + λmin (GXR1R2) ≤ λmin (GXR1) + λmin (GXR2) + dρ(R2)

The tighter bound is:

λmin (GX) + λmin (GXR1R2) ≤ λmin (GXR1) + λmin (GXR2) + min (dρ(R1), dρ(R2)) .

This leads to

Fσmin
(X ∪ {R1}) + Fσmin

(X ∪ {R2}) ≥ Fσmin
(X) +

Fσmin
(X ∪ {R1} ∪ {R2})−min (dρ(R1), dρ(R2)) . (77)

When X ∩ R = ∅, Fσmin
(·) is approximately submodular, with the bound ε =

max(dρ(Rk)), ∀Rk ∈ R.

Theorem 4.4.1 means that a greedy algorithm will be near-optimal. The simplest

greedy algorithm outline in Algorithm 3 identifies the group completion in the cardi-

nality deficient case with a complexity of O(K∗Kn′) (when using incremental SVD).

The near-optimality bound is

62

Algorithm 3: Submodular learning for feature grouping.

Data: X ∈ Rn×m, n ≥ m, R = {R1, R2, ..., RK}, Rk ∈ R1×m, K∗

Result: R∗, |R∗| = K∗

1 R∗ ← ∅;
2 while |R∗| < K∗ do
3 R∗ ← arg maxR∗∈R Fσmin

(X ∪ {R∗});
4 R∗ ← R∗ ∪ {R∗};
5 R← R \ {R∗};

Theorem 4.4.1. [61]. Let AG be the set of the first K∗ elements chosen by Algo-

rithm 3, and let OPT = max
A⊂R,|A|=K∗

Fσmin
(X ∪A). Then

Fσmin
(AG) ≥

(
1−

(
K∗ − 1

K∗

)K∗)
(OPT −K∗ε) (78)

4.5 Integration into VSLAM Systems

The proposed GF algorithm provides a ranking of features which can be used in

different phases:

1. Ego-motion estimation. After data-association but prior to post-optimization,

the GF algorithm can be used to select a subset of features from the best

matched measurements, so that both the data-association scores and the ob-

servability scores are considered. Localization is performed using only the sub-

set, while the mapping is performed on the whole feature set based on the

localization results (acting as external input).

2. Data-association. The observability scores can be used in some data-association

processes. For example, in 1-Point RANSAC method, for each iteration the

features with high observability scores are used to partially update the model,

which is then used to retrieve the inlier set.

The GF algorithm is complementary to different VSLAM system designs:

63

• Filtering based VSLAM. The GF algorithm can be directly applied to filter-

ing based VSLAM in ego-motion estimation or data-association. For ego-motion

estimation, block update of the filter can be performed to partially update the

camera pose sub-vector with only the highly ranked GF subset (i.e. anchors),

and then the whole mapping sub-vector is updated based on the ego-motion esti-

mate. For data-association, the GF algorithm can assist in generating RANSAC

hypotheses, as discussed above.

• Keyframe BA based VSLAM. Since keyframe BA VSLAM typically has a

local motion tracking thread operates in filtering manner, the GF algorithm can

naturally be integrated into these systems by applying to the motion tracking

thread. Particularly, ego-motion is estimated with only GFs selected from the

initially matched features.

4.6 Evaluation

In this section, three sets of experiments are presented to demonstrate the perfor-

mance of the proposed algorithm when integrated into different VSLAM systems, with

focuses on localization and data-association. The synthetic experiments illustrate ap-

plications of GF algorithm for ego-motion estimation in filtering based VSLAM; the

real-world EKF-VSLAM experiments illustrate integration of GF algorithm into the

data-association step of filtering VSLAM; the real-world keyframe BA experiments

demonstrate the GF algorithm performance with ORB-SLAM, with evaluations re-

garding both ego-motion estimation and data-association.

4.6.1 Synthetic Experiments with EKF-VSLAM for Ego-motion Estima-
tion

Evaluation of the proposed method for the ego-motion estimation phase focuses on

the estimation accuracy. Therefore this experiment will isolate the data association

error from the localization error such that the SLAM accuracy is only affected by the

64

selection of anchors. Precisely benchmarking the SLAM accuracy is a difficult task,

because most of the publicly available datasets do not provide exact ground truth

and perfect data association. The usual SLAM baseline for evaluating accuracy is a

global optimization, usually bundle adjustment [6, 119]. However, these data-driven

baseline methods are not actual ground truth.

4.6.1.1 Experimental Scenarios

To perform controlled experiments for accuracy evaluation, I use camera motion and

observation simulation modules from software in [88] which assumes perfect data asso-

ciation, but implements the SLAM estimation process. Two scenarios are simulated.

The simulated environment is of dimension 12m × 12m with 72 landmarks forming

a square. Two scenarios are tested. In the first one, the robot performs circular

trajectory as in Column 1, Figure 26. The second scenario simulates a more cluttered

scene. The robot moves away from the landmarks while performing slight rotation as

shown in Figure 27.

4.6.1.2 Experiment Setup and Comparison

In each time step, ego-motion estimation is performed with an Extended Kalman Fil-

ter only with the anchors, while the features are estimated based on the ego-motion

estimate. Experiments are performed with different levels of observation noise and

anchor set sizes. I tested the configurations with standard deviation of observation

noise of 0.5, 1.0, 1.5, 2.0, 2.5 pixels under Gaussian noise, and maximum anchors

sets of Ka = 3, 4, 5, 6, 7, 8, 10, 12. The temporal parameter τ = 5 is used in my

method. The threshold for observability score is 0.003. In cases with less than Ka−2

strongly observable features, at most 2 more features are added via spatial grouping.

The baseline state-of-the-art method uses information gain for feature selection [57].

The same ego-motion estimation and mapping scheme is applied on both methods.

Due to the randomized effects from the noise simulation, 15 experiments are run per

65

configuration.

4.6.1.3 Metrics

Localization accuracy is evaluated by the cumulative translation errors and cumu-

lative orientation errors. Let ∆rW
Rk

be the translation error at time k, ∆θW
Rk

be the

orientation error in Euler angles,
∑

k ||∆rW
Rk
||2 and

∑
k ||∆rW

Rk
||∞ are used for evalu-

ating cumulative translation errors, and accordingly
∑

k ||∆θW
Rk
||2 and

∑
k ||∆θW

Rk
||∞

for cumulative orientation errors. The average value of the 15 runs are used as the

final evaluation result for each configuration.

4.6.1.4 Results

The evaluation results are shown in Figure 28 and Figure 29. For the interest of space,

configurations of #Anchors ∈ {3, 4, 5, 10} are displayed for scenario #1 to highlight

both the extreme cases and saturated cases, and #Anchors ∈ {3, 4, 8, 10} for the more

cluttered scenario #2. my method outperforms the information gain based method in

92.5% (37/40) cases for translation and 82.5% (33/40) for orientation in scenario #1;

85% (34/40) for translation and 95% (38/40) for orientation in scenario #2. These

ratios are the same for both l2-norm and l∞-norm metrics.

4.6.2 Real-world Experiments with EKF-VSLAM for Data-association

The proposed method is tested in data-association with real scenes and via modifica-

tion of the baseline SLAM system (1-Point RANSAC) from [22]. For data-association,

the features are first matched with individual compatibility. Then in each iteration of

1-Point RANSAC, one feature measurement is selected randomly to partially update

the localization, which further generates a hypothesis to retrieve the inlier set. The

maximum supported hypothesis is used as the data-association results. The Good

Features modification changes selection of the feature for hypothesis generation such

that strongly observable features are selected.

66

4.6.2.1 Dataset

For the purpose of evaluating the effect of temporal parameter, I collected videos

under smooth motion and highly dynamic motion respectively. I use three videos for

each type of motion respectively. The videos are collected in 640×480 resolution and

40 fps frame rate. Each video clip has about 2300 frames.

4.6.2.2 Experiment Setup and Comparison

The code was written in C++ with OpenCV and Armadillo following the pipeline de-

scribed in [22]. The experiments are run on a 2.7GHz 8-core PC with 16GB RAM. For

my method, the strongly observable features quantity parameter is set to Ka, which

are then used to generate the data-association hypothesis. I tested my method with

temporal parameter τ ∈ {3, 5, 7, 9, 11}. Some example frames under three motion

segments are shown in Figure 30.

4.6.2.3 Metrics

I evaluate data-association results by comparing average inlier ratios of the maximum

supported data-association hypothesis. The inlier ratio is defined as

Γ =
#inlier

#inliers+ #outliers
. (79)

4.6.2.4 Results

The relative improvements of the inlier ratios from my good features for SLAM

method (denoted as ΓGFSLAM) over that from [22] (denoted as Γ0) are shown in

Figure 31. my method outperforms [22] in all the datasets by at least ≈5.5%. For

the slow motion, the inlier ratio of my method has the peak value with τ ∈ [9, 11].

For the fast motion, the peak value is at about τ ∈ [5, 7].

67

4.6.3 Experiments with Keyframe BA Based VSLAM

To demonstrate the performance of GF algorithm with recent keyframe BA based

VSLAM, ORB-SLAM [70] is used as the baseline system due to its state-of-the-art

performance demonstrated. The ORB-SLAM uses the efficient ORB features [82] and

has three threads running in parallel: (1) the tracking thread which is responsible

for frame-by-frame ego-motion estimation and keyframe insertion; (2) the mapping

thread is in charge of keyframe based BA for posterior optimization of both the map

and camera poses; (3) the loop closing thread is for detecting loop-closures, computing

the similarity transformation when loop-closure detected, and global optimization

over the similarity constraint.

4.6.3.1 Experiment Setup

To integrate the GF algorithm, a feature selection step is added in the tracking thread,

such that only the selected GFs are used in the ego-motion estimation. In details,

after the original matched feature set is found, the temporal observability score with

temporal length three is computed for each tracked feature. In the actual implementa-

tion, the observability matrix of each tracked feature is maintained across the frames.

Thus in each time instance the observability scores only need to be updated with the

additional observability matrix block. Moreover, the computation for the whole fea-

ture set is multi-threading, and 50 threads are used in the experiments. The features

are then ranked according to their observability scores. The highly ranked subset

is selected to be used in the ego-motion estimation. The keyframe global mapping

thread and the loop closing thread are kept the same as in the original ORB-SLAM

for fair comparisons.

Since the numbers of matched features in each frame vary along the trajectory,

no absolute number is imposed on the size of GF subsets. Instead, the GFs are

selected from the top K percentage of features with none-zero observability

68

scores. Furthermore, to illustrate how the value of K affects the performance,

K = [20, 30, 40, 50, 60] percents are tested. The system is configured to detect 1500

keypoints in each frame as the real-time requirement allows. Tracking more keypoints

also makes it more challenging for the GF algorithm since non-informative features

are more likely to appear.

Each combination of the experiments is executed for five times. The experimental

result with the median localization accuracy out of the five runs is selected for quan-

titative comparison. The experiments are run on the a Linux desktop with a CPU of

Intel Core i5 quadcore 2.8GHz and memory of 8 GB, executed in ROS Indigo with

the highest system priority.

4.6.3.2 Dataset

The KITTI visual odometry dataset [44] is used for experiments. The dataset se-

quences are of large-scale, captured from the city of Karlsruhe, Germany. Stereo

images are collected at 10 Hz with typically 1226× 370 resolution. Only the images

from the left camera are used for monocular VSLAM experiments. Accurate local-

ization ground truth is provided by a differential GPS/INS system. The sequences

of 00, 02, 03, 04, 05, 06, 07, 08, 09, 10 are tested since the ground truth is publicly

available, in which sequences 00, 02, 05, 06, 07, 09 contain loop-closures. This dataset

is challenging because of its large scale (typically of lengths of kilo-meters), versatile

motions (e.g. fast vehicle turning), and challenging scenes (e.g. scenes with few fea-

tures or moving objects, scenes under illumination changes). Figure 32 shows three

examples from the KITTI set. Figure 33 shows two examples of the system in action.

To investigate the drifts in long-distance trajectories without loop-closures, four

new sequences are generated by the longest none-loop-closure sub-sequence in the

original KITTI sequence 02, 06, 07, 09 (denoted as “xx Non-LC” as compared to

69

Table 2: Configurations of the new sequences without loop-closures. ∗Frame indices:
corresponding indices in the original KITTI sequences.

Sequence Dimension (m×m) Frame indices∗

02 Non-LC 599× 946 0 ∼ 4160
06 Non-LC 23× 457 0 ∼ 800
07 Non-LC 191× 209 0 ∼ 980
08 Non-LC 808× 391 0 ∼ 4070
09 Non-LC 465× 559 0 ∼ 1520

the original sequences). The dimensions and the corresponding frame indices in the

original sequences are summarized in Table 2. Together with the original KITTI

08 sequences, these five sequences form the second set of experimental data without

loop-closures, but with challenging motion as well as long enough distances. KITTI

03 and 10 are not included because they are not challengingly long, although they do

not have loop-closures either.

4.6.3.3 Evaluation metrics

Localization accuracy and data-association inlier ratio are used for quantitative eval-

uation.

Localization accuracy is measured by the mean square root of the translation error.

A SIM〈3〉 transformation is solved to match the estimated trajectory to the ground

truth [93], with a fine-grain parameter sweep to find the optimal scaling factor.

Inlier ratio is defined as in Equation 79, but the number of inliers is counted in

a different way from the last experiment. Since the ego-motion is estimated with

the g2o framework [62], the inlier set is also retrieved with g2o. If the χ2 error of a

feature is smaller than 6.0 in the graph with the estimated pose, then the feature is

considered as an inlier; otherwise it is considered as an outlier.

4.6.3.4 Experimental Results on Original KITTI Sequences with Loop-closures

The results on original KITTI set is summarized in Table 3 for GF percentages

from 20% to 60%. Except for 04, 05, 10, the best result happens in GF-ORB-SLAM.

70

Notice that sequences 04, 05, 10 are all relatively simple sequences with the RMSE

smaller than 10m, and the absolute RMSE differences between original ORB-SLAM

and GF-ORB-SLAM are small.

The actual numbers of features used in ego-motion estimation are showed in Ta-

ble 4. Note that because top K% GF are selected from the completely observable

features with none-zero observability scores, the ratio of feature number in GF-

ORB-SLAM over the original ORB-SLAM is usually smaller than K.

The average inlier ratios are plotted in Figure 34 for different sequences and GF-

ORB-SLAM configurations. It can be observed that for KITTI dataset, the best

inlier ratio typically happens with 40% or 50% GFs, except for sequence 10. The

inlier ratios also show positive correlation with the localization accuracy.

The final estimated trajectories, ground truth, and the differences are visualized

in Figure 35 to 37. With the loop-closures, the final estimated trajectories under

different GF ratios appear to be very similar. However, during the actual tracking

process, the estimated trajectories before loop-closure are more different due to the

drifts. Figure 38 illustrates an example from the sequence 05 at 243 sec before a

loop-closure happens. The GF-ORB-SLAM demonstrates a smaller drift than the

original ORB-SLAM at the affinity of the loop-closure point. This observation also

motivates the next experiment in which no loop-closure happens.

71

Figure 26: Simulated scenario #1 for ego-motion estimation experiment. Results
shown have 1.0 pixel measurement standard deviation and Ka = 10. Column 1:
reconstructed maps at time steps when camera is performing circular movement;
features are depicted with estimated mean and covariance; points in red are selected
as anchors. Column 2: corresponding camera frames with observability scores shown
for all measurements. Column 3: interpolated maps of observability score on image
plane showing how it changes during the motion.

72

Figure 27: Simulated scenario #2 for ego-motion estimation experiment. Results
shown have 1.0 pixel measurement standard deviation and Ka = 10. Column 1:
reconstructed maps at time steps when camera is performing circular movement;
features are depicted with estimated mean and covariance; points in red are selected
as anchors. Column 2: corresponding camera frames with observability scores shown
for all measurements. Column 3: interpolated maps of observability score on image
plane showing how it changes during the motion.

73

Figure 28: Results of simulation scenario #1 with cumulative translation errors
and cumulative orientation errors. “ObsStd”stands for the standard deviation of
observation noise in pixel units.

74

Figure 29: Results of simulation scenario #2.

75

Figure 30: Example frames from data-association experiment. The strongly observ-
able features are illustrated in yellow, retrieved inlier set is in cyan, and the outlier
set is in purple. Column 1: camera is moving away from the desktop. Column 2:
camera is rotating w.r.t. the optical axis. Column 3: camera is rotating w.r.t. the x
axis of camera.

76

Figure 31: Relative improvements of inlier ratios versus [22].

Figure 32: Three example frames from the KITTI visual odometry sequences.

77

Figure 33: Two examples of the keyframe BA VSLAM system in action, on the
KITTI dataset. In each sub-figure, top: current frame plotted with tracked visual
features; bottom: estimated camera trajectory and 3D positions of the features.

78

T
a
b
le

3
:

R
es

u
lt

s
on

or
ig

in
al

K
IT

T
I

se
q
u
en

ce
s.

K
ey

fr
am

e
n
u
m

b
er

s
an

d
tr

an
sl

at
io

n
R

M
S
E

ar
e

re
p

or
te

d
fo

r
b

ot
h

or
ig

in
al

O
R

B
-S

L
A

M
an

d
G

F
-O

R
B

-S
L

A
M

w
it

h
d
iff

er
en

t
G

F
se

le
ct

ed
.

O
R

B
-S

L
A

M
G

F
-O

R
B

-S
L

A
M

(t
o
p

2
0
%

g
f)

G
F

-O
R

B
-S

L
A

M
(t

o
p

3
0
%

g
f)

G
F

-O
R

B
-S

L
A

M
(t

o
p

4
0
%

g
f)

G
F

-O
R

B
-S

L
A

M
(t

o
p

5
0
%

g
f)

G
F

-O
R

B
-S

L
A

M
(t

o
p

6
0
%

g
f)

S
e
q
u
e
n
ce

R
M

S
E

(m
)

R
M

S
E

(m
)

R
M

S
E

(m
)

R
M

S
E

(m
)

R
M

S
E

(m
)

R
M

S
E

(m
)

K
IT

T
I

00
8.

53
6.

48
7.

20
7.

48
7.

56
7.

69
K

IT
T

I
02

20
.6

6
17

.4
3

15
.4

8
15

.8
6

16
.9

3
18

.6
7

K
IT

T
I

03
1.

40
1.

25
1.

35
1.

12
1.

35
1.

46
K

IT
T

I
04

1.
78

1.
84

2.
10

1.
82

1.
96

1.
98

K
IT

T
I

05
5.

58
6.

06
5.

83
6.

02
5.

91
5.

86
K

IT
T

I
06

14
.5

2
14

.2
5

13
.3

3
16

.1
3

15
.5

0
14

.7
5

K
IT

T
I

07
3.

08
2.

78
2.

58
2.

55
2.

61
2.

70
K

IT
T

I
09

7.
60

7.
31

8.
54

7.
28

7.
22

7.
31

K
IT

T
I

10
8.

51
9.

30
9.

26
9.

06
9.

07
8.

54

T
a
b
le

4
:

N
u
m

b
er

s
of

fe
at

u
re

s
(m

ea
n
±

st
d
.

d
ev

.)
u
se

d
fo

r
p

os
e

op
ti

m
iz

at
io

n
in

th
e

or
ig

in
al

K
IT

T
I

se
q
u
en

ce
s.

S
e
q
u

e
n

c
e

O
R

B
-S

L
A

M
G

F
-O

R
B

-S
L

A
M

(t
o
p

2
0
%

g
f)

G
F

-O
R

B
-S

L
A

M
(t

o
p

3
0
%

g
f)

G
F

-O
R

B
-S

L
A

M
(t

o
p

4
0
%

g
f)

G
F

-O
R

B
-S

L
A

M
(t

o
p

5
0
%

g
f)

G
F

-O
R

B
-S

L
A

M
(t

o
p

6
0
%

g
f)

K
IT

T
I

00
18

3.
88
±

94
.5

6
35
.5

4
±

18
.7

2
53
.7

9
±

28
.4

9
73
.5

0
±

37
.5

0
9
1.

8
9
±

4
8
.6

1
1
0
5.

1
3
±

6
3.

3
6

K
IT

T
I

02
13

0.
93
±

45
.5

1
25
.2

4
±

9.
35

37
.4

1
±

13
.4

0
52
.1

2
±

19
.0

9
6
4.

8
3
±

2
6
.0

1
6
5.

1
8
±

3
6.

4
0

K
IT

T
I

03
18

7.
90
±

78
.5

2
36
.3

8
±

15
.7

6
55
.2

3
±

23
.6

5
75
.3

8
±

31
.4

6
9
3.

5
5
±

3
9
.9

0
1
1
0.

2
3
±

5
1.

8
0

K
IT

T
I

04
12

6.
69
±

30
.2

3
24
.3

0
±

6.
28

36
.7

1
±

9
.0

9
50
.1

2
±

13
.4

4
6
1.

2
0
±

1
8
.9

4
5
9.

9
4
±

2
9.

2
1

K
IT

T
I

05
18

0.
45
±

69
.8

4
35
.6

3
±

14
.1

5
52
.5

1
±

20
.8

5
72
.4

6
±

27
.9

6
8
8.

8
1
±

3
5
.5

3
1
0
3.

1
4
±

4
9.

1
6

K
IT

T
I

06
15

7.
65
±

65
.1

4
31
.1

1
±

13
.2

7
46
.0

4
±

19
.3

7
61
.3

8
±

26
.4

6
7
6.

5
4
±

3
6
.7

5
8
1.

3
4
±

5
1.

0
4

K
IT

T
I

07
18

5.
25
±

66
.6

0
36
.0

7
±

13
.2

0
54
.6

5
±

20
.6

1
73
.0

7
±

25
.4

7
9
2.

1
4
±

3
4
.1

1
1
0
7.

1
9
±

4
8.

1
6

K
IT

T
I

09
14

0.
51
±

50
.9

6
27
.2

4
±

10
.4

3
41
.5

3
±

15
.1

5
53
.6

7
±

20
.6

4
6
7.

0
7
±

2
9
.4

0
7
4.

2
2
±

3
9.

3
0

K
IT

T
I

10
15

7.
76
±

78
.4

9
31
.9

6
±

16
.0

6
43
.9

6
±

22
.8

7
62
.7

6
±

32
.2

7
7
6.

6
2
±

4
2
.5

7
8
5.

7
7
±

5
5.

0
0

79

Figure 34: Inlier ratios of the GF-ORB-SLAM on original KITTI.

4.6.3.5 Experimental Results on None-Loop-Closure Sequences

80

Figure 35: Results on original KITTI 00, 02, and 03: estimated trajectory, ground
truth, and translation errors. Row 1: 20% GFs. Row 2: 30% GFs. Row 3: 40% GFs.
Row 4: 50% GFs. Row 5: 60% GFs. Note that the X and Z axes are of different unit
lengths, for better illustration of localization error.

81

Figure 36: Results on original KITTI 04, 05, and 06: estimated trajectory, ground
truth, and translation errors. Row 1: 20% GFs. Row 2: 30% GFs. Row 3: 40% GFs.
Row 4: 50% GFs. Row 5: 60% GFs. Note that the X and Z axes are of different unit
lengths, for better illustration of localization error.

82

Figure 37: Results on original KITTI 07, 09, and 10: estimated trajectory, ground
truth, and translation errors. Row 1: 20% GFs. Row 2: 30% GFs. Row 3: 40% GFs.
Row 4: 50% GFs. Row 5: 60% GFs. Note that the X and Z axes are of different unit
lengths, for better illustration of localization error.

83

(a) Original ORB-SLAM: Estimated trajectory of sequence 05 at
241 sec, before loop-closure.

(b) GF-ORB-SLAM (40% strongest observability): Estimated
trajectory of sequence 05 at 241 sec, before loop-closure.

(c) Original ORB-SLAM: Estimated trajectory of sequence 05 at
243 sec, after loop-closure.

Figure 38: Comparison of drifts: an example from sequence 05. (a)(b): Estimated
trajectory before loop-closure. (c) Estimated trajectory after loop-closure (which is
almost the same for the original ORB-SLAM and GF-ORB-SLAM).

84

T
a
b
le

5
:

R
es

u
lt

s
on

n
on

e-
lo

op
-c

lo
su

re
se

q
u
en

ce
s.

K
ey

fr
am

e
n
u
m

b
er

s
an

d
tr

an
sl

at
io

n
R

M
S
E

ar
e

re
p

or
te

d
fo

r
b

ot
h

or
ig

in
al

O
R

B
-S

L
A

M
an

d
G

F
-O

R
B

-S
L

A
M

w
it

h
d
iff

er
en

t
G

F
se

le
ct

ed
.

O
R

B
-S

L
A

M
G

F
-O

R
B

-S
L

A
M

(t
o
p

2
0
%

g
f)

G
F

-O
R

B
-S

L
A

M
(t

o
p

3
0
%

g
f)

G
F

-O
R

B
-S

L
A

M
(t

o
p

4
0
%

g
f)

G
F

-O
R

B
-S

L
A

M
(t

o
p

5
0
%

g
f)

G
F

-O
R

B
-S

L
A

M
(t

o
p

6
0
%

g
f)

S
e
q
u
e
n
ce

R
M

S
E

(m
)

R
M

S
E

(m
)

R
M

S
E

(m
)

R
M

S
E

(m
)

R
M

S
E

(m
)

R
M

S
E

(m
)

02
N

on
-L

C
93

.0
5

74
.9

7
76

.3
8

70
.0

2
76

.0
0

78
.2

3
06

N
on

-L
C

26
.4

2
25

.2
1

25
.6

5
25

.6
4

24
.9

3
24

.5
3

07
N

on
-L

C
14

.2
5

12
.5

2
13

.1
4

13
.6

0
13

.5
3

13
.9

8
08

N
on

-L
C

43
.3

7
36

.9
5

34
.8

6
34

.0
7

37
.4

1
37

.6
5

09
N

on
-L

C
44

.1
3

36
.0

9
36

.8
9

36
.6

5
39

.0
7

42
.7

6

T
a
b
le

6
:

N
u
m

b
er

s
of

fe
at

u
re

s
(m

ea
n
±

st
d
.

d
ev

.)
u
se

d
fo

r
p

os
e

op
ti

m
iz

at
io

n
in

th
e

n
on

e-
lo

op
-c

lo
su

re
se

q
u
en

ce
s.

S
e
q
u

e
n

c
e

O
R

B
-S

L
A

M
G

F
-O

R
B

-S
L

A
M

(t
o
p

2
0
%

g
f)

G
F

-O
R

B
-S

L
A

M
(t

o
p

3
0
%

g
f)

G
F

-O
R

B
-S

L
A

M
(t

o
p

4
0
%

g
f)

G
F

-O
R

B
-S

L
A

M
(t

o
p

5
0
%

g
f)

G
F

-O
R

B
-S

L
A

M
(t

o
p

6
0
%

g
f)

02
N

on
-L

C
13

1.
71
±

43
.6

7
25
.2

4
±

9.
28

38
.4

9
±

13
.3

4
51
.6

7
±

18
.2

2
6
4.

3
8
±

2
4
.9

5
6
7.

7
6
±

3
5.

8
1

06
N

on
-L

C
14

1.
39
±

56
.4

3
27
.4

7
±

11
.8

0
41
.3

5
±

17
.0

1
41
.8

2
±

17
.2

1
6
7.

1
3
±

3
2
.0

9
6
7.

8
2
±

4
4.

5
4

07
N

on
-L

C
17

5.
89
±

62
.7

1
34
.7

4
±

12
.6

0
52
.2

0
±

20
.9

4
71
.7

6
±

25
.7

6
8
7.

9
9
±

3
2
.6

5
1
0
1.

8
1
±

4
7.

4
4

08
N

on
-L

C
14

3.
51
±

55
.8

6
28
.0

1
±

11
.1

8
41
.6

5
±

16
.4

8
56
.4

7
±

22
.7

6
6
8.

3
9
±

2
9
.3

5
6
9.

3
5
±

4
0.

6
7

09
N

on
-L

C
13

7.
77
±

46
.6

8
26
.8

5
±

9.
37

40
.7

6
±

13
.8

5
53
.3

8
±

18
.1

1
6
6.

1
8
±

2
4
.7

0
7
1.

1
3
±

3
5.

1
6

85

Figure 39: Inlier ratios of the GF-ORB-SLAM on none-loop-closure sequences.

In many real-world scenarios, no loop-closures exist. Moreover, for many robotics

application such as robot navigation and control, the optimized trajectory after loop-

closure is not practically useful. Therefore, this experiment is designed to examine

the performance of GF algorithm on long-distance sequences without loop-closures.

Similar to the previous experiment, the localization error and number of features

used are summarized in Table 5 and Table 6 respectively. The GF-ORB-SLAM

demonstrates better localization accuracies than the original ORB-SLAM in all se-

quences. The inlier ratios shown in Figure 39 depicts a similar trend as on the original

KITTI sequences.

It can be observed from the final trajectories in Figure 40 that GF-ORB-SLAM

has smaller drifts along the sequences, particularly in the long sequences such as 02

Non-LC, 08 Non-LC, and 09 Non-LC.

Table 7 summarizes the time used for computing the observability scores and the

pose optimization with only GFs in some representative sequences. The observability

score computation is implemented with simple multi-threading using C++ STL with

50 threads. As seen in Table 7, the time for observability score computation of the

86

same sequence is relatively stable regardless the GF percentages used. This is because

no matter how many GFs are selected, the observability scores need to be updated for

all matched features, and the final runtime is therefore determined by the number of

the initially matched features. The time for pose optimization, however, demonstrates

a positive correlation with the number of GFs used. Overall, the implementation is

fast enough for real-time VSLAM applications.

87

1.a Original, 02-Non-LC 1.b GF (20%), 02-Non-LC 1.c GF (30%), 02-Non-LC

2.a Original, 06-Non-LC 2.b GF (20%), 06-Non-LC 2.c GF (30%), 06-Non-LC

3.a Original, 07-Non-LC 3.b GF (20%), 07-Non-LC 3.c GF (30%), 07-Non-LC

4.a Original, 08-Non-LC 4.b GF (20%), 08-Non-LC 4.c GF (30%), 08-Non-LC

5.a Original, 09-Non-LC 5.b GF (20%), 09-Non-LC 5.c GF (30%), 09-Non-LC

Figure 40: (Continued in Figure 41.) Estimated trajectory, ground truth, and trans-
lation errors on none-loop-closure sequences. Note that the X and Z axes are of
different unit lengths, for better illustration of localization error.

88

1.d GF (40%), 02-Non-LC 1.e GF (50%), 02-Non-LC 1.f GF (60%), 02-Non-LC

2.d GF (40%), 06-Non-LC 2.e GF (50%), 06-Non-LC 2.f GF (60%), 06-Non-LC

3.d GF (40%), 07-Non-LC 3.e GF (50%), 07-Non-LC 3.f GF (60%), 07-Non-LC

4.d GF (40%), 08-Non-LC 4.e GF (50%), 08-Non-LC 4.f GF (60%), 08-Non-LC

5.d GF (40%), 09-Non-LC 5.e GF (50%), 09-Non-LC 5.f GF (60%), 09-Non-LC

Figure 41: Continued from Figure 40.

89

T
a
b
le

7
:

T
im

in
g

re
su

lt
s

(m
ea

n
±

st
d
.

d
ev

).
T

h
e

ti
m

e
st

at
is

ti
cs

of
ea

ch
ex

p
er

im
en

t
co

m
b
in

at
io

n
is

co
ll
ec

te
d

fr
om

al
l

fi
ve

ex
ec

u
ti

on
s. S

e
q
u
e
n
ce

s
G

F
2
0
%

G
F

3
0
%

G
F

4
0
%

G
F

5
0
%

G
F

6
0
%

M
ea

n
ti

m
e

(i
n

m
il
li
se

co
n
d
s)

fo
r

ob
se

rv
ab

il
it

y
sc

or
e

co
m

p
u
ta

ti
on

02
N

on
-L

C
10
.5

33
0
±

7.
13

40
11
.4

63
0
±

9.
15

37
10
.4

81
0
±

6.
31

30
8.

47
12
±

5.
30

57
10
.5

82
0
±

5.
56

65
06

N
on

-L
C

10
.1

52
0
±

3.
52

80
10
.0

57
0
±

4.
12

48
10
.8

09
0
±

3.
59

96
10
.6

45
0
±

3.
76

20
10
.7

07
0
±

3.
68

60
07

N
on

-L
C

11
.6

51
0
±

4.
19

93
12
.1

11
0
±

4.
87

91
11
.7

46
0
±

3.
91

30
11
.6

68
0
±

4.
09

51
11
.7

91
0
±

4.
08

58
09

N
on

-L
C

9.
92

96
±

3.
57

32
13
.1

51
0
±

8.
48

66
10
.1

43
0
±

3.
93

05
11
.1

02
0
±

4.
63

24
10
.1

22
0
±

3.
92

07
M

ea
n

ti
m

e
(i

n
m

il
li
se

co
n
d
s)

fo
r

p
os

e
op

ti
m

iz
at

io
n

w
/

on
ly

G
F

s
02

N
on

-L
C

0.
65

61
±

0.
33

80
0.

64
14
±

0.
30

53
0.

87
51
±

0.
45

67
0.

79
66
±

0.
42

79
1.

10
49
±

0.
68

66
06

N
on

-L
C

0.
46

20
±

0.
25

91
0.

65
10
±

0.
36

20
0.

84
09
±

0.
49

96
1.

02
89
±

0.
65

15
1.

01
72
±

0.
79

23
07

N
on

-L
C

0.
56

93
±

0.
30

29
0.

82
43
±

0.
50

83
1.

07
19
±

0.
57

11
1.

34
75
±

0.
71

94
1.

49
51
±

0.
89

65
09

N
on

-L
C

0.
47

53
±

0.
24

85
0.

66
42
±

0.
30

49
0.

87
90
±

0.
46

63
0.

95
33
±

0.
59

04
1.

02
68
±

0.
66

55

90

4.7 Conclusion

In this chapter, a new method is presented for selecting the features in visual SLAM

process which provides the best values for SLAM estimation. The feature selection

criterion of temporal observability is proposed based on the system complete ob-

servable condition #2 in Theorem 2.3.3. Efficient computation methods are further

developed for temporally updating the score via incremental SVDs. A greedy algo-

rithm for group completion, in the case of insufficient high-observability features, is

also presented and justified. The Good Features method is extensively evaluated with

integrations into two major types of visual SLAM systems, including filtering based

VSLAM (EKF-VSLAM) and keyframe Bundle Adjustment based VSLAM. The pro-

posed method performs competitively with respect to the state-of-the-art methods in

terms of localization accuracy and data-association inlier ratios.

91

CHAPTER V

PCD MODELING BASED ON PLANAR PATCHES VIA

SPARSITY-INDUCING OPTIMIZATION

As depicted in Figure 1, after generating the point cloud data (PCD) with VSLAM,

the PCD modeling module is responsible to convert the PCD into an augmented

model. The PCD modeling work in this thesis focus on the application of as-built

modeling for civil infrastructures, which is further used in generating the as-built

Building Information Models (BIMs).

The objective of this chapter is to develop an algorithm which takes raw point

cloud data as input, and outputs a collection of planar patch models [111, 117].

The planar patch model description consists of the plane model parameters and the

patch boundary. The planar patches found in the point cloud serve as a substitute

structure for visualizing the infrastructure modeled by the point cloud, and serve as an

intermediate representation in the PCD to BIM conversion pipeline. More specifically,

the algorithm admits as input a civil infrastructure PCD, which is typically large scale,

embedded with multiple shape components, and corrupted by noise. The algorithm

is able to deal with the unstructured PCD without any topology information. In

addition, the algorithm does not require advanced knowledge of the number of planar

patches nor any assumptions concerning their geometry (such as alignment to specific

axes). The output includes the parametric models and the boundaries of the planar

patches.

92

5.1 Introduction

Traditional Building Information Models represent the conditions under which a fa-

cility is designed. However, the reality of the facility’s construction can differ from

the nominal design. Furthermore, changes in facility’s conditions may happen during

the life span of the facility. Hence, generating as-built BIMs, which aim to cap-

ture the as-built conditions of facilities, have been a recent topic of interest in the

literature [55]. Generating as-built BIMs usually consists of two phases: (1) data

collection; and (2) objects identification, extraction, and modeling. Current devel-

opments in technologies and techniques for remote spatial sensing, e.g. high density

LiDAR (Deshpande 2013), image-based 3D reconstruction [86, 43] and video-based

VSLAM/SfM [120, 27, 77], have largely simplified and facilitated the data collection

process such that generating dense point clouds with color information of target ob-

jects is quickly becoming standard. Nevertheless, fully and simply automating the

phase of objects identification, extraction and modeling remains an open problem.

The difficulty of automating “objects identification, extraction, and modeling”

lies in that a raw Point Cloud Dataset (PCD) provides only Cartesian measurements

and no knowledge of the elements contained therein (i.e. which parts of the PCD

belong to which entities? which parts are from which geometric shapes?), nor does

it immediately provide any other as-built information (i.e. changes in building con-

ditions, etc.). To automate the process of generating as-built BIMs, recognition of

infrastructure elements needs to be automated during the conversion from raw PCDs

to 3D models, as shown in Fig 42.

To address the problem, this chapter presents a novel framework for automati-

cally detecting and extracting planar patches from large-scale and noisy raw PCDs.

The proposed method automatically detects planar structures, estimates the para-

metric plane models, and determines the boundaries of the planar patches. The first

step recovers existing linear dependence relationships amongst points in the PCD

93

Figure 42: Role of planar patches extraction in the automatic conversion from raw
PCDs to 3D models.

by solving a group-sparsity inducing optimization problem. Next, a spectral cluster-

ing procedure based on the recovered linear dependence relationships segments the

PCD. Then, for each segmented group, model parameters of the extracted planes are

estimated via Singular Value Decomposition (SVD) and Maximum Likelihood Es-

timation Sample Consensus (MLESAC). Finally, the α-shape algorithm detects the

boundaries of planar structures based on a projection of the data to the planar model.

The proposed approach is evaluated comprehensively by experiments on two types

of PCDs from real-world infrastructures, one captured directly by laser scanners and

the other reconstructed from video using structure-from-motion techniques. In order

to evaluate the performance comprehensively, five evaluation metrics are proposed

which measure different aspects of performance. Experimental results reveal that the

proposed method outperforms the existing methods, in the sense that the method

automatically and accurately extracts planar patches from large-scaled raw PCDs

without any extra constraints nor user assistance.

5.2 Background

Techniques for 3D surface modeling from point cloud data can be found in computer

graphics literature. Most of the algorithms are based on building meshes from point

94

clouds with different explicit representations of surfaces. The problem of representing

surfaces was partially addressed by [38], who proposed triangular meshes. Although

modeling through surfaces meshes gives an explicit description of the object’s surfaces,

it fails to give information about the parameters of the surfaces’ geometric models

and thus they are not suitable to be used in generating as-built BIMs. Different from

mesh-based 3D surface reconstruction, model-based surfaces reconstruction requires

the detection and extraction of embedded surface models in PCDs. Many techniques

for shape models extraction are based on Random Sample Consensus (RANSAC)

algorithm [85]. In civil engineering applications,[97] applied RANSAC to building

roof detection. Unfortunately, fully automatic RANSAC based methods usually have

very high computational complexity when applied to large-scale, complex PCDs with

multiple embedded surface models. To overcome the high complexity of RANSAC, [9]

presented a semi-automatic RANSAC based method requiring manual plane selection.

Another approach for extracting planar models from PCDs utilizes the Hough

transform [96]. To improve the traditional Hough transform based method, [75, 55]

combined it with 2D image histograms to automatically model as-built floor plans.

However, the approach is not able to achieve very high accuracy because of the vox-

elization step used in generating the 2D histograms.Also, it requires proper alignment

of the PCD with the coordinate axes.

Other planar surfaces extraction methods proposed in the recent years include

the following. The plane-sweep search algorithm presented in [15], which utilizes the

distribution of the 3D points along different directions to recognize the parts which

contain planes and then further extract the planes within each part. The region-

growing methods proposed in [48], which extracts planes by first picking a seed point

and then growing the planar region from this point if criteria based on the normal de-

viation and mean square error are satisfied. Adan and Huber [108, 55] also presented

a modified region growing method on a voxelized PCD which connects nearby points

95

with similar surface normals and that are well described by a planar model when

aggregated. Another modified region-growing method is presented in [29], which is

optimized for airborne laser scanned point clouds. This method is initialized by seed

clusters in the feature space defined by local regression planes. [73] also utilized a re-

gion growing method but with the normal computed from adaptive-radius neighboring

regions. Different from the above methods, other methods include: machine-learning

based methods using the Expectation-Maximization (EM) algorithm [98] or hierar-

chical EM [100], and a geometry-based method using clustering with co-normality

and co-planarity metrics [91], etc. However, the existing methods discussed above do

not provide a complete and global solution to fulfill the requirements of automatically

detecting planes, estimating plane models and determining the patches boundaries

without requiring the number the patches as input. For example, plane-sweeping al-

gorithms focus on plane detection, region growing methods focus on segmentation of

the PCD, RANSAC based methods do detection and estimation but do not extract

the boundaries and the RANSAC family are intrinsically randomized which cannot

provide a complete solution.

5.3 Point Clouds Segmentation by Clustering Sparse Lin-
ear Subspaces

The proposed algorithm begins with the segmentation of a PCD according to the

embedded linear subspaces of R3. The reason to segment PCDs as a first step is that

robust parametric estimation methods, such as RANSAC, are designed for datasets

with one dominant underlying model. These methods are ineffective for datasets

with multiple models, i.e., when more than one model can be fit from the dataset,

or datasets without dominant models. Meanwhile, randomized estimation methods

like RANSAC are of high computational complexity and are impractical when the

cardinality of the point-set is large. Therefore, segmenting PCDs is necessary before

extracting and estimating the plane models. However, segmentation of PCD may

96

destroy the underlying planar structures embedded in the PCD. Hence, the segmen-

tation step should preserve the underlying planar structures.

Segmenting PCDs while preserving underlying models is a subspace clustering

problem (also known as unsupervised subspace learning). Given a point-set {yi ∈

RD}Ni=1 containing a union of n linear or affine subspaces in RD, let {Sl}nl=1 be an

arrangement of the n subspaces of dimensions {dl}nl=1. The subspaces can be expressed

as:

Sl = {y ∈ RD : y = µl + Ulx}, l = 1, . . . , n (80)

where µ ∈ RD is an arbitrary point in subspace Sl that can be chosen as µl = 0

for linear subspaces, Ul ∈ R(D × dl) is a basis for subspace Sl, and x ∈ R(dl) is a

low-dimensional representation for point y. Subspace clustering refers to the process

of finding the number of subspaces n, their dimensions {dl}nl=1, the subspace bases

{Ui}ni=1, the points {µi}ni=1, and segmenting groups of points according to the sub-

spaces. A number of subspace clustering algorithms have been proposed, broadly

categorized into algebraic methods [24, 105], iterative methods [1], statistical meth-

ods [67, 79],and spectral clustering-based methods [35, 66]. In [105, 104], the author

compared different subspace clustering methods, and reported that the Sparse Sub-

space Clustering (SSC) method proposed in [35] had the best performance in terms of

misclassification error. In [89], a geometric analysis of SSC is given proving that SSC

can correctly cluster data points even when subspaces intersect. SSC is based on an

l1 optimized sparse representation. In the case of PCDs, due to the geometric nature

of point clouds, l2-norm penalties also capture the linear dependence relationship,

and thus the linear dependence problem is formulated as an optimization problem to

minimize the combined l1 and l2 penalties, denoted as group-sparsity optimization.

97

5.3.1 Recovering PCD linear subspaces

his section covers the recovery of linear subspaces in a PCD based on sparse optimiza-

tion programming. Sparse optimization programming exploits the self-expressiveness

property of the data, which presumes that each point of the

minimization
Z

||Z||1 + β||Y Z − Y ||2

subject to
∑
i

zij = 1 j = 1, 2, 3, . . .

diag(Z) = 0, β > 0

(81)

PCD can be expressed by linear combinations of other points from its underlying

linear subspace.

5.3.1.1 Retrieving linear dependence relationships in PCD

This section describes how to generate a sparse representation of the PCD when it

contains several planar subspaces and the data has measurement error. Let {Si}mi=1 be

a union of m independent linear subspaces of dimensions {di}mi=1 embedded in a k di-

mensional space, and {yi}Ni=1 be a collection of N observations from the k dimensional

space, yi ∈ Rk. If yi belongs to subspace Sj, then yi is a linear combination of the

other data points in {Si}mi=1. To compensate for measurement error, the basis-pursuit

problem is modified to be a basis-pursuit denoising (BPDN) problem.

To collectively optimize all of the data points, form the matrix Y =

(
y1 y2 . . . yN

)
and normalize the recovered coefficients. Let Z ∈ RN×N be the matrix of the sparse

linear dependence coefficients whose i-th column corresponds to the sparse represen-

tation of yi. Different columns of Z are independent. Here, the norm || · ||p of a matrix

is the sum of the lp vector norms of the columns.

Like the l1-norm, the l2-norm also captures the linear dependence relationship

since points closer to each other in l2 space are more likely to be linearly dependent.

98

Combining the two norms into the optimization leads to a group-sparsity optimiza-

tion:

minimization
Z

||Z||1 + α||Z||2 + β||Y Z − Y ||2

subject to
∑
i

zij = 1 j = 1, 2, 3, . . .

diag(Z) = 0, α > 0, β > 0.

(82)

In the ideal case, solving the optimization program 82 recovers the sparse linear

dependence coefficients corresponding to the embedded subspaces, which will be used

for segmentation in the next step.

5.3.2 Subspace segmentation via spectral clustering

Once the data-driven representation for each data point is found, identification of the

common underlying subspaces is the next step. This process of segmenting the linear

subspaces from the recovered linear dependence coefficients involves constructing a

weighted similarity graph G = (V , E ,W) capturing the linear dependence relation-

ships. The N nodes in V of G correspond to the N input points; the set of edges E

fully connect every two nodes vi and vj with the weight wij = |zij|+ |zji|, where wij

is an element of the adjacency matrix W and zij is an element of the sparse linear de-

pendence coefficient matrix Z. For robustness to noise in the data, when building the

similarity graph only the largest linear dependence coefficients should be kept for each

point. Accordingly, the adjacency matrix W(γ) is expressed as W(γ) = |Z(γ)| + |ZT

(γ)|,

where Z(γ) means the matrix with only the γ largest coefficients kept for each column

with all others set to zero. Using the adjacency matrix W(γ), apply the normalized

spectral clustering algorithm [74] to cluster the PCD with respect to the linear sub-

spaces. Given the points set Y =

(
y1, y2, . . . , yN

)
∈ Rk with adjacency matrix W(γ),

define D to be the diagonal matrix whose (i, i)-element is the sum of W(γ)’s i-th row.

99

Algorithm 4: Point cloud segmentation w.r.t. sparse linear subspaces.

Data: PCD Y ,, arranged as columns of Y ∈ RD×N , which is a union of linear
subspaces

Result: Partitions Y1,Y2, . . . ,Ym lying in different subspaces
1 1. Solve the group-sparsity optimization program for the N ×N matrix Z:

minimization
Z

||Z||1 + α||Z||2 + β||Y Z − Y ||2

subject to
∑
i

zij = 1 j = 1, 2, 3, . . .

diag(Z) = 0, α > 0, β > 0.

(85)

2 2. Use matrix Z to construct a balanced graph G = (V , E ,W). The vertices V
are the N data points, and edges (v1, vj) ∈ E are with weight wij 6= 0.
Compute the adjacency matrix

W(γ) = |Z(γ)|+ |ZT

(γ)| (86)

with the γ largest coefficients;
3 3. Perform spectral clustering on G.

Construct the Laplacian

L = D−1/2W(γ)D
−1/2 (83)

Then perform eigen-decomposition on L and use the k (I choose k=3 for PCD

in R3) largest eigenvectors u1, u2, ..., uk of L to form an eigenspace matrix U =(
u1|u2|...|uk

)
∈ RN×k by stacking ui in columns. Thirdly a matrix T ∈ RN×k is

formed from U by normalizing each row to be of unit norm, such that

tij =
uij

(
∑

k u
2
ik)

1/2
(84)

for i = 1, 2, ..., n. Let yi ∈ Rk be the vector corresponding to the i-th row of T .

Lastly, perform meanshift clustering [23] on the points yi to get a segmentation result.

5.3.3 Illustration of procedure on a synthetic PCD

To illustrate how the algorithm works, this section details the procedure for a syn-

thetic PCD. The synthetic PCD has 628 points with 588 points from three intersecting

planes (196 points per plane) and 40 randomly scattered points. Moreover, all points

100

are corrupted by Gaussian noise with 0.01 variance. The PCD is shown in Fig-

ure 43(a), and the ground truth for the PCD segmentation is shown in Figure 43(b)

where points from the distinct embedded planes plotted with distinct colors. The

PCD is processed using the proposed algorithm. First, solving the group-sparsity

optimization program with α = β = 1 results in the group-sparse linear dependence

coefficients. The matrix containing the 628×628 linear dependence coefficients is visu-

alized in Figure 43(c), in which the non-zero coefficients (meaning linear dependence)

are plotted in white color while the zero coefficients (meaning linear independence)

are plotted in black color. Each row in the coefficient matrix stands for one R3 point,

and each 1×628-dimensional row vector consists of the linear dependence coefficients

(diagonal elements of the matrix are zero). Compared to the ideal result shown in

Figure 43(d), the recovered coefficients matrix is 77.87% accurate. The accuracy is

computed by comparing the two coefficient matrices in Figure 43(c) and (d). The

white elements are assigned to 1 and black elements to 0 for both matrices in 3(c)

and 3(d), to give the matrices Mc and Md respectively. Let M̃ = |Mc −Md|, then

the accuracy is
∑

ij M̃ij/N
2. Compared to the group-sparsity formulation, the BPDN

formulation has a lower accuracy level of 68.71%. Rather than use the full matrix,

the procedure indicates that the matrix with only the first γ(γ < 628) largest coef-

ficients should be used. In addition to increasing robustness to noise, the decimated

matrix W(γ) reduces the computational complexity of the spectral clustering step.

Figure 43(e) and Figure 43(f) show W(γ) with γ = 10 and γ = 20, respectively (vi-

sualized by displaying non-zero value elements as white and zero value elements as

black). From Figure 43(e) and Figure 43(f), it can be observed that the larger coef-

ficients are nearer to the diagonal elements, while the smaller coefficients are further

from the diagonal elements. There is no universal criterion for how many coefficients

should be used in constructing the adjacency matrix, but the observations are: if less

coefficients are used, then less linear dependence relationships are captured but the

101

(a) Original PCD (b) Ground truth for
PCD segmentation

(c) Recovered sparse
linear dependence coef-
ficients (the Z matrix)
(black: zero values;
white: non-zero values)

(d) Ideal result of lin-
ear dependence coeffi-
cients (black: linearly
independent; white: lin-
early dependent)

(e) Linear dependence
adjacency matrix (with
10 largest coefficients for
each point)

(f) Linear dependence
adjacency matrix (with
20 largest coefficients for
each point)

(g) Clustering result in
eigenspace in spectral
clustering step

(h) Retrieved segmenta-
tion result in R3

Figure 43: Illustration of linear subspace clustering on a synthetic PCD.

algorithm is more robust to noise and has lower computational complexity. For the

following steps of the experiment, γ is set to be 10, because this is small enough to

generate a sparse adjacency matrix but large enough to capture the linear dependence

bases. Further discussion is included in Section 5.6.

By following the remaining steps, an eigenspace point-set can be obtained, which

lies in a simplex structure, as shown in Figure 43(g). Cluster the eigenspace point-set

using mean-shift. The clustering result is shown in Figure 43(g) with different clusters

plotted in different colors. The PCD segmentation step is finished by assigning the

cluster memberships of each point in the eigenspace to the original R3 points. The

final segmentation result is plotted in Figure 43(h). The segmentation step achieves

89.46% accuracy for the points from the underlying planes. Most of the misclassifi-

cations occur around the intersecting areas of the planes. The classification accuracy

will be further improved in the subsequent steps.

102

5.4 Plane Detection and Model Estiamtion via Maximum
Likelihood Sample Consensus

The previous step gives a segmentation of the PCD but not the plane model, with

some data points potentially misclassified. After the segmentation step, ideally within

each segmented group there is at most one linear subspace, meaning that there is one

or zero planes in each group. A robust detection and estimation step is needed to

determine whether each segmented group arises from a planar subspace, and if so, to

estimate the parametric planar model. Moreover, after model estimation, all of the

plane models are used to correct potential false segmentations.

Because the data is noisy and the segmentation result from the previous step may

not be accurate, the detection and estimation algorithm in this step should be robust

to both noise and false segmentation, which is traditionally done with RANSAC.

Traditional RANSAC verifies the estimated models by thresholding the number of

inliers. However, in the case of extracting models from PCDs, the cardinality of

each segmented point-set varies, meaning that a predefined threshold is not suitable

for each group. Compared to RANSAC, the Maximum Likelihood Sample Consen-

sus (MLESAC) algorithm [99] adopts the same sampling strategy as RANSAC but

chooses the solution by minimizing the probabilistic loss rather than the number of

inliers. Minimizing probabilistic loss renders the model verification threshold value

invariant to the cardinality of the models data set. MLESAC is reported to be of

higher accuracy and robustness than RANSAC [19]. Therefore, MLESAC is more

suitable for model extraction from PCDs.

5.4.1 Planes detection and estimation from PCDs

MLESAC first randomly samples a subset of points with the minimum cardinality

Γmin needed for model estimation, then the sampled subset is used to fit a paramet-

ric model. For plane estimation, Γmin = 3. Denote the three points sampled by

103

{pi}i=1,2,3 ∈ R3×1, then the plane parameters are obtained from the following steps.

First express {pi} in homogeneous form as qi =

(
pT
i 1

)T

, then form the matrix

M =

(
q1 q2 q3

)
∈ R4×3 (87)

Perform singular value decomposition of M , which estimates both the normal and

the offset of the plane:

USV T = M (88)

The hypothesized parameter vector

(
α β γ −1

)T

of the plane is obtained

from the fourth column of V with normalization by dividing the additive inverse of

the last element.

MLESAC evaluates the fitness of the hypothesis using a probabilistic model for

the errors arising from inliers and outliers. The inlier error is modeled as unbiased

Gaussian distribution while the outlier error as uniform distribution. Hence the prob-

ability of the error given the estimated model is:

P (e|Model) = γ
1√

2πσ2
exp

(
− e2

2σ2

)
+

1− γ
ν

(89)

where e is the inlier error, γ is the prior probability of being an inlier (the ratio of

inlier), ν is the size of available error space, σ is the standard deviation of Gaussian

noise. If P (e|Model) is larger than the threshold, then the model will be re-estimated

using only the inliers and MLESAC terminates. Otherwise, repeat the process with

another random sample set, compute the loss, and determine if a further iteration is

needed. The maximum number of iterations to perform is

T =
logα

log(1− γΓmin)
(90)

where α is the estimated failure probability of picking up inlier samples at least once.

The MLESAC loop terminates when the required iterations have been finished.

The plane model estimation step is summarized in Algorithm 5. The estimation

results of this step correct erroneously segmented points from the previous step by

104

Algorithm 5: Plane models extraction from PCD via MLESAC

Data: One segment Y of PCD ;
Result: Estimated plane parametric models with the inlier set, or failure to

find a fit for the model
1 while iterations < logα

log(1−γΓmin)
do

2 1. Randomly sample 3 points {pi}i=1,2,3 with the corresponding
homogeneous coordinates {qi}. Form matrix

M =
(
q1 | q2 | q3

)
; (91)

2. Perform Singular Value Decomposition USV T = M , obtain the
parameters vector for the plane model as from the last column of V ;

3 3. Determine the inlier and outlier sets, and the corresponding errors;
4 4. Compute the loss of the model with Equation 89;
5 if P (e|Model) > Threshold then
6 Re-fit the model with inlier set;

7 if No verified model extracted then
8 return failure to find a fit for the model

9 else
10 return the estimated parametric model with the smallest P (e|Model).

relabeling each point to the model with the minimum Euclidean distance between

the point and the model. The estimated models are further merged together if the

parametric models are close and the supports are adjacent. The estimated models

are further merged together if the parametric models are closed and the supports are

adjacent.

5.4.2 Illustration of Algorithm 5 on the synthetic PCD

Algorithm 5 is illustrated using the same synthetic PCD discussed in Sec 5.3.3. In the

plane models extraction step, points from each group are processed using Algorithm 5.

For MLESAC, the threshold for the probability P(e — Model) is set to be 0.5, which

is optimized empirically. The inlier set and outlier set detected for each segmented

group are plotted in Figure 44(a), in which black + signs stand for inliers and red

+ signs stand for outliers. The models extracted for the three groups are reported

105

(a) Inlier (black +) and outlier (red +) set
obtained in MLESAC

(b) PCD segmentation after MLESAC re-
correction

Figure 44: Illustration of Algorithm 5 on the synthetic PCD.

in Table 1 with the absolute errors computed by comparing to the ground truth.

It can be concluded that the planar models extracted are of high accuracy. These

extracted models are further used as feedback to improve the segmentation results by

assigning all the points to the model to which the perpendicular Euclidean distance

is the smallest among all the models and smaller than a predefined threshold (in this

experiment the threshold is 0.1), and the points whose perpendicular distances are

larger than the threshold are labeled as noise. The segmentation result after this

assignment is illustrated in Figure 44(b), which has 93.79% accuracy for the whole

PCD.

5.5 Determine Plane Boundaries via QR Decomposition
based Projected α-Shape

After the previous two steps, the segmentation of the points from different planes and

the corresponding planar models have been obtained. Generating the final represen-

tations for the planar patches requires identifying the boundary each extracted planar

patch. The challenges of this step are: (1) the boundary point-sets may not be con-

vex; instead they may be concave or even with openings inside the outer boundary ;

(2) points in each point-set may not be uniformly distributed; and (3) the points are

106

corrupted with noise.

5.5.1 Maximum projected variance α-shape algorithm

Given a PCD point-set Y ∈ Rn×3 and its estimated normal nnn ∈ R3×1 , first a 3-by-3

matrix A =

(
nnn | v1 | v2

)
is formed, where v1, v2 ∈ R3×1 are random column vectors

generated from the point-set. Then QR decomposition of A is:

A = QR (92)

where Q =

(
Q1 | Q2 | Q3

)
∈ R3×3 is an orthogonal matrix. The natural coordinate

vectors are given by the three column vectors of Q1, Q2, Q3 ∈ R3×1. In this work, the

Z-axis in the natural coordinate frame is defined with Q1 (the plane normal), X-axis

with Q2 and Y-axis with Q3. Then project Y onto the natural coordinates by

Ŷ ′ =
(

I2×2 02×1

)
·
(
Q2 | Q3 | Q1

)−1

YT (93)

where the factor

(
I2×2 02×1

)
projects 3D points to 2D points. The arrangement

of columns in

(
Q2 | Q3 | Q1

)
performs a SO(3) transformation aligning the normal

vector of plane in the original frame to the Z-axis in the projected frame. The

projected point-set Ŷ ∈ Rn×2 is obtained by Ŷ = Ŷ ′T.

The α-shape algorithm is then performed on Ŷ . Since the boundary detected

depends on the radius of the circles (or α value), here I set the α value as 3 times

of the average single-link point-point distance, which is a conclusion assessed experi-

mentally. The boundary detected using this α value is shown in Figure 45(a). The 2D

boundaries are then projected back to the 3D space, shown in Figure 45(b). This out-

side concave boundary is detected without any additional boundaries for the openings

inside the point set.

5.5.2 Illustration of Algorithm 6 on a synthetic PCD

As the final step, the boundaries of each extracted planes are detected by performing

Algorithm 3 on each segmented group. The detected boundaries are plotted out in

107

(a) Boundary extracted on the projected 2D
point set

(b) Boundary back-projected to 3D space

Figure 45: Boundaries found using QR decomposition based projected α-Shape al-
gorithm (Radius=3Dpp).

(a) Detected boundaries of extracted planes (b) Final planar patches representation

Figure 46: Illustration of Algorithm 6 on synthetic PCD.

Figure 46(a). Finally, the planar patches representation is generated as shown in

Figure 46(b).

5.6 Evaluation

5.6.1 Evaluation metrics

To evaluate the complete plane identification and extraction algorithm, five differ-

ent evaluation metrics will be computed. These metrics evaluate different aspects of

the algorithm performance to give a comprehensive understanding of how well mod-

els detected and extracted. These metrics and their purpose are as follows: Root

108

Algorithm 6: Plane boundary detection via maximum projected variance α-
shape algorithm.

Data: A PCD point-set Y ∈ Rn×3 on a detected plane and the estimated plane
normal nnn ∈ R3×1

Result: 3D boundary point-set PS
1 1. Form a matrix A =

(
nnn | v1 | v2

)
∈ R3×3, where v1, v2 are random column

vectors;

2 2. Perform QR decomposition on AAA: A = QR =
(
Q1 | Q2 | Q3

)
·R;

3 3.Define the natural coordinate frame with Q2, Q3, Q1 and project Y onto the
frame by:

Ŷ ′ =
(
I2×2 02×1

)
·
(
Q2 | Q3 | Q1

)−1 · YT (94)

Ŷ = Ŷ ′T (95)

where Ŷ ∈ Rn×2 is the projected point-set;

4 4. Get α-shape boundary of Ŷ ;
5 5. Determining the 3D plane boundary point-set PPP S by retrieving the

membership of the 2D boundary point-set.

Mean Square error measures the model fitting accuracy; Normal Deviation measures

the orientation accuracy; Unit Volume error measures both the orientation and the

translation accuracy; Detection Percentage measures what percentage of the total

number of patches were detected; Oversegmentation Factor gives the factor by which

the planar models overrepresent the ground-truth models.

5.6.1.1 Root mean square error (RMSE)

The RMSE measures the consistency of the model to the data. For every point

XXX i ∈ R3×1 that belongs to an extracted plane with the model n̂nnT ·XXX − d = 0, where

nnn ∈ R3×1 is the normal of the plane with unit length and d is the offset of the plane.

The point-plane distance is then measured by

distance = |n̂nnT ·XXX − d| (96)

The root mean square error (RMSE) for each extracted plane is defined as

RMSE =

√
1

I
|n̂nnT ·XXX − d| (97)

109

Figure 47: Volume between two planar patches.

where i = 1, 2, . . . , I is the index of the points that associated to the plane.

5.6.1.2 Normal deviations

The normal deviation measures the accuracy of orientation between the extracted

plane compared to the ground-truth plane. Given the normal vector n̂nn of an estimated

plane and the corresponding ground-truth normal vector nnn, the normal deviation is:

Normal Deviation = acos(n̂nn · nnn) (98)

5.6.1.3 Unit volume error

Besides orientation accuracy, the localization accuracy of the plane is important.

Accordingly, here I define an evaluation metric which captures both the orientation

and translation accuracy, the unit volume error. It is the volume generated from the

estimated patch and the ground-truth patch divided by the area of the ground-truth

patch. The volume error is illustrated in Figure 47. The volume is defined in the

direction orthogonal to the ground-truth patch. In the calculation of the volume,

absolute distances are used instead of the signed distances. The units of this score

are m3/m2 = m.

UnitVolumeError =
total volume error

area of ground truth patch
(99)

110

5.6.1.4 Detection percentage

This metric evaluates how completely the algorithm is able to detect all existing planar

patches in the PCD. It is the percentage of the number of extracted patches, relative to

the quantity of patches in the ground truth model. The number of extracted patches

is defined as the number of patches in the ground-truth data that are correctly found

by the algorithm. For example, if there are 20 planar patches in the whole ground-

truth PCD, and the algorithm is able to extract 12 out of the 20 planar patches, then

the Detection Percentage is 60%. Moreover, if patch A in the ground-truth data is

found but broken into two patches by the algorithm, patch A is counted as one patch

extracted; or if only a part of patch A is found by the algorithm, it is still counted as

one extracted patch. The ideal value is 100%.

5.6.1.5 Oversegmentation factor

This metric aims to evaluate for a detected ground-truth planar patch, how well the

procedure models the patch. For each ground-truth planar patch, the number of

the corresponding extracted planes is counted. Then the oversegmentation factor is

defined to be the quantity of extracted plane models divided by the quantity of unique

ground-truth models associated to them. For example, suppose that the procedure

detected six planar patches, two belonging to one ground truth model, and four

belonging to a second ground truth model. Then the oversegmentation factor is

(2+4)/2 = 3. Combining Detection Factor, the ideal case is that the oversegmentation

factor equals to 1 and the detection percentage equals to 100%. In this case, there is

a one-to-one mapping from the estimated patches to the ground-truth patches.

5.6.2 Evaluation results on the synthetic PCD

Using the evaluation metrics, the proposed algorithm is compared to three state-of-

art algorithms. The three baseline methods are the Hough transform based algorithm

of [75], the plane-sweeping algorithm of [15], and the region-growing based method

111

Table 8: Evaluation results on the synthetic PCD.

Methods our method [75] [15] [108]

RMSE (cm) 2.17 ±0.61 6.91±1.57 7.95±2.12 1.20±1.46
Unit Volume Err. (m) 0.13±0.02 0.32±0.08 0.37±0.11 0.13±0.25
Normal Deviations (degree) 0.14±0.12 0 0 17.98±21.47
Detection Percentage 100% 100% 100% 100%
Oversegmentation Factor 1 1 1 1

of [108]. The final planar patch representations of these methods are different. For

method [75] and method [15] the final results are in solid planar patches, while for

method [108] the final results are segmentations of points. The results of these three

methods on the synthetic PCD are shown in Figure 8 respectively. The evaluation

results are shown in Table 8, which are presented in the format of “mean ± standard

deviation”, because there are multiple planes in the dataset and the statistics are

computed over the planes. This simple, synthetic PCD example does not fully reflect

real-world PCDs. For example, the real-world dataset may not be oriented precisely,

which would introduce errors when using methods in [108] and [15].

In Table 8, the methods [75] and [15] have RMSE¿0 but the normal deviations

are zeros because the extracted planes are of an offset compared to the ground-truth

planes but they are also parallel to the ground-truth planes (and this is why the normal

deviations are exactly zeros). Note that the normal deviations of[75] and [15] can be

zeros because in this synthetic example all the planes are placed perfectly parallel

to the coordinate planes. These two methods rely on the projection onto coordinate

planes or plane-sweeping along the direction from rotational sweeping. Thus, they

have zero normal deviations in this synthetic example. However, in reality, the planes

in point-clouds may not perfectly align with the coordinate planes or the extracted

direction. Therefore in the real-world PCDs example, these two methods do not have

zero normal deviations. It is worthy to note that none of these compared methods

is able to give estimated plane models or the detailed boundaries. Especially, the

region-growing based methods are only able to give segmentation of point clouds that

112

Figure 48: Misclassification rate w.r.t. different numbers of linear elements in con-
structing the similarity graph.

ideally belong to some planes.

I end the discussion for the synthetic PCD experiment by investigating the in-

fluence of the number (denoted as γ) of linear dependence coefficients used in con-

structing the similarity graph. The misclassification rates of the PCD segmentation

step w.r.t. γ from 2 to 627 are plotted in Fig 48. As it can be observed, the mis-

classification rate varies between 20.38% and 22.61%. Given that the model fitting

step corrects this error, the change in performance as a function of γ is not significant

enough to warrant using large values of the parameter γ. Thus, it is recommended to

use a relatively small γ, one which would correspond to selecting a small percentage

of the total dataset.

5.6.3 Evaluation results on real-world PCD from VSLAM/SfM

5.6.3.1 Point cloud dataset

In this experiment, the PCD of a real building reconstructed from VSLAM/SfM is

used. A frame from the video is shown in Figure 49. Due to the physical constraints

of the environment, only three faces of the building were captured. Moreover, there

are some occlusions in the scene, e.g., trees, decorations, etc. The reconstructed raw

113

Figure 49: A sample image used to reconstruct a building.

PCD is displayed in Figure 50. The point cloud consists of 1,681,634 points, with

relatively large measurement uncertainty.

5.6.3.2 Experimental results

The building PCD is processed using the proposed algorithm, with parameter settings

as listed in Table 9. To lower the computational complexity, the PCD is first parti-

tioned into 8 × 8 × 4 = 256 parts. The final result of the experiment, after merging

the partition results, is shown in Figure 51(a),(b). The algorithm extracts 16 planar

patches from the PCD.

The raw PCD is also plotted in Figure 51(a), (b) in magenta to provide intuitive

comparison between the raw point cloud and the extracted patches. Note that some

open parts (for instance, the intersecting part between two roof planes in Figure 51(b))

exist because the point cloud itself does not capture the corresponding part due to

some occlusions. From the experiment it can be observed that the extracted patches

fit with the point cloud very well.

5.6.3.3 Comparison to baseline methods

For [75] method, since proper orientation is required, the orientation of the PCD is

corrected to align the walls to coordinate axes before conducting the experiment. The

114

Figure 50: Raw PCD representation of a building.

parameters of the compared methods are as follows. For [75], I set the grid size of

the 2D histogram as 0.1m × 0.1m. For [15] method, the number of the bins used

to generate the histogram of point numbers for sweeping is 200 and the threshold

to define a plane in the histogram is set to be half of the maximum value in the

histogram. For [108] method, the PCD is voxelized into 2cm× 2cm× 2cm grids. The

number of neighbor points for normal estimation is 50; the threshold of maximum

angle between normal vectors is 2 degrees; the curvature threshold to guarantee points

are well-described by plane models is set as 1. All of these parameter configurations

are optimized empirically.

Ground-truth data of the building is collected using a professional total station

(i.e., SOKKIA 30R). Points are measured for each facet of the infrastructures, espe-

cially the points that define the boundary of each facet of the infrastructure. The

PCD is obtained by merging the point-sets from different scan domains using the soft-

ware of the total station. After collecting the PCD, the measured points belonging to

each specific facet are selected manually and used to generate the ground-truth data

for each facet. The planes measured as ground-truth are shown in Figure 13. These

115

Table 9: Parameter configurations for the building PCD experiment

Parameters Values

optimization parameter α 1
optimization parameter β 1
number of coefficients used in adjacency matrix 10
MLESAC verification probability threshold 0.5
MLESAC,false alarm rate
(probability a good minimal sample set never picked)

1e-3

MLESAC assumed noise standard deviation 0.1
MLESAC minimum iterations 1000
Point-model distance threshold for Re-segmentation 0.1

Table 10: Evaluation results on the building PCD

Methods our method [75] [15] [108]

RMSE (cm) 2.05 ±0.57 7.20±1.66 0.47±0.27 7.85±5.33
Unit Volume Err. (m) 0.45±0.63 10.29±3.81 4.06±N/A 1.47±2.42
Normal Deviations (degree) 0.9±0.6 3.52±0.46 5.04±N/A 3.87±1.72
Detection Percentage 93% 65% 29% 71%
Oversegmentation Factor 1.1 3.5 2 1.3

planes are used to evaluate RMSE, unit volume error and normal deviations. For

detection percentage and oversegmentation factor, in total 14 planes are considered.

The evaluation results of the proposed procedure and the three baseline proce-

dures are listed in Table 10. Note that in Table 10, method [15], no standard deviation

is given because the method only extracts one patch that can be considered corre-

sponding to a ground-truth plane, which is the largest wall of the building. Since

only one extracted patch is considered to have a corresponding ground-truth patch,

I only have one value for each metric and undefined standard deviation.

From Table 10 it can be concluded that the proposed method has the best per-

formance among all the comparative methods.

5.7 Conclustion

This work in this chapter focuses on the problem of planar model extraction from

civil infrastructure PCDs, which requires three objectives including the detection of

116

(a) Our method (view 1) (b) Our method (view 2)

(c) Method in [75] (view 1) (d) Method in [75] (view 2)

(e) Method in [15] (view 1) (f) Method in [15] (view 2)

(g) Method in [108] (view 1) (h) Method in [108] (view 2)

Figure 51: Extracted planar patches for the building PCD using different methods,
plotted with the raw PCD (in magenta).

117

Figure 52: Planes measured using total stations to provide ground truth data.

planar structures, estimation of planar parametric models and determination of the

planar model boundaries. The proposed procedure is demonstrated to be suitable

for large-scale noisy infrastructure PCDs and able to address all the three objectives.

One of the most important steps of this procedure is that it first recovers the linear

dependence relationship between each point in the PCD, by solving a group-sparsity

inducing optimization program. With the recovered linear dependence coefficients,

the algorithm further segments the PCD by clustering the points according to the

linear subspace. The clustering uses spectral clustering with a similarity graph formed

from the linear dependence coefficients matrix. After PCD segmentation, planes

are detected and estimated for each segmented group via an SVD based approach

using MLESAC. Finally, the boundary of each plane is detected using the α-shape

algorithm. The proposed algorithm is tested extensively using three types of PCDs:

synthetic data and a PCD of a real building reconstructed from video. For the

synthetic PCD experiment, detailed results are provided to illustrate every step of

the procedure. To comprehensively evaluate the model extraction performance, five

different evaluation metrics are applied. Furthermore, the proposed algorithm is also

compared with three baseline methods. The experimental results and the evaluation

118

statistics on the real-world PCDs demonstrate that the proposed algorithm has the

best overall performance among the comparative methods on the real-world PCDs.

119

CHAPTER VI

PCD MODELING WITH QUADRATIC SURFACE

PRIMITIVES AND SEMANTIC INFORMATION

The approach in the last chapter has been demonstrated to be effective for real-world

infrastructure PCDs. However, it only works for planar surfaces. In contrast, the work

in this chapter seeks to extract more kinds of structures from infrastructure PCDs.

The algorithm presented in this chapter is designed to detect, fit, and classify multiple

surface primitives robustly and efficiently for civil infrastructure PCDs [112]. There

are major advances over the previous one: (1) the segmentation of PCD is based on

correlation relationships and performed in a fast manner; (2) the model estimation

and the classification scheme is designed to make the algorithm work for much more

geometric shape primitives; (3) a model merging procedure is performed with a novel

model similarity measures to reduce the redundancy of the algorithm output. The

algorithm is tested on a real-world infrastructure PCDs from VSLAM. The results

are evaluated quantitatively with two evaluation metrics.

Beside the geometry driven modeling with surface primitive, semantic information

is also very important in real-world applications, such as generating an as-built build-

ing information model from raw PCDs [113]. Although there is a solution to semantic

learning for indoor environments [108], no solution exists for recognizing components

and generating semantic models of infrastructures like bridges. In the latter part of

this chapter, I address this problem by proposing a novel method to recognize both

the semantic labels of facility components (e.g. beams, deck, columns, etc.) and

geometric entity labels of computer-aided design (CAD) models (e.g. cuboids, cylin-

ders, sheet, etc.). Note that there is not necessarily a one-to-one mapping between

120

these two kinds of labels. I tested the method on bridge PCDs, however the same

principles and method should work for other structures as well (e.g. parking decks,

building skeletons, etc.). The method takes the extracted surface primitives as input,

then classifies the primitives into different classes of components or entities, and fi-

nally generates the CAD and Industry Foundation Classes (IFC) models with both

the geometric information and semantic labels. The algorithm is designed for fast

application: the classification step is of linear runtime. The algorithm is tested with

PCDs modeling real-world bridges, and evaluated based on the classification error

compared to the ground truth. Both evaluated results reveal the effectiveness of the

algorithm.

6.1 Related Work

3D object detection is well-studied in information retrieval. One of the most widely

used 3D object detection methods is the graph-based method which encodes both

geometric and topological information. Examples include skeletal graphs [94] and

augmented multi-resolution Reeb graphs [102]. A second class of methods is based

on geometry, for instance, the principal plane analysis proposed in [63]. A survey is

presented by Tangelder [95] on 3D object classification and retrieval methods. All of

these methods take queried 3D models in specific formats as input and finally output

the matching class. However, they are not specially designed or optimized for PCDs

and require a large database for 3D models.

Within computer vision and robotics, object extraction algorithms specially de-

signed for PCD often utilize classification and recognition algorithms. These methods,

mostly being descriptor-based, are categorized into two groups: local methods and

global methods. Local methods exploit descriptors based on locally invariant geomet-

ric properties around a surface point [56, 69, 85, 83]. These methods take a PCD,

extract the descriptors, and then use the extracted descriptors as input to a classifier.

121

Local methods have the advantage of computational efficiency, but the performance

heavily depends on the quality and resolution of the input PCD [30]. Moreover, these

methods do not work globally and are designed for free-form object recognition. Thus

they are not suitable for solving the problem we seek to address.

Of the global methods, the two main categories are generalized Hough transforms

and RANSAC. Hough transform based methods first map input PCDs to parameter

spaces and then classify shapes [78, 110]. Nevertheless these methods are expensive

in both computation and memory. For RANSAC paradigm methods, Schnabel [85]

proposed an efficient variant of RANSAC to detect and recognize primitives in PCDs,

but it only works for five shapes and requires different estimation for different shapes.

For 3D entity models extraction from point cloud data, [4] proposed a method to

recognize CAD models from range images by generating a strategy to select models’

geometric features in sequence for identifying and localizing the model in the scene.

The strategy is guided by objects’ visibility, detectability, frequency of occurrence,

etc, and the file output is stored in standard CAD models. Different from this,

recent research in the computing in civil engineering community mainly studies the

problem of entity model recognition for as-built BIMs. In [7, 8], a method based on

an Iterative Closest Point (ICP)-based fine registration is proposed for recognizing

CAD model objects from laser scans. Similarly, (Kim, C, et al 2011) also addresses the

matching between the point clouds and the CAD models. They target the application

of more complicated CAD models with registration combining principal component

analysis coarse registration, and ICP fine registration. Another series of work aimed

at as-built BIMs is presented in [108], which utilizes supervised stacked learning to

learn indoor environments. The data-driven approach relies on high-quality and large

training datasets, which themselves are difficult to obtain. Moreover, it is for indoor

surroundings, not for the outdoor infrastructure that we target at.

122

6.2 Surface Primitive Extraction from Point Cloud Data

6.2.1 Over view of the algorithm

The proposed algorithm for detecting, fitting and classifying PCD surface primitives

consists of several steps as outlined in Figure 53. The algorithm takes a raw PCD

(with only Cartesian information) as input. Firstly, a fast segmentation is performed

on the PCD. Each segmented group of points corresponds to a surface patch. The

6-DOF pose of the segmented points is recovered by finding a SE(3) matrix transform-

ing the points to a canonical coordinate system. Then a full quadric model is fit to the

segmented points using least-square estimation in a Maximum Likelihood Estimator

SAmple Consensus (MLESAC) paradigm [99]. Using the estimated model parame-

ters, the surface is classified as 1 of 12 types of quadric surfaces. After all groups have

been processed, model merging is performed to join abutting groups from the same

surface class, after which the models of the joined groups are re-estimated. Finally the

algorithm outputs the estimated surface parametric models, surface primitive types,

along with the PCD segmentation.

6.2.2 Fast Segmentation of PCDs

The fast segmentation strategy for large-scale PCDs firstly down-samples the dataset,

then performs segmentation, and finally retrieves the labels for the original PCD. The

original PCD P0 ∈ RN×3 is down-sampled by partitioning the PCD into discrete cubes

in R3 and replacing the points in each cube with their centroid. The partitioning is

done by a k-d tree search, which generates adaptive partitions is efficient for large-

scale data and. A static k-d tree for a set P of n points can be built in O(n log n)

time.

Segmentation is performed on the down-sampled point-set P ′ ∈ RN ′×3. The seg-

mentation step exploits the local geometric relationship among points on the same

quadric surface, i.e. a correlation relationship. The segmentation follows the idea in

123

Figure 53: Flowchart of the surface primitive-based PCD modeling algorithm.

[67, 109], and clusters the PCD via lossy-compression. Assume P ′ is from a mixture of

Gaussians and denote a segmentation into K clusters as P ′ = {W ′1∪W ′2∪ . . .∪W ′K},

then the total number of bits to encode P ′ up to distortion λ is:

Ls(W ′1, W ′2, . . . , W ′K) =
K∑
i=1

[
L(W ′i)− |W ′i| log2

|W ′i|
N ′

]
(100)

for which L(W ′i) is the number of bits needed to encode each cluster W ′i:

L(W ′i) =
N ′ + 3

2
· log2 det

(
I +

3

λN ′
W ′iW ′i

T

)
+

3

2
log2 1 +

µT
iµi
λ

(101)

where µ is the mean of W ′ and W ′ =W ′ − µ.

It is proved in [67] that ∆L = L(W ′i∪W ′j)−
[
L(W ′i) + L(W ′j)

]
> 0, and that when

W ′i and W ′j are more correlated, then ∆L is smaller. The segmentation minimizing

the coding (bit) length will segment P ′ into clusters that maximize the intra-cluster

correlation and minimize the inter-cluster correlation. This optimal segmentation is

124

found by a pairwise steepest descent procedure. After segmenting P ′, the segmen-

tation for P0 is obtained by labeling each point p0i ∈ P0 as belonging to the cluster

W ′k ∈ P ′ with the minimum point-to-cluster distance D
W ′k
p ∈ W ′k. Let , then the label

for p0i is:

kp0i
= argmin

k
D
W ′k
p = argmin

k

[
min

(√
‖p0i − p

W ′k
i ‖l2

)|W ′k|
j=1

]K
k=1

(102)

6.2.3 PCDs Pose Recovery

Before model estimation, the PCD in each segmented group should be transformed

to a canonical pose to improve the conditioning of the quadric model parameters

estimation. To find the rigid transformation T ∈ SE(3) for transforming the PCD

P ∈ RN×3, P is first translated by subtracting the centroid CP ∈ R1×3 to obtain

P = P − CP · IN×1. Then Singular Value Decomposition (SVD) is performed on PT
:

PT

3×N = R3×3 · SN×N · VN×3 (103)

where R3×3 is a unitary matrix which can be viewed as a matrix in SO(3), and SN×N

is a diagonal matrix encoding the scale. The rigid transformation T is then given by:

T =

 R −CT
P

01×3 1

 (104)

The PCD P̃ ∈ RN×3 in the recovered pose is obtained from: P̃
1

 =

 SN×N · VN×3

1

 = T ·

 P
1

 (105)

6.2.4 Robust Fitting with Quadric Models

After pose recovery, to every PCD P̃ a fully quadric model is fit using least-square

estimation. The quadric model is:

P̃TΘP̃ = 0; Θ ∈ R10×10 (106)

125

which can be expanded as:

ax2 + by2 + cz2 + fyz + gzx+ hxy + px+ qy + rz + d = 0 (107)

The parameter vector θ = [a, b, c, f, g, h, p, q, r, d]T can be estimated with direct linear

transformation (DLT). Let P̃ = [xi, yi, zi]
N
i=1, the algebraic error is shown in Equation

(108).

ε =


x2

1 y2
1 z2

1 y1z1 z1x1 x1y1 x1 y1 z1 1
x2

2 y2
2 z2

2 y2z2 z2x2 x2y2 x2 y2 z2 1
...

...
...

...
...

...
...

...
...

...
x2
N y2

N z2
N yNzN zNxN xNyN xN yN zN 1

 · θ = A · θ ∈ RN×1

(108)

The estimate is obtained by minimizing ‖ε‖2 , which can be done by performing

SVD on the data matrix A. Let A = USV T, then θ is given by the tenth column

of V . The least-square estimation of is performed using MLESAC. MLESAC is an

accurate and robust method in the presence of measurement uncertainty and noise

[19]. It is also invariant to the number of points, which means that the threshold

need not vary with the sample size. The inlier error e is modeled by an unbiased

Gaussian distribution, while the outlier error is modeled by a uniform distribution.

The loss is defined as Loss(e) = − ln [Prob(e|θ)] , where Prob(e|θ) is the probability

of the error given the estimated model. If the loss of the estimated model is smaller

than a threshold, then the model will be re-estimated using only the inliers and the

iterations terminate; otherwise repeat the random sampling and estimation step up

to a maximum number of iterations. The maximum number of iterations is:

T =
logα

log (1− γ10)
(109)

where γ is the prior probability of being an inlier, and α is the probability of failing

to pick a valid inlier set during the random sampling.

126

6.2.5 Classification of Surface Primitives

In classification step, 12 quadric surface primitives are considered, as shown in Table

11. The estimated model parameter vector θ is first truncated by setting the elements

smaller than a threshold to be zero. Then form the following two matrices:

Me =


a h/2 g/2

h/2 b f/2

g/2 f/2 c

 (110)

and

ME =



a h/2 g/2 p

h/2 b f/2 q

g/2 f/2 c r

p q r d


(111)

The classification parameters are:

∆ = det(E) (112)

φ = rank(e) (113)

Φ = rank(E) (114)

; “k-sign”and “K-sign”refer to the nonzero eigenvalues of e and E respectively

6.2.6 Model Merging

After model estimation, the PCDs from some groups may be from the same surface.

Model merging is a procedure of merging the points from same surface primitives then

re-estimating the quadric model. Model merging is performed in iterative manner.

A binary adjacent matrix W is first generated. If i-th and j-th groups are adjacent

then wij = 1; otherwise wij = 0. W is a symmetric matrix with the diagonal elements

being one. Check all the adjacent pairs of groups in W . If the classified shapes of two

adjacent groups are the same, then the Mahalanobis norm between these two models

127

No.
surface primitives classification criteria

Name
canonical
expression

φ Φ ∆ k-sign K-sign

1 One real plane ax+ by + cz + d = 0 1 1

2 Ellipsoid x2/a+ y2/b+ z2/c = 1 3 4 < 0

3 elliptic cylinder x2/a+ y2/b = 1 2 3 same opposite

4 hyperbolic cylinder x2/a− y2/b = 1 2 3 opposite

5 parabolic cylinder x2 + 2y = 0 1 3 opposite

6 quadric cone x2/a+ y2/b− z2/c = 0 3 3 opposite

7 hyperboloid of one sheet x2/a+ y2/b− z2/c = 1 3 3 opposite

8 hyperboloid of two sheets x2/a+ y2/b− z2/c = −1 3 4 > 0 opposite

9 hyperbolic paraboloid x2/a− y2/b+ 2z = 0 2 4 < 0 opposite

10 elliptic paraboloid x2/a− y2/b+ 2z = 0 2 4 > 0 same

11 intersecting planes x2/a− y2/b = 0 2 2 < 0 opposite

12 parallel planes x2 = 1 1 2 opposite

Table 11: Descriptions and classification criteria for quadric surface primitives.
a, b, c 6= 0.

is computed:

dist(θi, θj) = ‖θi − θj‖Σ = (θi − θj) · Σ · (θi − θj)T (115)

where θi, θj ∈ R10×1 are estimated parameter vector of two adjacent groups; Σ is a

diagonal matrix with the diagonal elements as [0.15, 0.15, 0.15, 0.1, 0.1, 0.1, 0.05,

0.05, 0.05, 0.1]. Note that this norm assigned different weights to different model

parameters in the model comparison. If dist(θi, θj) is smaller than a threshold, the

points from these two groups are merged. Meanwhile, the adjacent matrix is updated

accordingly and a quadric model is re-estimated using the new group. The model

merging continues until no more adjacent groups need to be merged. Finally, the

inlier sets for each merged model are determined from the whole PCD.

6.3 Semantic Modeling of Point Cloud Data

The proposed method consists of four major algorithms: (1) Pre-processing step: to

extract the surface primitives and the support given an input query PCD, in order to

generate classification features in later steps. (2) Feature extraction step: to generate

the proposed feature vectors, which capture the distinct geometric properties of each

128

component to facilitate classification. (3) Classification step: to classify each surface

primitive and generate the labels for both the facility component labels and geometric

entity labels, with a pre-trained multiple-class adaboost decision tree. (4) Model

generation and output step: based on the labels generated from classifier, this step

generates the final CAD model files and IFC files for as-built BIMs.

Figure 54 shows the flowchart illustrating the structure of the proposed algorithm.

Although the proposed algorithm is generic and can be

Figure 54: Pipeline of the algorithm for semantic recognition of PCDs based on
Surface Primitives.

6.3.1 Features

Features for classification. Given the input data consisting of multiple surface prim-

itives {Mi}Mi=1 and the corresponding support set {Si}Mi=1 for the primitives, a set

of feature vector {fi}Mi=1 is generated with one feature vector corresponding to one

extracted primitive. The feature vector fi is a (9+2Np) dimensional vector consisting

of the coordinates:

fi = [Ti, ni, Vi, Bi, Li], (116)

where Np is the number of the primitive types. This feature vector captures the

following information of each input primitive: primitive type, principal direction,

129

normal vector, spatial scale and neighborhood statistics. The details of each sub-

vector are elaborated as follows.

1. Ti ∈ NNp is an index encoding the type of the surface primitive. For example,

in the case of a bridge whose surface primitive set has planes and cylinders,

then Ti can be encoded with indices {1, 2} as:

Ti =


1, if surface is a plane

2, if surface is a cylinder

(117)

2. ni ∈ R3 is the normal of each surface primitive. This corresponds to the co-

efficients of the x-term, y-term and z-term in the estimated surface primitive

model.

3. Vi ∈ R3 is a unit vector which captures the principal direction of the support

of the primitive Mi. Given the support of primitive Mi as Si ∈ R3×k, Si is first

centered by it mean, yielding S̄i, then Vi is computed by finding the eigenvector

corresponding to the largest eigenvalue from S̄i
T
S̄i. Note that since we only

need the first principal eigenvector, performing a power iteration is sufficient

instead of performing a full spectral decomposition, where the latter one is of

much more computational cost.

4. Bi ∈ R3 is a vector capturing the relative scale of bounding box size Si compared

to the bounding box size of the whole point set. Assuming the whole point set

is {Pi = (xi, yi, zi)}, then the bounding box size of {Pi} is given by [a, b, c] =

[(max(xi)−min(xi)), (max(yi)−min(yi)), (max(zi)−min(zi))]. If the bounding

box of the primitive support Si is [ai, bi, ci], then Bi = [a
k

a
, b

k

b
, c

k

c
].

5. Li ∈ RN ′p is a vector capturing the neighborhood statistics indicating the num-

ber of each primitive types which are in 1-distance neighbor (directly connected)

130

of the current surface primitive. N ′p is the size of the unique type set of the neigh-

boring primitives. For example, in the case of a bridge with only planes and

cylinders, a primitive is directly connected to 3 cylinders and 2 other planes,

then Li = [2, 3]. The connectivity is determined by thresholding on the single-

linkage pairwise Euclidean distance of each support.

6.3.2 Classification with Adaboost

Given the synthetic training dataset with ground truth infrastructure labels and CAD

entity labels, I first compute the feature vector of each primitive. Then the feature

vectors and the training labels are used to train the classifier (in total two classifiers

are trained; one for classifying infrastructure component labels and one for CAD en-

tity labels). Considering that the feature vector consists of different variable types

(categorical, discrete, and continuous variables) and the classification problem is non-

linear, I proposed to use AdaBoosted decision trees for the classification.

AdaBoost [41, 80, 49] is an iterative procedure which combines many weak classi-

fiers with different weights to approximate the optimal Bayes classifier. In our work,

maximum entropy decision trees are used as the weak classifiers. In the training

phase, during each AdaBoost iteration, the feature vectors are first used to train one

decision tree. Then according to the classification error, the classifier is weighted by a

weight learnt by AdaBoost algorithm with an exponential loss function. Specifically,

for the multi-class problem in our case, I use the SAMME algorithm [52], which uti-

lizes the population minimizer of multi-class exponential loss. Given the input feature

set {fi} containing K classes, the algorithm starts by initializing all the weights for

weak classifiers as wk = 1
K

. Then if NC weak classifiers, i.e. the decision trees, will be

boosted, in total NC iterations need to be conducted. In each iteration, the algorithm

first induces a decision tree T (nc)(f) with the training set and the initial weight 1
K

.

131

Then the empirical error rate is computed as

Errnc =

∑K
k=1wkI(lk 6= T nc(fk))∑

(k = 1)Kwk
, (118)

where I(·) is an indicator function: if lk 6= T nc(fk) is true, which means the classified

label of T nc on fi does not agree with the true label lk, then I(lk 6= T nc(fk)) = 1;

otherwise I(lk 6= T nc(fk)) = 0. With the error rates, the weights are updated per

C(f) = arg max
l′

NC∑
nc=1

α(nc) · I(T (nc)(f) = l′) (119)

6.3.3 Decision Tree Induction

Decision tree is a nonmetric method for classification and regression [31, 12]. The

decision tree used in our work follows binary-tree structures, with each node imposing

one splitting criterion on one feature in the feature vector. The outcome of each node

corresponds to a decision with respect to the feature of the node and yields a splitting

of a subset in the training data. Hierarchically, the full training set is split by the

root node, while each successive decision splits the proper subset of the data. The

decision trees used as a weak classifier in our multi-class AdaBoost are linear decision

trees, which generate decision boundaries aligned with the axis hyper-planes in the

(9 + 2N ′P) dimensional feature space. The testing runtime of a decision tree is linear,

and the Adaboosted classifier is of linear runtime.

The training of the decision tree is done by top-down induction. In each iteration

a decision attribute is selected and assigned for the next node. Then according to

the attribute, the training subset is split, creating the descendants of the node. The

induction terminates if all the training data is perfect classified.

The attribute selection criterion used in our work is to choose the attribute which

132

maximizes the information gain, or equivalently achieves the most reduction in en-

tropy. Given a subset of training setM′ = {m′} for current node and its correspond-

ing label set L′ = {l′i}N
′

i=1, I first measure the entropy before decision as

H(M′) = −
N ′∑
i=1

Prob(m′ = l′i) log2 Prob(m′ = l′i) (120)

Assume that after the binary decision A, setM′ is partitioned intoM′
1 andM′

2,

and |M′| = |M′
1|+ |M′

2|, then the entropy reduction is measured by information gain

:

Gain(A) = H(M′)−
2∑
j=1

|M′
j|

|M′|
H(M′

j) (121)

Notice that when the decision A is to split between feature values a1, a2, (a1 ≤ a2),

then any value between a1, a2 will lead to the same entropy reduction. In this case I

select the threshold to be a1+a2

2
.

6.3.4 Classification and Output Generation

Once the multi-class AdaBoosted decision tree classifier is trained with the synthetic

training samples, it can be used to classify the query PCD directly.

Two classifiers are trained which correspond to two types of labels: infrastructure

component labels and CAD entity labels. The infrastructure component labels the

semantic description of the component. For example, in the case of bridge infras-

tructure, component labels include deck, beam, barrier, etc. The CAD entity labels

include geometric solid models, e.g. cuboid, cylinder, sheet, etc.

After classification, the CAD models are generated by finding the bounding box of

support set {Sj} belonging to the same CAD entity. The CAD models are output in

ply format. Similarly, IFC files are written according to the infrastructure component

labels and the support set. The files are output with IFC4 specifications [65].

133

6.4 Evaluation

6.4.1 Results of surface primitive modeling.

The algorithm is tested on a PCD of a real-world bridge, shown in Figure 55 (Left).

The PCD contains 407503 points. As part of the first step, the PCD is down-sampled

to 7756 points, shown in Figure 55 (Middle). The segmentation step uses a cod-

ing length threshold of 15 and over-segments the PCD into eight groups. In model

estimation, γ = 0.9, σ = 0.5. For the surface classification step, the normalized trun-

cation threshold is 0.005. The final result after model merging is shown in Figure 55

(Right), with a detection percentage of 100%. . The experiment is performed on a

PC with a 2.80GHz Intel Core i5 CPU and 8GB RAM, using C++ and MATLAB.

The down-sampling step is in C++ and the other steps are in MATLAB. In total, the

experiment took 452.13 seconds (the segmentation took 201.90 seconds). For each

model, the algorithm returns the estimated model parameters. More quantitative

results are listed in Table 12.

Figure 55: Results of surface primitive modeling. Left: input PCD. Middle: down-
sampled PCD. Right: detection and classification results.

Surface Detected
Real Plane

No.1
Parabolic
Cylinder

Real Plane
No.2

Algebraic
fitting error

0.0235 5.3943e-04 0.0242

Point-to-surface
average distance (cm)

1.2344 1.3248 1.9129

Table 12: Evaluation of experimental results on the bridge PCD.

134

Figure 56: Left: query PCDs. Middle and right: augmented models consisting of a
collection of CAD entities colored by semantic labels.

6.4.2 Results of semantic recognition and final augmented models.

The experiment uses a bridge infrastructure as the application scenario. A synthetic

training set is generated according to the real configurations and dimensions of a

bridge. The semantic labels include: “Pier column”, “Pier cap”, “Beam”, “Barrier”,

“Deck”, and “Wingwall”. CAD entity labels include: “Cylinder”, “Cuboid”, and

“Sheet”. In the training phase, 10 PCDs with the ground truth labels are used for

training.

With the trained classifier, two query PCDs of bridges are tested to recognize

the semantic labels and CAD entity labels. The final output in CAD models com-

bined with semantic labels are shown in Figure 56, in which different components

are encoded with different colors. In this experiment, both the training and testing

accuracy are 100%.

6.5 Conclusion

This chapter first presents an algorithm for detecting, fitting and classifying quadric

surface primitives for infrastructure PCDs. The algorithm consists of several steps,

including fast segmentation, pose recovery, quadric model estimation, quadric surface

classification, and model merging. Among these steps, the pose recovery, model

135

estimation and model merging are new algorithms proposed while the other two

are modified from existing state-of-the-art methods. Evaluation of the algorithm

used three quantitative evaluation metrics, i.e. algebraic fitting error, mean point-to-

surface (PS) distance and detection percentage. The algorithm was tested on a PCD

of a real bridge, and shown to accurately recover the underlying surfaces.

Based on the surface primitive PCD modeling, an approach to recognize and clas-

sify the infrastructure components for as-built BIMs is proposed. The main contri-

bution is two-fold: (1) I propose the feature vectors capturing the distinct geometric

properties of the civil components; (2) based on the features I design a classifier for

classifying both infrastructure component labels and geometric entity labels. The

algorithm takes shape primitives and supports of a PCD as input, then generate the

corresponding features and classify with a multi-class AdaBoost Decision Tree, which

is trained by synthetic training set. The final result is output as CAD and IFC files

with the infrastructure component labels. Experimental results applying to bridges

reveal the effectiveness of the algorithm.

136

CHAPTER VII

CONCLUSION

This thesis investigates into the problem of generating augmented models from image

sequences. This problem is divided into two key problems in robotics and computer

vision. The first problem is monocular visual simultaneous localization and map-

ping (VSLAM), which estimates the camera poses and reconstructs the point cloud

data (PCD) of the environment. For the VSLAM problem, I develop algorithms

to improve the VSLAM accuracy, by leveraging system observability theories. The

second problem is the PCD modeling problem, which builds the augmented models

from low-level PCDs with only spatial information. To solve this problem, I design

geometry-driven approaches to model the PCD with fundamental shape primitives,

and develop a method to retrieve semantic information for the PCD model. The key

contributions can be summarized as follows:

• Modeling and analysis of VSLAM from the perspective of system

observability. I first model the SE〈3〉 VSLAM system as a piece-wise linear

system (PWLS). To analyze the observability conditions of the PWLS, stripped

observability matrix is used. Based on this, I further derive and prove two nec-

essary conditions for the VSLAM system to be completely observable. These

two conditions are further used to develop VSLAM algorithms guided by ob-

servability.

• Optimally Observable and Minimal Cardinality (OOMC) VSLAM al-

gorithm. The OOMC algorithm is designed based on the instantaneous condi-

tion for VSLAM’s complete observability. At each time instance, the algorithm

aims to use only three features (a triplet), which is the minimum number of

137

features necessary to maintain a completely observable system. The triplets

are selected via the proposed observability scores and image matching qualities.

The OOMC algorithm is integrated with a Extended Kalman Filter based VS-

LAM system to improve the data association of EKF VSLAM. Experimental

results demonstrate that the algorithm leads to a deterministic data associa-

tion process with about seven times speed-up but maintains the same level of

localization accuracy.

• Good Features (GFs) to track for VSLAM algorithm. The GF algorithm

is designed based on the temporal condition for VSLAM’s complete observabil-

ity. Since a single feature can maintain the complete observability when it is

tracked and estimated across two time segments, the GF algorithm is able to

select the best features by ranking individual features. The τ -temporal observ-

ability score is further proposed as the ranking criterion. Efficient computation

algorithm is designed to update the score via incremental singular value de-

composition. To handle the case when not enough good individual features are

available, a greedy feature grouping algorithm is developed, with theoretical

supports of near-optimality via submodular learning. The GF algorithm is in-

tegrated respectively into filtering based VSLAM and multi-threading keyframe

bundle adjustment VSLAM. Evaluation is performed on large-scale benchmark

data sets with and without loop-closures in the scenes. Experimental results

demonstrates that the algorithm improves the VSLAM accuracy with little loss

of computation efficiency.

• PCD modeling based on planar patches via sparsity-inducing opti-

mization. Given a reconstructed PCD, this work aims to build an augmented

model driven by geometric shape primitives. This algorithm focuses on the

138

modeling PCDs with planar patches. A sparsity-inducing optimization is for-

mulated with group-sparsity regularization for retrieving the linear subspace

embedded in the PCD. Segmentation with respect to linear subspaces is further

performed with spectral clustering. The model estimation is performed with

singular value decomposition within Maximum Likelihood Estimation Sample

Consensus (MLESAC) framework. Boundary of a patch is detected with a 3D

variant of α-shape algorithm. Evaluation on real-world large-scale PCDs proves

the advantages the algorithm with five quantitative metrics.

• PCD modeling with quadratic surface primitives and semantic infor-

mation. To extend the planar patches based PCD modeling, an algorithm

is proposed for modeling PCD with the quadratic surface primitives due to

their flexibility. After the PCD segmentation via lossy-compression clustering,

the algorithm transforms the segments to canonical poses by solving an SE〈3〉

transformation. The quadratic model is further estimated with direct linear

transformation in MLESAC framework. The model coefficients are further used

to recognize the types of shapes and perform model re-merging. To retrieve the

semantic information, the multi-class Adaboost algorithm is applied.

There are several research directions for the future work. The first direction is to

develop a real-time VSLAM algorithm which is able to reconstruct dense and accurate

point clouds for large-scale scenes without loop-closures. The algorithms proposed

in this thesis are able to combat long-term drifts for improving the accuracy, but to

further improve the PCD density especially for uniform textures while performing

VSLAM in real-time is still an open problem. The second direction is to directly

incorporate the PCD modeling in the VSLAM process, to achieve “simultaneous

localization and modeling”. This kind of shape/object-oriented real-time VSLAM

for large-scale scenes is till an open problem. Specifically, the point features need

to be replaced with surface primitives. How to use observability to guide this type

139

of VSLAM is also an interesting topic. The third direction is to achieve reciprocal

VSLAM and object recognition. Image-based object recognition incorporating the

VSLAM localization results is largely solved in the literature. Nevertheless, it is still

open problem on reciprocally incorporating the object recognition results to improve

the VSLAM.

140

REFERENCES

[1] Agarwal, P. K. and Mustafa, N. H., “K-Means projective clustering,” in
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database sys-
tems, pp. 155–165, ACM, 2004.

[2] Andrade-Cetto, J. and Sanfeliu, A., “The effects of partial observability
in slam,” in IEEE International Conference on Robotics and Automation, vol. 1,
pp. 397–402, IEEE, 2004.

[3] Andrade-Cetto, J. and Sanfeliu, A., “The effects of partial observability
when building fully correlated maps,” IEEE Transactions on Robotics, vol. 21,
no. 4, pp. 771–777, 2005.

[4] Arman, F. and Aggarwal, J., “CAD-based vision: object recognition in
cluttered range images using recognition strategies,” CVGIP: Image Under-
standing, vol. 58, no. 1, pp. 33–48, 1993.

[5] Bailey, T. and Durrant-Whyte, H., “Simultaneous localization and map-
ping (SLAM): Part II,” IEEE Robotics and Automation Magazine, vol. 13, no. 3,
pp. 108–117, 2006.

[6] Balzer, J. and Soatto, S., “CLAM: Coupled localization and mapping with
efficient outlier handling,” in IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1554–1561, 2013.

[7] Bosche, F. and Haas, C., “Automated retrieval of 3D CAD model objects
in construction range images,” Automation in Construction, vol. 17, no. 4,
pp. 499–512, 2008.

[8] Bosché, F., “Automated recognition of 3D CAD model objects in laser scans
and calculation of as-built dimensions for dimensional compliance control in
construction,” Advanced engineering informatics, vol. 24, no. 1, pp. 107–118,
2010.

[9] Bosché, F., “Plane-based registration of construction laser scans with 3D/4D
building models,” Advanced Engineering Informatics, vol. 26, no. 1, pp. 90–102,
2012.

[10] Boyd, S. and Vandenberghe, L., Convex optimization. Cambridge Univer-
sity Press, 2009.

[11] Brand, M., “Fast low-rank modifications of the thin singular value decompo-
sition,” Linear Algebra and its Applications, vol. 415, no. 1, pp. 20–30, 2006.

141

[12] Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A., Classifica-
tion and regression trees. CRC press, 1984.

[13] Bryson, M. and Sukkarieh, S., “Active airborne localisation and explo-
ration in unknown environments using inertial SLAM,” in IEEE Aerospace
Conference, IEEE, 2006.

[14] Bryson, M. and Sukkarieh, S., “Observability analysis and active control
for airborne SLAM,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 44, no. 1, pp. 261–280, 2008.

[15] Budroni, A. and Böhm, J., “Toward automatic reconstruction of interiors
from laser data,” Virtual Reconstruction and Visualization of Complex Archi-
tectures (3D-Arch), 2009.

[16] Carlone, L., Alcantarilla, P. F., Chiu, H.-P., Kira, Z., and Del-
laert, F., “Mining structure fragments for smart bundle adjustment,” in
British Machine Vision Conference, 2014.

[17] Ceriani, S., Fontana, G., Giusti, A., Marzorati, D., Matteucci,
M., Migliore, D., Rizzi, D., and Sorrenti, D. G., “RAWSEEDS ground
truth collection systems for indoor self-localization and mapping,” Autonomous
Robots, vol. 27, no. 4, pp. 353–371, 2009.

[18] Cho, D.-M., Tsiotras, P., Zhang, G., and Holzinger, M. J., “Ro-
bust feature detection, acquisition and tracking for relative navigation in space
with a known target,” in AIAA Guidance, Navigation, and Control Conference,
Boston, MA, 2013.

[19] Choi, S., Kim, T., and Yu, W., “Performance evaluation of RANSAC family,”
in British Machine Vision Conference, 2009.

[20] Choudhary, S., Indelman, V., Christensen, H., and Dellaert, F.,
“Information-based reduced landmark SLAM,” in IEEE International Confer-
ence on Robotics and Automation, pp. 4620–4627, May 2015.

[21] Civera, J., Davison, A. J., and Montiel, J. M., “Inverse depth
parametrization for monocular SLAM,” IEEE Transactions on Robotics, vol. 24,
no. 5, pp. 932–945, 2008.

[22] Civera, J., Grasa, O. G., Davison, A. J., and Montiel, J., “1-Point
RANSAC for extended Kalman filtering: Application to real-time structure
from motion and visual odometry,” Journal of Field Robotics, vol. 27, no. 5,
pp. 609–631, 2010.

[23] Comaniciu, D. and Meer, P., “Mean shift: A robust approach toward feature
space analysis,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 24, no. 5, pp. 603–619, 2002.

142

[24] Costeira, J. P. and Kanade, T., “A multibody factorization method for
independently moving objects,” International Journal of Computer Vision,
vol. 29, no. 3, pp. 159–179, 1998.

[25] Davison, A., “Active search for real-time vision,” in IEEE International Con-
ference on Computer Vision, vol. 1, pp. 66–73, 2005.

[26] Davison, A. J., Cid, Y. G., and Kita, N., “Real-time 3D SLAM with
wide-angle vision,” in IFAC/EURON Symposium on Intelligent Autonomous
Vehicles, 2004.

[27] Davison, A. J., Reid, I. D., Molton, N. D., and Stasse, O.,
“MonoSLAM: Real-time single camera SLAM,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 29, no. 6, pp. 1052–1067, 2007.

[28] Dellaert, F. and Kaess, M., “Square Root SAM: Simultaneous localiza-
tion and mapping via square root information smoothing,” The International
Journal of Robotics Research, vol. 25, no. 12, pp. 1181–1203, 2006.

[29] Dorninger, P. and Pfeifer, N., “A comprehensive automated 3D approach
for building extraction, reconstruction, and regularization from airborne laser
scanning point clouds,” Sensors, vol. 8, no. 11, pp. 7323–7343, 2008.

[30] Drost, B., Ulrich, M., Navab, N., and Ilic, S., “Model globally, match
locally: Efficient and robust 3D object recognition,” in IEEE Conference Com-
puter Vision and Pattern Recognition, pp. 998–1005, 2010.

[31] Duda, R. O., Hart, P. E., and Stork, D. G., Pattern classification. John
Wiley and Sons, 2012.

[32] Durrant-Whyte, H. and Bailey, T., “Simultaneous localization and map-
ping: part I,” IEEE Robotics and Automation Magazine, vol. 13, no. 2, pp. 99–
110, 2006.

[33] Eade, E. and Drummond, T., “Edge landmarks in monocular SLAM,” in
British Machine Vision Conference, 2006.

[34] Eade, E. and Drummond, T., “Scalable monocular SLAM,” in IEEE Confer-
ence on Computer Vision and Pattern Recognition, vol. 1, pp. 469–476, IEEE,
2006.

[35] Elhamifar, E. and Vidal, R., “Sparse subspace clustering: Algorithm, the-
ory, and applications,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 11, pp. 2765–2781, 2013.

[36] Engel, J., Schöps, T., and Cremers, D., “LSD-SLAM: Large-Scale Direct
monocular SLAM,” in European Conference Computer Vision, pp. 834–849,
2014.

143

[37] Engel, J., Sturm, J., and Cremers, D., “Semi-dense visual odometry for
a monocular camera,” in IEEE International Conference on Computer Vision,
pp. 1449–1456, IEEE, 2013.

[38] Farin, G., Curves and surfaces for computer-aided geometric design: a prac-
tical guide. Elsevier, 2014.

[39] Fischler, M. A. and Bolles, R. C., “Random sample consensus: a
paradigm for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[40] Forster, C., Pizzoli, M., and Scaramuzza, D., “SVO: Fast semi-direct
monocular visual odometry,” in IEEE International Conference on Robotics and
Automation, pp. 15–22, IEEE, 2014.

[41] Freund, Y. and Schapire, R. E., “A decision-theoretic generalization of on-
line learning and an application to boosting,” Journal of computer and system
sciences, vol. 55, no. 1, pp. 119–139, 1997.

[42] Fulton, W., “Eigenvalues, invariant factors, highest weights, and schubert cal-
culus,” Bulletin of the American Mathematical Society, vol. 37, no. 3, pp. 209–
249, 2000.

[43] Furukawa, Y. and Ponce, J., “Accurate, dense, and robust multiview
stereopsis,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 32, no. 8, pp. 1362–1376, 2010.

[44] Geiger, A., Lenz, P., and Urtasun, R., “Are we ready for autonomous driv-
ing? The KITTI vision benchmark suite,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2012.

[45] Gibbens, P. W., Dissanayake, G. M., and Durrant-Whyte, H. F., “A
closed-form solution to the single degree of freedom simultaneous localisation
and map building (SLAM) problem,” in IEEE Conference on Decision and
Control, vol. 1, pp. 191–196, 2000.

[46] Goshen-Meskin, D. and Bar-Itzhack, I., “Observability analysis of piece-
wise constant systems. I. theory,” IEEE Transactions on Aerospace and Elec-
tronic Systems, vol. 28, no. 4, pp. 1056–1067, 1992.

[47] Gu, M. and Stanley C., E., “A stable and fast algorithm for updating the
singular value decomposition,” Technical Report YALEU/DCS/RR-966, De-
partment of Computer Science, 1993.

[48] Hähnel, D., Burgard, W., and Thrun, S., “Learning compact 3D mod-
els of indoor and outdoor environments with a mobile robot,” Robotics and
Autonomous Systems, vol. 44, no. 1, pp. 15–27, 2003.

144

[49] Han, J., Kamber, M., and Pei, J., Data mining: concepts and techniques:
concepts and techniques. Elsevier, 2011.

[50] Handa, A., Chli, M., Strasdat, H., and Davison, A. J., “Scalable active
matching,” in IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1546–1553, IEEE, 2010.

[51] Hartley, R. and Zisserman, A., Multiple view geometry in computer vision.
Cambridge university press, 2003.

[52] Hastie, T., Rosset, S., Zhu, J., and Zou, H., “Multi-class AdaBoost,”
Statistics and Its Interface, vol. 2, no. 3, pp. 349–360, 2009.

[53] Hesch, J., Kottas, D. G., Bowman, S. L., Roumeliotis, S., and others,
“Consistency analysis and improvement of vision-aided inertial navigation,”
IEEE Transactions on Robotics, vol. 30, no. 1, pp. 158–176, 2014.

[54] Huang, G. P., Mourikis, A. I., and Roumeliotis, S. I., “Observability-
based rules for designing consistent EKF SLAM estimators,” International
Journal of Robotics Research, vol. 29, no. 5, pp. 502–528, 2010.

[55] Huber, D., Akinci, B., Oliver, A. A., Anil, E., Okorn, B. E., and
Xiong, X., “Methods for automatically modeling and representing as-built
building information models,” in NSF CMMI Research Innovation Conference,
2011.

[56] Johnson, A. E. and Hebert, M., “Using spin images for efficient object
recognition in cluttered 3D scenes,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 21, no. 5, pp. 433–449, 1999.

[57] Kaess, M. and Dellaert, F., “Covariance recovery from a square root infor-
mation matrix for data association,” Robotics and Autonomous Systems, vol. 57,
no. 12, pp. 1198–1210, 2009.

[58] Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., and
Dellaert, F., “iSAM2: Incremental smoothing and mapping using the bayes
tree,” International Journal of Robotics Research, vol. 31, pp. 217–236, 2012.

[59] Kaess, M., Ranganathan, A., and Dellaert, F., “iSAM: Incremen-
tal smoothing and mapping,” IEEE Transactions on Robotics, vol. 24, no. 6,
pp. 1365–1378, 2008.

[60] Klein, G. and Murray, D., “Parallel tracking and mapping for small AR
workspaces,” in IEEE and ACM International Symposium on Mixed and Aug-
mented Reality, pp. 225–234, 2007.

[61] Krause, A., Singh, A., and Guestrin, C., “Near-optimal sensor placements
in gaussian processes: Theory, efficient algorithms and empirical studies,” Jour-
nal of Machine Learning Research, vol. 9, pp. 235–284, 2008.

145

[62] Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and Bur-
gard, W., “g 2 o: A general framework for graph optimization,” in IEEE
International Conference on Robotics and Automation, pp. 3607–3613, IEEE,
2011.

[63] Kuo, C.-T. and Cheng, S.-C., “3D model retrieval using principal plane anal-
ysis and dynamic programming,” Pattern Recognition, vol. 40, no. 2, pp. 742–
755, 2007.

[64] Lee, K. W., Wijesoma, W. S., and Javier, I. G., “On the observability
and observability analysis of SLAM,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 3569–3574, IEEE, 2006.

[65] Liebich, T., “Ifc4–the new buildingsmart standard,” 2013.

[66] Liu, G., Lin, Z., and Yu, Y., “Robust subspace segmentation by low-rank
representation,” in International conference on machine learning, pp. 663–670,
2010.

[67] Ma, Y., Derksen, H., Hong, W., and Wright, J., “Segmentation of multi-
variate mixed data via lossy data coding and compression,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1546–1562,
2007.

[68] Margarita, C. and Davison, A. J., “Active matching,” in European Con-
ference on Computer Vision, pp. 72–85, 2008.

[69] Mian, A. S., Bennamoun, M., and Owens, R., “Three-dimensional model-
based object recognition and segmentation in cluttered scenes,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 28, no. 10, pp. 1584–
1601, 2006.

[70] Mur-Artal, R., Montiel, J., and Tardos, J. D., “ORB-SLAM: a versa-
tile and accurate monocular SLAM system,” arXiv preprint arXiv:1502.00956,
2015.

[71] Murray, R. M., Li, Z., Sastry, S. S., and Sastry, S. S., A mathematical
introduction to robotic manipulation. CRC Press, 1994.

[72] Nemra, A. and Aouf, N., “Robust airborne 3D visual simultaneous local-
ization and mapping with observability and consistency analysis,” Journal of
Intelligent and Robotic Systems, vol. 55, no. 4, pp. 345–376, 2009.

[73] Nevado, M. M., Garcia-Bermejo, J. G., and Casanova, E. Z., “Ob-
taining 3D models of indoor environments with a mobile robot by estimating
local surface directions,” Robotics and Autonomous Systems, vol. 48, no. 2,
pp. 131–143, 2004.

146

[74] Ng, A. Y., Jordan, M. I., Weiss, Y., and others, “On spectral clustering:
Analysis and an algorithm,” Advances in neural information processing systems,
vol. 2, pp. 849–856, 2002.

[75] Okorn, B., Xiong, X., Akinci, B., and Huber, D., “Toward automated
modeling of floor plans,” in Symposium on 3D Data Processing, Visualization
and Transmission, vol. 2, 2010.

[76] Perera, L. D. L. and Nettleton, E., “On the nonlinear observability
and the information form of the slam problem,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 2061–2068, 2009.

[77] Pollefeys, M., Nistér, D., Frahm, J.-M., Akbarzadeh, A., Mordo-
hai, P., Clipp, B., Engels, C., Gallup, D., Kim, S.-J., Merrell, P.,
and others, “Detailed real-time urban 3D reconstruction from video,” Inter-
national Journal of Computer Vision, vol. 78, no. 2-3, pp. 143–167, 2008.

[78] Rabbani, T. and Van Den Heuvel, F., “Efficient hough transform for au-
tomatic detection of cylinders in point clouds,” ISPRS WG III/3, III/4, vol. 3,
pp. 60–65, 2005.

[79] Rao, S. R., Tron, R., Vidal, R., and Ma, Y., “Motion segmentation via
robust subspace separation in the presence of outlying, incomplete, or corrupted
trajectories,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 1–8, IEEE, 2008.

[80] Rätsch, G., Onoda, T., and Müller, K.-R., “Soft margins for adaboost,”
Machine learning, vol. 42, no. 3, pp. 287–320, 2001.

[81] Roussillon, C., Gonzalez, A., Solà, J., Codol, J.-M., Mansard, N.,
Lacroix, S., and Devy, M., “RT-SLAM: a generic and real-time visual SLAM
implementation,” in Computer Vision Systems, pp. 31–40, Springer, 2011.

[82] Rublee, E., Rabaud, V., Konolige, K., and Bradski, G., “ORB: an
efficient alternative to SIFT or SURF,” in IEEE International Conference on
Computer Vision, pp. 2564–2571, IEEE, 2011.

[83] Rusu, R. B., Blodow, N., and Beetz, M., “Fast point feature histograms
(FPFH) for 3D registration,” in IEEE International Conference on Robotics
and Automation, pp. 3212–3217, 2009.

[84] Rusu, R. B. and Cousins, S., “3D is here: Point cloud library (pcl),” in
IEEE International Conference on Robotics and Automation, pp. 1–4, IEEE,
2011.

[85] Schnabel, R., Wahl, R., and Klein, R., “Efficient RANSAC for point-
cloud shape detection,” in Computer graphics forum, vol. 26, pp. 214–226, Wiley
Online Library, 2007.

147

[86] Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R.,
“A comparison and evaluation of multi-view stereo reconstruction algorithms,”
in IEEE Conference on Computer vision and pattern recognition, vol. 1, pp. 519–
528, IEEE, 2006.

[87] Shi, J. and Tomasi, C., “Good features to track,” in IEEE Conference on
Computer Vision and Pattern Recognition, pp. 593–600, 1994.

[88] Sola, J., Vidal-Calleja, T., Civera, J., and Montiel, J. M. M., “Im-
pact of landmark parametrization on monocular EKF-SLAM with points and
lines,” International Journal of Computer Vision, vol. 97, no. 3, pp. 339–368,
2012.

[89] Soltanolkotabi, M., Candes, E. J., and others, “A geometric analysis
of subspace clustering with outliers,” The Annals of Statistics, vol. 40, no. 4,
pp. 2195–2238, 2012.

[90] Southall, B., Buxton, B. F., and Marchant, J. A., “Controllability
and observability: Tools for Kalman filter design.,” in British Machine Vision
Conference, pp. 1–10, 1998.

[91] Stamos, I. and Allen, P., “3-D model construction using range and image
data,” in IEEE Conference on Computer vision and pattern recognition, vol. 1,
pp. 531–536, IEEE, 2000.

[92] Strasdat, H., Montiel, J. M., and Davison, A. J., “Visual SLAM: why
filter?,” Image and Vision Computing, vol. 30, no. 2, pp. 65–77, 2012.

[93] Sturm, J., Engelhard, N., Endres, F., Burgard, W., and Cremers,
D., “A benchmark for the evaluation of RGB-D SLAM systems,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 573–580, IEEE,
2012.

[94] Sundar, H., Silver, D., Gagvani, N., and Dickinson, S., “Skeleton based
shape matching and retrieval,” in International Conference on Shape Modeling,
pp. 130–139, 2003.

[95] Tangelder, J. W. and Veltkamp, R. C., “A survey of content based 3D
shape retrieval methods,” Multimedia tools and applications, vol. 39, no. 3,
pp. 441–471, 2008.

[96] Tarsha-Kurdi, F., Landes, T., and Grussenmeyer, P., “Hough-
transform and extended RANSAC algorithms for automatic detection of 3D
building roof planes from LiDAR data,” in ISPRS Workshop on Laser Scan-
ning, vol. 36, pp. 407–412, 2007.

148

[97] Tarsha-Kurdi, F., Landes, T., and Grussenmeyer, P., “Extended
RANSAC algorithm for automatic detection of building roof planes from Li-
DAR data,” The photogrammetric journal of Finland, vol. 21, no. 1, pp. 97–109,
2008.

[98] Thrun, S., Martin, C., Liu, Y., Hähnel, D., Emery-Montemerlo,
R., Chakrabarti, D., and Burgard, W., “A real-time expectation-
maximization algorithm for acquiring multiplanar maps of indoor environments
with mobile robots,” IEEE Transactions on Robotics and Automation, vol. 20,
no. 3, pp. 433–443, 2004.

[99] Torr, P. H. and Zisserman, A., “MLESAC: A new robust estimator with
application to estimating image geometry,” Computer Vision and Image Un-
derstanding, vol. 78, no. 1, pp. 138–156, 2000.

[100] Triebel, R., Burgard, W., and Dellaert, F., “Using hierarchical EM
to extract planes from 3d range scans,” in IEEE International Conference on
Robotics and Automation, pp. 4437–4442, IEEE, 2005.

[101] Triggs, B., McLauchlan, P. F., Hartley, R. I., and Fitzgibbon,
A. W., “Bundle adjustmenta modern synthesis,” in Vision algorithms: the-
ory and practice, pp. 298–372, Springer, 2000.

[102] Tung, T. and Schmitt, F., “Augmented reeb graphs for content-based re-
trieval of 3D mesh models,” in Shape Modeling Applications, pp. 157–166, 2004.

[103] Vedaldi, A., Jin, H., Favaro, P., and Soatto, S., “KALMANSAC: Robust
filtering by consensus,” in IEEE International Conference on Computer Vision,
pp. 633–640, 2005.

[104] Vidal, R., “Subspace clustering,” Signal Processing Magazine, IEEE, vol. 28,
no. 2, pp. 52–68, 2011.

[105] Vidal, R., Ma, Y., and Sastry, S., “Generalized principal component analy-
sis (GPCA),” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 27, no. 12, pp. 1945–1959, 2005.

[106] Vidal-Calleja, T., Bryson, M., Sukkarieh, S., Sanfeliu, A., and
Andrade-Cetto, J., “On the observability of bearing-only SLAM,” in IEEE
International Conference on Robotics and Automation, pp. 4114–4119, 2007.

[107] Williams, S., Indelman, V., Kaess, M., Roberts, R., Leonard, J. J.,
and Dellaert, F., “Concurrent filtering and smoothing: A parallel architec-
ture for real-time navigation and full smoothing,” The International Journal of
Robotics Research, vol. 33, no. 12, pp. 1544–1568, 2014.

[108] Xiong, X., Adan, A., Akinci, B., and Huber, D., “Automatic creation of
semantically rich 3D building models from laser scanner data,” Automation in
Construction, vol. 31, pp. 325–337, 2013.

149

[109] Yang, A. Y., Wright, J., Ma, Y., and Sastry, S. S., “Unsupervised
segmentation of natural images via lossy data compression,” Computer Vision
and Image Understanding, vol. 110, no. 2, pp. 212–225, 2008.

[110] Zaharia, T. and Preteux, F. J., “Hough transform-based 3D mesh re-
trieval,” in International Symposium Optical Science and Technology, pp. 175–
185, 2001.

[111] Zhang, G., Karasev, P., Brilakis, I., and Vela, P., “A sparsity-inducing
optimization algorithm for the extraction of planar structures in noisy point-
cloud data,” in Computing in Civil Engineering, pp. 317–324, ASCE, 2012.

[112] Zhang, G., Vela, P., and Brilakis, I., “Detecting, fitting, and classifying
surface primitives for infrastructure point cloud data,” in Computing in Civil
Engineering, pp. 589–596, ASCE, 2013.

[113] Zhang, G., Vela, P., and Brilakis, I., “Automatic generation of as-built
geometric civil infrastructure models from point cloud data,” in Computing in
Civil and Building Engineering, pp. 406–413, ASCE, 2014.

[114] Zhang, G., Kontitsis, M., Filipe, N., Tsiotras, P., and Vela, P. A.,
“Cooperative relative navigation for space rendezvous and proximity operations
using controlled active vision,” Journal of Field Robotics, 2015.

[115] Zhang, G. and Vela, P. A., “Good features to track for visual SLAM,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2015.

[116] Zhang, G. and Vela, P. A., “Optimally observable and minimal cardinality
monocular SLAM,” in IEEE International Conference on Robotics and Automa-
tion, pp. 5211–5218, 2015.

[117] Zhang, G., Vela, P. A., Karasev, P., and Brilakis, I., “A sparsity-
inducing optimization-based algorithm for planar patches extraction from
noisy point-cloud data,” Computer-Aided Civil and Infrastructure Engineering,
vol. 30, no. 2, pp. 85–102, 2015.

[118] Zhang, G., Vela, P. A., Tsiotras, P., and Cho, D.-M., “Efficient closed-
loop detection and pose estimation for vision-only relative localization in space
with a cooperative target,” in AIAA Space and Astronautics Forum and Expo-
sition, San Diego, CA, 2014.

[119] Zhang, G., Qin, X., Hua, W., Wong, T.-T., Heng, P.-A., and Bao,
H., “Robust metric reconstruction from challenging video sequences,” in IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1–8, 2007.

[120] Zhang, T., Szlam, A., Wang, Y., and Lerman, G., “Hybrid linear model-
ing via local best-fit flats,” International journal of computer vision, vol. 100,
no. 3, pp. 217–240, 2012.

150

[121] Zhou, K., Doyle, J. C., Glover, K., and others, Robust and optimal
control, vol. 40. Prentice hall New Jersey, 1996.

151

