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SUMMARY 

Molecular simulation is a cost-effective tool for the prediction of structure-property 

relationships of a variety of materials and the computational design of new materials. For 

example, a recent research effort has examined the directed self-assembly (DSA) of block 

copolymers (BCPs) using meso-scale or coarse-grain modelling. The future of DSA will 

likely involve copolymers that are energetically incompatible so they produce self-

assembled phase separation at smaller size scales. Coarse-grain modelling dramatically 

improves the efficiency of these molecular simulations by grouping a number of bonded 

backbone atoms into “pseudo-” atoms to produce an approximate representation. This 

approximation is particularly useful for bulk polymer systems and meso-scale phenomena 

such as DSA. However, this reduced approach discards the chemical details of a fully 

atomistic system and may compromise the refined acquisition of some important chemical 

parameters. Therefore, atomically-detailed simulations are required to accurately predict 

which copolymer blocks will strongly phase separate. One approach that little research has 

done in the past is to generate accurate atomistic models and then map to the coarse-grain 

model for further bulk simulations. Using Molecular Operating Environment (MOE) 

software, we began atomistic modelling of atactic polypropylene to generate a 

methodology capable of producing accurate initial guesses. Formulation of such a 

methodology will result in a significant advance in this field, and the investigation of other 

polymers including polystyrene and block copolymers. 

It was shown by this research, that significant errors still exist in the structural and 

energetic components of the initial guess using the current methods and that these errors 
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persist after molecular mechanics and dynamics. Namely, this research showed that after 

about 75% of initial guess chain polymerization, chains would begin to collapse into 

compact conformations due to the self-avoiding nature of the chains. This resulted in 

structural inaccuracies in the initial guess that would not be ameliorated by energy 

minimization or molecular dynamics. Thus, the effect of density on the structural and 

energetic components of initial guess generation was investigated in this research. Findings 

showed significant structural asymmetry in chains generated with the present established 

initial guess method. Additionally, cohesive energy density, diffusivity, and entanglement 

of atomistic models of atactic polypropylene are strongly sensitive to density changes and 

were improved by initial densities that were greater than the experimental density. 

However, there were only slight changes to structural properties such as mean square radius 

of gyration, the characteristic ratio, and chain symmetry as density was modified. 

Additional initial guess methods were developed such as integrating minimization into the 

polymerization process, filtration of initial guesses based on their structural properties, 

multi-step minimization, a periodic boundary expansion method, and optimization of 

forcefield parameters for initial guess generation. Integrating minimization into the 

polymerization process had the surprising effect of improving chain symmetry. Optimized 

forcefields, multi-step minimization, and structure filtration had a significantly positive 

effect on the shape and size of the structures as shown by elevated mean square radius of 

gyration and characteristic ratio values. 

Additionally, a simple, rapid, and empirical method was developed for calculating energy 

and pressure long-range corrections. This method involved iteratively replicating the 

periodic lattice of the polymer system and matching the cutoff to the new size of the system. 



 xix 

Thus, the potential energy was dependent on the number of cells in the lattice and the 

potential energy eventually converged to provide the long-range corrections. The cohesive 

energy also converged since the isolated energy of the chains is a constant value and could 

also be rapidly calculated. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

The directed self-assembly (DSA) of block copolymers (BCP) has been a subject 

of intensive investigation over the past several decades due to its potential to extend 

Moore’s Law (Figure 1-1).1 One of the leading applications of BCPs is in semiconductor 

fabrication processes since this is far more economical than other alternatives such as EUV 

lithography and complex multiple-patterning schemes.1-6  

 

Figure 1-1 Moore’s Law 

  



 2 

The reason BCPs have such high potential in nanotechnology and photolithography 

is because of their intrinsic ability to phase-separate and assemble into uniform lamellae or 

cylindrical structures with tunable dimensions, as well as their numerous possible 

functional group combinations.1-5 With the utilization of BCPs, device fabricators can 

manipulate the energy landscape of these structures through DSA to directly control their 

alignment and patterning.1 The structural properties and electronegativities of the blocks 

can radically affect the self-assembly of the block copolymer and thus produce new and 

improved processes, morphologies, and applications.7 DSA of BCPs may be utilized to 

produce patterns in next generation microelectronics by formulating a very small etch mask 

from the nanoscale lines or holes (lamellar phase labelled LAM in Figure 1-2) that form 

from BCP phase separation on a substrate pattern using traditional photolithography.1, 4-5, 8 

Idealized simulation work has shown how the Flory-Huggins χ parameter (which 

approximates the enthalpy of mixing of the BCP segments) effects this phase separation 

(see symmetric dashed line in Figure 1-2 ).5-6, 8-9 
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Figure 1-2 Phases of a Polystyrene-Polyisoprene (PI) BCP as a Function of  χ Times 

the Chain Size (N).  

 

 

 

Figure 1-3 Effect of χn on Uniformity or Defectivity. 

Despite the potential BCPs have for economical and improved semiconductor 

fabrication, the density of defects—namely bridge defects—have proven to still be above 

the ideal for implementation at an industrial-scale.1 Affinity defects in chemoepitaxial 

underlayers have been suspected to propagate the bridge defects in the desired BCP-film 
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overlayer.1 These defects act as obstacles for circuit signals and eliminating them are an 

important challenge for improved circuits. 

 

Figure 1-4 Directed Self-Assembly of Block Copolymers Defect Types 

The key to understanding and reducing these defects and to design improved BCPs 

and DSA processes is to first identify the structural and energetic components and their 

associated effects. Further investigation must be done to identify which structural 

properties of the BCPs or factors in DSA processing are involved in bridge defectivity. 

A recent research effort has examined many polymer parameters that affect DSA 

using molecular simulations.1-4, 6-7, 10 Molecular simulations are a cost-effective tool for the 

prediction of structure-property relationships of a variety of materials and the 

computational design of new materials. Course-grain or meso-scale modeling dramatically 

improves the efficiency of polymer molecular simulations by grouping a number of bonded 

backbone atoms into “pseudo-” atoms to produce an approximate representation. A united 

atom typically consists of a Kuhn length number of monomers. Figure 1-5 below illustrates 

how skeletal atoms in polypropylene are grouped to make a united-atom approximation.11-

12 Coarse-grain modeling would be a choice approach for modeling the directed self-
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assembly of macromolecules such as block copolymers, since  BCPs can contain thousands 

of atoms and DSA involves forming lamellae that can be several nanometers thick. Coarse-

grain modeling is used as a computational expedient for molecular simulations since a 

detailed atomistic or quantum model would be more computationally expensive.11 

 

Figure 1-5 United-Atom Polypropylene Chain. 

By far, the majority of nanoscale patterning research and BCP DSA meso-scale 

modeling has been conducted using polystyrene-b-poly(methyl methacrylate) (PS-b-

PMMA).8 The reason is that the average interaction and surface energies of the individual 

block components are similar or symmetric at the annealing temperature, resulting in 

perpendicular structures and a lack of homopolymer preference for the surface during 

DSA.3-4, 8 The degree of similarity between energies of each copolymer interacting with 

itself is reflected in the symmetry of the resulting phase diagram, and the more symmetric 

a BCP, the simpler and more ideal the model. This symmetry produces a phase diagram 

that is also symmetric unlike the asymmetric polystyrene-b-polyisoprene (PS-b-PI) phase 

diagram seen in Figure 1-2.2 The future of DSA will likely involve different homopolymers 

that are asymmetric to produce novel hybrid morphologies and materials.13 This would 
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mean that the homopolymer densities, size and shape, and/or cohesive energies are 

different from each other and that a more in-depth approach such as atomistic modeling 

would be ideal for understanding the chemical details of the copolymer blocks.7 A 

symmetric BCP such as PS-b-PMMA only requires a single Flory-Huggins parameter since 

the homopolymers are similar, but more complicated, asymmetric BCPs such as PS-b-PI 

require several parameters and more details about the individual blocks.8, 13 

Naturally, a coarse-grained reduced approach discards the chemical details of a 

fully atomistic system and may compromise the refined acquisition of some important 

chemical parameters and parameter relationships such as polymer size, shape, 

entanglement, and solubility. This thesis work aimed to do something little research in the 

past has done which is to improve the accuracy of models by first generating an atomistic 

model, and then mapping to produce a coarse-grain model. Difficult-to-model polymers 

and BCPs greatly benefit from such a strategy since, in the past, a qualitative description 

for the polymer properties has been accepted over quantitative accuracy, leading to 

significant intrinsic errors. Moreover, even the established atomistic models from previous 

work do not accurately and completely reproduce relevant properties, thus generating 

accurate atomistic models is of great import. The accuracy of atomistic models is largely 

dependent on the initial guess for two main reasons. Firstly, a structure may reach a form 

of pseudo-equilibrium during molecular mechanics and dynamics which is assumed to be 

true relaxation of the system. However, the initial conformation may be so unstable, a 

reasonable amount of mechanics or dynamics may not be sufficient to fully relax the 

system. This is especially true for more complex polymers including polymers with bulky 

side groups or BCPs. The closer the initial conformation to the relaxed state, the less 
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simulation is required. Secondly, chain entanglement is dependent on the polymerization 

process or initial guess generation since chains generally do not become more entangled 

during mechanics or dynamics.  

Additionally, a comprehensive investigation of the initial parameters that can be 

modified to systematically optimize polymer properties has never been conducted. Herein, 

a comparison of all the relevant polymer properties obtained using a wide variety of 

techniques such as density changes, forcefield optimization, Rotational Isomeric State 

model optimization, Monte-Carlo-like filtration, and minimization techniques was 

performed to comprehensively define the protocols for optimal model accuracy. Several of 

polymer properties including mean square radius of gyration, cohesive energy density, 

segmental mean square displacement, density, and end-to-end distance were selected to 

define the accuracy of a model. One attempt to produce an all-atom model was that of 

Theodorou and Suter who developed a method to predict and measure properties of low 

molecular weight well-relaxed glassy polymer (atactic polypropylene) systems.14-15 As 

such, atactic polypropylene was utilized to establish optimal modelling protocols and 

evaluate the relevant parameter relationships. Admittedly, polypropylene is not used in 

DSA but it is the ideal proxy or representative polymer for studying general approaches for 

initial guess acquisition which is the focus of this work, and the information gathered was 

essential for collaborators at the University of South Florida to generate accurate 

polystyrene and PS-b-PI models. 

Long-range energy and pressure corrections were also obtained and included in 

total energy and pressure calculations using an empirical method developed in this thesis 

work. Long-range corrections are difficult to calculate, especially for charged systems, and 
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are therefore often omitted from total energy and pressure calculations in molecular 

modeling work. To elaborate, van der Waals potential energy is generally obtained by 

direct integration of the atomic energy expression, the instantaneous pressure requires 

calculation of the virial which includes the virial due to bond constraints in molecular 

dynamics (also difficult to calculate), and the electrostatic energy is divergent with 

increasing radial distance and requires conditionally convergent and complex methods 

such as Ewald Sum or Multipole Expansion.11, 16  Though difficult to obtain, long-range 

energy and pressure corrections, may not be insignificant for polymer systems and should 

be included. As such, a simple, relatively quick, and empirical method for calculating 

nonbonded energy and pressure corrections was developed in this thesis work. This method 

involves increasing the dimensions of the periodic lattice and the cutoff until convergence 

of the energy or pressure is observed. This brute force approach has the advantage that 

even polar systems can have their own long-range energy correction well characterized 

without worrying about model assumptions like the conditional convergence of methods 

like Ewald summation or multipole expansion. 

1.2 Objectives 

A main objective of this project was to develop an all-atom tailored protocol for 

modeling various polymers (e.g. polypropylene and polystyrene) at higher molecular 

weights (above the molecular entanglement weight) using molecular minimization and 

dynamics to obtain a number of parameters that were consistent with each other and 

experiment. Minimization and dynamics serve to relax unfavorable conformations; 

however, a large, poorly constructed initial guess may be stuck in an unfavorable energetic 

conformation, and minimization and dynamics would not be capable of relaxing the system 
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within a reasonable simulation timeframe. Thus, the accuracy of a polymer model can 

mainly be attributed to the upstream initial structure, or guess, and significant effort was 

allocated into developing an accurate initial guess generator. 

 The next objective was to evaluate the initial parameters (such as density, forcefield, 

and RIS models) and the resulting polymer properties to optimize the initial guess generator 

and minimization protocols. Determination of the key conditions, structural components, 

and techniques that would result in consistently accurate initial guess generation and 

efficient energy minimization was a paramount objective in this research. Several 

techniques were proposed and compared in Chapter 3. Each technique yielded a 

characteristic set of polymer properties including some particularly improved properties, 

e.g. energy minimization after each monomer was added during initial guess generation 

produced highly symmetric chains, reduction of the σ parameter in the forcefield during 

initial guess generation improved the mean square radius of gyration of the chains, etc. A 

combination of several methodologies could result in overall improvements in polymer 

models. Any property tradeoffs were reported, e.g. increasing density improved cohesive 

energy density but worsened mean square radius of gyration accuracy.  

The use of quantum mechanical calculations to fit forcefields can neglect the long-

range corrections (LRC) due to periodic boundaries, which are applied to amorphous 

polymer simulations. Previous work on PVC showed that a commercial forcefield differed 

from local quantum calculations by the exact amount of this LRC.17 Thus, a main objective 

was to develop and apply a method for calculating the nonbonded energy and pressure 

LRC, using the fact that the LRC depends on the size of the periodic cell. Additionally, 

since the total energy of the isolated chains is constant, the cohesive energy would also 
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converge; therefore, application of this method would also serve to calculate cohesive 

energy density. The results from utilizing this method are presented in Chapter 4. 

 

The specific objectives were as follows: 

1. Develop an SVL (Scientific Vector Language) program using the Molecular 

Operating Environment (MOE) software that would synchronously build 

multiple atactic polypropylene chains with a specified degree of polymerization 

inside a periodic cube. The program would incorporate tacticity tunability and a 

tunable RIS (rotational isomeric state) model to determine torsional states of 

polymers with various chemical structures. 

2. Evaluate parameters of the atactic polypropylene system such as cohesive energy 

density, mean square displacement, mean square radius of gyration, and 

characteristic ratio at varying densities to determine the effect of density on initial 

guess generation and to reduce the asymmetry of growing chains due to their self-

avoiding nature. 

3. Systematically apply and compare optimization techniques for initial guess 

generation and energy minimization such as Monte-Carlo-like structure 

filtration, integrated monomer minimization, initial guess forcefield 

modification, and RIS model modification to produce an improved and relaxed 

polymer system. 

4. Generate a step-wise periodic cube expansion algorithm to calculate energy and 

pressure long-range corrections. The original periodic cube should be iteratively 
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replicated to construct a lattice of polymer system replicates, then ‘built’ to form 

a single large periodic cube with side lengths equal to the product of the original 

cube side lengths and the iteration index while modifying the cutoff to be half the 

size of the newly built cube. With a growing number of lattice replicates, the 

potential energy will converge. Additionally, we can apply this method to 

accurately calculate the cohesive energy density. 

1.3 Overview of Thesis 

Chapter 1 provides the motivation and objectives behind this research. Chapter 2 

explains the detailed methods and algorithms utilized to achieve the objectives described 

in Chapter 1. This includes details, background, and protocols for initial guess generation, 

energy minimization, and molecular dynamics. Chapter 3 describes the parameters of 

interest for this research and reports the results obtained from various initial guess 

generator and minimization optimization methods. It also contrasts the various methods 

and discusses the advantages and disadvantages for each. Chapter 4 describes the methods 

utilized to obtain the long-range energy and pressure corrections and expounds on the 

significance of these calculations for atomistic modeling. Finally, conclusions and 

recommendations are presented in Chapter 5 based on the results obtained. 
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CHAPTER 2. METHODS 

With the pioneering work of Theodorou and Suter in the field of molecular 

simulation, a standardized strategy for generating detailed atomistic models of well-relaxed 

polymers under three-dimensional boundary conditions has been established. Initial 

polymer structures or guesses are generated, relaxed under a tailored forcefield and 

molecular mechanics, and subjected to molecular dynamics for further relaxation and 

diffusion.11-12 Calculation of mechanical, rheological, and thermodynamic parameters from 

final models have proven to agree with experiment even though only few initial parameters 

can be altered other than forcefield parameters to affect predicted parameters.14-15, 18-23 

Unfortunately, this effective and standardized strategy for modelling well-relaxed 

polymers has not been incorporated into commercial software such as Molecular Operating 

Environment (MOE), Maestro Schrodinger, GROMACS, LAMMPS, NAMD, AMBER 

SUITE, etc. In fact, current polymer building software produce structures with significant 

conformational inaccuracies and require the incorporation of the RIS model. It is important 

to highlight that the success and accuracy of a final structure is largely dependent on the 

initial guess for several reasons. Energy minimization does not cause large overall changes 

to the conformational and configurational characteristics of the chains, therefore the 

minimized structure closely resembles the initial structure.24 An inaccurate initial guess is 

likely to result in steep energetic obstacles that are computationally exhaustive during MM 

and MD and may result in parameter predictions that do not coincide with experimental 

data.24 Additionally, the random placement of initial monomers within the periodic 
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boundary is important for more even spacing of chains within the box volume, i.e. to reduce 

the number of structures with volumetric holes or dense areas.25 

2.1 Components of the Initial Guess Generator 

One of the most critical objectives of this investigation was to generate an SVL 

program that would accurately build amorphous glassy polymer initial guesses and could 

be easily adapted for various monomeric units, periodic box sizes, and stereochemistries. 

As such, a significant portion of time was spent perfecting this program, and it was 

accomplished by programming SVL source code in MOE 2019.01.01 (Molecular 

Operating Environment). MOE is a drug discovery software developed by Chemical 

Computing Group that offers ergonomic visualization and simulation/model development 

of various macromolecules such as DNA and proteins and has proven to be highly effective 

in polymer atomistic modelling.7, 26 MOE provided a wide range of useful built-in functions 

and documentation, forcefield options, and relatively efficient atomistic simulation times.  

As shown in the commented code in Appendix A, a master global function, PolyBuild300, 

was constructed that called six local functions: boxstart, monomeradd1, risparams, 

choosestate, residuebackbone, torsionanglechoice, and LREnergyCalc. The next 

subsections will further elaborate on the roles of these functions and the components that 

were necessary for accurate generation of polypropylene and polystyrene initial guesses. It 

is important to note that this investigation mainly involved polypropylene. However, the 

results obtained from this thesis were critical for collaborators at University of South 

Florida to further investigate polystyrene. Polystyrene models were built using the methods 

described in this chapter and were utilized to calculate electrostatic long-range energy 
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corrections with the method described in Chapter 4 since polypropylene is modelled with 

no partially charged atoms. 

2.1.1 Polymerization 

Initial guesses were built in a 3D periodic cell with an orthorhombic P1 spacegroup. 

Box dimensions were equilateral and the volume was modified according to the desired 

initial density. For atactic polypropylene, a density of 0.765g/cc and a molecular weight of 

7169.81g/mol (i.e. 8 chains and 170 monomers) were chosen based on the density and 

moduli experiments conducted by Eckstein et al.27-28 The entanglement weight of 

polypropylene is 7050g/mol as shown in Table 2-1.27 In light of previous simulations 

conducted by Theodorou and Suter on polypropylene, a smaller system of 2 chains, 76 

monomers, and box edge length of 24.075Å was also constructed for comparative 

purposes.14-15, 21-23, 29 The experimental density of atactic polystyrene at 300K was 1.07g/cc, 

therefore that was the density that was chosen for a-PS initial guesses.30 The entanglement 

molecular weight of polystyrene is 17,900g/mol; therefore, 8 chains with 172 monomers 

were created to have chains that were above entanglement weight and to fulfill the density 

requirement.31 
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Table 2-1 Plateau Moduli and Entanglement Molecular Weights of Polypropylene. 

Copyright License is included in Appendix E. 

 

A number of initial monomers representing the first monomer of each chain were 

sequentially inserted into the cell from a monomer database. The database contained only 

one parent monomer which was repeatedly placed in the periodic cell, randomly (normal 

distribution) translated somewhere in the cell, and randomly rotated for each initiating 

chain. For example, if 8 chains were desired, the parent monomer was placed in the periodic 

cell eight times, then each was translated and rotated. Figure 2-1 illustrates the first 

monomers placed in the periodic cell after running the boxstart function which randomly 

inserts, translates, and rotates these initial monomers. 
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Figure 2-1 Depiction of System after Boxstart, a Function that Randomly Inserts, 

Translates, and Rotates Initial Monomers within the Periodic Cell. 

To mimic bulk conditions, growing polymer chains that extended outside of a 

periodic boundary were reflected into the box on the exact opposite side of the box.  

Calling the monomeradd1 function, the parent monomer was iteratively dealt out 

and bonded to each polymer chain instead of polymerizing entire chains at a time. 

Effectively, polymerization of chains occurred synchronously to promote chain 

entanglement and volume homogeneity.  

2.1.2 Chain Configuration Statistics    
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After polyethylene, polypropylene is the most common and simple organic polymer 

since it is composed of only one type of monomer and has only a simple methyl side chain. 

Bond angle and length constants are detailed in Table 2-2 below.32 These angle and stretch 

constants were utilized to construct the parent monomer and the initial guess. 

Table 2-2 Bond Lengths and Angles of Monomers. 

Bond Length (Å) Bond Angle (⁰) 

C-C, 1.529 CCC, 112.7 

C-H, 1.090 CCH, 110.0 

Unlike polyethylene, each polypropylene monomer has a chiral center due to its 

side chain. Atactic polypropylene was used because it is the simplest polymer that forms a 

glass. For isotactic polypropylene and syndiotactic polypropylene, meso to racemic 

proportions are 1:0 and 0:1, respectively. Atactic polypropylene, however, consists of a 

random mixture of meso and racemic diads. Iso-, syndio-, and atactic polypropylene triad 

stereoregularities were reported by Eckstein, A., et al. in their paper on the experimental 

determination of the plateau modulus and entanglement weights for high molecular weight 

polypropylene as shown in Table 2-3.27  
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Table 2-3 Polypropylene Density and Stereoregularities. Copyright is located in 

Appendix E. 

 

Based on these experimental meso and racemic triad proportions, a random number 

generator was developed in Matlab (Appendix C. Tacticity Generator Matlab code) to 

produce a tacticity vector of zeros and ones. The random number vector would produce an 

exact desired proportion of zeros to ones, or meso to racemic stereoregularities—a zero 

would indicate a meso diad and a one would indicate a racemic diad. Once a monomer was 

added to a growing chain, the R/S configuration of the chiral center would remain the same 

as the previous monomer if a zero (meso) was indicated or switch if a one (racemic) was 

indicated in the random number vector. The first diad of each chain was always meso. 

2.1.3 Conformation Statistics: Rotational Isomeric State Model 

Polymer theories are established by utilizing simplified general models that 

incorporate relevant topological and structural characteristics to predict polymer properties 

and phenomena. The accuracy of a particular prediction represents the ability of the 
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simplified model to capture the physics of the polymer.  Figure 2-2 below shows the most 

popular simplified models used for polymer simulations: 

 

 

 

Figure 2-2 Most Popular and Simple Polymer Chain Models. A) Freely-Jointed Chain 

Model, B) Harmonic Bead-Spring Model, C) Rotational Isomeric State Model. 

The simplest model is the freely-jointed chain model, or ‘ideal’ chain model (Figure 

2-2A).12 This model treats the polymer structure as a random walk where a group of 
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sequential skeletal atoms constitute a segment (Kuhn length).33 These segments are 

rectilinear and there are no energetic interactions between them except for in the bonds 

connecting them. The freely-jointed segments can point in any direction independent of 

other segments and can even intersect. The probability of observing a particular vector, �⃑� , 

between the two ends of the freely-jointed chain can be described with a Gaussian 

distribution where the mean square of �⃑�  can be found with the simple formula 

 〈�⃑� 2〉 = 𝑁𝑠𝑏
2 (1) 

where Ns is number of segments and b is length of the segments. The freely-jointed 

chain could be used for a system where interactions are only local.  

Another coarse-grain ideal chain model is the bead-spring model (Figure 2-2B), or 

Rouse model, in which several monomers are grouped into a united atom, or ‘bead’, 

connected by harmonic springs.12 The aim of this model is to capture the increase in 

entropic free energy and decrease in possible conformations as the two ends of the chain 

are pulled apart. The mean square end-to-end distance can be obtained from the product of 

3kBT and the spring constant. 

The rotational isomeric state model (RIS) was first developed by P. J. Flory and 

Volkenstein in the late1960’s even before computational polymer simulations were 

possible and is essentially an adaptation of the statistical Ising model for conformations of 

a polymer chain.34-35 This model is a far more detailed and realistic model as it incorporates 

fixed values for bond angles, lengths (l), and torsional states.12, 34-35 In the last forty years, 

more than six hundred RIS polymer models have been established and have proven to 
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provide the most accurate initial guess conformations; thus, an RIS model was integrated 

into our program.   

The RIS model chooses torsional states based on the torsional state of the adjacent 

backbone bond. 12, 32-34, 36 The conformational energetics of a polypropylene diad are 

dependent on four torsional angles, φi, φi+1, χi-1, χi+1 as illustrated in Figure 2-2C. 

Skeletal diads are comprised of an interdiad bond, φi, which connects monomers with each 

other and an intradiad bond, φi+1, which is already present in the propylene monad substrate. 

The RIS model approximates discrete conformational states corresponding with local 

dihedral potential energy minima every 120o including trans (t), gauche+ (g+), and gauche- 

(g-). Combination of states for polymer diads results in nine conformational isomers, tg+, 

tg-, g+t, g-t, g+g+, g-g-, g+g- and g-g+ that have statistical weights associated with them. At 

times, isomers may be equivalent because of symmetry. The number of states is generally 

three; however, any number of states may be utilized depending on the number of 

conformational potential minima of a diad. For example, a two state model may be used if 

the g- state is not significantly favorable, a five state model (t, t*, g+, g*, g-) may be used, 

or a thirty-six state model with equivalent statistical weights may be utilized and new 

isomers chosen according to a Monte Carlo Metropolis criterion if acceptably low 

minimization cannot be achieved.37 Figure 2-3 illustrates the torsional states associated 

with a five-state model developed by Flory and Suter using Newman projection models 

and the aPP relative statistical weights.19, 32 Matrices that represent the torsional state 

statistical weights are represented in Figure 2-4. 

The χi-1 and χi+1 dihedral bonds illustrated in Figure 2-2C correspond with rotation 

of diad side chains. Since the side chain of polypropylene is a mere methyl group which 
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contains not-so-bulky hydrogens, incorporation of these dihedral bonds with the RIS model 

would not be beneficial. For PS, incorporation of χi-1 and χi+1 torsional states may be 

considered in later research since the phenyl side groups are bulkier. 
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Figure 2-3 Torsional Potential Curve and Torsional States. 

Figure 2-4 depicts the aPP RIS statistical probabilities utilized for this work which 

were obtained from Biskup, Cantow, et al.38 U’ is a matrix that predicts the conformations 

of the intradiad and Um” and Ur” are the statistical matrices that predict the conformations 

of the meso and racemic interdiad bonds, respectively. 32, 34-35, 39 Each column and row 

corresponds with trans, gauche, or gauch- conformations. The variables, η, τ, ω, and τ*, are 

the normalized probability weights associated with a conformation combination, i.e. the 

probability for a particular conformation to follow another conformation. The values for 

these statistical weights are listed in Table 2-4. 
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Figure 2-4 Statistical Matrices Associated with a 3-State RIS Model for 

Polypropylene. 

Table 2-4 Torsion Angles and Statistical Weights of Polypropylene. 

Torsion Angles Statistical Wts., ξ 

t 180-Δφ η 1.0 

g 60+Δφ τ 0.5 

g- -60 ω 0 to 0.05 

  τ* 1.0 

    

The following local functions were developed to implement a three-state RIS model 

into the initial guess generator: Risparams, Choosestate, torsionanglechoice, 

LREnergyCalc. The specific code utilized to run these functions is shown in Appendix A.  

2.2 Simulations 

All simulations were carried out on three Dell Precision 5820 Tower X-Series CPUs 

with 64 GB of RAM and an i-9, 3.7GHz, Intel 10 core processor with a Microsoft Windows 

Operating System. 

2.2.1 Background 

The Schrodinger equation (Equation 2) is the most robust way of describing an 

atomic system as it predicts very detailed dynamic behavior. 
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 𝐻𝛹(𝑅, 𝑟) = 𝐸𝛹(𝑅, 𝑟) (2) 

H is the Hamiltonian which represents an operator corresponding to a physical 

property such as position or momentum, E is energy or the eigenvalues, and Ψ is the wave 

function predicting the positions, for example, of the electrons (r) and nuclei (R).16 The 

Born-Oppenheimer Approximation is applied in molecular simulations and assumes that 

the motion of the nuclei and electrons can be decoupled such that the wave function 

depends only on the motion of the nuclei, and the Schrodinger equation simplifies to 

 𝐻𝛩(𝑅) = 𝐸𝛩(𝑅) (3) 

However, this equation is still difficult to solve computationally, therefore a 

forcefield is fitted and applied to the system.  

2.2.2 Forcefield 

Forcefields are composed of a set of equations and constants related to the molecular 

geometry and the interaction energies between atoms and are utilized to approximate the 

potential energy of a molecular mechanics or dynamics simulation.11-12, 16, 25, 40 The 

potential energy calculation involves summing the nonbonded and the bonded interaction 

energies. The bonded interaction energy component is composed of stretch, bond angle, 

and torsional contributions as shown in Equation 4; these individual components can be 

calculated using Equations 5 to 7. 
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 𝐸𝑏𝑜𝑛𝑑𝑒𝑑 = 𝐸𝑠𝑡𝑟𝑒𝑡𝑐ℎ + 𝐸𝑎𝑛𝑔𝑙𝑒 + 𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 + 𝐸𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 + 𝐸𝑐𝑟𝑜𝑠𝑠𝑡𝑒𝑟𝑚𝑠

+ 𝐸𝑟𝑒𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 

(4) 

 𝐸𝑠𝑡𝑟𝑒𝑡𝑐ℎ = ∑[𝐾𝑎,2(𝑟𝑎 − 𝑟𝑎
0)2 + 𝐾𝑎,3(𝑟𝑎 − 𝑟𝑎

0)3 + 𝐾𝑎,4(𝑟𝑎 − 𝑟𝑎
0)4]

𝑎

 (5) 

 𝐸𝑎𝑛𝑔𝑙𝑒 = ∑[𝐾𝑏,2(𝜗𝑏 − 𝜗𝑏
0)

2
+ 𝐾𝑏,3(𝜗𝑏 − 𝜗𝑏

0)
3
+ 𝐾𝑏,4(𝜗𝑏 − 𝜗𝑏

0)
4
]

𝑏

 (6) 

 

𝐸𝑎𝑛𝑔𝑙𝑒 = ∑∑𝐾𝑐,𝑠[1 + cos (𝑠𝛷𝑐 − 𝛷𝑐,𝑠
0)]

3

𝑠=1𝑐

 (7) 

where r is the equilibrium bond distance, ϑ is the equilibrium bond angle, Φ is the 

equibrium torsional angle, and the force constants are represented by K. Nonbonded 

interaction energies include dispersion/Van der Waals and electrostatic/Coulombic 

contributions and can be calculated with the following formulas. 

 𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 = 𝐸𝑉𝐷𝑊 + 𝐸𝐶𝑜𝑢𝑙𝑜𝑚𝑏 (8) 

 
𝐸𝑉𝐷𝑊 = ∑𝐷𝑒 [2 (

𝜎∗

𝑟𝑖𝑗
)

12

− 3(
𝜎∗

𝑟𝑖𝑗
)

6

]

𝑖>𝑗

 (9) 

 
𝐸𝐶𝑜𝑢𝑙𝑜𝑚𝑏 = (

1

4𝜋𝜖0
)∑

𝑞𝑖𝑞𝑗

휀𝑟𝑖𝑗
𝑖>𝑗

 (10) 

For the VDW potential, De represents the energy of maximium attraction or the well depth 

(also known as ε), σ* equals 1.51/3σ and represents the distance of maximum attraction, and 
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r is the distance between atoms i and j. Lennard-Jones potential curves shown in Figure 2-5 

for HCl and CO characterize these parameters. 

 

Figure 2-5 Lennard-Jones Potential Energy Curves for HCl and CO. 

 For the Coulombic calculation, 𝜖0 is the permittivity of the electric field in a 

vacuum and q represents the point charges for atoms i and j. 

 Other than the initial guess forcefield modification methods described in Section 

3.2.6, the standard OPLS-AA forcefield with the addition of a bromine pseudo-atom was 

utilized; bromine atoms were utilized because of their large size. Bromine atoms replaced 

the two hydrogens at the ends of the substate monomers used for polymerization as shown 

in Figure 2-6. As a new monomer was bonded to a chain unidirectionally, a pseudo-atom 

was discarded. At the end of the polymerization, the pseudo-atoms on the ends were 

replaced with a methyl group and hydrogen atom. The bromine atomic mass was set to the 

mass of a carbon atom, the charge was removed, and the geometry and energetic parameters 
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were modified to equal those of a carbon atom plus 10% in the forcefield to mimic a 

pseudo-atom effect. 

 

Figure 2-6 Bromine Pseudo-Atoms in aPP Monomer. 

2.2.3 Energy Minimization 

Since the nucleus is much more massive compared with electrons, quantum effects 

can be neglected and Equation 4 simplifies to Newton’s Equation of Motion below 

 
−

𝑑𝑈

𝑑𝑅
= 𝑚

𝑑2𝑅

𝑑𝑡2
 (11) 

where R and m represent the position and mass of the nucleus, respectively, and U is the 

potential energy.16 Note that the derivative of the potential energy is simply the force of 

the atom. Molecular mechanics is a subtype of molecular dynamics where the temperature 

is set to absolute zero, hence the kinetic energy of a system is also zero and time 

dependence in Newton’s Equation of Motion (Equation 11) can be ignored. It consists of 

potential energy minimization and aims to find a set of coordinates for a molecule that 
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correspond with a local minimum in the simplified Newton’s Equation of Motion.  Various 

large-scale optimization methods were applied to search for a molecular conformation with 

zero forces on the atoms. Because the time-dependence is ignored in molecular mechanics, 

molecules do not diffuse and final conformations are near to the initial geometry.  

 There were four steps associated with the nonlinear optimization algorithms applied 

during energy minimization in MOE: 

1. Check if any of the convergence criteria have been fulfilled in the iterative step, k;  

xk is a vector of the molecules’ atomic coordinates. Termination of this step occurs 

when any one of the following criteria is satisfied. 

a. Root Mean Square Gradient Test: 

|𝑔𝑟𝑎𝑑 𝑈(𝑥𝑘)| <  𝑒𝐴√𝑁 

where U is the potential energy, eA is a predetermined constant, and N is the number 

of atoms.  

b. Maximum Iterations Test: The maximum number of minimization iterations 

input by the user is reached. 

c. Progress Test: A pre-determined constant, T, representing the number of 

significant figures in the potential value, U(xk), and required to achieve a 

desired accuracy is reached. The following conditions must all be satisfied: 

𝑈(𝑥𝑘−1) − 𝑈(𝑥𝑘) < 𝑇(1 + |𝑈(𝑥𝑘)|) 

|𝑥𝑘−1 − 𝑥𝑘| < 𝑇0.5(1 + |𝑥𝑘|) 

|∇𝑈(𝑥𝑘)| ≤ 𝑇0.33̅(1 + |𝑈(𝑥𝑘)|) 
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2. Choose the vector search direction, pk, indicating a nonlinear optimization 

algorithm based on the current potential gradient of the system. The Steepest 

Descent algorithm is typically first applied in the simulation since it is most 

effective for very high gradients and relaxing the highest energy conformations 

characteristic of an initial guess. Steepest Descent is a first-order optimization 

algorithm based on the observation that the descent of the potential occurs fastest 

in the direction of the negative gradient. Far from the local minimum, convergence 

of the potential occurs fast, but near the local minimum, convergence becomes 

slower and exhibits oscillatory behavior. Once the gradient becomes low enough, 

the Conjugate Gradient method improves upon the Steepest Descent method by 

repeatedly altering the gradient in the direction of the local minimum; this method 

is desirable for strained conformations but is ineffective for convergence. Lastly, a 

Newton-Raphson optimization algorithm, which is the best known optimization 

algorithm, is applied. Its form is described by the following iterative formula where 

H is the Hessian matrix: 

𝑥𝑘+1 = 𝑥𝑘 − 𝐻−1(𝑥𝑘) ∙ ∇𝑈(𝑥𝑘) 

3. Determine the subsequent step size, ak, such that 

 

𝑈(𝑥𝑘 + 𝑎𝑘𝑝𝑘) < 𝑈(𝑥𝑘) 

the step size is a scalar determined by using bicubic interpolation along the search direction. 

4. Let xk equal xk+1 and k=k+1 to repeat the scheme until Step 1 is satisfied. 
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Generally, a minimization normal gradient of 0.00001kcal/mol was applied with a 

maximum number of iterations of 5000 for all trial runs unless otherwise specified. For 

integrated initial guess and minimization trials, the minimization gradient varied 

logarithmically from 0.1 to 100 and maximum iterations were always 100. For 3-step 

minimization, the gradient was 0.01, 0.001, and 0.0001 for every step, respectively. 

2.2.4 Molecular Dynamics 

To conduct molecular dynamics is to solve Newton’s Equation of Motion for a 

thermodynamic ensemble or trajectory of N atoms at a constant temperature or pressure. 

Thermodynamic properties can be computed from molecular dynamics simulations since 

the trajectory over time of the system provides the momentum and configurational 

properties of each atom through a 6N-dimensional hyperspace. The trajectory is 

exploratory in the sense that a conformational search over the system’s available space is 

conducted. However, for the entire conformation space to be searched could theoretically 

take thousands or millions of steps. It is qualitatively assumed that a plateau in potential 

energy indicates a sufficiently relaxed system.  

A general characteristic of polymer fluids is their propensity to respond 

viscoelastically to flow to reduce stress from the flow strain.12 The energy exerted by the 

flow is converted to elastic energy and stored in the polymer chains. When the flow ceases, 

the elastic energy is then used to spring back to the unperturbed state—a macroscopic 

recoil. The time required for bulk conformational rearrangement or relaxation in real 

systems is relatively long—about 5500 nanoseconds for atactic polypropylene at 348K.12, 

28, 41 The Rouse model predicts the “longest relaxation time”, or the time required for a 
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chain to diffuse a length equal to the square root of the chain end-to-end distance. For 

polymers of higher molecular weights, entanglement constraints between polymer coils 

further extends the relaxation time. The reptation theory of polymer dynamics, introduced 

by Pierre-Gille de Gennes, predicts that for entangled chains, the relaxation time is 

proportional to the molecular mass of a chain, τe~M3 and the chain self-diffusivity is related 

by D~M-2.42 For aPP at 348K, τe was 5500ns and the monomeric friction coefficient, ζ, was 

2.51x10-10Ns/m according to Jan van Meerveld and the Likhtman and McLeish (LM) 

method.28  

Polymer chains in some commercial systems are very long, containing thousands 

or even millions of atoms and molecular weights of hundreds of thousands g/mol or more. 

The 5500ns required to relax such a large and real atactic polypropylene system would not 

translate for small systems such as the two, 76 monomer chains or the eight, 170 monomer 

chain systems modelled here. Typically, the duration of a dynamics simulations is about 

1ns to 10ns. Potential energy over time curves from NVT dynamics simulations of 8, 170 

monomer chains of aPP showed that potential energy plateaued even after only about 

100ps. Thus, all dynamics durations were 500ps or 1ns long and sample times were either 

1ps or 2ps. Figure 2-7 illustrates the relaxation of aPP polymer chains during molecular 

dynamics for A) 2 chains of 76 monomers and B) 8 chains of 170 monomer. 
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Figure 2-7 NVT Trajectories. A) 2 Chains of 76 Monomers. B) 8 Chains of 170 

Monomers 

A number of ensemble options are available for molecular dynamics depending on the 

objectives of the study. Typical ensembles include constant volume and energy (NVE), 

constant temperature and pressure (NPT), constant temperature and volume (NVT), and 

constant pressure and enthalpy (NPH). The majority of dynamics simulations conducted in 

this research were NVT simulations at 300K.16, 43 For trial runs consisting of 8, 170 

monomer chains the volume of the box was 124507.55Å3 and for trial runs consisting of 
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2, 76 monomer chains, the volume of the box was 13954.06 Å3. The density utilized was 

0.765g/cc. aPS models were composed of 4 chains of 181 monomers in a box with a volume 

of 125,954.1675 (which is 90% of the experimental density). The aPS models were 

generated to determine the efficiency of the developed LRC method (Chapter 4) to 

calculate the electrostatic energy LRC. Some aPP NPT simulations at 300K and 1.01 bar 

were conducted at 0.765g/cc (100% density) and 0.6885g/cc (90% density) to evaluate the 

volumetric behavior of the system. We expected that the system would expand, however, 

at both density options, the instantaneous volume compressed to a density of 0.873g/cc. 

The Nosé-Hoover-Anderson thermostat equations of motion listed below were utilized for 

all simulations. 

 
�̇� = 𝑉−

1
3𝑴−𝟏𝒑 (12) 

 �̇� = −∇U(𝐫) − χ̇ + �̇�)𝒑 (13) 

 
𝒓 = 𝑉

1
3𝒒 (14) 

 �̇� = 3𝑉�̇� (15) 

 
�̈� = [

2𝐾 − 𝑊

3
− 𝑃𝑉]𝑄𝑃

−1 (16) 

 �̈� = (2𝐾 − 𝑔𝑘𝑇)𝑄𝑇
−1 (17) 

 2𝐾 = 𝒑 ∙ 𝑴−𝟏𝒑 (18) 

 𝑊 = 𝒓 ∙ ∇𝑈(𝒓) (19) 
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CHAPTER 3. PARAMETER AND INITIAL STRUCTURE 

OPTIMIZATION 

Analytical theories of polymers in glass, melt, or solution states are often constructed 

from models of polymer chains which possess important topological, torsional, and 

energetic features. These models have been shown to predict polymer properties which 

compare well with experiment. When a feature from the model results in an accurate 

prediction (compared with experiment), valuable information on the properties and the 

features which control these properties can be gathered and used to rationalize effects and 

behaviors observed in real systems. Accurate parameter acquisition and an understanding 

of the relationship between a model’s features and the resulting properties can facilitate the 

construction of accurate coarse-grain or mesoscale models—simplified models that 

represent monomers as unified atoms or ‘beads’ as an approximation to save computation 

time. Additionally, many predicted properties can illuminate similarities or differences 

between polymers of varying chemical structures. Collaborators at University of South 

Florida have been working in tandem to generate an initial guess for polystyrene, a charged 

and bulky polymer that is difficult to model. The results from our polypropylene models 

have provided insight and a solid foundation to model polystyrene, and comparison of these 

two very different and ubiquitous polymers may provide valuable polymer-specific 

information for future models such as to model the DSA of BCPs.  

3.1 Parameters of Interest 
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There are a number of conformational, energetic, and diffusive parameters that can 

be calculated and compared with experiment to verify the accuracy of atomistic models 

including: cohesive energy density, end-to-end distance, characteristic ratio, radius of 

gyration, potential energy, mean square displacement during MD, and density. 

3.1.1 Shape and Size Parameters 

 The most frequently calculated model property is the unperturbed mean-square 

end-to-end distance of a polymer chain, <r2>, which describes the overall size of a polymer 

chain.12, 30, 33, 44 The unperturbed mean square end-to-end distance is a measure of the 

distance between chain ends or the sum of skeletal bond position vectors. It is rapidly 

calculated using the following equation where n is the number of bonds of length l. 

 

〈𝑟2〉 = 〈(∑𝑙𝑖

𝑛

𝑖=1

)

2

〉

= 2 ∑ ∑ 〈𝑙𝑖 ∙ 𝑙𝑗〉 + ∑〈𝑙𝑖 ∙ 𝑙𝑖〉 =

𝑛

𝑖=1

2 ∑ ∑〈𝑙𝑖 ∙ 𝑙𝑖+𝑘〉 + 𝑛𝑙2
𝑛−𝑖

𝑘=1

𝑛−1

𝑖=1

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 

(20) 

 The simplest analytical model for polymer chains is the feely-jointed chain where 

chains have n links of length l that are linearly fashioned and have no bond angle 

restrictions. The mean square end-to-end distance for such chains would be the product of 

n and l2 where subscript f represents free rotation. 

 〈𝑟𝑓
2〉 = 𝑛𝑙2 (21) 



 36 

The characteristic ratio, C∞ is a constant that describes the flexibility or stiffness of 

the polymer chains and depends on the bond angles, torsional states, and foliage of the 

chains. The characteristic ratio is the ratio between the observed mean square end-to-end 

distance and the freely jointed chain mean square end-to-end distance. 12, 30, 33, 44 Typical 

polymer characteristic ratios range from about 5.0 to 10.0. For atactic polypropylene, the 

characteristic ratio is approximately 6.0.33, 45  

 
𝐶∞ =

〈𝑟2〉

〈𝑟𝑓
2〉

 (22) 

A Gaussian distribution of end-to-end distance vector probabilities can be obtained 

with the following equation: 

 
𝜌𝑛(𝑟) = (

3

2𝜋〈𝑟2〉
)
1.5

exp(
−3𝑟2

2〈𝑟2〉
) (23) 

During a molecular simulation, polymer chains are deformed causing the end-to-

end distance vector distribution to assume less probable values, i.e. causing a rubber/elastic 

response.12 The mean square radius of gyration, Rg
2, is a metric that is experimentally 

obtained through elastic scattering methods and can be readily calculated for polymer 

models. 12, 30, 33, 44 The radius of gyration is the sum of the positional covariances of 

individual particle masses from the molecule’s center of mass. The mean square radius of 

gyration is not only valuable for molecular simulations because it can be compared with 

experimental data, but also because it gives information about the coil size and shape of 

the polymer chain. If the radius of gyration is very small, this would indicate that the 

polymer chain has collapsed. The radius of gyration can be calculated using Equation 24. 
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〈𝑅𝑔

2〉 =
1

(𝑛 + 1)2
〈∑ ∑ (𝒓𝑖 − 𝒓𝑗)

2

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=0

〉 (24) 

For long amorphous chains, it is related to the end-to-end distance, r, by 

 
〈𝑅𝑔

2〉 =
〈𝑟2〉

6
 (25) 

  Due to the simplicity of the freely jointed chain model, a parameter we have termed 

the collapse ratio, CR, has been formulated which is similar to the characteristic ratio. This 

parameter is a ratio of the mean square end-to-end distance to the mean square radius of 

gyration and gives us better insight of the size of the chains. 

 
𝐶𝑅 =

〈𝑟2〉

〈𝑅𝑔
2〉

 (26) 

Appendix B. Rg
2, LRC, and CED Calculation Code depicts the specific code and 

formulas utilized to calculate the mean square end-to-end distance, mean square radius of 

gyration, characteristic ratio, and collapse ratio. 

A significant challenge for molecular simulations is capturing the accurate 

structural components of a polymeric system. Previous simulations have had difficulties 

producing chains with accurate radii of gyration, and it is a problem that we intended to 

tackle in this research. Table 3-1 lists average radii of gyration values for 60 isolated chain 

initial guesses at varying degrees of polymerization. Chains were built in 

1000Å×1000Å×1000Å periodic boxes. Radii of gyration were divided by the molecular 
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weight to compare between chain averages with differing degrees of polymerization. The 

purpose of generating these isolated chains was to determine if the error associated with 

the mean square radius of gyration was due to the RIS model or due to system density or 

forcefield. Using the aPP RIS model reported by Biskup, Cantow, et al., a percent error of 

about 11% was associated with the radii of gyration averages and an error of about 29% is 

associated with the characteristic ratios. Increasing the trans proportion (represented by η) 

from 0.9 to 1.4 and decreasing the gauche minus proportion (represented by τ) from 0.5 to 

0.4 resulted in improved isolated chain mean square radius of gyration and characteristic 

ratio values as shown by Table 3-1. 

Table 3-1 Isolated aPP Chain Structural Values 60 Initial Guesses were Averaged at 

Varying Degrees of Polymerization. 

  Experiment Biskup, Cantow RIS Model 
Initial Guess,  

Modified RIS Model 

Degree Polymerization 555 76 170 555 76 170 555 

Molecular Weight (g/mol) 23300 3214.2 7169.8 23371 3214.2 7169.8 23371 

Rg
2 Whole Chain (Å2) 2672.92 274.24 632.86 1982.34 318.9 662.24 2219.07  

Rg/(MW)0.5 0.3387 0.2921 0.2971 0.2912 0.315 0.3039 0.3081  

Percent Error (%) - 11.2641 9.3916 11.592 3.1799 6.9375  5.4718 

First and Second Half p-

Values 
- 0.0948 0.3846 0.8401 0.6751 0.8814  0.0423 

Characteristic Ratio 

(<r2>/nl2) 
6.1 4.49 4.19 4.34 5.84 5.02  5.70 

Collapse Ratio 

(<r2>/<Rg2>) 
6.02 5.75 5.2 5.13 6.17 5.56  6.02 
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3.1.2 Density and Molecular Weight 

Density is an important parameter to control and monitor since it can significantly 

impact the resulting structures. Density is one of the few parameters that can be altered to 

control the properties of an initial guess. For NVT simulations, the density is controlled by 

setting the volume of the periodic box to achieve a final density equal to the experimental 

density. Most of the molecular simulations including fifteen of the seventeen methods 

depicted from Figure 3-3 to Figure 3-13. The length and quantity of chains also 

significantly affects the overall shape, size, and entanglement of the system—generally, 

heavier and a greater number of chains results in a system that is less homogeneously 

entangled and more difficult to relax. 

3.1.3 Diffusion and Mean Square Displacement 

Self-diffusivities, D, are rates that gauge the relative average diffusion and the 

entanglement of chains. A highly entangled polymer system will diffuse less during 

molecular dynamics, and good entanglement is a desirable quality for accurate model 

systems.42, 46 Though, the duration of all our molecular dynamics was only between 0.5-

1.0ns such that diffusivities could not be compared with experiment, self-diffusivities of 

the various models proposed could be compared and shed light on the relative entanglement 

a particular model provided. Self-diffusivities were calculated from the mean-square 

displacement (MSD) of chains after MD using the equations below. 

 

𝑀𝑆𝐷 ≡ 〈|𝑥(𝑡) − 𝑥(0)|2〉 =
1

𝑁
∑|𝑥𝑖(𝑡) − 𝑥𝑖(0)|

2

𝑁

𝑖=1

 (27) 



 40 

 
𝐷 =

𝑀𝑆𝐷

2𝑛𝑡
 (28) 

The n in Equation 28 represents the number of dimensions in Euclidean space. For 

mean square displacement calculations, the 3-dimensional positions of the atoms of each 

chain after a given minimization protocol (t=0) were subtracted from the 3-dimensional 

positions of the same atoms after 500ps of molecular dynamics. These differences were 

squared, summed, and divided by the number of atoms, N, for each dimension (x, y, z) to 

obtain the mean-square displacement.  

3.1.4 Energetic Parameters 

The cohesive energy, Ecoh, is a parameter that represents the energy required to 

remove a single chain from the molecular system and make it a completely isolated chain.12, 

21, 30, 33, 44, 47 In our model systems, a single chain was surrounded by other chains, and the 

cohesive energy was the non-bonded energy between each chain and the surrounding 

chains excluding itself. For aPP, the cohesive energy was the energy of non-bonded 

interactions and was obtained by subtracting the total energy of the system of chains, Utot, 

from the sum of the energy of the individual or isolated chains, Utot,isolated. 

 𝐸𝑐𝑜ℎ = 𝑈𝑡𝑜𝑡,𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 − 𝑈𝑡𝑜𝑡 (29) 

 The total isolated chain energy was calculated by iteratively selecting chains and 

setting all other chain energies to ‘inert’, then calculating that chain’s potential energy 

while cutoff was disabled. Each isolated chain energy was summed to give the total isolated 

chain energy. 
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The cohesive energy density, CED, is the cohesive energy per unit volume of mols 

(e.g. J/cm3), and the Hildebrand solubility is simply the cohesive energy density squared. 

 
𝛿 = (

𝐸𝑐𝑜ℎ

𝑉
)
2

 (30) 

We postulated that the cohesive energy density would be related to the 

entanglement of the system, since the more entangled a system, the more each chain 

interacts with its surroundings and increases in cohesive energy. Figure 3-1 describes the 

relationship between 3-dimensional mean square displacement—which has been used as a 

metric for entanglement in previous experimental research—and cohesive energy density 

for twenty-nine aPP structures created using the ‘Original’ method, which is the normative 

method described in Chapter 2.42, 46-47 If this postulate were true, we would expect that 

there would be a downward trend; that is, as mean square displacement of the chains 

increases, cohesive energy density would decrease. As shown in Figure 3-1, there is indeed 

a slight downward trend as mean square displacement increases for each dimension 

indicating that with greater cohesive energy density a system is more entangled. 
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Figure 3-1 CED as a Metric for Entanglement 

Given that cohesive energy density was inversely related to mean square 

displacement and directly related to entanglement, we also postulated that the cohesive 

energy density would be related to the mean square radius of gyration because the more 

entangled the chain, the more extended we predicted the chains to be rather than collapsing 

into themselves. If this postulate were true, we would expect a positive correlation between 

cohesive energy density and mean square radius of gyration. Figure 3-2 depicts plots 

relating the mean square radius of gyration and cohesive energy density values of twenty-

nine aPP structures generated with the ‘Original’ initial guess method and subjected to MM 

and MD procedures described in Chapter 2. Figure 3-2A) has data points for every chain 

in every structure. Since only a single cohesive energy is associated with each structure 

and each structure has eight chains, groups of eight data points share the same cohesive 
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energy density. The mean square radius of gyration for the eight chains of a given structure 

were averaged and plotted against the structure’s corresponding CED in Figure 3-2B). In 

both plots, there seems to be a slight upward trend. However, after further statistical 

analysis, this trend is not significant. Ergo, CED is not directly related with mean square 

radius of gyration. This correlation is a function of the chain morphology. For example, a 

crystalline chain is likely to have a more significant correlation between these variables 

because an elongated chain can maximize CED in a crystalline morphology. However, this 

correlation is not useful for the amorphous chains studied here.  

A high value of total potential energy of a system after energy minimization and 

1.0ns of NVT MD may indicate that the structure is unfavorable and may be stuck in an 

unfavorable energy well. Potential energy should be monitored throughout the simulations. 
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Figure 3-2 Relationship between Rg
2 and CED 
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3.2 Initial Guess Optimization 

Generating an accurate initial guess is vital for molecular simulations because, as 

discussed in the previous chapter, minimization drastically affects the energetic 

components of the structure but only marginally affects the conformational components of 

the structure.24 Thus, generating an initial guess with as accurate as possible structural 

components was critical for further polymer property acquisition and for final models to 

be accurate. Six initial guess generation methods were designed and compared to the 

‘Original’ method described in Chapter 2 and experiment to define an optimal initial guess 

generator. These initial guess generation methods included reducing the density, applying 

minimization during initial guess generation, multi-step minimization, and updating the 

density during polymerization (Constant Density method). Figure 3-3 to Figure 3-8 depict 

parameters obtained after applying these initial guess methods, energy minimization, and 

NVT molecular dynamics.  Structure filtration and forcefield optimization methods were 

also investigated and resulted in seventeen total candidates to compare as shown from 

Figure 3-9 to Figure 3-13; these depict parameters obtained after energy minimization since 

MD did not significantly improve parameters (Table 3-2). The difference between the 

parameters obtained after MM and MD for the first four methods utilized was very small 

(less than 4%, Table 3-2), and the computational cost of running MD is much greater. 

Additionally, the trends observed in the parameters were the same before and after 

dynamics. Therefore, the structures generated using the remaining two methods were only 

subjected to minimization and compared to post-MM structures associated with the other 

initial guess methods. The mean square displacement (and diffusion) was only compared 

amongst the first four methods, since these parameters can only be evaluated after MD. 
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Figure 3-3 Post-Dynamics Rg
2 Comparison for Various Initial Guess Methods, 

Average over all Structures and Chains. 

 

Figure 3-4 Post-Dynamics Collapse and Characteristic Ratio Comparison for Various 

Initial Guess Methods 
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Figure 3-5 Post-Dynamics Chain Half Rg
2 Comparison for Various Initial Guess 

Methods 

 

Figure 3-6 Post-Dynamics Chain Half Rg
2 p-Value Comparison for Various Initial 

Guess Methods 
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Figure 3-7 Post-Dynamics CED Comparison for Various Initial Guess Methods 
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Guess Methods 

201.6

295.3

157.1

131.4

67.2

158.8
149.7 152.9

137.7

60

110

160

210

260

310

C
o

h
es

iv
e 

E
n
er

g
y
 D

en
si

ty
 (

J/
cc

)

Initial Guess Method

13.2

15.4

26.6

12.8
11.8

12.8

15.6

13.3

15.1

28.4

12.0 11.8
12.7

15.6

13.2

15.1

26.9

12.6 12.3
13.5

15.5

8.0

13.0

18.0

23.0

28.0

33.0

Original (100%

Density)

90% Density 55%  Density 3stepMM gtest:1.0 Mixed (gtest:

200,10,1)

Constant

Density

M
S

D
 (

Å
2
)

Initial Guess Method

x y z



 49 

 

Figure 3-9 Post-Minimization Rg
2 Comparison for Various Initial Guess Methods 

 

Figure 3-10 Post-Minimization Collapse and Characteristic Ratio Comparison for 

Various Initial Guess Methods 
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Figure 3-11 Post-Minimization Chain Half Rg
2 Comparison for Various Initial Guess 

Methods. 

 

Figure 3-12 Post-Minimization Chain Half Rg
2 p-Value Comparison for Various 

Initial Guess Methods. 
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Figure 3-13 Post-Minimization Cohesive Energy Density Comparison for Various 

Initial Guess Methods. 
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3.2.1 3-step Minimization 

Previous research conducted by Theodorou and Suter reported that a 3-step 

minimization was required after the generation of the initial guess.14, 21, 23 Later research in 

polystyrene even recommended a 41-step minimization process. 37The 3-step minimization 

process involves application of three modified forcefields and the steps/forcefields are 

described below: 

1. Dispersion parameters, ε, for hydrogen atoms were set to zero and particle size 

parameters, σ, for all carbons were set to one-half their normal value. The cutoff 

was set to the smallest σ value associated with a carbon atom, and the system 

was minimized to a gradient magnitude of 0.001 kcal/mol∙Å. Effectively, chains 

were ‘phantom-like’ and able to pass through each other, relaxing out the worst 

conformation states. 

2. Same as Step 1 except that σ values for carbons were restored to their normal 

values. 

3. Apply the normal forcefield and minimize at a Euclidean norm gradient of 

0.0001. 

This method provided a small improvement in Rg
2, C∞, CR, CED, and MSD compared with 

the ‘Original’ method. 

3.2.2 Density and Asymmetry of Chains 

A critical component of initial guess generation is that all the chains be polymerized 

synchronously such that chains are sufficiently interwoven and proper entanglement can 
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be realized. However, a significant issue arises when the chains are about 75% 

polymerized. Since the periodic cube volume is held constant throughout the duration of 

the polymerization and the molecular weight of the chains increases to reach the final 

desired density at the end of the initial guess generation, this means that the free volume 

has decreased. At about 75% polymerization, the ends of the chains [the remaining 25%], 

consequently assemble into compact conformations.25 This would result in the first portion 

of each chain being longer than the last portion, and chains growing asymmetrically. This 

can be proven by comparing the mean square radius of gyration of each half of the chains 

and quantifying this chain half difference with a p-value.  

The chain end collapse phenomenon can be attributed to the self-avoiding nature of 

the chains and forcefield.25 If the self-avoiding feature of the forcefield is removed by 

setting the dispersion energy parameter, ε, to zero, ‘phantom’ chains would result which 

have the ability to intersect or superpose other chains. The collapse of chain ends may 

occur to some extent in real polymerizing systems; however, polymerization in real 

systems occurs at a much slower rate and ends have more time to relax as they grow.  

Additionally, the observed mean square radius of gyration values were significantly lower 

than experiment, especially at higher densities. As such, extension of the second halves of 

the chains (by improving chain symmetry) may improve the mean square radius of gyration 

of the whole chain. 

The molecular weight of the chains may have a significant impact on mean square 

radius of gyration and symmetry of chains. Previous research reported by Theodorou on 

aPP only included very small models (2 chains of 76 monomers), and the mean square 

radius of gyration was about 20% lower than the experimental mean square radius of 
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gyration (Theodorou: 295.84 Å2, Experimental: 368.73). 14-15, 21-23, 29 Molecular weights 

above the molecular entanglement weight such as the 8 chains of 170 monomers systems 

constructed in this modelling research resulted in even greater difficulties. 

To avoid this collapse of chain ends, USF collaborators proposed building the aPP 

initial guess at very low density (such as 10% of experimental density) such that enough 

free volume would be available for the chain ends to grow, then shrinking the periodic box 

to reach experimental density using NPT molecular dynamics. However, as shown 

qualitatively in Figure 3-14, this method resulted in minimal entanglement, since the act of 

building the chains at experimental density promoted entanglement, and chains built at too 

low of a density collapsed into themselves before being brought together at experimental 

density. As a result, parameters such as potential energy, cohesive energy, radius of 

gyration, and characteristic ratio were far from experimental values which indicated a very 

unstable and inaccurate final structure. 

  

Figure 3-14 Shrinking Periodic Cube 

A 

B 
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Figure 3-14A depicts an initial guess (2 chains of 76 monomers each) that was 

generated at experimental density, 0.765g/cc. There is clearly some entanglement. Figure 

3-14B depicts the same initial guess built at 10% of the experimental density, 0.0765g/cc. 

The extent of asymmetry of aPP chains was examined by statistically analyzing the 

mean square radius of gyration of 29 structures of 8 chains with 170 monomers per chain 

at 100% density. Thus, 29 structures with 8 chains per structure resulted in 232 mean square 

radius of gyration data points from each individual chain to compare. Mean square radius 

of gyration values were calculated for each half of all the chains as well as the mean square 

radius of gyration of each whole chain. The three columns of Table 3-3 report the statistical 

values obtained from comparing chain halves after initial guess generation, energy 

minimization, and NVT molecular dynamics. As suspected, the average of the first half of 

all the chains was significantly greater than the second half of all the chains, and p-Values 

were below an alpha confidence of 0.05 indicating that each chain half was significantly 

different from each other and that the second half of each chain was collapsing into itself. 

Neither energy minimization nor dynamics ameliorated this effect. 
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Table 3-3 Lower Density Method Statistical Values. Twenty Structures were 

Comparison of Varying Densities and Relaxation Stages. 

  Initial Guess After MM After MD 

  

100% 

Density 

90% 

Density 

55% 

Density 

100% 

Density 

90% 

Density 

55% 

Density 

100% 

Density 

90% 

Density 

55% 

Density 

Whole Chain:            

Mean 540.08 559.74 518.09 566.80 551.00 564.61 586.97 572.89 586.39 

stdev 238.31 240.10 242.87 232.19 242.49 237.17 229.30 258.94 261.20 

stdev:Mean 0.44 0.43 0.47 0.41 0.44 0.42 0.39 0.45 0.45 

Median 525.80 534.50 476.31 534.42 500.98 538.05 572.83 506.09 560.34 

Skew 1.12 0.94 1.23 1.19 1.33 0.90 1.17 1.37 0.83 

Chain Halves:            

Mean, First 268.60 286.59 280.83 295.72 307.14 289.56 312.13 321.79 296.05 

Mean, Second 231.51 269.61 227.62 261.30 254.88 278.52 278.66 272.26 299.57 

p-Values 0.0132 0.2576 0.0009 0.0197 0.0014 0.4533 0.0303 0.0052 0.8394 

% decrease in 

length 
-0.16 -0.06 -0.23 -0.13 -0.21 -0.04 -0.12 -0.18 0.01 

Furthermore, p-Values decreased as the sample size [number of structures 

compared] increased, which occurs only when the null hypothesis is false. This further 

validated our hypothesis that initial guess chain halves were significantly different and that 

the second halves of the chains were collapsing during initial guess generation. Table 3-4 

illustrates the decrease in p-values as the number of structures compared (or sample size) 

increased. 
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Table 3-4 p-Values and Sample Size 

Number 

of 

Structures 

Initial 

Guess After MM After MD 

5 0.95956 0.58593 0.88287 

6 0.93925 0.66919 0.90465 

7 0.77442 0.93605 0.93437 

8 0.63331 0.76385 0.54861 

9 0.81039 0.71644 0.87517 

10 0.84573 0.70217 0.90719 

11 0.54804 0.52653 0.88142 

12 0.17347 0.17022 0.34319 

13 0.16462 0.15497 0.33881 

14 0.15927 0.16873 0.33498 

15 0.07552 0.08721 0.17054 

16 0.09792 0.11884 0.24457 

17 0.06984 0.07862 0.18559 

18 0.02529 0.03057 0.07286 

19 0.01181 0.01877 0.04553 

20 0.00813 0.01299 0.03514 

21 0.00336 0.00703 0.01985 

22 0.00170 0.00354 0.00969 

23 0.00085 0.00150 0.00440 

24 0.00122 0.00201 0.00456 

25 0.00061 0.00106 0.00252 

26 0.00054 0.00118 0.00260 

27 0.00029 0.00059 0.00127 

28 0.00088 0.00143 0.00378 

29 0.00133 0.00185 0.00573 

In order to satisfy both initial guess generation requisites (the chain entanglement 

effect of the ‘Original’ method and the symmetric chain effect of a very low density model), 

we built the initial guesses at varying densities to determine a moderate and optimal 

density. The goal was to generate chains that were both entangled and more symmetric by 

allowing the chain ends to extend at a moderately lower density and as a result also increase 

the total, whole-chain mean square radius of gyration. 20 initial guesses were generated at 
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90% density and 55% density. Table 3-3 compares mean square radius of gyration 

statistical values at 100%, 90%, and 55% density. During the initial guess generation phase, 

there was a small increase in Rg
2

 of the whole chains from 100% density to 90% density 

and asymmetry decreased as depicted by the p-values. P-values below the α value of 0.05 

indicated a significant difference between each half of the chains. Then from 90% to 55%, 

Rg
2 and p-values worsened. This may indicate that the density reduction was somewhat 

beneficial for the structural components of the initial guess, but at too low of a density, the 

entire chain lengths collapse due to no interactions between other chains. Additionally, any 

positive effect on Rg
2 at 90% in the initial guess is lost after minimization and dynamics. 

Therefore, these simulations show that density control had a minimal effect on the shape 

and size of the aPP system, and alternative methods (described in later sections) were 

required. 

The value associated with the 100% density was 0.765 g/cc at 300K and was 

obtained from Eckstein, et al. This density is lower than the extrapolated density of 

0.8682g/cc at 300K obtained from Mark E. James’ polymer handbook.21, 27, 30 Table 3-5 

reports the results of NPT simulations at various initial densities. Final densities were all 

similar to each other and the experimental density which indicated that the forcefield was 

surprisingly accurate. 
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Table 3-5 Densities Observed after NPT Simulations. 

8 Chains, 170 Monomers   

  

Initial Density 

(g/cc) 

Final Density 

(g/cc) 

Initial Boxedge 

(Å) 

Final Avg. 

Boxedge (Å) 

100pDensity 0.765 0.8734 49.967 47.7696 

90pDensity 0.6885 0.8744 51.719 47.7515 

     

2 Chains, 76 Monomers    

  
Initial Density 

(g/cc) 

Final Density 

(g/cc) 

Initial Boxedge 

(Å) 

Final Avg. 

Boxedge (Å) 

90pDensity 0.6885 0.8542 24.936 23.2061 

100pDensity 0.765 0.8607 24.075 23.1477 

114pDensity 

(experiment) 0.873 0.8697 23.038 23.0673 

130pDensity 0.9945 0.8671 22.059 23.0899 

140pDenisty 1.071 0.8675 21.521 23.0871 

Though the density had virtually no effect on the structural components (i.e. Rg
2, 

C∞, and CR), it did have a large effect on cohesive energy density, CED, and mean square 

displacement, MSD, as shown by Figure 3-7, Figure 3-8, Figure 3-13, and Table 3-6. 

Fifteen structures (2 chains of 76 monomers) were generated at various densities and 

subjected to minimization and NVT dynamics. Table 3-6 below shows the CED values 

obtained from applying these densities. 
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Table 3-6 Post-MD (NVT) Atactic Polypropylene Parameters Obtained from 15 

Structures of 2 Chains and 76 Monomers at Various Densities. 

  

Density 

(g/cc) CED (J/cc) 

Ds (cm2/s) 

× 10-7 Rg
2 (Å2) Rg/(MW)0.5 Error 

Chain 

Half p-

values 

Biskup, 

Cantow 

RIS 

Model: 

0.688 145.40±5.07  17.44±1.29 222.95±29.07 0.2634 0.234 0.3033 

0.765 180.70±5.63  11.44±0.89 224.38±27.68 0.2642 0.2301 0.5501 

0.873 249.53±6.30  5.09±0.29 215.51±28.95 0.2589 0.2551 0.2603 

0.995 309.22±9.60  2.24±0.14 231.71±37.57 0.2685 0.2105 0.0957 

1.071 255.08±16.10 1.71±0.15 233.47±31.52 0.2695 0.2059 0.0016 

1.148 187.56±18.21 1.72±0.14 241.71±46.28 0.2742 0.1851 0.0249 

Modified 

RIS: 

0.765 152.62±5.98 10.83±0.82 294.24±52.39 0.3026 0.0742 0.0941 

0.873 212.20±4.61 5.00±0.42 226.21±23.46 0.2653 0.2251 0.0994 

0.995 263.52±10.07 2.34±0.15 238.03±32.71 0.2721 0.1943 0.0102 

 

The above data show that the density that offers the best CED values was a density 

of 0.995g/cc which is well above either referred density (0.765g/cc or 0.873g/cc). 

Experimental values for CED are between 282.24 J/cc and 353.44 J/cc, therefore utilizing 

a density of 0.995g/cc would result in a zero CED percent error.44 Interestingly, even higher 

densities, such as 1.071 and 1.148g/cc also yield somewhat reasonable CED values. The 

diffusivity values (which describe chain entanglement) decreased with increasing density, 

since at higher densities, chains are able to entangle more. Surprisingly, varying the density 

had no effect on the mean square radius of gyration. p-values generally decreased with 

increasing density. This result make sense because at high density and low free volume, 

chain ends will collapse. 
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3.2.3 Monomer Minimization 

Another approach to creating structurally accurate initial guesses was to integrate 

global minimization into the initial guess generation code that would iteratively minimize 

the chains after a monomer was dealt to each chain. The idea was to simultaneously choose 

the lowest energy conformation for the growing chain ends as well as for the chains 

surrounding the ends using global minimization; as the density increases during 

polymerization, the previously self-avoiding and collapse effect of the chain ends would 

be attenuated since the surrounding chains would also be relaxing and creating free volume 

for the growing chains. Tuning of the minimization to a specified gradient produced initial 

guesses with varying total potential energies, radii of gyration, self-diffusivities, and 

cohesive energy densities. Therefore, a preliminary investigation was conducted to choose 

the optimal gradient for initial guess generation. The methods are differentiated by the 

target for the Euclidean norm of the energy gradient (in kcal/mole Å) during a single or a 

multistage minimization after each monomer is added. We use the term gtest to indicate 

this gradient targe in this work.  The following gradients were tested and two initial guesses 

were generated for each: 0.1 kcal/mol, 1.0 kcal/mol, 10.0 kcal/mol, 100.0 kcal/mol. 

Additionally, a ‘Mixed’ gradient method was utilized which included a gradient of 200.0 

kcal/mol for every one of the first 34 monomers, 10.0 kcal/mol for every one of the next 

68 monomers, and 1.0 kcal/mol for the last 34 monomers. The goal of this minimization-

during-polymer growth hybrid model was to show that gradient tuning could produce more 

symmetric chains or be at least the same as methods that used only a gradient of 

0.1kcal/mol, 1.0kcal/mol or 10.0kcal/mol. Large minimization gradients would be applied 

only to relax out large conformational instabilities and small minimization gradients would 



 62 

be applied at high densities when the chain ends begin to collapse into themselves. Figure 

3-15 shows the parameters obtained for each gradient category. Just based on the 

comparison of two structures, there was not much difference between the gradients, 

‘Mixed’, 0.1kcal/mol, 1.0kcal/mol, 10.0kcal/mol, but there was a significant difference 

between 100.0kcal/mol and the others. Therefore, for further investigation the ‘Mixed’ and 

1.0 gradients were employed. Further trials that applied this method were on systems of 8 

chains and 170 monomers and the maximum number of iterations was 100. 
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Figure 3-15 Preliminary Gradient Determination for Polymerization-Minimization 

Hybrid Method. A) Mean Square Radius of Gyration Comparison. B) Cohesive 

Energy Density Comparison. C) Potential Energy Comparison.  
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 The whole-chain Rg
2, C∞, CR, CED, and MSD were about the same for the ‘Mixed’ 

and ‘gtest:1’ (minimization gradient of 1.0kcal/mol) as the ‘Original’ method. However, 

there was significant improvements in the symmetries of the chains as shown Figures 3-5, 

3-6, 3-11, and 3-12 using these methods. After the constant density method (which did not 

have acceptable values for all other parameters of interest), the ‘gtest:1’, ‘Mixed’, and 

‘Forcefield: 1%σ, cutoff:2Å’ methods offered the best chain symmetry options. 

3.2.4 Constant Experimental Density 

Due to the asymmetry of the chains and the effect density has on the energetic 

components of the structure, a method which updates the density throughout the 

polymerization process was developed. This method would alter the size of the periodic 

box every time a new monomer was bonded to maintain experimental density throughout 

the entire polymerization process. The aim was to promote entanglement at the beginning 

of the chains and expand the box as the chains grew larger and began to self-avoid. As 

shown in Figures 3-3 and 3-9, the ‘Constant Density’ method did not have a positive effect 

on the structural components of the guess since this method produced the lowest Rg
2 and 

CR values of all the methods. It also resulted in a relatively low CED and high final potential 

energy. However, it did provide the best symmetry as represented by the chain half Rg
2 

values and p-values depicted in Figures 3-5, 3-6, 3-11, and 3-12. The fact that there was 

very good symmetry and a low collapse ratio indicates that the self-avoiding problem was 

exacerbated by applying this constant density method. The main problem with this method 

was that the initial monomers were concentrated within a smaller box volume at the 

beginning of the polymerization, resulting in a dense area and less homogeneity throughout 

the box during the polymerization. 
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3.2.5 Structure Filtration 

Because of the challenges associated with improving the structural components of 

the initial guess, a filtration method was formulated as a supplemental method to filter out 

outliers and chains with Rg
2 values that were below a criterion value. Once a chain had 

grown completely, Rg
2 values were calculated, and chains were accepted if they were 

within the predetermined range. This range was decided based on the statistical parameters 

associated with the Rg
2 distribution of the initial guesses generated using a base method, 

such as skew, median, mean, and standard deviation. In other words, data acquired after 

the application of a base method underwent a statistical analysis to determine an Rg
2 range 

that would improve the statistical parameters of the distribution such as the total Rg
2 mean.  

Figure 3-16 depicts the histograms of the base method data and statistical parameters 

associated with a particular criterion range. This was used to preemptively decide the 

filtration range. Figure 3-16A) depicts the Rg
2 distribution of the base method (in this case, 

the Original Method), 3-16B has a filtration range of 250Å<Rg
2, and 3-16C has a range of 

260Å<Rg
2<1100Å.  
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Figure 3-16 Original Method Rg
2 Distribution and Statistical Parameters. Sample size 

was 64 chains for A, B, and C. 

Mean: 551.0 

Median: 517.6 

Skew: 1.81 

SD: 251.0 

Mean: 548.7 

Median: 517.6 

Skew: 1.477 

SD: 265.3 

Mean: 486.5 

Median: 478.6 

Skew: 0.38 

SD: 163.67 



 67 

A distribution with a skew below -1.0 or above 1.0 is considered severely skewed, 

and normative statistical analysis methods cannot be utilized.48 The base method 

distribution (Figure 3-16A)) was severely skewed and the standard deviation was high 

(typically the standard deviation would be about one-third the mean). Discarding values 

below 250Å, a threshold that was one standard of deviation below the mean of the original 

data with a sample size of two hundred and thirty-two, resulted in an even worse skew 

though mean and SD were improved. Filtering out high Rg
2 outliers (Figure 3-16C)) 

resulted in a worse mean; however, the median is much closer to the mean and skew and 

SD are great. This is the most normal distribution.  

Based on this preliminary analysis, the Filtration method did not look promising 

for improving the structural parameters. However, as shown in Figure 3-9 and Figure 3-10, 

application of a filter with a criterion range of 260Å< Rg
2<1100Å resulted in a noticeable 

improvement in Rg
2, C∞, and CR. There was no improvement in CED. For other promising 

methods, filtration was applied complimentarily. Filtration did not improve the Rg
2 values 

for initial guesses generated using the ‘Mixed’ method but did improve Rg
2 for initial 

guesses generated using the ‘Forcefield Modification’ method. Importantly, filtration had 

a much more significant effect on the polystyrene systems investigated by our 

collaborators. This may be due to the amount of skew already present in the base method 

data.  

3.2.6 Forcefield Modification Methods 

Forcefields, which are equations and constants utilized to set molecular geometries 

and forces between atoms (See Section 2.4), are normally applied to polymer systems 
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during minimization and dynamics. Furthermore, forcefield modification is typically 

intended to affect the minimization and dynamics processes. Little research has been 

conducted to optimize a forcefield for the initial guess generation. We developed an initial 

guess method that applied a modified forcefield to the initial guess generation process. 

Specifically, changes were made to the particle size, σ, the dispersion energy parameter, ε, 

and the periodic boundary cutoff range (a third order spline was applied).  These 

modifications were applied to all carbon and hydrogen atoms and bromine pseudo-atoms. 

Modifications are tabulated in Table 3-7 below.  

Table 3-7 Initial Guess Forcefield Modifications. 

  

Base and 

Supplementary 

Methods σa εa cutoff Name 

1 Original 10% - 1Å-2Å Forcefield: 10%σ, cutoff:2Å 

2 Original 1% - 1Å-2Å Forcefield: 1%σ, cutoff: 2Å 

3 Original 1% - carbon 0.9*rb-r Forcefield: 1%σ, cutoff: r 

4 Mixed 1% - 1Å-2Å Mixed+Forcefield: 1%σ, cutoff:2Å 

5 Original 0.1% - 1Å-2Å Forcefield: 0.1%σ, cutoff:2Å 

6 Rg
2 Filtration 0.10% - 1Å-2Å Rg2 filter+Forcefield: 0.1%σ 

7 Original - 10% 1Å-2Å Forcefield: 10% ε, cutoff:2Å 

8 Original 1% 120% 1Å-2Å Forcefield: 1%σ, 120%ε 

a percentages were multiplied by the parameter to give the value used in the forcefield 

method. b r is equal to the product of σ and 21/6/2. This value is much smaller than σ. 

The reduction of the σ parameter had a surprising positive effect on the structural 

properties of the initial guess. As shown in Figure 3-9, Rg
2 increased as σ was reduced from 

10% to 0.1%. A σ parameter of 0.1% with supplementary Rg
2 filtration resulted in the best 

Rg
2 values of all the candidate methods and the second best collapse ratio. The percent error 

associated with this method was only 10.1% which shows huge potential when compared 

with a 30% error of the ‘Original’ method. The ‘Forcefield: 1%σ, cutoff: 2Å’ method 
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provided the best CED of 179.6 J/cc, which is not a huge improvement from the ‘Original’ 

method value of 167.6 J/cc. Generally, none of the methods showed a drastic improvement 

in CED, though density is strongly related with CED. The cutoff range was altered for the 

‘Forcefield: 1%σ, cutoff: r’ method where the cutoff ranged from the value of 90% of the 

alkyl carbon r parameter (equal to σ*21/6/2) to 100% of this parameter. This new cutoff is 

much smaller than 1Å to 2Å and was compared with the ‘Forcefield: 1%σ, cutoff: 2Å’ 

method to determine the effect of only changing the cutoff. There was a small improved in 

the C∞ and CR parameters but a decrease in the Rg
2 parameter. The ‘Mixed+Forcefield: 

1%σ, cutoff: 2Å’ method included application of a reduced σ forcefield on a ‘Mixed’ base 

method. As discussed in Section 3.2.3, the ‘Mixed’ method involved globally after a 

monomer was polymerized and resulted in improved chain symmetry. Interestingly, the 

second halves of these chains were longer than the first halves, which is the opposite for 

chains generated with the ‘Original’ method.  Generally, altering the ε parameter (either 

increasing to 120% ε or decreasing to 10% ε) resulted in worse structural and energetic 

resulting properties. 

3.2.7 RIS Model Modification 

Optimization of the RIS model was conducted to improve the mean square radius of 

gyration of the isolated chains as shown in Table 3-1. This optimized RIS model—which 

included increasing the trans proportion, η, from 0.9 to 1.4 and decreasing the gauche 

minus proportion, τ, from 0.5 to 0.4—was applied to systems of 2 chains of 76 monomers 

at various densities as shown in Table 3-6. Mean square radius of gyration values did 

improve significantly. However, CED values and p-values were generally worse. This is 
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because with a greater trans conformation proportion, chains are not wrapping around each 

other as much. Therefore, solubility and chain end collapse are worse. 
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CHAPTER 4. LONG-RANGE CORRECTIONS 

4.1 Introduction 

Though molecular simulations are a valuable tool for gaining insight into the physical 

and energetic properties of many materials and systems, they often neglect long-range 

contributions to energy and pressure calculations.49 Bulk polymer or biological systems 

may have hundreds of thousands or even millions of atoms, thus simulators often avoid 

calculating all pair interactions because of the high computational cost. One way of 

reducing the number of pairs considered is by applying a cutoff truncation to the atomic 

energy interaction. This cutoff is required for all periodic systems and cutoff neglects the 

long-range interactions that contribute to the potential energy and pressure values in the 

simulation.12, 43, 49 It “solves” the problem of an expensive calculation, but results in 

significant inaccuracies. Because electron dispersion (Lennard Jones) energetic 

interactions are relatively short-range, these can be calculated from an analytical integral 

over the product of the atomic energy or virial, and the atomic pair distribution function 

converges to its asymptotic value of one. Unfortunately, electrostatic long-range 

interactions do not converge and require conditionally convergent methods such as Ewald 

Sum or Multipole Expansion. Long-range interactions, however, may be significant, and 

therefore, an efficient and simple method for calculating these corrections would be very 

valuable. 

4.2 Long-Range Energy Corrections  
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For most molecular simulations, molecules are built inside periodic cells that can be 

replicated to produce a lattice of mirror images.11-12, 29, 43 Molecules that are located at or 

beyond the edges of the periodic box can interact with image molecules of the adjacent 

virtual box. If a molecule is located along or beyond the face of a lattice, then the molecule 

will be reflected into the exact opposite face and interact with those molecules to enable 

the continuity of interactions. A periodic boundary system is convenient for bulk modelling 

since a periodic cell can be replicated many times and polymerization times can be 

expedited. Figure 4-1 below illustrates a lattice of mirror image periodic cells that can be 

consolidated into a single periodic cell to produce a bulk system. Note that the brown 

molecules extending outside the top of the 3x3 lattice were reflected into the opposite face 

when the lattice was ‘built’.  
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Figure 4-1 Construction of a Bulk Periodic System. The cutoff is equal to half the box 

side length. 
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4.2.1 Dispersion Energy and Pressure Corrections 

The use of periodic boundary conditions, requires the institution of a cutoff distance 

equal to one-half the length of a box side.43 This is to avoid the double-counting of atom 

pair interactions since, for example, the interaction of atom i with atom j would include all 

of the periodic images of atom j, and one-half the box side length would be the maximum 

distance to avoid this false periodicity.11, 43 Consequently, calculation of the total 

interaction energy or pressure would require the partition of the short and long-range 

interactions and the cutoff distance would serve as a truncation point. Often a ‘spline’—a 

third or fifth order polynomial function bounded by a given cutoff range—is utilized over 

a ‘direct cutoff’ to gradually taper the interactions examined.14, 23 Figure 4-2 illustrates an 

interaction potential curve in blue, and the spline is represented by the red line. The area of 

the curve beyond the spline represents the long-range interactions that would need to be 

calculated later.  

 

 

 

 

 

 

E(r) 
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Figure 4-2 van der Waals Interaction Potential Curve with Spline. 
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Equation 31 is utilized to calculate the total interaction energy for a system with N 

molecules or atoms, a box side length, L, and a cutoff distance of L/2.16, 43 u(r) is the 

pairwise additive intermolecular potential. The first portion of the equation represents the 

short-range interactions and the second portion of the equation represents the long-range 

correction.  

 
𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ 𝑢(𝑟𝑖𝑗)

𝑖>𝑗
𝑟𝑖𝑗<𝐿/2

𝑖

+ 2𝜋
𝑁2

𝐿3
∫ 𝑔(𝑟)𝑢(𝑟)𝑟2𝑑𝑟

∞

𝐿/2

 
(31) 

There are a few methods for calculating the long-range correction including: 

Integral Correction Method, Cell Multipole, and Ewald Summation.11, 49 The Integral 

Correction Method involves the direct integration of the second portion of Equation 31, 

and it is what is typically used to calculate long-range dispersion energy. A pair distribution 

function, g(r), describing the distribution of radial distances between atom pairs for a given 

box volume is required to calculate the long-range correction. However, for long-range 

correction calculations, it is typically assumed that the atom spheres are far enough apart 

beyond the truncation limit to be mutually independent of each other such that the pair 

distribution function is approximately unity, simplifying the integral.  

Similarly, the contributions pairwise interactions make to the pressure is given by  

 
𝑃 =

𝑁𝑘𝐵𝑇

𝑉
− 2𝜋 (

𝑁

𝑉
)
2

∫ 𝑔(𝑟) (𝑟
𝑑𝑢(𝑟)

𝑑𝑟
) 𝑟2𝑑𝑟

∞

0

 (32) 
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The first term on the right of Equation 32 is the kinetic pressure due to the impact of 

molecules in free motion, the second term is the internal pressure, and the quantity 𝑟
𝑑𝑢(𝑟)

𝑑𝑟
 

is the virial or the product of the force acting between atoms i and j and the distance 

between the atoms.16 Even though the dispersive contribution to the long-range energy and 

pressure can be calculated analytically, this calculation requires detailed knowledge of the 

forcefield parameters, the use of the spline or cutoff, and the convergence of the pair 

distribution function. These details vary with different forcefields that may be used, so the 

proposed technique is much simpler to carry out in a generalized fashion even if no 

electrostatic charges are employed in the system. 

4.2.2 Electrostatic Energy Corrections 

For large and charged system the long-range correction calculation diverges unlike 

for dispersion energy calculations as shown in the following equation for the determination 

of Coulombic interactions: 

 
𝐸𝐶𝑜𝑢𝑙𝑜𝑚𝑏𝑖𝑐 = 2

𝑁2

𝑉
∫

𝑞𝑖𝑞𝑗

4𝜋𝜖0𝜖(𝑟)𝑟
𝑟2𝑑𝑟

∞

𝑅𝑐

 (33) 

To solve this problem, the Ewald Sum Method was established which utilizes 

Fourier Transforms to calculate the long-range interactions in k-space and the short-range 

interaction in real-space.11-12, 49-51 The Ewald Sum method is conditionally convergent 

because it depends on the order of summation. The Fourier part of the Ewald Sum and the 

correction due to self-interaction can be calculated using Equations 34 and 35 below 
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 𝑈𝐹 =
1

2𝑉
∑

4𝜋

𝑘2
|𝜌(𝒌)|2 exp (−

𝑘2

4𝛼
) ,        𝜌(𝒌) ≡ ∑𝑞𝑖exp (𝑖𝒌 ∙ 𝒓𝒊)

𝑁

𝑖=1𝑘≠0

 
(34) 

 

𝑈𝑠𝑒𝑙𝑓 = (
𝛼

𝜋
)
0.5

∑𝑞𝑖
2

𝑁

𝑖=1

 (35) 

where k = (2π/L)l, l = (lx, ly, lz), k is the number of charges, and r is the point charge 

position. The gaussian has a width of √2/𝛼. The real-space sum is the short-range 

contribution and can be calculated with  

 

𝑈𝑠ℎ𝑜𝑟𝑡−𝑟𝑎𝑛𝑔𝑒 =
1

2
∑𝑞𝑖𝑞𝑗𝑒𝑟𝑓𝑐(√𝛼𝑟𝑖𝑗)/𝑟𝑖𝑗

𝑁

𝑖≠𝑗

 (36) 

These contributions can be summed to obtain the total electrostatic energy using  

 

𝑈𝐶𝑜𝑢𝑙 =
1

2𝑉
∑

4𝜋

𝑘2
|𝜌(𝒌)|2 exp (−

𝑘2

4𝛼
) − (

𝛼

𝜋
)
0.5

∑𝑞𝑖
2

𝑁

𝑖=1

+ 
1

2
∑

𝑞𝑖𝑞𝑗𝑒𝑟𝑓𝑐(√𝛼𝑟𝑖𝑗)

𝑟𝑖𝑗

𝑁

𝑖≠𝑗

 

(37) 

The Cell Multipole Expansion Method was subsequently developed which involves 

a Taylor series (or expansion) that sums the interaction energies a set of charges have with 

a particular point in space such that the electrostatic potential at this point can be 

calculated.11-12, 49, 51 A single parent cell is subdivided into children cells multiple times 

until a maximum level, R is reached (this subdivision is called the octal tree with 8R total 

cells). A multipole expansion about the center of the box is used to describe the charge 
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distribution in each cell. Then, multipole expansion of the children cells is translated to the 

center of the parent cell iteratively until level zero is reached. A set of conditions are used 

to calculate the potential of the cells. This expansion can be truncated depending on the 

number of harmonic spheres (atoms) in the system. The number of interactions is on the 

order of N2 and the time required to perform this method scales as O(N). The time required 

to conduct multipole expansion is twice that of the Ewald Sum Method. Equation 38 below 

describes the potential at a point r’ (θ’, φ’) sufficiently far away using multipole expansion 

 
𝜑(𝒓′) = ∑ ∑

∑ 𝑞𝑖𝑟𝑖
𝑛𝑌𝑛

−𝑚(𝜃𝑖 , 𝜑𝑖)
𝑘
𝑖=1

𝑟𝑛+1
𝑌𝑛

𝑚(𝜃′, 𝜑′),

𝑛

𝑚=−𝑛

∞

𝑛=0

 (38) 

where k is the number of charges with charge q at a location ri (ri, θi, φi) and Yn
-m are the 

Legendre functions. The close and far potential energy is calculated with the following 

equations 

 𝑈𝑐𝑙𝑜𝑠𝑒 = ∑ (𝑞𝑖𝑞𝑗)/𝑟𝑖𝑗
𝑐𝑙𝑜𝑠𝑒

 (39) 

 𝑈𝑓𝑎𝑟 = ∑𝑈𝑙𝑜𝑐𝑎𝑙(𝑅)(𝒓𝒊)

𝑖

 (40) 

where Ulocal is calculated from the local expansion. 

4.2.3 Proposed Extrapolation Method 

Though convergent, the direct analytical integration of dispersion interactions can 

be complex and, for this reason, is often neglected from potential energy calculations. 
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Moreover, as previously described, brute-force integration of the Coulombic interaction is 

not viable because of its divergent nature and requires reformulation of the charge 

distribution with a multipole expansion or the use of the conditionally convergent Ewald 

Sum Method. 

In this dissertation, a simple and empirical method has been developed to rapidly 

obtain both the energy and pressure long-range corrections. The idea is that within a 

periodic system, molecular interactions are a function of the size of the box. As the lattice 

or total size of the periodic system—and consequently the cutoff—increase, the potential 

also gradually increases to account for long-range interactions between atoms that are 

further and further away. The following steps were taken to construct a converging 

potential curve for the extrapolation of the total interaction energy (refer to Figure 4-1). 

1. Construct the molecular system of interest within a 1x1x1 lattice. The cutoff 

should be one-half the length of the box side. 

2. Increase the dimensions of the lattice by an iterative index number. 

3. Build or consolidate the lattice to a single periodic cell and modify the cutoff to 

one-half the side length of the new periodic cell. 

4. Obtain the total potential and repeat steps 2 through 4 until the potential has 

converged. 

Figure 4-3 illustrates a converging potential energy curve obtained for an aPP system of 

A) 2 chains with 76 monomers and a system of B) 8 chains with 170 monomers. Note that 

the convergence of the smaller system requires a greater number of periodic cubes than for 

the larger periodic system.  



 80 

 

Figure 4-3 Potential Energy Curve for aPP Long-Range Energy Correction 

Calculation. A) 2 Chains of 76 Monomers, B) 8 Chains of 170 Monomers. 
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Our extrapolation method may also be utilized to calculate the Hildebrand solubility, 

δ, parameter described in Chapter 3. In light of the following equations,  

 𝐸𝑐𝑜ℎ = 𝑈𝑡𝑜𝑡,𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 − 𝑈𝑡𝑜𝑡 (41) 

 
𝛿 = (

𝐸𝑐𝑜ℎ

𝑉
)
2

 (42) 

the cohesive energy is dependent only on the total potential energy since the isolated chain 

potential is a constant value. Therefore, the cohesive energy and the solubility are a 

function of the number of cells in a lattice and converge as well (Figure 4-4). All cohesive 

energy density calculations were conducted using our extrapolation method and, thus, 

include long-range corrections. 
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Figure 4-4 aPP Cohesive Energy Density Convergence of A) 2 Chain, 76 Monomer 

System, B) 8 Chain, 170 Monomer System. 
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An atactic polystyrene system was generated with 4 chains of 181 monomers at a 

density of 0.9948g/cc (experimental density is about 1.07g/cc) to evaluate the efficacy of 

this proposed method for calculating not only the dispersion energy long-range interactions 

but also the electrostatic long-range interactions.30 Figure 4-4A) depicts the van der Waals 

potential energy convergence and Figure 4-4B) depicts the electrostatic potential energy 

convergence with an increasing number of cells in the lattice. Naturally, the van der Waals 

potential converged faster than the electrostatic potential. To reach a percent change of less 

than 1%, a 2x2x2 lattice was required for van der Waals potential convergence, and a 6x6x6 

lattice was required for an electrostatic potential convergence. However, building a 6x6x6 

lattice was still relatively quick and reasonable and results in accurate acquisition of the 

long-range electrostatic correction without use of conditionally convergent or more 

complex methods. 
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Figure 4-5 Atactic Polystyrene A) Van der Waals and B) Electrostatic Convergence 

Curves for a System of 4 Chains of 181 Monomers. 
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virial due to bond constraints. The instantaneous pressure is below 100kPa probably 

because of the randomness of chain generation. 

 

Figure 4-6 aPP Pressure Convergence Curve for a System of 8 Chains of 170 

Monomers. 
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CHAPTER 5. FINAL REMARKS 

5.1 Conclusions 

• Density changes had only marginal effects on shape and size parameters such 

as Rg
2, C∞, and CR, and any small improvements to these parameters were lost 

during minimization and dynamics. It was initially hypothesized that the density 

of the system would be the main factor that controlled the shape and size of the 

polymer chains since at very low density, the whole chains would collapse and not 

entangle with each other and at high density, chain asymmetry would prevail 

because of the lack of free volume and the self-avoiding nature of the chains. 

However, the results described in Chapter 3 show that the shape and size parameters 

are mainly affected by the RIS model and/or the forcefield. 

• CED and MSD were highly sensitive to density changes. It was initially 

hypothesized that moderately lower densities would improve not only the shape 

and size parameters, but also the cohesive energy density. This was based on the 

observation that lower density greatly improved atactic polystyrene models 

developed by collaborators at USF. Interestingly, densities that were above the 

experimental density greatly improved the cohesive energy density of atactic 

polypropylene such that it matched the cohesive energy density reported by 

experimental studies.44 This may be due to less bulky nature of polypropylene 

compared with polystyrene. For future work with polymers of varying chemical 

structures, density optimization would be advised.  

• Modifying the RIS model resulted in improved Rg
2 values, but worse chain 

symmetry and CED values. An effort was made to extend the chains and improve 

shape and size parameters by increasing the trans and lowering the gauche minus 

proportions of the RIS model. This resulted in improved Rg
2 values, however CED 

decreased and chain symmetry worsened. Increasing the trans proportion and 

lowering the gauche minus proportion did not only affect the ultimate parts of the 

chains but also the beginning parts. Thus, as polymerization progressed, the 

extended chains ran into each other and therefore chain ends collapsed more. 

Additionally, chains would not entangle with each other as much with these 

changes to the RIS model. 

• Integrating minimization into the polymerization process reduced the 

asymmetry of chains. Global minimization was conducted after the addition of 

every monomer during initial guess generation. This did not significantly improve 

energetic parameters of aPP systems, however there were significant improvements 

to the chain symmetry; with global minimization, all chains were able to shift 

providing some free volume towards the end of the polymerization process. An 

advantage of this method is that it can be applied to different segments of the chains, 

e.g. the ends of the chains, and it can be controlled by altering the Euclidean norm 

gradient. A lower gradient will result in finer energy minimization. 
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• Multi-step minimization after the initial guess was generated using various 

forcefields for each step resulted in slightly improved structural and energetic 

parameters. The initial steps of the multi-step minimization included lowering the 

σ parameter of the forcefield for the carbon and hydrogen atoms. This had the effect 

of bringing the chains closer to each other such that chains could slip past each 

other into more stable conformations. Lowering this parameter may not, however, 

work for all polymers. Therefore, the number of minimization steps and the 

forcefields used for each step must be customized and optimized for a particular 

polymer. A greater number of steps may take longer but result in more accurate 

structures. 

• Rg
2 filtration improved structural parameters significantly and should be used 

in future models as a supplementary method. Filtration of structures with low 

Rg
2 values is similar to a Markov Chain Monte Carlo sampling method and has 

proven to be useful in improving the structural components of the chains especially 

for difficult and bulky polymers such as polystyrene. 

• Modification of the σ parameter in the forcefield during initial guess 

generation resulted in the best structural and energetic results. Due to its 

unbulky nature, aPP benefited significantly from a lower particle size, or σ, 

parameter in the forcefield since the chains would not be too sterically hindered by 

passing near each other. Additionally, aPP chain extension is enabled when chains 

can pass by each other. 

• Brute-force calculation of the long-range energy and pressure of polymer 

systems can be achieved by plotting the energy or pressure against an 

increasing system periodicity. Long-range energy and pressure calculations 

involve difficult integrals that can be computationally expensive and are often 

neglected. The method described in Chapter 4 resulted in relatively quick and 

simple corrected energy and pressure calculation. Moreover, this method can be 

applied to calculate electrostatic energy contributions which typically require more 

complex, conditionally convergent methods to calculate. Electrostatic energy 

converged slower than van der Waals energy, however it still converged relatively 

quickly. 

5.2 Recommendations 

• Increase the number of steps of energy minimization and explore various σ 

forcefield parameter modifications for each minimization step. Decreasing the 

σ parameter was beneficial for a system such as polypropylene, but the opposite 

may be true for more bulky polymers such as polystyrene. One investigation 

conducted by Theodorou et al. on polystyrene involved a 41-step minimization 

method.37 Further research into minimization steps should be conducted. 

• Polymerize chains bidirectionally. Significant effort was exerted to ameliorate 

the asymmetry of chains. The chains generated in this research were built 

unidirectionally, i.e. chains grew from one end to the other. Another approach could 

be to begin polymerization from the middle of the chain and bond monomers on 

both ends such that chains grow bidirectionally. The effects of such a method could 
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improve structural properties of the chains and may even be useful in generating 

block copolymers 

• Apply Protracted Colored Noise Dynamics (PCND) to atomistic simulations. 

PCND is a technique which has been shown to reduce the relaxation time of coarse-

grained copolymer systems by a magnitude of 105-107 to cope with the long 

timescales associated with large glassy polymer systems. One of the greatest 

challenges for this research was the long computational times associated with 

dynamics. This amount of time was expounded greatly for bulky, charged polymers 

such as polystyrene. 

• Generate initial guess structures that have a distribution of molecular weights 

and tacticities. Real polymer systems are not composed of ‘parent’ chains, or 

chains that all have the same molecular weight and tacticity distributions. 

Generating structures with a distribution of molecular weights and tacticities may 

significantly affect the entanglement, shape, and size of chains. 

• Obtain the actual conformation distribution of the chains. This distribution will 

illuminate whether the trans proportion at the ends of the chains is much lower due 

to repulsive intermolecular interactions. 

• Investigate LowModeMD and determine whether it can be applied locally. 

LowModeMD was applied to our polymer systems to search for the lowest energy 

conformations and configurations; however, this method was only really effective 

for small molecules. Modification of this method to accommodate large systems 

would be very valuable research. Additionally, application of LowModeMD to 

specific areas of the chains would be useful. 

• Apply the techniques and protocols to generate more polymer systems with 

various chemical structures and compare results with those of aPP. The 

research conducted here showed that there some techniques worked very well for 

aPP and others did not. However, work done on aPS by USF collaborators showed 

that some techniques that worked for aPP did not work for aPS and vice versa. 

Understanding the structural and energetic differences and property relationships 

for a variety of polymers may provide valuable insight about the initial conditions 

and techniques that should be used. Additionally, this information may be useful 

for modelling block copolymers. 
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APPENDIX A. POLYBUILD SVL CODE 

#svl 

 

#set main 'polybuildpp300' 

 

function polybuildpp300 [dbname,degpoly,nchains,tacticity,boxedge,forcefield] 

// polybuildpp300 builds an amorphous polymer chain. This initial guess generator can be easily 

//adapted for polymers with various side groups by simply modifying the RIS model section. 

 

//dbname: name of the monomer database; it should have a single monomer entry  

//degpoly: degree of polymerization 

//nchains: number of chains 

//tacticity: tacticity vector generated by the Matlab code in Appendix C 

//boxedge: length of periodic box side in Angstroms 

//forcefield: forcefield file (.ff extension) 

 

//sample inputs: 

//tacticity=[0,1,0,0,0,1,1,0,0,0,1,1,0,0,0,1,1,0,0,1,1,0,0,0,1,0,0,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,1,

1,1,1,1,0,1,1,1,0,1,0,0,0,0,1,0,0,0,1,1,0,0,0,0,1,0,1,1,0,0,1,1,0,0,0,0,0,0,0,1,1,0,1,1,1,1,1,1,0,0,0,0,

0,0,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,1,1,0,1,1,1,1,0,1,1,0,0,1,1,1,1,0,1,0,1,1,0,0,0,0,1,1,1,0,1,1,0,1,1,0,

0,1,1,1,1,1,0,0,0,1,1,1,0,1,1,0,0,1,1,0] 

//polybuildpp300['ppmonomer3.mdb',170,8,tacticity,49.9342536857098] 

 

local ckey1,rkey1,ckey2,rkey2,torsionatoms,eval; 

local energy,gradient,virial,W,torsionprob,randnum,torstate,torsionang; 

local cumprob,i,j,k,l,m,interstate,intrastate; 

local nstates=3,angle1,angle2; 

local angincrement=360/nstates; 

local torsioninc=360/nstates,chosenstate; 

local temp=300,test,test2,test3,test4; 

local U,Um,Ur,ang0,ang1,angm0,angm1,angr0,angr1,tval; 

local risprob,lrprob,angvalues,EnergyLR,interdiadangle,intradiadangle; 

local risstate,totprob,testatoms,rkeys,ckeys,chainkeys,reskeys,imon,ichain; 

local anglechoices,states,torsionangle,sysenergy; 

 

//Relevant functions being called: 

//------------------------------------------- 

//monomeradd1 bonds the new monomeric unit in the correct 

//orientation to the growing chain and deletes the and atoms 

//which are Br atoms assigned the parameters of a unified methyl 

//------------------------------------------- 

//risparams enters the relevant parameters for the RIS model 

//that describes the torsional states 

//------------------------------------------- 

//choosestate radomly chooses a state based on the 

//normalized probabilities that are input 

//------------------------------------------- 
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//residuebackbone extracts the backbone from a monomer to  

//determine the backbone atoms in the torsion angles 

//------------------------------------------- 

//box start randomly places and orients the first monomers in 

//the periodic cell 

//------------------------------------------- 

//torsionanglechoice uses both the RIS model and the long- 

//range energy to determine the backbone rotations angle 

//------------------------------------------- 

//LREnergyCalc calculates the LR energy for a particular 

//monomer at the trans, gauche, and gauche- states 

 

//declare functions 

function monomeradd1,risparams,choosestate,residuebackbone,boxstart; 

function torsionanglechoice,LREnergyCalc; 

 

//Set the cutoff range, disable electrostatic energy calculation, load the forcefield file 

pot_Setup[cutoffEnable:1,cutoffOn:(0.5*boxedge)-

2,cutoffOff:(0.5*boxedge),eleEnable:0,resEnable:0,oopEnable:0,stbEnable:0,solEnable:0]; 

pot_Load forcefield; 

 

//Open the database of interest 

local dbkey=db_Open[dbname]; 

 

//Determine that there is one monomer 

local nmonomers=db_nEntries dbkey; 

 

//Read the monomer structures from the monomer database 

local monomer=cat db_ReadColumn [dbkey,'mol']; 

 

//Randomly place the beginning of the growing chains in the periodic cube 

[chainkeys,reskeys]=boxstart [dbname,nchains,tacticity,boxedge]; 

reskeys=[reskeys]; 

 

//Calculate the system energy at the addition of the first monomer. This will be placed in sysenergy 

//vector in the output 

  test=Potential[W:0,dX:0]; 

  sysenergy(1)=test(1); 

 

//Assemble Residue Keys (reskeys) in the format reskeys(chain)(residue in chain) 

//First initialize all residue keys to zero so we can tell if a residue key is not assigned 

reskeys=rep[0,degpoly,nchains]; 

 

//Now assign residue keys for the first residue and for all chains 

test=Residues[]; 

for i=1,nchains loop 

   reskeys(i)(1)=test(i); 

endloop 

 

//input the RIS model parameters 

local risparamvalues=risparams[]; 
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U=risparamvalues(1); 

ang0=risparamvalues(4); 

ang1=risparamvalues(5); 

 

//Initialize states tensor to keep track of torsional states 

//Format of states is that the highest level is for chains, the next level is for residues (or monomers) 

//For example, three chains of degree of polymerization four should look like: 

//[[[1,2],[2,3],[2,1],[1,3]],[[1,2],[2,2],[2,3],[1,2]],[[1,1],[3,1],[2,3],[1,2]]] such that states(2)(3)(2) 

//is a vector of vectors describing the inter and intradiad states(2)(3)(2) for chain 2, monomer 3 

//which in this case will be [[1,2],[2,2],[2,3],[1,2]]. states(2,3) describes the inter and intradiad 

//states for chain 2 and monomer 3 which is [2,3]. Finally, states(2,3,2) describes the intradiad states 

//(the first one is the interdiad state) for chain 2, monomer 3, which is 3 or the gauche minus highest 

//energy state. 

states=rep[0,2,degpoly,nchains]; 

 

//Assign the torsional states of the first monomers: 

 

//Automatically assign first interdiad state to trans(1) 

//Set the intradiad angle for the first monomer, note that the interdiad angle in the first monomer is 

//not defined, but is set to trans for administrative purposes 

for i=1,nchains loop 

   states(i)(1)=[1,choosestate[U(1)]]; 

   angle1=residuebackbone[reskeys(i)(1)]; 

   aSetDihedralCWDeg[angle1,ang0(1)(states(i)(1)(2))]; 

endloop 

 

//Deactivate periodicity if boxedge is set equal to zero 

if boxedge == 0 then 

   CellEnable(0); 

endif 

 

//Main loop over all the monomers in the chains 

for imon=2,degpoly loop 

   pr 'Currently processing monomer'; 

   pr imon; 

   for ichain=1,nchains loop 

      ckey2=mol_Create(monomer); 

      rkey2=cResidues ckey2; 

 

//Add the next monomer to the growing chain. 

//Use the monomeradd1 function to bond the new monomer to the chain 

torsionatoms=monomeradd1[chainkeys(ichain),reskeys(ichain)(imon-

1),ckey2,rkey2,tacticity(imon)]; 

 

//update the residue keys 

test=reskeys; 

for i=1,nchains loop 

   test=poke[test,i,cat cResidues chainkeys(i)]; 

endloop 

reskeys=test; 
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//rotate both the interdiad and intradiad angles for the newly added monomer based on both the RIS 

//probabilities and the LR probabilities 

states=cat torsionanglechoice[ichain,imon,torsionatoms,risparamvalues,tacticity,states,temp]; 

   endloop 

 

//Calculate the system energy at the addition of each monomer 

   test=Potential[W:0,dX:0]; 

   sysenergy(imon)=test(1); 

 

endloop 

 

//Change the first unified atom to a methyl, and the last one to a hydrogen 

for i=1,nchains loop 

   test=indexof[aElement cat rAtoms reskeys(i)(1),'Br']; 

   test=mget[cat rAtoms reskeys(i)(1),test]; 

   aSetElement[test,'C']; 

   Add_H test; 

   test=indexof[aElement cat rAtoms reskeys(i)(degpoly),'Br']; 

   test=mget[cat rAtoms reskeys(i)(degpoly),test]; 

   aSetElement[test,'H']; 

 

endloop 

 

//Calculate and print out the system density 

local MW=add aMass Atoms[]; 

pr 'MW in g/mole'; 

pr MW; 

test= MW/6.02E23; 

pr 'MW in actual grams'; 

pr test; 

test= cube(boxedge); 

pr 'boxedge cubed'; 

pr test; 

test= test*1E-30; 

pr 'box volume'; 

pr test; 

local density=(MW/6.02E23)/(cube(boxedge)*1.0E-24); 

pr 'Cell Density in grams/cc'; 

pr density; 

 

//If desired, set the atomic charges to zero; for charged systems such as aPS, omit this command 

aSetCharge[Atoms[],0];  //set charges to zero 

 

return[sysenergy,states]; 

 

//================================================== 

local function monomeradd1 [ckey1,rkey1,ckey2,rkey2,tval] 

 

//Find end atom B on residue 1 and adjacent backbone atoms 

//Find end atom A on residue 2 and adjacent backbone atoms 

local akey1=cat rAtoms[rkey1]; 
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local akey2=cat rAtoms[rkey2]; 

local test; 

 

//find B and A atoms on residues 1 and 2 respectively 

local Bkey1=akey1(indexof['B',cat aName[akey1]]); 

local Akey2=akey2(indexof['A',cat aName[akey2]]); 

local C2key=aBonds[Bkey1]; 

 

// Find backbone atoms adjacent to B and A 

//Atoms go in order from residue 1 to residue 2: C1,C2,C3,C4 

//Atoms C1-C4 define the torsion angle between residues 1 and 2 

//C2 is the backbone atom on residue 1 bonded to reside 2 

//C1 is the backbone atoms on res 1 bonded to C2 

//C3 is the backbone atom on res 2 bonded to C1 

//C4 is the backbone atoms on res 2 bonded to C3 

 

 local C2atoms=cat aBonds C2key; 

 local C1key=C2atoms(indexof[1,aBackbone C2atoms]); 

 local C3key=aBonds[Akey2]; 

 local C3atoms=cat aBonds C3key; 

 local C4key=C3atoms(indexof[1,aBackbone C3atoms]); 

 local C4atoms=cat aBonds C4key; 

 local C5key=C4atoms(indexof['B',cat aName C4atoms]); 

 local backbone=[C1key,C2key,C3key,C4key]; 

 

//Modify the orientation of the side group based on tacticity input 

        if tval == 1 then 

             aInvertChirality C3key; 

        endif 

 

//Move new monomer to end of chain 

 local transvect=aPos(C2key)-aPos(Akey2); 

 local newcoords=aPos(akey2)+transvect; 

 aSetPos[akey2,newcoords]; 

 

//Rotate Monomer into bonding alignment 

 

//Find rotation angle (rotateangle) and axis of rotation (rotatevect) 

 local nattachvect1 = aPos(Bkey1)-aPos(C2key); 

 nattachvect1=nattachvect1/(norm nattachvect1); 

 local nattachvect2 = aPos(C3key)-aPos(Akey2); 

 nattachvect2=nattachvect2/(norm nattachvect2); 

 local rotateangle=rot3d_vAngle[nattachvect1,nattachvect2]; 

 local rotatevect=rot3d_vCross[nattachvect1,nattachvect2]; 

 

//Translate monomer 2 to the origin, rotate then translate back 

 transvect=aPos(Akey2); 

 newcoords=aPos(akey2)-transvect; 

 aSetPos[akey2,newcoords]; 

 local rotatematrix=rot3d_Rotation[-rotateangle,rotatevect]; 

 local rotatedpos=rot3d_mvMul[rotatematrix,newcoords]; 
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 aSetPos[akey2,rotatedpos+transvect]; 

 

 

//Adjust local residues and chains by deleting marker atoms and rebonding new residue to the chain 

oDestroy Bkey1; 

oDestroy Akey2; 

 

Bond[C2key,C3key]; 

aSetDist [[C2key,C3key],1.54]; 

oReparent[rkey2,ckey1]; 

oDestroy[ckey2]; 

 

//Return the atom keys that allow for the rotation of the backbone torsion angles 

//C1-C2-C3-C4 is the tacticity dependent intermonomer bond 

//C2-C3-C4-C5 is the tacticity independent intramonomer bond 

 

//Return the atom keys for the monomer backbone 

//C1key-C4key is the interdiad torsion angle 

//C2key-C5key is the intradiad torsion angle 

return [C1key,C2key,C3key,C4key,C5key]; 

endfunction 

 

 

//========================================================= 

local function choosestate [normprobs]; 

//this uses uniform random numbers to choose the RIS state 

local i,state,n,randnum,test; 

 

state=0; 

n=length(normprobs); 

 

randnum=randU[1]; 

for i=1,n-1 loop 

test=add normprobs[igen i]; 

   if randnum < test then 

      state=i; 

      break; 

   endif 

endloop 

 

if state == 0 then 

   state=n; 

endif; 

 

return state; 

 

endfunction 

 

//========================================== 

local function risparams []; 

//this function assigns all the RIS model parameters 
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//Assign state probability matrices 

//U, Um, Ur are the 2x3 matrices containing the probabilities for the t, g, and g- states 

//They are entered initially in a non-normalized state and then normalized below 

 

//Assign RIS state probability matrices in order of t,g,g- 

U(1)=[1,1,0.5]; 

U(2)=[1,0.05,0.5]; 

U(3)=[1,1,0.025]; 

Um(1)=[0.05,1,0.025]; 

Um(2)=[1,0.05,0.025]; 

Um(3)=[0.05,0.05,0.00125]; 

Ur(1)=[1, 0.05,0.025]; 

Ur(2)=[0.05,1,0.025]; 

Ur(3)=[0.05,0.05,0.00125]; 

 

//Assign angle values for states 

//ang(i)(j)=three angles (t,g,g-) for diad with monomer j preceded by monomer i 

 

//assign angles for t, g, and g- states for intradiad when that diad has the side chain in the 0 position 

ang0(1)=[180,-60,60];  

ang0(2)=[180,-60,60];  

ang0(3)=[180,-60,60];  

//assign angles for t, g, and g- states for intradiad when that diad has the side chain in the 1 position 

ang1(1)=[180,60,-60];  

ang1(2)=[180,60,-60];  

ang1(3)=[180,60,-60];  

//assign angles for t, g, and g- states for the meso interdiad when the side chain is in the 0 position 

angm0(1)=[180,60,-60]; 

angm0(2)=[180,60,-60]; 

angm0(3)=[180,60,-60]; 

//assign angles for t, g, and g- states for the meso interdiad when the side chain is in the 1 position 

angm1(1)=[180,-60,60]; 

angm1(2)=[180,-60,60]; 

angm1(3)=[180,-60,60]; 

//assign angles for t, g, and g- states for the racemic interdiad when the side chain is in the 0 position  

angr0(1)=[180,60,-60];  

angr0(2)=[180,60,-60];  

angr0(3)=[180,60,-60];  

//assign angles for t, g, and g- states for the racemic interdiad when the side chain is in the 1 position  

angr1(1)=[180,-60,60];  

angr1(2)=[180,-60,60];  

angr1(3)=[180,-60,60];  

 

//normalize the probability matrices 

U(1)=U(1)/(add U(1)); 

U(2)=U(2)/(add U(2)); 

U(3)=U(3)/(add U(3)); 

Um(1)=Um(1)/(add Um(1)); 

Um(2)=Um(2)/(add Um(2)); 

Um(3)=Um(3)/(add Um(3)); 
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Ur(1)=Ur(1)/(add Ur(1)); 

Ur(2)=Ur(2)/(add Ur(2)); 

Ur(3)=Ur(3)/(add Ur(3)); 

 

return [U,Um,Ur,ang0,ang1,angm0,angm1,angr0,angr1]; 

 

endfunction 

 

//========================================== 

local function residuebackbone rkey; 

//this extracts the backbone carbon atom keys from a currently processing monomer  

 

local residueatomkeys = cat rAtoms rkey; 

 

local C1key=residueatomkeys(cat indicesof['A', cat aName residueatomkeys]); 

local C4key=residueatomkeys(cat indicesof['B', cat aName residueatomkeys]); 

local C2key=aBonds C1key; 

local C3key=aBonds C4key; 

 

return [C1key,C2key,C3key,C4key]; 

 

endfunction 

 

//************************************************************ 

 

function boxstart [dbname,nchains,tacticity,boxedge] 

//boxstart randomly places and rotates the initial monomers of the chains in the periodic box 

 

 

local i,reskeys,atomkeys,chainkeys,C1key,C2key,C2Pos,axisRot,angleRot,rotationMatrix,rotPos; 

local randRotAngles,MX,rotPosX,MY,rotPosY,MZ,rotPosZ,newcoords,transvect,molCenter; 

 

//Create the Periodic Cube unless boxedge is set equal to zero 

if boxedge == 0 then 

   CellEnable(0); 

else 

   CellParameters['P1',[boxedge,boxedge,boxedge],[90,90,90]]; 

   CellEnable(1); 

endif 

 

//Open the database of interest 

local dbkey=db_Open[dbname]; 

 

//Read the monomer structures from the monomer database 

local monomer=db_ReadColumn [dbkey,'mol']; 

 

//loop over the number of chains, and create that many initial monomers 

for i=1,nchains loop 

 

//Place the new monomer in the periodic box 

chainkeys(i)=mol_Create(monomer(1)); 
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reskeys(i)(1)=cResidues chainkeys(i);  

atomkeys(i)=cat cAtoms chainkeys(i); 

 

//Move monomer to origin such that the bond b/w C1 and C2 is aligned with x axis. 

C1key=mget[atomkeys(i),(aName atomkeys(i))=='C1']; 

C2key=mget[atomkeys(i),(aName atomkeys(i))=='C2']; 

aSetPos[atomkeys(i),(aPos atomkeys(i))-(aPos C1key)]; 

C2Pos=aPos C2key; //C2 is the one you plan on rotating so that it aligns with x-axis 

axisRot=rot3d_vCross[C2Pos,[aDist[C1key,C2key],0,0]]; 

angleRot=rot3d_vAngle[C2Pos,[aDist[C2key,C1key],0,0]]; 

rotationMatrix=rot3d_Rotation[angleRot,axisRot]; 

rotPos=rot3d_mvMul [rotationMatrix, aPos atomkeys(i)]; 

aSetPos [atomkeys(i), rotPos]; 

 

//randomly rotate in 3D 

randRotAngles=randU[2*PI,2*PI,2*PI]; 

 

MX=rot3d_XRotation randRotAngles(1); 

rotPosX=rot3d_mvMul [MX, aPos atomkeys(i)]; 

aSetPos [atomkeys(i), rotPosX]; 

 

MY=rot3d_YRotation randRotAngles(2); 

rotPosY=rot3d_mvMul [MY, aPos atomkeys(i)]; 

aSetPos [atomkeys(i), rotPosY]; 

 

MZ=rot3d_ZRotation randRotAngles(3); 

rotPosZ=rot3d_mvMul [MZ, aPos atomkeys(i)]; 

aSetPos [atomkeys(i), rotPosZ]; 

 

//Move monomer to a random position inside the box 

newcoords=randU[boxedge,boxedge,boxedge]; 

 

//Just for aesthetics, physically reflect all starting monomers inside the box 

newcoords=newcoords-(boxedge/2); 

 

//randlomly translate monomer in periodic box 

molCenter=oCentroid chainkeys(i); 

aSetPos[atomkeys(i),(aPos atomkeys(i))-molCenter+newcoords]; 

 

endloop 

 

 

return [chainkeys,reskeys];//Do not change this. If need to add another output you can do so. 

 

endfunction 

//================================================= 

 

local function torsionanglechoice [ichain,imon,torsionatoms,risparamvalues,tacticity,states,temp]; 

//This is the torsionangle function that chooses the torsion angles in the monomeric unit based on 

//RIS probabilities and the Long Range Energy interaction 
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local anglechoices,risang,risinterdiadnormprobs,state; 

local risintradiadnormprobs,LRinterdiadnormprobs,LRintradiadnormprobs; 

local normprobsinterdiad,normprobsintradiad,LREnergyinterdiad,LREnergyintradiad; 

local nstates=length risang; 

 

//Assign RIS parameters 

[U,Um,Ur,ang0,ang1,angm0,angm1,angr0,angr1]=risparamvalues; 

 

//Choose the state of the interdiad angle 

if tacticity(imon)==0 and tacticity(imon-1)==0 then 

   risinterdiadnormprobs=Um(states(ichain)(imon-1)(2)); 

   risang=angm0(states(ichain)(imon-1)(2)); 

 

elseif tacticity(imon)==0 and tacticity(imon-1)==1 then 

   risinterdiadnormprobs=Ur(states(ichain)(imon-1)(2)); 

   risang=angr0(states(ichain)(imon-1)(2)); 

 

elseif tacticity(imon)==1 and tacticity(imon-1)==0 then 

   risinterdiadnormprobs=Ur(states(ichain)(imon-1)(2)); 

   risang=angr1(states(ichain)(imon-1)(2)); 

 

elseif tacticity(imon)==1 and tacticity(imon-1)==1 then 

   risinterdiadnormprobs=Um(states(ichain)(imon-1)(2)); 

   risang=angm1(states(ichain)(imon-1)(2)); 

 

else 

pr 'Tacticity Error - only values of 0 and 1 permitted for tacticity vector'; 

 

endif 

 

angle1=[torsionatoms(1),torsionatoms(2),torsionatoms(3),torsionatoms(4)]; 

 

LREnergyinterdiad=LREnergyCalc[torsionatoms,risang,1]; 

LREnergyinterdiad=cat LREnergyinterdiad; 

LRinterdiadnormprobs=exp(-LREnergyinterdiad/(KBOLTZ*temp)); 

LRinterdiadnormprobs=cat LRinterdiadnormprobs; 

 

//Calculate the final normalized state probability for interdiad angles, and choose state(1) for the 

//interdiad angle 

normprobsinterdiad=risinterdiadnormprobs*LRinterdiadnormprobs; 

normprobsinterdiad=normprobsinterdiad/(add normprobsinterdiad); 

state(1)=choosestate [normprobsinterdiad]; 

aSetDihedralCWDeg[angle1,risang(state(1))]; 

 

//Choose the state of the intradiad angle 

if tacticity(imon)==0  then 

   risintradiadnormprobs=U(state(1)); 

   risang=ang0(states(ichain)(imon-1)(2)); 

 

elseif tacticity(imon)==1 then 

   risintradiadnormprobs=U(state(1)); 
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   risang=ang1(states(ichain)(imon-1)(2)); 

 

else 

pr 'Tacticity Error'; 

 

endif 

 

[LREnergyintradiad]=LREnergyCalc[torsionatoms,risang,2]; 

LRintradiadnormprobs=exp(-LREnergyintradiad/(KBOLTZ*temp)); 

 

//Calculate the final normalized state probability for interdiad angles 

normprobsintradiad=risintradiadnormprobs*LRintradiadnormprobs; 

normprobsintradiad=normprobsintradiad/(add normprobsintradiad); 

state(2)=choosestate [normprobsintradiad]; 

anglechoices(2)=risang(state(2)); 

angle1=get[torsionatoms,[2,3,4,5]]; //atoms in the interdiad angle 

 

aSetDihedralCWDeg[angle1,risang(state(1))]; 

aSetDihedralCWDeg[angle1,anglechoices(2)]; 

 

//Update the states for this chain and monomer 

//'state' contains the states of the two current torsional states 

//'states' contains all states for all chains and monomers 

 

states(ichain)(imon)=[state(1),state(2)]; 

 

//This code forces the torsional states to a specific value for testing purposes 

//setting all states to trans (state=1) makes it easy to see tacticity and structure 

 

return[states]; 

 

endfunction 

 

 

//************************************************** 

 

local function LREnergyCalc[torsionatoms,risang,anglepair] 

// LREnergyCalc calculates the LR energy for the RIS states 

 

local LREnergy,anglestate; 

local nstates=length risang; 

 

//gather appropriate chain and residue keys 

local chainkeys=aChain torsionatoms(1); 

local prevresidue=aResidue torsionatoms(1); 

local currresidue=aResidue torsionatoms(4); 

local nresidues=length cResidues chainkeys(1); 

local test,temp1,temp2; 

 

if anglepair==1 then 

//Determine the LR energy values for the various interdiad angles 
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   angle1=get[torsionatoms,[1,2,3,4]]; //atoms in the interdiad angle 

//Set inert atoms for interdiad angle  

   aSetInert[rAtoms prevresidue,1]; 

   aSetInert[aBonds torsionatoms(4),1]; 

   aSetInert[torsionatoms(3),1]; 

 

//Calculate the energy for the system at all 3 torsional states 

   for anglestate=1,3 loop 

      aSetDihedralCWDeg[angle1,risang(anglestate)]; 

      test=Potential[W:0,dX:0]; 

      LREnergy(anglestate)=test(1); 

   endloop 

 

//Make all atoms active 

   aSetInert[Atoms[],0]; 

 

elseif anglepair==2 then 

//Determine the LR energy values for the various intradiad angles 

   angle1=get[torsionatoms,[2,3,4,5]]; //atoms in the interdiad angle 

//Set inert atoms for interdiad angle  

   aSetInert[rAtoms prevresidue,1]; 

   aSetInert[rAtoms currresidue,1]; 

   aSetInert[aBonds torsionatoms(4),0]; 

   aSetInert[torsionatoms(3),1]; 

 

 

//Calculate the energy for the system at all 3 torsional states 

   for anglestate=1,3 loop 

      aSetDihedralCWDeg[angle1,risang(anglestate)]; 

      test=Potential[W:0,dX:0]; 

      LREnergy(anglestate)=test(1); 

   endloop 

else  

pr 'anglepair variable out of range'; 

endif 

 

//Normalize the energy so the lowest value is zero 

LREnergy=LREnergy-(min LREnergy); 

aSetInert[Atoms[],0]; 

 

return[LREnergy]; 

 

endfunction 

 

//*************************************************** 

endfunction //This closes the main function, polybuildpp300 

 

 

 



 101 

 

APPENDIX B. RG
2, LRC, AND CED CALCULATION CODE 

#svl 

 

function radgyrandlrc[cells,boxedge,fffile,mdb,o] 

 

//radgyrandlrc calculates structural parameters such as <Rg2> for chain halves and whole chains, 

//chain end-to-end distance, characteristic ratio, and collapse ratio. 

//It also calculates the long-range energy (including VDW and Coulombic) and instantaneous 

//pressure (and the virial) corrections using 'CellParamPanel1_moebatch' and 'Dynamics' external 

//functions, respectively. 

//'CellParamPanel1_moebatch' and 'Dynamics' were adapted from MOE source code functions, 

//'cell' and 'md' respectively, for our long-range correction calculations. 

//Lastly, radgyrandlrc calculates the cohesive energy density by subtracting the total potential from 

//the total isolated chain potential. 

 

//cells: number of cells in one dimension of the lattice, e.g. for a final 3x3x3 lattice, 'cells' would 

//be 3. The greater this number is, the more accurate the long-range correction. 

//boxedge: length of periodic box side 

//fffile: forcefield file name 

//mdb: the path and name of the database where the structure of interest is located 

//o: the entry number for the structure of interest (see mol_Create(structures(o))) 

 

//samples: 

//radgyrandlrc[4,23.03824009,'pptest2.ff','c:/users/ngarrido6/moefiles/dynamics_OPLS_mod/76m

//on2chains_48pMeso/0873density/Trial7/dynamics76mon_0873densityt7.c.500.mdb',1//01] 

//radgyrandlrc[4,49.9342536857098,'pptest2.ff','c:/users/ngarrido6/moefiles/dynamics_OPLS-

//mod/170mon8chains_56pMeso/100pDensity/Trial7/dynamics170m56t7.c.500.mdb',501] 

 

local temp,nchains,chainkeys,q,residuekeylist,atomkeylist,xyzPos,lambda,V,radgyr2val,Akey, 

local Bkey,sqrendtoenddist,residuekeylist1,residuekeylist2,atomkeylist1,atomkeylist2,xyzPos1, 

local xyzPos2,lambda1,lambda2,V1,V2,radgyr2val1,radgyr2val2; 

local i,atomkeys,j,potentialEnergy,isolatedenergy,isolatedenergyvector,totPotSeries,xSeries; 

local virialP,totalpressure,VDWU,eleU,ivar; 

 

//set the directory to where the forcefield file and external functions (CellParamPanel1_moebatch 

//and Dynamics) are located 

cd 'c:/users/ngarrido6/moefiles/'; 

 

//load the forcefield file to the system and disable restraints, electic, out-of-plane, strech-bend, and 

//cutoff contributions from energetic calculations 

pot_Load fffile; 

pot_Setup[resEnable:0,oopEnable:0,stbEnable:0,cutoffEnable:0,eleEnable:0]; 

 

//Set the temperature to 300K (or desired temperature) 
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temp=300; 

 

//define chain keys and number of chains in the system and disable periodic boundaries 

nchains=length Chains[]; 

chainkeys=Chains[]; 

CellEnable(0); 

 

//Calculate <Rg2> of chain halves and whole chains, the end-to-end distance of the chains, and the 

//isolated energy of the chains 

for q=1,nchains loop 

//obtain atom keys of first and second halves of all chains and atom keys of whole chains 

 if even length cResidueCount chainkeys(q) then  

  residuekeylist1=keep[cat cResidues chainkeys(q),div[cResidueCount 

chainkeys(q),2]]; 

  residuekeylist2=keep[cat cResidues chainkeys(q),neg div[cResidueCount 

chainkeys(q),2]]; 

 else 

  residuekeylist1=keep[cat cResidues chainkeys(q),div[sub[cResidueCount 

chainkeys(q),1],2]]; 

  residuekeylist2=keep[cat cResidues chainkeys(q),neg div[sub[cResidueCount 

chainkeys(q),1],2]]; 

 endif 

 atomkeylist=cat cAtoms chainkeys(q); 

 atomkeylist1=cat rAtoms residuekeylist1; 

 atomkeylist2=cat rAtoms residuekeylist2; 

//obtain [x,y,z] vector positions of first half, second half, and whole chains 

 xyzPos=aPos atomkeylist; 

 xyzPos1=aPos atomkeylist1; 

 xyzPos2=aPos atomkeylist2; 

//Calculate the Covariance from previous position matrices, i.e. calculate eigenvalues and vectors 

//sum eigenvalues to obtain radius of gyration values 

 [lambda,V]=rot3d_CovarianceEigenSystem xyzPos; 

 [lambda1,V1]=rot3d_CovarianceEigenSystem xyzPos1; 

 [lambda2,V2]=rot3d_CovarianceEigenSystem xyzPos2; 

 radgyr2val(q)=add lambda; 

 radgyr2val1(q)=add lambda1; 

 radgyr2val2(q)=add lambda2; 

//calculate the end-to-end distance, i.e. the last skeletal atom position vector minus the first skeletal 

//atom position vector 

 Akey=mget[cat cAtoms chainkeys(q),(aName cat cAtoms chainkeys(q))=='A']; 

 Bkey=mget[cat cAtoms chainkeys(q),(aName cat cAtoms chainkeys(q))=='B']; 

 sqrendtoenddist(q)=sqr aDist[Akey,Bkey]; 

//Calculate the potential energy of each isolated chain 

 aSetInert[Atoms[],1]; 

 aSetInert[atomkeylist,0]; 

 potentialEnergy=Potential[W:0,dX:0]; 

 isolatedenergyvector(q)=potentialEnergy(1); 

endloop 

 

 

//Average the mean square of the radius of gyration values for chain halves and whole chains 
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local Rg2Avg=(add radgyr2val)/nchains; 

local firstRg2Avg=(add radgyr2val1)/nchains; 

local secondRg2Avg=(add radgyr2val2)/nchains; 

 

pr 'Square End-to-End Distance'; 

pr sqrendtoenddist; 

 

//calculate the collapse ratio 

local collapseratio=sqrendtoenddist/radgyr2val; 

 

//Calculate the characteristic ratio 

//l is skeletal bond length, 1.52943 

local l2=sqr(1.52943);  

//n is number of skeletal atoms 

local n=((length mget[cat cAtoms chainkeys(1),(aName cat cAtoms chainkeys(1))=='C1'])+(length 

mget[cat cAtoms chainkeys(1),(aName cat cAtoms chainkeys(1))=='C2'])+1); 

local characteristicratio=sqrendtoenddist/(n*l2); 

 

//Calculate the total chain isolated energy 

isolatedenergy=add isolatedenergyvector; 

pr 'isolatedenergy'; 

pr isolatedenergy; 

 

//Enable cutoff and disable atom inertness from previous loop.  

//If the structure has partial charges, enable Coulombic interactions (i.e. instead use: 

//pot_Setup[cutoffEnable:1,cutoffOn:(0.5*boxedge-2),cutoffOff:(0.5*boxedge),eleEnable:1];) 

aSetInert[Atoms[],0]; 

pot_Setup[cutoffEnable:1,cutoffOn:(0.5*boxedge-2),cutoffOff:(0.5*boxedge)];  

 

//Enable periodic cube with 'boxedge' dimensions and determine its volume 

CellParameters['P1',[boxedge,boxedge,boxedge],[90,90,90]]; 

CellEnable(1); 

local boxvolume=cube boxedge; 

pr 'Periodic Cell Volume(cubic Angstroms)'; 

pr boxvolume; 

  

//Calculate long-range energy for a single periodic cube: 

local VDWEnergy = pot_vdwEnergy Atoms[]; 

local eleEnergy = pot_eleEnergy Atoms[]; 

VDWU(1)=VDWEnergy(1); 

eleU(1)=eleEnergy(1); 

local v=Potential[dX:0,W:1]; 

totPotSeries(1)=v(1); 

 

//Pressure and virial long-range correction calculation for a single periodic cube: 

//load adapted MD svl file containing adapted 'Dynamics' function for virial and instantaneous 

//Pressure calculation 

load 'md_cons.svl'; 

 

//Set the md options for md and .mdb initialization. The time options in md_opt will not matter, but 

//we set to a short trajectory anyway. 
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local 

md_opt=[startTime:0,checkpointTime:1,sample:1,wrapWater:0,savePosition:1,saveVelocity:0,bo

ndConstraints:'light',verbose:1,algorithm:'NHA',opendbv:0]; 

//Set the directory to where you want the dummy dynamics trajectory to be saved (this database 

//will have no entries since the trajectory duration will be zero ps) 

cd 'c:/users/ngarrido6/moefiles/dynamics_OPLS-mod/76mon2chains_48pMeso/test'; 

//Initialize a dummy dynamics database 

call['MD_Initialize',['pressureTest',"equil { ps=1 T=300 }",md_opt]]; 

 

//Call 'Dynamics' function which will return the virial and instantaneous pressure (kPa).  

//Note that the second element of the 'Dynamics' function input is 0 indicating a trajectory time of 

//zero ps. 

ivar=call['Dynamics',['pressuretest.a.0.mdb',0,300,[],[],md_opt]]; 

virialP(1)=ivar.W; 

totalpressure(1)=ivar.P; 

 

//Loop to calculate the energy, pressure, and virial with increasing lattice dimensions  

for j=2,cells loop 

 cd 'c:/users/ngarrido6/moefiles'; 

 pr 'Current no. cells'; 

 pr j; 

//Destroy previous structure 

 oDestroy Chains[]; 

 CellEnable(0); 

//rebuild original structure 

 local structures=db_ReadColumn[mdb,'mol']; 

 local chains=mol_Create(structures(o)); 

 CellParameters['P1', [boxedge,boxedge,boxedge], [90,90,90]]; 

 CellEnable(1); 

//Generate a lattice of periodic images 

 CellLatticeReplicate[j,j,j]; 

//BUILD THE CRYSTAL WITH j DIMENSIONS 

 run 'CellParamPanel1_moebatch.svl';  

//Update the cutoff to half the length of the periodic box side 

 pot_Setup[cutoffOn:(0.5*j*boxedge-2),cutoffOff:(0.5*j*boxedge)]; 

//Calculate the VDW energy, Coulombic energy, and the total energy 

 VDWEnergy = pot_vdwEnergy Atoms[]; 

 eleEnergy = pot_eleEnergy Atoms[]; 

 VDWU(j)=VDWEnergy(1); 

 eleU(j)=eleEnergy(1); 

 v=Potential[W:1,dX:0]; 

 totPotSeries(j)=div[v(1),cube j]; 

//Obtain pressure and virial using Dynamics function 

 cd 'c:/users/ngarrido6/moefiles/dynamics_OPLS-mod/76mon2chains_48pMeso/test'; 

 call['MD_Initialize',['pressureTest',"equil { ps=1 T=300 }",md_opt]]; 

 ivar=call['Dynamics',['pressuretest.a.0.mdb',0,300,[],[],md_opt]]; 

 virialP(j)=ivar.W; 

 totalpressure(j)=ivar.P; 

//print the time for which an iteration completes 

 pr asctime[]; 

 pr [totPotSeries,virialP,totalpressure]; 
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endloop 

 

//Calculate cohesive energy density (J/cc) 

local CED=4184*((isolatedenergy-totPotSeries)/AVOGADRO)/((boxvolume)/(1E24)); 

 

//Calculate the final potential  

pot_Setup[cutoffEnable:1,cutoffOn:0.5*boxedge-2,cutoffOff:0.5*boxedge]; 

local finalpotential=Potential[W:0,dX:0]; 

 

pr 

'Rg2whole,Rg2first,Rg2second,CED,finalPotential,CollapseRatio,CharacteristicRatio,totPotSerie

s,totalpressure,virial,VDWU,eleU'; 

return[radgyr2val,radgyr2val1,radgyr2val2,CED,finalpotential(1),collapseratio,characteristicratio,

totPotSeries,totalpressure,virialP,VDWU,eleU]; 

 

endfunction 
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APPENDIX C. TACTICITY GENERATOR MATLAB CODE 

function [monadVectorString,monadVector,diadVector] = 

randomNumberGenerator5(nMonomers,prop0) 

%   The Input is the number of monomers, the proportion of zeros. 

%   The goal is to get a diad vector with 0.48 and 0.52 m:r  

%   proportions (76 monomers) and 0.4793 and 0.5207 m:r (170  

%   monomers) and then convert it to a monad vector.  

%   Sample: 

%   [monadVector,diadVector] = randomNumberGenerator5(76,0.48) 

%   [monadVector,diadVector] = randomNumberGenerator5(170,81/169) 

%   PS: 181monomers,180diads, 8 chains, 0.4500 or 81/180 meso 

  

nDiads=nMonomers-1; 

 for i=1:100000 

    v=randsrc(1,nDiads,[0,1;prop0,1-prop0]); 

    if round(sum(v==0)/length(v),4)==round(prop0,4) 

        diadVector=v; 

        break 

    end 

 end 

 monadVector=convertToMonomerVector(diadVector); 

 monadVectorString= ['[' sprintf(repmat('%d,', 1, 

numel(monadVector)-1), monadVector(1:end-1)) sprintf('%d]', 

monadVector(end))];% MOE format 

end 

 

 

function [monadVector]=convertToMonomerVector(diadVector) 

nMonomers=1+length(diadVector); 

monadVector(1)=0; 

for i=2:nMonomers 

    if diadVector(i-1)==0 

        monadVector(i)=monadVector(i-1); 

    else 

        monadVector(i)=abs(monadVector(i-1)-1); 

    end 

end 

end 
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APPENDIX D. MODIFIED FORCEFIELD 

Modified OPLS-AA forcefield: 

#moe:forcefield 2012.07 

# 

# pptest.ff  OPLS molecular mechanics parameters and 

#                    as a unified methyl group 

# 

# 02-jul-2012 (pl) new format 

# 29-oct-2004 (pl) added description 

# 09-feb-2004 (pl) fixed torsions to new format 

# 28-jun-2001 (pl) created 

# 

# NOTES: 

# 

#   * The charge parameters contained herein are an approximation to 

# the OPLS dictionary charges (on functional groups).  To get the 

# exact electrostatics, a special charge assignment must be made. 

# In particular, HIS charges resemble engh_huber charges. 

# 

# REFERENCES 

# 

# W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rives, "Development 

# and Testing of the OPLS All-Atom Force Field on Conformational 

# Energetics and Properties of Organic Liquids", J. Am. Chem. Soc., 

# 117, 11225-11236 (1996) 

# 

# D. S. Maxwell, J. Tirado-Rives and W. L. Jorgensen, "A Comprehensive 

# Study of the Rotational Energy Profiles of Organic Systems 

# by Ab Initio MO Theory, Forming a Basis for Peptide Torsional 

# Parameters", J.Comput Chem, 16, 984-1010 (1995) 

# 

# W. L. Jorgensen and N. A. McDonald, "Development of an All-Atom Force 

# Field for Heterocycles. Properties of Liquid Pyridine and Diazenes 

# THEOCHEM-J. Mol. Struct., 424, 145-155 (1998) 

# 

# N. A. McDonald and W. L. Jorgensen, "Development of an All-Atom 

# Force Field for Heterocycles. Properties of Liquid Pyrrole, Furan, 

# Diazoles, and Oxazoles", J. Phys. Chem. B, 102, 8049-8059 (1998)' 

# 

# R. C. Rizzo and W. L. Jorgensen, "OPLS All-Atom Model for Amines: 

# Resolution of the Amine Hydration Problem", J. Am. Chem. Soc., 

# 121, 4827-4836 (1999) 

 

title 'OPLS-mod' 

disable stb oop 

 

info desc 'An all-atom forcefield parameterized for proteins and' 

info desc 'some small organic molecules.  Partial charges are' 

info desc 'based on bond-charge increments that reproduce' 

info desc 'the original dictionary charges. Polar hydrogens have' 
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info desc 'with Br unified methyl.  

 

info ref 'Jorgensen, W.L., et al.; J. Am. Chem. Soc. 117, 1996, 11225-11236' 

info ref 'D. S. Maxwell D.S., et al.; J. Comput. Chem 16, 1995, 984-1010' 

info ref 'Jorgensen, W.L., et al.; -. Mol. Struct. 424, 1998, 145-155' 

info ref 'McDonald, N.A., et al.; J. Phys. Chem. B 102, 1998, 8049-8059' 

info ref 'Rizzo, R.C et al.; J. Am. Chem. Soc. 121, 1999, 4827-4836' 

 

type CT C 'C sp3 alkane'    # [ 1] 

type HC H 'H on C alkane'    # [ 2] 

type CM C 'C sp2 alkene'    # [ 3] 

type HM H 'H on C alkene'    # [ 4] 

type CA C 'C benzene'    # [ 5] 

type HA H 'H on C benzene'   # [ 6] 

type OH O 'OH alcohol'    # [ 7] 

type HO H 'H on oxygen'    # [ 8] 

type CF3 C 'CF3 trifluoroethanol'   # [ 9] 

type OHa O 'OH phenol/OHCCF3/diol/hemiacetal' # [10] 

type F3 F 'F trifluoroethanol'   # [11] 

type OS O 'O ether'    # [12] 

type OSa O 'O acetal'    # [13] 

type CTa C 'C acetal'    # [14] 

type SH S 'S thiol'    # [15] 

type SH2 S 'S hydrogen sulfide'   # [16] 

type S S 'S sulfide/disulfide'   # [17] 

type HS H 'H on sulfur'    # [18] 

type NT N 'N sp3 3-coord    # [19] 

type HN H 'H on H sp3 3-coord'   # [20] 

type C=O C 'C carbonyl'    # [21] 

type O=C O 'O carbonyl'    # [22] 

type Nam N 'N in NC=O'    # [23] 

type Ham H 'H in NC=O and HID TRP HIP'  # [24] 

type HCi H 'H in HC(=O)NC=O'   # [25] 

type OHc O 'H in carboxylic acid'   # [26] 

type CO2 C 'C in carboxylate'   # [27] 

type O2 O 'O in carboxylate'   # [28] 

type HCd H 'H in aldehyde and HC-C=O'  # [29] 

type N3 N 'N ammonium'    # [30] 

type H3 H 'H in ammonium'    # [31] 

type NGD+ N 'N in guanidinium'   # [32] 

type CGD+ C 'C in guanidinium'   # [33] 

type C* C 'C TRP CG'    # [34] 

type CB C 'C TRP CD2'    # [35] 

type CN C 'C TRP CE2'    # [36] 

type NA N 'N in aro NH1 in TRP, HIS, HIP'  # [37] 

type CP C 'C in ncn HIS/CE'   # [38] 

type CV C 'C (beta) HIS'    # [39] 

type CW C 'C (alpha) HIS'    # [40] 

type NB N 'N in aro NH0 in HIS, HIP'  # [41] 

type CPCD C 'C PRO CD'    # [42] 

type Ot3p O 'O in TIP3P water'   # [43] 

type HW H 'H in water'    # [44] 

type Ospc O 'O in SPC water'   # [45] 

type NH3 N 'N in ammonia'    # [46] 

type OHM N 'O in hydroxide ion'   # [47] 

type Li+ Li 'Li+ Lithium Ion'   # [48] 
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type Na+ Na 'Na+ Sodium Ion'   # [49] 

type K+ K 'K+ Potassium Ion'   # [50] 

type RB+ Rb 'Rb+ Rubidium Ion'   # [51] 

type Cs+ Cs 'Cs+ Cesium Ion'   # [52] 

type Mg+2 Mg 'Mg+2 Magnesium Ion'   # [53] 

type Ca+2 Ca 'Ca+2 Calcium Ion'   # [54] 

type Sr+2 Sr 'Sr+2 Strontium Ion'   # [55] 

type Ba+2 Ba 'Ba+2 Barium Ion'   # [56] 

type F- F 'F- Fluoride Ion'   # [57] 

type Cl- Cl 'Cl- Chloride Ion'   # [58] 

#type Br- Br 'Br- Bromide Ion'   # [59] 

type Br Br 'Br as unified methyl   # [59] 

type He He 'Helium Atom'    # [60] 

type Ne Ne 'Neon Atom'    # [61] 

type Ar Ar 'Argon Atom'    # [62] 

type Kr Kr 'Krypton Atom'    # [63] 

type Xe Xe 'Xenon Atom'    # [64] 

 

itor CA C=O Nam CO2 C* CB CN NA CP CV CW 

 

[rules] # type pattern matching rules 

 

    # hydrogen 

 

HC match '[#1]-[C;X4!i]'   # [ 2] 

HM match '[#1]-[C;X3i]=C'   # [ 4] 

HA match '[#1]-c'    # [ 6] H on C benzene 

 

HO match '[#1]-[#8]'   # [ 8] 

HS match '[#1]-[#16]'   # [18] H on sulfur 

HN match '[#1]-[N;X3!i]'   # [20] H on N sp3 3-coord 

H3 match '[#1]-[NX4]'   # [31] H in ammonium 

 

Ham match '[#1]-[N;X3!i]C=[OX1]'  # [24] H in NC=O 

Ham match '[#1]-n'    # [24] H in TRP/HIS 

 

HCi match '[#1]-C(=[OX1])[N;X3!i]C=[OX1]' # [25] H in formimide 

HCd match '[#1]-C=[OX1]'   # [29] H in aldehyde 

#HCd match '[#1]-C-C=[OX1]'   # [29] H in HC-C=O' 

 

    # carbon 

 

CT match '[C;X4!i]'   # [ 1] 

CTa match '[C;X4]([OX2!i])[OX2!i]'  # [14] C acetal 

CM match '[C;X3i]=C'   # [ 3] C alkene 

C=O match '[C;X3i]=[OX1]'   # [21] C carbonyl 

CO2 match '[C;X3i](=[OX1])[OX1]'  # [27] C in carboxylate 

 

CA match 'c'    # [ 5] C benzene 

CF3 match '[C;X4!i](F)(F)(F)'  # [ 9] 

 

CV match '[cX3r5]1:[a;!i2]:[a;i2]:[a;!i2]:[a;!i2]:1' # [39] c r5 B 

CW match '[cX3r5]1:[a;i2]:[a;!i2]:[a;!i2]:[a;!i2]:1' # [40] c r5 A 

 

CP match '[cX3r5]1:n:c:c:n:1'  # [38] C in ncn HIS 

CW match '[cX3r5]1:c:[nX3]:c:[nX3]:1' # [40] C in HIS+ not ncn not ncn 
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CPCD match '[CX4]1[CX4][CX4][CX4Q3][NQ3]1C=O' # [42] C PRO CD 

 

    # oxygen 

 

OH match '[O;X2H1]-[CX4]'   # [ 7] 

OHa match '[O;X2H1]-[CX4]-C(F)(F)(F)' # [10] thrifluoroethanol 

OHa match '[O;X2H1]-[CX4]-[O!i]'  # [10] hemiacetal/diol 

OHa match '[O;X2H1]-[i]'   # [10] enol/phenol 

OHc match '[O;X2H1]-C=[OX1]'  # [26] OH in carboxylic acid 

 

OS match '[O;X2Q2]'   # [12] O ether 

OSa match '[O;X2Q2]-[CX4]-[O!i]'  # [13] O acetal 

 

OHM match '[OX1H1]'    # [47] O in hydroxide ion 

 

O=C match '[OX1]=[CX3]'   # [22] O carbonyl 

O2 match '[OX1]=[CX3]-[OX1]'  # [28] O in carboxylate 

O2 match '[OX1]-[CX3]=[OX1]'  # [28] O in carboxylate 

 

    # nitrogen 

 

NH3 match '[N;X3!iH3]'   # [46] N in ammonia 

NT match '[N;X3!i!Q0]'   # [19] N sp3 3-coord 

N3 match '[NX4]'    # [30] N in ammonium 

 

Nam match '[N;X3!i]C=O'   # [23] N in NC=O 

 

NA match '[nH;r5]'    # [37] N-H1 (aro) 

NB match '[nX2;i1]'   # [41] N-H0 (aro) 

 

    # sulfur 

 

SH match '[S;X2H1]'   # [15] S thiol 

SH2 match '[S;X2H2]'   # [15] S hydrogen sulfide 

S match '[S;X2Q2]'   # [17] sulfide/disulfide 

 

    # misc. 

 

F3 match 'FC(F)F'    # [11] F trifluroethanol 

 

    # metals and ions 

 

Li+ match '[Li+;X0]'  # Li+ 

Na+ match '[Na+;X0]'  # Na+ 

K+ match '[K+;X0]'   # K+ 

RB+ match '[Rb+;X0]'  # Rb+ 

Cs+ match '[Cs+;X0]'  # Cs+ 

Mg+2 match '[Mg+2;X0]'  # Cs+2 

Ca+2 match '[Ca+2;X0]'  # Cs+2 

Sr+2 match '[Sr+2;X0]'  # Cs+2 

Ba+2 match '[Ba+2;X0]'  # Cs+2 

F- match '[F-;X0]'   # F- 

Cl- match '[Cl-;X0]'  # Cl- 

#Br- match '[Br-;X0]'  # Br- 

Br match  '[Br]'   # Br as unified methyl 
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He match '[He;X0]'   # He 

Ne match '[Ne;X0]'   # Ne 

Ar match '[Ar;X0]'   # Ar 

Kr match '[Kr;X0]'   # Kr 

Xe match '[Xe;X0]'   # Xe 

 

    # water 

 

Ot3p match '[O;X2H2]'  # TIP3P water O 

HW match '[#1]-[O;X2H2]'  # TIP3P water H 

#Ospc match '[O;X2H2]'  # SPC water O 

 

    # guanidinium special case 

 

CGD+ match '[C+0](=[N+!$(*[-])])[N!i+0]'   # [33] 

CGD+ match '[C+1!i]([NX3!i])[NX3!i]' 

 

NGD+ match '[NX3!i][C+0](=[NX3+!$(*[-])])[NX3!i]'  # [32] 

NGD+ match '[NX3+!$(*[-])]=[C+0]([NX3!i])[NX3!i]' 

NGD+ match '[NX3!i][C+1!i]([NX3!i])[NX3!i]' 

NGD+ match '[NX3!i]-[c;r5]1:[nX3+!$(*[-*])]:a:a:[nX3]1' 

 

H3 match '[#1]-[NX3!i][C+0](=[NX3+!$(*[-])])[NX3!i]' 

H3 match '[#1]-[NX3+!$(*[-])]=[C+0]([NX3!i])[NX3!i]' 

H3 match '[#1]-[NX3!i][C+1!i]([NX3!i])[NX3!i]' 

H3 match '[#1]-[N!i+0]-[c;r5]1:[n+!$(*[-*])]:a:a:[i2]1' 

 

    # TRP: 5-ring carbons 

 

C* match '[cQ3]1:[cQ3]2:[cQ3](:c:c:c:c:2):n:c:1' 

CB match '[cQ3]1(:[cQ3]2:n:c:[cQ3]:1):c:c:c:c:2' 

CN match '[cQ3]1(:n:c:[cQ3]:[cQ3]2:1):c:c:c:c:2' 

CA match '[cQ2]1:n:[cQ3]2:[cQ3](:c:c:c:c:2):c:1' 

 

[str] # bond stretch parameters 

 

* CT CT 1.5290   268.0000     0.0000     0.0000  0 

* Br CT 1.5290   268.0000     0.0000     0.0000  0 

* CT HC 1.0900   340.0000     0.0000     0.0000  0.0600 

* CT CA 1.5100   317.0000     0.0000     0.0000 -0.1150 

* CT OH 1.4100   320.0000     0.0000     0.0000 -0.2650 

* CT SH 1.8100   222.0000     0.0000     0.0000 -0.1800 

* CT S 1.8100   222.0000     0.0000     0.0000 -0.2175 

* CT C=O 1.5220   317.0000     0.0000     0.0000  0 

* CT Nam 1.4490   337.0000     0.0000     0.0000  0 

* CT CO2 1.5220   317.0000     0.0000     0.0000  0.1000 

* CT N3 1.4710   367.0000     0.0000     0.0000 -0.3100 

* CT NGD+ 1.4630   337.0000     0.0000     0.0000 -0.3400 

* CT C* 1.4950   317.0000     0.0000     0.0000  0 

* CT CV 1.5040   317.0000     0.0000     0.0000 -0.1150 

* CT CW 1.5040   317.0000     0.0000     0.0000 -0.1150 

* CT CPCD 1.5290   268.0000     0.0000     0.0000  0 

* HC CPCD 1.0900   340.0000     0.0000     0.0000 -0.0600 

* CA CA 1.4000   469.0000     0.0000     0.0000  0 

* CA HA 1.0800   367.0000     0.0000     0.0000  0.1150 

* CA OHa 1.3640   450.0000     0.0000     0.0000 -0.1500 
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* CA C* 1.3520   546.0000     0.0000     0.0000  0 

* CA CB 1.4000   469.0000     0.0000     0.0000  0 

* CA CN 1.4000   469.0000     0.0000     0.0000  0 

* CA NA 1.3810   427.0000     0.0000     0.0000  0 

* HA CP 1.0800   367.0000     0.0000     0.0000 -0.1150 

* HA CV 1.0800   367.0000     0.0000     0.0000 -0.1150 

* HA CW 1.0800   367.0000     0.0000     0.0000 -0.1150 

* OH HO 0.9450   553.0000     0.0000     0.0000  0.4180 

* HO OHa 0.9450   553.0000     0.0000     0.0000 -0.4350 

* SH HS 1.3360   274.0000     0.0000     0.0000  0.2550 

* S S 2.0380   166.0000     0.0000     0.0000  0 

* C=O O=C 1.2290   570.0000     0.0000     0.0000 -0.5000 

* C=O Nam 1.3350   490.0000     0.0000     0.0000  0 

* C=O HCd 1.0900   340.0000     0.0000     0.0000  0 

* Nam Ham 1.0100   434.0000     0.0000     0.0000  0.3000 

* Nam CPCD 1.4490   337.0000     0.0000     0.0000  0.0700 

* CO2 O2 1.2500   656.0000     0.0000     0.0000 -0.3000 

* N3 H3 1.0100   434.0000     0.0000     0.0000  0.3300 

* H3 NGD+ 1.0100   434.0000     0.0000     0.0000 -0.4600 

* NGD+ CGD+ 1.3400   481.0000     0.0000     0.0000 -0.1200 

* C* CB 1.4590   388.0000     0.0000     0.0000 -0.0750 

* CB CN 1.4190   447.0000     0.0000     0.0000 -0.0200 

* CN NA 1.3800   428.0000     0.0000     0.0000 -0.1500 

* Ot3p HW 0.9572   529.6000     0.0000     0.0000  0.4170 

* HW Ospc 1.0000   527.2000     0.0000     0.0000 -0.4100 

* Ham NA 1.0100   434.0000     0.0000     0.0000 -0.2580 

* NA CP 1.3430   477.0000     0.0000     0.0000  0.2000 

* NA CW 1.3810   427.0000     0.0000     0.0000  0.2000 

* CP NB 1.3350   488.0000     0.0000     0.0000 -0.2000 

* CV CW 1.3710   518.0000     0.0000     0.0000 -0.1600 

* CV NB 1.3940   410.0000     0.0000     0.0000 -0.2000 

* CW CW 1.3710   518.0000     0.0000     0.0000  0 

 

[ang] # angle bend parameters 

 

* CT CT CT 112.700    58.3500     0.0000     0.0000 

* CT CT Br 112.700    58.3500     0.0000     0.0000 

* CT CT HC 110.700    37.5000     0.0000     0.0000 

* CT CT CA 114.000    63.0000     0.0000     0.0000 

* CT CT OH 109.500    50.0000     0.0000     0.0000 

* CT CT SH 108.600    50.0000     0.0000     0.0000 

* CT CT S 114.700    50.0000     0.0000     0.0000 

* CT CT C=O 111.100    63.0000     0.0000     0.0000 

* CT CT Nam 109.700    80.0000     0.0000     0.0000 

* CT CT CO2 111.100    63.0000     0.0000     0.0000 

* CT CT N3 111.200    80.0000     0.0000     0.0000 

* CT CT NGD+ 111.200    80.0000     0.0000     0.0000 

* CT CT C* 115.600    63.0000     0.0000     0.0000 

* CT CT CV 114.000    63.0000     0.0000     0.0000 

* CT CT CW 114.000    63.0000     0.0000     0.0000 

* CT CT CPCD 112.700    58.3500     0.0000     0.0000 

* HC CT HC 107.800    33.0000     0.0000     0.0000 

* HC CT CA 109.500    35.0000     0.0000     0.0000 

* HC CT OH 109.500    35.0000     0.0000     0.0000 

* HC CT SH 109.500    35.0000     0.0000     0.0000 

* HC CT S 109.500    35.0000     0.0000     0.0000 
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* HC CT C=O 109.500    35.0000     0.0000     0.0000 

* HC CT Nam 109.500    35.0000     0.0000     0.0000 

* HC CT CO2 109.500    35.0000     0.0000     0.0000 

* HC CT N3 109.500    35.0000     0.0000     0.0000 

* HC CT NGD+ 109.500    35.0000     0.0000     0.0000 

* HC CT C* 109.500    35.0000     0.0000     0.0000 

* HC CT CV 109.500    35.0000     0.0000     0.0000 

* HC CT CW 109.500    35.0000     0.0000     0.0000 

* HC CT CPCD 110.700    37.5000     0.0000     0.0000 

* C=O CT Nam 110.100    63.0000     0.0000     0.0000 

* C=O CT N3 111.200    80.0000     0.0000     0.0000 

* Nam CT CO2 110.100    63.0000     0.0000     0.0000 

* CO2 CT N3 111.200    80.0000     0.0000     0.0000 

* CT CA CA 120.000    70.0000     0.0000     0.0000 

* CA CA CA 120.000    63.0000     0.0000     0.0000 

* CA CA HA 120.000    35.0000     0.0000     0.0000 

* CA CA OHa 120.000    70.0000     0.0000     0.0000 

* CA CA CB 120.000    63.0000     0.0000     0.0000 

* CA CA CN 120.000    85.0000     0.0000     0.0000 

* HA CA C* 120.000    35.0000     0.0000     0.0000 

* HA CA CB 120.000    35.0000     0.0000     0.0000 

* HA CA CN 120.000    35.0000     0.0000     0.0000 

* HA CA NA 121.600    35.0000     0.0000     0.0000 

* C* CA NA 108.700    70.0000     0.0000     0.0000 

* CT OH HO 108.500    55.0000     0.0000     0.0000 

* CA OHa HO 113.000    35.0000     0.0000     0.0000 

* CT SH HS  96.000    44.0000     0.0000     0.0000 

* CT S CT  98.900    62.0000     0.0000     0.0000 

* CT S S 103.700    68.0000     0.0000     0.0000 

* CT C=O O=C 120.400    80.0000     0.0000     0.0000 

* CT C=O Nam 116.600    70.0000     0.0000     0.0000 

* O=C C=O Nam 122.900    80.0000     0.0000     0.0000 

* O=C C=O HCd 120.000    35.0000     0.0000     0.0000 

* Nam C=O HCd 115.000    40.0000     0.0000     0.0000 

* CT Nam CT 118.000    50.0000     0.0000     0.0000 

* CT Nam C=O 121.900    50.0000     0.0000     0.0000 

* CT Nam Ham 118.400    38.0000     0.0000     0.0000 

* CT Nam CPCD 118.000    50.0000     0.0000     0.0000 

* C=O Nam Ham 119.800    35.0000     0.0000     0.0000 

* C=O Nam CPCD 121.900    50.0000     0.0000     0.0000 

* Ham Nam Ham 120.000    35.0000     0.0000     0.0000 

* CT CO2 O2 117.000    70.0000     0.0000     0.0000 

* O2 CO2 O2 126.000    80.0000     0.0000     0.0000 

* CT N3 CT 113.000    50.0000     0.0000     0.0000 

* CT N3 H3 109.500    35.0000     0.0000     0.0000 

* H3 N3 H3 109.500    35.0000     0.0000     0.0000 

* CT NGD+ H3 118.400    35.0000     0.0000     0.0000 

* CT NGD+ CGD+ 123.200    50.0000     0.0000     0.0000 

* H3 NGD+ H3 120.000    35.0000     0.0000     0.0000 

* H3 NGD+ CGD+ 120.000    35.0000     0.0000     0.0000 

* NGD+ CGD+ NGD+ 120.000    70.0000     0.0000     0.0000 

* CT C* CA 125.000    70.0000     0.0000     0.0000 

* CT C* CB 128.600    70.0000     0.0000     0.0000 

* CA C* CB 106.400    85.0000     0.0000     0.0000 

* CA CB C* 134.900    85.0000     0.0000     0.0000 

* CA CB CN 116.200    85.0000     0.0000     0.0000 



 114 

* C* CB CN 108.800    85.0000     0.0000     0.0000 

* CA CN CB 122.700    85.0000     0.0000     0.0000 

* CA CN NA 132.800    70.0000     0.0000     0.0000 

* CB CN NA 104.400    70.0000     0.0000     0.0000 

* CA NA Ham 120.000    35.0000     0.0000     0.0000 

* CA NA CN 111.600    70.0000     0.0000     0.0000 

* Ham NA CN 123.100    35.0000     0.0000     0.0000 

* Ham NA CP 126.350    35.0000     0.0000     0.0000 

* Ham NA CW 126.350    35.0000     0.0000     0.0000 

* CP NA CW 107.300    70.0000     0.0000     0.0000 

* HA CP NA 120.000    35.0000     0.0000     0.0000 

* HA CP NB 120.000    35.0000     0.0000     0.0000 

* NA CP NA 110.750    70.0000     0.0000     0.0000 

* NA CP NB 111.600    70.0000     0.0000     0.0000 

* CT CV CW 130.700    70.0000     0.0000     0.0000 

* HA CV CW 128.200    35.0000     0.0000     0.0000 

* CT CV NB 124.500    70.0000     0.0000     0.0000 

* HA CV NB 120.000    35.0000     0.0000     0.0000 

* CW CV NB 108.300    70.0000     0.0000     0.0000 

* CT CW NA 121.600    70.0000     0.0000     0.0000 

* CT CW CV 130.700    70.0000     0.0000     0.0000 

* CT CW CW 130.700    70.0000     0.0000     0.0000 

* HA CW NA 121.600    35.0000     0.0000     0.0000 

* HA CW CV 130.700    35.0000     0.0000     0.0000 

* HA CW CW 130.700    35.0000     0.0000     0.0000 

* NA CW CV 108.700    70.0000     0.0000     0.0000 

* NA CW CW 106.300    70.0000     0.0000     0.0000 

* CP NB CV 105.300    70.0000     0.0000     0.0000 

* CT CPCD HC 110.700    37.5000     0.0000     0.0000 

* CT CPCD Nam 109.700    80.0000     0.0000     0.0000 

* HC CPCD HC 107.800    33.0000     0.0000     0.0000 

* HC CPCD Nam 109.500    35.0000     0.0000     0.0000 

* HW Ot3p HW 104.520    34.0500     0.0000     0.0000 

* HW Ospc HW 109.470    37.9500     0.0000     0.0000 

 

[ptor] # torsion parameters 

 

tor-format V1 V2 P2 V3 

 

* CT CT CT CT    0.870  -0.079 180   0.140 

* CT CT CT Br    0.870  -0.079 180   0.140 

* CT CT CT HC    0.000   0.000   0   0.183 

* CT CT CT S    1.310  -0.310 180   0.129 

* CT CT CT C=O   -0.849  -0.228 180   0.292 

* CT CT CT Nam    0.422  -0.481 180   0.356 

* CT CT CT CO2   -1.593  -0.412 180   0.246 

* CT CT CT N3    1.366  -0.115 180   0.242 

* CT CT CT NGD+    0.982   0.000   0   0.330 

* CT CT CT CPCD    0.870  -0.079 180   0.140 

* HC CT CT HC    0.000   0.000   0   0.159 

* HC CT CT CA    0.000   0.000   0   0.231 

* HC CT CT OH    0.000   0.000   0   0.234 

* HC CT CT SH    0.000   0.000   0   0.226 

* HC CT CT S    0.000   0.000   0   0.226 

* HC CT CT C=O    0.000   0.000   0  -0.038 

* HC CT CT Nam    0.000   0.000   0   0.232 
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* HC CT CT CO2    0.000   0.000   0  -0.113 

* HC CT CT N3    0.000   0.000   0   0.192 

* HC CT CT NGD+    0.000   0.000   0   0.232 

* HC CT CT C*    0.000   0.000   0   0.231 

* HC CT CT CV    0.000   0.000   0   0.231 

* HC CT CT CW    0.000   0.000   0   0.231 

* HC CT CT CPCD    0.000   0.000   0   0.183 

* CA CT CT C=O   -0.849  -0.228 180   0.292 

* CA CT CT Nam    0.422  -0.481 180   0.356 

* CA CT CT CO2   -0.849  -0.228 180   0.292 

* CA CT CT N3    0.422  -0.481 180   0.356 

* OH CT CT C=O   -3.090   0.000   0   0.000 

* OH CT CT Nam    3.140  -0.734 180   1.015 

* OH CT CT CO2   -3.090   0.000   0   0.000 

* OH CT CT N3    3.140  -0.734 180   1.015 

* SH CT CT C=O   -2.107  -1.057 180   0.484 

* SH CT CT Nam    0.291  -0.582 180   0.070 

* SH CT CT CO2   -2.107  -1.057 180   0.484 

* SH CT CT N3    0.291  -0.582 180   0.070 

* S CT CT C=O   -2.107  -1.057 180   0.484 

* S CT CT Nam    0.291  -0.582 180   0.070 

* S CT CT CO2   -2.107  -1.057 180   0.484 

* S CT CT N3    0.291  -0.582 180   0.070 

* C=O CT CT C=O   -0.849  -0.228 180   0.292 

* C=O CT CT Nam    0.422  -0.481 180   0.356 

* C=O CT CT CO2   -0.849  -0.228 180   0.292 

* C=O CT CT N3    0.422  -0.481 180   0.356 

* C=O CT CT C*   -0.849  -0.228 180   0.292 

* C=O CT CT CV   -0.849  -0.228 180   0.292 

* C=O CT CT CW   -0.849  -0.228 180   0.292 

* Nam CT CT CO2    0.422  -0.481 180   0.356 

* Nam CT CT C*    0.422  -0.481 180   0.356 

* Nam CT CT CV    0.422  -0.481 180   0.356 

* Nam CT CT CW    0.422  -0.481 180   0.356 

* CO2 CT CT CO2    0.422  -0.481 180   0.356 

* CO2 CT CT N3    0.422  -0.481 180   0.356 

* CO2 CT CT C*   -0.849  -0.228 180   0.292 

* N3 CT CT C*    0.422  -0.481 180   0.356 

* CT CT CA CA    0.000   0.000   0   0.000 

* HC CT CA CA    0.000   0.000   0   0.000 

* CT CT OH HO   -0.178  -0.087 180   0.246 

* HC CT OH HO    0.000   0.000   0   0.225 

* CT CT SH HS   -0.380  -0.141 180   0.301 

* HC CT SH HS    0.000   0.000   0   0.226 

* CT CT S CT    0.463  -0.288 180   0.339 

* CT CT S S    0.971  -0.418 180   0.468 

* HC CT S CT    0.000   0.000   0   0.324 

* HC CT S S    0.000   0.000   0   0.279 

* CT CT C=O O=C    0.000   0.000   0   0.000 

* CT CT C=O Nam    0.587   0.095 180  -0.600 

* HC CT C=O O=C    0.000   0.000   0   0.000 

* HC CT C=O Nam    0.000   0.000   0   0.000 

* Nam CT C=O O=C    0.000   0.000   0   0.000 

* Nam CT C=O Nam    0.908   0.611 180   0.790 

* N3 CT C=O O=C    0.000   0.000   0   0.000 

* N3 CT C=O Nam    0.908   0.611 180   0.790 
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* CT CT Nam C=O    0.000   0.231 180   0.000 

* CT CT Nam Ham    0.000   0.000   0   0.000 

* CT CT Nam CPCD    2.377  -0.367 180   0.000 

* HC CT Nam CT    0.000   0.000   0   0.000 

* HC CT Nam C=O    0.000   0.000   0   0.000 

* HC CT Nam Ham    0.000   0.000   0   0.000 

* HC CT Nam CPCD    0.000   0.000   0   0.000 

* C=O CT Nam C=O   -1.183   0.456 180  -0.425 

* C=O CT Nam Ham    0.000   0.000   0   0.000 

* C=O CT Nam CPCD   -0.869   0.625 180  -1.750 

* CO2 CT Nam C=O   -1.183   0.456 180  -0.425 

* CO2 CT Nam Ham    0.000   0.000   0   0.000 

* CO2 CT Nam CPCD   -0.869   0.625 180  -1.750 

* CT CT CO2 O2    0.000   0.410 180   0.000 

* HC CT CO2 O2    0.000   0.000   0   0.000 

* Nam CT CO2 O2    0.000   0.000   0   0.000 

* N3 CT CO2 O2    0.000   0.000   0   0.000 

* CT CT N3 CT    0.870  -0.079 180   0.140 

* CT CT N3 H3    0.000   0.000   0   0.173 

* HC CT N3 CT    0.000   0.000   0   0.183 

* HC CT N3 H3    0.000   0.000   0   0.131 

* C=O CT N3 CT   -0.849  -0.228 180   0.292 

* C=O CT N3 H3    0.000   0.000   0   0.173 

* CO2 CT N3 H3    0.000   0.000   0   0.173 

* CT CT NGD+ H3    0.000   0.000   0   0.000 

* CT CT NGD+ CGD+    0.914   0.121 180  -0.249 

* HC CT NGD+ H3    0.000   0.000   0   0.000 

* HC CT NGD+ CGD+    0.000   0.000   0   0.088 

* CT CT C* CA   -0.357   0.000   0   0.000 

* CT CT C* CB    0.000   0.000   0   0.000 

* HC CT C* CA    0.000   0.000   0  -0.240 

* HC CT C* CB    0.000   0.000   0   0.000 

* CT CT CV CW    0.000   0.000   0   0.000 

* CT CT CV NB    1.183  -0.131 180   0.253 

* HC CT CV CW    0.000   0.000   0   0.000 

* HC CT CV NB    0.000   0.000   0   0.209 

* CT CT CW NA    1.183  -0.131 180   0.253 

* CT CT CW CV    0.000   0.000   0   0.000 

* CT CT CW CW    0.000   0.000   0   0.000 

* HC CT CW NA    0.000   0.000   0   0.209 

* HC CT CW CV    0.000   0.000   0   0.000 

* HC CT CW CW    0.000   0.000   0   0.000 

* CT CT CPCD HC    0.000   0.000   0   0.183 

* CT CT CPCD Nam    0.422  -0.481 180   0.356 

* HC CT CPCD HC    0.000   0.000   0   0.159 

* HC CT CPCD Nam    0.000   0.000   0   0.232 

* CT CA CA CA    0.000   3.625 180   0.000 

* CT CA CA HA    0.000   3.625 180   0.000 

* CA CA CA CA    0.000   3.625 180   0.000 

* CA CA CA HA    0.000   3.625 180   0.000 

* CA CA CA OHa    0.000   3.625 180   0.000 

* CA CA CA CB    0.000   3.625 180   0.000 

* CA CA CA CN    0.000   3.625 180   0.000 

* HA CA CA HA    0.000   3.625 180   0.000 

* HA CA CA OHa    0.000   3.625 180   0.000 

* HA CA CA CB    0.000   3.625 180   0.000 
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* HA CA CA CN    0.000   3.625 180   0.000 

* CA CA OHa HO    0.000   0.841 180   0.000 

* HA CA C* CT    0.000   6.525 180   0.000 

* HA CA C* CB    0.000   6.525 180   0.000 

* NA CA C* CT    0.000   6.525 180   0.000 

* NA CA C* CB    0.000   6.525 180   0.000 

* CA CA CB C*    0.000   3.500 180   0.000 

* CA CA CB CN    0.000   3.500 180   0.000 

* CA CA CN CB    0.000   3.625 180   0.000 

* CA CA CN NA    0.000   3.625 180   0.000 

* HA CA CB C*    0.000   3.500 180   0.000 

* HA CA CB CN    0.000   3.500 180   0.000 

* HA CA CN CB    0.000   3.625 180   0.000 

* HA CA CN NA    0.000   3.625 180   0.000 

* HA CA NA Ham    0.000   1.500 180   0.000 

* HA CA NA CN    0.000   1.500 180   0.000 

* C* CA NA Ham    0.000   1.500 180   0.000 

* C* CA NA CN    0.000   1.500 180   0.000 

* CT S S CT    0.000  -3.707 180   0.853 

* CT C=O Nam CT    1.150   3.045 180   0.000 

* CT C=O Nam Ham    0.000   2.450 180   0.000 

* CT C=O Nam CPCD    1.150   3.045 180   0.000 

* O=C C=O Nam CT    0.000   3.045 180   0.000 

* O=C C=O Nam Ham    0.000   2.450 180   0.000 

* O=C C=O Nam CPCD    0.000   3.045 180   0.000 

* HCd C=O Nam CT    0.000   3.045 180   0.000 

* HCd C=O Nam Ham    0.000   2.450 180   0.000 

* HCd C=O Nam CPCD    0.000   3.045 180   0.000 

* CT Nam CPCD CT    1.429   1.029 180  -5.633 

* CT Nam CPCD HC    0.000   0.000   0   0.000 

* C=O Nam CPCD CT    0.000   0.231 180   0.000 

* C=O Nam CPCD HC    0.000   0.000   0   0.000 

* CT NGD+ CGD+ NGD+    0.000   3.968 180   0.000 

* H3 NGD+ CGD+ NGD+    0.000   1.950 180   0.000 

* CT C* CB CA    0.000   1.675 180   0.000 

* CT C* CB CN    0.000   1.675 180   0.000 

* CA C* CB CA    0.000   1.675 180   0.000 

* CA C* CB CN    0.000   1.675 180   0.000 

* CA CB CN CA    0.000   3.000 180   0.000 

* CA CB CN NA    0.000   3.000 180   0.000 

* C* CB CN CA    0.000   3.000 180   0.000 

* C* CB CN NA    0.000   3.000 180   0.000 

* CA CN NA CA    0.000   1.525 180   0.000 

* CA CN NA Ham    0.000   1.525 180   0.000 

* CB CN NA CA    0.000   1.525 180   0.000 

* CB CN NA Ham    0.000   1.525 180   0.000 

* Ham NA CP HA    0.000   2.325 180   0.000 

* Ham NA CP NA    0.000   2.325 180   0.000 

* Ham NA CP NB    0.000   2.325 180   0.000 

* CW NA CP HA    0.000   2.325 180   0.000 

* CW NA CP NA    0.000   2.325 180   0.000 

* CW NA CP NB    0.000   2.325 180   0.000 

* Ham NA CW CT    0.000   1.400 180   0.000 

* Ham NA CW HA    0.000   1.600 180   0.000 

* Ham NA CW CV    0.000   1.400 180   0.000 

* Ham NA CW CW    0.000   1.400 180   0.000 
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* CP NA CW CT    0.000   1.400 180   0.000 

* CP NA CW HA    0.000   1.600 180   0.000 

* CP NA CW CV    0.000   1.400 180   0.000 

* CP NA CW CW    0.000   1.400 180   0.000 

* HA CP NB CV    0.000   5.000 180   0.000 

* NA CP NB CV    0.000   5.000 180   0.000 

* CT CV CW HA    0.000   5.375 180   0.000 

* CT CV CW NA    0.000   5.375 180   0.000 

* HA CV CW CT    0.000   5.375 180   0.000 

* HA CV CW NA    0.000   5.375 180   0.000 

* NB CV CW CT    0.000   5.375 180   0.000 

* NB CV CW HA    0.000   5.375 180   0.000 

* NB CV CW NA    0.000   5.375 180   0.000 

* CT CV NB CP    0.000   2.400 180   0.000 

* HA CV NB CP    0.000   2.400 180   0.000 

* CW CV NB CP    0.000   2.400 180   0.000 

* CT CW CW HA    0.000   5.375 180   0.000 

* CT CW CW NA    0.000   5.375 180   0.000 

* HA CW CW NA    0.000   5.375 180   0.000 

* NA CW CW NA    0.000   5.375 180   0.000 

 

[itor] # improper torsion parameters 

 

* CA CA CA CT    0.000   -2.200    0.000    0.000    0.000 

* CA CA CA HA    0.000   -2.200    0.000    0.000    0.000 

* CA CA CA OHa    0.000   -2.200    0.000    0.000    0.000 

* CA CN CA HA    0.000   -2.200    0.000    0.000    0.000 

* CB CA CA HA    0.000   -2.200    0.000    0.000    0.000 

* NA C* CA HA    0.000   -2.200    0.000    0.000    0.000 

* Nam CT C=O O=C    0.000  -21.000    0.000    0.000    0.000 

* Nam HCd C=O O=C    0.000  -21.000    0.000    0.000    0.000 

* CT C=O Nam Ham    0.000   -2.000    0.000    0.000    0.000 

* CT C=O Nam CPCD    0.000   -2.000    0.000    0.000    0.000 

* Ham C=O Nam Ham    0.000   -2.000    0.000    0.000    0.000 

* O2 CT CO2 O2    0.000  -21.000    0.000    0.000    0.000 

* CB CA C* CT    0.000   -2.200    0.000    0.000    0.000 

* C* CA CB CN    0.000   -2.200    0.000    0.000    0.000 

* NA CB CN CA    0.000   -2.200    0.000    0.000    0.000 

* CN CA NA Ham    0.000   -2.000    0.000    0.000    0.000 

* CW CP NA Ham    0.000   -2.000    0.000    0.000    0.000 

* NA NA CP HA    0.000   -2.200    0.000    0.000    0.000 

* NA NB CP HA    0.000   -2.200    0.000    0.000    0.000 

* CW NB CV CT    0.000   -2.200    0.000    0.000    0.000 

* CW NB CV HA    0.000   -2.200    0.000    0.000    0.000 

* NA CV CW CT    0.000   -2.200    0.000    0.000    0.000 

* NA CV CW HA    0.000   -2.200    0.000    0.000    0.000 

* NA CW CW CT    0.000   -2.200    0.000    0.000    0.000 

* NA CW CW HA    0.000   -2.200    0.000    0.000    0.000 

 

[nonbonded] # nonbonded parameters 

 

vdw-function   12-6 

vdw-mix-radius geometric 

vdw-mix-well   geometric 

vdw-scale14    0.5 

vdw-buffer     0 0 
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ele-dielectric 1 distance 

ele-scale14    0.5 

ele-buffer     0 

ele-charge-fcn pot_ChargeBCI 

 

CT 1.964 0.0660 0 0  12.0000 -  0.0000 0 - 

#The Br below is a unified methyl that uses 

#the CT parameters increased by 10% 

Br 2.160 0.1826 0 0  12.0000 -  0.0000 0 - 

HC 1.403 0.0300 0 0   1.0080 -  0.0000 0 - 

CM 1.992 0.0760 0 0  12.0000 -  0.0000 0 - 

HM 1.358 0.0300 0 0   1.0080 -  0.0000 0 - 

CA 1.992 0.0700 0 0  12.0000 -  0.0000 0 - 

HA 1.358 0.0300 0 0   1.0080 -  0.0000 0 - 

OH 1.751 0.1700 0 0  15.9990 -  0.0000 0 - 

HO 1.000 1e-7   0 0   1.0080 -  0.0000 0 - 

CF3 1.824 0.0620 0 0  12.0000 -  0.0000 0 - 

OHa 1.723 0.1700 0 0  15.9990 -  0.0000 0 - 

F3 1.650 0.0610 0 0  18.9980 -  0.0000 0 - 

OS 1.628 0.1400 0 0  15.9990 -  0.0000 0 - 

OSa 1.684 0.1400 0 0  15.9990 -  0.0000 0 - 

CTa 1.964 0.0660 0 0  12.0000 -  0.0000 0 - 

SH 1.992 0.2500 0 0  32.0660 -  0.0000 0 - 

SH2 2.077 0.2500 0 0  32.0660 -  0.0000 0 - 

S 1.992 0.2500 0 0  32.0660 -  0.0000 0 - 

HS 1.000 1e-7   0 0   1.0080 -  0.0000 0 - 

NT 1.824 0.1700 0 0  14.0070 -  0.0000 0 - 

HN 1.000 1e-7   0 0   1.0080 -  0.0000 0 - 

C=O 2.105 0.1050 0 0  12.0000 -  0.0000 0 - 

O=C 1.661 0.2100 0 0  15.9990 -  0.0000 0 - 

Nam 1.824 0.1700 0 0  14.0070 -  0.0000 0 - 

Ham 0.000 0.0000 0 0   1.0080 -  0.0000 0 - 

HCi 1.403 0.0200 0 0   1.0080 -  0.0000 0 - 

OHc 1.684 0.1700 0 0  15.9990 -  0.0000 0 - 

CO2 2.105 0.1050 0 0  12.0000 -  0.0000 0 - 

O2 1.661 0.2100 0 0  15.9990 -  ?      0 - 

HCd 1.358 0.0150 0 0   1.0080 -  0.0000 0 - 

N3 1.824 0.1700 0 0  14.0070 -  1.0000 0 - 

H3 1.000 1e-7   0 0   1.0080 -  0.0000 0 - 

NGD+ 1.824 0.1700 0 0  14.0070 -  0.0000 0 - 

CGD+ 1.263 0.0500 0 0  12.0000 -  1.0000 0 - 

C* 1.992 0.0700 0 0  12.0000 -  0.0000 0 - 

CB 1.992 0.0700 0 0  12.0000 -  0.0000 0 - 

CN 1.992 0.0700 0 0  12.0000 -  0.0000 0 - 

NA 1.824 0.1700 0 0  14.0070 -  ?      0.25 - 

CP 1.992 0.0700 0 0  12.0000 -  0.0000 0 - 

CV 1.992 0.0700 0 0  12.0000 -  0.0000 0 - 

CW 1.992 0.0700 0 0  12.0000 -  0.0000 0 - 

NB 1.824 0.1700 0 0  14.0070 -  0.0000 0 - 

CPCD 1.964 0.0660 0 0  12.0000 -  0.0000 0 - 

Ot3p 1.768 0.1521 0 0  15.9990 -  0.0000 0 - 

HW 1.000 1e-7   0 0   1.0080 -  0.0000 0 - 

Ospc 1.777 0.1554 0 0  15.9990 -  0.0000 0 - 

NH3 1.886 0.2100 0 0  14.0070 -  0.0000 0 - 

OHM 1.796 0.2500 0 0  15.9990 - -1.0000 0 - 
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Li+ 1.193 0.0183 0 0   6.9410 -  1.0000 0 - 

Na+ 1.869 0.0028 0 0  22.9900 -  1.0000 0 - 

K+ 2.769 0.0003 0 0  39.0980 -  1.0000 0 - 

RB+ 3.155 0.0002 0 0  85.4680 -  1.0000 0 - 

Cs+ 3.769 0.0001 0 0 132.9050 -  1.0000 0 - 

Mg+2 0.923 0.8750 0 0  24.3050 -  2.0000 0 - 

Ca+2 1.354 0.4497 0 0  40.0780 -  2.0000 0 - 

Sr+2 1.741 0.1182 0 0  87.6200 -  2.0000 0 - 

Ba+2 2.142 0.0471 0 0 137.3270 -  2.0000 0 - 

F- 1.534 0.7200 0 0  18.9980 - -1.0000 0 - 

Cl- 2.479 0.1180 0 0  35.4530 - -1.0000 0 - 

#Br- 2.595 0.0900 0 0  79.9040 - -1.0000 0 - 

He 1.435 0.0200 0 0   4.0030 -  0.0000 0 - 

Ne 1.560 0.0690 0 0  20.1790 -  0.0000 0 - 

Ar 1.909 0.2339 0 0  39.9480 -  0.0000 0 - 

Kr 2.034 0.3170 0 0  83.8000 -  0.0000 0 - 

Xe 2.208 0.4330 0 0 131.3000 -  0.0000 0 - 

 

[eof] 

[vdw] # specific van der waals parameters 

 

#T1 T2 rad eps m  n 

#--- ---- ------- ------- -- -- 

 

* * - - 12  6 
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APPENDIX E. JOURNAL LICENSES/PERMISSIONS 

 

Figure App-D.1. License for Tables 2-1 and 2-3. 

 

2-6, 9-12, 14-15, 17-30, 32-90  
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