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SUMMARY 

 

 

The monitoring of water distribution systems (WDSs) has been a very popular subject of 

study since the terrorist attacks of September 11, 2001, and the subsequent passing of 

laws motivating the study of WDS monitoring to provide system protection in the event 

of a terrorist attack.  Inhibiting many WDS monitoring studies to date is the large amount 

of computational expense required to conduct meaningful studies, especially for larger 

WDSs that are of most interest.   

 

In this study, methods were developed to determine the “importance” of WDS nodes in 

being considered as locations for sensors used to monitor a WDS in order to make sensor 

placement optimization more efficient.  Single-objective protection goals considered 

individually in optimization were maximizing detection likelihood, minimizing expected 

detection time, and minimizing expected contaminated demand volume.  A 

multiobjective protection goal accounting for all three single-objective goals concurrently 

was also considered; the formulation of the multiobjective optimization problem was 

intended to minimize tradeoffs among individual protection goals.  Sensor placement 

optimization was carried out with the Iterative Subset Search Method (ISSM) employing 

genetic algorithms developed in this work; ISSM used nodal importance rankings to 

search a small subset of nodes for the optimal solution initially then broadened the search 

incrementally until convergence to a best solution occurred. 
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To demonstrate the effectiveness of the methods developed, sensor placement was 

performed according to each of the protection goals for three study systems—one small 

and two large—and a variety of attack conditions.   Desirable sensor node solutions that 

provided for significant protection were found in all cases, and in many cases sensor 

placement results were comparable to or better than those of other works.  Nodal 

importance narrowed the search for optimal sensor nodes to a relatively small proportion 

of WDS nodes in most cases.   
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CHAPTER 1 

I�TRODUCTIO� 

Chapter 1  

In this introductory chapter, the motivations for the study at the center of this thesis are 

discussed, and the major objectives of the study in accordance with those motivations as 

well as the objectives of the thesis itself are outlined.   

 

1.1 MOTIVATIO�S FOR A�D CHALLE�GES OF WATER DISTRIBUTIO� 

SYSTEM MO�ITORI�G RESEARCH 

  

The monitoring of water distribution systems (WDSs) has been a popular subject of study 

interest for many years.  Initially, WDS monitoring research was motivated primarily by 

WDS operational needs and the potential for accidental WDS contamination (e.g., 

Kessler et al. 1998; Lee and Deininger 1992).  However, the focus of study for WDS 

monitoring more recently has become the protection of a WDS in the event of intentional 

contamination of the system in the form of a terrorist attack (e.g., Berry et al. 2005; 

Ostfeld and Salomons 2004).  In response to the terrorist attacks of September 11, 2001, 

the U.S. Congress amended the Safe Drinking Water Act (Title XIV of the Public Health 

Service Act) with the Public Health Security and Bioterrorism Preparedness and 

Response Act of 2002 by mandating the development of methods to “prevent, detect, and 

respond to the intentional introduction of chemical, biological, or radiological 

contaminants into community water systems and source water for community systems” 

(U.S. Congress 2002).  Consequently, the U.S. Environmental Protection Agency (U.S. 
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EPA) conducted a vulnerability assessment study in which individual vulnerability 

assessments of WDSs in communities with populations of 3,300 people or greater were 

examined in order to determine the aspects and degrees of vulnerability that exist for 

various aspects of water supply and distribution (U.S. EPA 2003).  Factors that were 

considered in the individual assessments are the following: 

• system characteristics, 

• possible adverse consequences and their severity relative to each other, 

• critical WDS assets subject to potential malevolent acts, 

• likelihood of malevolent acts, 

• existing system countermeasures, and 

• measures being taken to develop a prioritized plan for risk reduction for the 

system. 

 

The vulnerability assessment study indicated that the communities conducting individual 

assessments as a whole were not explicitly accounting for the potential of 

contamination—intentional or otherwise—as a threat to the WDS (ASCE 2004).  Thus, 

there has been much room for the study of how contamination events with uncertain 

characteristics can affect the WDS and its customers.  The first two vulnerability-related 

factors listed above have garnered the most attention from environmental engineers, 

health scientists, and the like who have been performing research to explicitly address the 

intentional contamination problem since the terrorist attacks of 2001.  To quantifiably 

assess those two factors of vulnerability, several state and decision variables associated 

with specific systems must be taken into account: 
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• WDS physical characteristics.  Every WDS has a unique set of physical 

characteristics that influence greatly the potential for adverse effects attributed to 

a terrorist attack and the ability to monitor the system adequately.  WDS networks 

can range from hundreds to millions in numbers of nodes and links and cover 

areas of a few to hundreds of square kilometers.  Monitoring the system becomes 

more difficult as system size increases for the number of possible attack locations 

and number of WDS components needing protection both increase.  The set of 

nodes and links can be configured in a virtually infinite number of manners, 

allowing for very dynamic flow and transport behavior that can require complex 

modeling and a large amount of computational expense.  Nodes mostly take the 

form of network junctions (i.e., connections of two or more pipe segments) but 

may take the form of hydraulic devices such a tank or a reservoir.  Links typically 

represent pipe segments but may represent pumps and valves as well.  Hydraulic 

devices can impact WDS flow and transport behavior to a large degree. 

• WDS customer types.  A WDS can serve a variety of types of customers such as 

residences, schools, hospitals, industries, and amusement parks.  Each type of 

customer has particular water needs.  Also, some types of customers may need 

more protection than others.  For instance, a school may require more protection 

than an industry as contaminated water consumed by a school has a greater 

chance of causing adverse human effects and, in turn, psychological damage for 

the population-at-large.   

• WDS hydraulic demand profile.  Each node in the WDS is associated with a 

hydraulic demand time series over some specific period of time that is a function 
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of the number and type of customers served by the node.  The system demand 

profile is the major contributor in the flow and transport behavior of the system. 

• Sensors.  Independent of a WDS in question, the type of contaminant sensor used 

to monitor the system and the number of sensors available to be employed are 

decision variables that affect WDS monitoring proficiency.  The type of sensor 

used is tied to the ability of the sensor to detect a particular contaminant that is 

present at a particular concentration at the location of the sensor.  Additionally, 

sensors represent the cost of monitoring the system.  This cost is in terms of the 

sensors themselves and the implementation and continuous operation costs of the 

sensors. 

• Hierarchy of WDS monitoring protection goals.  The WDS protection provided 

by a set of sensors can be quantified in terms of performance measures like time 

after contaminant injection to detection of the contaminant, demand volume 

contaminated, the likelihood of detection, and others.   As certain protection goals 

are in conflict with other protection goals (i.e., an improvement in performance 

measure value with regard to one protection goal may lead to a worsening in 

performance measure value with regard to another protection goal), it is up to 

decision-makers to prioritize protection goals.  For instance, the protection of 

people may be the primary goal for a given WDS that serves a mostly residential 

area, so the demand volume contaminated may be considered a more important 

performance measure at the opportunity cost of decreased detection likelihood as 

well as possibly protection with respect to other performance measures.  
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However, time after injection to detection may be considered more important if 

the primary goal is the minimizing of remediation costs.   

 

Unfortunately, human variables inherent to a terrorist attack of uncertain characteristics 

increase significantly the complexity of quantifying vulnerability.  Some of these 

variables follow: 

• Number of attack events.  An indefinite number of contaminant injection events 

of potentially varied characteristics could occur in a particular attack. 

• Location(s) of attack.  Per attack, the entire WDS or some subset of WDS 

locations is susceptible to one or more contaminant injection events at one 

unknown location or at multiple unknown locations. 

• Time(s) of attack.  A contaminant injection event can occur at any time in a given 

period.  Multiple events can occur simultaneously or at different times.   

• Specifics of contaminant(s).  A contaminant employed in a contaminant injection 

event can be biological or chemical in nature and be associated with a unique set 

of interesting physical and chemical properties.  The contaminant likely would 

enter the system in a controlled manner at an either steady or unsteady rate and at 

either a constant or variable concentration.  One or multiple contaminants can be 

employed in one attack. 

 

Studies are documented that present methods for WDS monitoring through sensor 

placement considering the above variables.  However, as acknowledged in various 

studies (e.g., Dorini et al. 2006; Huang et al. 2006), determining the WDS effects of a 
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realistic array of possible attack scenarios can require a great deal of computational 

expense in terms of both memory and runtime due to the large domains of values for 

variables corresponding to WDSs and terrorist attacks.  In many studies that optimize 

sensor placement for a large-scale, real-world WDS, computational expense led to either 

computational infeasibility or oversimplifying assumptions that compromised accuracy 

for computational feasibility.  These issues are especially concerning for urban systems 

serve more than 75% of the U.S. population and are at greater risks of being terrorist 

targets than are smaller systems (Copeland and Cody 2002).  Thus, computational 

expense has hindered the development of definitive methods for WDS monitoring. 

 

Given the negative correlation between WDS sensor placement proficiency and 

computational expense, a method is needed that assigns contaminant sensors to locations 

in a large WDS in order to acceptably maximize WDS protection while observing 

monitoring cost constraints and minimizing the computational expense needed.   

 

1.2 OBJECTIVES OF THIS WORK 

 

In this study, methods were developed that determine the “importance” of all eligible 

WDS locations (WDS nodes exclusively) in being considered for sensor placement in 

order to make the search for the optimal set of sensor locations more efficient.  Nodal 

importance is directly tied to the on-average protection gained according to selected 

protection goals by placing a sensor at a given node.  The protection goals of interest for 

this study are maximizing detection likelihood, minimizing the expected time after 
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contaminant injection to detection (i.e., expected detection time), and minimizing the 

expected demand volume contaminated.  These protection goals are considered 

individually in single-objective optimization problems and collectively in a 

multiobjective optimization problem that minimizes protection tradeoffs among 

individual protection goals.  The search for optimal sensor locations is conducted with the 

Iterative Subset Search Method employing genetic algorithms developed in this work.  

The Iterative Subset Search Method uses nodal importance rankings to begin the search 

for the optimal sensor nodes with a small subset of WDS nodes then broadens the search 

incrementally until convergence to a best solution occurs.  Constraints of the optimization 

include a limit on sensor availability that represents in a lumped manner an upper bound 

on the cost of sensor placement.  Methods of this study are applied to three study systems 

that provide a diversity of system characteristics appropriate for demonstrating the 

robustness of the developed sensor placement methods.   

 

Chapter 2 of this thesis presents a discussion regarding the evolution of WDS monitoring 

over approximately the last two decades.  More specifically, sensor placement methods 

submitted by various researchers will be explained and analyzed according to their ability 

to protect a WDS from the adverse effects of contamination and their computational 

expense drawbacks.  In Chapter 3, the particular problem of this study is defined in detail.  

Mathematical representations of protection goal performance measures are given, and 

relationships among protection goals are discussed.  Chapter 3 also gives the assumptions 

and other confining parameters of the study along with qualitative and quantitative 

evaluations of three study systems.  Chapter 4 provides the solution approach that was 
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applied to the study problem.  The single-objective and multiobjective optimization 

problems as well as nodal importance concepts are formulated mathematically, and the 

ways nodal importance concepts are used in conjunction with optimization are explained.  

Chapters 5, 6, and 7 present the results of application of the developed methods on the 

three study systems.  In Chapter 8, the work presented in this thesis is summarized, and 

conclusions are drawn to justify the work as an advancement in WDS monitoring.   
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CHAPTER 2 

LITERATURE SURVEY 

Chapter 2  

An overview of many of the salient WDS monitoring studies documented to date is given 

in this chapter in order to provide context for the work detailed in this thesis. 

 

2.1 WDS MO�ITORI�G STUDY PRIOR TO SEPTEMBER 11, 2001  

     

As discussed in Chapter 1, sensor placement studies were mostly motivated by the 

possibility of accidental contamination before September 11, 2001.  Several of these 

studies laid the foundation for future studies of WDS monitoring in the case of intentional 

contamination.   

 

One such study was that of Lee and Deininger (1992).  Lee and Deininger devised a 

method to place sensors at nodes in a WDS so that a sensor set maximized system 

“demand coverage”, the percentage of system hydraulic demand monitored by the sensor 

set.  This sensor placement optimization approach consisted of two major stages: 

constructing the “water fraction matrix” and solving an integer program.  In the first 

stage, the authors used hydraulic pathway analysis to develop the water fraction matrix 

containing the particular fractions of demand for a WDS node flowing through specific 

upstream nodes.  That information was employed in the second stage in the solving of the 

integer program with an objective function that maximized demand coverage subject to 

the constraint of sensor availability.   
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The method worked well for the small study system of the Lee and Deininger study, but 

drawbacks would exist if the method were applied to larger, real-world systems.  A 

critical assumption of the method is that water quality lessens as time and distance from a 

given source of contaminant intrusion increases.  Thus, the water quality at a node is the 

indication of the water quality of a node upstream from the node in question.  The 

assumption may be valid if water quality deteriorates gradually, but contaminant 

intrusion generally causes rapid water quality deterioration.  The assumption is a by-

product of the more overarching assumption the method employs of time independence.  

System flow and contaminant transport are unrealistically considered steady-state.  The 

time between contaminant intrusion and detection is not accounted-for.  Such neglecting 

of time dependence can lead to the contamination of much hydraulic demand at many 

WDS nodes.  In addition, the two-stage optimization process would be very 

computationally cumbersome for larger systems due primarily to the need to analyze all 

individual hydraulic pathways of the WDS.   

 

Despite the aforementioned drawbacks, other researchers found the work of Lee and 

Deininger significant and continued the study of WDS monitoring by building on the 

work.  Kumar et al. (1997) applied a greedy heuristic-based algorithm to solve the 

demand coverage problem and produced results similar to those presented by Lee and 

Deininger, though no proof of global optimality or near-optimality was given.  Also, 

Kumar et al. claim extendibility of their work to larger systems, but they only tested their 

method on systems of 19 nodes or less.  Harmant et al. (1999) modified the demand 

coverage-based sensor placement method by accounting for time dependence and 
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contaminant concentration in the integer program objective function.  The means 

employed by Harmant et al. biased coverage consideration toward nodes with flows of 

higher magnitudes and more aged water.  To correct this bias somewhat, Woo et al. 

(2001) modified the integer program objective function by normalizing concentration 

values according to contaminant source concentration values in order to emphasize 

coverage consideration for nodes of lower water quality.  Al-Zahrani and Moied (2001) 

applied genetic algorithms to carry out the demand coverage-based optimization.   

 

Another key study was conducted by Kessler et al. (1998).  This study was based loosely 

on the Lee and Deininger (1992) study in terms of placing sensors to cover nodal 

demands.  It was particularly innovative at the time for considering the random nature of 

accidental contamination through the development of the randomized pollution matrix 

and imposing a minimum protection-based level-of-service.  The level-of-service in that 

study was a function of contaminated demand volume.  Thus, to impose a minimum 

level-of-service was to impose a criterion for the maximum demand volume allowed to 

be contaminated prior to sensor detection of the contaminant.  In short, the sensor 

placement optimization methodology consisted of establishing an auxiliary WDS 

network to represent all possible flow directions for a typical demand cycle, conducting a 

shortest-paths analysis to identify domains of pollution, and determining the “minimum 

covering set” for choosing optimal sensor locations.  This study also has drawbacks that 

limit its applicability.  As in the case of the Lee and Deininger (1992) study, the Kessler 

et al. (1998) study assumes time independence.  Also, like Kumar et al. (1997), Kessler et 



 

 
12 

 

  

al. claim extendibility to larger systems, but the largest system employed in testing was 

the 18-node “Anytown, U.S.A.”. 

 

In summary, the WDS monitoring methods developed prior to September 11, 2001, 

described above have substantial drawbacks and are not applicable for real-world WDSs 

on the whole.  However, the methodological contributions made by those studies would 

allow for significant advancements in WDS monitoring to be made immediately after 

September 11, 2001.   

 

2.2 WDS MO�ITORI�G STUDY ADVA�CES SI�CE SEPTEMBER 11, 2001 

 

Shifts in WDS monitoring priorities are evident in sensor placement work that has been 

documented since September 11, 2001.  The uncertainties associated with a terrorist 

attack on a WDS explained in Chapter 1 have received increased attention.  WDS 

protection goals have become more oriented toward safeguarding humans.  Study 

systems have increased in size and complexity so that sensor placement methods can be 

tested under real-world conditions.  Some of the more innovative studies that have been 

performed since September 11, 2001, are detailed and analyzed below.   

 

Ostfeld and Salomons (2004) adapted the concepts of the randomized pollution matrix 

and the demand-based level-of-service developed by Kessler et al. (1998) for the set-

covering sensor placement approach in order to address the problem of intentional 

contaminant intrusion.  In their study, contaminant concentrations were taken into 
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account in determining if levels of service were met for water was considered 

contaminated only if its contaminant concentration equaled or exceeded some threshold 

value.  The actual optimization to find the minimum covering set of sensors was carried 

out by genetic algorithms – a more straightforward means of optimization than that done 

by Kessler et al., though genetic algorithms cannot provide a guaranteed global optimal 

solution to an optimization problem.  In addition, Ostfeld and Salomons tested their 

method under more realistic system conditions by considering unsteady-state flows and 

the possibility of multiple contaminant injection locations and times during one attack 

scenario.  However, “Anytown U.S.A.” was the largest WDS employed in their study, 

and therefore the extendibility of the method to larger systems of more interest was not 

tested.  Optimization with genetic algorithms can be very computationally expensive in 

terms of runtime for larger-scale problems, as acknowledged by Ostfeld and Salomons.  

Thus, the extendibility of the method to larger systems cannot be assured at all.   

 

Watson et al. (2004) expanded upon the Ostfeld and Salomons study by reformulating the 

objective function of the optimization problem in order to provide protection according to 

a variety of objectives, such as contaminant travel time as a function of contaminant 

propagation rates corresponding to individual flow patterns.  Ostfeld and Salomons later 

extended their own work to account for uncertainties with regard to contaminant injection 

flow rate, consumer demands, sensor detection resolution, and response time after sensor 

detection (Ostfeld and Salomons 2005).  In the 2005 study, Ostfeld and Salomons applied 

their method to “EPANET Example 3”, a 97-node WDS.   This system is larger than 

Anytown U.S.A., but it is small relative to urban-scale systems of most interest.  Even in 
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testing on the relatively small EPANET Example 3, Ostfeld and Salomons acknowledge 

a great amount of computational expense.  For instance, 4 to 7 hours were required to 

construct one randomized pollution matrix.  As a consequence of the computational 

expense, they could only simulate short contaminant injection scenarios.   

 

The study of Berry et al. (2005) was one of the first WDS monitoring studies to examine 

the effects of intentional contaminant injection on the population served by a WDS as 

well as the possibility of certain nodes in the WDS being at higher risks of attack than 

would be other nodes in the system.  The population served at a given time by a WDS 

node was assumed correlated with the hydraulic demand experienced at the particular 

node and particular time.  Without definitive information regarding the numbers of 

customers served by particular WDS nodes, Berry et al. accounted for population density 

uncertainty by somewhat arbitrarily fluctuating demands at nodes throughout the study 

period.  Nodal attack risks were arbitrarily assigned to form a fixed probability 

distribution across the nodes of the WDS.  Attack scenarios were assumed to consist of 

one contaminant injection event at one node.  The sensor placement problem was solved 

as a mixed-integer program with an objective function that minimizes the expected 

fraction of the population served by a WDS that would be exposed to contaminant.  As in 

the cases of earlier studies, a shortcoming of the Berry et al. (2005) work is that time 

independence is assumed for contaminant flow and transport conditions.  Berry et al. 

tested their method on a 470-node system.  The system was much larger than those 

employed by prior studies but still does not constitute an urban-scale system.   
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Shastri and Diwekar (2006) disagreed somewhat with the deterministic approach Berry et 

al. (2005) used to quantify uncertainty and developed a stochastic nonlinear optimization 

program with recourse to solve the sensor placement problem.  The updated program 

formulation accounts for, in part, frequencies of flow patterns occurring and the costs of 

sensor placement.  Shastri and Diwekar claimed to have objective function values 

superior to those of the Berry et al. (2005) study.  However, the stochastic approach was 

acknowledged to be more computationally expensive on average than the deterministic 

approach, even for the 36-node “EPANET Example 2” WDS.  As no large systems were 

used by Shastri and Diwekar to test their method, it is unclear if application of the 

method to urban-scale systems would be feasible.  Carr et al. (2006) also extended the 

work of Berry et al. (2005) by employing the mixed-integer programming approach and 

quantifying uncertainty in three different manners: unweighted, linearly weighted, and 

bilinearly weighted.  One observation Carr et al. make is that computational expense 

would increase by orders of magnitude with increases in the number of sensors used to 

monitor the WDS, system size, and robustness of the optimization model.  Propato (2006) 

formulated the sensor placement problem as a binary polynomial program transformed 

into a mixed-integer program.  Propato intended to improve upon the solution approaches 

presented in the work of Berry et al. (2005) as well as in similar works by accounting for 

the temporal aspects of contaminant transport and allowing for optimization to serve an 

array of protection objectives, though not in a multiobjective manner.   

 

To address the lack of time dependence in their previous work, Berry et al. (2006b) 

revised the mixed-integer program (MIP) formulation to make it a temporal-MIP model.  
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Instead of solely minimizing the expected population fraction affected, the updated model 

was more generic so that sensors could be placed according to any protection objective 

performance level indicated by “nodal impact coefficients”.  The impact coefficient for a 

WDS node represents the expected adverse effects experienced at that node given 

contaminant detection by a sensor located at some particular node in the system.  

Contaminant concentrations experienced at nodes during the study period were 

determined for use in the optimization in this study, as opposed to the Berry et al. (2005) 

study that did not consider water quality variation.   The temporal-MIP was solved as a p-

median facility location problem using separately an MIP solver and the heuristic 

Resende-Werneck (RW) greedy randomized adaptive search procedure (GRASP).  The 

large multidimensional nature of this approach can potentially be very computationally 

expensive, so Berry et al. compressed the impact coefficient matrix by combining in a 

sense information regarding nodes with equal coefficient values in order to reduce the 

memory required for computational feasibility.  Though Berry et al. claim minimal 

runtimes, executing the GRASP solution approach on a 12,000-node system took over 

two days, factoring in the time required to run attack simulations needed for impact 

coefficient calculation.  Furthermore, the authors had to confine the set of possible attack 

times to only four possible times in order to keep computational burden manageable.   

 

In order to create a formal dialogue regarding WDS monitoring in light of terrorism 

concerns, the “Battle of the Water Sensor Networks” (BWSN) competition (Ostfeld et al. 

2006) was held at the 8
th

 Annual WDSA Symposium in August 2006.  Researchers from 

around the world submitted various methods for sensor placement and the corresponding 
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sets of results based on a common study problem.  The competition guidelines stipulated 

that participants optimize sensor placement according to four protection goals: 

minimization of expected contaminant detection time, minimization of expected number 

of people affected by contamination, minimization of expected contaminated demand 

volume, and maximization of detection likelihood.  Participants were also instructed to 

examine the sensitivity of sensor placement to the attack uncertainties concerning the 

number of contaminant injection locations, duration of contaminant injection, and 

response time after contaminant detection.  Two study systems, “BWSN Network 1” (129 

nodes) and “BWSN Network 2” (12,527 nodes), were provided for participants to enable 

testing of methods on both a small system and a large system.  These systems are 

discussed in greater detail in Chapter 3.   

 

There were two major drawbacks of general consensus among participants in BWSN 

competition design.  First, the competition guidelines requested that attack scenarios for 

which contaminant is not detected by a sensor should not be considered in calculating 

expected values of performance measures over all scenarios run.  This condition led to 

significant underestimation of the realistic values for the expected number of people 

affected and the expected contaminated demand volume.  Second, no scoring rubric for 

measuring the solution quality was initially presented to participants.  Thus, participants 

conducted multiobjective optimization without understanding the desired weighting of 

protection goals and solved the problem according to different protection priorities.  

Despite these issues, BWSN provided calibrated data for two very different study 

systems, an array of submitted optimization methods with unique strengths and setbacks 
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explained, and an array of submitted solutions to the sensor placement problem.  

Therefore, the conditions of the work of this thesis mirror largely those of BWSN as 

explained in Chapter 3 in order to allow for comparisons of methods and results.   

 

A variety of ways of formulating the optimization problem were presented by BWSN 

participants, including binary integer program (e.g., Guan et al. 2006), mixed-integer 

program (e.g., Krause et al. 2006; Propato and Piller 2006), temporal-MIP as a p-median 

problem (Berry et al. 2006c), and predator-prey model (Gueli 2006).  Problem 

formulations were solved through a variety of means, but genetic algorithm-based means 

were particularly popular (e.g., Guan et al. 2006; Huang et al. 2006; Ostfeld and 

Salomons 2006; Wu and Walski 2006).   

 

Most BWSN entries had “good” to near-optimal solutions.  (Specific results of the 

competition are provided in Chapter 5 as needed for comparisons with results of this 

work.)  However, the entries exhibited common drawbacks.  One such drawback is the 

difficulty in handling the multiobjective aspect of the optimization.  While some 

participants produced methods that are geared explicitly for the multiobjective nature of 

the problem (e.g., Guan et al. 2006; Ostfeld and Salomons 2006), other participants used 

a weighted-sum objective function that lumped all objectives into a single objective (e.g., 

Krause et al. 2006; Propato and Piller 2006; Wu and Walski 2006) or assumed that 

optimizing according to one objective would be sufficient for other objectives are 

correlated to the one objective (e.g., Berry et al. 2006c).  In addition, great computational 

expense was acknowledged by most of the participants.  The participants who provided 
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specific metrics of computational expense entailed in carrying out their methods are listed 

in Table 2.1 with the corresponding metrics.  All studies in Table 2.1 except one had 

runtimes of multiple days.  Eliades and Polycarpou (2006) had runtimes of less than one 

day, but their method did not search for the optimal sensor placement solution as 

extensively as did other methods.  The work of Krause et al. (2006) could be considered a 

computational “worst-case scenario” due to the large memory and runtimes needed to 

exhaustively simulate all possible attack scenarios.  Even though they simulated all 

possible scenarios, Krause et al. could use only a limited amount of the simulated data in 

optimization in order to maintain computational feasibility.  Some participants did not 

attempt to solve the problem for the larger BWSN Network 2 (Gueli 2006; Propato and 

Piller 2006), perhaps due to the computational expense required.  Others did not solve the 

problem for all of the contamination cases given by the competition guidelines for 

BWSN Network 2, such as Berry et al. (2006c) who cited computational expense as the 

reason for neglecting cases.   
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Table 2.1  Computational details provided by selected submissions of the Battle of the 

Water Sensor Networks competition.  

BWS� �etwork 1 BWS� �etwork 2 

Author(s) 
Optimization 

Method(s) 

Computational 

Platform 

Reported 

Estimated 

Memory 

Required 

Reported 

Estimated 

Total 

Runtime 

Reported

Estimated 

Memory 

Required 

Reported 

Estimated 

Total 

Runtime 

Relevant 

Computational 

Observations/ 

Decisions 

Berry et al. 

(2006c) 

p-median 

problem / 

GRASP 

heuristic 

AMD, 2.2 GHz, 

64-bit 

not given total time 

not given 

not given 3-4.5 days • too 

computationally 
expensive to 

place sensors in 

the case of 2 
injection nodes 

for BWSN 

Network 2 

Dorini et al. 

(2006) 

Noisy Cross-

Entropy 

Sensor Locator 

Pentium M,     

1.8 GHz,            

1 GB RAM,        

2 MB L2 cache 

9-90 MB 30 min -  

8 h 

470-600 

MB 

2-3 days • limited nodes 

considered for 
injection to make 

computationally 
feasible 

• “non-detected” 

scenarios 
excluded 

Eliades and 

Polycarpou 

(2006)  

Iterative 

Deepening of 

Pareto 

Solutions 

Pentium IV,    

3.4 GHz,            

2 GB RAM 

not given 20 min -  

3 h 

not given 1.5-14 h • limited nodes 
considered for 

injection to make 

computationally 
feasible 

• precise enough to 
find a set of 

"good" solutions, 

but not 
necessarily near-

optimal 

Gueli (2006) Predator-Prey 

Model 

Pentium IV,    

2.8 GHz,          

1.5 GB RAM 

225 MB 22 min 

maximum 

no tests run  

Huang et al. 

(2006) 

Genetic 

Algorithms 

with Data 

Mining 

Pentium IV,    

2.8 GHz,        

704 MB RAM 

25 MB 1.5 h -   

7.5 days 

50 MB 7.5-21 

days 

• limited nodes 
considered for 

injection to make 
computationally 

feasible 

Krause et al. 

(2006) 

Submodular 

Function 

Maximization 

Intel Xeon          

3 GHz, 20 GB 

RAM 

14.6 MB - 

1.6 GB 

8 days per 

scenario 

15-30 GB 8 days per 

scenario 

• split task among 

30 processors 

• had to use sparse 

representations of 

simulation results 
for computational 

feasibility 
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Most recently, studies explicitly addressing the need for increased efficiency in sensor 

placement have been performed.  Such studies have aimed to relate effective sensor 

placement to the location and attributes of a WDS node or group of nodes.  For instance, 

Isovitsch and VanBriesen (2008) analyzed sensor node solutions given by Krause et al. 

(2006) for BWSN Network 2 according to spatial trends of placement for various 

protection goals and attack parameters.  They surmise that sensor placement is correlated 

with average “reachable” demand and “reachability” in manners dependent upon the 

protection goal or goals of interest.  They also submit that sensor nodes for different 

arrays of attack parameters tend to be in close proximity to each other.  Isovitsch and van 

Briesen believe knowledge of spatial trends in sensor placement could be useful in 

isolating desirable candidates for sensor placement from a large set of WDS nodes given 

further study.   

 

Xu et al. (2008) more directly tried to use node locations and attributes to place sensors.  

Instead of using a flow and transport model to simulate WDS behavior, Xu et al. 

represented WDS behavior with three types of graphs (undirected, dynamic directed, and 

weighted dynamic directed).  Graph theory allowed them to employ the concepts of 

“betweenness centrality” and “receivability” to concisely describe the desirability of a 

node as a sensor node candidate.  While the idea of developing such indicators is sound, 

the particular concepts used by Xu et al. yield distinctly suboptimal solutions evident 

from their own comparison of results to those of Krause et al. (2006).  The 

oversimplification of complex, unsteady-state WDS behavior through the use of graph 

theory may have contributed to the suboptimality of solutions.  Xu et al. claim that 
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decreased protection performance is acceptable given gains in computational efficiency, 

but they do not provide any measurements of computational expense and only 

demonstrate their methods on the relatively small, 129-node BWSN Network 1.  Also, it 

seems that computations to determine betweenness centrality and receivability could be 

rather computationally burdensome to carry out for larger systems.  Therefore, the work 

of Xu et al. puts forth interesting ideas concerning how to prioritize nodes for sensor 

placement, but the work does not provide adequately viable means for prioritization.   

 

2.3 �EEDED DIRECTIO�S OF O�GOI�G WDS MO�ITORI�G WORK 

I�FERRED FROM PREVIOUS STUDIES 

 

Upon examining the nearly two decades of research pertinent to WDS monitoring for the 

purpose of minimizing the adverse effects of intentional contaminant injection 

summarized above, several observations are made that has guided the work of this thesis.  

The study of sensor placement appears to be in its infancy at present based on the lack of 

a definitive sensor placement method that would be adequate for large, real-world 

systems and a diverse set of protection goals.  The amount of data available regarding the 

performance of methods on urban-scale WDSs is not abundant; urban-scale systems 

became a focus of earnest study only very recently.  The continued exploration of the 

multiobjective aspect of sensor placement is needed as many researchers studying sensor 

placement differ from each other on how to handle the tradeoffs between conflicting 

protection goals.  The paramount issue to address seems to be the computational expense 

required to optimize sensor placement for large systems; it has been consistently 
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acknowledged in documented works as a crippling limiting factor.  Computational 

expense has been the cause for oversimplifying assumptions in optimizing sensor 

placement or even computational infeasibility in applying methods to large systems in 

prior studies.  It is believed that the work detailed in this thesis will contribute to the 

reconciling of these issues.  
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CHAPTER 3 

STUDY PROBLEM DEFI�ITIO� 

Chapter 3  

The specific WDS monitoring problem studied in this work is defined extensively in this 

chapter.   

 

3.1 PROTECTIO� GOAL PERFORMA�CE MEASURES 

 

As indicated in Chapter 1, the overarching goal of this study is the development of a 

method that provides maximum WDS protection from a contaminant injection attack 

with uncertain characteristics through the allocation of contaminant monitoring sensors to 

locations in the WDS network that observes cost constraints and minimizes 

computational expense required.  WDS protection in this study is represented by three 

performance measures: detection likelihood, expected detection time, and expected 

contaminated demand volume.  Preferred performance is associated with maximized 

detection likelihood, minimized detection time, and minimized contaminated demand 

volume.  Performance measures are described in more detail below. 

 

3.1.1 DETECTION LIKELIHOOD 

 

The detection likelihood is the ratio of the number of attack scenarios for which 

contaminant is detected by any sensor in a given sensor set to the total number of attack 
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scenarios Sopt simulated to conduct optimization.  Thus, detection likelihood is computed 

with the equation 

 
1

1 optS

lik s

sopt

Z d
S =

= ∑  (3.1) 

where Zlik is the detection likelihood performance measure, s designates a particular 

attack scenario, and ds is a binary variable equaling 1 or 0 indicating detection or lack of 

detection, respectively, of contaminant by the given sensor set during scenario s.  The 

total number of attack scenarios Sopt must be sufficiently large in order to minimize the 

error in the detection likelihood estimate introduced by the random selection of attack 

scenarios.  Scenario selection is discussed further in sections below. 

 

3.1.2 EXPECTED DETECTION TIME 

 

For an individual sensor assigned to some WDS location (i.e., WDS node), detection time 

is defined as the time elapsed from the earliest injection of a contaminant into the WDS 

during a given attack scenario to the detection of the contaminant by the sensor.  This 

detection time with respect to one sensor is represented by the variable d

ist , where i 

denotes the WDS node and s denotes the particular attack scenario.   

 

If contaminant is not detected by a sensor located at node i, or if a sensor is not located at 

node i, d

ist  is assumed to equal some large value in order to represent an “infinite” 

detection time; in this work, the large value is the study period length (discussed below).  

If a smaller time value were selected, a detection time for a detection instance may 



 

 
26 

 

  

actually be greater than that for a non-detection instance.  Greater values would 

strengthen the correlation between expected detection time and detection likelihood for 

they would more negatively bias non-detection instances, making detection instances 

even more desirable and consequently reducing the number of Pareto-optimal solutions 

resulting from multiobjective optimization.   

 

For an entire set of sensors, the detection time is the earliest time at which at least one of 

the allocated sensors detects contaminant during a given attack scenario and is 

represented by the equation 

 ( )mind d

s s ist t= . (3.2) 

To determine the expected detection time for a set of sensors over many possible attack 

scenarios, sensor set detection times are found for each of Sopt attack scenarios, and the 

expected value of those detection times is calculated.  Thus, the expected detection time 

performance measure is mathematically expressed as  

 
1

1 optS

d

time s

sopt

Z t
S =

= ∑  (3.3) 

where Ztime represents expected detection time.     

 

3.1.3 EXPECTED CONTAMINATED DEMAND VOLUME 

 

Prior to sensor detection of contaminant associated with a given attack scenario and the 

subsequent response to the attack, water delivered to customers that exceeds a specific 

hazardous concentration threshold is considered contaminated.  It is assumed that no 
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water is delivered to customers after response to the attack occurs.  Under those 

conditions, each node i in the WDS has a corresponding total demand volume 

contaminated per attack scenario s represented by d

isV .  Therefore, the total demand 

volume contaminated for the entire WDS during scenario s can be found by the equation 

 d d

s is

i

V V=∑ . (3.4) 

The expected contaminated demand volume, in turn, is the expected value of the total 

demand volume contaminated for the entire WDS over the large set of randomly selected 

Sopt scenarios and is represented by the equation  

 
1

1 optS

d

vol s

sopt

Z V
S =

= ∑  (3.5) 

where Zvol is the expected contaminated demand volume.  This performance measure is 

typically very strongly correlated with the expected WDS population affected by an 

attack scenario, and the expected population affected is often considered a function of Zvol  

(e.g., Ostfeld et al. 2006).  Thus, in this study the expected population affected is 

assumed to be “lumped” with Zvol and deemed unnecessary to be determined explicitly. 

 

3.1.4 RELATIONSHIPS AMONG PERFORMANCE MEASURES 

 

For this study, it is assumed that the three individual protection goals are of equal 

precedence relative to each other.  A hierarchy among the protection goals can be 

established by WDS decision-makers, but preferences of certain goals over others are 

beyond the scope of this study.   
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Although the protection goals are of equal relative preference, some goals are inversely 

related to other goals.  WDS protection can improve with respect to one performance 

measure while protection decreases in terms of another performance measure, as stated in 

Chapter 1.  In general, detection likelihood has inverse relationships with expected 

detection time and expected contaminated demand volume.  These conflicting 

relationships are illustrated in curves of Pareto-optimal solutions found in several studies.  

Figure 3.1 provides some such Pareto-front curves from the works of Ostfeld and 

Salomons (2006) and Aral et al. (2008).    
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(a) 

 

(b) 

 

(c) 

Figure 3.1  Examples of performance measure Pareto fronts.  (a) expected detection time 

(Z1) & detection likelihood (Z4), Ostfeld and Salomons (2006); (b) expected 

contaminated demand volume (Z3) & detection likelihood, Ostfeld and Salomons (2006); 

(c) expected detection time, expected contaminated demand volume, & detection 

likelihood, Aral et al. (2008).    
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As the figure implies, tradeoffs in protection with regard to individual performance 

measures may need to occur in order to satisfy adequately all three equally-weighted 

performance measures of this study.  For instance, it may be necessary to sacrifice some 

protected water demand volume in order to increase the detection likelihood significantly.  

With regard to actual sensor placement, this tradeoff could mean moving sensors away 

from WDS nodes or regions of higher demand in order for the sensors to monitor nodes 

or regions that are more often associated with contaminated flows.   

 

3.2 COST MEASURES 

 

Two types of costs are considered in this study: (i) those that are expected in actually 

placing sensors at locations in a WDS and (ii) those that are computational in nature 

resulting from carrying out the optimization of sensor placement.  These costs are 

explained below. 

 

3.2.1 COSTS ASSOCIATED WITH SENSOR PLACEMENT 

 

The number of sensors employed in WDS monitoring (represented by the variable M) is 

the only cost variable considered in this study.  Thus, the only limiting factor on sensor 

placement in this work is the number of sensors available for placement (Mmax).  WDS 

contaminant sensor technology is only emerging currently, so estimating sensor operation 

costs is not feasible at present.  Without information regarding the physical 

characteristics of individual WDS nodes, the labor costs associated the geographic 
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location of the WDS, and other WDS-specific variables that would affect sensor 

implementation, it is very difficult to estimate with any accuracy the costs of sensor 

implementation.  It seems reasonable that sensor implementation and operation costs 

would not vary substantially among WDS nodes and that the cost of a sensor itself would 

dominate the costs of implementation and operation over a reasonable period of time, so 

in this study the number of sensors employed is considered a lumped cost variable that 

implicitly accounts for sensor implementation and operation costs.  The numbers of 

sensors available for placement in this study is either 5 or 20, as adopted from the Battle 

of the Water Sensor Networks competition (Ostfeld et al. 2006). 

 

3.2.2 COMPUTATIONAL COSTS 

 

The total computational memory and runtime requirements for sensor placement 

computational runs are reported in this thesis.  It would be ideal to directly compare the 

memory and runtime requirements of this study with those of other documented studies.  

However, the reporting of those computational expense metrics in technical literature is 

sporadic and often inexact as implied by discussion in Chapter 2, so it is not entirely 

feasible to quantitatively compare computational expense between this study and another 

study.  Also, computational expense is a function of the sensor placement methods 

employed as well as variables independent of those methods, such as computational 

platform and the design of programming code.  In order to navigate these obstacles, the 

exact measurements of memory and runtime for this study are compared only 

qualitatively with memory and runtime requirements reported in other studies.   
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3.3 SIMULATED ATTACK CO�DITIO�S 

 

Given the wide array of possible attack conditions implied by discussion in Chapter 1, it 

is necessary to confine the domain of attack possibilities while preserving the realistic 

nature of the study in order to provide for manageable study.  As justified in Chapter 2, 

most attack conditions are patterned after the Battle of the Water Sensor Networks 

competition (Ostfeld et al. 2006) in order to provide some basis for comparison of sensor 

protection performance between this study and multiple other studies.   

 

3.3.1 ELIGIBLE ATTACK LOCATIONS 

 

Attacks are assumed to occur at WDS nodes only as nodes are on average more 

accessible for contaminant injection than are links in the WDS.  In addition, all nodes in 

the WDS are equally eligible for attack.  In reality, a WDS node may be physically 

situated so that it would be impossible to inject contaminant into the WDS at the node.  

This impossibility would probably only apply to a small minority of influential nodes, so 

it is considered negligible.  Also, it is realistic that a node would be more desired by 

terrorists for attack due to better access to the node, high flow through the node, or the 

location of the node that may allow for greater psychological damage for WDS 

customers.  Quantifiable risk data regarding node attack desirability is currently 

unavailable and therefore was not taken into account in this study.    
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3.3.2 ELIGIBLE ATTACK TIMES 

 

In reality, an attack can occur at any time, creating an infinite domain of possible attack 

times.  However, this domain must be constrained in order to make computational 

simulation feasible but allow enough time for contaminant to propagate throughout the 

system so that realistic values of performance measures can be found.  Thus, attacks can 

only occur at five-minute multiples during the first quarter of a designated study period.    

  

3.3.3 SCENARIO COMPOSITION AND SELECTION 

 

A given attack scenario may take one of the following forms: 

• one WDS node receiving a contaminant injection at one time,  

• multiple nodes receiving injections at one time, or 

• multiple nodes receiving injections at multiple times.  

Therefore, the following types of attack scenarios are considered in this study for their 

effects on sensor placement: 

• one node receiving an injection at one time, 

• two nodes receiving injections at one time, and 

• two nodes receiving injections at two different times. 

The one-injection-node case is considered the “default” case for this study, while the two-

injection-node cases are considered “variant” cases for the purposes of determining how 

sensor placement is affected by changing attack conditions.  Above, the WDS nodes and 

times eligible for contaminant injection are described.  To account for the uncertainty 
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regarding what eligible node(s) and time(s) would be selected for injection during a given 

attack scenario, the injection node(s) and injection time(s) are randomly sampled from 

discrete, uniform distributions for each scenario s. 

 

3.3.4 CONTAMINANT PARAMETERS 

 

A conservative tracer (namely fluoride) acts as the contaminant in this study.  Beyond 

this study, accounting for the physical and chemical properties of real-world 

contaminants is simply a matter of adjusting constants for hydraulic simulation.  Dilution 

and decay are also issues to consider in employing real-world contaminants, but these 

issues would not heavily influence WDS sensor placement results due to flow and 

transport behaviors and relatively short study periods common to WDSs.   

 

Though some variance is possible, it is reasonable to assume that contaminant is injected 

into the WDS at a constant flow rate and at a constant concentration.  The injection flow 

rate for this study is 125 L/h, and the contaminant concentration of the injection is 

230,000 mg/L.  Thus, in terms of mass flow, contaminant enters the system at 

approximately 479 g/min.  This mass flow rate is extremely high, but the high rate allows 

for the effects of contamination on the WDS to be seen more clearly. 

 

Another unknown of the contaminant injection that is examined in this study is the 

duration of the contaminant injection.  It is reasonable to assume that contaminant is 

injected continuously for whatever duration chosen.  Thus, the effects of a continuous 2-
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hour injection (the default case) and a 10-hour injection (the variant case) are analyzed in 

this study.   

 

Even though a contaminant may be present at a nonzero concentration at a WDS node, 

the contaminant concentration may be less than what is considered hazardous as implied 

above in the discussion of the Zvol performance measure.  To ascertain the sensitivity of 

sensor placement to the hazard concentration threshold, optimization was performed for 

two different threshold values:  0.3 mg/L (the default case) and 0.0 mg/L (the variant 

case).   

 

3.3.5 SENSOR CAPABILITIES 

 

A sensor at a WDS node may not be able to detect contaminant, although the contaminant 

may be present at the node in question.  To elaborate, the contaminant concentration may 

be lower than the detection resolution of a sensor, and therefore the sensor would not 

register the contaminant as present at the node.  To determine the possible effects on 

sensor placement of sensor resolution, optimization was conducted for detection 

resolution values of 0.0 mg/L (the default case) and 0.3 mg/L (the variant case).   The 

tested hazard concentration thresholds given above and sensor resolution values are the 

same sets of values in this study; these sets were assumed to have identical values 

entirely for study convenience.   
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It is assumed that sensors register detection instantly upon experiencing contaminant 

concentration at or above the detection resolution of the sensor.  There may be a small 

difference in time between contaminant presence and the registering of detection by the 

sensor, but this difference would be negligibly small for most cases.   

 

3.3.6 RESPONSE AFTER CONTAMINANT DETECTION 

 

Response to an attack is defined in this study as the actions taken to ensure that no 

contaminated water is delivered to WDS customers after detection during a given attack 

scenario.  For instance, it may be the practice of a WDS to automatically or manually 

shut down the WDS entirely at once or in a piecewise fashion after contaminant 

detection.  Response time can vary a great deal given the diversity in the possible 

methods used by individual WDSs for responding to an attack.  In most of the studies 

described in Chapter 2, response is assumed to occur instantaneously after detection for 

computational ease and due to a lack of real-world response data.  However, given 

current technological limits, it seems logical to account for response time in some 

manner.  Thus, sensors are placed in this study in trials assuming instantaneous response 

(the default case) and trials assuming a 3-hour response delay (the variant case).      
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3.4 STUDY SYSTEMS 

 

The sensor placement methods developed in this study were applied to three study 

systems of different characteristics in order to fully demonstrate the robustness of the 

methods. 

 

3.4.1 BWSN NETWORK 1 

 

“BWSN Network 1” is one of two hypothetical networks created by Ostfeld et al. (2006) 

for the BWSN competition discussed previously.  This 129-node system is relatively 

small and manageable for flow and transport modeling and sensor set testing, but a lack 

of homogeneity contributes to flow and transport behavior complexity and, in turn, the 

potential for high sensitivity of sensor placement to WDS hydraulic and water quality 

conditions.  This lack of homogeneity takes the form of spatial clustering of nodes, large 

variances in hydraulic demand and pipe length, a large number of valves, and localized 

flow behavior.  The assumed study period of the system for this study is 96 hours which 

allows time in a given attack scenario for ample contaminant propagation throughout the 

WDS.   

 

The physical layout of BWSN Network 1 is depicted in Figure 3.2 as plotted by EPANET 

(Rossman 2000).  Table 3.1 provides the key information regarding the system and its 

components. 
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Figure 3.2  BWSN Network 1. 

 

 

 

Table 3.1  Characteristics of BWSN Network 1. 

Component Attribute Value 

number 126 junctions 

number of (percentage of) 

junctions with demand 

79 

(63%) 

maximum 198 gpm 

mean 7.5 gpm 

base demand 

standard deviation 24.4 gpm 

number 168 

length minimum 50 ft 

length maximum 10,260 ft 

length mean 733 ft 

pipes 

length standard deviation 1102 ft 

reservoirs number 1 

tanks number 2 

pumps number 2 

valves number 8 

approximate coverage area 7 mi
2
 overall 

system study period 96 h 
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3.4.2 BWSN NETWORK 2 

 

Though BWSN Network 1 provides a set of interesting challenges for sensor placement, 

it is not large enough for demonstrating the robustness of the developed sensor placement 

methods in application to systems of urban scale that are of primary interest.  The other 

network provided in the BWSN competition, “BWSN Network 2”, with 12,527 nodes is 

of the necessary scale.  As inferred from Figure 3.3 and Table 3.2, BWSN Network 2 is 

much more homogeneous than BWSN Network 1 in terms of physical layout, demand 

profile, and the number of special hydraulic devices (e.g., valves) employed.  BWSN 

Network 2 exhibits some localized flow behavior, but localized flow exists to 

proportionally a much lesser degree than it does for BWSN Network 1.  As in the case of 

BWSN Network 1, a 96-hour study period is associated with BWSN Network 2.    
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Figure 3.3  BWSN Network 2.  The part of the system depicted in the inset box is the 

part encased in the box in the overall view of the system.   

 

 

 

Table 3.2  Characteristics of BWSN Network 2. 

Component Attribute Value 

number 12,523 junctions 

number of (percentage of) 

junctions with demand 

10,551 

(84%) 

maximum 247 gpm 

mean 1.6 gpm 

base demand 

standard deviation 3.6 gpm 

number 14,822 

length minimum 3.8 ft 

length maximum 13,185 ft 

length mean 408 ft 

pipes 

length standard deviation 346 ft 

reservoirs number 2 

tanks number 2 

pumps number 4 

valves number 5 

approximate coverage area 400 mi
2
 overall 

system study period 96 h 



 

 
41 

 

  

3.4.3 TOMS RIVER WDS, DOVER TOWNSHIP, NEW JERSEY 

 

The Toms River WDS is a real-world system located in Dover Township, New Jersey.  

Dover Township is depicted in the map of Figure 3.4 below.  Toms River was selected 

for this study for it is of the desired urban scale and real-world data exists for it.  Previous 

study involving this system provided all necessary data regarding system configuration, 

nodal demand profile, and flow and transport behavior (Maslia et al. 2000; Maslia et al. 

2001).  Data corresponding to July 1996 was used to simulate system conditions as (i) 

1996 is the latest year for which data is available and (ii) July is a peak demand month for 

Toms River during which interesting flow behavior occurs in the system. The system is 

slightly larger than BWSN Network 2 in terms of nodes at 14,973 nodes, but it consumes 

much less land area than does BWSN Network 2.  It serves approximately 44,000 people 

that reside in Dover Township, justifying its consideration as a larger system of interest 

by EPA based on criteria stated in Chapter 1.  Like BWSN Network 2, Toms River 

exhibits homogeneous qualities as Figure 3.5 and Table 3.3 imply.  It also exhibits some 

localized flow behavior and has a 96-hour study period. 
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Figure 3.4  Dover Township, New Jersey. (Maslia et al. 2001) 
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Figure 3.5  The Toms River WDS.  The part of the system depicted in the inset box is the 

part encased in the box in the overall view of the system. 

 

 

 

Table 3.3  Characteristics of the Toms River WDS. 

Component Attribute Value 

number 14,965 junctions 

number of (percentage of) 

junctions with demand 

13,287 

(89%) 

maximum 8.96 gpm 

mean 0.36 gpm 

base 

demand 

standard deviation 0.38 gpm 

number 16,048 

length minimum 1.0 ft 

length maximum 2813 ft 

length mean 158 ft 

pipes 

length standard deviation 181 ft 

reservoirs number 0 

tanks number 8 

pumps number 12 

valves number 0 

approximate coverage area 80 mi
2
 

study period 96 h 

overall 

system 

approximate population served 44,000 
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CHAPTER 4 

SOLUTIO� APPROACH 

Chapter 4  

To solve the study problem specified in Chapter 3 for the variety of systems and 

conditions described, the methodology explained in this chapter was employed.   

 

4.1 GE�ERAL FORMULATIO� OF OPTIMIZATIO� PROBLEM  

 

In Chapter 3, WDS protection goals for this thesis were mathematically described and the 

constraints on sensor placement in providing WDS protection were stated.  Optimal 

locations for sensor placement can be determined by solving an optimization program 

that includes those objectives and criteria.  The generic form of the multiobjective 

optimization program incorporating all three protection goals in a three-prong objective 

function using notation defined in Chapter 3 is given in (4.1).   

 

max

min

min

s.t.

lik

time

vol

max

Z

Z

Z

M M=

 (4.1) 

In the given formulation, sensors are placed to minimize expected detection time, 

minimize expected contaminated demand volume, and maximize detection likelihood 

simultaneously while ensuring that the numbers of sensors employed does not exceed the 

number of sensors available.  The optimization problem may be adjusted to exclude one 

prong or two prongs of the objective function if only two protection goals or one 

protection goal, respectively, are being considered.  In this thesis, the optimization 
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problem is solved for the cases of considering only one protection goal and of all three 

protection goals at once.    

 

4.2 OVERVIEW OF SOLUTIO� APPROACH 

 

Solving the multiobjective optimization program to adequately satisfy all three prongs of 

the objective function concurrently is typically a non-trivial problem, even for smaller 

systems.  In the case of a large WDS and relatively limited sensor availability, solving the 

problem could be especially difficult for the domain of possible sensor set solutions 

would be quite large.  Therefore, it is advantageous to focus the solution search in a way 

that allows for both desirable values for the three performance measures and reduced 

computational expense required in solving the optimization program.  Attaining this 

focus is the primary objective of the work of this thesis and is accomplished through the 

implementation of the “nodal importance concept.” 

 

The overall solution approach is explained in a broad sense in this section, and the 

specific components of the approach are explained in greater detail in sections below.  In 

general, the solution of a sensor placement problem in this work consists of two main 

phases:   

• determining the “importance” of WDS nodes (i.e., the “importance” phase), and 

• the actual optimization to find the best-performing sensor nodes (i.e., the 

“optimization” phase). 



 

 
46 

 

  

Both of these phases are employed in solving any single-objective or multiobjective 

variant of the optimization problem in (4.1).  The importance phase consists of 

computing importance values for all WDS nodes using functions each designed 

specifically to address a particular protection goal.  The optimization phase consists of 

ranking nodes according to importance and using the Iterative Subset Search Method 

developed in this work in combination with genetic algorithms to solve the optimization 

problem.  Before the two phases are carried out, the appropriate single-objective or 

multiobjective optimization problem is defined according to the protection goal or goals 

of interest and WDS flow and transport data are generated for the study system in 

question.  Figure 4.1 illustrates the sequence of these major steps of the solution 

approach.   
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Figure 4.1  Sensor placement optimization problem solution approach overview.  
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4.3 SPECIFIC OPTIMIZATIO� PROBLEM DEFI�ITIO�S 

 

In this study, optimization of sensor placement according to both one particular 

projection goal and multiple protection goals concurrently is of interest.  The problem 

formulations governing optimization for these objectives are provided below.   

 

4.3.1 SINGLE-OBJECTIVE PROBLEMS 

 

If only one protection goal is considered, the multi-prong objective function in (4.1)

reduces to a simple single-prong function.  For example, in the case of only maximizing 

detection likelihood, the optimization problem formulation takes the form seen in (4.2). 

 
max

s.t.

lik

max

Z

M M=
 (4.2)  

Likewise, for only minimizing expected detection time, the formulation becomes the one 

in (4.3). 

 
min

s.t.

time

max

Z

M M=
 (4.3) 

For only minimizing expected contaminated demand volume, the optimization problem 

becomes the one in (4.4). 

 
min

s.t.

vol

max

Z

M M=
 (4.4) 
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4.3.2 MULTIOBJECTIVE PROBLEM 

 

If more than one protection goal is considered, then formulating the optimization problem 

in a manner that allows for practical solving of the problem is more complex than it is in 

single-objective cases.  In the discussion that follows, the strengths and weaknesses of 

common approaches for handling multiobjective sensor placement problems are 

evaluated, and the specific definition of the multiobjective problem for this work that is 

tailored to take advantage of the strengths of the common multiobjective approaches is 

described in detail.  

 

4.3.2.1  Analysis of Common Multiobjective Sensor Placement Approaches 

 

Approaches for solving a multiobjective sensor placement problem documented to date 

generally take one of three forms: 

• conversion of the multi-prong objective function into a weighted-sum function 

that acts a single-prong objective function with a “lumped” protection goal (e.g., 

Krause et al. 2006; Rogers et al. 2007),  

• optimization according to a hierarchy of protection goals through “epsilon-

constrained” optimization (e.g., Berry et al. 2006a), or  

• generation of a Pareto front of equally optimal solutions relative to the multiple 

protection goals of interest (e.g., Aral et al. 2008; Ostfeld and Salomons 2006).   

While these of approaches all have differing degrees of merit, they also have their 

respective significant drawbacks.   
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Weighted-sum optimization provides a straightforward way of proportioning weight to 

multiple protection goals and concisely yielding a single sensor node set solution through 

the use of the lumped protection goal.  The process to solve the optimization problem 

with a weighted-sum objective function is typically no more complicated than it would be 

for a single-objective problem.  However, proportioning weight to protection goals does 

not guarantee that the resulting solution is Pareto-optimal, even though the solutions may 

be very well-performing.  When weighted-sum optimization is conducted in the 

conventional manner, much iteration of protection goal weights may be required to find a 

Pareto-optimal solution, and where that solution falls within a range of possible Pareto-

optimal solutions is not readily apparent. 

 

Epsilon-constrained optimization accounts for multiple objectives in a way that does 

concisely provide one Pareto-optimal solution.  Protection goals in this optimization 

approach are addressed in an order of priority determined by human decision.  To 

elaborate, the protection goal considered most important in the determined hierarchy of 

goals is treated initially as the only protection goal of interest, and the optimization 

problem is solved as a single-objective problem.  For clarity, the solution for this first 

goal in the hierarchy is referred to as “Solution 1.”  After finding Solution 1, the next 

goal in the hierarchy is considered in another single-objective problem to find “Solution 

2”.  The single-objective problem for finding Solution 2 has an additional constraint that 

Solution 2 loses no more than some specified margin of performance with respect to the 

more important goal considered to find Solution 1.  This specified margin is “epsilon” (ε).  

For instance, if ε is 5%, Solution 2 should provide at least 95% of the protection with 
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respect to the more important goal that Solution 1 provides.  Solution 2 is a solution on 

the Pareto front involving the two most important goals in a given hierarchy, and the 

position of Solution 2 on the Pareto front depends on the value of ε.  If there is a third 

goal in the hierarchy, then the single-objective problem is solved according to the third 

goal and is epsilon-constrained by the two more important goals.  Often, though, a 

Solution 3 and any subsequent solutions will not differ from Solution 2 due to the 

increasing number of epsilon constraints.  In sum, despite providing a Pareto-optimal 

solution, epsilon-constrained optimization has trouble handling three or more protection 

goals simultaneously.  Also, epsilon-constrained optimization hinges heavily on human 

input regarding both the hierarchy of protection goals and the value of ε, potentially 

allowing human decision to affect the resulting solution greatly.          

 

Construction of a Pareto front has become popular in recent studies as it can provide a 

wide array of Pareto-optimal solutions for two and even three protection goals in one 

solution run, in turn quantifying the optimization tradeoffs among protection goals more 

completely than would be done through either weighted-sum or epsilon-constrained 

optimization.  The Pareto front consists of all solutions that do not dominate each other 

but dominate all others that do not make up the Pareto front.  (In order for one solution to 

dominate another, the solution in question must (i) perform at least as well as the other 

solution with respect to all protection goals and (ii) perform better than the other solution 

does with respect to at least one protection goal.)  Regarding the drawbacks of this 

approach, the construction and subsequent illustration of the Pareto front can become 

unmanageable for multiobjective problems with more than three protection goals.  A 
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Pareto front gives an extensive set of solutions, but it indicates no preference for certain 

Pareto-optimal solutions over others, even though some of the Pareto-optimal solutions 

may be more desirable in the practical sense than others.  For instance, a boundary point 

of the Pareto front is a Pareto-optimal solution; this solution may provide a very desirable 

level of protection with regard to one protection goal but undesirable levels of protection 

with regard to other goals.  However, a more-centered point on the Pareto front may 

provide desirable levels of protection with respect to all protection goals simultaneously. 

 

4.3.2.2  Formulation for This Work  

 

In this work, a multiobjective problem formulation was developed to incorporate the 

strengths cited for the three approaches described above into one approach.  More 

specifically, the overarching intention of this developed formulation is to concisely 

provide one sensor placement solution that best accounts for and minimizes the tradeoffs 

among any number of protection goals.  Below, the formulation is derived with the aid of 

a two-prong multiobjective example—maximizing detection likelihood and minimizing 

expected contaminated demand volume—as an example with three or more prongs would 

pose problems in illustrating the derivation of the formulation effectively.  After the 

formulation for the two-prong example is derived, the ways in which the formulation is 

extended to cases with three or more protection goals are discussed.     

 

 

 

 



 

 
53 

 

  

4.3.2.2.1 The Pareto Front Space 

 

The formulation requires that the “Pareto front boundary points” are first identified.  

These points represent performance measure values of minimum and maximum possible 

protection with respect to particular protection goals found in solving single-objective 

optimization problems.  Figure 4.2 (a) depicts generically where these points may lie with 

respect to each other in plotting a two-dimensional Pareto front.  The boundary point A in 

Figure 4.2 represents the solution yielding both the minimum possible detection 

likelihood ( ),min pf

likZ and minimum possible expected contaminated demand volume 

( ),min pf

volZ for a Pareto-optimal solution.  Point B represents the solution yielding both the 

maximum possible detection likelihood ( ),max pf

likZ and maximum possible expected 

contaminated demand volume ( ),max pf

volZ .  Values for ,max pf

likZ and ,min pf

volZ are found by 

solving the single-objective problems for maximizing detection likelihood in (4.2) and 

minimizing expected contaminated demand volume in (4.4), but the values of ,min pf

likZ and 

,max pf

volZ are the performance measure values for the protection goals not considered in the 

single-objective optimization problems.  In other words, ,min pf

likZ is the value of Zlik at 

,min pf

volZ , and ,max pf

volZ is the value of Zvol at ,max pf

likZ .  Boundary points may actually be part 

of the Pareto front as shown in Figure 4.2 (b), but that is not necessarily the case.  

However, Pareto front points should not exist beyond the boundaries indicated by the 

boundary point coordinates.   
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The Pareto front is confined within a “space” defined using Pareto front boundary point 

information.  In Figure 4.2 (b), the rectangle ACBD represents the Pareto front space (or, 

more specifically, the Pareto front “area” in the two-dimensional case) for the two-prong 

problem of interest in this discussion.  This Pareto front space allows for better evaluation 

of the Pareto-optimality potential of a solution and, in turn, the potential for a solution to 

tradeoff among individual protection goals effectively.   
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(a) 

 

 

 
(b) 

 

Figure 4.2  Pareto front boundary points and the space containing the Pareto front for the 

generic two-prong multiobjective problem of maximizing detection likelihood and 

minimizing expected contaminated demand volume.  The hypothetical Pareto front 

shown in (b) is an example of the possible shape the Pareto front may take. 
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4.3.2.2.2 The Lumped Protection Goal Performance Measure  

 

With knowledge of the ranges of possible protection goal performance measure values 

for Pareto-optimal solutions, a means of quantifying the tradeoffs among protection goals 

associated with particular multiobjective solutions is beneficial to evaluate the degrees to 

which solutions sacrifice protection with respect to certain protection goals in order to 

accommodate multiple individual protection goals.  With this means of quantifying 

tradeoffs, one solution can be identified that minimizes tradeoffs by maximizing the 

protection provided by a sensor node solution according to all protection goals 

collectively.   

 

A “lumped” protection goal performance measure inspired by weighted-sum optimization 

is used for quantifying the collective protection provided by a solution.  In this work, this 

lumped performance measure for any number of particular protection goals is referred to 

as Zall. For the two-prong multiobjective problem defined above, the formula to find Zall 

is  

 norm norm

all lik volZ Z Z= +  (4.5) 

where norm

likZ and norm

volZ are normalized terms for the detection likelihood and expected 

contaminated demand volume corresponding to a given feasible solution.  .   

 

norm

likZ and norm

volZ are Zlik and Zvol values normalized according to boundary point 

information.  For solutions inside of the Pareto front space (rectangle ACBD in Figure 

4.2 (b)), norm

likZ and norm

volZ each fall within the range [0, 1].  A value of 0 for one of the 
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terms translates to minimum protection with regard to a protection goal in question 

relative to all Pareto front solutions, while a value of 1 translates to maximum protection.  

For solutions falling outside of the Pareto front space, the terms are negative in value.  

Clearly, these outside solutions are not eligible to be optimal solutions, but assigning null 

fitness to all of these solutions may cause the genetic algorithms used in optimization to 

converge unnecessarily to one of the obviously suboptimal, null fitness solutions. 

 

Given the above descriptions of the terms in (4.5), (4.5) can be rewritten as 

 
, ,

, , , ,

min pf max pf

lik lik vol vol
all max pf min pf max pf min pf

lik lik vol vol

Z Z Z Z
Z

Z Z Z Z

− −
= +

− −
 (4.6) 

At either boundary point (A or B), Zall is equal to 1 since the possible protection provided 

by a Pareto-optimal solution with respect to one of the protection goals is completely 

maximized while protection for the other goal is completely minimized.  At point C, 

protection is completely minimized for both goals, so Zall would equal 0.  At point D, 

protection for both goals would be completely maximized, so Zall would equal 2.  Point 

D, though, would not be a realistic solution; it would be an ideal Pareto front consisting 

of only one solution that would maximize protection for both protection goals.  (Feasible 

Pareto fronts consist of only one point when all protection goals in question are extremely 

correlated with each other.  In such a case, multiobjective optimization is not necessary as 

the problem can be solved as a single-objective problem with the single-prong objective 

function addressing all protection goals.  Also, (4.6) would be undefined for the particular 

case, and therefore the existence of this extreme correlation should be avoided in 

employing the multiobjective formulation of this work.) 
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Figure 4.3 gives a graphical indication of the ranges of possible Zall values for solutions 

in the various areas of the Pareto front plot for the two-prong problem.  It is noteworthy 

that on the line consisting of boundary points A and B, all solutions have a Zall value of 1, 

as the trading-off of protection according to the normalized performance measures is 

occurring in a linear fashion such that the sum of norm

likZ and norm

volZ is always equal to 1.  

Pareto fronts for this particular two-prong problem are likely to exist within the triangle 

ABD in Figure 4.3, so the multiobjective tradeoff solutions found should have values no 

less than 1 and no greater than 2.   

 

 

 

 

 

 

 
 

Figure 4.3  Possible ranges of Zall values for solutions within particular areas of the 

Pareto front plot for the generic two-prong multiobjective problem of maximizing 

detection likelihood and minimizing expected contaminated demand volume.  The point 

P on the Pareto front represents the hypothetical solution for which Zall is maximized.   

 

Zall < 1 

0 ≤ Zall < 1 

Zall = 1 

1 < Zall < 2 

Zall < 1 

Zall < 0 
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4.3.2.2.3 Converted Optimization Problem 

 

To find the solution with the maximum possible value of Zall (represented generically by 

point P in Figure 4.3 for the two-prong problem), the generic optimization problem in 

(4.1) is converted to the single-prong objective problem in (4.7) using Zall.   

 
max

s.t.

all

max

Z

M M=
 (4.7) 

In sum, (4.1) reduces to a relatively simple two-step problem with the developed 

approach.  First, the single-objective problems corresponding to the protection goals of 

interest are solved to determine values of terms needed in the formula for Zall, and then 

(4.7) is solved.      

 

4.3.2.2.4 Extending Formulation for More than Two Protection Goals 

 

A set of simple adjustments can be made to adapt the multiobjective problem formulation 

derived above for more than two protection goals.  For a two-prong problem, the 

coordinates for boundary points are found by solving the single-objective problems for 

the two protection goals of interest and using performance measure information in the 

straightforward manner described above.  For a multiobjective problem with three or 

more prongs, the identification of boundary point coordinates is not as straightforward.  

In these cases, performance value information from the relevant single-objective 

problems is still employed.  As in the case of the two-prong problem, performance 

measure values for the protection goals of interest in the single-objective problems are 

boundary point coordinates.  However, there are multiple candidates for all of the other 
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boundary point coordinates since three or more single-objective problems are being 

solved.  Hence, the other coordinates are found by finding the possible Pareto front 

“worst-case” performance measures.  For example, in the case of the three-prong 

multiobjective problem of this work, ,max pf

likZ is found as it would be found in a two-prong 

problem by solving the corresponding single-objective problem in (4.2).  There are two 

candidates, though, for ,min pf

likZ —Zlik at ,min pf

timeZ and Zlik at ,min pf

volZ .  The lesser value of Zlik 

of the two candidates (i.e., the worst-case Zlik) would be ,min pf

likZ .  The formulas in (4.8) 

and (4.9) summarize the process of finding the Zlik boundary point coordinates for the 

three-prong problem in (4.1). 

 , maxmax pf

lik likZ Z=  (4.8) 

 ( ), , ,min ,min pf min pf min pf

lik lik time time lik vol volZ Z Z Z Z Z Z= = =  (4.9) 

Boundary point coordinates relating to the other two protection goals in the three-prong 

problem are found in similar fashion as shown in the formulas in (4.10) through (4.13).   

 , minmin pf

time timeZ Z=  (4.10) 

 ( ), , ,max ,max pf max pf min pf

time time lik lik time vol volZ Z Z Z Z Z Z= = =  (4.11) 

 , minmin pf

vol volZ Z=  (4.12) 

 ( ), , ,max ,max pf max pf min pf

vol vol lik lik vol time timeZ Z Z Z Z Z Z= = =  (4.13) 

With these six values, the Pareto front space can be defined.  In three-space, the Pareto 

front space would take the form of a rectangular prism as opposed to the rectangle 

associated with the two-prong problem illustrated in Figure 4.2 (b).  As indicated 
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previously, the boundary points may not necessarily lie on the Pareto front itself, but they 

do at least provide for boundaries within which the Pareto front is contained. 

 

The formula in (4.5) to determine Zall can be extended with ease to accommodate more 

than two protection goals.  The generic form of the formula for some specified number of 

protection goals is 

 1 2

norm norm norm norm

all g GZ Z Z Z Z= + + + + +⋯ ⋯  (4.14) 

where g is the index for a particular protection goal, G is the number of protection goals 

for a given multiobjective problem.    

 

Thus, for the three-prong multiobjective problem at the center of this work, the formula 

to determine Zall for solutions within the Pareto front space becomes 

 
, , ,

, , , , , ,

min pf max pf max pf

lik lik time time vol vol
all max pf min pf max pf min pf max pf min pf

lik lik time time vol vol

Z Z Z Z Z Z
Z

Z Z Z Z Z Z

− − −
= + +

− − −
. (4.15) 

The value of Zall calculated with (4.15) falls in the range [0, 3) for solutions within the 

Pareto front space.   

 

4.4 ATTACK SCE�ARIO DATA GE�ERATIO� 

 

EPANET Version 2.0 (Rossman 2000) was used to generate hydraulic and contaminant 

transport data for each study system.  EPANET requires calibrated data on WDS 

components, connectivity, water sources, nodal demands, flow patterns, and other WDS-

related state variables to carry out modeling; these data existed for all three study systems 
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prior to this work.  For an individual system, independent sets of data were generated for 

the importance phase and the optimization phase; data were generated for each of Simp 

attack scenarios for the importance phase and each of Sopt scenarios for the optimization 

phase.  These generated data allows for the degrees to which contaminant is present at 

particular WDS nodes at given times during the study period to be determined for every 

attack scenario.  As demonstrated in sections below, this information is employed to 

calculate nodal importance values and determine the effectiveness of sensor node set 

candidates during optimization.   

 

4.5 �ODAL IMPORTA�CE   

 

The theoretical fundamentals of the nodal preprocessing approach developed in this study 

are detailed in this section.   

 

4.5.1 BASIC CONCEPT AND GENERAL APPROACH 

 

The two most computationally-expensive aspects of solving the WDS sensor placement 

problem are (i) simulating the hydraulic and contaminant transport behavior of the WDS 

and (ii) the testing of sensor node combinations in order to find the node set providing 

maximum protection on-average.  At present, little can be done to reduce the burden 

associated with WDS flow and transport simulation; EPANET is the definitive WDS 

flow and transport model used by most researchers conducting sensor placement 

optimization studies.  The simulation burden is best managed by minimizing the need to 
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run simulations.  The computational expense associated with the testing of sensor node 

candidates, though, can be addressed much more directly by performing a preliminary 

examination of each WDS node to gauge its potential fitness as a sensor node candidate 

relative to the other nodes in the system.  Thus, the nodes that are of higher fitness can be 

identified and can receive more focus in the search for the optimal set of sensor nodes.  

The nodal importance concept developed in this work allows for such “preprocessing” of 

WDS nodes by assigning weights to nodes in the importance phase before the actual 

sensor placement optimization is carried out in the optimization phase.   

 

In this work, the potential fitness of node as a sensor node candidate is considered 

synonymous with the “importance” of the node.  With knowledge of (i) how contaminant 

moves throughout the system in the Simp scenarios modeled in the scenario data 

generation described above and (ii) the potential for individual WDS nodes to experience 

adverse effects resulting from the Simp scenarios, the importance of a particular node in 

sensor placement consideration is concisely estimated according to a function of 

“importance variables.”  A particular importance function is designed to yield one 

numerical value per node for a given protection goal or set of goals.  The specific 

functions designed for particular protection goals and sets of goals are derived in sections 

below.  In order to ensure that the determined value of importance for each WDS node is 

sufficiently representative of the true expected importance of the node, a relatively large 

number of scenarios should be employed in the importance phase.  This work employed 

3,000 scenarios in the importance phase (i.e., Simp = 3,000) for each of the three study 

systems.       
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The idea of preprocessing WDS nodes for sensor placement consideration has precedent.  

For instance, the nodal importance concept of this work is not entirely unlike the nodal 

impact coefficient concept developed by Berry et al. (2006b).  However, determining 

impact coefficients for all WDS nodes as done by Berry et al. requires placing a 

hypothetical sensor at each node—one node at a time—for every attack scenario 

simulated and quantifying the protection impacts of placing sensors at individual nodes.  

The nodal importance concept developed in this work has the advantage of not requiring 

separate simulations for every WDS node per attack scenario and, therefore, is more 

computationally efficient.  Also, the nodal importance concept better accounts for 

protection provided by other possible sensor nodes in addition to a particular node in 

question as will be made apparent in sections below.  Another example of the use of 

preprocessing is the data mining procedure conducted by Huang et al. (2006) to 

determine detection probability information (specifically the frequency at which 

contaminant would be first detected by a sensor at a node and the frequency at which 

contaminant would be detected at a node during a particular period of time after 

injection) for each WDS node in order to provide optimization algorithms with 

reasonable initial candidate solutions.  As discussed in Chapter 2, the methods of Huang 

et al. seem very computationally inefficient.  Most recently, Xu et al. (2008) use 

“betweenness centrality” and “receivability” to identify key nodes for sensor placement 

consideration as described in Chapter 2, but their methods yield suboptimal solutions and 

have not been applied to larger systems.   
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4.5.2 NODAL IMPORTANCE FUNCTIONS 

 

This section provides the derivation of the mathematical functions used to calculate nodal 

importance for the single-objective protection goals and the lumped multiobjective 

protection goal.   

 

4.5.2.1  Maximizing Detection Likelihood  

 

If the protection goal of interest is maximizing detection likelihood, the importance of a 

WDS node i for an attack scenario s is a function of  

• the presence or absence of contaminant at or above the sensor resolution at node i 

during scenario s, and  

• the number of nodes other than node i that experience contamination during 

scenario s.    

From these two ideas stem the concepts of “frequency,” “uniqueness,” “end-of-line” 

nodes, and “slow-outflow” nodes that were used to formulate nodal importance functions.     

 

4.5.2.1.1 Frequency 

 

“Frequency” refers to the expected proportion of scenarios for which contaminant is 

present at node i over Simp scenarios.  Mathematically, this proportion is expressed as 

 
1

1 impS

lik

i is

simp

FREQ D
S =

= ∑  (4.16) 
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where Dis is equal to 1 or 0, indicating the presence or absence, respectively, of 

contaminant at node i at any time within the study period during scenario s. 

 

The logic behind the relevance of this frequency measurement to nodal importance is 

intuitive.  If a sensor placed at node i is expected to detect contaminant for a significant 

number of attack scenarios, then contaminant should be present at node i for a significant 

number of scenarios.   

 

4.5.2.1.2 Uniqueness 

 

Frequency alone cannot indicate the importance of a node with respect to maximizing 

detection likelihood.  To elaborate, there is no need to place a sensor at a particular node 

to detect contaminant for some given number of attack scenarios if the contaminant 

would be detected anyway for those scenarios by some other sensor located elsewhere in 

the system, even if the computed frequency of the node in question is relatively high.  

Instead of placing the sensor at the node in question, it would be more beneficial to place 

the sensor at another location to detect contaminant for other scenarios not detected by 

any other sensors in the sensor set.   

 

“Uniqueness” is used to estimate how unique a node is in experiencing contamination 

relative to the other WDS nodes.  The effectiveness of uniqueness as a variable of nodal 

importance can be made clear with some hypothetical extreme cases.  For example, a 

node that is the only node in the WDS to experience contamination during a given 
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scenario would be as unique as possible and extremely important with respect to that 

scenario for it would be the only node in the system at which a sensor could detect 

contaminant.  In contrast, if a node were one of very many that experience contamination 

during a scenario, the node would be much less unique and much less important as so 

many other nodes would also be suitable locations for a sensor to detect contaminant.   

 

Uniqueness per node per scenario is quantified by the equation  

 

1
1

0 0

is

lik
jsis

j

is

D

DU5IQ

D

 =
= 

 =

∑  (4.17) 

where j is a specific node in the set of all WDS nodes that includes node i, and Djs is 

equal to 1 or 0 indicating the presence or absence, respectively, of contaminant at node j 

during scenario s.  Put simply, the value of uniqueness in (4.17) is the ratio of one to the 

total number of WDS nodes experiencing contamination during scenario s if node i 

experiences contamination during the scenario (i.e., Dis = 1).  If node i does not 

experience contamination at all during scenario s, then the uniqueness of node i for 

scenario s is equal to zero.  

 

As implied by (4.17), uniqueness formulated in this manner is inherently a function of 

frequency for a greater frequency yields a greater number of non-zero nodal uniqueness 

values over Simp scenarios.  Thus, the correlation between uniqueness and frequency is 

positive, but the strength of the correlation is directly related to the sizes of nodal 

uniqueness values for scenarios with Dis equal to 1. 
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To obtain an expected value of uniqueness over Simp scenarios, the mean of values for 

nodal uniqueness per scenario determined by (4.17) is computed using (4.18). 

 ,

1

1 impS

lik avg lik

i is

simp

U5IQ U5IQ
S =

= ∑  (4.18) 

It is also helpful on occasion to know the maximum value of nodal uniqueness per 

scenario as made evident in discussion below.  The mathematical expression for this 

maximum value is found with (4.19).   

 ( ), maxlik max lik

i s isU5IQ U5IQ=  (4.19) 

The uniqueness concept is very similar in principle to the “receivability” concept 

developed by Xu et al. (2008) for which the ultimate goal is to maximize detection 

“coverage” of the WDS with a fixed number of sensors, consequently minimizing 

unnecessary sensor detection redundancy.  Uniqueness is more advantageous, though, for 

its value can be found with the simple equations above, whereas receivability requires a 

multiple-step, iterative procedure that could be computationally expensive for larger 

systems.  Using uniqueness over receivability also appears to yield higher detection 

likelihood values as will be shown in Chapter 5. 

 

4.5.2.1.3 End-of-Line Nodes 

 

An “end-of-line” node is a node that has positive pipe inflow but has zero pipe outflow.  

Instead, outflow from the node takes the form of hydraulic demand at a junction or of 

tank inflow such that hydraulic continuity is preserved.  This particular flow behavior in 
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the case of a junction with demand is illustrated in Figure 4.4 (a).  If this flow behavior 

occurs at a node at any time during the study period, the node is considered an end-of-

line node.  End-of-lines nodes are relatively straightforward to determine as only a simple 

hydraulic analysis is required; no contaminant transport analysis is needed.  End-of-line 

junctions always have a maximum uniqueness as formulated in (4.19) equal to 1 for 

contaminant injection could occur at a particular junction at a time when the junction is 

experiencing end-of-line conditions and would only affect that junction due to the lack of 

pipe outflow to other WDS nodes.  End-of-line node status for a node i can be expressed 

by the variable EOLi; EOLi is equal to 1 if node i is an end-of-line node or 0 if otherwise.   

 

End-of-line nodes are the endpoints of possible contaminant transport paths in the WDS.  

A sensor placed at one of these nodes would eventually detect contamination if 

contaminant is present anywhere on the node’s respective contaminant transport path, 

assuming that the contaminant when present is present at or above the sensor resolution.  

Thus, identifying end-of-line nodes can allow for the narrowing of the sensor node set 

solution search domain while still accounting for all contaminant transport paths in the 

WDS.  In other words, end-of-line nodes would be the only important nodes if the only 

protection goal of concern is maximizing detection likelihood. 

 

4.5.2.1.4 Slow-Outflow Nodes 

 

 

A slow-outflow node has positive pipe outflow at the latest time during the study period 

when contaminant arrives at the node (i.e., the “latest contaminant arrival time” of the 
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node) for a given attack scenario, but contaminant arriving at the latest contaminant 

arrival time and leaving the node through pipe outflow cannot travel from the node in 

question to any downstream node by the end of the study period.  In essence, a slow-

outflow node is a de facto end-of-line node for contaminant can travel to no other WDS 

nodes before the end of the study period upon reaching the node.  Slow-outflow node 

status for a node i is represented by the variable SOFi that has a value of 1 if node i is a 

slow-outflow node or 0 if otherwise.  Figure 4.4 (b) illustrates slow-outflow node flow 

conditions for a junction. 

 

Ascertaining whether or not a WDS node i is a slow-outflow node entails the following: 

• determining the latest contaminant arrival time for the node (Tlcat,i) by simulating 

an injection at every WDS node at the latest eligible injection time (i.e., at 24 

hours into the 96-hour study period for all three systems in this work) and 

recording the latest contaminant arrival time for the node, 

• calculating the total distance water contaminated at the node’s latest contaminant 

arrival time travels from the node i through a pipe p with positive outflow at the 

node’s latest contaminant arrival time toward a downstream node for every time 

step k after the latest contaminant arrival time ( k

ipx  in Figure 4.4 (b)) until the end 

of the study period for every pipe connected to the node with positive outflow at 

the latest arrival time, and 

• comparing the total distance calculated for each pipe p with the length of each 

respective pipe (Lip).      
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(a) 

 

 

 

 

 
(b) 

  

Figure 4.4  Flow behaviors at a WDS junction, node i, under (a) end-of-line conditions 

and (b) slow-outflow conditions.  Solid arrows in the diagrams represent pipe or demand 

flows that are required to be present, and dashed arrows represent pipe or demand flows 

that are not required but can be present.  For (a), t represents any time within the study 

period.  As shown in (a), the junction should have a number of inflow pipes greater than 

zero, a total pipe inflow ( )in

itQ∑  greater than zero, and a hydraulic demand demand

itQ  

greater than zero, while the total pipe outflow ( )out

itQ∑ should be equal to zero.  With 

regard to (b), contaminant is assumed to reach node i at the node’s latest contaminant 

arrival time, ,lcat iT .  The junction should have at least one pipe with positive inflow and at 

least one pipe with positive outflow as indicated in (b).  Thus, the total pipe inflow 

( ),

in

i lcatQ∑  and total pipe outflow ( ),

out

i lcatQ∑  are greater than zero.  For a given pipe p 

connected to node i with positive outflow, Lip is the length of the pipe, and k

ipx  is the 

distance contaminated water travels in the time from ,lcat iT  to time t (i.e., time step k).  For 

node i under slow-outflow conditions, k

ipx  at the end of the study period should be less 

than Lip.   

i 

time = Tlcat,i
 

, 0in

i lcatQ >∑  

time = t  (time step = k) 

p 

Lip 

, 0out

i lcatQ >∑  

k

ipx  

0in

itQ >∑  

0demand

itQ >  

i 

0out

itQ =∑  
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If for no outflow pipe p (i) the total distance traveled by the end of the study period (i.e., 

k

ipx  when k corresponds to the end of the study period) is greater than or equal to the 

length of the pipe or (ii) a negative value is found for k

ipx  for any time step k indicating 

that the contaminated water reversed flow and exited the pipe in question, the node in 

question is considered a slow-outflow node.  Mathematically, the total contaminated 

water pipe distance at a time step k is determined with the equation 

 1k k k

ip ip ipx x u t−= + ∆  (4.20) 

where k is the time step index corresponding to a particular five-minute multiple of time 

that falls after the latest contaminated arrival time for the node i and before the end of the 

study period, ∆t is the five-minute time step, and k

ipu is the EPANET-computed water 

velocity for pipe p connected to node i for time step k.  The distance k

ipx  for the time step 

k associated with the latest contaminated arrival time is equal to zero.   

 

The maximum nodal uniqueness value of a slow-outflow junction is not necessarily equal 

to 1 as it is in the case of an end-of-line node.  For instance, if an injection actually occurs 

at a node identified as a slow-outflow node, contaminant may be able to reach some node 

downstream of the slow-outflow node by the end of the study period, whereas an 

injection occurring at a node other than that node may cause that node to be the last node 

on a contaminant transport path reached by contaminated water before the end of the 

study period, in turn causing the node to exhibit slow-outflow conditions.  Under these 

circumstances, the slow-outflow node would have a maximum uniqueness value 

according to (4.19) of at least 0.5 (1/2), even though it is possible that the node can act as 
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a de facto end-of-line node.  In most cases, it is expected that the maximum uniqueness 

value for a slow-outflow node would be relatively high.   

 

Identifying slow-outflow nodes can be a computationally burdensome process compared 

to that for identifying end-of-line nodes, especially for larger systems.  Thus, the slow-

outflow node concept should be employed only when its benefits vastly outweigh its 

computational costs—usually in smaller system cases.  The implementation of the slow-

outflow node concept for determining nodal importance in smaller systems is discussed 

in sections that follow.   

 

4.5.2.1.5 Application of Defined Concepts 

 

The example problem in Figure 4.5 demonstrates how frequency, uniqueness, and end-of-

line or slow-outflow node status can influence a node’s importance with respect to 

maximizing detection likelihood.  In the case of one sensor employed in solving the 

example problem, frequency is most important as a higher frequency directly translates to 

a higher detection likelihood.  Thus, the one sensor is placed at Node 1 in the example 

WDS because it experiences contamination during more scenarios than do the other 

nodes.  However, when more than one sensor is employed, minimizing detection 

redundancy becomes a crucial factor in optimal placement.  In the case of two sensors, 

the second sensor is placed at Node 5 for a sensor there detects contaminant for an 

additional 20% of scenarios beyond the 70% of scenarios for which contaminant is 

detected by the sensor at Node 1; a second sensor at Node 4 or Node 6 would only detect 
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contaminant for an additional 10% of scenarios, and the sensor at any other node would 

detect contaminant for the scenarios already accounted for by the first sensor at Node 1.  

In the case of three sensors, the remaining 10% of non-detection scenarios are accounted 

for with a sensor at Node 4 to fully minimize detection redundancy and yield a detection 

likelihood of 100%. 

 

Expected and maximum nodal uniqueness values found in the importance phase using 

(4.18) and (4.19), respectively, for Nodes 4 and 5 as well as for Node 1 give indications 

of sensor placement desirability with respect to minimizing detection redundancy in the 

optimization phase.  Nodes 1 and 5 have expected uniqueness values greater than the 

values for the other eight nodes, and Node 4 has a value that is relatively high, albeit the 

fifth-largest of the ten values.  These values demonstrate that expected uniqueness values 

can provide good estimates of nodal importance for a small system such as the one in 

Figure 4.5 but are not necessarily exact measurements of importance.  Regarding 

maximum uniqueness, Nodes 1, 4, and 5 are the only nodes with a maximum nodal 

uniqueness value of 1; all other nodes have lower values.  (Under certain flow and 

transport conditions, Node 5 may have a lesser maximum uniqueness value, though it 

would probably be relatively high compared to those of most other nodes.  For the 

example problem, a realistic assumption is made that the maximum uniqueness value of 

Node 5 is 1.)  Though maximum uniqueness does not indicate the on-average uniqueness 

of a node over many scenarios, it does give an upper bound of possible uniqueness for a 

given attack scenario.   
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It is no surprise that Nodes 1, 4, and 5 comprise the subset of end-of-line and slow-

outflow nodes for the example WDS.  This subset effectively contains the endpoints of 

all possible hydraulic paths on which contaminant can travel, as long as the assumption 

that the contaminant concentration is at or above the sensor resolution at nodes 

experiencing contamination holds.  The same optimization results presented in Figure 4.5 

would be found by only searching the three-node subset of end-of-line and slow-outflow 

nodes instead of searching the set of all 10 nodes, increasing optimization efficiency.   
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Figure 4.5  Hypothetical example problem for optimizing sensor placement to maximize 

detection likelihood.  The system depicted is assumed to be under steady-state conditions.  

At nodes experiencing contamination, the contaminant concentration is assumed to be at 

or above the sensor resolution.  The numbers of scenarios for the importance phase (Simp) 

and the optimization phase (Sopt) are both equal to 10 (i.e., one contaminant injection for 

every node).  The problem is solved for one sensor, two sensors, and three sensors 

employed (i.e., M = 1, M = 2, and M = 3).  The left table provides nodal frequency, 

expected uniqueness, maximum uniqueness values calculated using (4.16), (4.18), and 

(4.19), respectively, and indicators of end-of-line or slow-outflow node status for the 

nodes as appropriate.  It is assumed that the procedure described in Section 4.5.2.1.4 was 

used to identify Node 5 as a slow-outflow node.  The right table gives optimal sensor 

nodes and resulting detection likelihood values.      

 

i lik

iFREQ  ,lik avg

iU5IQ  
,lik max

iU5IQ  Node Type 

1 70% 0.238 1/1 = 1.00 end-of-line 

2 60% 0.138 1/2 = 0.50  

3 50% 0.088 1/3 = 0.33  

4 10% 0.100 1/1 = 1.00 end-of-line 

5 60% 0.205 1/1 = 1.00 slow-outflow 

6 50% 0.105 1/2 = 0.50  

7 40% 0.055 1/6 = 0.17  

8 30% 0.038 1/7 = 0.14  

9 20% 0.024 1/8 = 0.13  

10 10% 0.011 1/9 = 0.11  

M Sensor i’s Zlik 

1 1 70% 

2 1, 5 90% 

3 1, 5, 4 100% 

i = 1 2 3 

4 5 6 

7 8 9 10 (Reservoir) 

Pump 
(slow outflow) 
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The relationships between the concepts defined above and the optimization of sensor 

placement with respect to maximizing detection likelihood are summarized by Figure 4.6.  

Using these concepts, functions for calculating the nodal importance value for a node i 

with respect to maximizing detection likelihood ( lik

iIMP ) were formulated.  The first 

function presented below is designed for “large” systems (i.e., systems with a number of 

nodes at least in the high hundreds).  This function is considered the default function for 

maximizing detection likelihood and is used unless another function is more 

advantageous for a special case.  Special cases include cases of maximizing detection 

likelihood for “small” systems (i.e., systems with a number of nodes in the low hundreds 

or less).  The small system functions for determining nodal importance developed in this 

work are also provided below. 
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Figure 4.6  Relationships between nodal importance concepts and the optimization of 

sensor placement to maximize detection likelihood. 
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4.5.2.1.6 Function for Large Systems 

 

It was established above that uniqueness as formulated in (4.17) is inherently a function 

of frequency.  For large systems, though, the correlation between uniqueness and 

frequency is weak on average relative to the correlation for small systems due to fewer 

opportunities for nodes to experience contamination over Simp scenarios.  Therefore, in 

determining the importance of a certain node in a large system with respect to 

maximizing detection likelihood, frequency and uniqueness can be considered nearly 

independent of each other and should be accounted for explicitly in the nodal importance 

function as indicated in (4.21).   

 ,lik lik avg lik

i i iIMP U5IQ FREQ= ⋅  (4.21) 

The nodal importance function in (4.21) makes nodes with relatively high values for both 

expected uniqueness and frequency stand out from other WDS nodes.  Sensors located at 

more important nodes according to values calculated with (4.21) are expected to detect 

contamination for greater numbers of scenarios with minimal detection redundancy.    

 

Large systems usually have very large subsets of end-of-line and slow-outflow nodes.  

For example, BWSN Network 2 has 2,140 end-of-line nodes (more than 17% of the 

nodes in the system), and the number of slow-outflow nodes in the system makes the size 

of the end-of-line and slow-outflow node subset greater than 2,140.  Identifying slow-

outflow nodes for a large system can be extremely computationally expensive as 

explained previously.  Thus, for large systems, the subset of only end-of-line nodes is 

determined, and slow-outflow nodes are neglected.  With a number of end-of-line nodes 
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that should far exceed the number of sensors available, the subset of only end-of-line 

nodes should provide an ample number of candidates for placing sensors at the ends of 

contaminant transport paths in a typical large system.     

 

If contaminant is assumed to be at or above the sensor resolution where contamination 

exists, end-of-line nodes allow for the sorting of nodes in order to more thoroughly 

quantify nodal importance.  Nodes can be sorted into two subsets according to whether or 

not they are end-of-line nodes with all end-of-line nodes considered more important than 

those that are not end-of-line nodes.  Importance values are assigned to nodes according 

to (4.21), but a node’s importance value is only relevant in comparing the node to other 

nodes in a particular subset within which it belongs.  In other words, nodal importance is 

determined first by end-of-line status and then by calculated importance value.  If two 

nodes with different importance values in the end-of-line node subset are compared, 

clearly the node with the higher importance value is considered more important.  

However, if one node in the end-of-line node subset and another node in the other subset 

are compared, the node in the end-of-line node subset is considered more important no 

matter what the importance values of the two nodes are.  In cases for which the above 

contaminant concentration assumption is not valid, nodes are not sorted, and nodal 

importance is determined only by calculating importance values.   

 

 

 

 



 

 
81 

 

  

4.5.2.1.7 Function for Small Systems 

 

The formula in (4.21) can be adjusted to assign importance with respect to maximizing 

detection likelihood to nodes in small systems.  For small systems, uniqueness is more 

strongly correlated with frequency than it is for large systems due to the greater numbers 

of opportunities nodes have to experience contamination.  It is somewhat redundant to 

include a frequency term in the nodal importance function when expected uniqueness is a 

variable in the function.  Thus, nodal importance is considered synonymous with 

expected uniqueness, as shown in (4.22). 

 ,lik lik avg

i iIMP U5IQ=  (4.22) 

The identification of slow-outflow nodes in a small system should typically be a 

computationally manageable process, and therefore these nodes are identified.  Assuming 

that the contaminant concentration is at or above the sensor resolution, the subset of end-

of-line and slow-outflow nodes can aid the determination of nodal importance for a small 

system by allowing for the sorting of nodes to further distinguish nodes as important in 

the same way the subset of only end-of-line nodes does for large systems.  It is possible 

in the small-system case that the number of sensors available may be larger than the 

number of nodes in the end-of-line and slow-outflow node subset.  If so, all nodes in that 

subset would be assigned sensors in the optimization phase, and the remaining sensors 

would be placed at “unimportant” nodes outside of the subset and would have no impact 

on detection likelihood values.       
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4.5.2.2  Minimizing Expected Detection Time 

 

As discussed in Chapter 3, the calculation of expected detection time takes into account 

scenarios for which contaminant is not detected by assigning a detection time equal to the 

study period length to those scenarios in order to quantify “infinite” detection time.  A 

by-product of this decision is the relatively strong positive correlation between expected 

detection time and detection likelihood.  To reflect this correlation, the nodal importance 

function with respect to minimizing expected detection time is a function of the nodal 

importance value for maximizing detection likelihood as shown in the equation   

 
1

1 impS

time lik

i is i

simp

IMP IMP
S

τ
=

= ⋅∑  (4.23) 

where τis is a time-based variable for a node i and scenario s defined below.  The value 

for lik

iIMP  can be found with (4.21) if the WDS in question is large or (4.22) if the WDS 

in question is small.     

 

The function in (4.23) essentially scales lik

iIMP  by a time-based importance variable 

averaged over Simp scenarios.  That time-based variable gives more importance weight to 

a node with an earlier mean contaminant arrival time for an earlier mean arrival time 

implies that a sensor placed at the node in the optimization phase would detect 

contamination sooner on average than it would at a node with a later mean arrival time.  

Coupling the variable with lik

iIMP  as done in (4.23) has the effect of further 

distinguishing nodes that are relatively more important in terms of maximizing detection 
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likelihood according to their contaminant arrival times.  The specific formula for the 

time-based variable τis is  

 
1 1

0 0

d

is
is

spis

is

t
D

T

D

τ


− =

= 
 =

 (4.24) 

where d

ist  is the time after the first (or only) contaminant injection when contaminant is 

first present at node i at a concentration above the sensor resolution during scenario s, and 

Tsp is the study period length.  To express (4.24) in simple terms, the contaminant arrival 

time during scenario s for node i is normalized to fall on the [0, 1] scale.  For example, if 

contaminant were to arrive at node i instantaneously after contaminant injection, τis would 

equal 1, or, if the time of one study period were to elapse before contaminant arrived, τis 

would equal 0.  

 

The relationships between variables affecting nodal importance and the optimization of 

sensor placement with respect to minimizing expected detection time are summarized by 

Figure 4.7.   
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Figure 4.7  Relationships between variables affecting nodal importance and the 

optimization of sensor placement to minimize expected detection time. 
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• the time after injection when the contaminated volume is discharged from the 

node.   

Sensors placed in the optimization phase at nodes passing larger contaminated volumes at 

earlier times in the importance phase are expected to have greater probabilities of 

minimizing contaminated demand volume.  The relationships between variables affecting 

nodal importance and the optimization of sensor placement to minimize expected 

contaminated volume are summarized in Figure 4.8.  As in the case of maximizing 

detection likelihood, it was found that different nodal importance functions incorporating 

those importance variables are needed to appropriate quantify importance for different 

system sizes.  

 

The total contaminated volume discharge cont

iskV  for node i, scenario s, and time step k in 

the importance phase is employed for both large and small systems and is found with the 

equation 

 cont demand

isk ikp ik isk

p

V Q Q tδ
 
= + ⋅ ⋅∆ 
 
∑  (4.25) 

where p is the index of a pipe connected to node i with positive outflow at time step k, 

Qikp is the hydraulic flow leaving node i at time step k through outflow pipe p, demand

ikQ is 

the hydraulic demand at node i at time step k, δisk is a binary variable equal to 1 or 0 if 

contaminant is present or not present, respectively, at or above the hazard threshold 

concentration at node i at time step k, and ∆t is the length of the time step (a constant 5 

minutes in this work).   
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Figure 4.8  Relationships between variables affecting nodal importance and the 

optimization of sensor placement to minimize expected contaminated demand volume. 

 

 

4.5.2.3.1 Function for Large Systems 

 

For large systems, the volume calculated with (4.25) is coupled with the time-based term 

θisk in the relevant nodal importance function.  Consequently, this coupling gives more 

importance weight to a contaminated volume experienced at the node at an earlier time.  

The time-based term is normalized on [0, 1]; it equals 1 at the time of contaminant 
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formula for the term is  

 1
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s
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k k
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−
= −

−
 (4.26) 
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where inj

sk  represents the time step at which contaminant injection occurs during scenario 

s, and K represents the time step at the end of the study period.   

 

The equation in (4.27) is the nodal importance function for minimizing contaminated 

demand volume employing the two variables defined above.  

 
1

1 1

1

imp

inj
s

S K
vol cont

i isk iskinj
s k kimp s

IMP V
S K k

θ
= =

 
=   − + 
∑ ∑  (4.27) 

In (4.27), the θisk-
cont

iskV  couple is averaged over all time steps associated with a particular 

scenario and then averaged over Simp scenarios.  The number of time steps varies among 

scenarios due to the random selection of injection time for each scenario; averaging the 

variable couple over the number of time steps for a given scenario normalizes the value 

of the couple so that it is compatible for comparison with couple values corresponding to 

other scenarios.   The denominator “ 1inj

sK k− + ” in (4.27) may seem odd upon first 

inspection for calculating the number of time steps from injection to study period end, but 

“ inj

sK k− ” is the number of time steps in the study period beyond inj

sk , so “+1” accounts 

for inj

sk  itself. 

 

4.5.2.3.2 Function for Small Systems 

 

For small systems, reducing contaminated volume is more dependent on the time of 

detection of contamination as detection occurs much more rapidly on average for small 

systems that it does for large systems.  Through trial-and-error, it was found that the best 

nodal importance function for small systems accounting for that point is 
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1

1 1

1

imp

inj
s

S K
vol cont time

i isk iinj
s k kimp s

IMP V IMP
S K k= =

 
= ⋅  − + 
∑ ∑ . (4.28) 

This function is very similar to that in (4.27); the key difference is that the dependency on 

time of importance is represented by the nodal importance value for minimizing expected 

detection time which acts as an independent variable that is multiplied with an averaged 

volume.  This formulation is in contrast to the incorporation of time dependency in the 

volume-averaging process done by (4.27). 

 

While (4.27) gives a good estimate of nodal importance in most cases, this importance 

function is not at all a perfect measurement.  For instance, a large influx of flow may 

occur downstream of a given node that experiences contamination; the equation in (4.27)

may indicate that a downstream node is more important than the node in question because 

of a much greater contaminated volume, but in actuality the node in question may be 

more important as a sensor placed at the node may detect contaminant sooner and prevent 

the contamination of even greater volumes.  Such instances, though, should not 

jeopardize the overall validity of (4.27) as an importance function. 

 

4.5.2.4  Summary of Importance-Optimization Relationships 

 

Table 4.1 summarizes how the variables and concepts influencing nodal importance 

defined above relate to the three protection goals of interest in the work of this thesis.    
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Table 4.1  Summary of relationships between importance variables and protection goals.  

Variable notations are those used in (4.16) through (4.28). 

Protection 

Goal 

�odal 

Importance 

Function 

Variable/Concept 

Affecting 

�odal Importance 

Corresponding 

Importance 
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Value(s) 

Associated 
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Higher �odal 

Importance 

Frequency of 

contaminant 

presence at a node 

over many 

scenarios 

lik

iFREQ  higher values 

Expected 

uniqueness of 

contaminant 

presence at a node 

relative to the other 

nodes in the system 

,lik avg

iU5IQ  higher values 

Maximizing 

Detection 

Likelihood 

(Zlik) 

lik

iIMP  

Potential of a node 

to be the endpoint 

of a contaminant 

transport path (as 

an end-of-line or 

slow-outflow node) 

EOLi 

SOFi 

“1” 

for either 

variable 

Expected time after 

injection when 

contaminant first 

present at a node 

τis earlier times 
Minimizing 

Expected 

Detection 

Time (Ztime) 

time

iIMP  Importance of a 

node with respect to 

maximizing 

detection likelihood 

lik

iIMP  higher values 

Contaminated 

volume discharged 

(pipe outflow & 

demand) from a 

node 

cont

iskV  higher values Minimizing 

Expected 

Contaminated 

Demand 

Volume (Zvol) 

vol

iIMP  
Time after injection 

when contaminated 

volume discharged 

from the node 

θisk 

time

iIMP  
earlier times 
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4.5.2.5  Multiple Objectives 

 

In order for the nodal importance concept to be effective in multiobjective optimization, 

the concept must be tailored to accommodate the particular multiobjective optimization 

approach of interest, which in this work pertains to finding a Pareto-optimal solution that 

maximizes protection with respect to all protection goals collectively as explained above.  

Thus, multiobjective nodal importance in this work relates to the potential a node has in 

providing protection with respect to all three protection goals collectively as a sensor 

node.  Figure 4.9 summarizes the relationship of multiobjective nodal importance with 

optimal sensor placement in a multiobjective problem. 

 

 

 
Figure 4.9  Relationship of multiobjective nodal importance with the multiobjective 

optimization of sensor placement. 
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protection according to all three protection goals would be considered more important 

with respect to all individual goals.  To quantify concisely with one value the on-average 

degree a node is more important with respect to all protection goals than other WDS 

nodes, multiobjective nodal importance employs the Pareto dominance concept.  As 

stated above, Pareto dominance of a sensor placement solution over some other solution 

implies that 

• the solution in question performs at least as well as the other solution with respect 

to all protection goals, and  

• the solution performs better than the other solution does with respect to at least 

one protection goal.   

Applying this idea to nodal importance instead of sensor node performance, one node is 

dominant over another node in terms of importance if  

• the importance values for all protection goals for the node in question are greater 

than or equal to the counterpart importance values for all protection goals of the 

other node, and 

• at least one of the importance values for a particular protection goal for the node 

in question is strictly greater than its counterpart for the other node.   

Conversely, the node in question is dominated by the other node if 

• the importance values for all protection goals for the node in question are less 

than or equal to the counterpart importance values for all protection goals of the 

other node, and  

• at least one of the importance values for a particular protection goal for the node 

in question is strictly less than its counterpart for the other node.   
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Using this concept, multiobjective importance for a particular node in this work is a 

function of how many other nodes that the node in question dominates and how many 

other nodes dominate the node in question.   

 

The actual multiobjective nodal importance function for this work is an extension of prior 

work done to model groundwater flow and transport.  Wang (2008) developed a 

“criticalness index” that measured how well a set of uncertain parameters (referred to as a 

“realization” by Wang) used in modeling groundwater flow and transport provides for the 

simulation of true extreme contaminant arrival times relative to other realizations.  

Criticalness index values allowed Wang to conduct simulations with a limited number of 

“more critical” realizations that acceptably modeled extreme arrival times, reducing the 

computational expense necessary for adequate modeling.  This criticalness index for a 

particular realization is a function of the number of other realizations the realization in 

question dominates in terms of providing for the simulation of true extreme arrival times 

and the number of other realizations that dominate the realization in question.  The 

specific equation to determine criticalness index used by Wang is  

 
1

1 ( 1)( )

i i i
i

i

J n J K
CI

n n n J

− − −
= +
− − −

 (4.29) 

where i in that work is a particular realization, CIi is the criticalness index for realization 

i, n is the total number of realizations considered, Ji is the number of realizations that 

realization i dominates, and Ki is the number of realizations that dominate realization i.    

 

Even though the types of problem of this work and the work of Wang (2008) are 

different, the criticalness index concept and nodal importance concept both serve to 
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improve computational efficiency in the search for better-performing candidates by 

providing a concise numerical index that allows for the narrowing of the search.  It is 

reasonable, then, that the criticalness index approach can be applied to determining 

multiobjective nodal importance.   

In this work, the WDS node takes the place of the realization in the criticalness index 

function in (4.29).  With this change, the criticalness index function becomes the 

multiobjective nodal importance function      

 
1

1 ( 1)( )

all i i i
i

i

5
IMP

5 5 5

α α β
α

− − −
= +
− − −

 (4.30) 

where i is a particular WDS node, lik

iIMP is the multiobjective nodal importance value for 

node i, 5 is the total number of WDS nodes, αi is the number of nodes that node i 

dominates in terms f nodal importance, and βi is the number of nodes that dominate node 

i.   

 

Following the conditions of Pareto dominance, a node (e.g., Node “1”) dominates another 

node (e.g., Node “2”) in terms of importance if the following logical relationships are 

satisfied: 

• 1 2 1 2 1 2

lik lik time time vol volIMP IMP IMP IMP IMP IMP≥ ∧ ≥ ∧ ≥ , and    (4.31)   

• 1 2 1 2 1 2

lik lik time time vol volIMP IMP IMP IMP IMP IMP> ∨ > ∨ > .      (4.32) 

If these conditions are indeed met, the value of α1 increases by 1.  This analysis is 

continued for the remainder of the WDS nodes and eventually yields the α1 value used in 

(4.30).  In contrast, Node 1 is dominated by Node 2 if the following relationships are 

satisfied: 
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• 1 2 1 2 1 2

lik lik time time vol volIMP IMP IMP IMP IMP IMP≤ ∧ ≤ ∧ ≤ , and    (4.33) 

• 1 2 1 2 1 2

lik lik time time vol volIMP IMP IMP IMP IMP IMP< ∨ < ∨ < .     (4.34) 

The value of β1 increases by 1 if these conditions are met.   

 

It is possible that other functions may serve as well as or even better than (4.30) serves to 

assign importance according to the multiobjective optimization approach of this work, 

but (4.30) is based on established work and appears to be effective in assigning 

importance, as will be demonstrated in Chapters 5, 6, and 7.  Therefore, the function is 

considered appropriate for this work.   

 

4.6 OPTIMIZATIO� METHODS 

 

The methods used to actually carry out the optimization of sensor placement in this study 

are detailed here.   

 

4.6.1 THE ITERATIVE SUBSET SEARCH METHOD 

 

Nodal importance values are reasonable estimates of true nodal importance as indicated 

above, but they are imperfect measurements.  In other words, there is no lockstep 

correspondence between the importance value of a node and the protection performance 

of a sensor placed at the node.  Modeling the error associated with calculated nodal 

importance with precision is virtually impossible.  Given these conditions, a method used 

to search for the optimal sensor node set that takes advantage of nodal importance 
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estimates in order to narrow the search and subsequently promotes computational 

efficiency while keeping the search broad enough to account for nodal importance 

calculation error as best as possible is warranted.    

 

The “Iterative Subset Search Method” (ISSM) developed in this work brings such a 

balance to the optimization.  In short, ISSM begins the search with a small subset 

primarily consisting of “more important” nodes according to calculated nodal importance 

values and incrementally increases the size of the subset to broaden the search until 

convergence to a solution of best protection performance occurs.  This approach makes it 

possible for the optimal (or at least very near-optimal) sensor node set to be found while 

minimizing the number of suboptimal candidates that are evaluated during the search.     

 

In addition to the higher-importance nodes, a particular ISSM node subset also contains a 

relatively small number of nodes randomly chosen from the WDS nodes that are not 

among the higher-importance nodes.  The inclusion of these randomly chosen nodes is a 

measure used to verify as best as possible that ISSM does indeed find the optimal 

solution.  If all sensor nodes in the best solution found are among the higher-importance 

nodes, there is evidence that the best solution is the optimal solution and increasing the 

subset size would not yield a better solution.  However, if any sensor node in the best 

solution is among the nodes randomly chosen, then the subset size is increased in order to 

potentially find a better solution.   
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ISSM employs several user-defined decision variables that affect the ability of ISSM to 

find the optimal sensor node set in an effective and computationally efficient manner.   

• Proportions of higher-importance nodes (i.e., “ranked” nodes) and randomly 

chosen nodes (i.e., “unranked” nodes) in the subset.  The majority of nodes in the 

subset should be ranked as these nodes have much higher probabilities of being 

better sensor node candidates on the whole than unranked nodes have.  However, 

there should be a reasonable number of unranked nodes in the subset to provide a 

sensible verification metric.  Therefore, the proper balance between the 

proportions of ranked and unranked nodes is crucial.  For this work, the ranked 

and unranked node proportions vary with study system; the proportions used for 

specific study systems are reported in chapters that follow.  If the proportions 

chosen lead to non-integer numbers of ranked and unranked nodes, the number of 

unranked nodes is rounded up to the nearest integer, and the number of ranked 

nodes is rounded down.      

• Initial subset size.  The initial subset should be large enough to include a best 

sensor node set solution of respectable performance and enough unranked nodes 

such that the best solution has realistic opportunity to include unranked nodes.  

The initial subset size varied with study system in this work as will be shown in 

Chapters 5, 6, and 7.  

• Rate of subset size increase.  It is important to increase the subset size in 

broadening the search at a rate that will provide for an ample chance of finding 

better sensor node solutions.  A low rate of increase can lead to the erroneous 

conclusion of attaining solution convergence.  However, too large of a rate of 
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increase may make the search for the optimal solution unnecessarily 

computationally inefficient.  The rates selected for particular study systems are 

reported in chapters that follow.   

• Iteration stopping criteria.  In general, the subset size should incrementally 

increase until both (i) the best solution no longer improves with increasing subset 

size and (ii) all sensor nodes in the best solution are ranked nodes.  Thus, for 

every increase in subset size, the best solution found for the current subset is 

compared to overall best solution found from searching prior subsets.  If the 

subset best solution is better than the overall best solution, then the subset size is 

again increased for solution convergence has not occurred.  If the subset best 

solution is not better than the overall best solution, then the overall best solution is 

evaluated to determine if any of the nodes in the solution are unranked nodes.  If 

there are unranked nodes in the solution, then subset size is increased for it is 

demonstrated that the ranked nodes in the subset do not completely include the 

optimal solution.  If there are no unranked nodes in the overall best solution, then 

there is evidence suggesting that convergence has occurred.  However, additional 

iterations of subset size increase are needed to ensure that convergence has indeed 

occurred.  For each of the additional iterations, there should be no improvement in 

the subset best solution.  The number of additional iterations is somewhat 

arbitrarily chosen.  For this work, three additional iterations are conducted to 

ensure convergence.   
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Figure 4.10 illustrates the entire ISSM procedure incorporating the decision variables 

discussed above.   
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Figure 4.10  The Iterative Subset Search Method.   
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4.6.2 THE GENETIC ALGORITHM SOLVER 

 

The search of an ISSM subset for the best sensor node solution is conducted by a genetic 

algorithm (GA) solver.  The use of GAs is common and has been shown to be effective 

(e.g., Aral et al. 2008; Guan et al. 2006; Ostfeld and Salomons 2006; Rogers et al. 2007) 

in solving the optimal sensor placement problem.  More specifically, the “simple” GA 

(Goldberg 1989) as a component of the GA library (Wall 2005) was used in this work.  

The flowchart in Figure 4.11 illustrates the evolutionary search procedure implemented 

by the simple GA in this work.  
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Figure 4.11  The genetic algorithm evolutionary procedure for one generation. 
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The GA solver for this work employs a binary string chromosome structure.  The 

chromosome represents a particular subset of WDS nodes in question, and each bit in the 

chromosome represents a node either with a sensor (value of the bit equals “1”) or 

without a sensor (value of the bit equals “0”).  Thus, a chromosome with a particular set 

of bit values represents a sensor node solution candidate (i.e., an individual).  The 

population of chromosomes for each generation of GA evolution is initialized in a 

uniform, random manner.   

 

The actual evolutionary operations for the GA model are crossover, mutation, post-

handling, population individual evaluation, and elitist selection.   

 

Crossover is performed in the common two-point fashion under a crossover probability of 

0.95.  “Parents” for the crossover operation are determined through roulette-wheel 

selection of population individuals with selection probabilities derived using objective 

function values for the particular optimization problem of interest.  Crossover results in 

the generation of new individuals (i.e., “children”).  The mutation operation is performed 

on these children through “bit-flipping,” changing the bit value from one binary value to 

the other, in a uniform, random manner, under a mutation probability of 0.05.   

 

Post-handling entails uniform, random bit-flipping such that the end result for each 

individual satisfies the sensor availability constraint.  After post-handling, the sum of the 

bit values for each evolved individual should be less than or equal to the number of 

sensors available.  Performed in this manner, post-handling essentially forces mutation of 
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randomly chosen bits, resulting in a relatively large mutation of an individual in some 

cases.  Such a large mutation increases the evolution time for the GA to converge to a 

best solution, but it also helps to prevent convergence to a local optimal solution, which 

is prone to occur as ISSM isolates many well-performing sensor node set candidates.   

 

Evolved individuals that have undergone the crossover, mutation, and post-handling 

operations are evaluated with respect to their protection performance determined by the 

objective function of the optimization problem.  The individual providing the most 

protection is preserved in elitist selection and is carried to the population of the next GA 

generation for continued evolution. 
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CHAPTER 5 

RESULTS A�D A�ALYSIS: BWS� �ETWORK 1 

Chapter 5  

In this chapter, the sensor placement optimization results from employing the solution 

approach outlined in Chapter 4 for the study system BWSN Network 1 and for the 

various attack cases described in Chapter 3 are presented.  The results for the other two 

study systems, BWSN Network 2 and the Toms River WDS, are given in Chapters 6 and 

7, respectively. 

 

5.1 OVERVIEW OF RESULTS A�D A�ALYSES PRESE�TED 

 

Specifically, sensor node solutions for each of the study systems for the single-objective 

problems represented by (4.2) through (4.4) and for the multiobjective problem 

represented by (4.7) are given in sections below.  These solutions are analyzed to  

• compare the protection provided by using the approaches of this work to 

protection provided by approaches documented in other works,  

• ascertain any spatial trends in the optimal placement of sensors, 

• gauge how sensitive solutions are to attack case differences, 

• quantify the performance tradeoffs with respect to individual protection goals in 

employing multiobjective sensor node solutions, and 

• evaluate the effectiveness of using nodal importance as a part of ISSM detailed in 

Chapter 4 in narrowing the search for the optimal sensor nodes.  
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5.2 SI�GLE-OBJECTIVE PROBLEM: MAXIMIZI�G Zlik  

 

Results for sensor placement optimization with respect to maximizing detection 

likelihood are presented and discussed in this section.  

 

5.2.1 SENSOR NODE SOLUTIONS 

 

Sensor node solutions for maximizing detection likelihood in the default attack case for 

BWSN Network 1 are given in Table 5.1 for the cases of employing 5 and 20 sensors.  

Upon examining the results in the table independently, it seems that the sets of sensor 

nodes selected in optimization are associated with high performance in maximizing 

detection likelihood, especially considering that only 5 sensors in a 129-node system can 

detect contaminant for nearly 90% of attack scenarios.  Figures 5.1 and 5.2 illustrate the 

locations of the optimal sensor nodes for M = 5 and M = 20, respectively.  Figure 5.1 

indicates well how many sensors for maximizing detection likelihood tend to be placed in 

the peripheral areas of the system where many contaminant pathways end.  This tendency 

is not surprising given the preference for contaminant pathway endpoints as sensor 

locations to maximize detection likelihood.  The clustering of sensor nodes on the 

western side of the WDS with 20 sensors employed seen in Figure 5.2 is a consequence 

of the maximum possible detection likelihood being reached with less than 20 sensors.  

As discussed in greater detail below, 15 nodes represent all of the contaminant pathway 

endpoints in the WDS.  Once sensors are placed at these 15 nodes, the maximum possible 

detection likelihood is reached, and it does not matter where the remaining 5 sensors are 
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located.  The cluster in Figure 5.2 represents most of these “extra” sensor nodes that were 

chosen due to the way nodes are ranked according to nodal importance.  To verify 

maximum protection is reached with those 15 sensor nodes, a sensor was placed at every 

node in system for validation purposes only; the resulting Zlik value was 94.7%--the same 

value associated with the 20-sensor solution in Table 5.1.  The 5.3% of scenarios for 

which contamination was not detected corresponds to scenarios with injection nodes 

selected that are hydraulically inactive such that it would be impossible for contamination 

to be detected.  This 20-sensor case is explored further in the evaluation of nodal 

importance below.   

 

Table 5.2 compares the sensor nodes selected in this work for the default attack case to 

those selected in other works.  The table shows that the protection in terms of maximizing 

detection likelihood provided by the sensor locations of this work is equal or better to that 

of sensor locations for other studies.  The deficiencies of approaches used in other works 

to characterize the desirability of WDS nodes as sensor locations are also indicated by the 

table; the “nontime-constrained receivability” concept of Xu et al. (2008) led to clearly 

inferior results for both the M = 5 and M = 20 cases, and the use of “nodal impact 

coefficients” by Berry et al. (2006c) yielded slightly inferior results for the 20-sensor 

case. 
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Table 5.1  Optimal sensor locations and performance measures for maximizing detection 

likelihood in the default attack case for BWSN Network 1.  

M Sensor �odes
*
 

Zlik
**

 

(%) 

Ztime 

(min) 

Zvol 

(gal) 

5 10, 45, 83, 100, 126 89.7 1,685.2 59,701 

20 
10, 11, 19, 34, 35, 39, 41, 42, 45, 79, 81, 82, 83, 

84, 100, 114, 118, 123, 124, 126 
94.7 806.3 4,734 

*
 All sensor node numbers preceded by “JUNCTION-”. 

**
 Performance measure for protection goal of interest.   

 

 

 

 
Figure 5.1  Optimal sensor locations with M = 5 for maximizing detection likelihood in 

the default attack case for BWSN Network 1. 
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Figure 5.2  Optimal sensor locations with M = 20 for maximizing detection likelihood in 

the default attack case for BWSN Network 1. 
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Table 5.2  Comparison of optimal sensor locations for maximizing detection likelihood 

in the default attack case for BWSN Network 1 determined in this study with locations 

found in other works.  

M Work Sensor �odes
*
 Zlik

**
 

(%) 

This Study 10, 45, 83, 100, 126 89.7 

Berry et al. (2006c) 10, 45, 83, 100, 126 89.7 

Eliades and 

Polycarpou (2006) 
10, 45, 83, 100, 126 89.7 

Krause et al. (2006) 10, 45, 83, 100, 126 89.7 

5 

Xu et al. (2008)
***

 45, 83, 100, 114, 126 86.0 

This Study 
10, 11, 19, 34, 35, 39, 41, 42, 45, 79, 81, 82, 

83, 84, 100, 114, 118, 123, 124, 126 
94.7 

Berry et al. (2006c) 
1, 7, 10, 13, 16, 19, 35, 36, 38, 45, 83, 100, 

106, 113, 114, 122, 123, 124, 125, 126 
94.5 

Eliades and 

Polycarpou (2006) 

10, 11, 14, 17, 19, 21, 31, 34, 35, 45, 68, 74, 

83, 90, 100, 102, 114, 123, 124, 126 
94.7 

Krause et al. (2006) 
10, 11, 19, 34, 35, 45, 83, 100, 106, 110, 114, 

123, 124, 126, 128, 129 
†
 

94.7 

20 

Xu et al. (2008)
***

 
7, 13, 36, 38, 45, 83, 100, 113, 114, 123, 124, 

125, 126, TANK-131 
†
 

89.3 

*
 All sensor node numbers preceded by “JUNCTION-”, unless otherwise indicated. 

**
 Values computed using the software developed in this work. 

***
 Solution for sensor placement according to “nontime-constrained receivability”. 

†
 Work provided less than M sensors, citing protection limit reached.   
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Table 5.3 gives the sensor nodes found in this study with 5 sensors employed for the 

default attack case already given in Table 5.1 as well as the variant attack cases outlined 

in Chapter 3.  It is noted that for all study systems when maximizing detection likelihood 

there are no results for the attack cases of a contaminant hazard threshold = 0.0 mg/L and 

a response delay after detection of 3 hours because these variant conditions do not affect 

sensor placement according to the maximization of detection likelihood.  Sensor nodes 

would be the same in those cases as in the default attack case, and Zlik and Ztime values 

would be the same as in the default case, but Zvol values would be greater than or equal to 

(very likely greater than) those found in the default attack case. 

 

As shown in Table 5.3, the sensor nodes for all variant attack cases were the same as 

those for the default attack case.  Even though these sensor nodes are the same for all 

attack cases, Zlik values differ in expected manners.  For increased sensor detection 

resolution, detection likelihood is slightly decreased due to an inability for a sensor to 

detect contamination for some scenarios because the contaminant concentration had 

dropped to less than 0.3 mg/L by the time the contaminant reached the sensor node.  A 

slight increase in detection likelihood for the case of a longer injection duration is not 

unexpected because a larger window of time for injection during which WDS hydraulic 

behavior can change dramatically and allow contaminated water opportunities to travel to 

different and/or more places in system and subsequently sensors in these other places in 

the system to detect contamination.  There is a substantial increase in detection likelihood 

for the two injection node attack cases due to contaminant access to additional 
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contaminant pathways.  Even if one injection node is hydraulically inactive, the other 

injection node may be active, in turn, making contamination detectible. 

 

It is seen in Table 5.3 that for all attack cases sensor nodes selected are the same as those 

for the default attack case.  Isovitsch and VanBriesen (2008) observed that it is typical for 

most if not all locations of sensor nodes not to change greatly as attack conditions 

change, so the resulting sensor nodes in Table 5.3 are not surprising.  This observation is 

also made for sensor nodes selected for different protection goals and study systems in 

sections and chapters that follow.  

 

Table 5.4 shows that other works agree with this work in sensor placement for selected 

variant attack cases.  The attack cases of a 10-hour contaminant injection duration and 2 

nodes injected at 1 time were studied in BWSN, so data is available for those cases for 

comparison purposes.  No comparisons can be made for the cases of a sensor detection 

resolution of 0.3 mg/L and 2 nodes injected at 2 times. 
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Table 5.3  Optimal sensor locations and performance measures for maximizing detection 

likelihood with M = 5 in the variant attack cases for BWSN Network 1.  

Attack Case Sensor �odes
*
 

Zlik
**

 

(%) 

Ztime 

(min) 

Zvol  

(gal) 

default 10, 45, 83, 100, 126 89.7 1,685.2 59,701 

sensor detection resolution  

= 0.3 mg/L 
10, 45, 83, 100, 126 88.4 1,753.4 58,356 

contaminant injection duration 

= 10 h 
10, 45, 83, 100, 126 89.9 1,642.3 75,724 

2 injection nodes at 1 time 10, 45, 83, 100, 126 98.9 919.5 80,483 

2 injection nodes at 2 times 10, 45, 83, 100, 126 98.3 1,191.5 69,062 
*
 All sensor node numbers preceded by “JUNCTION-”. 

**
 Performance measure for protection goal of interest.   

 

 

 

Table 5.4  Comparison of optimal sensor locations for maximizing detection likelihood 

with M = 5 in the variant attack cases for BWSN Network 1 determined in this study with 

locations found in other works.  

Attack Case Work Sensor �odes
*
 

Zlik
**

 

(%) 

This Study 10, 45, 83, 100, 126 89.9 

Berry et al. (2006c) 10, 45, 83, 100, 126 89.9 
contaminant injection 

duration = 10 h 
Krause et al. (2006) 10, 45, 83, 100, 126 89.9 

This Study 10, 45, 83, 100, 126 98.9 
2 injection nodes at 1 time 

Krause et al. (2006) 10, 45, 83, 100, 126 98.9 
*
 All sensor node numbers preceded by “JUNCTION-”. 

**
  Values computed using the software developed in this work. 

 

 

5.2.2 EVALUATION OF NODAL IMPORTANCE  

 

Since BWSN Network 1 is considered a small system, both (i) the small-system nodal 

importance function in (4.22) and (ii) the procedure of stratifying nodes that are either 

end-of-line or slow-outflow according to the definitions in Section 4.5.2.1 from other 

WDS nodes were used to rank nodes in terms of importance for maximizing detection 

likelihood in the default attack case.  The end-of-line and slow-outflow nodes identified 
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for BWSN Network 1 are listed in Table 5.5 and depicted in Figure 5.3.  With these 

nodes identified, the system nodes were ranked according to end-of-line/slow-outflow 

status first then by nodal importance value calculated with (4.22).  The Iterative Subset 

Search Method was then carried out to find the optimal solution as illustrated in Figure 

5.4 for the default attack case with 5 sensors employed.  The ISSM parameters selected 

for this particular study system for all protection goals and attack cases are given in Table 

5.6.  It was felt that these parameters would provide ample opportunity for solution 

improvement if such potential exists with each iteration of ISSM and allow for the 

realistic opportunity for “unranked” nodes to be included in best solution of particular 

iteration such that the inclusion of unranked nodes in ISSM subsets would be a functional 

check for convergence.   



 

 
114 

 

  

 

 

 

 

 

 

Table 5.5  End-of-line nodes and slow-outflow nodes identified for BWSN Network 1. 
  

*
 All node numbers preceded by “JUNCTION-”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3  BWSN Network 1 end-of-line and slow-outflow node locations. 

 

�ode Category Identified �odes
*
 

End-of-Line 19, 34, 35, 39, 41, 42, 45, 83, 

100, 114, 123, 124, 126 

Slow-Outflow 10, 11 

end-of-line 

slow-outflow 
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Figure 5.4  An illustration of ISSM applied to the single-objective problem of 

maximizing detection likelihood with M = 5 in the default attack case for BWSN 

Network 1. 
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13, 32 83, 126, 100, 45, 11, 10 

Initial Subset – 8 nodes 

Subset Makeup: 75% “ranked”, 25% random “unranked” 

(6 nodes ranked, 2 nodes unranked) 

Best Solution Nodes from GA:  

10, 45, 83, 100, 126 (Zlik = 89.7%) 

�ext Subset – 16 nodes 

Change in Subset Size = 8 nodes 

77, 5,  

103, 28 

83, 126, 100, 45, 11, 10, 

123, 19, 124, 114, 35, 39 

(12 nodes ranked, 4 nodes unranked) 

Best Solution Nodes from GA:  

10, 45, 83, 100, 126 (Zlik = 89.7%) 
5 ranked nodes, 0 unranked nodes 

(no solution improvement;  all solution nodes ranked) 

Convergence Count = 1 

*** 2 more iterations performed (no solution 

improvement; all solution nodes ranked)  

Convergence Count = 3 

Optimal Solution Nodes:  

10, 45, 83, 100, 126 (Zlik = 89.7%) 

* All sensor node numbers preceded 

by “JUNCTION-”. 
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Table 5.6  Parameters selected for use in ISSM for BWSN Network 1. 

M 
Initial 

Subset Size 

Change in 

Subset Size 

Proportion of 

Ranked �odes 

in Subset 

Proportion of 

Unranked �odes 

in Subset 

5 8 8 75% 25% 

20 20 10 75% 25% 

 

 

 

The one case for which all of the ISSM parameters for BWSN Network 1 in Table 5.6 do 

not apply is in the maximization of detection likelihood in the default attack case with 20 

sensors employed.  As noted previously, 15 nodes represent the endpoints of all 

contaminant pathways in BWSN Network 1; sensors at these nodes allow for the 

maximum possible detection likelihood to be achieved.  These 15 nodes are the 13 end-

of-line and 2 slow-outflow nodes constituting the top 15 ranked nodes in Figure 5.4.  

Thus, an initial subset size of 20 (with 15 ranked nodes and 5 unranked nodes under the 

ISSM parameters in Table 5.6) when 20 sensors are employed allows for the maximum 

detection likelihood possible to be found.  ISSM as programmed would record the 20 

nodes in the subset as the best solution and would conduct iteration until all of the 

unranked nodes in that solution are ranked, which may require a relatively large subset.  

Therefore, for this case, all ISSM subset nodes are ranked so that it is demonstrated that 

the optimal solution can be found with a subset of the minimum size possible.   

 

The effectiveness of the nodal importance function and the sorting procedure is clear 

upon considering Tables 5.7 and 5.8.  The tables indicate the rank of the solution sensor 

node ranked lowest in terms of importance for each case listed and thereby allow for the 

proportion of WDS nodes containing the optimal solution to be computed.  For instance, 

it can be seen in Figure 5.4 that the 5 sensor nodes selected for the default attack case 
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with 5 sensors employed are ranked 1, 2, 3, 4, and 6, so lowest rank of 6 is reported in 

Table 5.7.  Subsequently, the proportion of WDS nodes containing the solution is 6/129, 

or 4.7%.  In some cases, the solution is isolated to smallest number of nodes possible – 

the number of sensors employed.  Given the data in Tables 5.7 and 5.8, it is reasonable to 

claim that the nodal importance concepts developed for maximizing detection likelihood 

make it possible for the optimal sensor node solution for all cases to be isolated to 

relatively very small proportions of WDS nodes.   

 

The benefit of including slow-outflow nodes in the sorting procedure when maximizing 

detection likelihood for small systems is demonstrated by the data in Tables 5.7 and 5.8.  

The solutions for employing 5 sensors include 4 end-of-line nodes and 1 slow-outflow 

node (JUNCTION-10).  JUNCTION-10 has the rank of either 5 or 6 for all attack cases 

where the underlying assumption regarding a sensor detection resolution of zero (i.e., all 

cases but the one with a 0.3 mg/L detection resolution).  If slow-outflow nodes were not 

included in the sorting procedure, then JUNCTION-10 would have been ranked much 

lower in these cases and would require a longer running of ISSM in order to determine 

the optimal sensor node solution.  

 

Even without implementing the sorting procedure, ranking according to nodal importance 

value only should still result in the isolating of solution sensor nodes to small proportions 

of WDS nodes, as demonstrated by sensor placement carried out for the case of a 0.3 

mg/L detection resolution.  With a non-zero detection resolution, the end-of-line and 

slow-outflow conditions as defined in Section 4.5.2.1 do not apply, so nodes can only be 
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ranked according to nodal importance value.  As indicated in Table 5.8, the lowest ranked 

sensor node in this case is ranked 11, which still makes for a reasonably small proportion 

of nodes containing the optimal solution.   

 

 

Table 5.7  Nodal importance ranks for the lowest-ranked BWSN Network 1 nodes of 

optimal solutions for maximizing detection likelihood in the default attack case and the 

proportions of ranked BWSN Network 1 nodes containing the optimal solutions.   

M 

Lowest �odal 

Importance 

Rank 

Proportion of 

Ranked WDS �odes 

Containing Optimal 

Solution 

5 6 4.7% 

20 20 15.5% 

 

 

 

Table 5.8  Nodal importance ranks for the lowest-ranked BWSN Network 1 nodes of 

optimal solutions for maximizing detection likelihood with M = 5 in the variant attack 

cases and the proportions of ranked BWSN Network 1 nodes containing the optimal 

solutions.   

Attack Case 

Lowest �odal 

Importance 

Rank 

Proportion of 

Ranked WDS �odes 

Containing Optimal 

Solution 

default 6 4.7% 

sensor detection resolution  

= 0.3 mg/L 
11 8.5% 

contaminant injection duration = 10 h 5 3.9% 

2 injection nodes at 1 time 6 4.7% 

2 injection nodes at 2 times 5 3.9% 

 

 

 

In addition to noting the lowest ranked optimal sensor node, the effectiveness of nodal 

importance is further assessed in this study by analyzing solution convergence as ISSM is 

carried out for a particular protection goal, attack case, number of sensors employed, and 

study system.  For this solution convergence examination, the ISSM stopping criteria of 
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the three consecutive ISSM iterations without solution improvement and all sensor nodes 

being “ranked” nodes is relaxed in order to test the validity of the stopping criteria.  For 

maximizing detection likelihood in BWSN Network 1, the solution convergence plots in 

Figures 5.5 and 5.6 reinforce the effectiveness of nodal importance as the plots show 

rapid convergence to the optimal solution Zlik value in each case.  The optimal solution 

Zlik value is found using the initial ISSM subset in all attack cases except in the case of a 

detection resolution of 0.3 mg/L.  Even in that case, the optimal solution Zlik value is 

found relatively quickly (i.e., after the first increase in subset size), and the Zlik value 

found in the initial subset is very close to that of the optimal solution.  Thus, solution 

convergence behavior confirms the extreme effectiveness of nodal importance in 

narrowing the search for the optimal sensor nodes to maximize detection likelihood in 

BWSN Network 1.  Obviously, ISSM with parameters and stopping criteria chosen are 

adequate for carrying out optimization properly.  

 



 

 
120 

 

  

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Subset Size

0

20

40

60

80

100

Z
li
k
 (

%
)

M = 5

M = 20

 
Figure 5.5  Solution convergence as ISSM is carried out for maximizing detection 

likelihood in the default attack case for BWSN Network 1. 
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Figure 5.6  Solution convergence as ISSM is carried out for maximizing detection 

likelihood with M = 5 in the default and variant attack cases for BWSN Network 1.     
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5.3 SI�GLE-OBJECTIVE PROBLEM: MI�IMIZI�G Ztime 

 

Sensor placement optimization results with respect to minimizing expected detection time 

are presented and discussed here. 

 

5.3.1 SENSOR NODE SOLUTIONS 

 

Table 5.9 provides the sensor placement optimization results for minimizing expected 

detection time in the default attack case, and Figures 5.7 and 5.8 illustrate optimal sensor 

node locations for employing 5 and 20 sensors, respectively.  As stated previously, 

expected detection time is strongly correlated with detection likelihood; hence, it is not 

surprising that many of the sensor nodes in Table 5.9 are nodes close to those that are 

optimal for maximizing detection likelihood or are actually nodes selected for 

maximizing detection likelihood.  For instance, in the case of 5 sensors employed, 

JUNCTION-11 is just upstream from JUNCTION-10, and JUNCTION-118 is just 

upstream from JUNCTION-126; JUNCTION-45, JUNCTION-83, and JUNCTION-100 

are nodes optimal for both protection goals.  It makes sense that JUNCTION-11 and 

JUNCTION-118 represent a shift upstream from the nodes selected for maximizing 

detection likelihood so that contamination can be detected sooner while mostly 

preserving a high detection likelihood.  In other words, the results of optimization are 

sensor nodes that provide almost as much if not as much protection in terms of 

maximizing detection likelihood as nodes listed in Table 5.1 while significantly reducing 

Ztime values relative to those in Table 5.1.   
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Table 5.10 compares sensor nodes found in this work for minimizing expected detection 

time in the default attack case with those submitted by other works.  The nodes selected 

in this work match those selected by Krause et al. (2006) in performance and are 

significantly better in performance than those selected by Eliades and Polycarpou (2006). 

 

 

Table 5.9  Optimal sensor locations and performance measures for minimizing expected 

detection time in the default attack case for BWSN Network 1.  

M Sensor �odes
*
 

Zlik 

 (%) 

Ztime
**
 

(min) 

Zvol 

 (gal) 

5 11, 45, 83, 100, 118 88.3 1,436.8 16,145 

20 10, 11, 14, 19, 21, 34, 35, 45, 68, 72, 75, 83, 90, 

100, 101, 114, 118, 123, 124, 126 
94.7 617.4 2,620 

*
 All sensor node numbers preceded by “JUNCTION-”. 

**
 Performance measure for protection goal of interest.  

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7  Optimal sensor locations with M = 5 for minimizing expected detection time 

in the default attack case for BWSN Network 1. 
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Figure 5.8  Optimal sensor locations with M = 20 for minimizing expected detection time 

in the default attack case for BWSN Network 1. 

 

  

 

Table 5.10  Comparison of optimal sensor locations for minimizing expected detection 

time in the default attack case for BWSN Network 1 determined in this study with 

locations found in other works.  

M Work Sensor �odes
*
 

Ztime
**
 

(min) 

This Study 11, 45, 83, 100, 118 1,436.8 

Eliades and Polycarpou 

(2006) 
17, 83, 101, 123, 126 1,581.3 5 

Krause et al. (2006) 11, 45, 83, 100, 118 1,436.8 

This Study 

10, 11, 14, 19, 21, 34, 35, 45, 68, 72, 

75, 83, 90, 100, 101, 114, 118, 123, 

124, 126 

617.4 

Eliades and Polycarpou 

(2006) 

10, 11, 14, 17, 19, 21, 31, 35, 45, 68, 

74, 76, 83, 90, 100, 101, 114, 123, 124, 

126 

641.0 20 

Krause et al. (2006) 

10, 11, 14, 19, 21, 34, 35, 45, 68, 72, 

75, 83, 90, 100, 101, 114, 118, 123, 

124, 126 

617.4 

*
 All sensor node numbers preceded by “JUNCTION-”. 

**
 Values computed using the software developed in this work. 
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Table 5.11 gives sensor node solutions for minimizing expected detection time with 5 

sensors employed for the variant attack cases.  As with maximizing detection likelihood, 

the attack cases of a hazard threshold of 0.0 mg/L and a response delay of 3 hours do not 

affect sensor placement for minimizing expected detection time, so sensor nodes in these 

cases would be the same as those for the default attack case with Zvol values being greater 

than or equal to those associated with the default case.   

 

Sensor nodes sets for all one injection node cases are the same with expected differences 

in Ztime values.  Expected detection time is greater for an increased sensor detection 

resolution since less instances of detection leads to more scenarios associated with an 

“infinite” detection time.  The opposite is true for the case of an increased injection 

duration; more instances of detection leads to less scenarios associated with an “infinite” 

detection time.  The sensor node sets for the two injection node cases are interestingly 

different from those for the one injection node case.   As shown in Figures 5.9 and 5.10, 

sensor nodes are more congregated toward the center of the system in these cases.  With 

two injection nodes, sensors do not need to provide as much coverage by being located 

on the periphery of the system in order to reduce instances of “infinite” detection time, so 

sensors can afford to move farther upstream to detect contamination sooner.  Though 

there is not a substantial difference in sensor node locations between the two different 

two injection node cases, there is a substantial difference in Ztime value between the two 

cases.  This sensitivity to time differences between injections occurring at two nodes  is 

due to hydraulic behavior in the system that does not allow a “first” injection to be 

detectible, though the time-after-injection value for a given scenario is increasing and 
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will contribute to the increasing of Ztime value even before a detectible “second” injection 

occurs.   

 

As indicated in Table 5.12, the optimal sensor nodes found in this work for the case of a 

10-hour injection duration are the same as those found by Krause et al. (2006) and are 

very similar to those of Krause et al. for the case of 2 nodes injected at 1 time.  The only 

difference in the two injection nodes case is the selection of JUNCTION-46 in this work, 

which is upstream of JUNCTION-45 (selected by Krause et al.), allowing for slightly 

quicker contaminant detection on average and in turn a better  Ztime value for this work.   

 

 

Table 5.11  Optimal sensor locations and performance measures for minimizing expected 

detection time with M = 5 in the variant attack cases for BWSN Network 1.  

Attack Case Sensor �odes
*
 

Zlik 

(%) 

Ztime
**

 

(min) 

Zvol 

 (gal) 

default 11, 45, 83, 100, 118 88.3 1,436.8 16,145 

sensor detection resolution  

= 0.3 mg/L 
11, 45, 83, 100, 118 87.2 1,485.8 16,623 

contaminant injection duration 

= 10 h 
11, 45, 83, 100, 118 88.4 1,408.9 22,848 

2 injection nodes at 1 time 46, 68, 83, 101, 118 96.6 576.3 10,091 

2 injection nodes at 2 times 46, 70, 83, 101, 118 95.7 831.7 12,497 
*
 All sensor node numbers preceded by “JUNCTION-”. 

**
 Performance measure for protection goal of interest. 
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Figure 5.9  Optimal sensor locations with M = 5 for minimizing expected detection time 

in the case of 2 nodes injected at 1 time for BWSN Network 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10  Optimal sensor locations with M = 5 for minimizing expected detection time 

in the case of 2 nodes injected at 2 times for BWSN Network 1. 

sensor 
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Table 5.12  Comparison of optimal sensor locations for minimizing expected detection 

time with M = 5 in the variant attack cases for BWSN Network 1 determined in this study 

with locations found in other works. 

Attack Case Work Sensor �odes
*
 

Ztime 
**

 

(min) 

This Study 11, 45, 83, 100, 118 1,408.9 contaminant injection duration 

= 10 h Krause et al. (2006) 11, 45, 83, 100, 118 1,408.9 

This Study 46, 68, 83, 101, 118 576.3 
2 injection nodes at 1 time 

Krause et al. (2006) 45, 68, 83, 101, 118 592.2 
*
 All sensor node numbers preceded by “JUNCTION-”. 

**
  Values computed using the software developed in this work. 

 

 

 

5.3.2 EVALUATION OF NODAL IMPORTANCE 

 

 

ISSM was carried out using the nodal importance function in (4.23) to find the optimal 

sensor nodes with respect to minimizing expected detection time presented above.  An  

examination of the lowest-ranked sensor nodes of optimal solutions in Tables 5.13 and 

5.14 and the solution convergence plots in Figures 5.11 and 5.12 reveals interesting 

relationships of the ability of nodal importance to narrow the search for the optimal 

solution with both the number of sensors employed and the particular attack case.  In 

Table 5.13, it is reported that to find the optimal sensor node solution with 5 sensors 

employed, the solution can be isolated to the top 14% of the WDS nodes when ranked 

according to values calculated with (4.23).  However, with 20 sensors employed, the 

ranking does not isolate the entire set of optimal sensor nodes to a small proportion of 

WDS nodes.  This instance brings to light one drawback of nodal importance as 

formulated in this study: cases of a high number of sensors employed to number of WDS 

nodes ratio (M/5 ratio).  When the number of sensors is few (e.g., 5) and subsequently 

M/5 ratio is small, nodal importance is very effective in identifying the nodes that would 
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provide the “major” protection with regard to a particular protection goal as sensor 

locations.  In some cases when the number of sensors becomes relatively high (e.g., 20), 

the nodes providing the major protection as sensor locations are accounted for, and 

increased monitoring performance for the remaining sensor locations is much more a 

function of increasing detection likelihood.  For minimizing expected detection time, 

increasing detection likelihood leads to a reduction of instances of “infinite” detection 

time.  Unfortunately, the nodal importance concepts in this study are not designed to 

adjust to the “changed” priority of increasing detection likelihood after the major 

protection is accounted for.  Despite the lack of complete narrowing of the search domain 

when 20 sensors are employed, Figure 5.11 shows that nodal importance provides for 

near-optimal solutions when ISSM subset size is relatively small. 

When 5 sensors are employed, nodal importance provides for a very large degree of 

narrowing of the search domain for all attack cases studied with one injection node.  

However, for two injection node cases, achieving convergence to the optimal solution 

requires a larger subset, as implied by data in Table 5.14.  As mentioned above, having 

two injection nodes allows for sensor nodes to shift upstream, but consequently the 

optimal sensor nodes are not necessarily important in terms of maximizing detection 

likelihood which would make the nodes in question not as important in terms of 

minimizing expected detection time.  Thus, the ranks of the lowest ranked nodes for the 

two injection node cases are relatively low.  As in the case of 20 sensors employed in the 

default attack case, nodal importance does provide ISSM the means for finding near-

optimal solutions with smaller subsets, evidenced by the solution convergence plot in 

Figure 5.12.  
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Table 5.13  Nodal importance ranks for the lowest-ranked BWSN Network 1 nodes of 

optimal solutions for minimizing expected detection time for the default attack case and 

the proportions of ranked BWSN Network 1 nodes containing the optimal solutions. 

M 

Lowest �odal 

Importance 

Rank 

Proportion of  

Ranked WDS �odes 

Containing Optimal 

Solution 

5 18 14.0% 

20 117 90.7% 

 

 

 

Table 5.14  Nodal importance ranks for the lowest-ranked BWSN Network 1 nodes of 

optimal solutions for minimizing expected detection time with M = 5 in the variant attack 

cases and the proportions of ranked BWSN Network 1 nodes containing the optimal 

solutions. 

Attack Case 

Lowest �odal 

Importance 

Rank 

Proportion of 

Ranked WDS �odes 

Containing Optimal 

Solution 

default 18 14.0% 

sensor detection resolution  

= 0.3 mg/L 
18 14.0% 

contaminant injection duration = 10 h 18 14.0% 

2 injection nodes at 1 time 45 34.9% 

2 injection nodes at 2 times 42 32.6% 
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Figure 5.11  Solution convergence as ISSM is carried out for minimizing expected 

detection time in the default attack case for BWSN Network 1. 
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Figure 5.12  Solution convergence as ISSM is carried out for minimizing expected 

detection time with M = 5 in the default and variant attack cases for BWSN Network 1.   
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5.4 SI�GLE-OBJECTIVE PROBLEM: MI�IMIZI�G Zvol  

 

The optimization findings regarding the minimizing of expected contaminated demand 

volume are presented and discussed in this section. 

 

5.4.1 SENSOR NODE SOLUTIONS 

 

Table 5.15 and Figures 5.13 and 5.14 indicate the sensor nodes selected in this work to 

minimize expected contaminated demand volume in the default attack case for BWSN 

Network 1.  Based on the data given in the table and how they relate to data given in 

Tables 5.1 and 5.9, it is obvious that sensors at the nodes listed would provide a 

significant reduction of volume contaminated on average at the cost of some performance 

in terms of Zlik and Ztime.  In Figure 5.13, sensor nodes are more upstream relative to those 

for maximizing detection likelihood and minimizing expected detection time in Figures 

5.1 and 5.7, respectively.  This overall shift in sensor node location is reasonable as it is 

most important to detect contaminant in a timely manner in order to minimize the volume 

that could potentially be contaminated farther downstream.  The sensor nodes selected for 

the default attack case are at least as good as or better than those submitted by other 

works in minimizing expected contaminated demand volume, as indicated in Table 5.16.   
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Table 5.15  Optimal sensor locations and performance measures for minimizing expected 

contaminated demand volume in the default attack case for BWSN Network 1.  

M Sensor �odes
*
 

Zlik 

(%) 

Ztime 

(min) 

Zvol 
**

 

(gal) 

5 17, 22, 68, 79, 102 66.9 2,256.9 3,864 

20 
4, 17, 21, 28, 30, 31, 34, 37, 46, 49, 68, 74, 79, 

83, 90, 98, 102, 118, 122, 126 
84.2 1,115.2 486 

*
 All sensor node numbers preceded by “JUNCTION-”. 

**
 Performance measure for protection goal of interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13  Optimal sensor locations with M = 5 for minimizing expected contaminated 

demand volume in the default attack case for BWSN Network 1. 
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Figure 5.14  Optimal sensor locations with M = 20 for minimizing expected 

contaminated demand volume in the default attack case for BWSN Network 1. 

 

 

 

Table 5.16  Comparison of optimal sensor locations for minimizing expected 

contaminated demand volume in the default attack case for BWSN Network 1 determined 

in this study with locations found in other works. 

M Work Sensor �odes
*
 Zvol

**
 

(gal) 

This Study 17, 22, 68, 79, 102 3,864 

Berry et al. (2006c) 17, 21, 68, 79, 122 4,670 

Eliades and Polycarpou 

(2006) 
17, 83, 101, 123, 126 11,415 

5 

Krause et al. (2006) 17, 49, 68, 79, 102 3,887 

This Study 
4, 17, 21, 28, 30, 31, 34, 37, 46, 49, 68, 

74, 79, 83, 90, 98, 102, 118, 122, 126 
486 

Berry et al. (2006c) 
3, 4, 17, 21, 25, 31, 34, 37, 46, 64, 68, 81, 

82, 90, 98, 102, 116, 118, 122, 126 
522 

Eliades and Polycarpou 

(2006) 

10, 11, 14, 17, 19, 21, 30, 37, 45, 68, 74, 

83, 90, 100, 102, 114, 118, 123, 124, 126 
1,930 

20 

Krause et al. (2006) 
5, 17, 21, 29, 30, 31, 34, 37, 46, 49, 68, 

74, 79, 83, 94, 97, 102, 118, 122, 126 
518 

*
 All sensor node numbers preceded by “JUNCTION-”. 

**
  Values computed using the software developed in this work. 
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Table 5.17 gives the sensor placement results for minimizing expected contaminant 

demand volume in the variant attack cases.  As seen in comparing Figure 5.13 with 

Figures 5.15 and 5.16, the locations of sensor nodes do not deviate in location greatly 

from attack case to attack case, which is not unexpected given results presented 

previously for the other protection goals.  Zvol values of different attack cases differ from 

each other in expected manners.  The higher Zvol value for the case of a non-zero 

detection resolution is a consequence of the detection of contamination for fewer 

scenarios; in these additional scenarios of non-detection, large amounts of volume are 

contaminated and hence Zvol increases.  The substantially higher Zvol value for the case of 

an increased injection duration is primarily due to the longer period of time allowed for 

water in the system to become contaminated under various hydraulic conditions such that 

contaminated water travels to more locations.  The increase in Zvol value when the 

contaminant hazard threshold is reduced to zero is the result of more demand volume 

being considered contaminated, but this increase is small for the sensors are placed 

upstream enough to detect contamination before contaminant concentration at locations 

throughout the system falls to within the range 0.0 to 0.3 mg/L.  With an extra 3 hours of 

contaminant propagation after detection, it is not surprising that Zvol for the response 

delay case is much higher than it is for default attack case.  Greater Zvol values for the two 

injection node cases are due to the increased opportunity for contaminated water to reach 

more places in system with an additional injection site.  Table 5.18 indicates that the 

results found in this work for the variant attack cases also studied in BWSN are at least 

equal if not better than those of other works.   
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Table 5.17  Optimal sensor locations and performance measures for minimizing expected 

contaminated demand volume with M  = 5 in the variant attack cases for BWSN Network 

1. 

Attack Case Sensor �odes
*
 

Zlik 

 (%) 

Ztime 

(min) 

Zvol 
**

 

(gal) 

default 17, 22, 68, 79, 102 66.9 2,256.9 3,864 

sensor detection resolution  

= 0.3 mg/L 
17, 22, 68, 79, 102 63.9 2,405.9 3,938 

contaminant injection duration 

= 10 h 
22, 68, 79, 102, 118 68.2 2,205.5 8,358 

contaminant hazard threshold 

= 0.0 mg/L 
17, 22, 68, 79, 102 66.9 2,256.9 3,887 

response delay = 3 h 17, 26, 68, 79, 102 66.9 2,252.3 13,111 

2 injection nodes at 1 time 17, 22, 68, 79, 102 88.5 976.9 4,742 

2 injection nodes at 2 times 17, 22, 68, 79, 102 87.3 1,244.1 4,262 
*
 All sensor node numbers preceded by “JUNCTION-”. 

**
 Performance measure for protection goal of interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.15  Optimal sensor locations with M = 5 for minimizing expected contaminated 

demand volume in the case of a 10-hour injection duration for BWSN Network 1. 
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Figure 5.16  Optimal sensor locations with M = 5 for minimizing expected contaminated 

demand volume in the case of a 3-hour response delay for BWSN Network 1. 

 

 

 

Table 5.18  Comparison of optimal sensor locations for minimizing expected 

contaminated demand volume with M = 5 in the variant attack cases for BWSN Network 

1 determined in this study with locations found in other works. 

Attack Case Work Sensor �odes
*
 

Zvol
**
  

(gal) 

This Study 22, 68, 79, 102, 118 8,358 

Berry et al. (2006c) 20, 68, 79, 118, 122 9,423 
contaminant injection 

duration = 10 h 
Krause et al. (2006) 17, 31, 81, 103, 118 10,535 

This Study 17, 26, 68, 79, 102 13,111 

Berry et al. (2006c) 17, 49, 68, 79, 103 13,127 response delay = 3 h 

Krause et al. (2006) 17, 49, 68, 79, 103 13,127 

This Study 17, 22, 68, 79, 102 4,742 
2 injection nodes at 1 time 

Krause et al. (2006) 17, 49, 68, 97, 122 5,621 
*
 All sensor node numbers preceded by “JUNCTION-”. 

**
  Values computed using the software developed in this work. 
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5.4.2 EVALUATION OF NODAL IMPORTANCE 

 

To find the results presented above, ISSM was carried out with the aid of nodes ranked 

according to the small-system nodal importance function for minimizing expected 

contaminated demand volume in (4.28).  Tables 5.19 and 5.20 imply that the nodal 

importance function is not as effective on average in narrowing the search for the optimal 

solution with respect to minimizing expected contaminated demand volume as the 

functions for maximizing Zlik and minimizing Ztime were for finding the respective optimal 

solutions.  However, the nodal importance function does allow the search domain to be 

narrowed significantly to approximately 30 to 35% of WDS nodes when 5 sensors are 

employed.  The solution convergence plots in Figures 5.17 and 5.18 reinforce the need 

for a broader search domain for this single-objective problem versus those for the other 

two single-objective problems.  It appears that a subset size of at least 30 is needed to 

find a solution with a Zvol value reasonably close to that of the optimal solution for all 

attack cases.  This decrease in narrowing ability highlights the drawback of multiple 

factors contributing to nodal importance for minimizing expected contaminated demand 

volume for small systems (i.e., nodal contaminated outflow, detection time, and 

importance with respect to maximizing detection likelihood), which can make some 

nodes somewhat less distinguishable from each other.   

 

In the default attack case with 20 sensors employed, the drawback of high M/5 ratio 

surfaces as it did in the problem of minimizing expected detection time with 20 sensors.   

Similar to that case, optimal sensor placement becomes more a function of detecting 
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contamination for more scenarios once the major protection is addressed in sensor 

placement.   

 

A clear advantage of including the random unranked nodes in ISSM subsets is seen in the 

solution convergence plot in Figure 5.17.  To elaborate, the solution plotted in that figure 

for M = 5 and subset size 16 contains 2 ranked nodes and 3 unranked nodes, which allows 

the solution to be superior to the one found for M = 20 and subset size 20.  Thus, even 

though a subset size of 30 or more is needed to find a reliably close-to-optimal Zvol value, 

the randomly included nodes in ISSM subsets provide a better chance for better solutions 

to be found when the ranked nodes in a subset do not include very good sensor node 

candidates.   

 

 

Table 5.19  Nodal importance ranks for the lowest-ranked BWSN Network 1 nodes of 

optimal solutions for minimizing expected contaminated demand volume for the default 

attack case and the proportions of ranked BWSN Network 1 nodes containing the optimal 

solutions. 

M 

Lowest �odal 

Importance 

Rank 

Proportion of  

Ranked WDS �odes 

Containing Optimal 

Solution 

5 42 32.6% 

20 113 87.6% 

 

 



 

 
139 

 

  

Table 5.20  Nodal importance ranks for the lowest-ranked BWSN Network 1 nodes of 

optimal solutions for minimizing expected contaminated demand volume with M = 5 for 

the variant attack cases and the proportions of ranked BWSN Network 1 nodes 

containing the optimal solutions. 

Attack Case 

Lowest �odal 

Importance 

Rank 

Proportion of  

Ranked WDS �odes 

Containing Optimal 

Solution 

default 42 32.6% 

sensor detection resolution  

= 0.3 mg/L 
40 31.0% 

contaminant injection 

duration = 10 h 
42 32.6% 

contaminant hazard threshold 

= 0.0 mg/L 
46 35.7% 

response delay = 3 h 42 32.6% 

2 injection nodes at 1 time 45 34.9% 

2 injection nodes at 2 times 37 28.7% 

 

 

 

 

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Subset Size

0

10000

20000

30000

40000

50000

Z
vo
l 

(g
a

l)

M = 5

M = 20

 
 

Figure 5.17  Solution convergence as ISSM is carried out for minimizing expected 

contaminated demand volume in the default attack case for BWSN Network 1. 
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Figure 5.18  Solution convergence as ISSM is carried out for minimizing expected 

contaminated demand volume with M = 5 in the default and variant attack cases for 

BWSN Network 1.   

 

 

5.5 MULTIOBJECTIVE PROBLEM: MAXIMIZI�G Zall 

 

The sensor placement findings for the three-prong multiobjective problem of this work 

are given and discussed here. 

 

5.5.1 SENSOR NODE SOLUTIONS 

 

Table 5.21 provides the optimal sensor node solutions for the three-prong multiobjective 

solution for the default attack case found in this work, and the locations of the sensor 
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nodes selected are depicted in Figures 5.19 and 5.20.  The most apparent quality seen in 

these solutions is that they exactly match or nearly match those for minimizing Ztime 

presented above.  The sensor nodes for M = 5 are exactly the same as those used to 

minimize Ztime, while the sensor nodes for M = 20 are only slightly rearranged relative to 

those used to minimize Ztime.  These results are very reasonable, though, given the way 

the multiobjective optimization problem is formulated in this study with regard to 

minimizing protection tradeoffs between individual protection goals.  For instance, the 

multiobjective solution sensor nodes with 5 sensors employed matching the sensor nodes 

for minimizing Ztime provide for full protection according to the minimizing Ztime 

protection goal.  Since Ztime and Zlik are strongly correlated with each other, these nodes 

also satisfy to a large degree the maximizing Zlik goal.  As detecting contamination sooner 

also benefits in the reducing of contaminated volume, there is not a great deal of sacrifice 

with regard to the minimizing Zvol goal in selecting these sensor nodes.  This 

minimization of tradeoff is represented with the high value for Zall in the table for both M 

= 5 and M = 20 (i.e, Zall > 2.7 out of 3). 

 

Given the multiobjective problem formulation in this study, Pareto front space boundary 

values are needed to evaluate how well a particular multiobjective solution minimizes the 

protection sacrifices according to the three single-objective protection goals.  To provide 

an indication of how these boundary values are determined, Table 5.22 gives the 

boundary values for BWSN Network 1 in the default attack case.  Since these values are 

obtained from solving the three single-objective problems, the tables above where those 

values can be found are also given in Table 5.22 in order to illustrate the connection of 

the single-objective and multiobjective problems. 
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Table 5.21  Optimal sensor locations and performance measures for the three-prong 

multiobjective problem in the default attack case for BWSN Network 1.  

M Sensor �odes
*
 Zall 

Zlik 

(%) 

Ztime 

 (min) 

Zvol 

(gal) 

5 11, 45, 83, 100, 118 2.72 88.3 1,436.8 16,145 

20 

10, 12, 19, 22, 34, 35, 39, 45, 68, 

75, 79, 83, 97, 100, 102, 114, 117, 

123, 124, 126 

2.79 94.7 645.9 1,122 

*
 All sensor node numbers preceded by “JUNCTION-”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19  Optimal sensor locations with M = 5 for the three-prong multiobjective 

problem in the default attack case for BWSN Network 1. 
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Figure 5.20  Optimal sensor locations with M = 20 for the three-prong multiobjective 

problem in the default attack case for BWSN Network 1. 

 

 

 

Table 5.22  Pareto front space boundary values for the three-prong multiobjective 

program with M = 5 in the default attack case for BWSN Network 1.  Accompanying 

each value is the number of the table above in which the value can be found.   

Protection Goal 

Performance 

Measure 

Pareto Front Space 

Minimum Value 

(Table Found) 

Pareto Front Space 

Maximum Value 

(Table Found) 

Zlik (%) 
66.9 

(5.15) 

89.7 

(5.1) 

Ztime (min) 
1,436.8 

(5.9) 

2,256.9 

(5.15) 

Zvol (gal) 
3,864 

(5.15) 

59,701 

(5.1) 

 

 

 

Table 5.23 compares the multiobjective sensor nodes of this work with those of other 

works.  However, these are not straightforward comparisons like those for the single-

objective problems; the other works listed in the table included other performance 

sensor 
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measures, defined the three protection goal performance measures differently, and/or 

weighted the protection goals in terms of priority in different manners.  The solutions of 

other works are used in comparison only to ensure that other works have not provided 

superior results in terms of the multiobjective problem as defined in this work.  Indeed, 

under this problem definition, the Zall values for solutions of this work in the default 

attack case are equal or higher than those found with solutions from other works, as 

shown in Table 5.23.   
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Table 5.23  Comparison of optimal sensor locations for the three-prong multiobjective 

problem in the default attack case for BWSN Network 1 determined in this study with 

locations found in other works. 

M Work Sensor �odes
*
 Zall 

**
 

Zlik
**

 

(%) 

Ztime
**

 

(min) 

Zvol
**
 

(gal) 
This Study 11, 45, 83, 100, 118 2.72 88.3 1,436.8 16,145 

10, 45, 83, 100, 118 2.66 88.9 1,507.5 16,150 
Aral et al. (2008) 

10, 68, 83, 118, 122 2.53 85.0 1,596.7 7,802 

Dorini et al. (2006) 10, 31, 45, 83, 118 2.51 86.4 1,642.5 8,873 

Eliades and 

Polycarpou (2006) 
17, 31, 45, 83, 126 2.29 82.6 1,695.7 8,244 

Guan et al. (2006) 17, 31, 81, 98, 102 1.62 73.5 1,973.1 4,657 

Huang et al. (2006) 68, 81, 82, 97, 118 1.19 72.5 1,983.3 25,874 

Krause et al. 

(2006) 
17, 31, 45, 83, 122 2.33 82.1 1,688.7 5,766 

Propato and Piller 

(2006) 
17, 22, 68, 83, 123 2.23 79.9 1,691.5 5,561 

5 

Wu and Walski 

(2006) 
45, 68, 83, 100, 118 2.62 84.4 1,462.0 10,177 

This Study 

10, 12, 19, 22, 34, 35, 39, 

45, 68, 75, 79, 83, 97, 100, 

102, 114, 117, 123, 124, 126 

2.79 94.7 645.9 1,122 

Dorini et al. (2006) 

0, 10, 14, 17, 31, 34, 39, 45, 

49, 68, 74, 82, 83, 90, 100, 

102, 114, 122, 124, 128 

2.28 92.3 803.3 979 

Eliades and 

Polycarpou (2006) 

10, 11, 14, 17, 19, 21, 31, 

35, 45, 68, 74, 83, 90, 100, 

102, 114, 118, 123, 124, 126 

2.53 94.7 659.5 2,131 

Guan et al. (2006) 

4, 11, 17, 21, 27, 31, 34, 35, 

46, 68, 75, 79, 82, 83, 98, 

100, 102, 118, 122, 126 

2.04 90.0 862.7 577 

Huang et al. (2006) 

8, 11, 42, 46, 52, 68, 70, 75, 

76, 82, 83, 95, 97, 99, 100, 

109, 111, 117, 123, 126 

1.51 90.8 861.5 3,149 

Krause et al. 

(2006) 

10, 11, 17, 19, 21, 31, 34, 

35, 45, 68, 76, 83, 90, 100, 

114, 118, 122, 123, 124, 126 

2.67 94.7 676.6 1,393 

Propato and Piller 

(2006) 

11, 17, 34, 37, 38, 45, 49, 

68, 76, 83, 90, 100, 102, 

106, 114, 118, 123, 124, 

125, 126 

2.52 93.2 754.1 757 

20 

Wu and Walski 

(2006) 

10, 12, 19, 21, 34, 35, 40, 

45, 68, 75, 80, 83, 98, 100, 

102, 114, 118, 123, 124, 126 

2.77 94.7 640.5 1,269 

*
 All sensor node numbers preceded by “JUNCTION-”. 

**
  Values computed using the software developed in this work. 

 



 

 
146 

 

  

As indicated in Table 5.24, the preference for sensor nodes that provide for nearly or 

fully minimizing Ztime being selected for the three-prong multiobjective problem is also 

seen in studying the variant attack cases with 5 sensors employed.  Figures 5.21 and 5.22 

depict the locations of the sensor nodes for the two injection node cases—the cases for 

which the solution node set deviates somewhat from that found in the default attack case.  

The solutions perform as well as or better than those of other works under the 

multiobjective problem definition of this work, as implied data presented in Table 5.25. 

 

Table 5.24  Optimal sensor locations and performance measures for the three-prong 

multiobjective problem with M = 5 in the variant attack cases for BWSN Network 1. 

Attack Case Sensor �odes
*
 Zall 

Zlik 

(%) 

Ztime 

(min) 

Zvol 

(gal) 

default 11, 45, 83, 100, 118 2.72 88.3 1,436.8 16,145 

sensor detection resolution  

= 0.3 mg/L 
11, 45, 83, 100, 118 2.72 87.2 1,485.8 16,623 

contaminant injection 

duration = 10 h 
11, 45, 83, 100, 118 2.72 88.4 1,408.9 22,848 

contaminant hazard 

threshold = 0.0 mg/L 
11, 45, 83, 100, 118 2.71 88.3 1,436.8 18,837 

response delay = 3 h 11, 45, 83, 100, 118 2.61 88.3 1,436.8 37,833 

2 injection nodes at 1 time 45, 68, 83, 118, 122 2.75 97.2 589.8 9,288 

2 injection nodes at 2 times 46, 70, 83, 101, 118 2.63 95.7 831.7 12,497 
*
 All sensor node numbers preceded by “JUNCTION-”. 
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Figure 5.21  Optimal sensor locations with M = 5 for the three-prong multiobjective 

problem in the case of 2 nodes injected at 1 time for BWSN Network 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22  Optimal sensor locations with M = 5 for the three-prong multiobjective 

problem in the case of 2 nodes injected at 2 times for BWSN Network 1.
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Table 5.25  Comparison of optimal sensor locations for the three-prong multiobjective 

problem with M = 5 in the variant attack cases for BWSN Network 1 determined in this 

study with locations found in other works. 

Attack 

Case 
Work Sensor �odes

*
 Zall

**
 
Zlik

**
 

(%) 

Ztime
**

 

(min) 

Zvol
**
  

(gal) 
This Study 11, 45, 83, 100, 118 2.72 88.4 1408.9 22,848 

Dorini et al. (2006) 10, 45, 49, 83, 118 2.40 86.0 1647.1 16,580 

Eliades and 

Polycarpou (2006) 
17, 31, 45, 83, 126 2.19 82.7 1704.3 15,541 

Huang et al. (2006) 46, 70, 83, 100, 118 2.55 84.1 1449.7 16,843 

Krause et al. (2006) 17, 46, 83, 101, 126 2.22 83.5 1539.8 16,611 

Propato and Piller 

(2006) 
17, 31, 83, 100, 120 2.46 81.8 1639.5 16,118 

contaminant 

injection 

duration  

= 10 h 

Wu and Walski 

(2006) 
21, 45, 83, 118, 123 2.42 84.4 1582.2 13,038 

This Study 11, 45, 83, 100, 118 2.61 88.3 1436.8 37,833 

Dorini et al. (2006) 11, 45, 49, 83, 118 2.59 85.7 1556.8 19,670 

Eliades and 

Polycarpou (2006) 
17, 45, 68, 83, 126 2.28 82.6 1603.2 28,980 

Huang et al. (2006) 46, 83, 90, 100, 118 2.36 83.5 1558.6 30,178 

Krause et al. (2006) 49, 83, 101, 118, 122 2.44 81.9 1592.3 15,430 

Propato and Piller 

(2006) 
49, 83, 101, 118, 123 2.49 82.7 1562.8 16,914 

response 

delay 

= 3 h 

Wu and Walski 

(2006) 
17, 45, 83, 101, 126 2.33 84.0 1561.9 33,321 

This Study 45, 68, 83, 118, 122 2.75 97.2 589.8 9,288 

Dorini et al. (2006) 21, 68, 83, 117, 122 2.58 96.0 628.0 5,953 

Eliades and 

Polycarpou (2006) 
10, 17, 45, 83, 126 2.37 98.3 729.7 19,013 

Huang et al. (2006) 46, 68, 83, 101, 118 2.71 96.6 576.3 10,091 

Krause et al. (2006) 17, 31, 45, 83, 122  2.45 96.6 694.2 7,323 

Propato and Piller 

(2006) 
17, 21, 68, 83, 122 2.47 95.5 650.8 5,958 

2 injection 

nodes 

at 1 time 

Wu and Walski 

(2006) 
68, 83, 101, 118, 122 2.73 96.8 579.0 8,990 

*
 All sensor node numbers preceded by “JUNCTION-”. 

**
  Values computed using the software developed in this work. 
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5.5.2 ANALYSIS OF PERFORMANCE TRADEOFFS 

 

In this section, the compromises in protection according to single-objective protection 

goals made in selecting certain sensor nodes for the three-prong multiobjective problem 

are quantified and evaluated.  For this analysis, solutions with 5 sensors employed are 

examined as the tradeoffs are more apparent with fewer sensors in this small system.  

Table 5.26 presents the Pareto front space boundary values for each of the three 

performance measures, performance measure values corresponding to the multiobjective 

solution, and the cost of protection relative to each single-objective protection goal 

incurred by employing the optimal multiobjective sensor nodes with 5 sensors employed 

for the default attack case.  Since the multiobjective sensor nodes match those for 

minimizing Ztime, the protection performance cost with respect to Ztime is 0.0% in Table 

5.26.  The protection cost in terms of Zlik is only 6.1% and in terms of Zvol is 22.0%. 

Performance costs for each protection goal performance measure are found in the same 

manner for the variant attack cases; these costs are provided in Table 5.27.  Considering 

that no cost corresponding to any performance measure for any attack case exceeds 25%, 

the multiobjective optimization approach developed in this work appears to work well in 

preserving protection with respect to individual protection goals for BWSN Network 1. 
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Table 5.26  Performance tradeoffs for individual protection goals resulting from 

maximizing Zall with M = 5 in the default attack case for BWSN Network 1.  

Protection 

Goal 

Performance 

Measure 

Pareto Front 

Space 

Minimum 

Value 

Pareto Front 

Space 

Maximum 

Value 

Value for 

Maximizing 

Zall 

Protection 

Performance 

Cost 

Zlik 66.9% 89.7%
*
 88.3% 6.1% 

Ztime  1436.8 min
*
 2256.9 min 1436.8 min 0.0% 

Zvol  3863.7 gal
*
 59,701 gal 16,145 gal 22.0% 

* Value represents maximum protection with respect to the particular single-objective 

protection goal in question.   

 

 

 

Table 5.27  Performance tradeoffs for individual protection goals resulting from 

maximizing Zall with M = 5 in the variant attack cases for BWSN Network 1.  

Attack Case Protection 

Performance 

Cost, 

Max Zlik 

Protection 

Performance 

Cost, 

Min Ztime 

Protection 

Performance 

Cost, 

Min Zvol 

default 6.1% 0.0% 22.0% 

sensor detection resolution  

= 0.3 mg/L 
5.0% 0.0% 23.3% 

contaminant injection duration 

= 10 h 
6.9% 0.0% 21.5% 

contaminant hazard threshold 

= 0.0 mg/L 
6.4% 0.0% 22.6% 

response delay = 3 h 6.4% 0.0% 32.2% 

2 injection nodes at 1 time 16.1% 3.4% 6.0% 

2 injection nodes at 2 times 24.1% 0.0% 12.7% 

   

 

 

5.5.3 EVALUATION OF NODAL IMPORTANCE 

 

To find the best multiobjective tradeoff solution for a given attack case, the nodal 

importance values and rankings for the three single objective problems are used in the 

Pareto dominance-based procedure outlined in Section 4.5.2.5 to determine 

multiobjective nodal importance rankings for a particular attack case.  Figure 5.23 gives 

some indication of how this procedure is carried out for BWSN Network 1 in the default 
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attack case.  Once multiobjective nodal importance rankings were determined, ISSM was 

carried out in the same manner as was done for the single-objective problems. 

 

Tables 5.28 and 5.29 give the ranks of the lowest ranked nodes of optimal solutions for 

the three-prong multiobjective problem for the various attack cases.  Upon first 

inspection of the data reported in the tables, it would seem that the multiobjective nodal 

importance approach is not effective in narrowing the search domain to a significant 

extent, even when 5 sensors are employed.  However, when 5 sensors are employed in 

the one injection node attack cases, four of the five solution nodes are very highly ranked, 

while one solution node is ranked very low.  This low-ranked node in every case is 

JUNCTION-11; it is very important in terms of maximizing Zlik and minimizing Ztime, but 

it is too far downstream on its corresponding contaminant pathway to be important in 

terms of minimizing Zvol.  Therefore, it is lowly ranked for the multiobjective problem as 

defined in this study.  Despite this optimal solution node being so lowly ranked, the 

multiobjective nodal importance approach does rank highly many nodes that are desirable 

for sensor placement even though they make for slightly suboptimal solutions.  The 

solution convergence plots in Figures 5.24 and 5.25 illustrate this effectiveness for the 

cases with 5 sensors employed; the solution converges to good, though not optimal, 

solutions with ISSM when the subset size is in the neighborhood of roughly 30 to 60.   

 

In the two injection node attack cases, the optimal sensor nodes are all relatively 

important in terms of minimizing Zvol along with maximizing Zlik and minimizing Ztime, so 

the lowest ranked nodes for those cases are much more highly ranked relative to the one 
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injection node cases.  The protection costs given for the two injection node cases in Table 

5.27 above support that the solution nodes in these cases are more evenly accommodating 

with respect to all three single-objective protection goals.  As expected, given the more 

centralized nature of the sensor locations, the costs are lower with regard to minimizing 

Zvol and higher with regard to maximizing Zlik. 

 

In the default attack case with 20 sensors employed, the drawback of a high M/5 ratio is 

apparent as very low-ranked nodes are required to make up the entire set of optimal 

sensor nodes.  These low-ranked nodes are important only with respect to maximizing 

detection likelihood, so they naturally would be considered much less desirable by the 

multiobjective nodal importance approach.    

 

The solution convergence plot in Figure 5.24 reveals another benefit of the random 

inclusion by ISSM of unranked nodes in subsets.  Despite the optimal solution containing 

low-ranked nodes for both M = 5 and M = 20, the random inclusion of these nodes in 

subsets allows the optimal solution to be found in these cases with subset sizes of 72 and 

90, respectively.  Thus, as long as the multiobjective nodal importance approach ranks 

highly most of the desirable nodes for the three-prong multiobjective problem, ISSM can 

find the optimal solution or at least a very near-optimal solution with a subset 

significantly smaller than the set of all WDS nodes.  (It is noted that, for the solution 

convergence plots corresponding to the multiobjective problem, the convergence curves 

for particular attack cases and numbers of sensors employed should be evaluated 
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independently of each other since Zall values for the cases are based on separate sets of 

boundary values.  The curves are plotted together for the sake of concise illustration.) 
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Figure 5.23  Determining nodal importance rankings for the three-prong multiobjective 

problem in the default attack case for BWSN Network 1. 
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Table 5.28  Nodal importance ranks for the lowest-ranked BWSN Network 1 nodes of 

optimal solutions for the three-prong multiobjective problem for the default attack case 

and the proportions of ranked BWSN Network 1 nodes containing the optimal solutions. 

M 

Lowest �odal 

Importance 

Rank 

Proportion of 

Ranked WDS �odes 

Containing Optimal 

Solution 

5 98 76.0% 

20 121 93.8% 

 

 

 

Table 5.29  Nodal importance ranks for the lowest-ranked BWSN Network 1 nodes of 

optimal solutions for the three-prong multiobjective problem with M = 5 for the variant 

attack cases and the proportions of ranked BWSN Network 1 nodes containing the 

optimal solutions. 

Attack Case 

Lowest �odal 

Importance 

Rank 

Proportion of  

Ranked WDS �odes 

Containing Optimal 

Solution 

default 98 76.0% 

sensor detection resolution  

= 0.3 mg/L 
92 71.3% 

contaminant injection 

duration = 10 h 
99 76.7% 

contaminant hazard threshold 

= 0.0 mg/L 
96 74.4% 

response delay = 3 h 98 76.0% 

2 injection nodes at 1 time 44 34.1% 

2 injection nodes at 2 times 60 46.5% 
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Figure 5.24  Solution convergence as ISSM is carried out for the three-prong 

multiobjective problem in the default attack case for BWSN Network 1.  (Values of Zall 

for solutions existing outside of the Pareto front space are not shown.) 
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Figure 5.25  Solution convergence as ISSM is carried out for the three-prong 

multiobjective problem with M = 5 in the default and variant attack cases for BWSN 

Network 1.   
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5.6 COMPUTATIO�AL EXPE�SE �OTES 

 

For this system, attack scenario generation required approximately 1 hour of runtime on a 

Dell Precision 690 with an Intel Xeon 5160 processor (2.99 GHz, 16 GB RAM) and 

created about 40 MB of data for use in the importance and optimization phases.  For a 

given multiobjective problem run, performing nodal importance calculations for the three 

single-objective problems and the multiobjective problem together required less than 10 

minutes.  To solve all three single-objective problems and then the multiobjective 

problem, approximately 45 minutes of runtime were required.  The computational costs 

for this work appear reasonable for this system, especially when compared to the expense 

incurred in other works employing more computationally demanding optimization 

methods such as that of Krause et al. (2006) which required over 1 GB of memory in 

some cases and multiple days of runtime with a comparable computational platform (3 

GHz, 20 GB RAM).  However, the GA model and library used in this work required 

strict convergence criteria and a relatively large population size of 100 to yield the results 

presented above in the times reported here.  Runtimes may have even been more 

desirable with another GA model or library or even with another type of optimization 

solver.   
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CHAPTER 6 

RESULTS A�D A�ALYSIS: BWS� �ETWORK 2 

Chapter 6  

In this chapter, sensor placement optimization results are presented and analyzed for 

BWSN Network 2 in the same manner as results were presented and analyzed in Chapter 

5 for BWSN Network 1.  The results are analyzed with respect to BWSN Network 2 

alone and are compared in a general sense to optimization results for BWSN Network 1 

in order to characterize similarities and differences in placement trends between results 

for systems of two very different sizes and configurations. 

 

6.1 SI�GLE-OBJECTIVE PROBLEM: MAXIMIZI�G Zlik  

 

Sensor placement results regarding the maximizing of detection likelihood for BWSN 

Network 2 are given and discussed in this section. 

 

6.1.1 SENSOR NODE SOLUTIONS 

 

Sensor placement results for maximizing detection likelihood in the default attack case 

for BWSN Network 2 are provided by Table 6.1.  As expected, all sensor nodes in the 

default case are end-of-line nodes given the preference placed on end-of-line nodes by 

the respective nodal importance approach for this single-objective problem.   There is 

more discussion below regarding the validated importance of end-of-line nodes in 

maximizing detection likelihood for this large system.   
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Zlik values are much lower than their counterparts for BWSN Network 1.  These 

differences stand to reason, though, as BWSN Network 2 is larger than BWSN Network 

1 by orders of magnitude, and it cannot necessarily be expected that 5 or 20 sensors can 

cover the majority of the system and detect contamination for a majority of attack 

scenarios.  The locations of selected sensor nodes with M = 5 and M = 20 are depicted in 

Figures 6.1 and 6.2, respectively.  It is noted that the two nodes that appear close to each 

other in Figure 6.1 are actually rather hydraulically separated from each other and for the 

most part are not covering the same contaminant pathways.  Figure 6.2 illustrates well the 

coverage of contaminant pathways provided by the sensor nodes selected; many of these 

nodes are located on the periphery of the system.   In general, water in the system flows 

downstream on hydraulic pathways toward endpoints in the outer regions of the system, 

as in the case of BWSN Network 1.  Other sensor nodes are noted to cover local 

neighborhoods of nodes in the system that are somewhat isolated from the major 

hydraulic pathways.   

 

Table 6.1  Optimal sensor locations and performance measures for maximizing detection 

likelihood in the default attack case for BWSN Network 2.  

M Sensor �odes
*
 

Zlik
**

 

(%) 

Ztime 

(min) 

Zvol  

(gal) 

5 623, 1421, 1486, 2865, 3237 31.9 4,595.2 178,561 

20 

623, 877, 902, 1434, 1486, 2598, 2865, 3237, 

3669, 3723, 3833, 4208, 4306, 5346, 7436, 

7662, 8089, 8419, 9217, 11687 

43.5 4,015.0 135,321 

*
 All sensor node numbers preceded by “JUNCTION-”. 

**
 Performance measure for protection goal of interest. 
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Figure 6.1  Optimal sensor locations with M = 5 for maximizing detection likelihood in 

the default attack case for BWSN Network 2. 

 

 

 

 
Figure 6.2  Optimal sensor locations with M = 20 for maximizing detection likelihood in 

the default attack case for BWSN Network 2. 
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Table 6.2 compares the sensor nodes chosen in this work for maximizing detection 

likelihood in the default attack case with those of other works.  Zlik values for this work 

are marginally better than those for the other works listed in the table, implying that the 

results are at least comparable if not better than those submitted in the other works.   

 

 

Table 6.2  Comparison of optimal sensor locations for maximizing detection likelihood 

in the default attack case for BWSN Network 2 determined in this study with locations 

found in other works. 

M Work Sensor �odes
*
 

Zlik
**
 

(%) 

This Study 623, 1421, 1486, 2865, 3237 31.9 

Berry et al. (2006c) 551, 1426, 1486, 2865, 3230 31.8 

Eliades and Polycarpou 

(2006) 
610, 1486, 2865, 3678, 4359 31.7 

5 

Krause et al. (2006) 1486, 3229, 3769, 3836, 10874 29.2 

This Study 

623, 877, 902, 1434, 1486, 2598, 2865, 

3237, 3669, 3723, 3833, 4208, 4306, 5346, 

7436, 7662, 8089, 8419, 9217, 11687 

43.5 

Berry et al. (2006c) 

623, 813, 902, 1436, 1486, 2598, 2865, 

3230, 3669, 3723, 3833, 4208, 4306, 5346, 

7436, 7665, 8089, 8419, 9223, 11687 

43.4 

Eliades and Polycarpou 

(2006) 

532, 579, 1426, 1486, 2865, 3231, 3679, 

3836, 4234, 4359, 4511, 4609, 5087, 5585, 

6922, 7440, 7670, 7858, 9044, 9787 

40.8 

20 

Krause et al. (2006) 

542, 813, 1430, 1477, 1486, 1718, 2602, 

3229, 3635, 3769, 3836, 4208, 4306, 5185, 

5346, 7441, 7668, 9364, 10874, 11687 

42.8 

*
 All sensor node numbers preceded by “JUNCTION-”. 

**
  Values computed using the software developed in this work. 

 

 

Table 6.3 provides the results of sensor placement optimization with 20 sensors 

employed for the variant attack cases applicable for maximizing detection likelihood.  

Sensor node locations for these attack cases are illustrated in Figures 6.3 through 6.6.  

With 20 sensors employed, true shifts in node location due to differences in attack 

conditions are apparent if they indeed occur.  For this protection goal, there are subtle 
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differences in sensor placement between attack cases, but the areas covered by the sensor 

nodes are largely the same from attack case to attack case.  

  

Of course, for the attack case of a 0.3 mg/L sensor detection resolution, end-of-line nodes 

are not assumed to account for entire contaminant pathways.  Even though the 

optimization approach developed in this work did not put a preference on end-of-line 

nodes in the case of a non-zero detection resolution, it is noted that all nodes selected for 

this attack case in Table 6.3 are end-of-line nodes, likely due to the high uniqueness 

values of these nodes.  Another interesting observation regarding the placement of 

sensors for the case of the 0.3 mg/L detection resolution is the need for an additional 

sensor in the top region of the system relative to the default attack case placement; this 

additional sensor is needed at that location to detect contaminant before the contaminant 

concentration falls below 0.3 mg/L.   

 

Regarding the Zlik values resulting from different attack cases, the pattern seen in 

studying maximization of detection likelihood for BWSN Network 1 is seen for this 

system as well.  The Zlik value for the case of the increased detection resolution is less 

than the value for the default attack case, the Zlik value for increased injection duration is 

slightly higher, and Zlik values for the two injection node cases are substantially higher. 

 

Table 6.4 compares the results of this study for the variant attack cases with those of 

works with results available for comparison.  As in the default attack case, this work 

provides nodes of equal or better protection performance with respect to other works. 
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Table 6.3  Optimal sensor locations and performance measures for maximizing detection 

likelihood with M = 20 in the variant attack cases for BWSN Network 2. 

Attack Case Sensor �odes
*
 

Zlik
**
 

(%) 

Ztime 

(min) 

Zvol 

(gal) 

default 

623, 877, 902, 1434, 1486, 2598, 

2865, 3237, 3669, 3723, 3833, 4208, 

4306, 5346, 7436, 7662, 8089, 8419, 

9217, 11687 

43.5 4,015.0 135,321 

sensor detection 

resolution  

= 0.3 mg/L 

623, 808, 1486, 2423, 2598, 2865, 

3237, 3669, 3723, 3833, 4208, 4306, 

5346, 6545, 7436, 7664, 8089, 8409, 

9217, 11687 

42.7 4,065.5 137,099 

contaminant 

injection duration 

= 10 h 

623, 877, 902, 1421, 1443, 1486, 

2598, 2865, 3230, 3833, 4208, 4306, 

5325, 7436, 7665, 8089, 8419, 9223, 

9972, 11687 

45.8 3,973.7 250,159 

2 injection nodes 

at 1 time 

623, 877, 902, 1436, 1486, 2598, 

2865, 3237, 3676, 3723, 3833, 4208, 

4306, 5346, 7436, 7662, 8089, 8419, 

9217, 11687 

67.3 2,921.0 229,107 

2 injection nodes 

at 2 times 

623, 865, 902, 1421, 1486, 2598, 

2865, 3237, 3669, 3723, 3833, 4208, 

4306, 5356, 7436, 7662, 8089, 8419, 

9217, 11687 

65.1 3,166.4 221,780 

*
 All sensor node numbers preceded by “JUNCTION-”. 

**
 Performance measure for protection goal of interest. 
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Figure 6.3  Optimal sensor locations with M = 20 for maximizing detection likelihood in 

the case of a detection resolution of 0.3 mg/L for BWSN Network 2. 

 

 

 

 
Figure 6.4  Optimal sensor locations with M = 20 for maximizing detection likelihood in 

the case of an injection duration of 10 h for BWSN Network 2. 

 

sensor 

sensor 



 

 
165 

 

  

 
Figure 6.5  Optimal sensor locations with M = 20 for maximizing detection likelihood in 

the case of 2 nodes injected at 1 time for BWSN Network 2. 

 

 

 

 
Figure 6.6  Optimal sensor locations with M = 20 for maximizing detection likelihood in 

the case of 2 nodes injected at 2 times for BWSN Network 2. 
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Table 6.4  Comparison of optimal sensor locations for maximizing detection likelihood 

with M = 20 in the variant attack cases for BWSN Network 2 determined in this study 

with locations found in other works. 

Attack Case Work Sensor �odes
*
 

Zlik
**
 

(%) 

This Study 

623, 877, 902, 1421, 1443, 1486, 2598, 

2865, 3230, 3833, 4208, 4306, 5325, 

7436, 7665, 8089, 8419, 9223, 9972, 

11687 

45.8 

Berry et al. 

(2006c) 

623, 813, 902, 1426, 1486, 2598, 2865, 

3230, 3688, 3833, 4208, 4306, 6922, 

7436, 7665, 8089, 8419, 9223, 11687, 

12371 

45.8 

contaminant 

injection duration 

= 10 h 

Krause et al. 

(2006) 

551, 813, 1436, 1486, 2598, 3231, 3669, 

3723, 3833, 4208, 4306, 5326, 7436, 

7665, 8089, 8419, 9223, 9364, 11687, 

12371 

45.4 

This Study 

623, 877, 902, 1436, 1486, 2598, 2865, 

3237, 3676, 3723, 3833, 4208, 4306, 

5346, 7436, 7662, 8089, 8419, 9217, 

11687 

67.3 

2 injection nodes 

at 1 time 

Krause et al. 

(2006) 

551, 813, 925, 1436, 1486, 2598, 3231, 

3669, 3833, 4208, 4306, 5346, 7436, 

7665, 8089, 8419, 9223, 9364, 11687, 

12371 

67.1 

*
 All sensor node numbers preceded by “JUNCTION-”. 

**
  Values computed using the software developed in this work. 

 

 

6.1.2 EVALUATION OF NODAL IMPORTANCE 

 

Solutions given above were found by carrying out ISSM employing nodes ranked first by 

end-of-line node status then by values calculated with the large-system nodal importance 

function for maximizing detection likelihood in (4.21) for all attack cases assuming a 

zero sensor detection resolution.  The ranking approach for this system is in contrast to 

the one used for BWSN Network 1 that made use of the nodal importance function in 

(4.22) and the sorting approach that includes both end-of-line and slow-outflow nodes.  
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The 2,140 end-of-line nodes in BWSN Network 2 represented an ample number of 

contaminant pathways that could be covered to maximize detection likelihood as 

validated by the results above, so the neglecting of slow-outflow nodes from the sorting 

approach for large systems seems to be an acceptable decision.  In the case of the non-

zero detection resolution, nodes were ranked by the value determined with (4.21) only.   

 

The ISSM parameters used for optimization for this larger system were different than 

those for BWSN Network 1 due to the larger system size; these parameters are provided 

in Table 6.5.  There is increased emphasis on ranked nodes in the ISSM subset for the 

larger system, which is affordable due to the larger size of the subset.  The 10% of 

unranked nodes in the subset provides a more than adequate number of nodes to allow for 

unranked nodes to be included in best solutions for subsets if the potential exists.  

 

 

Table 6.5  Parameters selected for use in ISSM for BWSN Network 2 for all protection 

goals and all attack cases. 

M 
Initial 

Subset Size 

Change in 

Subset Size 

Proportion of 

Ranked �odes 

in Subset 

Proportion of 

Unranked �odes 

in Subset 

5 300 300 90% 10% 

20 300 300 90% 10% 

 

 

 

As indicated by the ranks of the lowest-ranked nodes of optimal solutions in Tables 6.6 

and 6.7, nodal importance allows for the optimal solutions for maximizing detection 

likelihood in this system to be isolated to very small fractions of WDS nodes.  To 

supplement the data in Table 6.6 for the case of 5 sensors employed, it is noted that 4 of 

the 5 nodes in the optimal solution are ranked in the top 100, even though the fifth node 
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is ranked 518, further demonstrating the effectiveness of nodal importance in narrowing 

the search domain.   

 

Even in the case of the 0.3 mg/L sensor detection resolution, the optimal solution is 

contained in proportions nearly equal in size to those of the other attack cases that were 

able to put preference on end-of-line nodes.  Again, the solution nodes for this case are all 

end-of-line nodes as well.  Thus, it seems that stratifying end-of-line nodes from the other 

WDS nodes in this case--even though the underlying assumption is not valid--may allow 

for the narrowing of the search domain to find a near-optimal—or even the optimal—

solution.   

 

The sensor nodes selected in this work are remarkably very close in location to those 

selected by Berry et al. (2006c), and many of the nodes selected by Berry et al. are end-

of-line nodes.  Berry et al. did not use such concepts as end-of-line status and uniqueness 

developed in this study to determine their “nodal impact coefficients” to solve this single-

objective problem.  The parallels between this study and their study validate somewhat 

the concepts used in this study to determine the desirability of a node as a sensor node 

candidate for maximizing detection likelihood, but in this study the desirability was 

quantified without an iterative, computationally-expensive process like that used by 

Berry et al.   

 

In addition, it is argued that the nodal importance approach used in this study was key in 

finding a solution that is marginally better than that of Berry et al. in the default attack 
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case with 5 sensors employed.  JUNCTION-623, submitted as one of the optimal sensor 

nodes in this work, is the endpoint of the hydraulic path that contains JUNCTION-551, 

an upstream junction submitted by Berry et al. as an optimal sensor node.  In scenario 

data generation, an injection node was selected downstream of JUNCTION-551 for two 

optimization scenarios; JUNCTION-551 could not detect contamination for these 

scenarios given its location, whereas JUNCTION-623 could as it is located at the end of 

the contaminant transport path.  Thus, it seems that putting preference on end-of-line 

nodes in general ensures maximum coverage, even though in this case the difference 

between placing the sensor at an end-of-line versus a node that is not an end-of-line node 

is only marginal.   

 

Berry et al. claimed that they could not perform optimization in the two injection node 

cases due to computational expense associated with the determining of nodal impact 

coefficients, but in this study there was no problem in finding solutions using ISSM with 

nodal importance, and the solution for the case of 2 nodes injected at 1 time seems to 

marginally outperform the solution submitted by Krause et al. (2006).  The feasibility of 

performing optimization in these two injection node cases adds to the value demonstrated 

in the nodal importance approach for maximizing detection likelihood.   

 

Solution convergence plots for this single-objective problem are given in Figures 6.7 and 

6.8.  All convergence curves imply that convergence occurs with only a few ISSM 

iterations for all attack cases, and even ISSM subsets much smaller than those that would 

contain all optimal sensor nodes could provide near-optimal solutions. 
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Table 6.6  Nodal importance ranks for the lowest-ranked BWSN Network 2 nodes of 

optimal solutions for maximizing detection likelihood in the default attack case and the 

proportions of ranked BWSN Network 2 nodes containing the optimal solutions.   

M 

Lowest �odal 

Importance 

Rank 

Proportion of  

Ranked WDS  �odes  

Containing Optimal 

Solution 

5 518 4.1% 

20 808 6.5% 

 

 

 

Table 6.7  Nodal importance ranks for the lowest-ranked BWSN Network 2 nodes of 

optimal solutions for maximizing detection likelihood with M = 20 in the variant attack 

cases and the proportions of ranked BWSN Network 2 nodes containing the optimal 

solutions. 

Attack Case 

Lowest �odal 

Importance 

Rank 

Proportion of 

Ranked WDS �odes 

Containing Optimal 

Solution 

default 808 6.5% 

sensor detection resolution  

= 0.3 mg/L 

788 6.3% 

contaminant injection duration 

= 10 h 

870 6.9% 

2 injection nodes at 1 time 811 6.5% 

2 injection nodes at 2 times 813 6.5% 
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Figure 6.7  Solution convergence as ISSM is carried out for maximizing detection 

likelihood in the default attack case for BWSN Network 2.  (Only solution values for 

subset sizes of 3,000 or less are plotted as solution reached best performance for both M 

= 5 and M = 20 by subset size = 3,000.) 
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Figure 6.8  Solution convergence as ISSM is carried out for maximizing detection 

likelihood with M = 20 in the default and variant attack cases for BWSN Network 2.  

(Only solution values for subset sizes of 3,000 or less are plotted as solutions for all cases 

reached best performance by subset size = 3,000.) 
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6.2 SI�GLE-OBJECTIVE PROBLEM: MI�IMIZI�G Ztime 

 

The optimization results for minimizing expected detection time for BWSN Network 2 

are given and discussed below. 

 

6.2.1 SENSOR NODE SOLUTIONS 

 

Table 6.8 provides sensor placement results for minimizing expected detection time for 

BWSN Network 2 in the default attack case.  It is observed that the selected sensor nodes 

provide for a drastic reduction in Ztime value, especially when 20 sensors are employed, 

when compared to the Ztime values in Table 6.1 above.  Zvol values are also reduced 

significantly versus the Zvol values in Table 6.1, which is expected as sensors are placed 

more upstream for minimizing expected detection time relative to sensors placed for 

maximizing detection likelihood.  Zlik values in Table 6.8 are quite close to those in Table 

6.1 due to the correlation between Ztime and Zlik, especially given that in a system with low 

maximum Zlik values where Ztime reduction is very dependent on minimizing instances of 

“infinite” detection time resulting from non-detection.  The locations of the sensor nodes 

selected are illustrated in Figures 6.9 and 6.10.  Table 6.9 compares the results for 

minimizing expected detection time in the default attack case for this study with those of 

other studies.  The results for this study are marginally better than those of Krause et al. 

(2006) and significantly better than those of Eliades and Polycarpou (2006).   

 

For the case 5 sensors employed, some node locations are in the same locations as those 

for maximizing detection likelihood (e.g., JUNCTION-623 and JUNCTION-1486), while 
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other sensor nodes are placed upstream often at nodes where flows from different areas of 

the system intersect (e.g, JUNCTION-10874).  The compromise between maximizing 

coverage and detecting contamination farther upstream is more evident in Figure 6.10 for 

the case of 20 sensors employed.  As shown in that figure, some sensor nodes are located 

in the outer regions of the system to maximize coverage, while there are more sensor 

nodes located toward the center of the system relative to Figure 6.2, implying a shift 

upstream of some sensor nodes to detect contamination sooner.  This shift was also seen 

in minimizing expected detection time for BWSN Network 1.   

 

 

Table 6.8  Optimal sensor locations and performance measures for minimizing expected 

detection time in the default attack case for BWSN Network 2.  

M Sensor �odes
*
 

Zlik 

(%) 

Ztime
**
 

(min) 

Zvol 

(gal) 

5 623, 1486, 3229, 3770, 10874 30.3 4,366.8 99,528 

20 

551, 877, 1486, 1904, 1917, 2598, 3229, 3629, 

3770, 3836, 4247, 4306, 7441, 7667, 8089, 8492, 

9212, 9364, 10874, 12404 

42.8 3,660.9 47,899 

*
 All sensor node numbers preceded by “JUNCTION-”. 

**
 Performance measure for protection goal of interest. 
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Figure 6.9  Optimal sensor locations with M = 5 for minimizing expected detection time 

in the default attack case for BWSN Network 2. 

 

 

 

 
Figure 6.10  Optimal sensor locations with M = 20 for minimizing expected detection 

time in the default attack case for BWSN Network 2. 
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Table 6.9  Comparison of optimal sensor locations for minimizing expected detection 

time in the default attack case for BWSN Network 2 determined in this study with 

locations found in other works. 

M Work Sensor �odes
*
 

Ztime 
**

 

(min) 

This Study 623, 1486, 3229, 3770, 10874 4,366.8 

Eliades and 

Polycarpou (2006) 
532, 1486, 3836, 4359, 8445 4,446.8 5 

Krause et al. (2006) 1486, 3770, 3836, 7485, 10874 4,370.6 

This Study 

551, 877, 1486, 1904, 1917, 2598, 3229, 

3629, 3770, 3836, 4247, 4306, 7441, 

7667, 8089, 8492, 9212, 9364, 10874, 

12404 

3,660.9 

Eliades and 

Polycarpou (2006) 

375, 532, 579, 1426, 1486, 3229, 3836, 

4234, 4359, 4511, 4609, 5087, 5585, 

6922, 7670, 7858, 8403, 8629, 9360, 9787 

3,928.7 20 

Krause et al. (2006) 

540, 877, 1486, 1904, 2602, 3229, 3635, 

3770, 3836, 4247, 4306, 5346, 7441, 

7485, 7667, 9210, 9364, 10874, 11167, 

11687 

3,665.0 

*
 All sensor node numbers preceded by “JUNCTION-”. 

**
  Values computed using the software developed in this work. 

 

 

 

Table 6.10 gives the sensor placement results minimizing expected detection time in the 

applicable variant attack cases, and Figures 6.11 through 6.14 indicate the locations of the 

selected sensor nodes in the system.  Although some sensor nodes differ between the 

different attack cases, the areas where sensors are located do not vary greatly from case to 

case.  Ztime values vary in expected manners from case to case.  The decreased 

performance in the case of increased sensor detection resolution and increased 

performance in the cases of a longer injection duration and two injection nodes are 

primarily due to differences in network coverage ability in the particular cases.  That is 

the reason why performance for this protection goal generally varies in the same way that 

detection likelihood varies among attack cases.  Comparing the variant attack case results 

to the available results from Krause et al. (2006) for the cases of a 10-hour injection 
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duration and 2 nodes injected at 1 time in Table 6.11 shows that results from this work 

are comparable if not better than those already documented in literature. 

 

 

Table 6.10  Optimal sensor locations and performance measures for minimizing expected 

detection time with M = 20 in the variant attack cases for BWSN Network 2. 

Attack Case Sensor �odes
*
 

Zlik 

(%) 

Ztime
**
 

(min) 

Zvol 

(gal) 

default 

551, 877, 1486, 1904, 1917, 2598, 

3229, 3629, 3770, 3836, 4247, 4306, 

7441, 7667, 8089, 8492, 9212, 9364, 

10874, 12404 

42.8 3,660.9 47,899 

sensor detection 

resolution  

= 0.3 mg/L 

516, 540, 623, 808, 1486, 1904, 1917, 

2598, 3229, 3629, 3770, 3836, 4247, 

4306, 7441, 8332, 8492, 9223, 9364, 

10874 

42.1 3,725.8 58,665 

contaminant 

injection duration 

= 10 h 

495, 636, 877, 1477, 1486, 1806, 

2602, 3229, 3357, 3635, 3770, 3836, 

4247, 4306, 6922, 7441, 7664, 9364, 

10716, 11687 

45.3 3,516.6 67,210 

2 injection nodes 

at 1 time 

636, 813, 1229, 1486, 2602, 3229, 

3357, 3629, 3770, 3836, 4247, 4306, 

6922, 7441, 7667, 8942, 9364, 10720, 

11304, 11687 

66.6 2,366.7 52,765 

2 injection nodes 

at 2 times 

636, 813, 1229, 1486, 1514, 2602, 

3229, 3357, 3629, 3770, 3836, 4247, 

4306, 7441, 7667, 8942, 9364, 10421, 

10720, 12404 

64.7 2,614.4 55,525 

*
 All sensor node numbers preceded by “JUNCTION-”. 

**
 Performance measure for protection goal of interest. 
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Figure 6.11  Optimal sensor locations with M = 20 for minimizing expected detection 

time in the case of a detection resolution of 0.3 mg/L for BWSN Network 2. 

 

 

 

 
Figure 6.12  Optimal sensor locations with M = 20 for minimizing expected detection 

time in the case of a 10-hour injection duration for BWSN Network 2.  

 

sensor 

sensor 



 

 
179 

 

  

 
Figure 6.13  Optimal sensor locations with M = 20 for minimizing expected detection 

time in the case of 2 nodes injected at 1 time for BWSN Network 2. 

 

  

 

 
Figure 6.14  Optimal sensor locations with M = 20 for minimizing expected detection 

time in the case of 2 nodes injected at 2 times for BWSN Network 2. 
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Table 6.11  Comparison of optimal sensor locations for minimizing expected detection 

time with M = 20 in the variant attack cases for BWSN Network 2 determined in this 

study with locations found in other works. 

Attack Case Work Sensor �odes
*
 

Ztime 
**

 

(min) 

This Study 

495, 636, 877, 1477, 1486, 1806, 2602, 

3229, 3357, 3635, 3770, 3836, 4247, 

4306, 6922, 7441, 7664, 9364, 10716, 

11687 

3,516.6 

contaminant 

injection 

duration = 10 h 
Krause et al. 

(2006) 

636, 877, 1229, 1430, 1486, 2602, 3229, 

3357, 3635, 3770, 3836, 4115, 4247, 

4306, 5346, 7441, 7666, 9210, 9364, 

11687 

3,530.4 

This Study 

636, 813, 1229, 1486, 2602, 3229, 3357, 

3629, 3770, 3836, 4247, 4306, 6922, 

7441, 7667, 8942, 9364, 10720, 11304, 

11687 

2,366.7 

2 injection 

nodes at 1 time 

Krause et al. 

(2006) 

636, 877, 1229, 1486, 2602, 3229, 3357, 

3635, 3770, 3836, 4115, 4240, 4306, 

5346, 7441, 7664, 9210, 9364, 11304, 

11687 

2,368.2 

*
 All sensor node numbers preceded by “JUNCTION-”. 

**
  Values computed using the software developed in this work. 
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6.2.2 EVALUATION OF NODAL IMPORTANCE 

 

The results discussed above were found by employing ISSM with the aid of nodes ranked 

by the nodal importance function in (4.23).  Considering the ranks of the lowest ranked 

solution nodes given in Table 6.12, it appears the nodal importance approach for 

minimizing expected detection time is effective in narrowing the search for the optimal 

solution in the default attack case for this large system.  The solution for 5 sensors 

employed was isolated to less than 8% of WDS nodes, and for 20 sensors employed the 

solution was isolated to less than 16% of WDS nodes.  With regard to the variant attack 

cases, Table 6.13 shows that the degree of narrowing was practically the same for the 

case of a 0.3 mg/L sensor detection resolution, but for the 10-hour injection duration and 

two injection node cases, finding the optimal solution requires a broader proportion of 

WDS nodes.  It is suspected that the reason for lower ranks for some sensor nodes in 

these cases is the increased opportunities for some nodes to experience contamination 

making them more desirable in terms of importance but also less distinguishable from 

other nodes that are important.  Despite these larger proportions, the search domain is 

narrowed considerably (i.e., less than 30%) for all attack cases.   

 

Examining the solution convergence plots in Figures 6.15 and 6.16 also reveals points 

about the effectiveness of nodal importance for this single-objective problem. 

When 5 sensors are employed, the lowest-ranked optimal sensor node is ranked 943, but 

a subset size of 600 (540 ranked nodes, 60 unranked nodes) allows ISSM to find a very 

good solution close to the optimal.  For the one injection node cases with 20 sensors 
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employed, ISSM can find near-optimal solutions with subset sizes of about 2,000.  

Solution convergence was much more gradual for the two injection node cases, 

highlighting the need in those cases for subset sizes of at least 3,000 to find even a near-

optimal solution. 

 

 

Table 6.12  Nodal importance ranks for the lowest-ranked BWSN Network 2 nodes of 

optimal solutions for minimizing expected detection time in the default attack case and 

the proportions of ranked BWSN Network 2 nodes containing the optimal solutions.   

M 

Lowest �odal 

Importance 

Rank 

Proportion of  

Ranked WDS �odes 

Containing Optimal 

Solution 

5 943 7.5% 

20 1,935 15.5% 

 

 

 

Table 6.13  Nodal importance ranks for the lowest-ranked BWSN Network 2 nodes of 

optimal solutions for minimizing expected detection time with M = 20 in the variant 

attack cases and the proportions of ranked BWSN Network 2 nodes containing the 

optimal solutions. 

Attack Case 

Lowest �odal 

Importance 

Rank 

Proportion of 

Ranked WDS �odes 

Containing Optimal 

Solution 

default 1,935 15.5% 

sensor detection resolution  

= 0.3 mg/L 
1,788 14.3% 

contaminant injection duration 

= 10 h 
2,790 22.3% 

2 injection nodes at 1 time 2,831 22.6% 

2 injection nodes at 2 times 3,732 29.8% 
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Figure 6.15  Solution convergence as ISSM is carried out for minimizing expected 

detection time in the default attack case for BWSN Network 2.  (Only solution values for 

subset sizes of 6,000 or less are plotted as solution reached best performance for both M 

= 5 and M = 20 by subset size = 6,000.) 
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Figure 6.16  Solution convergence as ISSM is carried out for minimizing expected 

detection time with M = 20 in the default and variant attack cases for BWSN Network 2.  

(Only solution values for subset sizes of 6,000 or less are plotted as solutions for all cases 

reached best performance by subset size = 6,000.) 
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6.3 SI�GLE-OBJECTIVE PROBLEM: MI�IMIZI�G Zvol  

 

Sensor placement findings for minimizing expected contaminated demand volume are 

provided and discussed in this section. 

 

6.3.1 SENSOR NODE SOLUTIONS 

 

Sensor nodes selected to minimize expected contaminated demand volume in the default 

attack case for BWSN Network 2 are given in Table 6.14, and their locations in the 

system are depicted in Figures 6.17 and 6.18.  Compared with the Zvol values in Tables 

6.1 and 6.8, the Zvol values in Table 6.14 seem significantly reduced with sensors located 

at the nodes indicated.  To achieve the low volumes reported in Table 6.14, some 

protection was sacrificed in terms of minimizing Ztime and significant protection was 

sacrified in terms of maximizing Zlik.  As detecting contamination sooner is key to 

minimizing Zvol, it is not surprising that the sacrifices with respect to Ztime are not 

extensive and that some sensor nodes for minimizing Zvol and minimizing Ztime match 

(e.g., JUNCTION-10874).  Figures 6.17 and 6.18 show remarkable shifts of sensor nodes 

from the outer regions of the system where sensors are placed to maximize coverage to 

more central locations that are more upstream and on or near major transmission lines so 

that contamination is detected sooner and major amounts of water volume can be 

protected.  These trends in sensor placement were observed in general for minimizing 

expected contaminated demand volume for BWSN Network 1 as well.     
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Table 6.14  Optimal sensor locations and performance measures for minimizing expected 

contaminated demand volume in the default attack case for BWSN Network 2.  

M Sensor �odes
*
 

Zlik 

(%) 

Ztime 

(min) 

Zvol
**
 

(gal) 

5 3357, 4684, 10874, 11184, 11304 24.1 4,545.6 59,263 

20 

636, 1522, 1917, 3357, 3453, 3770, 4132, 4594, 

5114, 6583, 6700, 7653, 8999, 9142, 9722, 

10614, 10874, 11177, 11271, 12258 

33.5 3,994.4 12,732 

*
 All sensor node numbers preceded by “JUNCTION-”. 

**
 Performance measure for protection goal of interest. 

 

 

 

 
Figure 6.17  Optimal sensor locations with M = 5 for minimizing expected contaminated 

demand volume in the default attack case for BWSN Network 2. 
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Figure 6.18  Optimal sensor locations with M = 20 for minimizing expected 

contaminated demand volume in the default attack case for BWSN Network 2. 

 

 

 

Table 6.15 gives encouraging comparisons of the results of this work for this single-

objective problem in the default attack case with results of other works, although in some 

cases the results of another work are marginally better than those of this work.  With 5 

sensors employed, the nodes selected match those selected by Berry et al. (2006c), which 

are the best performing nodes of the sets listed in the table.  However, when 20 sensors 

are employed, the solution for this work is slightly less performing than that of Berry et 

al., but is superior to those provided by the other works listed.  The difference in Zvol 

between this work and the work of Berry et al. is only about 600 gal—mostly negligible 

given the potential for many more thousands of gallons of water that could become 

contaminated given even subtle differences in sensor placement from the nodes selected 

in this study.  Therefore, even though it appears that the optimization method of this work 

sensor 
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did not find the true optimal solution when 20 sensors were employed, the solution found 

performs very well.  The reasons for the suboptimal solution are explored in discussion 

below regarding the effectiveness of nodal importance for this single-objective problem.   

 

 

Table 6.15  Comparison of optimal sensor locations for minimizing expected 

contaminated demand volume in the default attack case for BWSN Network 2 determined 

in this study with locations found in other works. 

M Work Sensor �odes
*
 

Zvol 
**

 

(gal) 

This Study 3357, 4684, 10874, 11184, 11304 59,263 

Berry et al. (2006c) 3357, 4684, 10874, 11184, 11304 59,263 

Eliades and Polycarpou 

(2006) 
532, 1486, 3836, 4359, 8445 102,293 

5 

Krause et al. (2006) 339, 3357, 4651, 10614, 11271  70,514 

This Study 

636, 1522, 1917, 3357, 3453, 3770, 4132, 

4594, 5114, 6583, 6700, 7653, 8999, 

9142, 9722, 10614, 10874, 11177, 11271, 

12258 

12,732 

Berry et al. (2006c) 

636, 1917, 3357, 3573, 3770, 4132, 4240, 

4594, 5114, 6583, 6700, 7652, 8999, 

9142, 9722, 10614, 10874, 11177, 11271, 

12258 

12,153 

Eliades and Polycarpou 

(2006) 

532, 1426, 1486, 3231, 3836, 4234, 4359, 

4511, 4609, 5087, 5585, 6922, 7670, 

7858, 8403, 8629, 9360, 9787, 10885, 

12167 

55,012 

20 

Krause et al. (2006) 

339, 636, 778, 1478, 2073, 3357, 4032, 

4084, 4240, 4651, 4793, 6700, 7652, 

9142, 9722, 10614, 10874, 11167, 11271, 

12258 

13,647 

*
 All sensor node numbers preceded by “JUNCTION-”. 

**
  Values computed using the software developed in this work. 

 

 

 

Table 6.16 gives the sensor nodes selected in this work to minimize expected 

contaminated demand volume for the variant attack cases, and Figures 6.19 through 6.23 

depict the locations of these nodes in the system for cases that have different sensor node 
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sets than that for the default attack case.  As seen for the other protection goals, sensor 

node locations do not vary greatly as attack conditions change.   

 

Zvol  values vary in the expected manners relative to the default attack case.  A slight 

adjustment in the sensor placement scheme is warranted for the case of a higher detection 

resolution as some nodes selected for the default attack case would not be able to detect 

contaminant with the higher resolution and would lead to more scenarios with very high 

contaminated volumes due to non-detection; the sensor node rearrangement allows for 

preservation of coverage to prevent these instances of very high contaminated volumes at 

the cost of some performance in terms of the overall Zvol value.  The increases in Zvol  for 

the cases of increased injection duration, response delay, and two injection nodes are 

expected due to the increased opportunity for water to become contaminated.  The 

biggest change in Zvol value comes as a result of a 0.0 mg/L hazard threshold, apparently 

due to a large amount of volume that is considered contaminated when the hazard 

threshold is reduced.  This observation implies that Zvol can be rather sensitive to 

contaminant hazard threshold.   
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Table 6.16  Optimal sensor locations and performance measures for minimizing expected 

contaminated demand volume with M = 20 in the variant attack cases for BWSN 

Network 2. 

Attack Case Sensor �odes
*
 

Zlik 

(%) 

Ztime 

(min) 

Zvol
**
  

(gal) 

default 

636, 1522, 1917, 3357, 3453, 3770, 

4132, 4594, 5114, 6583, 6700, 7653, 

8999, 9142, 9722, 10614, 10874, 

11177, 11271, 12258 

33.5 3,994.4 12,732 

sensor detection 

resolution  

= 0.3 mg/L 

636, 1917, 3357, 3453, 3770, 4132, 

4253, 4594, 5114, 6583, 6700, 8060, 

8999, 9142, 9722, 10614, 10874, 

11177, 11271, 12258 

33.7 3,982.1 16,094 

contaminant 

injection duration 

= 10 h 

636, 1522, 1917, 3357, 3453, 3770, 

4132, 4594, 5114, 6583, 6700, 7652, 

8999, 9142, 9722, 10614, 10874, 

11177, 11271, 12258 

36.7 3,846.1 28,467 

contaminant 

hazard threshold 

= 0.0 mg/L 

636, 1522, 1917, 3357, 3453, 3770, 

4132, 4594, 5109, 6309, 6700, 7653, 

8999, 9142, 9722, 10614, 10874, 

11177, 11271, 12258 

33.6 3,999.9 33,638 

response delay    

= 3 h 

636, 1917, 3357, 3453, 3770, 4132, 

4594, 4793, 6309, 6700, 7336, 7653, 

8999, 9142, 9722, 10614, 10874, 

11177, 11271, 12258 

33.2 4,009.5 23,238 

2 injection nodes 

at 1 time 

636, 1522, 1917, 3357, 3453, 3770, 

4132, 4594, 5114, 6583, 6700, 7653, 

8999, 9142, 9722, 10614, 10874, 

11177, 11271, 12258 

56.5 2,754.4 19,963 

2 injection nodes 

at 2 times 

636, 1522, 1917, 3357, 3453, 3770, 

4132, 4594, 5114, 6583, 6700, 8055, 

8999, 9142, 9722, 10614, 10874, 

11177, 11271, 12258 

55.8 2,907.4 19,662 

*
 All sensor node numbers preceded by “JUNCTION-”. 

**
 Performance measure for protection goal of interest. 
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Figure 6.19  Optimal sensor locations with M = 20 for minimizing expected 

contaminated demand volume in the case of a detection resolution of 0.3 mg/L for 

BWSN Network 2. 
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Figure 6.20  Optimal sensor locations with M = 20 for minimizing expected 

contaminated demand volume in the case of a 10-hour injection duration for BWSN 

Network 2. 
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Figure 6.21  Optimal sensor locations with M = 20 for minimizing expected 

contaminated demand volume in the case of a hazard threshold of 0.0 mg/L for BWSN 

Network 2. 
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Figure 6.22  Optimal sensor locations with M = 20 for minimizing expected 

contaminated demand volume in the case of a 3-hour response delay for BWSN Network 

2. 
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Figure 6.23  Optimal sensor locations with M = 20 for minimizing expected 

contaminated demand volume in the case of 2 nodes injected at 2 times for BWSN 

Network 2. 
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Table 6.17 compares the results of this work for the variant attack cases with available 

results from literature.  For both the case of the 10-hour injection duration and the 3-hour 

response delay, the results of this study are slightly less performing than those of Berry et 

al. (2006c), but perform very well relative to those of Krause et al. (2006), as in the 

default attack case.  As stated above, Berry et al. could not perform optimization for the 

two injection node cases, so they have no results for comparison for those cases.  The 

results of this study for those cases are superior to those submitted by Krause et al.  In 

sum, even though Berry et al. submitted marginally better results versus the results of this 

work for multiple cases, the optimization method of this work can be carried out for all 

cases and provide near-optimal results.   
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Table 6.17  Comparison of optimal sensor locations for minimizing expected 

contaminated demand volume with M = 20 in the variant attack cases for BWSN 

Network 2 determined in this study with locations found in other works. 

Attack Case Work Sensor �odes
*
 

Zvol
**
  

(gal) 

This Study 

636, 1522, 1917, 3357, 3453, 3770, 

4132, 4594, 5114, 6583, 6700, 7652, 

8999, 9142, 9722, 10614, 10874, 

11177, 11271, 12258 

28,467 

Berry et al. 

(2006c) 

636, 1917, 3357, 3573, 3770, 4132, 

4240, 4594, 5114, 6583, 6700, 7652, 

8999, 9142, 9722, 10614, 10874, 

11177, 11271, 12258 

27,326 

contaminant 

injection 

duration = 10 h 

Krause et al. 

(2006) 

339, 636, 3357, 3573, 4032, 4084, 

4132, 4240, 4684, 5121, 6583, 6981, 

8850, 9142, 9364, 10614, 10874, 

11304, 11167, 12258 

29,051 

This Study 

636, 1917, 3357, 3453, 3770, 4132, 

4594, 4793, 6309, 6700, 7336, 7653, 

8999, 9142, 9722, 10614, 10874, 

11177, 11271, 12258 

23,238 

Berry et al. 

(2006c) 

636, 1917, 3357, 3573, 3770, 4032, 

4132, 4793, 6309, 6700, 7336, 8852, 

8999, 9142, 9722, 10614, 10874, 

11177, 11271, 12258 

22,956 
response delay 

= 3 h 

Krause et al. 

(2006) 

339, 636, 1115, 3328, 4032, 4132, 

4684, 4793, 6309, 6637, 6700, 7256, 

7336, 8852, 8907, 8999, 9142, 10874, 

11167, 11271 

28,505 

This Study 

636, 1522, 1917, 3357, 3453, 3770, 

4132, 4594, 5114, 6583, 6700, 7653, 

8999, 9142, 9722, 10614, 10874, 

11177, 11271, 12258 

19,963 

2 injection 

nodes at 1 time 

Krause et al. 

(2006) 

339, 636, 3357, 3573, 4032, 4084, 

4132, 4684, 5121, 6309, 6981, 7652, 

9142, 9722, 10614, 10874, 11167, 

11304, 12258, 12481  

21,643 

*
 All sensor node numbers preceded by “JUNCTION-”. 

**
  Values computed using the software developed in this work. 
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6.3.2 EVALUATION OF NODAL IMPORTANCE 

 

 

To obtain the sensor node solutions presented above, ISSM was carried out making use 

of nodal importance values calculated with the large-system nodal importance function 

for minimizing expected contaminated demand volume in (4.27).  As indicated by Table 

6.18, the nodal importance function effectively narrowed the optimal solution when 5 

sensors are employed to 7% of WDS nodes.  The nodal importance function also allowed 

the near-optimal solution given above for the case of 20 sensors employed to be isolated 

to approximately the top one-fifth of ranked nodes.  Solutions for the other attack cases 

are also narrowed to less than one-quarter of nodes according to the data given in Table 

6.19.  Solution convergence plots in Figures 6.24 and 6.25 show overall gradual 

convergence to the best solution for all cases. 

 

Upon examination of sensor nodes selected in this work and those submitted by Berry et 

al. (2006c) for all cases to determine the reason for the slightly suboptimal sensor nodes 

of this work, it is observed that two nodes selected by Berry et al. that allowed for their 

lower Zvol values to be found were fairly lowly ranked according to the values found with 

the importance function in (4.27).  It would be impractical to expect ISSM to consistently 

find the complete set of optimal sensor nodes with the larger subsets required to include 

these two nodes.  Thus, the large-system importance function for minimizing expected 

contaminated demand volume has drawbacks, but it is encouraging that so many of the 

optimal sensor nodes are highly ranked.  Future study may find minor adjustments to the 

function such that those two nodes more appropriately ranked.   
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Table 6.18  Nodal importance ranks for the lowest-ranked BWSN Network 2 nodes of 

optimal solutions for minimizing expected contaminated demand volume in the default 

attack case and the proportions of ranked BWSN Network 2 nodes containing the optimal 

solutions.   

M 

Lowest �odal 

Importance 

Rank 

Proportion of 

Ranked WDS �odes 

Containing Optimal 

Solution 

5 871 7.0% 

20 2,694 21.5% 

 

 

 

Table 6.19  Nodal importance ranks for the lowest-ranked BWSN Network 2 nodes of 

optimal solutions for minimizing expected contaminated demand volume with M = 20 in 

the variant attack cases and the proportions of ranked BWSN Network 2 nodes 

containing the optimal solutions. 

Attack Case 

Lowest �odal 

Importance 

Rank 

Proportion of 

Ranked WDS �odes 

Containing Optimal 

Solution 

default 2,694 21.5% 

sensor detection resolution  

= 0.3 mg/L 

2,712 21.6% 

contaminant injection duration 

= 10 h 

2,978 23.8% 

contaminant hazard threshold = 

0.0 mg/L 

2,482 19.8% 

response delay = 3 h 2,694 21.5% 

2 injection nodes at 1 time 2,864 22.9% 

2 injection nodes at 2 times 2,821 22.5% 
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Figure 6.24  Solution convergence as ISSM is carried out for minimizing expected 

contaminated demand volume in the default attack case for BWSN Network 2.  (Only 

solution values for subset sizes of 6,000 or less are plotted as solution reached best 

performance for both M = 5 and M = 20 by subset size = 6,000.) 
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Figure 6.25  Solution convergence as ISSM is carried out for minimizing expected 

contaminated demand volume with M = 20 in the default and variant attack cases for 

BWSN Network 2.  (Only solution values for subset sizes of 6,000 or less are plotted as 

solutions for all cases reached best performance by subset size = 6,000.) 
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6.4 MULTIOBJECTIVE PROBLEM: MAXIMIZI�G Zall 

 

Optimization results for the three-prong multiobjective problem are given and discussed 

below. 

 

6.4.1 SENSOR NODE SOLUTIONS 

 

Table 6.20 presents the sensor nodes found in this work for the three-prong 

multiobjective problem in the default attack case for BWSN Network 2, and Figures 6.26 

and 6.27 illustrate the locations of these sensor nodes in the system.  As was seen in 

examining the results for BWSN Network 1 in Chapter 5, sensor node results for 

maximizing Zall for BWSN Network 2 tend to preserve most if not all of the protection 

with respect to minimizing expected detection time while compromising larger amounts 

of protection in terms of maximizing detection likelihood and minimizing expected 

contaminated demand volume.  The multiobjective results of this work are compared 

with other multiobjective results from other works in Table 6.21.  Again, other works 

considered other factors in their multiobjective approaches, but the comparison serves to 

ensure that other sets of nodes submitted in literature are not superior to those found in 

this work.  For both M = 5 and M = 20, Zall values for the nodes selected in this study are 

equal or better than the values calculated using nodes submitted by other works. 
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Table 6.20  Optimal sensor locations and performance measures for the three-prong 

multiobjective problem in the default attack case for BWSN Network 2.  

M Sensor �odes
*
 Zall 

Zlik 

(%) 

Ztime 

(min) 

Zvol 

(gal) 

5 551, 1486, 3770, 8336, 10874 2.42 29.9 4,366.9 97,510 

20 

551, 850, 1486, 1904, 1917, 2602, 3229, 

3629, 3770, 3836, 4247, 4306, 7441, 

7667, 8089, 8492, 9212, 9364, 10703, 

10874  

2.55 42.1 3,679.1 43,952 

*
 All sensor node numbers preceded by “JUNCTION-”. 

 

 

 

 

 
Figure 6.26  Optimal sensor locations with M = 5 for the three-prong multiobjective 

problem in the default attack case for BWSN Network 2.  
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Figure 6.27  Optimal sensor locations with M = 20 for the three-prong multiobjective 

problem in the default attack case for BWSN Network 2.  

  

sensor 
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Table 6.21  Comparison of optimal sensor locations for the three-prong multiobjective 

problem in the default attack case for BWSN Network 2 determined in this study with 

locations found in other works. 

M Work Sensor �odes
*
 Zall

**
 
Zlik

**
 

(%) 

Ztime
**

 

(min) 

Zvol
**
 

(gal) 
This Study 551, 1486, 3770, 8336, 10874 2.42 29.9 4,366.9 97,510 

Dorini et al. 

(2006) 
636, 3585, 4684, 9364, 10387 1.96 28.6 4,456.6 85,342 

Eliades and 

Polycarpou (2006) 
532, 1486, 3357, 4359, 4609 1.80 28.4 4,459.0 100,660 

Guan et al. (2006) 321, 3770, 4084, 4939, 7762 
*** 

21.2 4,696.4 75,824 

Huang et al. 

(2006) 
3355, 5088, 5430, 9005, 9550 

*** 
21.5 4,709.7 87,978 

Krause et al. 

(2006) 
3357, 4684, 10874, 11184, 11304  1.22 24.1 4,545.6 59,263 

5 

Wu and Walski 

(2006) 
3709, 4957, 6583, 8357, 9364 2.42 30.0 4,368.7 98,195 

This Study 

551, 850, 1486, 1904, 1917, 2602, 

3229, 3629, 3770, 3836, 4247, 

4306, 7441, 7667, 8089, 8492, 

9212, 9364, 10703, 10874  

2.55 42.1 3,679.1 43,952 

Dorini et al. 

(2006) 

647, 928, 1478, 1872, 2223, 2848, 

3573, 4650, 5076, 5366, 6835, 

7422, 8336, 8402, 9204, 9364, 

10874, 11271, 11528, 12377 

1.61 38.2 3,882.8 42,117 

Eliades and 

Polycarpou (2006) 

532, 1426, 1486, 1976, 3231, 

3679, 3836, 4234, 4359, 4609, 

5087, 5585, 6922, 7670, 7858, 

8629, 9360, 9787, 10885, 12167 

1.50 39.2 3,916.8 55,315 

Guan et al. (2006) 

174, 311, 1486, 1905, 2589, 2991, 

3548, 3757, 3864, 4184, 4238, 

5091, 6995, 7145, 7689, 8826, 

9308, 9787, 10614, 12086 

*** 
29.3 4,244.0 32,381 

Huang et al. 

(2006) 

73, 108, 1028, 1112, 1437, 2526, 

3180, 4036, 4648, 5363, 5826, 

5879, 6581, 8439, 8580, 8841, 

9363, 9616, 10216, 10385 

*** 
32.7 4,133.0 37,217 

Krause et al. 

(2006) 

1478, 1904, 2579, 3229, 3357, 

3635, 3747, 3836, 4032, 4132, 

4240, 4684, 6700, 8834, 8999, 

9142, 9364, 10874, 11184, 11304  

2.08 38.1 3,802.5 15,430 

20 

Wu and Walski 

(2006) 

871, 1334, 2589, 3115, 3640, 

3719, 4247, 4990, 5630, 6733, 

7442, 7714, 8387, 8394, 9778, 

10290, 10522, 10680, 11151, 

11519 

2.04 39.8 3,781.6 38,201 

*
 All sensor node numbers preceded by “JUNCTION-”. 

**
 Values computed using the software developed in this work. 

***
 Solution falls outside of Pareto front space. 

 

 



 

 
206 

 

  

Table 6.22 gives the multiobjective sensor placement results found in this study for the 

variant attack cases, and these results further show that maximizing Zall tends to preserve 

protection according to minimizing Ztime.  Figures 6.28 through 6.32 illustrate the 

locations of the sensor nodes selected for the variant cases that have different sensor node 

locations than those of the default attack case.  Table 6.23 shows that the results of this 

study when 20 sensors are employed for the applicable variant cases are superior to 

results of other works if evaluated under the multiobjective problem formulation 

developed in this work.   
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Table 6.22  Optimal sensor locations and performance measures for the three-prong 

multiobjective problem with M = 20 in the variant attack cases for BWSN Network 2. 

Attack Case Sensor �odes
*
 Zall 

Zlik 

(%) 

Ztime 

(min) 

Zvol 

(gal) 

default 

551, 850, 1486, 1904, 1917, 

2602, 3229, 3629, 3770, 3836, 

4247, 4306, 7441, 7667, 8089, 

8492, 9212, 9364, 10703, 10874  

2.55 42.1 3,679.1 43,952 

sensor detection 

resolution  

= 0.3 mg/L 

551, 636, 850, 1486, 1904, 1917, 

2602, 3229, 3629, 3770, 3836, 

4247, 4306, 7441, 8311, 8403, 

9210, 9364, 10703, 10874 

2.58 41.5 3,725.8 50,446 

contaminant 

injection duration 

= 10 h 

495, 636, 850, 1486, 1514, 1806, 

2602, 3229, 3357, 3573, 3770, 

3836, 4247, 4306, 7441, 7664, 

9022, 9364, 10716, 11687 

2.60 44.7 3,535.9 64,757 

contaminant 

hazard threshold 

= 0.0 mg/L 

551, 877, 1486, 1806, 1904, 

1917, 2602, 3229, 3573, 3770, 

3836, 4247, 4306, 7441, 7667, 

8444, 9212, 9364, 10703, 10874  

2.64 41.9 3,695.6 60,083 

response delay  

= 3 h 

551, 850, 1486, 1904, 1917, 

2602, 3229, 3629, 3770, 3836, 

4247, 4306, 7441, 7667, 8089, 

8492, 9212, 9364, 10703, 10874  

2.47 42.1 3,679.1 69,052 

2 injection nodes 

at 1 time 

636, 850, 1229, 1486, 1514, 

2602, 3229, 3357, 3629, 3770, 

3836, 4247, 4306, 7441, 7667, 

8942, 9364, 10720, 11304, 

11687 

2.74 66.4 2,378.4 52,111 

2 injection nodes 

at 2 times 

636, 850, 1229, 1486, 1514, 

2602, 3229, 3357, 3629, 3770, 

3836, 4247, 4306, 4806, 7441, 

7667, 8942, 9364, 10703, 10720  

2.74 64.2 2,616.0 51,807 

*
 All sensor node numbers preceded by “JUNCTION-”. 
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Figure 6.28  Optimal sensor locations with M = 20 for the three-prong multiobjective 

problem in the case of a detection resolution of 0.3 mg/L for BWSN Network 2.  

 

 

 

 
Figure 6.29  Optimal sensor locations with M = 20 for the three-prong multiobjective 

problem in the case of a 10-hour injection duration for BWSN Network 2. 
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Figure 6.30  Optimal sensor locations with M = 20 for the three-prong multiobjective 

problem in the case of a hazard threshold of 0.0 mg/L for BWSN Network 2. 

 

 

 

 
Figure 6.31  Optimal sensor locations with M = 20 for the three-prong multiobjective 

problem in the case of 2 nodes injected at 1 time for BWSN Network 2. 
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Figure 6.32  Optimal sensor locations with M = 20 for the three-prong multiobjective 

problem in the case of 2 nodes injected at 2 times for BWSN Network 2. 
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Table 6.23  Comparison of optimal sensor locations for the three-prong multiobjective 

problem with M = 20 in the variant attack cases for BWSN Network 2 determined in this 

study with locations found in other works. 

Attack Case Work Sensor �odes
*
 Zall 

Zlik
**
 

(%) 

Ztime
** 

 (min) 

Zvol
**
  

(gal) 

This Study 
495, 636, 850, 1486, 1514, 1806, 2602, 3229, 
3357, 3573, 3770, 3836, 4247, 4306, 7441, 

7664, 9022, 9364, 10716, 11687 
2.60 44.7 3,535.9 64,757 

Dorini et al. 

(2006) 

637, 1170, 1478, 1872, 2223, 2848, 3573, 

4685, 4985, 5409, 6429, 7422, 8336, 8709, 
9210, 9364, 10407, 10874, 11528, 12352 

1.35 40.1 3,788.3 62,395 

Eliades and 

Polycarpou 

(2006) 

532, 1426, 1486, 1976, 3231, 3679, 3836, 

4234, 4359, 4609, 5087, 5585, 6922, 7670, 
7858, 8629, 9360, 9787, 10885, 12167 

*** 
41.4 3,850.0 105,212 

Krause et al. 

(2006) 

1478, 1904, 2579, 3229, 3357, 3635, 3747, 
3836, 4032, 4132, 4240, 4684, 7441, 8999, 

9142, 9364, 10874, 10944, 11184, 11304 
2.09 41.4 3,650.6 32,629 

contaminant 

injection 

duration  

= 10 h 

Wu and Walski 

(2006) 

623, 872, 1081, 1486, 2313, 3115, 3640, 

3718, 4375, 4621, 4990, 5481, 7443, 7711, 
8294, 8392, 9778, 10190, 10522, 10680 

1.97 42.8 3,673.1 66,319 

This Study 
551, 850, 1486, 1904, 1917, 2602, 3229, 

3629, 3770, 3836, 4247, 4306, 7441, 7667, 
8089, 8492, 9212, 9364, 10703, 10874  

2.47 42.1 3,679.1 69,052 

Dorini et al. 

(2006) 

637, 1428, 1478, 1999, 2527, 3328, 3573, 

4684, 4985, 5391, 6837, 7638, 8336, 9187, 
9196, 9677, 10208, 10874, 11528, 12352 

1.50 36.8 3,908.1 44,311 

Eliades and 

Polycarpou 

(2006) 

532, 1426, 1486, 3231, 3836, 4234, 4359, 

4511, 4609, 5087, 5585, 6922, 7670, 7858, 

8403, 8629, 9360, 9787, 10885, 12167 
1.25 38.2 3,945.3 81,299 

Krause et al. 

(2006) 

339, 636, 3357, 3629, 4032, 4132, 4240, 

4684, 6583, 6700, 7336, 7652, 8999, 9142, 
9722, 10614, 10874, 11167, 11304, 12258  

1.25 34.3 3,961.6 24,535 

response delay  

= 3 h 

Wu and Walski 

(2006) 

871, 1081, 2313, 3115, 3322, 3640, 3719, 

3780, 4209, 4990, 5630, 6737, 7442, 7908, 
8408, 9364, 9779, 10494, 10680, 12389 

1.99 39.6 3,787.0 60,401 

This Study 
636, 850, 1229, 1486, 1514, 2602, 3229, 

3357, 3629, 3770, 3836, 4247, 4306, 7441, 

7667, 8942, 9364, 10720, 11304, 11687 
2.74 66.4 2,378.4 52,111 

Dorini et al. 

(2006) 

636, 1170, 1478, 1729, 2241, 3573, 3770, 

4594, 4985, 5387, 7422, 8272, 8336, 8714, 

9030, 9364, 10186, 10874, 11528, 12377 
1.89 61.5 2,625.3 41,527 

Eliades and 

Polycarpou 

(2006) 

375, 532, 1426, 1486, 1976, 2865, 3235, 
3679, 3836, 4234, 4359, 4609, 5087, 5585, 

6922, 7670, 7858, 8629, 9787, 10670 
1.76 63.6 2,681.3 89,043 

Huang et al. 

(2006) 

73, 108, 630, 889, 2252, 2526, 2544, 3947, 

4648, 5086, 5363, 6581, 8246, 8439, 8719, 

9027, 9363, 9999, 10214, 10358 

*** 
51.1 3,155.6 59,228 

Krause et al. 

(2006) 

1478, 1904, 2579, 3229, 3357, 3635, 3770, 

3836, 4032, 4132, 4240, 7441, 7668, 8999, 

9142, 9364, 10874, 10944, 11184, 11304 
2.38 63.1 2,482.8 25,586 

2 injection 

nodes at 1 time 

Wu and Walski 

(2006) 

872, 1081, 1422, 2595, 3115, 3318, 3640, 
3782, 4375, 4990, 5630, 6734, 7442, 7713, 

8394, 9778, 10522, 10680, 11151, 12389 
2.18 63.9 2,534.4 62,456 

*
 All sensor node numbers preceded by “JUNCTION-”. 

**
  Values computed using the software developed in this work. 

***
 Solution falls outside of Pareto front space. 
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6.4.2 ANALYSIS OF PERFORMANCE TRADEOFFS 

 

The quantified tradeoffs in protection with respect to individual protection goals made in 

employing multiobjective sensor node solutions for the various attack cases are indicated 

in Tables 6.24 and 6.25.  As observed above and indicated by the performance cost 

values in the tables below, the solutions to maximize Zall preserve a great deal of 

protection with regard to minimizing Ztime and make larger compromises in terms of the 

other two protection goals.  One minor exception is seen in the attack case of the 0.0 

mg/L contaminant hazard threshold, for which the compromises in terms of minimizing 

Ztime and minimizing Zvol were both small but almost equal. 

 

 

Table 6.24  Performance tradeoffs for individual protection goals resulting from 

maximizing Zall with M = 20 in the default attack case for BWSN Network 2.  

Protection 

Goal 

Performance 

Measure 

Pareto Front 

Space 

Minimum 

Value 

Pareto Front 

Space 

Maximum 

Value 

Value for 

Maximizing 

Zall 

Protection 

Performance 

Cost 

Zlik 33.5% 43.5%
*
 42.1% 13.9% 

Ztime 3,660.9 min
*
 4,015.0 min 3,679.1 min 5.1% 

Zvol 12,732 gal
*
 135,321 gal 43,952 gal 25.5% 

*
 Value represents maximum protection with respect to the particular protection goal in 

question.   
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Table 6.25  Performance tradeoffs for individual protection goals resulting from 

maximizing Zall with M = 20 in the variant attack cases for BWSN Network 2.  

Attack Case 

Protection 

Performance 

Cost, 

Zlik 

Protection 

Performance 

Cost, 

Ztime 

Protection 

Performance 

Cost, 

Zvol 

default 13.9% 5.1% 25.5% 

sensor detection resolution  

= 0.3 mg/L 
13.3% 1.2% 28.4% 

contaminant injection 

duration = 10 h 
12.6% 5.9% 22.0% 

contaminant hazard threshold 

= 0.0 mg/L 
16.4% 9.8% 9.5% 

response delay = 3 h 13.6% 5.1% 34.1% 

2 injection nodes at 1 time 8.3% 2.1% 15.4% 

2 injection nodes at 2 times 9.4% 0.3% 15.9% 

 

 

 

6.4.3 EVALUATION OF NODAL IMPORTANCE 

 

Tables 6.26 and 6.27 indicate the effectiveness of the multiobjective nodal importance 

approach for this large system by reporting the lowest-ranked nodes in solutions reported 

above and proportions of ranked WDS nodes that contain the optimal solutions.  In the 

default attack case with 5 sensors employed, the optimal solution was isolated to just over 

11% of WDS nodes using the multiobjective nodal importance approach.  In the attack 

cases with 20 sensors employed, the proportion of nodes containing the optimal solution 

range between roughly 15% and 30%.   

 

The solution convergence plots in Figures 6.33 and 6.34 show that reasonable progress 

toward finding the optimal solution occurs with each iteration of ISSM in most cases.  

One case that is peculiar in terms of rate of convergence is that of the 0.0 mg/L hazard 
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threshold for which many iterations of ISSM were required to achieve solutions close to 

optimal.  On the whole, though, it appears that ISSM making use of the multiobjective 

nodal importance approach developed in this study provides well-performing tradeoff 

solutions for this large system and is able to narrow the search domain for those solutions 

to substantial degrees.   

 

 

Table 6.26  Nodal importance ranks for the lowest-ranked BWSN Network 2 nodes of 

optimal solutions for the three-prong multiobjective problem in the default attack case 

and the proportions of ranked BWSN Network 2 nodes containing the optimal solutions.   

M 

Lowest �odal 

Importance 

Rank 

Proportion of  

Ranked WDS �odes 

Containing Optimal 

Solution 

5 1,385 11.1% 

20 2,602 20.8% 

 

 

 

Table 6.27  Nodal importance ranks for the lowest-ranked BWSN Network 2 nodes of 

optimal solutions for the three-prong multiobjective problem with M = 20 in the variant 

attack cases and the proportions of ranked BWSN Network 2 nodes containing the 

optimal solutions. 

Attack Case 

Lowest �odal 

Importance 

Rank 

Proportion of 

Ranked WDS �odes 

Containing Optimal 

Solution 

default 2,602 20.8% 

sensor detection resolution  

= 0.3 mg/L 
1,814 14.5% 

contaminant injection duration 

= 10 h 
3,496 27.9% 

contaminant hazard threshold 

= 0.0 mg/L 
3,260 26.0% 

response delay = 3 h 2,602 20.8% 

2 injection nodes at 1 time 3,642 29.1% 

2 injection nodes at 2 times 2,942 23.5% 
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Figure 6.33  Solution convergence as ISSM is carried out for the three-prong 

multiobjective problem in the default attack case for BWSN Network 2.  (Only solution 

values for subset sizes of 6,000 or less are plotted as solution reached best performance 

for both M = 5 and M = 20 by subset size = 6,000; negative Zall values are not plotted.) 
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Figure 6.34  Solution convergence as ISSM is carried out for the three-prong 

multiobjective problem with M = 20 in the default and variant attack cases for BWSN 

Network 2.  (Only solution values for subset sizes of 6,000 or less are plotted as solutions 

for all cases reached best performance by subset size = 6,000; negative Zall values are not 

plotted.) 
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6.5 COMPUTATIO�AL EXPE�SE �OTES 

 

As expected, the computational resources required in sensor placement optimization for 

BWSN Network 2 are significantly greater than those required for BWSN Network 1.  

Scenario data generation took approximately 18 hours and produced about 1 GB of data 

for the importance and optimization phases.  The importance and optimization cases for 

all single-objective problems and the multiobjective problem together took roughly 

between 3 and 5 hours to carry out under the ISSM stopping criteria specified for this 

study; longer runtimes were associated with cases requiring broader searches for optimal 

solutions.  Again, these times may have been shorter if a different optimization solver had 

been used.  The computational demands for this study seem very manageable, though, 

given the memory required (e.g., 15 to 30 GB for Krause et al. (2006)) and runtimes 

required (e.g., multiple days for Berry et al. (2006c) and Krause et al. (2006)) for the 

methods of other works documented.   
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CHAPTER 7 

RESULTS A�D A�ALYSIS: TOMS RIVER WDS 

Chapter 7  

Results of sensor placement optimization for the Toms River WDS are presented in this 

chapter.  The results are analyzed independently as well as with respect to the other two 

study systems.  Comparisons between the results for the Toms River WDS and those for 

BWSN Network 2 are especially important in order to validate the optimization methods 

of this study for use in monitoring large systems of most interest.  Sensor placement 

optimization has not been performed for this system prior to this study, so there are no 

other results from other works with which to compare to the results of this study. 

 

7.1 SI�GLE-OBJECTIVE PROBLEM: MAXIMIZI�G Zlik  

 

The sensor placement results for the maximizing of detection likelihood for the Toms 

River WDS are given and discussed below. 

 

7.1.1 SENSOR NODE SOLUTIONS 

 

Table 7.1 presents the sensor node solutions for maximizing detection likelihood in the 

default attack case for the Toms River WDS, and Figures 7.1 and 7.2 indicate where the 

nodes are located in the system.  As indicated by the data reported in Table 7.1, the 

optimization method of this study seems very effective in maximizing detection 

likelihood.  For instance, with only 5 sensors employed, contamination is detected for 
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over half of the attack scenarios (i.e., 51.8%) given the sensor locations listed in the table.  

These sensors apparently provide the major coverage for the system.  With 20 sensors 

employed, local neighborhoods of nodes are able to be covered, allowing for a higher 

detection likelihood.  In comparing these results with the counterpart results for BWSN 

Network 2, it is observed that Zlik values are higher for the Toms River WDS even though 

the system has more nodes than does BWSN Network 2 and is of comparable size to that 

of BWSN Network 2, giving some measure of validation that the results in Table 7.1 are 

indeed good.  Figures 7.1 and 7.2 show the general spread of sensor locations toward the 

periphery of the system where many hydraulic pathways end; this behavior in sensor 

placement was seen for maximizing detection likelihood for both BWSN Networks 1 and 

2.  It is also noted that the Zvol values in Table 7.1 are much higher than those in Table 6.1 

for BWSN Network 2, indicating that the potential volume that could be contaminated for 

this system is much higher than that for BWSN Network 2.   

 

Table 7.2 gives the sensor node solutions for the variant attack cases.  In short, the sensor 

node locations do not vary greatly from attack case to attack case, and Zlik values vary in 

the expected manners discussed previously for BWSN Networks 1 and 2.  Figures 7.3 

through 7.6 depict the sensor node locations for the variant attack cases. 
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Table 7.1  Optimal sensor locations and performance measures for maximizing detection 

likelihood in the default attack case for the Toms River WDS.  

M Sensor �odes 
Zlik

*
 

(%) 

Ztime 

(min) 

Zvol  

(gal) 

5 1091, 9669, 10681, 12301, 13107 51.8 4,035.3 548,469 

20 

1091, 1920, 2959, 3715, 5005, 5359, 7722, 

8119, 8180, 8421, 9669, 10681, 10711, 10776, 

11753, 13289, 14107, 14536, 14712, 15111 59.4 3,367.0 227,484 
*
 Performance measure for protection goal of interest. 

 

 

 

 
Figure 7.1  Optimal sensor locations with M = 5 for maximizing detection likelihood in 

the default attack case for the Toms River WDS. 
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Figure 7.2  Optimal sensor locations with M = 20 for maximizing detection likelihood in 

the default attack case for the Toms River WDS. 
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Table 7.2  Optimal sensor locations and performance measures for maximizing detection 

likelihood with M = 20 in the variant attack cases for the Toms River WDS. 

Attack Case Sensor �odes 
Zlik

*
 

(%) 

Ztime 

(min) 

Zvol  

(gal) 

default 

1091, 1920, 2959, 3715, 5005, 5359, 

7722, 8119, 8180, 8421, 9669, 10681, 

10711, 10776, 11753, 13289, 14107, 

14536, 14712, 15111 

59.4 3367.0 227,484 

sensor detection 

resolution  

= 0.3 mg/L 

1091, 1799, 1920, 3715, 4854, 5359, 

6759, 7722, 7924, 8588, 9144, 9451, 

9669, 10477, 10711, 10776, 11753, 

13289, 14536, 15111 

57.7 3340.4 176,052 

contaminant 

injection duration 

= 10 h 

56, 1091, 1920, 2959, 3715, 5359, 

7722, 8119, 8180, 8421, 9669, 10711, 

10776, 11231, 11753, 13289, 14107, 

14536, 14712, 15111 

60.8 3256.1 291,195 

2 injection nodes 

at 1 time 

56, 1091, 1920, 3662, 5005, 5359, 

7722, 8094, 8119, 8421, 9464, 10711, 

10776, 11753, 13289, 13335, 14536, 

14712, 14860, 15111 

82.5 2158.9 257,169 

2 injection nodes 

at 2 times 

56, 1091, 5005, 5359, 7722, 8094, 

8104, 8119, 8421, 9289, 9464, 10711, 

10776, 11753, 13289, 13335, 14536, 

14712, 14860, 15111 

83.4 2333.9 263,217 

*
 Performance measure for protection goal of interest.  
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Figure 7.3  Optimal sensor locations with M = 20 for maximizing detection likelihood in 

the case of a detection resolution of 0.3 mg/L for the Toms River WDS. 

  

 

 

 
Figure 7.4  Optimal sensor locations with M = 20 for maximizing detection likelihood in 

the case of a 10-hour injection duration for the Toms River WDS. 
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Figure 7.5  Optimal sensor locations with M = 20 for maximizing detection likelihood in 

the case of 2 nodes injected at 1 time for the Toms River WDS. 

 

 

 

 
Figure 7.6  Optimal sensor locations with M = 20 for maximizing detection likelihood in 

the case of 2 nodes injected at 2 times for the Toms River WDS. 

 

sensor 

sensor 



 

 
225 

 

  

7.1.2 EVALUATION OF NODAL IMPORTANCE 

 

To obtain the solutions above for all cases where a zero sensor detection resolution is 

assumed, ISSM was carried out making use of nodal ranking done by end-of-line node 

status first and nodal importance value found by (4.21) second, as was done for BWSN 

Network 2.  ISSM parameters used were those also used for BWSN Network 2 (Table 

6.5).  The Toms River WDS has 1,998 end-of-line nodes—enough end-of-line nodes to 

allow for many possible contaminant pathways to be covered without considering slow-

outflow nodes in the sorting procedure.  Of course, nodes are ranked according to nodal 

importance value only in the case of a 0.3 mg/L detection resolution.   

 

The nodal importance approach seems to be as effective for this system in narrowing the 

search for the optimal nodes to maximize detection likelihood as it was for the other two 

study systems.  The optimal sensor nodes in the default attack case with 5 sensors 

employed are able to be isolated to less than 3% of WDS nodes, given the data reported 

in Table 7.3.  Tables 7.3 and 7.4 indicate that the search can be narrowed to 

approximately 5 to 8% of WDS nodes when 20 sensors are employed in all attack cases 

studied.  The effect of the higher detection resolution on nodal importance is more 

apparent for this system.  A broader proportion of WDS nodes is needed to contain the 

optimal solution in this case because nodes cannot be stratified by end-of-line node 

status, as implied by the proportion for this case reported in Table 7.4.  
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The solution convergence plots in Figures 7.7 and 7.8 indicate that near-optimal solutions 

in all cases can be found with ISSM with one or two iterations, and only a few more 

iterations beyond the initial iteration can yield the optimal solution.  In sum, the nodal 

importance concepts for maximizing detection likelihood for a large system appear to be 

very effective in finding very well-performing solutions and narrowing the search for 

these solutions substantially for the Toms River WDS. 

 

  

Table 7.3  Nodal importance ranks for the lowest-ranked Toms River WDS nodes of 

optimal solutions for maximizing detection likelihood in the default attack case and the 

proportions of ranked Toms River WDS nodes containing the optimal solutions.   

M 

Lowest �odal 

Importance 

Rank 

Proportion of  

Ranked WDS �odes 

Containing Optimal 

Solution 

5 431 2.8% 

20 780 5.2% 

 

 

 

Table 7.4  Nodal importance ranks for the lowest-ranked Toms River WDS nodes of 

optimal solutions for maximizing detection likelihood with M = 20 in the variant attack 

cases and the proportions of ranked Toms River WDS nodes containing the optimal 

solutions. 

Attack Case 

Lowest �odal 

Importance 

Rank 

Proportion of 

Ranked WDS �odes 

Containing Optimal 

Solution 

default 780 5.2% 

sensor detection resolution  

= 0.3 mg/L 
1,153 7.7% 

contaminant injection duration 

= 10 h 
816 5.4% 

2 injection nodes at 1 time 998 6.7% 

2 injection nodes at 2 times 932 6.2% 

 

 

 

 

 



 

 
227 

 

  

 

 

 

 

 

 

 

 

 

0 300 600 900 1200 1500 1800 2100 2400 2700 3000

Subset Size

0

10

20

30

40

50

60
Z
li
k
 (

%
)

M = 5

M = 20

 
Figure 7.7  Solution convergence as ISSM is carried out for maximizing detection 

likelihood in the default attack case for the Toms River WDS.  (Only solution values for 

subset sizes of 3,000 or less are plotted as solution reached best performance for both M 

= 5 and M = 20 by subset size = 3,000.) 
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Figure 7.8  Solution convergence as ISSM is carried out for maximizing detection 

likelihood with M = 20 in the default and variant attack cases for the Toms River WDS.  

(Only solution values for subset sizes of 3,000 or less are plotted as solutions for all cases 

reached best performance by subset size = 3,000.) 
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7.2 SI�GLE-OBJECTIVE PROBLEM: MI�IMIZI�G Ztime 

 

Optimization results with respect to minimizing expected detection time are given and 

discussed below. 

 

7.2.1 SENSOR NODE SOLUTIONS 

 

Sensor nodes selected for minimizing expected detection time in the default attack time 

for the Toms River WDS are presented in Table 7.5.  It seems that the optimization 

approach of this work substantially reduced Ztime values for both M = 5 and M = 20 based 

on a comparison of Ztime values in Table 7.1 versus those in Table 7.5.  The results in 

Table 7.5 also seem desirable when compared to the results for minimizing expected 

detection time for BWSN Network 2, given that the Ztime values in Table 7.5 are less than 

their counterparts in Table 6.8.  As observed in the study of the other two study systems, 

there is only a small cost in detection likelihood when minimizing expected detection 

time for the Toms River WDS, and minimizing Ztime reduces Zvol significantly relative to 

Zvol values found when maximizing detection likelihood.   

 

Figures 7.9 and 7.10 show the shifts of some sensor nodes from the periphery of the 

system where contaminant pathway endpoints are located toward the center of the system 

(i.e., upstream from contaminant pathway endpoints).  The shift is most apparent in 

Figure 7.9 for the 5-sensor case; one sensor is needed much closer to the center of the 

system to detect contamination sooner as opposed to the sensor node layout in Figure 7.1 

that has all 5 sensors covering contaminant pathway endpoints.  It was observed in 
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Chapter 6 that sensor nodes selected for minimizing expected detection time for BWSN 

Network 2 often were nodes that intercepted flow from multiple contaminant pathways; 

that placement pattern is seen for this system as well with such sensor nodes as Junction 

382 and Junction 10130 that receive flows from multiple contaminant pathways.   

 

Table 7.6 gives the sensor nodes selected for the applicable variant attack cases, and 

Figures 7.11 through 7.14 depict their locations in the system.  As for the other two study 

systems, there are not significant adjustments in sensor node locations from attack case to 

attack case.  Also, Ztime varies in the same manner under different attack conditions 

relative to the default attack case as it did for the other two systems.     

 

Table 7.5  Optimal sensor locations and performance measures for minimizing expected 

detection time in the default attack case for the Toms River WDS.  

M Sensor �odes 
Zlik 

(%) 

Ztime
*
 

(min) 

Zvol  

(gal) 

5 382, 5081, 6333, 10130, 10682 49.6 3,428.3 102,922 

20 

382, 2678, 3740, 4399, 5081, 5593, 6333, 7688, 

7710, 7920, 9215, 9660, 9806, 10130, 10412, 

10682, 12926, 14202, 14496, 14746 

54.5 3,062.9 40,841 

*
 Performance measure for protection goal of interest. 
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Figure 7.9  Optimal sensor locations with M = 5 for minimizing expected detection time 

in the default attack case for the Toms River WDS.   

 

 

 

 
Figure 7.10  Optimal sensor locations with M = 20 for minimizing expected detection 

time in the default attack case for the Toms River WDS.   
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Table 7.6  Optimal sensor locations and performance measures for minimizing expected 

detection time with M = 20 in the variant attack cases for the Toms River WDS. 

Attack Case Sensor �odes 
Zlik 

(%) 

Ztime 
*
 

(min) 

Zvol 

(gal) 

default 

382, 2678, 3740, 4399, 5081, 5593, 

6333, 7688, 7710, 7920, 9215, 9660, 

9806, 10130, 10412, 10682, 12926, 

14202, 14496, 14746 

54.5 3,062.9 40,841 

sensor detection 

resolution  

= 0.3 mg/L 

382, 3506, 3740, 5103, 5576, 6333, 

6961, 7710, 7920, 9215, 9660, 10130, 

10412, 10682, 12051, 12683, 14202, 

14536, 14746, 14894  

52.8 3,176.5 56,236 

contaminant 

injection duration 

= 10 h 

382, 2265, 3506, 3740, 4340, 5511, 

6321, 7688, 7710, 7920, 8259, 9215, 

9660, 9806, 10130, 10412, 10682, 

13114, 14490, 14746  

55.9 2,987.2 71,375 

2 injection nodes 

at 1 time 

382, 414, 2673, 3740, 5223, 5593, 6376, 

7710, 7748, 7920, 8259, 9215, 9660, 

9806, 10130, 10412, 12271, 12683, 

14490, 14746  

78.1 1,886.5 87,327 

2 injection nodes 

at 2 times 

382, 2001, 3740, 3991, 5196, 5566, 

5917, 6321, 7710, 7755, 7920, 8469, 

9215, 9660, 9806, 10130, 10412, 10677, 

14496, 14746 

79.1 1,982.0 63,540 

*
 Performance measure for protection goal of interest. 
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Figure 7.11  Optimal sensor locations with M = 20 for minimizing expected detection 

time in the case of a detection resolution of 0.3 mg/L for the Toms River WDS.   

 

 

 

 
Figure 7.12  Optimal sensor locations with M = 20 for minimizing expected detection 

time in the case of a 10-hour injection duration for the Toms River WDS.   
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Figure 7.13  Optimal sensor locations with M = 20 for minimizing expected detection 

time in the case of 2 nodes injected at 1 time for the Toms River WDS.   

 

 

 

 
Figure 7.14  Optimal sensor locations with M = 20 for minimizing expected detection 

time in the case of 2 nodes injected at 2 times for the Toms River WDS.   
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7.2.2  EVALUATION OF NODAL IMPORTANCE 

 

The sensor nodes solutions above were found in the same way solutions for minimizing 

Ztime were found for the other two study systems: by conducting ISSM aided by the 

rankings resulting from the nodal importance function in (4.23).  Tables 7.7 and 7.8 

provide the ranks of the lowest ranked nodes for solutions found for minimizing expected 

detection time in the applicable attack cases.  The effectiveness of nodal importance in 

narrowing the search domain for this protection goal for the Toms River WDS is mostly 

comparable to that of BWSN Network 2; the optimal solution is contained to proportions 

in the 10 to 30% neighborhood of WDS nodes for all relevant attack cases.  The lowest 

ranks for M = 5 and M = 20 in the default attack case given in Table 7.7 are equal to each 

other since solutions for those two cases share the same lowest-ranked sensor node. 

 

The phenomenon of broader proportions of WDS nodes being required for the case of a 

10-hour injection duration and the two injection node cases to contain the optimal 

solution observed in optimization sensor placement for BWSN Network 2 is seen for this 

system as well.  It is suspected that this phenomenon occurred for the reasons discussed 

in Chapter 6.  In short, nodes become less distinguishable from each other in terms of 

importance with increased opportunities for WDS nodes to experience contamination.   

 

Convergence to very good solutions occurs rapidly for this system for all cases according 

to the plots in Figures 7.15 and 7.16, which is in contrast to the two injection node cases 

for BWSN Network 2 that are associated with much more gradual convergence rates.  
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Overall, though, the nodal importance concepts for minimizing expected detection time 

seem to be as effective in narrowing the search domain to find optimal sensor node 

solutions for the Toms River WDS as they are for BWSN Network 2. 

 

Table 7.7  Nodal importance ranks for the lowest-ranked Toms River WDS nodes of 

optimal solutions for minimizing expected detection time in the default attack case and 

the proportions of ranked Toms River WDS nodes containing the optimal solutions.   

M 

Lowest �odal 

Importance 

Rank 

Proportion of 

Ranked WDS �odes 

Containing Optimal 

Solution 

5 1,966 13.1% 

20 1,966 13.1% 

 

 

 

Table 7.8  Nodal importance ranks for the lowest-ranked Toms River WDS nodes of 

optimal solutions for minimizing expected detection time with M = 20 in the variant 

attack cases and the proportions of ranked Toms River WDS nodes containing the 

optimal solutions. 

Attack Case 

Lowest �odal 

Importance 

Rank 

Proportion of 

Ranked WDS �odes 

Containing Optimal 

Solution 

default 1,966 13.1% 

sensor detection resolution  

= 0.3 mg/L 
2,814 18.8% 

contaminant injection duration 

= 10 h 
3,267 21.8% 

2 injection nodes at 1 time 3,762 25.1% 

2 injection nodes at 2 times 3,874 25.9% 
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Figure 7.15  Solution convergence as ISSM is carried out for minimizing expected 

detection time in the default attack case for the Toms River WDS.  (Only solution values 

for subset sizes of 6,000 or less are plotted as solution reached best performance for both 

M = 5 and M = 20 by subset size = 6,000.) 
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Figure 7.16  Solution convergence as ISSM is carried out for minimizing expected 

detection time with M = 20 in the default and variant attack cases for the Toms River 

WDS.  (Only solution values for subset sizes of 6,000 or less are plotted as solutions for 

all cases reached best performance by subset size = 6,000.) 
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7.3 SI�GLE-OBJECTIVE PROBLEM: MI�IMIZI�G Zvol  

 

The results of sensor placement with regard to minimizing expected contaminated 

demand volume are presented and discussed here. 

 

7.3.1 SENSOR NODE SOLUTIONS 

 

Table 7.9 gives the sensor placement results for minimizing expected contaminated 

demand volume in the default attack case for the Toms River WDS.  Considering the Zvol 

values in Table 7.9 versus those in Tables 7.1 and 7.5 above, it seems that the 

optimization method for this protection goal reduced Zvol significantly.  In fact, the Zvol 

value for the 5-sensor case is substantially less than its counterpart for BWSN Network 2, 

supporting that the sensor node solution for this system for the 5-sensor case is indeed 

good.  For the 20-sensor case, the Zvol value is just marginally more than its counterpart 

for BWSN Network 2; this difference is not surprising given the very large amount of 

volume that can potentially be contaminated in this system as indicated by Zvol values in 

Table 7.1.  Again, the results for minimizing expected contaminated demand volume for 

BWSN Network 2 for this work were shown to be slightly suboptimal in Chapter 6, so it 

is possible the results in Table 7.9 are suboptimal.  However, it is likely that the results 

for this system are very well-performing given that the results for BWSN Network 2 were 

very good though not truly optimal. 

 

Figures 7.17 and 7.18 depict the locations of sensor nodes in the system for minimizing 

expected contaminated demand volume in the default attack case.  As observed in the 
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sensor placement optimization for the other two study systems, a noticeable shift of 

sensor node locations toward the center of the system (i.e., more upstream) occurs for this 

protection goal relative to locations used for maximizing Zlik and minimizing Ztime.  Many 

of the sensor nodes fall on major transmission lines, which was also the case for BWSN 

Network 2.  Due to the need to detect contamination sooner to minimize Zvol, it is not 

surprising that some sensor nodes are close in proximity to or even match (e.g., Junction 

10130) those selected for minimizing expected detection time.   

 

 

Table 7.9  Optimal sensor locations and performance measures for minimizing expected 

contaminated demand volume in the default attack case for the Toms River WDS.  

M Sensor �odes 
Zlik 

(%) 

Ztime 

(min) 

Zvol 
*
 

(gal) 

5 1796, 4819, 5822, 7287, 9864 41.9 3,653.9 44,258 

20 

571, 953, 1796, 2075, 4275, 4741, 5132, 5207, 

5825, 5875, 6439, 6584, 6833, 7375, 8375, 8833, 

9174, 9425, 9495, 10130 

45.9 3,301.9 14,525 

*
 Performance measure for protection goal of interest. 
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Figure 7.17  Optimal sensor locations with M = 5 for minimizing expected contaminated 

demand volume in the default attack case for the Toms River WDS.    

 

 

 

 
Figure 7.18  Optimal sensor locations with M = 20 for minimizing expected 

contaminated demand volume in the default attack case for the Toms River WDS.   
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Table 7.10 provides the sensor nodes selected for the variant attack cases, and the 

locations of the nodes are indicated in Figures 7.19 through 7.23.  Sensor node locations 

are the same for the two injection nodes cases, so only sensor placement in the case of 2 

nodes injected at 1 time is illustrated (Figure 7.23).  Zvol values vary relative to the default 

attack case in the manners observed in sensor placement optimization for BWSN 

Network 2 for all variant attack cases.  As documented repeatedly for other protection 

goals and study systems, sensor node locations do not change to a large degree from 

attack case to attack case.   
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Table 7.10  Optimal sensor locations and performance measures for minimizing expected 

contaminated demand volume with M = 20 in the variant attack cases for the Toms River 

WDS. 

Attack Case Sensor �odes 
Zlik 

(%) 

Ztime  

(min) 

Zvol 
*
 

(gal) 

default 

571, 953, 1796, 2075, 4275, 4741, 5132, 

5207, 5825, 5875, 6439, 6584, 6833, 

7375, 8375, 8833, 9174, 9425, 9495, 

10130 

45.9 3,301.7 14,525 

sensor detection 

resolution  

= 0.3 mg/L 

571, 953, 1796, 2075, 4275, 4741, 5132, 

5199, 5825, 5875, 6439, 6584, 7064, 

7375, 8375, 8833, 9174, 9425, 9495, 

10130 

43.9 3,394.4 16,522 

contaminant 

injection duration 

= 10 h 

571, 953, 2075, 3713, 4275, 4741, 5132, 

5207, 5825, 5875, 6439, 6584, 6833, 

7375, 8375, 8833, 9174, 9425, 9495, 

10130 

46.3 3,281.3 23,053 

contaminant 

hazard threshold 

= 0.0 mg/L 

571, 953, 1796, 2075, 4275, 4741, 5132, 

5207, 5825, 5875, 6439, 6584, 6905, 

7375, 8375, 8833, 9219, 9425, 9495, 

10130 

46.1 3,289.8 32,056 

response delay    

= 3 h 

571, 953, 1796, 2075, 4284, 4741, 5132, 

5207, 5825, 5875, 6458, 6584, 6833, 

7375, 8375, 8833, 9219, 9425, 9495, 

10130 

45.9 3,296.7 22,484 

2 injection nodes 

at 1 time 

571, 953, 1796, 2075, 4275, 4741, 5132, 

5199, 5825, 5875, 6439, 6584, 6833, 

7375, 8375, 8833, 9174, 9425, 9495, 

10130 

70.0 1,977.0 16,979 

2 injection nodes 

at 2 times 

571, 953, 1796, 2075, 4275, 4741, 5132, 

5199, 5825, 5875, 6439, 6584, 6833, 

7375, 8375, 8833, 9174, 9425, 9495, 

10130 

69.8 2,146.2 19,635 

*
 Performance measure for protection goal of interest. 
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Figure 7.19  Optimal sensor locations with M = 20 for minimizing expected 

contaminated demand volume in the case of a detection resolution of 0.3 mg/L for the 

Toms River WDS. 
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Figure 7.20  Optimal sensor locations with M = 20 for minimizing expected 

contaminated demand volume in the case of a 10-hour injection duration for the Toms 

River WDS. 
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Figure 7.21  Optimal sensor locations with M = 20 for minimizing expected 

contaminated demand volume in the case of a hazard threshold of 0.0 mg/L for the Toms 

River WDS. 
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Figure 7.22  Optimal sensor locations with M = 20 for minimizing expected 

contaminated demand volume in the case of a 3-hour response delay for the Toms River 

WDS. 
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Figure 7.23  Optimal sensor locations with M = 20 for minimizing expected 

contaminated demand volume in the case of 2 nodes injected at 1 time for the Toms River 

WDS. 
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7.3.2 EVALUATION OF NODAL IMPORTANCE 

 

Solutions above were found by conducting ISSM using nodal importance values found 

with the large-system nodal importance function in (4.27).  Given the data in Tables 7.11 

and 7.12, nodal importance seems to allow for significant narrowing of the search domain 

to find those solutions.  When 5 sensors are employed in the default attack case, the 

search domain was effectively narrowed to less than 8% of WDS nodes, while for all 

cases with 20 sensors employed the search was narrowed to roughly between 11 and 

18%.   

 

Solution convergence plots in Figures 7.24 and 7.25 show that ISSM can converge to 

near-optimal solutions with only few iterations.  The behavior of the curves in Figure 

7.24 is particularly interesting when compared to the counterpart curves in Figure 6.23 

for BWSN Network 2.  In Figure 6.23, the curves for the different numbers of sensors 

employed are quite separated from each other, whereas the curves in Figure 7.24 are 

close to each other when subset size is small.  Nodal importance rankings for the Toms 

River WDS seem to be more grouped according to regions of the system, likely due to 

the heterogeneity of the system in contrast to the largely homogenous configuration of 

BWSN Network 2.  Small subsets of highly-ranked nodes can provide relatively good 

solutions when 5 sensors are employed; these 5 sensors play the major roles in reducing 

Zvol.  But, placing 15 additional sensors with these same small subsets would only provide 

limited additional protection to a few local areas in the system due to the grouping of 

nodal importance rankings.  Therefore, several iterations of ISSM are needed to account 
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for all areas of the system in order to place 20 sensors in an evenly distributed manner.  

The consequence is the closeness of the curves in Figure 7.24 for the first few ISSM 

subsets.  Despite the ranking scheme being correlated to particular system areas, the best 

solution for the Toms River WDS can still be isolated to relatively small proportions of 

WDS nodes as indicated in Table 7.11. 

 

Table 7.11  Nodal importance ranks for the lowest-ranked Toms River WDS nodes of 

optimal solutions for minimizing expected contaminated demand volume in the default 

attack case and the proportions of ranked Toms River WDS nodes containing the optimal 

solutions.   

M 

Lowest �odal 

Importance 

Rank 

Proportion of 

Ranked WDS �odes 

Containing Optimal 

Solution 

5 1,135 7.6% 

20 1,675 11.2% 

 

 

 

Table 7.12  Nodal importance ranks for the lowest-ranked Toms River WDS nodes of 

optimal solutions for minimizing expected contaminated demand volume with M = 20 in 

the variant attack cases and the proportions of ranked Toms River WDS nodes containing 

the optimal solutions. 

Attack Case 

Lowest �odal 

Importance 

Rank 

Proportion of 

Ranked WDS �odes 

Containing Optimal 

Solution 

default 1,675 11.2% 

sensor detection resolution  

= 0.3 mg/L 
2,363 15.8% 

contaminant injection duration 

= 10 h 
2,685 17.9% 

contaminant hazard threshold  

= 0.0 mg/L 
2,248 15.0% 

response delay = 3 h 1,675 11.2% 

2 injection nodes at 1 time 2,219 14.8% 

2 injection nodes at 2 times 2,150 14.4% 

 

 



 

 
251 

 

  

 

 

 

 

 

 

 

 

 

0 900 1800 2700 3600 4500

Subset Size

10000

20000

30000

40000

50000

Z
vo
l 

(g
a

l)

M = 5

M = 20

 
 

Figure 7.24  Solution convergence as ISSM is carried out for minimizing expected 

contaminated demand volume in the default attack case for the Toms River WDS.  (Only 

solution values for subset sizes of 4,500 or less are plotted as solution reached best 

performance for both M = 5 and M = 20 by subset size = 4,500.) 
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Figure 7.25  Solution convergence as ISSM is carried out for minimizing expected 

contaminated demand volume with M = 20 in the default and variant attack cases for the 

Toms River WDS.  (Only solution values for subset sizes of 4,500 or less are plotted as 

solutions for all cases reached best performance by subset size = 4,500.) 
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7.4 MULTIOBJECTIVE PROBLEM: MAXIMIZI�G Zall 

 

The results of sensor placement with regard to the three-prong multiobjective problem are 

presented and discussed in this section. 

 

7.4.1 SENSOR NODE SOLUTIONS  

 

The sensor placement optimization results for the three-prong multiobjective problem for 

the Toms River WDS are presented in this section.  Table 7.13 gives the sensor nodes 

selected for the default attack case, and Figures 7.26 and 7.27 indicate the locations of 

these nodes in the system.  The pattern of solutions for maximizing Zall resembling to 

some degree those for minimizing Ztime is apparent for this system as well, as evidenced 

by the Ztime values in Table 7.13 and sensor node layouts in Figures 7.26 and 7.27.   

This trend is also seen in examining sensor placement for the variant attack cases, as 

expected.  Table 7.14 gives the sensor nodes for those cases, and Figures 7.28 through 

7.33 depict their locations in the system.   

 

Also as expected, sensor node locations do not vary greatly from attack case to attack 

case.  One major difference between the sensor node solutions for this system and those 

of the other two systems is that the optimal solutions preserve much protection in terms 

of both minimizing Ztime and minimizing Zvol, whereas for the other two systems a greater 

amount of volume-related protection was sacrificed for the multiobjective solution.  Even 

the sensor node locations in the figures below suggest the protection preservation for both 
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of those individual protection goals; the locations visually appear to be a compromise 

between the placements for minimizing Ztime and minimizing Zvol.  This difference is 

explored further below.   

 

 

Table 7.13  Optimal sensor locations and performance measures for the three-prong 

multiobjective problem in the default attack case for the Toms River WDS.  

M Sensor �odes Zall 
Zlik 

(%) 

Ztime 

(min) 

Zvol 

(gal) 

5 382, 437, 7125, 8792, 10130 2.79 50.1 3,431.2 61,793 

20 

382, 437, 1796, 3678, 4657, 5183, 5741, 

6667, 7061, 7125, 7428, 7920, 8254, 8375, 

8792, 9331, 9660, 10130, 10236, 10412 

2.49 53.1 3,064.9 21,923 

 

 

 

 
Figure 7.26  Optimal sensor locations with M = 5 for the three-prong multiobjective 

problem in the default attack case for the Toms River WDS.    
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Figure 7.27  Optimal sensor locations with M = 20 for the three-prong multiobjective 

problem in the default attack case for the Toms River WDS.   
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Table 7.14  Optimal sensor locations and performance measures for the three-prong 

multiobjective problem with M = 20 in the variant attack cases for the Toms River WDS. 

Attack Case Sensor �odes Zall 
Zlik 

(%) 

Ztime 

(min) 

Zvol 

(gal) 

default 

382, 437, 1796, 3678, 4657, 

5183, 5741, 6667, 7061, 7125, 

7428, 7920, 8254, 8375, 8792, 

9331, 9660, 10130, 10236, 10412 

2.49 53.1 3,064.9 21,923 

sensor detection 

resolution  

= 0.3 mg/L 

382, 437, 1796, 2286, 3678, 

3832, 5183, 6667, 7061, 7125, 

7428, 7920, 8254, 8375, 8792, 

9331, 9660, 10130, 10236, 10412 

2.51 51.7 3,176.8 24,874 

contaminant 

injection duration 

= 10 h 

382, 434, 1796, 3678, 3836, 

5183, 5741, 6667, 7061, 7125, 

7428, 8254, 8375, 8792, 9331, 

9516, 9660, 10130, 10236, 10412 

2.47 54.2 3,002.1 28,623 

contaminant 

hazard threshold  

= 0.0 mg/L 

437, 1796, 3547, 3678, 4657, 

5183, 5741, 6667, 7061, 7125, 

7428, 7920, 8254, 8375, 8792, 

9331, 9660, 10130, 10236, 10412 

2.53 53.2 3,063.4 42,678 

response delay  

= 3 h 

382, 434, 1796, 3678, 4657, 

5183, 5743, 6667, 7061, 7125, 

7428, 7920, 8254, 8375, 8792, 

9331, 9660, 10130, 10236, 10412 

2.50 53.1 3,064.2 30,769 

2 injection nodes 

at 1 time 

382, 437, 3678, 3757, 4657, 

5183, 5741, 6667, 7061, 7125, 

7428, 8254, 8375, 8792, 9331, 

9516, 9660, 10130, 10236, 10412 

2.52 77.6 1,902.5 24,712 

2 injection nodes 

at 2 times 

437, 3547, 3678, 3757, 4657, 

5183, 5741, 6667, 7061, 7125, 

7428, 8254, 8375, 8792, 9331, 

9516, 9660, 10130, 10236, 10412 

2.52 77.5 1,989.2 26,203 
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Figure 7.28  Optimal sensor locations with M = 20 for the three-prong multiobjective 

problem in the case of a detection resolution of 0.3 mg/L for the Toms River WDS. 

 

 

 

 
Figure 7.29  Optimal sensor locations with M = 20 for the three-prong multiobjective 

problem in the case of a 10-hour injection duration for the Toms River WDS. 
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Figure 7.30  Optimal sensor locations with M = 20 for the three-prong multiobjective 

problem in the case of a hazard threshold of 0.0 mg/L for the Toms River WDS. 

 

 

 

 
Figure 7.31  Optimal sensor locations with M = 20 for the three-prong multiobjective 

problem in the case of a 3-hour response delay for the Toms River WDS. 
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Figure 7.32  Optimal sensor locations with M = 20 for the three-prong multiobjective 

problem in the case of 2 nodes injected at 1 time for the Toms River WDS. 

 

 

 

 
Figure 7.33  Optimal sensor locations with M = 20 for the three-prong multiobjective 

problem in the case of 2 nodes injected at 2 times for the Toms River WDS. 
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7.4.2 ANALYSIS OF PERFORMANCE TRADEOFFS 

 

The compromises in protection performance made in selecting multiobjective sensor 

node solutions when 20 sensors are employed are quantified and discussed below.   

Table 7.15 provides these quantified costs for the default attack case, and Table 7.16 

provides the costs for the variant cases.  As mentioned above, multiobjective solutions for 

this system preserve a great deal of protection with regard to both minimizing Ztime and 

minimizing Zvol, and this protection preservation is evident in examining the performance 

costs in Tables 7.15 and 7.16.  The costs in terms of maximizing Zlik are significantly 

more than they were for multiobjective solutions for the other two study systems.   

 

The differences in performance tradeoffs between this system and the other two systems 

are reasonable, though.  The solutions to maximize Zall mirror those to minimize Ztime to 

significant degrees.  The performance costs in terms of maximizing Zlik for this system in 

minimizing Ztime were not large, but they are somewhat more than those for the other two 

systems.  Thus, the performance costs in terms of maximizing Zlik in maximizing Zall are 

also expected to be somewhat larger.  In order to compensate for the increase costs, 

multiobjective solutions are chosen to preserve greater protection in terms of minimizing 

Zvol.     
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Table 7.15  Performance tradeoffs for individual protection goals resulting from 

maximizing Zall with M = 20 in the default attack case for the Toms River WDS.  

Protection 

Goal 

Performance 

Measure 

Pareto Front 

Space 

Minimum 

Value 

Pareto Front 

Space 

Maximum 

Value 

Value for 

Maximizing 

Zall 

Protection 

Performance 

Cost 

Zlik 45.9% 59.4%
*
 53.1% 46.7% 

Ztime 3063.0 min
*
 3367.0 min 3064.9 min 0.6% 

Zvol 14,525 gal
*
 227,484 gal 21,923 gal 3.5% 

*
 Value represents maximum protection with respect to the particular protection goal in 

question.   

 

 

 

Table 7.16  Performance tradeoffs for individual protection goals resulting from 

maximizing Zall with M = 20 in the variant attack cases for the Toms River WDS.  

Attack Case 

Protection 

Performance 

Cost, 

Zlik 

Protection 

Performance 

Cost, 

Ztime 

Protection 

Performance 

Cost, 

Zvol 

default 46.7% 0.6% 3.5% 

sensor detection 

resolution = 0.3 mg/L 
43.6% 0.2% 5.2% 

contaminant injection 

duration = 10 h 
45.5% 5.1% 2.1% 

contaminant hazard 

threshold = 0.0 mg/L 
46.6% 0.1% 0.2% 

response delay = 3 h 46.7% 0.4% 3.2% 

2 injection nodes at  

1 time 
39.3% 5.9% 3.2% 

2 injection nodes at  

2 times 
43.4% 2.0% 2.7% 

 

 

 

 

7.4.3 EVALUATION OF NODAL IMPORTANCE 

 

The multiobjective sensor placement results above were found using ISSM that employed 

nodal importance rankings obtained from performing the Pareto dominance-based 

approach described in Section 4.5.2.1.  The effectiveness of nodal importance in 
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narrowing the search for those solutions is indicated by Tables 7.17 and 7.18.  The ranks 

of lowest-ranked nodes in the tables suggest that a proportion of approximately 15% of 

WDS nodes is required to contain the optimal solution with 5 sensors employed, and 

roughly 25 to 30% of WDS nodes are needed to contain the optimal solution with 20 

sensors employed.  Solution convergence plots in Figures 7.34 and 7.35 show that 

convergence to good solutions is not especially rapid, though.  ISSM requires a subset of 

almost 2,400 nodes in size to find a near-optimal solution when 5 sensors are employed 

in the default attack case, and a subset of about 4,000 nodes is required with 20 sensors 

employed for all attack cases. 

 

Table 7.17  Nodal importance ranks for the lowest-ranked Toms River WDS nodes of 

optimal solutions for the three-prong multiobjective problem in the default attack case 

and the proportions of ranked Toms River WDS nodes containing the optimal solutions.   

M 

Lowest �odal 

Importance 

Rank 

Proportion of 

Ranked WDS �odes 

Containing Optimal 

Solution 

5 2,229 14.9% 

20 4,574 30.5% 

 



 

 
263 

 

  

Table 7.18  Nodal importance ranks for the lowest-ranked Toms River WDS nodes of 

optimal solutions for the three-prong multiobjective problem with M = 20 in the variant 

attack cases and the proportions of ranked Toms River WDS nodes containing the 

optimal solutions. 

Attack Case 

Lowest �odal 

Importance 

Rank 

Proportion of 

Ranked WDS �odes 

Containing Optimal 

Solution 

default 4,574 30.5% 

sensor detection resolution  

= 0.3 mg/L 
4,109 27.4% 

contaminant injection duration 

= 10 h 
3,859 25.8% 

contaminant hazard threshold  

= 0.0 mg/L 
4,126 27.6% 

response delay = 3 h 4,574 30.5% 

2 injection nodes at 1 time 4,454 29.7% 

2 injection nodes at 2 times 4,017 26.8% 
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Figure 7.34  Solution convergence as ISSM is carried out for the three-prong 

multiobjective problem in the default attack case for the Toms River WDS.  (Only 

solution values for subset sizes of 6,000 or less are plotted as solution reached best 

performance for both M = 5 and M = 20 by subset size = 6,000; negative Zall values are 

not plotted.) 
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Figure 7.35  Solution convergence as ISSM is carried out for the three-prong 

multiobjective problem with M = 20 in the default and variant attack cases for the Toms 

River WDS.  (Only solution values for subset sizes of 6,000 or less are plotted as 

solutions for all cases reached best performance by subset size = 6,000; negative Zall 

values are not plotted.) 

 

 

 

7.5 COMPUTATIO�AL EXPE�SE �OTES 

 

The computational resources needed to conduct sensor placement optimization for the 

Toms River WDS are comparable to those needed for BWSN Network 2, which is not 

surprising since the two systems are of comparable size.  Scenario node generation took 

about 16 hours to carry out and produced about 1.1 GB of data for use in the importance 

and optimization phases.  The importance and optimization phases required between 3 

and 6 hours for a given multiobjective problem case.   
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CHAPTER 8 

CO�CLUSIO� 

 

In this chapter, the important outcomes of this study are summarized, the observed 

advantages and drawbacks of the methods developed in this study are discussed, and the 

implications and possible future applications of this study are suggested.  In other words, 

this chapter will argue  

• how well this study answered the research challenges explained in Chapter 2 in 

bringing efficiency and effectiveness to the optimization of WDS sensor 

monitoring and 

• how this study can contribute to the continued addressing of those challenges in 

future research and practice. 

 

8.1   OVERALL EVALUATIO� OF SE�SOR PLACEME�T OPTIMIZATIO� 

METHODS 

  

The effectiveness of the methodology of this study is evaluated below with respect to 

four key aspects: (i) sensor placement solution performance, (ii) the role of the 

multiobjective optimization problem formulation in multiobjective solution performance, 

(iii) the effectiveness of nodal importance, and (iv) the performance of the Iterative 

Subset Search Method.  
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8.1.1   SENSOR PLACEMENT SOLUTION PERFORMANCE   

 

For every protection goal, attack case, and study system examined, the optimization 

methods developed in this work yielded sensor node solutions that provided very 

desirable levels of protection with respect to particular protection goals.  When sensor 

placement results for this study were compared to available results in literature, the 

sensor nodes of this study were at least comparable in performance to those of the other 

works.  In most cases, the sensor nodes of this work were associated with equal or better 

performance than the performance corresponding to the other documented sensor node 

schemes.  However, for one protection goal and one study system (i.e., minimizing 

expected contaminated demand volume for BWSN Network 2), the results of this study 

were of slightly lesser performance than those of another study, although they seemed 

better than those of the other studies used for comparison purposes.   

 

Another measure of validation for the sensor nodes found in this work is that sensor 

locations did not vary greatly on average between attack cases for any protection goal or 

any study system.  This phenomenon is seen in the submitted sensor nodes of other works 

given in Chapters 5 and 6, and it supports the observation of Isovitsch and VanBriesen 

(2008) regarding the lack of substantial change in sensor locations from attack case to 

attack case. 
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It is fair to say, on the whole, that the optimization methods developed in the study 

performed well in terms of providing protection for a variety of systems, conditions, and 

protection goals. 

 

8.1.2   MULTIOBJECTIVE OPTIMIZATION PROBLEM FORMULATION 

 

Generally, the multiobjective optimization formulation developed in this study 

(employing the “lumped” single-objective function to maximize Zall) yielded solutions 

that performed well in terms of providing desirable levels of protection with regard to the 

three individual protection goals and minimizing the protection tradeoffs between 

protection goals.  The resulting multiobjective sensor node solutions in all cases provided 

almost as much--if not as much--protection with respect to minimizing expected 

detection time as did solving the time-related single-objective problem.  Such 

multiobjective solutions are reasonable given the three particular individual protection 

goals for this study.  As detection likelihood and expected detection time are correlated 

strongly with each other given the way expected detection time is formulated in this 

study, reducing expected detection time has the effect on average of increasing detection 

likelihood.  Reducing expected detection time also helps to reduce expected contaminated 

demand volume by allowing contaminated water to be detected sooner before additional 

volume can become contaminated.  Thus, the protection costs with respect to individual 

protection goals for the selected multiobjective solutions of this study were minimal as 

demonstrated in Chapters 5, 6, and 7.  Though other works provided multiobjective 

solutions that were found under different but valid multiobjective problem formulations  
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and protection goal preferences, comparing the multiobjective solutions for this work 

with those of the other works at least allowed for verification that other works had not 

submitted solutions that are better under the multiobjective problem formulation of this 

work than the solutions found in this work.  In sum, the multiobjective sensor placement 

results found in this study support the legitimacy of the multiobjective formulation to 

quantify and minimize protection performance tradeoffs.   

 

8.1.3   NODAL IMPORTANCE   

 

The desirable sensor placement solutions found in this study were found largely due to 

the effectiveness of the nodal importance concepts and functions developed.  Nodal 

importance narrowed the search for a given optimal sensor placement solution 

considerably in most cases by quantifying the desirability of WDS nodes as sensor node 

candidates and allowing for the Iterative Subset Search Method to find the optimal sensor 

nodes—or at least near-optimal sensor nodes—using only a relatively small proportion of 

WDS nodes.   

 

While all nodal importance functions and approaches developed in this study appear to 

work very well overall for all protection goals, nodal importance for maximizing 

detection likelihood appears to work best in narrowing the search for optimal solutions to 

very small proportions of WDS nodes in most cases.  The effectiveness of sorting by end-

of-line status (and slow-outflow status for small systems) prior to ranking nodes 

according to nodal importance value was shown by the results of this study to provide 
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additional narrowing of the search domain of WDS nodes.  In fact, for BWSN Network 1 

in the cases employing 5 sensors, the ranking was nearly perfect in identifying the truly 

important nodes with the aid of the sorting procedure.  Even without the sorting 

procedure implemented, the nodal importance functions for maximizing detection 

likelihood by themselves provided for a significant amount of narrowing of the search 

domain, as demonstrated in the cases of a non-zero sensor detection resolution where the 

underlying assumptions regarding end-of-line and slow-outflow nodes were not 

applicable.  However, the sorting approach may lead to near-optimal if not optimal 

solutions even if the underlying assumptions are not applicable.  For example, all of the 

solution nodes for maximizing Zlik in the attack case of a 0.3 mg/L sensor detection 

resolution for BWSN Network 2 were end-of-line nodes.  The sensor node results 

submitted by Berry et al. (2006c) for maximizing detection likelihood for BWSN 

Networks 1 and 2 provide additional validation that the nodal importance approaches are 

effective in identifying truly important nodes.  Though Berry et al. did not make use of 

nodal importance concepts such as uniqueness and end-of-line status but instead relied on 

the measured effects of placing sensors in the system to determine their “nodal impact 

coefficients”, many of the sensor node locations selected in this study for those systems 

are very close in proximity to if not the same as those submitted by Berry et al.  Thus, it 

seems that the nodal importance approaches developed in this work estimate the “impact” 

that a chosen node can have as a sensor node well without the need to actually conduct 

sensor placement to determine this impact.   

 



 

 
270 

 

  

As was discussed in Chapter 6, the large-system nodal importance function for 

minimizing expected contaminated demand volume is very effective in providing 

desirable sensor node solutions to minimize Zvol by narrowing the search domain of WDS 

nodes significantly, but best solutions found for some of the cases are suboptimal, though 

only slightly underperforming compared to solutions submitted by Berry et al. (2006c).   

These slightly suboptimal solutions reiterate that nodal importance concepts developed in 

this study are not perfect and have room for improvement in future study.  It can still be 

argued, though, that the nodal importance concepts for minimizing Zvol are helpful on 

average in narrowing the search and finding good solutions to very large degrees.   

 

For the two large systems examined in this study (i.e., BWSN Network 2 and the Toms 

River WDS), the solutions reported were able to be isolated to proportions of 

approximately 30% of all WDS nodes or less for all protection goals and attack cases.  

Often, the proportion was significantly smaller than 30%.   

 

For the small system BWSN Network 1, the search domain was narrowed to small 

proportions of WDS nodes for all protection goals except in the multiobjective cases 

when 5 sensors were employed.  In solving the multiobjective problem for BWSN 

Network 1, it was observed that the Pareto-dominance based nodal importance approach 

did not allow for the entire set of optimal sensor nodes to be captured in a small 

proportion of WDS nodes in the one injection node attack cases.  As discussed in Chapter 

5, most of the sensor nodes selected are very highly ranked in terms of multiobjective 

importance, and near-optimal solutions can be found with small subsets using ISSM.  The 
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problem in these cases, though, is that one optimal sensor node is lowly-ranked as it is 

very important for both maximizing detection likelihood and minimizing expected 

detection time but considered unimportant for minimizing expected contaminated 

demand volume.  This issue is a concern for small systems only.  For large systems, there 

are many nodes that are sufficiently important with respect to all 3 individual protection 

goals and, in turn, would be ranked adequately high.  Indeed, this issue does not appear to 

be a significant problem in optimizing sensor placement for the three-prong 

multiobjective problem for BWSN Network 2 or the Toms River WDS. 

 

When 20 sensors were employed in the cases of minimizing Ztime and Zvol for BWSN 

Network 1, the search domain to find the optimal sensor node solution was not able to be 

narrowed much at all for reasons discussed in Chapter 5.  To summarize the discussion 

regarding these reasons, with a relatively high number of sensors employed to WDS node 

ratio (M/5 ratio), some sensor nodes provide the “major” protection with regard to the 

particular protection goal; these nodes ranked highly when ranked appropriately in terms 

of nodal importance.  If the major protection is provided, then remaining available sensor 

nodes provide protection by adding to the coverage (i.e., increasing detection likelihood) 

so that instances of “infinite” detection time or undetected contaminated volumes are not 

counted in Ztime or Zvol  computations.  The resulting problem is that the importance 

functions do not account for this “changed” priority for those remaining sensors. 

Therefore, the corresponding sensor nodes are ranked relatively low.  For larger systems 

of interest, though, the M/5 ratio is very low under practical conditions such that this 
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drawback is not an issue of concern, as indicated by results for BWSN Network 2 and the 

Toms River WDS. 

 

8.1.4   ITERATIVE SUBSET SEARCH METHOD  

 

In general, the Iterative Subset Search Method compensated well for the error associated 

with nodal importance-based rankings for all attack cases, protection goals, and study 

systems.  As supported by solution convergence plots in Chapter 5, 6, and 7, the subset 

sizes for ISSM chosen for this study allowed for reasonable rates of solution 

improvement as the search domain broadened iteratively to find optimal solution in most 

cases.   

 

The inclusion of randomly chosen “unranked” nodes in subsets also proved to be a wise 

decision, especially considering the case of the three-prong multiobjective problem with 

20 sensors employed in the default attack case; several optimal sensor nodes were ranked 

low in this case, but the random inclusion of unranked nodes allowed those optimal nodes 

to be included in a subset of size 70 and the entire set of optimal solution nodes to be 

found without searching nearly the entire set of WDS nodes.   

 

The ISSM stopping criteria chosen for this study (i.e., three iterations of no solution 

improvement with all nodes in the optimal solution being “ranked” nodes) seems to be 

suitable overall given the ISSM parameters employed for particular study systems in this 

work.  In most cases, the stopping criteria would yield the solutions presented in Chapters 
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5, 6, and 7, but there are two key exceptions.  One exception involves the cases of high 

M/5 ratio where the solution is steady over several iterations then can increase in 

performance when nodes increasing system coverage are included in the best solution.  

The other exception is that of the multiobjective problem cases with 5 sensors employed 

for BWSN Network 1; one optimal solution node was ranked low in some of these cases 

as discussed above, so the solution increased slightly in performance when this node was 

included in the solution.  These issues, though, are isolated to small systems only.  

Employing a larger subset size and/or including a higher proportion of unranked nodes in 

the ISSM subset may rectify these issues in future study of small systems. 

 

A final concern involving ISSM, though tangentially, was the particular genetic 

algorithm model and library used in this study to actually conduct the search for the best 

solution in a given subset.  Relatively longer runtimes, stricter convergence criteria, and 

larger population sizes were needed in order to achieve the results provided in Chapters 5 

through 7, even with narrowed search domains.  Though these GA-related drawbacks 

were manageable and did not result in excessive computational expense, another GA 

model or library or even another optimization algorithm may prove to make ISSM more 

efficient and the nodal importance concepts more attractive for use in future study. 

 

8.2 POTE�TIAL APPLICATIO�S FOR THIS WORK 

 

There is an array of distinct advantages in applying the methods and concepts developed 

in this work in future studies over methods and concepts previously documented in 
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literature.  As stated in Chapter 1, large systems are of key concern for monitoring in the 

event of a terrorist attack.  Monitoring studies of these systems have been either 

infeasible or compromised by oversimplifying assumptions due to the large 

computational expense and resources required to conduct such studies, as discussed in 

Chapter 2.  In this study, it was demonstrated that optimization implementing nodal 

importance concepts can allow for feasible and realistic contaminant sensor placement 

optimization for large, real-world WDSs.  Even systems on the order of millions of 

nodes, such as metropolis-level systems, may now be reasonably practical to study given 

the ability of the methods developed in this work to narrow the search for optimal sensor 

nodes considerably. 

 

The conventional thinking in previous works that attempt to preprocess WDS sensor 

nodes prior to the actual optimization of sensor placement is that it is necessary to 

characterize exactly how WDS nodes would perform as sensor nodes.  This thinking has 

led to the prescribing of extensive computational simulation (e.g., Berry et al. 2006c) or 

oversimplification of WDS behavior (e.g., Xu et al. 2008).  One key outcome of this 

study was showing that such an exact characterization of nodes is not required.  Nodal 

importance provides only an estimate of the potential for a node to perform well as a 

sensor node, and a search algorithm can be employed to find optimal solutions despite the 

associated errors in nodal importance.  Instead of extensive simulation being conducted 

to preprocess nodes, only a manageable set of attack scenarios need to be simulated to 

measure contaminant propagation throughout the WDS in order to perform 

straightforward nodal importance calculations.  Computational expense is reduced 
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relative to previously documented methods, and the complexity of WDS behavior is 

adequately modeled.  Thus, optimization can be performed for virtually any attack case, 

unlike in the case of the methods of Berry et al.  Also, optimization with the methods of 

this study can be performed with computational resources (e.g., one desktop computer) 

and limited time (e.g., within one day) that are practical for most researchers and 

practitioners.  Nodal importance functions and approaches of this study can even be 

adopted for use with other GA models or other types of optimization algorithms that 

would further realize the efficiency gained by employing nodal importance.   

 

The relative simplicity of the nodal importance concept could also encourage wider use 

of nodal importance among researchers and professionals in future study.  Nodal 

importance is based on almost intuitive relationships between WDS behavior at the nodal 

level and sensor placement desirability that are accessible for those with only a basic 

understanding WDS behavior, whereas other methods require an in-depth knowledge of 

underlying theories and/or particular procedures, leading for discouragement for common 

use.  Additionally, given that effective nodal importance approaches were developed in 

this study for three rather different protection goals, other nodal importance functions and 

approaches should be able to be developed for protection goals beyond those included in 

this study by further considering those intuitive relationships.  In sum, the potential to 

extend this work to further address the research challenges corresponding to WDS sensor 

placement more effectively and efficiently is immense.    
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