
Obtaining Architectural Descriptions from Legacy Systems:

The Architectural Synthesis Process (ASP)

A Thesis
Presented to

The Academic Faculty

by

Robert L. Waters

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

College of Computing
Georgia Institute of Technology

October 2004

Obtaining Architectural Descriptions from Legacy Systems:

The Architectural Synthesis Process (ASP)

Approved by:

Professor Gregory Abowd, Advisor

Professor Spencer Rugaber

Professor Colin Potts

Professor Michael McCracken

Professor Rick Kazman
(Carnegie-Mellon University)

Date Approved: 21 October 2004

To my wife,

who followed me all over the world

during my military service,

and patiently waited while

I decided what I wanted to do

when I grew up.

iii

PREFACE

In the early to mid twentieth century, many reputable engineers and scientists considered

exceeding the speed of sound as being impossible. In fact, the popular literature referred to

the sound “barrier” as something that could never be broken. Jet aircraft would approach

that barrier and yet could not seem to break through. It was not until the principle of area

ruling was discovered, that aircraft could slip into Mach flight with apparent ease.

In the same way today, many reputable computer scientists feel the concept assignment

barrier will never be bridged in an automated manner. There are too many challenges to

emulating those incredible matching and analytic abilities that are inherent in the human

brain.

I set out in this research effort to show that it was in fact possible to break through the

concept assignment barrier and do it in an automated manner. Unfortunately, I was not

able to achieve that lofty goal, but I hope this work does move us one step closer to the day

when our software does conceptual analysis with the same ease as the human brain does

today.

iv

ACKNOWLEDGEMENTS

As most students, I have to acknowledge the extensive help and guidance I received from

my committee members. I also acknowledge their continued support and encouragement

when I was ready to throw in the towel.

v

TABLE OF CONTENTS

DEDICATION . iii

PREFACE . iv

ACKNOWLEDGEMENTS . v

LIST OF TABLES . ix

LIST OF FIGURES . xi

SUMMARY . xii

I INTRODUCTION . 1

1.1 Problem Statement . 2

1.2 Thesis Statement . 4

1.3 Contributions . 6

1.4 Overview of Dissertation . 6

II BACKGROUND AND ANALYSIS OF RECOVERY APPROACHES 7

2.1 The Concept Assignment Problem . 8

2.2 A Software Architecture Primer . 8

2.2.1 Definition of Software Architecture 8

2.2.2 Views and Viewpoints . 9

2.2.3 The Information Extraction Space 10

2.3 Analysis of Architectural Recovery Approaches 11

2.3.1 Pattern-Based Recovery . 12

2.3.2 Visualization-Based Recovery . 15

2.3.3 Process-Based Recovery . 17

2.3.4 Summary of Recovery Techniques 19

III DESCRIPTION OF THE ARCHITECTURAL SYNTHESIS PROCESS 23

3.1 Process Overview . 23

3.2 ASP Implementation . 26

3.2.1 Process Overview . 27

3.3 REMORA Toolkit . 49

vi

3.3.1 User-Interface Module . 49

3.3.2 Import Tools Module . 52

3.3.3 Matching Tools Module . 52

3.3.4 Graph Viewer Module . 53

3.3.5 SQL Server DB Module . 53

3.3.6 Text Analysis Module . 53

IV SEMANTIC APPROXIMATION . 55

4.1 Concept Analysis Primer . 55

4.2 Automated Integration of Architectural Information 58

4.2.1 Lexical Matching Techniques . 59

4.2.2 Topological Matching Techniques 59

4.2.3 Semantic Techniques . 60

4.2.4 Matching Definitions . 60

4.2.5 Semantic Approximation . 62

4.2.6 Semantic Approximation Tool Support 65

V EVALUATING SEMANTIC APPROXIMATION FOR FUNCTIONAL
VIEWS . 68

5.1 Experimental Design . 68

5.1.1 Experiment Process . 70

5.1.2 Documentation Used in Experiment 71

5.1.3 Architectural Perspectives Used in the Experiment 72

5.1.4 Truth Data . 75

5.2 Experimental Results . 78

5.2.1 Lexical Matching (L) . 78

5.2.2 Topological Matching (T) . 80

5.2.3 Semantic Approximation Matching (S) 81

5.2.4 Lexical and Topological Matching (LT) 83

5.2.5 Lexical and Semantic Approximation (LS) 83

5.2.6 Lexical, Topological and Semantic Approximation (LTS) 85

5.2.7 Summary . 85

5.3 Discussion of Results . 85

vii

5.3.1 Text Data Mining . 85

5.3.2 Semantic Approximation . 87

VI CONCLUSION . 90

6.1 Root Cause Analysis . 90

6.2 Efficacy of Approach . 92

6.3 Future Work . 94

6.4 Conclusion . 95

APPENDIX A DOCUMENTATION USED IN EXPERIMENTS 96

APPENDIX B EXPERIMENT TRUTH DATA 101

APPENDIX C MATERIALS USED . 105

APPENDIX D ISVIS LEXICAL AND TOPOLOGICAL RESULTS . . 108

APPENDIX E LINUX LEXICAL AND TOPOLOGICAL RESULTS . 113

APPENDIX F ISVIS SEMANTIC RESULTS 116

APPENDIX G LINUX SEMANTIC RESULTS 121

APPENDIX H ISVIS LEXICAL AND SEMANTIC APPROXIMATION
RESULTS . 126

APPENDIX I LINUX LEXICAL AND SEMANTIC APPROXIMATION
RESULTS . 129

APPENDIX J ISVIS LTS RESULTS . 132

APPENDIX K LINUX LTS RESULTS . 135

REFERENCES . 137

viii

LIST OF TABLES

Table 1 Summary of Architectural Recovery Strategies, Pattern and Visualization
Based . 21

Table 2 Summary of Architectural Recovery Strategies, Process Based 22

Table 3 Some Typical Sources of Potential Perspectives by Viewpoint Viewpoint
Source . 31

Table 4 Summary of Mappings . 32

Table 5 A Formal Context . 57

Table 6 Formal Context of Systems S1 and S2 . 64

Table 7 ISVis High-High Summary . 86

Table 8 ISVis High-Low Summary . 86

Table 9 Linux High-High Summary . 86

Table 10 Linux High-Low Summary . 86

Table 11 ISVis High-Level Truth Data (Components) 102

Table 12 ISVis High Truth Data (Connectors) . 102

Table 13 ISVis High-Low Truth Data . 103

Table 14 Linux System High-Level Truth Data (Components) 103

Table 15 Linux High-Level Connectors, Truth Data 104

Table 16 Linux High-Low Truth Data . 104

Table 17 ISVis Lexical Match Results (Components) (L) 109

Table 18 ISVis Lexical Component Matching (High-Low) 110

Table 19 ISVis High Level Topological Matching (Components Best Case) (T) . . 111

Table 20 ISVis High-Level Topological Matching (Connectors) (T) 112

Table 21 Linux High-Level Lexical Comparison (Components) (L) 114

Table 22 Linux Component High-Low Lexical Matching 114

Table 23 Linux High Level Topological Matching (Components Best Case) (T) . . 115

Table 24 Linux High-Level Topological Matching (Connectors, Best Case) (T) . . . 115

Table 25 Top 25 Terms Mined from ISVis Documentation 117

Table 26 ISVis Domain Architecture Formal Context (Components) 118

Table 27 ISVis Formal Context (Components Dynamically Recovered) (High) . . . 119

ix

Table 28 ISVis High-Level Semantic Approximation (Components) (S) 119

Table 29 ISVis High-Level Semantic Approximation (Components) (S) 120

Table 30 Top 25 Terms Mined from LINUX Documentation 122

Table 31 Linux Concrete Architecture Formal Context (Components) 123

Table 32 Linux Domain Architecture Formal Context (Components) 124

Table 33 Linux High-Level Semantic Approximation Results (Components) (S) . . 124

Table 34 Linux High-Low Semantic Approximation Matching 125

Table 35 ISVis High-Level Lexical and Semantic Approximation Results (Compo-
nents) (LS) . 127

Table 36 ISVis High-Level Lexical and Semantic Approximation Results (Compo-
nents) (LS) . 128

Table 37 ISVis High-Low Lexical and Semantic Approximation (LS) 128

Table 38 Linux High-Level Lexical and Semantic Approximation Results (Compo-
nents) (LS) . 130

Table 39 Linux High-Level Lexical and Semantic Approximation Results (Compo-
nents) (LS) . 130

Table 40 Linux High-Low Semantic/Lexical Technique 131

Table 41 ISVis High-Level Lexical, Topological and Semantic Results (Components)
(LTS) . 133

Table 42 ISVis High-Level Lexical, Topological, Semantic Approximation (Connec-
tors) . 134

Table 43 Linux High-Level Lexical, Topological and Semantic Approximation (Com-
ponents) (LTS) . 136

Table 44 Linux High-Level Lexical, Topological and Semantic Approximation (Con-
nectors) (LTS) . 136

x

LIST OF FIGURES

Figure 1 Current Recovery Methods . 4

Figure 2 Ultimate Goal . 5

Figure 3 Goal of this Research . 5

Figure 4 The Extraction Information Space . 11

Figure 5 Architectural Synthesis Process . 25

Figure 6 ASP Context Diagram . 27

Figure 7 Top-Level ASP Process Diagram . 30

Figure 8 Base and Unioning Perspectives . 41

Figure 9 Results of Union After One Match . 42

Figure 10 Final Union Results on Two Perspectives 42

Figure 11 Partial Fusion Results for ISVis . 48

Figure 12 REMORA Conceptual Architecture . 50

Figure 13 REMORA Main UI . 52

Figure 14 Sample Haase Diagram . 56

Figure 15 Concept Lattice Example . 58

Figure 16 Two Perspectives for KWIC Architecture 63

Figure 17 Computed Concept Lattice for KWIC . 64

Figure 18 Semantic Approximation Information Flow 66

Figure 19 ISVis Dynamically Extracted Architecture 72

Figure 20 ISVis Design Architecture . 73

Figure 21 ISVis Dynamic Recovery, File Processor Subcomponents 73

Figure 22 ISVis File Processors Subcomponents, Actual Architecture 74

Figure 23 Linux High-Level Domain Architecture 75

Figure 24 Linux Conceptual Architecture (High) . 76

Figure 25 Raw Ctags Output (Partial) (Low) . 76

Figure 26 Linux Call-Graph (Partial) (Low) . 77

Figure 27 Linux Ctags Perspective (Partial) (Low) 77

xi

SUMMARY

A majority of software development today involves maintenance or evolution of legacy

systems. Evolving these legacy systems, while maintaining good software design principles,

is a significant challenge. Research has shown the benefits of using software architecture

as an abstraction to analyze quality attributes of proposed designs. Unfortunately, for

most legacy systems, a documented software architecture does not exist. Developing a

good architectural description frequently requires extensive experience on the part of the

developer trying to recover the legacy system’s architecture.

This work first describes a four-phase process that provides a framework within which

architectural recovery activities can be automated. These phases consist of: extraction

(obtaining a subset of information about the legacy system from a single source), classi-

fication (partitioning the information based upon its viewpoint), union (combining all the

information in a particular viewpoint into a candidate view), and fusion (cross-checking all

candidate views for consistency.

The work then concentrates on the major problem facing automated architectural recovery—

the concept assignment problem. To overcome this problem, a technique called semantic

approximation is presented and validated via experimental results. Semantic approxima-

tion uses a combination of text data mining and a mathematical technique called concept

analysis to build a lattice of similar concepts between higher-level domain information and

low-level code concepts. The experimental data reveals that while semantic approximation

does improve results over the more traditional lexical and topological approaches, it does

not yet fully solve the concept assignment problem.

xii

CHAPTER I

INTRODUCTION

Although the exact percentage varies, most researchers agree that somewhere between 40

and 80 percent of software development activities are focused on maintenance, enhancement

or evolution of existing systems [15]. These existing systems are typically referred to as

legacy systems. Historically, software engineers working on these legacy systems try to

recover information from the source code or documentation to understand the system well

enough to make required repairs or enhancements. Often these changes were made with

minimal understanding of the impact they had on overall system quality over time. This led

to the characterization of many legacy systems’ structure as “spaghetti code.” Recently the

emphasis in reengineering of legacy systems has shifted to applying more of an organized

forward engineering approach to their modification or enhancement [9].

The Software Engineering Institute has recently emphasized the importance of using

architecture as a vehicle for guiding a reengineering effort. In describing the ten most

important reasons that reengineering efforts fail, failure to take an architectural approach

is identified as one of the most critical errors [8].

It is only natural then, that recovering the software architecture of a legacy system is

an important task. Unfortunately, it is not an easy task. Alexander Ran, project architect

of the ARES project summed up the state of the art when he said [17], “the major problem

is managing information about software from various sources. There is a need for creation,

management, and use of a software information base, for multiple views of software systems

and most often a single, non-representative view is adopted. Consequently the view is not

useful and is not used.” Many projects may develop a software architecture, but few seem

to develop anything actually useful.

1

1.1 Problem Statement

The overall problem of software architectural recovery is a two-edged sword. First it re-

quires an analyst to have experience in both architecture and the application domain itself.

Secondly, the low-level concepts embodied in the implementation must be mapped to the

higher-level domain concepts. Figure Often, architectural recovery is as much an art as an

engineering discipline. Two possible ways to attack these problems are to communicate the

“art” of architectural recovery to software engineers through education and training, or to

increase the amount of an architectural description that can be automatically recovered.

This dissertation examines the latter choice.

The ultimate long-term goal of this research is to allow a software engineer to pro-

vide information about a system—its documentation, source code and design—and have a

complete and useful architectural description be automatically generated. To achieve this

overall goal, many sub-problems need to be addressed:

1. The architectural information is spread across a multitude of sources. These include

textual information sources such as domain and user documentation, original design

documents, the source code itself, and even partially-formed ideas in the heads of the

original developers.

2. The software engineer recovering the architecture is frequently not a domain expert.

Since the concepts embodied in the top level of the architecture use concepts from the

domain, this can present a real problem. Architectures are ultimately recovered to aid

in accomplishing the business objectives of an organization. The time necessary for

developers to become acquainted with an application domain could better be spent

achieving other business objectives.

3. Systems evolve over time. There is drift and erosion of the original architecture [57],

and thus there are potential inconsistencies between the information obtained from

different sources. At the early stages of the recovery effort, it is almost impossi-

ble to determine what the inconsistencies are, but as the effort progresses and more

information is obtained, these inconsistencies can be discovered and corrected.

2

4. No one person has a complete picture of the architecture of any non-trivial system.

The older and larger the legacy system is, the more this is true. An analyst frequently

has to integrate information from several original developers, each of which is familiar

with only a subset of the overall system.

5. The source code contains the ultimate truth of system functionality, but because

of the concept assignment problem [10], it is not a trivial task to map the code to

architecture. The architecture frequently uses the language of the domain and user,

while the code uses the language of the implementation and developer. This boundary

between architectural abstraction and implementation is referred to as the concept

assignment boundary. (The phrase concept assignment comes from the problem of

assigning abstract concepts to specific sections of code). Most architectural recovery

research has focused on other areas than bridging this gap [24].

Crosscutting concerns and nonfunctional requirements embedded in the code are espe-

cially difficult to ferret out [5]. The term crosscutting is borrowed from aspect-oriented

programming [20] and refers to features whose implementation is distributed across mul-

tiple architectural modules. For example, security might be a nonfunctional requirement,

while activity logging would be a crosscutting concern supporting security. Detecting these

concerns and recognizing them in the implementation becomes an important task in un-

derstanding how specific nonfunctional requirements and cross-cutting concerns might have

been embodied in the code.

These problems lead to the following research questions:

1. How can we integrate architectural information to derive a more complete architec-

tural description informed by multiple sources?

2. How much of this integration can we automate?

3. How can we overcome the concept assignment problem, that is, how can we assign

implementation details to higher-level abstractions in an automated manner?

3

Figure 1: Current Recovery Methods

4. How can we identify crosscutting concerns (design concepts whose implementation

spreads across multiple components) in an automated manner?

5. How can we identify and eliminate inconsistencies in the information obtained from

multiple sources?

This dissertation research examines each of these questions in varying levels of detail.

We focus primarily on questions 3 and 4. The goal of this research is to improve the

automation of architectural recovery and thus to move one more step from an art of experts

to a defined and repeatable process for use by developers.

1.2 Thesis Statement

It is possible to improve the amount and quality of architectural information that is auto-

matically recovered and integrated from legacy systems by using semantic approximation

to bridge the concept assignment gap.

To evaluate this thesis, the following hypotheses were developed:

It is possible to define a process that can be automated, allows synthesis of multiple

sources of information, identifies inconsistency, and improves the results of the recovery

over the use of code-based approaches alone. Figure 1 shows the current state of architec-

tural recovery techniques. These techniques rely heavily on the software engineer’s expertise

and level of domain knowledge to process and understand the source code and turn it into

a software architectural description. Figure 2 depicts the ultimate long-term goal of this

research-that of fully automated recovery. Due to a number of current technological and

research shortcomings, this goal cannot currently be met. Figure 3 depicts the scope of

4

Figure 2: Ultimate Goal

Figure 3: Goal of this Research

this dissertation. The puzzle labeled ASP represents the hypothesized process. This pro-

cess uses information from a variety of sources, develops multiple views of the architecture,

synthesizes the information and checks its consistency. The automated synthesis of infor-

mation using various techniques is the focus of the remainder of this dissertation. The

process includes a technique called semantic approximation, specifically developed during

this research, that improves the quality of the information integration task.

Using semantic approximation provides better-automated synthesis of information than

traditional lexical or topological approaches. Other researchers have focused on using tech-

niques for combining or synthesizing architectural information using lexical or topological

methods. These methods use superficial information to make this determination, disregard-

ing particular semantic characteristics of the elements in the architecture. This dissertation

discusses a technique that allows an approximation of an architectural element’s semantics

to be specified in a lightweight manner. This approximation is then used to aid lexical

techniques to improve the accuracy of the combined information.

5

1.3 Contributions

The contributions of this research include:

1. An analysis and comparison of current architectural recovery techniques.

2. Definition of an architectural synthesis process that provides a framework for au-

tomating the recovery process.

3. Development of REMORA, a toolkit to support the architectural synthesis process

and improve automated recovery of software architectures.

4. Definition of a technique called semantic approximation that improves the quality of

the information-synthesis task, when the information comes from multiple sources.

5. Validation of the semantic approximation technique against traditional lexical and

topological approaches.

1.4 Overview of Dissertation

Chapter II provides a common vocabulary and background in software architecture and then

discusses and categorizes several typical architectural recovery approaches currently in use.

Chapter III discusses in detail a defined process framework (ASP) within which software

architectures can be recovered across a broad range of domains. This framework is the puzzle

piece shown in Figure 5. Chapter III also discusses REMORA, a toolkit that supports the

proposed recovery framework. Chapter IV of this dissertation provides an introduction to

concept analysis followed by a detailed description of the Semantic Approximation technique

for architectural information integration. Chapter V discusses the experimental validation

of this technique for integrating functional information. Chapter V uses case studies of

architectural recovery of the ISVis reverse engineering tool and the Linux operating system

kernel as the basis for the experimental data. Chapter VI ends the dissertation with a

discussion of the conclusions and directions for future work.

6

CHAPTER II

BACKGROUND AND ANALYSIS OF RECOVERY

APPROACHES

In this chapter we provide three important prerequisites to understanding the remainder

of this dissertation. First, we establish a common frame of reference and vocabulary con-

cerning just what software architecture is. The software architecture literature and current

discussions contain a wide variation in their definition of architecture and in their descrip-

tion of the contents of an architectural description. If we want to make any claims about

recovering software architectural descriptions, we must have a common frame of reference.

Since architectural information comes from multiple sources, we also introduce the idea of an

information extraction space as a conceptual aid to thinking about where the architectural

information that needs to be integrated comes from.

Secondly, we analyze current architectural recovery techniques. Recall our thesis state-

ment is that we can improve the amount and quality of architectural information that is

automatically recovered and integrated from legacy systems by using semantic approxima-

tion to bridge the concept assignment problem. To be able to judge whether this might

be true, we must understand the current techniques in use and analyze their potential

shortcomings.

Finally, for those readers interested in recovery as a practical matter, the analysis of

approaches provides important information on types of views recovered, intermediate repre-

sentations and visualization capabilities of each of the techniques. For those readers desiring

a quick overview and reference, the analysis of approaches is summarized in Table 2.

7

2.1 The Concept Assignment Problem

We have already alluded to the concept assignment problem in the introductory chapter.

According to Biggerstaff, the concept assignment problem consists of discovering human-

oriented concepts and assigning them to their realizations within a specific program. Solving

this problem forms the basis of most architectural recovery efforts. A central hypothesis

of Biggerstaff’s work is that a parsing-oriented (code-based) approach is necessary but not

sufficient for solving the general concept-assignment problem.

Biggerstaff’s approach to solving this problem used a toolsuite called DESIRE (Design

Information Recovery Environment). DESIRE works as a human-in-the-loop system to

help reverse engineer source code. As contrasted with our automated approach, DESIRE

requires the the human to provide the domain level concepts, and to perform many of the

mappings.

2.2 A Software Architecture Primer

2.2.1 Definition of Software Architecture

To understand both the benefits and the complexities of architectural recovery, one must

first understand what constitutes a software architecture. Two seminal papers were pub-

lished in the early nineties that attempted to define the phrase software architecture. Garlan

and Shaw [27] define software architecture as comprising components (elements which pro-

vide computation services or passive data stores), connectors (elements which provide inter-

actions between the components such as protocols) and configuration (the topology of the

system). The authors also introduced the idea of architectural styles. Styles are commonly

occurring configurations in which the components and connectors interact according to an

agreed-upon set of constraints. Common styles include pipe and filter, implicit invocation

and layered.

Perry and Wolf [57] take a slightly different approach to the definition of software ar-

chitecture. Their definition couches software architecture as a three-tuple consisting of

elements, form and rationale. Elements encompass the components and connectors of the

Garlan and Shaw view. Form is similar to the idea of configuration, but also includes the

8

idea of constraints similar to those in Garlan and Shaw’s idea of styles. Rationale is not

explicitly accounted for in the Garlan and Shaw notion of architecture and embodies the

design choices made in defining the architecture. For whatever historical reasons, the Gar-

lan and Shaw notion of architecture has become the more generally accepted one. Many

author’s today use the Bass et al. [6] definition (which is a refinement of the Garlan and

Shaw definition) in their work:

The software architecture of a program or computing system is the structure or

structures of the system, which comprise software components, the externally

visible properties of those components, and the relationships among them.

IEEE Standard P1471, Recommended Practice for Architectural Description (1998),

defines architecture as the fundamental organization of a system embodied in its compo-

nents, their relationships to each other and to the environment and the principles guiding

its design and evolution. This definition includes the Bass definition and explicitly captures

the ideas of rationale from Perry. It also adds the important notion of understanding how

the software system (via its architecture) interacts with its external environment. When

we use the phrase software architecture in the remainder of this dissertation, it carries the

meaning of the P1471 definition.

2.2.2 Views and Viewpoints

Just as a building architect needs multiple diagrams to describe the structure of a complex

building, a software architect often needs multiple descriptions of a software system. Ar-

chitectural views reflect a set of specific interests that concern a given group of stakeholders

[42] applied to a specific representation of an architecture. Perry and Wolf also discuss the

need to provide multiple views of an architecture. Typical views include:

1. Physical (Hardware): This view maps software onto hardware. Physical views are

especially useful for depicting the context of the software architecture as part of the

overall system’s architecture. Components in this view are typically hardware devices

such as processors, while connectors are communications paths.

9

2. Logical (Conceptual, Functional): This view depicts the software as a set of compo-

nents cooperating to fulfill the functional requirements of the system. Components in

this view usually provide either active computation services or passive data storage.

Connectors are typically data or control flows between the components.

3. Module (Development, Code): This view depicts the actual implementation structure

of the software system. Components in this view are usually source file directories

and code modules. Connectors represent “uses” or “depends on” relationships.

4. Process (Coordination, Execution, Runtime): This view depicts the run-time behavior

of the system. Components are processes or threads and the connectors are inter-

process communication (IPC) mechanisms.

The P1471 standard also refines the idea of Krutchen’s [42] view into a view and view-

point. A viewpoint is similar to the idea of general views described above. A viewpoint is

basically a model or set of rules for analyzing, building and interpreting views. A viewpoint

can be instantiated through one or more views. A view in P1471 is the representation of a

specific viewpoint for a specific software architecture. For example, a data viewpoint might

be supported with an ER diagram as a view. We will use terminology consistent with the

standard for the remainder of this dissertation.

2.2.3 The Information Extraction Space

Figure 4 depicts what we call the extraction information space. This extraction space is

simply a qualitative visualization of the different sources of architectural information that

might be used during a recovery effort. The labels on the graph are adapted from a paper by

Egyed [18]. Sources of architectural information provide various amounts of coverage over

the information space. For example, architectural meta-models provide abstract concepts

such as the idea of components, connectors and viewpoints, and this type of information is

also generic across domains. On the other hand, interviews with human experts about a

system can span a variety of topics and thus might cover both generic and specific topics

about the system at an abstract or concrete level. Examining the information space graph

10

Figure 4: The Extraction Information Space

helps reinforce the idea that code analysis alone is not sufficient to provide the high level

concepts associated with software architecture. Architectural information lives in the upper

half of the graph, while code-based implementation information resides in the lower half.

Spanning that gap is the concept-assignment problem.

2.3 Analysis of Architectural Recovery Approaches

We now analyze various approaches being taken to recover software architectures from

legacy systems. Each of these approaches will be discussed in terms of their underlying

support for assumptions about architectural recovery, architectural views developed (which

viewpoints are supported), visualization support, sources of information, compliance with

P1471, and ability to make claims about coverage of the architectural information space

and consistency checking between recovered views. We classify these approaches into three

broad categories: Pattern-based recovery, Visualization-based recovery and Process-based

recovery.

11

2.3.1 Pattern-Based Recovery

One group of techniques is centered on variations in the idea of pattern detection—the

premise that we can find the architecture of a system by finding standard styles or patterns

that were used to originally develop the software. Techniques in this category include

CANTO, ManSART, Dali and ARM. We now examine each of these techniques individually.

The Code and Architecture Analysis Tool (CANTO)[22] [23][4] detects clichés in source

code. Clichés are recurring patterns in implementation which represent commonly used pro-

gramming abstractions. For instance C programmers writing a server might create a socket,

then call the listen function to wait for connections and finally use an accept function

to handle client connection requests. If we could find these sequences of instructions in a

code module, it would indicate a server cliché and we could infer a higher-level architectural

structure. CANTO uses the Refine [34] code analysis tool to extract an abstract syntax

tree (AST) that is then traversed and analyzed to find the clichés necessary to build up the

architectural description. Not surprisingly, the intermediate representation for architectural

analysis is an annotated AST. A CANTO representation is made up of two views: a module

view depicting major code module relationships and a task view that gives a runtime or dy-

namic view of the architecture. These views are presented visually through use of the ATT

dotty [25] graph layout program. Since dotty is primarily non-interactive, this technique of

visualization limits user interaction with the graphically displayed architecture.

CANTO has several shortcomings that impact its ability to be a total solution for

recovering P1471 compliant architectural descriptions. First it develops only two of the

four principle architectural viewpoints. The physical and logical views are not supported.

Secondly, it depends totally on the Refine toolkit for code analysis, and all representations

are derived from this code analysis. This limits its completeness in that input from the

original human designers or design documentation is not explicitly considered. Third, the

use of an AST as an intermediate representation necessarily limits CANTO’s analysis engine

to operations on code-like structures. Finally, there is no direct support within the CANTO

tool for attempting to maintain consistency between views.

The Mitre Software Architecture Recovery Tool (ManSART) [68] [14] [13] shares many

12

of the same characteristics as CANTO. ManSART uses recognizers to recover architectural

features that then serve as abstractions within the architectural representations created.

Like CANTO, ManSART uses the Refine toolkit to build an AST representing the source

code for the system. The recognizers then traverse the AST looking for patterns of con-

trol and data flow that might indicate architectural-level information. ManSART supports

several views of an architecture, although many (like the call-graph) are more for program

understanding in-the-small rather than architectural-level understanding. The principle

architectural views supported by ManSART include what they call the task-spawning (pro-

cess) view, repository, service-invocation and abstract data type views. A combination of

these last three would support the standard logical viewpoint of an architecture. After an

initial automated analysis by ManSART the architecture is visualized as a graph. Like

CANTO, the graph visualization is basically a static view. Activating user-defined func-

tions (like containment operators) does manipulate the architecture on the displayed graph,

albeit not interactively. To manipulate the visualization, a function is applied to the rep-

resentation, the graph is recalculated and redisplayed. The intermediate representation for

ManSART is called analysis module interfaces (AMI). AMI is an Architectural Descrip-

tion Language (ADL)-like language that allows for the hierarchical specification of analysis

results. Like CANTO, ManSART’s representations are derived solely from source code

artifacts and ManSART’s built-in recognition rules. Unlike CANTO however, ManSART

does attempt to provide some consistency between its developed representations by allowing

views to be merged.

Most of ManSART’s shortcomings are identical to CANTO’s, which is not surprising

given the similarity of their design philosophies. ManSART provides no support for ar-

bitrary or user-defined viewpoints of an architecture. It does provide a view that merges

the module and logical viewpoints of the architecture. It is interesting to note that both

CANTO and ManSART stress the importance of the process (or runtime) view of the

architecture, yet both use only static code analysis techniques to derive their information.

Dali [37][36] (which does not stand for anything in particular) takes a different tack than

either CANTO or ManSART. Dali recognizes the limitations of relying on a single tool for

13

extracting architectural information and thus uses the philosophy of an open workbench to

integrate other tools into its functionality. Dali uses a database as the integration mecha-

nism; thus its intermediate representation is the database tables that record the information

from the tools it uses. Standard Dali extraction and analysis tools include the Lightweight

Source Model Extraction (LSME) [55], gprof, Reflexion Model Tool (RMTool) [54], and

IAPR [38]. The Rigi [67] environment provides Dali visualizations. Unlike CANTO and

ManSART, Rigi allows an analyst to directly manipulate the architectural visualization and

create new views via drag-and-drop interactive manipulations. Like ManSART, the analyst

manipulates the architecture primarily by invoking functions to be performed on the current

view. These functions are typically SQL and RCL (Rigi Control Language) scripts which

describe how to retrieve and consolidate architectural information stored in the database.

DALI provides logical and runtime views of the architecture, but the views developed are

driven by the types of tools integrated into the workbench. Dali is sufficiently open that

any given view could be presented within the workbench using a technique the author’s call

view fusion. By supporting fusion, Dali allows verificationof consistency between different

views of the recovered architecture.

Dali attempts to overcome the shortcomings of depending on a single tool but still fails to

account for all possible sources of architectural information. Like CANTO and ManSART,

its explicit information source is the system’s source code. It is important to note that

in the example usages, the analysts have used domain information and user interactions

to obtain the high-level architectural description. The effectiveness of Dali is somewhat

limited to the experience of the analyst and his ability to create the scripts and queries that

will reveal the needed architectural information.

The Architecture Recovery Method (ARM)[30] is an extension of Dali by an integrated

methodology and by additional tools added to the open workbench. The workbench is also

supplemented by prepared scripts and heuristics, which allow less experienced analysts to

achieve adequate results with the tool. ARM encapsulates common design patterns into

standard SQL and RCL queries allowing semi-automated recovery of architectural views.

ARM, like Dali, is still source-code bound and thus does not take explicit advantage of all

14

available architectural information.

To summarize the pattern-based techniques, they extract information using a limited

set of tools that emphasize various types of code analysis. The number and types of views

that can be supported are driven by the tools’ designs. Consistency checking is also implicit

in the use of the tools. Architectural views produced are consistent primarily because they

obtain information from only one source (the source code of the system) and use that

information to develop only one or two views.

2.3.2 Visualization-Based Recovery

Rather than looking for common patterns semi-automatically as the first group of tools and

methods did, this next group of tools uses information visualization as the key component

of the recovery activity. These tool designers feel that if information is presented in the

proper format, a human is the best pattern detector possible. FEPPS, ISVis, Shimba and

the Software Bookshelf best typify this category of tools.

The Flexible and Extensible Program Comprehension and Support System (FEPPS)[43]

provides a three-dimensional (3D) viewing and manipulation interface for architectural in-

formation. Using this system, an analyst recovers the architecture by viewing complex

relationships among elements of architectural information. This information comes from

ASTs, program slicing and control-flow graph(CFG) and data-flow graph(DFG) analyses,

(Note that this technique requires compilable code). This information is stored in a multi-

layer, multi-representation (MLMR) graph format. The fundamental elements of FEPPS

data are the function elements and file elements within the source code. These are then

presented visually for manipulation based upon analyst-specified commands entered in a

navigation control. FEPPS supports both a module and logical viewpoint of the architec-

ture. As we have seen in all the other tools so far, FEPPS suffers from a lack of completeness

because it fails to explicitly use any information other than code-based information in the

recovery process.

The Interaction Scenario Visualizer (ISVis)[35] is the first of the recovery tools that

tries to incorporate dynamic code information with static information. An analyst first

15

instruments the system’s source code and then executes the program to capture an event

trace. A static analyzer such as ctags is used to extract static code information, which is

then used to correlate the event traces. The event trace and static information are then

imported into the ISVis visualization environment. The analyst uses the ISVis visualization

to extract architectural components and connectors based upon the captured events from

the system’s execution. ISVis uses an object-oriented (OO) data model as its internal

representation. Its visualization technique is one of the only ones that does not use a graph

model. Instead the event traces are displayed in a custom 2D widget called an information

mural. The analyst cannot directly manipulate the visualization, but rather manipulates

the OO model, which then updates the mural. ISVis provides a single architectural view of

the run-time organization of the application. Its overall effectiveness is highly dependent

on an analyst’s ability to interpret and effectively use the mural to interpret the event data.

The third technique is Shimba [62]. Although Shimba is restricted to the reverse engi-

neering of Java applications, it is a good example of the use of dynamic program execution

information in recovering high-level program structure. Shimba uses Rigi (as described

above in DALI) for the visualization of static program information. It uses SCED [39] for

the visualization of event trace and dynamic program information. The intermediate rep-

resentation for recovered information is a combination of RSF (rigi standard format) and

SCED’ custom format for the dynamic information. The interesting part of Shimba is that

it allows the analyst to define dynamic scenarios in more explicit manner than ISVis, and

uses automated techniques to build state machines representing the dynamic execution of

Java programs. Also, in contrast to ISVis, Shimba allows dynamic actions to be isolated

to one component, which could prove useful for discovering connectors in a legacy system.

This technique produces two views, a static structural view similar to a logical viewpoint

and two dynamic views (state and scenario) which both map to the runtime viewpoint.

The fourth visualization-intensive technique is the Software Bookshelf or Portable Book-

shelf (SBS/PBS) [61]. SBS uses a web-browsing paradigm to present architectural infor-

mation. An analyst can then select any of the elements displayed, which then takes him

through a hypertext link to the appropriate place in the architecture. SBS is populated

16

using static code analysis tools. The visualization technique is a combination of a graph

representing the architectural structure and textual information supporting the nodes and

edges of the graph. The internal representation is kept in relational tables, which are ac-

cessed via GCL (a query language for information retrieval). SBS can export and import

information using a storage scheme known as TA (for tuple algebra). SBS supports a single

architectural viewpoint corresponding most closely to the module view. Since SBS develops

a single viewpoint consistency is implicit in the technique. Recently, SBS/PBS has been

renamed Swagkit [33], but is essentially the same technique.

2.3.3 Process-Based Recovery

All of the method and tool strategies mentioned so far have had the same weakness-

dependence on the source code of an application as the primary source of information

for architectural recovery. Process-based approaches try to incorporate explicitly informa-

tion from other sources in the information extraction space. The principle examples in this

category are Krikhaar’s Reverse Architecting Approach, SAAM, ARF and Hybrid.

Krikhaar’s Reverse Architecting Approach (RAA) [40], consists of three phases, extrac-

tion, abstraction and presentation (these steps are common to Dali and SBS also). After

obtaining architectural information from source code, documentation and human experts,

the information is grouped and filtered to obtain a relevant subset of the information. Fi-

nally the information is presented to the analyst in prototype visualization environment

called Teddy.

Information extraction from the source-code uses a lightweight method to find source

code relations such as imports, part-of and uses. This information is then stored and

manipulated in the relation partition algebra. This algebra allows the analyst to use specific

operators to abstract (or lift) the information to obtain a view of the architecture that seems

to correspond closest to the module view.

The Software Architecture Analysis Method (SAAM) [3] while not primarily an architec-

tural recovery strategy, does produce architectural descriptions in a human-centric fashion.

A facilitator leads key stakeholders in the development of an architectural representation.

17

Extraction is primarily performed though shared consensus building. The representation is

usually a diagram drawn on a white board or easel. Usually a single viewpoint is developed

which corresponds to the logical viewpoint. The degree of consistency of the architectural

information is dependent on the quality of the knowledge of the stakeholders participating

in the SAAM session.

The architectural recovery framework (ARF)[7] [19] attempts to build a single viewpoint

representation of an architecture by integration of information from multiple sources. It

represents information internally using the DARWIN [47] ADL. The viewpoint recovered

seems to support predominately the logical viewpoint of the architecture. This technique

is essentially a manual one, so the visualization is constructed by displaying the DARWIN

model using a specialized tool. There is no interactive capability yet, so the analyst must

modify the model off-line and then use the DARWIN display tool to redraw the view. ARF

has a clear methodology and therefore should be usable by practitioners in the field without

extensive training.

ARF builds a single viewpoint of the architecture normally expressed in terms of a

quality attribute such as safety or security. It tries to build as complete a model as possible

of this one area. There is no attempt to make any statement about the overall completeness

of the Architectural Description (AD). While ARF looks at multiple sources of information,

it builds only one viewpoint, which limits its ability to check for inconsistency in the AD.

The Hybrid process [64] combines source code derived information with developer inter-

views to produce a representation of the recovered software architectural description. They

define an iterative process, supported by SBS, that consists of the following steps:

1. Choose a domain model. This step in the language of P1471, determines which view-

point you are interested in recovering.

2. Extract facts from source code. This corresponds to the extraction phase of the other

techniques discussed.

3. Cluster into subsystems. In the language of P1471, this step builds the components

and connections for the view that will support the viewpoint chosen in step 1.

18

4. Refine clustering using information derived from developer interviews.

5. Refine the layout to accommodate new information.

Since the tool support is based on SBS, the internal representation is also the Tuple

Algebra (TA). Consistency in the Hybrid approach is obtained manually by discussing the

emerging architectural description with the human experts on the system.

2.3.4 Summary of Recovery Techniques

Table 2 and Table 1 summarize each of the recovery strategies based upon the elements

of our conceptual framework. All have a related information extraction phase using either

custom-designed or open toolkits. None have an overt classification phase since each strat-

egy is oriented towards developing a specific set of views rather than being a general-purpose

technique. In this case, the designer of the recovery strategy has performed the classifica-

tion task implicitly by designing the extraction task to get information for a particular set

of viewpoints. The union phase is also fairly constrained in most of the approaches, since

information is extracted from a single source to support a single view. Finally, with the

exception of Dali, fusion of views for consistency checking is either implicitly accomplished

by the tool by constraining the types of viewpoints and information sources, or it is accom-

plished by discussing the derived viewpoints with human experts. Like the strategy Dali

takes, any new architectural recovery technique or process needs to leverage work already

done well by other tools and techniques. This fact makes this particular analysis useful

for identifying intermediate representations produced by other tools. These representations

can then be imported and analyzed in support of any new techniques or frameworks that

might be proposed.

As evidenced by the wide range of approaches, and differing areas of interest in each

approach, architectural recovery strategies are highly influenced by the preconceived ideas

of the original developer. When a particular strategy constrains the information sources

and the developed viewpoints, the ability of the strategy to produce compliant architectural

descriptions becomes constrained. Only one (Dali) of the architectural recovery strategies

reviewed support explicit techniques for consistency checking or development of arbitrary

19

views/viewpoints. Likewise, few attempt explicit coverage of the extraction information

space. This explains why some experts liken architectural recovery to an art form. Those

analysts who are good at creating architectural descriptions usually have knowledge and

experience that cover the other three quadrants of the information space that do not involve

specific code-based knowledge.

From this analysis, we believe there is a need to define a generalized framework, into

which we can place the output of any or all of the techniques analyzed in this section, so

that we can leverage off their strengths and mitigate their weaknesses. We define just such

a process framework in the next chapter.

20

Table 1: Summary of Architectural Recovery Strategies, Pattern and Visualization Based
Recovery
Strat-
egy/
Refer-
ences

Explicit
Infor-
mation
Sources

Internal
Represen-
tation

Viewpoints
Views
Supported

Visualization
Support

InterView
Consis-
tency
Mecha-
nism

CANTO
/[22]
[23][4]

Source
Code

Annotated
AST

Module
Task

Dotty Implicit

ManSart/
[68] [14]
[13]

Source
Code

Analysis
Module
Inter-
faces(AMI)

Task-
Spawning
Repos-
itory
Service-
Invocation
ADT

Static
Graph

Implicit

DALI/
ARM/
[37][36]

Source
Code

Database Logical
Runtime
Module

Rigi Partial

FEPPS/
[43]

Source
Code

Multi-
Layer
Multi-
Graph
(MLMG)

Module
Logical

Custom
3D Dis-
play

Implicit

ISVis/
[35]

Source
Code
Exe-
cution
Traces

Internal
OO

Logical
Runtime

Information
Mural
MSC

Implicit

Shimba/
[62]

Java
Source
Code
and Dy-
namic
call
Informa-
tion

RSF and
SCED

Logical
Runtime

Rigi and
SCED

Partial

21

Table 2: Summary of Architectural Recovery Strategies, Process Based
Recovery
Strat-
egy/
Refer-
ences

Explicit
Infor-
mation
Sources

Internal
Represen-
tation

Viewpoints
Views
Supported

Visualization
Support

InterView
Consis-
tency
Mecha-
nism

RAA/
[40]

Source
Code
Human
Experts

Relational
Partition
Algebra

Module Teddy
Graph

Implicit

SAAM/
[3]

Human
Experts

Paper/
White-
Board

Any based
on Partici-
pants

Paper
Graph

Implicit

ARF/
[7]

Source
Code
Docu-
men-
tation
Human
Experts

DARWIN
ADL

Centered
around
specific
NFR

Darwin
renderer

Implicit

Hybrid/
[64]

Source
Code
Human
Experts

See SBS Module See SBS Developer
Inter-
views

22

CHAPTER III

DESCRIPTION OF THE ARCHITECTURAL SYNTHESIS

PROCESS

Recall our thesis statement.

It is possible to improve the amount and quality of architectural information that

is automatically recovered and integrated from legacy systems by using semantic

approximation to bridge the concept assignment gap.

In order to reach the ultimate goal of someday having fully automated architectural

recovery, we must first define an overarching framework for software architectural recovery.

By defining a high-level process that encompasses all facets of recovery, we have a framework

which provides a basis to reach that ultimate goal. The remainder of the dissertation will

look at validating the thesis statement. This chapter defines the overarching framework

within which the subsequent work described in chapter VI is situated.

3.1 Process Overview

Architectural information exists in many locations and can be derived from many sources,

as we discussed in Chapter II in the section on the information extraction space. Unfor-

tunately, many current reverse engineering and architectural recovery techniques explicitly

rely on code-based recovery strategies. While these approaches use the most authoritative

source (the code itself), they do not lend themselves to identifying the original high-level

abstractions the designers intended the system to have or to mapping the low-level source

code information to these higher level concepts. The latter mapping problem is commonly

referred to as the concept-assignment problem which was discussed in the previous chapter.

A comprehensive strategy for architectural recovery should be realized through a defined,

tailorable process for obtaining architectural descriptions. This process should meet several

23

general goals. The target process should be:

• Fully-Informed : We would like the architectural descriptions produced by the process

to be complete descriptions. Since completeness has a precise mathematical conno-

tation in computer science, we avoid that term and its semantic baggage and use

fully-informed instead. A process is said to be fully-informed if it explicitly uses

information from a variety of sources covering all quadrants within the extraction

information space.

• Consistent : We want the description produced by the process to be consistent. That

is we want to identify conflicting information between different viewpoints in the

description, and ultimately provide a mechanism for resolving that conflict. We also

want to identify incorrect information and inconsistencies caused by drift and erosion.

• Compliant : We want the description to have all the information that is considered

important by the software architecture community—thus we want the information

to be compliant with existing standards. IEEE Standard P1471 is an example of an

existing standard governing content of architectural descriptions.

• Useful : Architectural descriptions are derived for a purpose. We want any architec-

tural description produced by the process to support that purpose and provide the

necessary information for an analyst to achieve their goals in performing the archi-

tectural recovery. Tilley’s [63][65] survey of reengineering efforts has determined that

evolution of existing systems is the common purpose.

IEEE Standard P1471 states that any compliant architectural description must contain

one or more views. Recall that a view is defined as a representation of a whole system from

the perspective of a related set of concerns. The rules for what a view means are called a view

template (or in P1471 a viewpoint). The process developed must therefore accommodate

and use the idea of viewpoints and their corresponding views. This again reinforces the

need for multiple sources of information as described above, since it is unlikely that any

single recovery technique would adequately address multiple sets of concerns.

24

Figure 5: Architectural Synthesis Process

Finally, if we have multiple views of an architecture, all derived from multiple sources,

it is unlikely that they would all be initially consistent. Section 5.5 of P1471 requires a

compliant architectural description (AD) to contain an analysis of the consistency across

all views provided. This places a requirement on any process description that it address

some type of consistency checking for the recovered description. It’s important to note that

P1471 is similar to the Capability Maturity Model (CMM) [56] in that it states what has

to be in a compliant AD, but not how to derive or even present the AD.

In designing a process for architectural recovery, there are two fundamental options.

The first is to adopt a strategy of identifying the weaknesses of existing extraction tools

and then building a new “ultimate” extraction tool to address them. This approach is

similar to one proposed by Mendonca and Kramer [50]. The other approach recognizes that

there will always be new approaches developed with their own strengths and weaknesses.

A general process that can integrate the different recovery frameworks would be the most

extensible and useful.

Given these high-level requirements, the Architectural Synthesis Process (ASP) was de-

veloped. It consists of four phases that are shown graphically in Figure 5. The extraction

25

phase allows for the use of multiple tools and techniques to obtain raw architectural in-

formation. In the classification phase, this raw information is categorized based upon the

viewpoint (stakeholder concerns) to which it refers. In the union phase, all information

related to each viewpoint is combined into a complete representation (or view). At the end

of the union phase, the architectural description will have one or more views (depending

on the amount and diversity of information obtained). Finally, the fusion phase allows

for consistency checking between views. There is no requirement that a compliant archi-

tectural description resolve inconsistencies that are detected, only that they are detected

and identified in the description. We represent inconsistency resolution, by showing the

process as a cycle, where we reenter the extraction phase after fusion if there are identified

inconsistencies remaining.

The central part of the puzzle is the Software Architectural Description. This represents

the architectural description that is being produced by the synthesis process. We would

like the AD being developed to be compliant with P1471.

We now have defined the overarching conceptual model and the general process phases

forming the methodology to be followed. The next section will provide implementation-level

details for ASP.

3.2 ASP Implementation

This section presents the details of the proposed solution to the problem of obtaining a

fully-informed and consistent architectural description for a legacy system using a tailorable

process. This overall process is called architectural synthesis.

This section is divided into two parts: a more detailed discussion of ASP, introduced

initially in the overview and a description of the tool that will provide automated support.

Figure 6 presents an overall context diagram for the ASP. Recall that context diagrams

show how a system interacts in its environment. The ASP is the system (the center circle).

External systems and data repositories are shown as rectangles. Finally input and output

data flows are shown as labeled arrows between the external systems and ASP.

26

Figure 6: ASP Context Diagram

3.2.1 Process Overview

ASP is fundamentally an information-processing task. Information is obtained about the

architecture using a set of tools and techniques. Within ASP, we refer to a the information

obtained from a single source or technique as a perspective. It may be convenient to think of

perspectives as “raw” information. This information is then processed to filter out incorrect

or inconsistent information and produce a subset of the total information that is consistent.

This of course raises the question how much information needs to be obtained to ensure we

have enough to make this a consistent subset? A standard formulaic answer to this question

is probably not possible. Every legacy system varies as to its size, complexity and archi-

tecture. Most legacy systems have been modified so often that the existing documentation

is inaccurate or the system is so old that documentation may be missing entirely. Even in-

terviewing designers or implementers may not provide adequate information because their

individual understanding is usually limited to the portion of the system they were involved

with. These conflicts drive the need to explicitly obtain information from all quadrants

of the extraction information space. It was stated earlier that a general goal of ASP is to

produce fully-informed and consistent representations. How then do we make a claim about

any description being fully-informed? Clearly we can never know with 100% confidence that

we have uncovered every scrap of information because there is no “oracle” against which

27

we can compare our information. The key to understanding the notion of fully-informed

is to think about another goal of the process, usefulness. An architectural description is

fully-informed if it contains sufficient information for the analyst to accomplish his goal.

This leads to the situation where a description considered fully-informed for a Rapide [46]

simulation may not be fully-informed for a SAAM evaluation and vice versa.

This notion of fully-informed completeness is consistent with current thought in the

software architecture community. It is a generally accepted premise that there is no one

“true” software architecture. Rather we prepare an architectural description that supports

some goal of the preparer. The architectural description will contain at least one view that

we can then use as an accepted representation of the system. This matches our intuition

since if I were going to discuss the performance of the system; I would sketch a view that

emphasized the architectural elements that deal with performance. This might be very

different from a data view or security view of the system, but for the purpose we need, it is

the software architecture of the system.

Consistency is also an important concept. There are two aspects to consistency that we

seek to ensure during the synthesis of architectural information. First we want to be able to

eliminate erroneous information from consideration by the analyst. By erroneous informa-

tion, we mean information primarily from sources like documentation and human subjects

which is incorrect, either because the system has changed from its documented baseline, or

because of a human’s misunderstanding of how the system is structured. Secondly, we want

to identify information that is in conflict with other information that has been collected.

A conflict can have two causes: we may be missing information necessary to remove the

conflict or a piece of the conflicting information may be in error. This is similar to the idea

of database consistency [21].

A frequent problem in legacy information systems is that the same information is entered

multiple times and resides in multiple places in the database. This information often gets

out of synchronization and gives inconsistent results. Architectural information suffers from

the same problem. Information comes from many sources and some of those sources are

outdated and have minor errors while other sources may be grossly in error.

28

From the preceding discussion then, we can infer several requirements that any synthesis

process should possess:

• It should provide a method for combining information obtained from a variety of

sources.

• It should provide a mechanism for finding inconsistencies in architectural information.

• It should support iteration so that inconsistent or missing information can be resolved.

Zave and Jackson studied the problem of combining formal specifications from multiple

sources to produce a single coherent specification. In their well-know paper[71] on composing

these specifications, the authors present three primary goals that a solution must meet.

These goals are adapted here for ASP:

• ASP should accommodate a wide variety of architectural recovery paradigms and

techniques.

• It should be possible for ASP to combine partial architectural representations regard-

less of overlaps or gaps in coverage; regardless of which paradigms they represent, and

regardless of where boundaries between techniques and representations are drawn.

• Intuitive expectations of a combined architectural representation should be met. ASP

should not define as inconsistent sets of partial representations that are intuitively

consistent and meaningful. It should not map intuitively interdependent properties

or elements in a representation onto spuriously independent ones.

Figure 7 presents the top-level process diagram for ASP. While this diagram may look a

little daunting at first, much of the convoluted information flow is due to traceability data

and the iterative nature of obtaining and then refining the architectural information.

As the process is discussed, we will use a continuing small example to illustrate the

different concepts of the ASP. We will use the Interaction Scenario Visualizer (ISVis). For

details on ISVis, refer to chapter 5 and Appendix C.

29

Figure 7: Top-Level ASP Process Diagram

3.2.1.1 Extraction

The first step in performing the synthesis process is to obtain the perspectives to be syn-

thesized. These perspectives may come from existing documentation, source code analysis,

domain analysis, interviews with human experts, or any other source that may provide an

idea of what the legacy system’s architecture might be.

Following the philosophy of Dali [36], there is no prescribed set of extraction mechanisms

that must be used to develop a set of perspectives. It is unclear at this time whether

there might exist a canonical set of extraction methods which could be prescribed that

would give an adequate set of perspectives from which to derive a set of representations

which are complete, consistent, useful, and have the desired content. It is unlikely that

such a canonical set would exist given the wide range of domains which legacy system’s

support. This increases the motivation to accommodate as many extraction methods and

information sources as possible. In general, it is desirable to get some type of coverage

across the extraction information space to obtain the widest range of data sources for the

30

Table 3: Some Typical Sources of Potential Perspectives by Viewpoint Viewpoint Source

Physical (Hard-
ware)

System Inventory, Design Documents, Interviews

Process (Run-
time, Execution)

Design Documentation, Dynamic Execution Traces,
ManSART, Interviews, Makefile analysis

Module (Code,
Source)

MakeDepend, Makefile analysis, File System Ex-
amination,PBS, Rigi,Project Documentation (Work
breakdowns)

Conceptual (Logi-
cal, Functional)

Rigi, DALI, Interviews, ManSart , Call-Graph Gener-
ator, DSSA, Domain Models

architecture.

The principle requirement of ASP extraction is that the output of any extraction tech-

nique must be expressible as an attributed graph. This is not really a limitation since even

if the output pertains to a single component, the graph would be one node with all relevant

information shown as attributes. Components become nodes and connectors (the relation-

ships between components) become edges. Any other architectural information extracted is

attached to the nodes, edges or to the graph as a whole as attributes. We do not anticipate

this to be a major limitation of the technique. Architectures are typically described as

a graph where the nodes are components, the edges connectors and the configuration the

topology of the graph.

We also must determine the relevant viewpoints that must be addressed to meet the

purpose to which the architectural description will be put. We can generally limit our

selection to the four major viewpoints (physical, logical, process and module). In larger

systems, or in specialized domains, the number of viewpoints may need to be expanded to

include other concerns. For instance, the logical viewpoint might be separated into a data

and control view if this is necessary to better understand a complex system. In certain

domains, security or performance views might also need to be constructed. The ultimate

decision about which viewpoints are significant and what views need to be prepared is a

function of the domain and the purpose to which the architectural description will be put.

Finally, after the viewpoints are chosen, any mappings between the viewpoints must be

31

Table 4: Summary of Mappings
Source Destination Component Connector

Viewpoint Viewpoint Relationship Relationship
Process Physical runs-on resides-on deployed-on transported by
Logical Module implemented-by defined-by implemented-by
Process Logical defined-by defined-by

identified. These mappings are important because they indicate what information we must

extract about elements so that we can perform fusion in a later stage of the process. For

instance, for the standard four viewpoints we have the following mappings (summarized in

Table 4: A component in the process view maps to a component in the physical view via

the runs-on or resides-on relation. (We must determine which processors a given process

or thread runs on, or which processor a given data store resides on). A connector in the

process view maps to either a processor or communications path via the runs-on relation.

A component in the module view maps to a component or connector in the logical view via

the implements relation. (We must determine which logical elements are implemented by

which code modules).

If the analyst selects other viewpoints, similar mappings must be selected so that the

proper information is extracted for use later in the fusion phase. We define the mappings

during extraction rather than later so that they can help determine information that the

analyst extracts from the legacy system.

EXTRACTION PHASE PROCESS SUMMARY:

Preconditions Recognize the need to develop an architectural description of a legacy

system.

Process Steps

• Determine the purpose of the architectural description that ASP is being used to

develop. By purpose we mean to understand the underlying motivation for creating

the architectural description. The purpose will drive many of the subsequent decisions

that must be made. For instance, if the purpose if to enhance the security features of

32

the system, then this will focus the extraction efforts on security aspects of the system.

The purpose should be as specific as possible to allow the process to be focused as

tightly as possible. Write a short statement of the purpose to focus and guide the

effort.

In our example, we might imagine that we want to port ISVis from its current

C++/Motif implementation to a Java/Swing implementation. The purpose is then

an evolution task to transfer functionality, but not add additional functionality to the

new platform.

• Determine the viewpoints that must be represented (understanding the purpose to

which the AD will be put) in order to produce a complete AD for the task. Usually,

it is best to recover all four of the basic viewpoints (physical, process, module and

conceptual) in order to have a basis for checking the consistency of the views and

insuring that they are complete.

In our example, we recognize that ISVis is a single threaded, single process application,

therefore the viewpoints of interest will be the logical and module viewpoints. For the

remainder of the example we will focus on the logical viewpoint.

• Determine the mappings (relationships) between the viewpoints that have been se-

lected in the previous step.

The principle mapping in our example is the “implemented-by” relation. A compo-

nent or connector in the logical viewpoint must be implemented by a component in

the module viewpoint. Likewise, each component in the module viewpoint should

implement an element (component or connector) in the logical viewpoint.

• Gather Legacy System Information: Stable Code Base, Design and Domain Informa-

tion and a list of original designers and current maintainers for potential interviews.

For our example, we have available the original design documentation, the source

code, research papers describing the system and the results of an interview with the

original designer/developer.

33

• Determine an initial set of tools to use for the extraction effort. These tools should give

you a range of information-from low-level code constructs to high-level abstractions.

Table 3 presents a summary of some possible sources of perspectives based upon the

viewpoints chosen.

For our example, we select a dynamic architectural extraction tool (ISVis itself). We

also extract the design information from the design documents available.

• Follow the instructions for each tool that was chosen in the previous step to develop

an initial perspective of the architecture. (Some of this data may be in electronic

format, while other information may be in paper form).

For our example we end up with the two perspectives presented in Chapter V, Figures

25 and 21.

• Convert the information in the previous step into an attributed graph, with compo-

nents being nodes, connectors being edges and associated information being attributes.

This step would give us a GML file for Figure 21 like:

graph [
version 2
directed 1
node_style [

node [
id 9
label "View"
]
node [
id 12
label "ViewManager"
]
node [
id 15
label "ProgramModel"
]
node [
id 18
label "TraceAnalyzer"
]
node [

34

id 21
label "EventStream"
]
node [
id 24
label "SessionFile"
]
node [
id 27
label "EventTrace"
]
node [
id 30
label "InstrumentedSourceCode"
]
node [
id 33
label "TraceInfoFile"
]
node [
id 36
label "SourceCode"
]
node [
id 39
label "SolarisDBDatabase"
]
node [
id 42
label "StaticAnalyzer"
]
node [
id 45
label "Instrumentor"
]
node [
id 48
label "StaticInfoFile"
]
edge [
source 48
target 15
label "Data8"
]
edge [
source 48
target 45
label "Data6"

35

]
edge [
source 36
target 39
label "Data1"
]
edge [
source 45
target 30
label "Data5"
]
edge [
source 30
target 27
label "Data4"
]
edge [
source 27
target 21
label "Data3"
]
edge [
source 18
target 24
label "Data2"
]
edge [
source 12
target 18
label "Control5"
]
]

• Use text data mining to extract attribute information (for example word frequency

and ngrams) about the system being recovered for use in later steps. NGrams are

used in text processing to improve the analysis of textual content over single-word

analysis. In this dissertation we use ngram to mean using more than one word as if

it were a single word. For instance a 1-gram might be “file” while a 2-gram would be

“information file” and a 3-gram “static information file.” This technique is detailed

further in the next chapter.

For our example, we would derive the word sets in Appendix F, Table 25.

36

• Assign a subset of this text information to the elements in the perspective graph as

an attribute. This step is elaborated upon in the next chapter.

For our example, we would obtain the formal context shown in Appendix F, Table 26.

Postconditions

• A short statement of purpose of architectural recovery effort has been prepared.

• A list of viewpoints that are relevant for the recovery effort has been prepared.

• A list of mapping relationships between the viewpoints has been prepared.

• A set of perspectives (attributed graphs) representing the architectural data that has

been extracted has been prepared.

3.2.1.2 Classification

The next step is for the analyst to group perspectives into their respective viewpoints

(selected during the previous phase of ASP). This helps an analyst to focus initially on

synthesis of perspectives that are intended to describe the same aspects (or concerns) of

the system undergoing recovery. Note that this is not necessarily a one-to-one function, as

parts of an individual perspective may map to two or more viewpoints.

To determine how to classify the information in a perspective, the analyst must use

the type of viewpoint, the source of the perspective and the attributes of the elements

in the perspective to determine how to classify the perspective. Some general rules for

classification are the following:

1. If the perspective came from an object-model diagram (such as an OMT diagram) it

is typically a logical view.

2. If the perspective came from a call-graph representation then it is typically a logical

view.

3. If the perspective contains hardware elements then it is typically a physical view.

37

4. If the perspective contains component names that can be matched to static source

code entities, it is typically a logical view.

5. If the perspective contains names that can be matched to targets in a build or make

file, it is typically a process view.

6. If the perspective came from a legacy ”box-and-arrow” diagram, it is typically a logical

view.

7. If the perspective contains information derived from the source code directory struc-

ture or depends sections of the make file it is typically a module view.

CLASSIFICATION PHASE PROCESS SUMMARY:

Preconditions Identification of the Viewpoints that are of interest to the recovery. A set

of perspectives (represented as attributed graphs).

Process Steps For each perspective: Examine the nodes and edges of the graph. Classify

either the whole graph or the appropriate subset of nodes and edges to a particular viewpoint

using the attributes of each element and the perspective source to make the decision.

For our example, the perspectives obtained would both be part of the logical viewpoint.

Postconditions Set of perspectives classified according to the viewpoints they represent.

3.2.1.3 Union

The union phase analyzes and combines all perspectives representing a specific viewpoint

to build a view. During this step we manipulate a perspective as a graph where nodes

are components (boxes) and edges are connectors (lines). We refer to components and

connectors collectively as elements for convenience.

Each element within a perspective has some set of attribute values that describe prop-

erties of that element. These attributes include the name of the component (or its domain

synonym), topological characteristics such as port count, general attributes, and textual

documentation that has been mined from the available system artifacts.

38

General attributes consist of system characteristics expresses as attribute-value pairs.

Some common examples of these general attributes are:

attribute = Abstraction Level possible values = composite or atomic

attribute = Behavior Type possible values = passive or active

attribute = Component Type possible values = function or procedure

attribute = Connector Type possible values = shared-memory, socket or file

The union phase derives its name from its similarity to the set union operation. During

union we combine perspectives by matching elements or by recognizing new elements in

the perspectives until we have combined all the perspectives into a single view. We re-

peat the union process for each viewpoint into which we classified perspectives during the

classification phase.

Specifically, we combine perspectives in a similar manner to that used in database

schema integration. First a perspective is selected as the base representation for the view-

point being unioned. Then every other perspective (or partial perspective for those which

were classified into more than one view) in the viewpoint is combined with the base rep-

resentation, one perspective at a time. After each combination is completed, the result

becomes the new base representation. When we have combined all perspectives, we have a

view that encompasses all available architectural information pertaining to the viewpoint

of the architecture being considered.

Although selection of a base representation is fairly flexible, in practice it is best to use

a perspective that contains elements with a high level of abstraction. We do this because

it appears that it is easier conceptually to work top-down in building a view than to work

bottom-up.

The union process is an elaboration of the architectural element-matching problem-

that is, given two perspectives, how can we determine when an element in one perspective

matches some element in a second perspective, or an element is a new element to be added.

There are three major techniques that might be used to solve this problem: lexical, topo-

logical, and semantic approximation. Chapter V discusses the theory behind each of these

39

techniques in some detail. Solving this matching problem is a major step towards automa-

tion of the ASP process. Our inconsistency handling during union uses the delay strategy.

We expect some inconsistencies to resolve themselves during union of later perspectives.

Any remaining inconsistency is removed during the Fusion phase.

UNION PHASE PROCESS SUMMARY:

Preconditions A set of perspectives classified according to the viewpoints they represent.

Process Steps For each viewpoint in the recovery: Select a perspective to be the base

representation. For each remaining perspective in this viewpoint union the elements in the

new perspective to the base representation.

For our example, we would select Figure 19 as the base representation and union Figure

20 to it. To get a sense of the union process activities, we examine the subset of these

figures as shown below in Figure 8. We then use lexical information to perform the first

match giving us the result in Figure 9. We continue to match components to give us the

relationships shown in Figure 10. The connectors can then be inferred from the component

relationships. This is especially helpful because the design document perspective had no

information on the connectors other than data and control. By unioning this with the

dynamically-derived perspective, we can obtain more information about the relationships

between the original design components.

Postconditions A set of views-One supporting each viewpoint that has been selected by

the analyst.

3.2.1.4 Fusion

We adopt this term from DALI, but use it to represent analysis across multiple viewpoints

to check for commonality and create compositions of views. Fusion serves two purposes:

first it provides a check on the consistency of the views and secondly, it provides additional

information about the architecture through the composition of related views.

Our approach to view fusion is through the use of mappings. We define a mapping

40

Figure 8: Base and Unioning Perspectives

41

Figure 9: Results of Union After One Match

Figure 10: Final Union Results on Two Perspectives

42

as simply a relation between an element in one viewpoint and an element in another. The

nature of this relationship varies depending upon the semantics of the architectural elements

in each viewpoint. For some viewpoints there is a close correspondence between the views

that represent them. For other combinations of viewpoints, the relationship is primarily

transitive. For example, there is no direct mapping between the physical and module (or

code) viewpoints. To get a mapping between them, we can transitively use the process view

as an intermediary. First we map the process view to the physical view, then the module

view to the process view thus arriving transitively at a module to physical mapping.

It is also desirable to map between smaller views, for instance a security view and a

performance view of a legacy system’s architecture. We accomplish these types of subview

mappings by first abstracting them up to a top-level viewpoint and then doing the fusion.

For instance the security view is usually a subset of the conceptual or logical viewpoint.

We would then use the mapping rules for the conceptual view to check the security view

for consistency.

Meta-information about potential mappings and the semantics of a given set of view-

points might come from multiple sources of information. Information about what consti-

tutes a viewpoint and general semantics is derivable from existing architectural metamodels

such as those described in the IEEE P1471 specification. More specific information about

the meaning of components and connectors in a specific domain comes from information

contained in domain-specific architectures and so on. The following paragraphs discuss

mappings between the four basic viewpoints.

System→Physical Mapping While the system view is not one part of the basic four

viewpoints, it is a commonly available view that provides valuable information about the

environment in which the legacy system operates. A system’s diagram (or view) is normally

found in design documentation or product brochures and typically consists of a top-level

representation of all hardware components in the legacy system, whether they have software

associated with them or not. The systems view in legacy documentation may often be

referred to as the systems architecture. Recall from Chapter II, that the P1471 definition

43

of a software architecture includes its relation to the external environment. This mapping

helps express that relationship.

The Physical view can frequently be checked for consistency against the overall System’s

architecture. Since the system’s architecture by definition should contain all the hardware

system components and the physical view contains only the hardware components that host

software, the physical view should be fully contained in the system view.

The actual process of mapping the system to the physical view is straight-forward. There

should be a correspondence between the elements in each view. Additionally, since these

elements are of the same type (i.e. actual hardware components), we should be able to

match them using basic lexical analysis and attribute comparisons.

An inconsistency exists if we have any elements in the physical view that do not exist in

the system view or if there are elements in the system view which we know to host software,

yet these elements are missing from the physical view. Complexity is introduced even into

this simple process by aliases and multiple connection types. For example the larger system

diagram may call a component the business-rules server while the physical view used by

developers may refer to it as the application server.

Process→Physical Mapping the processes to the physical view is much more difficult.

Components in the process view represent runtime processes or threads while the connectors

represent some type of inter-process or inter-thread communication. Information about

the physical devices that processes exist on at run time must be obtained from design

documentation, human interviews or dynamic trace information obtained during system

execution. For this mapping, trying to match names or topology is not effective. We would

not expect the names of processes to have much in common with the names of processors

or communications paths. Topologically, many of the connectors in the process view do

not map onto connectors in the physical view, but rather onto processors (components) in

the physical. This phenomenon is caused by the ability of multiple processes to run on

a single processor; therefore the inter-process communication (IPC) connectors would also

be mapped to that processor. It is the case however that any IPC between processes on

44

different processors must map onto a physical communications connector. This illustrates

why a simple graph-matching algorithm is inappropriate. Nodes (components) in one graph

do not necessarily map to nodes in another, they might map to edges (connectors)!

Since elements in the physical view are not included unless they host software, we would

expect that all processors have some process running on them. An inconsistency exists if

there are processors that have no processes or processes that have no processor to run on.

Conceptual→Module Mapping of a conceptual viewpoint to a module viewpoint re-

quires information about which code modules implement the various components and con-

nectors in the conceptual view. Often the connectors in views supporting these two view-

points provide information that is not related to consistency issues. For instance, the con-

nectors in a module view usually represent a “uses” or “contains” relationship between the

components denoting source code modules. While providing important information within

the module viewpoint, they do not bear any relation to information in views supporting the

conceptual viewpoint.

Likewise in the conceptual viewpoint, the connectors often represent aggregations of

function calls, message passing or other semantics that are implicitly implemented in soft-

ware rather than explicitly implemented by the code base. Another complication is caused

by the use of COTS (commercial off-the-shelf) components. Some of these may be used by

the software system in a third-party binary format, and thus they have no corresponding

implementation in the module view. For this reason, during extraction we must identify

components and connectors in the logical views as internal or external based upon whether

the element is COTS.

An inconsistency is detected when there are internal components and connectors that

have no code modules that implement them. Likewise, we have an inconsistency when there

are code modules that do not implement any elements in the logical view.

Other Mappings We did not consider all possible combinations of views because the

other combinations have transitive mappings that allow them to be derived from the ones

presented. For instance, what consistency considerations are there for the physical to code

45

module view? None, except transitively through the fact that processes run on processors,

and processes are made up of portions of logical components that are themselves imple-

mented by code modules.

Besides these transitive considerations, we also have the situation where the “basic

four” views are not sufficient or are not used in the domain. For instance in some informa-

tion systems environments, it might be necessary to create views supporting the Zachman

Framework[69] which contains views supporting up to 30 different viewpoints. Within the

Department of Defense, views might be generated conforming to the C4ISR architecture

that would put them into three major categories: Operational, Technical or Systems. While

there are mappings which can be derived between these views, unfortunately, each mapping

is unique to the semantics of the given viewpoint/view combination. If we can use architec-

tural description languages (ADL’s) to express the meaning of these different views, then

we have the possibility of further automating these mappings.

Summary It is useful at this point to address a couple of key questions about view

fusion and inconsistency detection. First, we might ask what kinds of inconsistencies can

be detected? Clearly using the approach of mapping, most of the inconsistencies we find

are related to a mismatch between viewpoints. This mismatch is most commonly caused

by an architectural element in one view failing to have a corresponding match in another

view. For example, in the code module view, we might have a source file which implements

functionality that is not represented by anything in the conceptual view. Conversely, we

might have a logical component in the conceptual architecture which has no code module

associated with it (and the logical component is not an external or COTS piece of the

system).

This leads us to the second question, what kinds of inconsistency cannot be found.

Clearly, if we have missing information from multiple views, then inconsistencies that are

actually there might not be found. In ASP, we attempt to overcome the problem of missing

information by deriving information from the entire spectrum of sources shown in the in-

formation extraction space, rather that just source code alone. While missing information

46

is generally an issue of completeness rather than consistency, it does impact on our method

of consistency checking. In an ideal world, we might wish for an oracle that had complete

knowledge of every viewpoint for a legacy system, but sadly this oracle does not exist. For

this reason we strive for a relative consistency between the views/viewpoints rather than

some utopian absolute consistency measure.

Another question that might be asked is how inconsistent are views in practice? The

degree of inconsistency is usually directly related to the diversity of information sources

used for extraction. If we recover an architecture based solely on source code analysis, we

will probably have a small set of views that are very consistent (although their completeness

and accuracy might be less). As we diversify the extraction sources to cover the informa-

tion space, we begin to uncover information that reflects differences between the design

documents, interviews and code that do introduce inconsistencies in the different views.

Finally, we might ask how are inconsistencies handled? Is any of this detection even

important? Again, as P1471 states, there is no requirement that all inconsistencies be

resolved in an AD, only that they are identified. This acknowledges the fact that for any

given situation, the resolution of an inconsistency is left to the discretion of the analyst

conducting the architectural recovery. If we are conducting a SAAM session to evaluate

the impact of changes on the code structure, an inconsistency in a physical view might be

unimportant and would not need to be addressed. On the other hand, if we were preparing

an architectural description to evaluate extensive new functionality to be implemented in

a distributed fashion, then it would be critical to resolve any inconsistencies between the

physical view and the processes specifically running on the physical devices in the view.

FUSION PHASE PROCESS SUMMARY:

Preconditions Set of Views representing viewpoints of interest for the recovery.

Process Steps For each pair of views: If there is a mapping between the views, then

check the views for consistency by using the defined mappings. If any inconsistencies are

detected, decide on the appropriate course of action (resolve, ignore, delay). If resolution

of the inconsistency is necessary, determine the type of information which will resolve the

47

Figure 11: Partial Fusion Results for ISVis

inconsistency and return to the extraction phase.

For our running example, we would perform fusion between the module and logical

viewpoint. Figure 11 depicts the results of this fusion. Note that we have code modules

implementing all our logical components, but we have been unable to identify connector

information. If the purpose of our recovery effort required us to understand these connectors,

then this indicates the need to go back to the extraction phase and obtain additional

information to resolve this missing information.

Also since our original purpose was to port this tool, the modules implementing the

View component would be of particular interest since they encompass the graphical user

interface, which is the hardest part of the application to port.

48

Postconditions List of inconsistencies between views List of inconsistencies which must

be resolved

3.3 REMORA Toolkit

Two things enhance developing a repeatable process that will move architectural recovery

from art to engineering discipline. First we can define a standard process as in the previous

section. Second, we can develop automated support that performs routine actions in a stan-

dardized way. This section details the design for REMORA (Resolution of MORALE[59]

Architectures). REMORA has a conceptual architecture as shown in Figure 12.

The conceptual architecture of REMORA represents a component-based approach to

the development of an architectural synthesis toolkit. Major functional elements of the

toolkit are implemented as independent COM components. This allows them to be reused

at the binary level in a variety of different languages and platforms. Also, by using the

remote execution feature, workload-intensive components can run on different machines to

accomplish their major tasks. In Figure 12, the shaded components are building block

components that are not normally directly used by an application.

REMORA currently uses either the VisEd (Graphlet) package or the LEDA library

for graph display and layout services. Christian Lindig’s [44] concepts package computes

concept lattices from formal contexts. The text analyzer component performs text manip-

ulation and analysis on the documents imported into the current project. The Bow library

and the Text Analyst SOM analyzer are used as COTS products. Nauty is used as the graph

manipulation library. This component also contains the WordNet software package, which

performs significant computation services for synonym and semantic similarity detection.

3.3.1 User-Interface Module

The user-interface (UI) component is always active and acts as mediator for the various

features of REMORA. A screen shot of the UI is provided in Figure 3-1. The view is

divided into several areas each displaying different types of information to the analyst. On

the left is a tabbed tree view that lists all the information for a specific project. The

tabs provide organized access to diagrams, documents, and scenarios. Currently the tool

49

Figure 12: REMORA Conceptual Architecture

50

does not provide scenario support, but does provide a placeholder for future expansion.

An analyst creates a project that identifies the set of perspectives, documents and their

associated information that will be used for the remainder of the process. The extraction

phase is supported through importation of architectural information via various filters.

After importing the perspective, other attributes can be assigned to the representation if

desired. The different representations created can be grouped using the UI module.

The UI Module is implemented using the Microsoft Foundation Classes (MFC) and the

standard event-driven windows paradigm. The model (derived from the standard MFC

CDocument class) of the project controls access to the supporting database using OLE

DB COM calls to obtain information from the database. This allows easy swapping of

database components since the base program only uses standard COM calls. Views of the

data in the project are displayed either internally, using the MFC HTMLView class, or

externally using a graph viewer. By using the MFC View class, REMORA can display a

variety of formats including ASCII Text, native hypertext (html), extended markup (xml)

or MS Word documents. The view has an integral button bar which allows access to the

supporting COM-based Text Analysis modules.

The UI module also supports log files to provide both feedback and undo functions. The

error log view pane displays a chronological report of abnormal conditions that occurred in

the project. Examples of errors include failure to successfully import a Rigi Standard Format

(RSF) file due to format problems or an inability to launch a required COM component.

The trace log on the other hand provides a basic record of how the analyst got to the

point in the synthesis process that the state of the project depicts. Any actions affecting

the final product are recorded and time stamped in the trace log. The analyst can use

this log to determine where certain views came from by tracing through the perspectives

that were combined. The log can also serve to undo certain actions and restore a previous

project state.

51

Figure 13: REMORA Main UI

3.3.2 Import Tools Module

The Import Tools module allows data from other extraction tools to be brought into

REMORA. Currently there are two primary importation tools. The first uses Graph Markup

Language (GML). This allows the analyst to quickly draw an architecture in either VisEd

or LEDA, export it as GML and bring it into the project. The second tool is a Tuple

Attribute (TA) and Rigi Standard Format (RSF) importer. This allows data from several

research extraction tools to be brought into REMORA. These tools include PBS, DALI and

Rigi.

3.3.3 Matching Tools Module

To combine perspectives, we must be able to match elements between perspectives. This

matching problem can be stated as: Given two perspectives P1 and P2, each comprised of a

set of architectural elements, how can we combine the elements to create a new perspective

P3 which is a combination (union) of P1 and P2? As mentioned previously, we want to use

both syntactic and semantic information to do this matching. The Matching Tools Module

provides access to both these techniques.

The lattice analyzer, a COM component that uses Christian Lindig’s concepts program

52

to compute a concept lattice, provides the implementation of our custom algorithm for

semantic approximation. The analyzer traverses the concept lattice using the algorithm

described earlier in this chapter to find the appropriate matching relations. These are

then displayed through the UI component to the analyst. Syntactic matching is provided

by connecting to the Mapper component (in the Text Analysis module), which provides

synonyms and word relations to help match similar components. This information is also

provided through the UI component to the analyst.

3.3.4 Graph Viewer Module

While documents can be displayed correctly within the UI, diagrams must be viewed exter-

nally using the Graph Viewer Module. Currently, REMORA supports one of two viewers,

Graphlet (VisEd) or LEDA. These run as threads within a COM component and support

graphical manipulation and display of information.

3.3.5 SQL Server DB Module

Project information is persistently stored in a relational database. Currently, REMORA

uses SQL Server 7.0[2], however this is not a hard requirement. Only the UI and Import

component even knows there is a database, and all communication is via the OLE DB

protocol. Thus, any OLE DB[32] provider can be used to provide the back end, even a

custom one written by the analyst. Changing the backend does not require any rewrite of the

other components. There are two models, a high-level and low-level model. These models

are currently correlated and integrated by knowledge built into the REMORA application

code rather than by the database model itself.

3.3.6 Text Analysis Module

The text analysis module is the heart of the document processing capability in REMORA. It

provides several tools inspired by Dowser[16] to analyze the project architectural documents.

The shaded components in Figure 3-3 represent smaller building-block COM components

that are not directly used by REMORA. These are the Stemmer, Tokenizer, Link Grammar

Parser (LGP)[28] and Wordnet[52] components. The tokenizer provides a simple way to

53

tokenize and return the words in a file. The stemmer accepts a word and returns its

stem using either the Porter[58] or Morph (included in wordnet distribution) algorithm.

Wordnet is an extensive language analysis program computing complex word relationships

like synonyms, antonyms and hypernyms. LGP is the link grammar parser that parses

sentences and returns the links between the words based upon the parts of speech.

Sitting on top of these utility components are the main REMORA tools: Ngram, Counter

and Mapper. Counter is simply a single word counter which takes a document, filters out

stop words if desired, stems the words if desired and counts the number of occurrences of

the word in the document. Ngram works slightly more intelligently by recognizing that

key ideas are often a combination of nouns and adjectives. Ngram submits the sentences

in the document to the LGP and then processes the links to obtain ngrams composed of

the nouns and their descriptive modifiers. We feel this Ngram version is an improvement

over the original Dowser ngram tool that inspired it. First, unlike the Dowser tool, there

is no need to specify the size of “n.” Ngram allows “n” to range from 1 to any number.

Consider for example the phrase “centralized operating system.” Depending on whether

the user requested 1, 2, or 3 grams, Dowser would return system, operating system or

centralized operating system, while Ngram would automatically return the entire phrase

centralized operating system. It does this by recognizing that centralized and operating are

both modifiers of the noun system. Mapper takes a word and returns a set of related words

based upon the user’s request. It primarily uses Wordnet, but also uses a user provided

custom dictionary of domain synonyms and abbreviation expansions.

The code data miner parses a source code file, and extracts keywords, associating them

with files or function names in the program. Each function name is processed to extract the

maximum meaning. For instance the function mem set would get expanded to memory set

and procSched would become process scheduler (based upon use of an operating systems

domain dictionary).

54

CHAPTER IV

SEMANTIC APPROXIMATION

This chapter gets at the heart of our thesis statement:

It is possible to improve the amount and quality of architectural information that

is automatically recovered and integrated from legacy systems by using semantic

approximation to bridge the concept assignment gap.

Previous chapters have provided a background in current automated support for ar-

chitectural recovery and our general framework and process for recovering architectures,

around which automated tools can be built. This chapter presents a technique within that

framework which provides the mechanism for achieving our thesis statement. Specifically

this technique focuses on improving integration of information during the union phase of

ASP. The union process is discussed in detail in paragraph 3.2.1.3. The next chapter dis-

cusses validation of semantic approximation through an experimental comparison.

This chapter has two major parts. The first is a theoretical overview of concept analysis

to provide background in the field. The second shows our application of this mathematical

technique to architectural recovery.

4.1 Concept Analysis Primer

Concept analysis is based on lattice theory [66]. Concept analysis allows groupings to be

formed based upon maximal sets of common attributes. Other software engineering re-

searchers have used concept analysis for module identification [60] and configuration man-

agement [41]. Ganter and Willie provide a complete mathematical treatment of concept

analysis in [26]. This section presents a brief introduction so the reader can understand the

techniques presented in subsequent chapters of this dissertation.

Lattices are based on ordered sets. An ordered set is a pair (S, ∗) where S is a set and

∗ is an order relation on the elements of S. We can draw a Hasse diagram or line diagram

55

Figure 14: Sample Haase Diagram

based upon the ordering of the set. For example, let S be the set {1, 2, 3, 5, 6, 15, 30}

and the order relation be / (that is the ordered set (S, /) where / means divisible by). A

lattice then us an ordered set in which every subset containing exactly two elements has a

greatest lower bound (also called the infimum or meet) and a least upper bound (also called

the supremum or join). The corresponding Hasse diagram for our example set is shown in

Figure 14. Refering to this figure we can see the join of 2 and 3 is 6, while the meet of 2

and 3 is 1. In our figure the elements 30 and 1 have a special designation known as top and

bottom.

Concept analysis is an application of lattice theory that deals with objects and their

attributes. Lattices for concept analysis are created from a formal context. A formal context

is a triple {O, A, R } where O is a set of objects, A is a set of attributes and R is a relation

between these objects and attributes. Specifically, R is a subset of O×A that relates objects

to the attributes they possess such that (o,a) ∈R if object o has attribute a. In concept

analysis, when we discuss attributes we are discussing actual values. We might say in other

domains that an attribute of a creature is its skin covering which could be for example

scales or fur. In concept analysis, we call scales and fur attributes (rather than a value of

the attribute skin covering).

We then define two important functions:

Let X ⊆ O and Y ⊆ A then:

σ(X) = {a ∈ A|∀o ∈ X : (o, a) ∈ R} (1)

56

Table 5: A Formal Context
Hair Scales Walks erect Has thumb Crawls Breathes air Breathes water

Dog X X
Cat X X

Person X X X X
Monkey X X X X
Snake X X X
Fish X X

τ(Y) = {o ∈ O|∀a ∈ Y : (o, a) ∈ R} (2)

Thus equation 1 refers to the set of common attributes for the objects in X, while

equation 2 refers to the set of objects which each have all the attributes in Y . A concept

then is a pair of sets consisting of objects(X) and attributes(Y) that satisfy the constraint

Y = σ(X) and X = τ(Y). A concept can also be thought of as a maximal collection of

objects who share the same attributes.

These two functions lead to the fundamental theorem of concept lattices shown in equa-

tion 3. Simply stated, this theorem states that a concept can be computed by intersecting

their attributes and finding the common objects of the resulting intersection.

⋃
i∈I

(Xi, Yi) = (τ(
⋂
i∈I

Yi),
⋂
i∈I

Yi) (3)

where I is subset of integers ranging from 0 to |Y |

For example, consider the following set of objects and attributes. O = {dog, cat, person,

monkey, snake, fish}; A = {hair, scales, walks erect, has thumb, crawls, breathes air,

breathes water}; R= formal context in Table 5.

σ(Dog, Person) = {Hair,BreathesAir}

τ(Hair,Walkserect) = {Person, Monkey}

Figure 15 depicts the computed lattice for the example. For purposes of this illustration,

note that objects are shown in bold type and attributes in regular type. The top of the

lattice represents the concept shared by all objects (the universal concept), and is normally

(as in this example) empty. Each node in the lattice represents a concept composed of one

57

Figure 15: Concept Lattice Example

or more attributes and zero or more objects. For example, just below top are two concepts:

{Breathes Air} and {Scales}. Concepts that are below a concept are called subconcepts

while concepts above a concept are superconcepts. Subconcepts have all the attributes of

their superconcepts in addition to any new attributes belonging to that concept. Take for

example the concept corresponding to the object snake. Snake has the attributes from

its superconcepts (Breathes Air and Scales) in addition to its new attribute Crawls. The

bottom of the concept lattice represents the concept that has all the attributes in the set

A. This concept is referred to as the empty concept. Typically (as in this example) each

concept shows only the lowest point in the lattice where an object can be placed (that is

where its maximal set of attributes occurs). For shorthand, only the new attributes at each

concept are shown.

4.2 Automated Integration of Architectural Information

It useful to digress for a moment from a description of semantic approximation to consider

the other two primary approaches being used for automated integration of architectural

information: lexical and topological. We begin with a short description of each of these,

followed by a more detailed description of our proposed technique which will allow more

and higher quality information integration to take place.

58

4.2.1 Lexical Matching Techniques

The theoretical basis for this technique is founded on the idea that the names chosen for

functions, code modules, source directories, etc. have a relation to their functionality. This

has been explored in other approaches to reverse engineering such as library analysis [51]

and function name analysis [12]. The basic technique is fairly simple. If the name of the

architectural element in one perspective is the same as the name in the second perspective,

they are considered to be a match—that is, they refer to the same element. While in an

actual recovery effort we may have other information about an element, we are considering

here using only the lexical information available.

To make this technique more robust, we can use domain synonyms and substring com-

parisons, rather than limit ourselves to exact lexical matches. Thus we can match “Model”

to “Program Model”, “Data Model”, and other variations in addition to simply “Model.”

We also can expand common domain abbreviations using a domain dictionary. For instance,

“mem” would expand to “memory” and “sys” to “system” within the domain of operating

systems software.

4.2.2 Topological Matching Techniques

There are two possible approaches to using topological analysis for solving the element-

matching problem. The first uses graph isomorphism. In this technique, the perspectives

are matched using a graph-theoretic technique to match elements based upon matching in

and out degree of the nodes to determine parts of the graph that are isomorphic. Unfor-

tunately there are two difficulties. The first is that the general algorithm for determining

isomorphic graphs is NP-Hard. The second is even more serious. Since each perspective

is potentially only partially complete, there may be nodes and edges missing in the two

graphs. Attempting to match only partially complete graphs is a fruitless exercise.

The second use of topological analysis is as an informal support to guide matching activ-

ities in conjunction with the lexical matching previously accomplished. Once a component

in the new perspective has been matched with one in the base perspective, the edges can

be used to select the next node to match. In this way, node matching also helps resolve the

59

edge matching.

4.2.3 Semantic Techniques

The shortcoming of lexical and topological based matching is that they both use superficial

syntactic information (names and graph characteristics) to inform decisions about integrat-

ing information. Ideally, if we could match information about architectural elements based

upon what we knew about their actual functionality, our matching accuracy would improve

dramatically.

Previous research in this area has focused on heavyweight methods like specification

matching [70]. The problem with these approaches is that although highly accurate, they

require an analyst to write a specification for each architectural element, which is clearly

not feasible for large scale systems. Our goal for semantic approximation was to provide a

lightweight, automated method for approximating the semantics of an architectural com-

ponent.

4.2.4 Matching Definitions

Before we discuss specifics of information integration, we need to establish a common vocab-

ulary to discuss integrating information between two perspectives. We refer to the process

of combining information about specific elements in two different perspectives as matching.

Let P1 and P2 be two perspectives whose elements we wish to combine. For any element

e1 ∈ P1 and e2 ∈ P2 , we can have one of the following possible match results:

1. EXACT(el1 , el2). This relation is true if e1 is an exact match for e2—that is all

attribute values of e1 are also attribute values of e2 and vice versa. Using our previous

concept analysis notation:

EXACT (e1, e2)
.= σ(e1) = σ(e2)

Note this relation is symmetric, i.e., EXACT(e1, e2) = EXACT(e2, e1). Informally,

one can reason that an exact match means each piece of information we know about

element e1 is also true for e2 and vice versa-thus we can infer that the elements are

the same.

60

2. SUBSUME(e1, e2). This relation is true if e1 subsumes the description of e2. This

occurs when the set of attribute values of e2 is a proper subset of e1. More formally,

SUBSUME(e1, e2)
.= σ(e2) ⊂ σ(e1) . Note this relation is asymmetric, that is

SUBSUME(e1, e2) 6= SUBSUME(e2, e1). Informally, we can say that everything

we know about e2 is true about e1, and that there is additional information about e1

that is beyond anything we know about e2. From this we can infer that most likely

these are the same elements, but we have increased the amount of information we

know about them using the whatever technique that created the perspective.

3. CONTAIN(e1, e2). Any component or connector within a specific representation may

be decomposed into another representation made up of another set of elements. We

refer to this set of elements as a subcomponent of the component or connector that

was decomposed. The CONTAIN relation is true if e2 is part of the subcomponent

of e1. This occurs when we can match e2 using EXACT, SUBSUME or OVERLAP

to an element in the subcomponent of e1. This relation is also asymmetric such that

CONTAIN(e1, e2) 6= CONTAIN(e2, e1). Informally, we can infer e2 as a subelement

of the element represented by e1.

4. OVERLAP(e1, e2). This relation is true when e1 overlaps the description of e2. This

occurs when e1 has attribute values in common with e2, but has other attribute val-

ues that are different. OV ERLAP (e1, e2)
.= (σ(e1) ∩ σ(e2) 6= �) ∧ (σ(e1) − σ(e2) 6=

�) ∧ (σ(e2) − σ(e1) 6= �). OVERLAP is symmetric thus OVERLAP(e1, e2) =

OVERLAP(e2, e1). Informally, e1 and e2 have some information in common, but

they also have additional information that is unique. This situation makes it difficult

to infer the proper relationship between the two elements. The more attributes that

the elements have in common, the more likely it is that they are related to each other.

5. NOREL(e1,ei). This relation is true if e1 and ei have no apparent commonality—that

is they are not related by the EXACT, SUBSUME, OVERLAP or CONTAIN rela-

tions. NOREL(e1, ei)
.= σ(e1)∩σ(ei) = �. NOREL is symmetric, that is NOREL(e1

, ei) == NOREL(ei, e1). Informally, if an element e1 is NOREL with every element

61

in P2, we have a newly discovered element in the architectural description.

4.2.5 Semantic Approximation

Our goal was to obtain the advantages of semantic matching, but in a fashion that would

lend itself to automation. We have developed a lightweight approach to matching which we

call semantic approximation. (By lightweight we imply both minimal effort and minimal

training required to use the technique.)

The fundamental idea behind the technique is a variation on text summarization. If we

were to write a paragraph that described an architectural element’s semantics, and then

eliminated all the noise words, we would be left with a list of terms that approximated the

semantics of that element. If we did this for all elements in the system being recovered, we

would have a set of elements, each of which had its own set of words that summarized its

functionality.

Recall from section 4.1, we discussed concept analysis and stated that it was made up

of the triple (O, A, R). For semantic approximation, we let O be the set of elements

(components), A be the set of all the words extracted, and R be the relation that is true

if word a is in the description of element o. From this triple, we can build formal contexts

that allow concept lattices to be constructed. How then might we use lattice information to

determine matching in some automated manner? We now provide a simple example that

will demonstrate the technique in action.

For this introductory example we will discuss only components as elements and ignore

connectors. This is done only for brevity in the description and not because connectors

are deemed unimportant. Figure 16 depicts two simple perspectives of an architecture. In

order to eliminate ambiguity caused by similar names in the two perspectives, we prefix

the element names by their system names. After mining the text for information, we build

a formal context (Table 6 and compute the concept lattice using the concepts software

package [44] to produce Figure 17.

For this simple example, we can examine the lattice and detect the relations manually

as follows:

62

Figure 16: Two Perspectives for KWIC Architecture

The EXACT relation is the easiest to detect graphically. The two architectural elements

form part of the same concept, meaning they are members of a maximal set of elements

sharing the same domain attributes. This is shown in Figure 17 where Alphabetizer in

system S1 and Sorter in system S2 map to the same concept in the lattice.

The NOREL relation is the next easiest to discern. Elements with a NOREL relation

have no common attributes therefore their least upper bound (join) is the universal concept

(or top) and their least lower bound (meet) is the empty concept (or bottom). This is shown

by the concepts Line and Database in the lattice.

The SUBSUME relation means that one concept is a superconcept of another. The

S1.Input and S2.Input nodes in Figure 17 show this relation.

Finally, the OVERLAP function can be found when two concepts have a least upper

bound (join) that is not the universal concept. This is shown by nodes Shifter and Rotate,

which have the concept Lexeme as their least upper bound.

To accomplish automated traversal of the lattice, we use the following algorithm that

is implemented using the graph template library (GTL) (Raitner, Forster et al. 1999).

This algorithm computes the EXACT, SUBSUME, OVERLAP, CONTAIN and NOREL

relations from a concept lattice.

1. Set the start node to be the universal concept.

2. Conduct a depth-first search (dfs).

3. Iterate through the node list in dfs order

63

Table 6: Formal Context of Systems S1 and S2

C
om

po
ne

nt
s

C
ha

ng
e

IO D
at

a

P
er

si
st

en
t

L
ex

em
e

R
eo

rd
er

O
rd

er

F
ile

L
ex

ic
al

A
cc

es
s

S1.Alphabetizer X X
S1.Shifter X X
S1.Input X X X

S1.Database X
S2.Rotate X X
S2.Line X

S2.Sorter X X
S2.Input X

Figure 17: Computed Concept Lattice for KWIC

4. For each node we check first whether the node has multiple element names in the node

label. If so, it is marked as an EXACT match and the all elements at that node are

marked as used.

5. If the node is not an EXACT, we check to see if the indegree of the node ==1 and

its parent is not the start node. If these conditions are true, we look at the parent

to find if its label contains an element name. If so, we have a SUBSUME relation. If

not we recursively check these conditions back up the node list until we either find

an element name in a label or find the start node. In the latter case the SUBSUME

check fails.

64

6. If the node is not EXACT or SUBSUME, we look for the weakest condition, OVER-

LAP. In this case we backtrack up the node list until we find a parent with an out-

degree¿=2. In this case we follow the new portion of the tree to find the overlap

condition.

7. After all nodes in the dfs visit list have been checked, then any that are not EXACT,

SUBSUME, or OVERLAP are designated NOREL.

8. The CONTAIN relation is inferred from the EXACT, SUBSUME, or OVERLAP

relation by examining the node labels (using lexical analysis) to recognize which are

subsystem names and which are top-level system names.

9. We also compute a simple metric while checking for the OVERLAP relation. This

metric is a measure of the degree of commonality of the elements in the relation. It is

derived by taking the number of common attributes and dividing by the total number

of attributes. For our example, the overlap measure for elements Shifter and Rotate

would be .33. This measure provides a way for the analyst to determine whether the

OVERLAP relation is significant enough to warrant a match.

We have now specified a matching technique based upon lightweight semantic information

rather than more superficial syntactic information. Recall that we want to improve the

quantity and quality of information that is automatically integrated during the architectural

recovery process. We must now show that this technique will in fact improve the integration

task and reduce human involvement in the recovery process. The next chapter will show that

this is true by comparing the results of semantic approximation with the results obtained

via typical lexical and topologic integration techniques.

4.2.6 Semantic Approximation Tool Support

Recall from Chapter 3, we discussed details of the REMORA toolkit. In this section we

present typical tool outputs to allow the reader to better understand how the algorithm

works.

65

Figure 18: Semantic Approximation Information Flow

Figure 18 reviews the information flow for semantic approximation tools. We now look

at typical outputs of the various tools that make up the semantic approximation portion of

REMORA.
After mining the documentation for the domain terms (which produces a simple word

list), those terms are associated with the appropriate architectural elements. This produces
the domain concepts file for the first view (S1):

S1.Alphabatizer: Order Lexical;
S1.Shifter: Change Lexeme;
S1.Input: IO File Access;
S1.Database: Persistent;

This file would be combined with the domain concepts file for the second view of the
architecture (S2) and the combined file run through the lattice builder. The output of the
lattice builder is a GML file such as:

graph [
version 2
label "Context Lattice"
directed 0
node [

id 0
label "S1.Alphabatizer S2.Sorter Order Lexical"

]

This GML file is then fed into the Analyzer which produces match data in the following
format:

66

EXACT S1.Alphabatizer -> S2.Sorter Overlap=100
NOREL S1.Database -> Overlap=0
OVERLAP S1.Shifter -> S2.Rotate Overlap=33
SUBSUME S1.Input -> S2.Input Overlap=33
NOREL S2.Line -> Overlap=0

Finally, the match data is analyzed to produce the best matches available. The next

chapter will give more detailed information on a non-trivial application of this tool set.

67

CHAPTER V

EVALUATING SEMANTIC APPROXIMATION FOR

FUNCTIONAL VIEWS

The previous chapter presented the theory and concepts behind using semantic approxi-

mation to improve the quality and amount of information that is automatically integrated

from legacy systems. This chapter describes the experiment that was conducted to vali-

date semantic approximation when used for functional views. By functional views we mean

specifically, the use of semantic approximation to look at integrating architectural informa-

tion that could be localized to specific architectural elements.

The chapter is organized into three principle parts, a description of the experiment,

presentation of the results, and a discussion of those results. The next chapter will provide

more detailed cause analysis and conclusions drawn from this experiment.

5.1 Experimental Design

There are several questions whose answers will help in automating the software architecture

recovery process and assist in overcoming the concept assignment gap between code and

architecture. The specific questions underlying this experiment include:

1. What forms of documentation provide the most useful information in automated re-

covery and integration of architectural information?

2. How effective is the semantic approximation technique for assisting in the integra-

tion of multiple sources of information, as opposed to simply lexical or topological

methods?

3. What techniques of document processing provide the best sets of components, con-

nectors and properties to use for the recovery process?

To answer these questions we have the following informally stated hypotheses:

68

1. Documentation is most effectively used in three groupings:

• Domain level documentation, which provides information about the highest-level

abstractions in the architecture—specifically the top-level components, connec-

tors and their properties.

• Implementation level documentation, which provides information about the con-

crete realization of the abstract components and connectors into a specific system.

• User level documentation, which provides a bridge between the abstract and the

concrete elements of the architecture.

2. An intermediate level of text processing, which includes use of standard text prepro-

cessing (tokenization, stemming) and use of a simple neural net, is more effective than

simple statistical analysis (i.e. word frequency) but just as effective as more complex

mechanisms such as Self-Organizing Maps (SOM) models.

3. Semantic approximation provides superior results in integrating and combining archi-

tectural information over using simple lexical matching or topological information.

To answer these questions we require several axes of evaluation. First, we need to vary

the types of documents used in the experiment. Specifically we will treat the documentation

as one complete group by itself and as three separate groups categorized into domain, user

and implementation levels. Secondly, we need to vary the types of techniques used to

combine architectural information. We will limit the experiment to the three previously

discussed techniques: Lexical (L), Topological (T) and Semantic Approximation (S). These

three techniques will be evaluated using 7 different combinations: L, T, S, LT, LS, TS,

and LTS. Thirdly there is a difference in levels of abstraction (High (H) and Low (L))

that generally corresponds to the differences in concepts from domain to implementation.

Finally we want to look at three methods for deriving information from documentation:

Simple statistical, Simple Neural Net, and Self-Organizing Maps (SOM).

We impose the following limitations and assumptions to keep the experiment manage-

able:

69

1. We use the MORPH stemming algorithm. We assume that other stemming techniques

(such as Porter [58] and Lovis [45]) will not have a significant effect on the results.

2. We use a domain synonym file to help detect multiple terms referring to the same

architectural element. We also use the domain file to expand abbreviations (such as

sys into system) based upon the domain of the recovery effort. We assume that this

domain dictionary reduces the variation of terms caused by multiple terms being used

to refer to the same item.

3. We use WordNet to assist in disambiguating synonyms and finding other relationships

between words. We assume that this usage improves the quality of the terms and

associations found in the document set.

5.1.1 Experiment Process

We followed the following steps in performing this experiment:

1. Gather and classify applicable documentation as presented in the previous section.

2. Extract architectural representations of the Linux Operating System Kernel 2.4 and

the Interactive Scenario Visualization (ISVis) 1.1 reverse engineering tool at both a

High and Low level of abstraction.

3. Create Truth Data by using previous peer-reviewed related work in recovering the

architectures of these systems. By truth data, we mean an oracle by which we judge

whether an answer obtained in the experiment is correct or not.

4. Process the documentation using three techniques:

• Simple Statistical Processing

• Use of Simple Neural Net (Bayesian Net using libbow [53])

• Use of SOM model (using TextAnalyst [49] commercial software)

5. Build a Formal context for each of the representations extracted using the information

extracted from the documentation.

70

6. Perform integration of the representations using the seven combinations of Lexical

(L), Topological (T), and Semantic Approximation (S) techniques.

7. Analyze the results of the integration using the truth data categorizing the matches

as false positive, false negative, true positive, partial positive and true negative where

these terms are defined as:

• False Positive: The technique identified two elements as matching when they

were not matches.

• False Negative: The technique identified an element in one perspective as not

matching anything in the other perspective, when it should have matched at

least one other element.

• True Positive: The technique matched two elements, and this was a correct

result.

• Partial Positive: The technique matched two elements, but at a lower strength

than what was true. For example, it claimed OVERLAP(e1,e2) when in fact the

correct result was EXACT(e1,e2).

• True Negative: The technique identified an element in one perspective as not

matching anything in the other perspective and this was a correct result.

Success for this experiment would be a 90% or greater correct match rate for the true

postive and true negative results.

5.1.2 Documentation Used in Experiment

Appendix A provides a list of the documentation used for the ISVis and Linux systems.

This appendix serves two purposes. First it allows the reader to repeat the experiment

if desired using the same documentation base for mining activities. Secondly, it gives the

reader an understanding of the types of documentation available for extraction.

71

Figure 19: ISVis Dynamically Extracted Architecture

5.1.3 Architectural Perspectives Used in the Experiment

Figure 23 and Figure 24 depict the two top-level architectural perspectives of Linux used

for the experiment. Figure 24 comes from an extraction effort by Bowman [11]. Figure 23

comes from Maxwell’s Linux kernel commentary [48]. Figure 19, Figure 20 and Figure 21

depict the high-level views of the ISVis System. Figure 19 and Figure 21 was obtained by

running ISVis on itself to extract the architecture, while Figure 22 came from the original

design documentation. Figure 21 and Figure 22 are the subcomponent architectures and

are provided to help the reader understand the process of building up a final architectural

view.

For the low-level perspectives, we used a static call graph generated by cflow and the

output of the ctags program. Ctags provides information about functions, the files they

are in, and the line numbers they are defined in. Ctags would be a typical supporting

tool for browsing code. Since there are 49,816 functions in the Linux kernel, full graphical

representations of the low-level perspectives are not presented. Part of the automated

72

Figure 20: ISVis Design Architecture

Figure 21: ISVis Dynamic Recovery, File Processor Subcomponents

73

Figure 22: ISVis File Processors Subcomponents, Actual Architecture

74

Figure 23: Linux High-Level Domain Architecture

support provided in REMORA is a component that takes ctags and cflow output and

converts that output to a gml file so the information can be manipulated as an attributed

graph. Figure 26 and Figure 27 depict the partial perspectives for the low-level Linux

architectural information. For reference, Figure 25 depicts a snapshot of the raw ctags

information from which Figure 27 is derived. The ISVis low-level perspectives are similar

presentation and are thus omitted from this dissertation as figures.

5.1.4 Truth Data

Detailed truth data for the architecture element matching is shown in Appendix B, Table 11

through Table 15.

5.1.4.1 High-Level Truth Data

High-level truth data was derived by manual analysis of the components in the different

perspectives and using expert analysis to decide the appropriate matchings. This expert

analysis included Linux kernel developers and on-line documentation for the kernel design.

75

Figure 24: Linux Conceptual Architecture (High)

Figure 25: Raw Ctags Output (Partial) (Low)

76

Figure 26: Linux Call-Graph (Partial) (Low)

Figure 27: Linux Ctags Perspective (Partial) (Low)

77

5.1.4.2 Low-Level Truth Data

Since low-level data maps code to code, the component truth data is fairly trivial. Function

names map directly to function names as EXACT matches, while directory and file names

disambiguate similar function names. For connectors, the semantics of the two perspec-

tives are completely different. In the call graph view, connectors represent calls relations

between functions. In the ctags view, connectors represent contain relations between func-

tions, directories and files. This makes all connector matching in the low level perspectives

NOREL.

5.1.4.3 High-Low Truth Data

For the high-low integration experiment, we are attempting to combine information from

the Linux domain-level architecture (Figure 25) and the Linux call graph (Figure 26).

For the ISVis system, we combine the dynamically extracted representation (Figure 19)

and the ISVis call graph. Because we are matching lower-level code entities to high-level

abstractions, the majority of relations are CONTAIN. Because some specific implementation

concerns like booting and general library functions are not represented in the domain-level

architecture, there are few NOREL relations for Linux.

5.2 Experimental Results

Appendices C through J contain the detailed results of the experiment. The following

sections contain a discussion of those results.

5.2.1 Lexical Matching (L)

Lexical matching was first accomplished between each of the architectural perspectives at

the same level of abstraction.

Table 17 shows the results for the ISVis system components, while Table 21 shows the

results for the LINUX operating system components. Connectors present a difficult situa-

tion for lexical matching because of their second-class status. Frequently, and as is the case

in all the perspectives except Figure 19, Figure 21, and Figure 22, they have no labels or

78

information other than perhaps they are control, data or depend relationships. For this rea-

son, they have arbitrary labels and thus, lexical matching is not effective. Any true negative

results (NOREL) are coincidental. For ISVis, there were 21 true negatives (coincidentally)

and 18 false negatives. For Linux, there were 20 true negatives (all coincidence) and 4 false

negatives.

For the low level perspective matching, the lexical technique produced 100% of the

true positive results for the components and 100% of the true negative results for the

connectors. This is to be expected since both perspectives were derived from low-level

implementation data and thus their lexical vocabulary was fairly well constrained. For low-

level matching, it is understandable why researchers using code-based approaches rely on

lexical information as a principle mechanism for combining source code derived information.

The excellent results for the connectors were coincidental. Since the connectors on the call-

graph carried the semantics of “function call” and the connectors in the ctags perspective

had the semantics of “contains”, there was no relation between them in a matching sense.

For the mixed perspective matching (High-Low), the effectiveness of the matching be-

tween abstraction levels was highly dependant on the coding discipline of the developers.

If function, file and directory names were meaningful, then the matching results were fairly

good. For ISVis components, the results of component matching are found in Table 18.

Of the false negatives in the View component, the majority were due to the ViewManager

class that should have mapped to the controller, but of course had no lexical information to

support that match. Since the ideas of Controller and Application-level support function-

ality (Overhead) is rarely used in low-level function names, none of the ISVis functionality

could be mapped to these high-level components.

For Linux, the results of the high-low matching are presented in Table 22. Probably

the two most striking results are the high number of false negatives (over 22,000). This

is to be expected since it supports the premise for the concept assignment problem and

our contention that some type of semantic-based matching is needed to support informa-

tion integration for perspectives (or sets of architectural information) at different levels of

abstraction. The high-low matching results for ISVis point out the same conclusions.

79

5.2.2 Topological Matching (T)

For LINUX, using topological matching alone was virtually useless. Since the Concrete

architecture (Figure 24) is basically a K7 completely connected graph, there were 2040

matches of the subgraph in Figure 23 onto it. Table 23 shows the best case mapping, but

what constituted a “best case” was not derivable from topological information alone.

For ISVis the results were more constrained, but still there were many possibilities that

were developed. To begin with, the File Processors component was expanded in the parent

graph since the design graph was one layer. As in the LINUX example, Table 19 shows the

best case of all the topological matchings.

Connectors were matched by comparing edges in the graphs after nodes had been

matched successfully. Table 24 and Table 19 present the results of topological matching

for the high-level perspectives.

For the low-level perspectives, the sheer size of the graphs caused the automated tool to

fail. A manual attempt at building graphs of this size was not feasible. We can make some

reasoned approximations however, at what the results would be. First we know that the

connectors have no relation to each other in the graphs, since they have different semantics

(one is function call, the other contains), therefore any matches are false positives and any

NOREL results are true negative (but coincidental). Likewise, looking at the components,

any positive match results will be coincidental.

For the high-low matching, topological matching ran into the same problems as both the

previous cases. First, since the high-level graph was relatively small compared to the low-

level graph, there are a very large number of possible projections of the high-level perspective

onto the lower-level perspective. In reality, the high-level nodes (and possibly edges) might

themselves be representations of graphs whose nodes might also be representations of graphs.

In order for topological matching to be used with any success in the high-low scenario,

the low-level graph would need to be preprocessed using some type of clustering or k-cut

algorithm to convert it from a flat graph into a set of hierarchical graphs which could then

be more accurately matched to the higher-level representation. Developing the algorithms

necessary to convert the low-level perspectives from flat graphs to hierarchical graphs is

80

beyond the scope of this experiment, but is a necessary component of future work so as

to achieve our ultimate goal of fully automated information integration. There is also the

problem of scalability of the graph matching software currently available because of the

large number of nodes in the low-level perspectives.

5.2.3 Semantic Approximation Matching (S)

Table 30 shows a comparison of the top twenty-five terms obtained by mining the Linux

documentation, while Table 25 shows the results for ISVis. The number twenty-five is an

arbitrary number chosen to make the lattice more manageable.

These words were mined from the documentation using three different techniques. First,

a simple word frequency analysis was used. These results are shown in the Raw word column.

Second, the libbow library was used to develop a simple neural network which was trained

using a subset of the documentation. This collection of words is shown in the Bayesian

Net column of the tables. Finally, TextAnalyst was used to generate self-organizing maps

(SOM) of the documentation and key words were extracted. The results of this application

are not shown, but were a combination of the words in the Raw and Bayesian columns. In

preliminary tests, the Raw words from the all column produced the best results and these

words were used for the bulk of the experiment as the domain terms.

These terms were then associated with the components in the various architectural

elements in the perspectives to create the formal contexts to be used in developing the

concept lattices for the semantic approximation. For the initial test, these 25 top terms

were used to build the formal contexts.

For low-level semantic approximation, since the objects and attributes were derived from

the same source (automatic processing of the source code), they had the exact same formal

contexts (for the components) and thus all the matches were EXACT. For the connectors, as

in the high-level experiment, semantic approximation was not usable for the same reasons.

Results of semantic approximation for combining two perspectives at a high level of ab-

straction are presented in Table 33 and Table 28. For the high-low semantic approximation,

the results are presented in Table 29 and Table 34.
Here is the output for the Linux high-level architecture (Domain Concepts File).

81

d.IOServices: write network print read disk device directory file;
d.SystemCallInterface: interface software program version systems command mode;
d.InterprocessCommunication: pipe socket remote procedure call

message mailbox communication;
d.ProcessScheduler: time process thread schedule;
d.MemoryMangement: block page memory data access free allocate pointer;

Here is a code snippet with the corresponding entry in the Code Concepts File.

static unsigned inptr = 0; /* index of next byte to be processed in inbuf */
static void *malloc(int size) {
void *p;
if (size <0) error("Malloc error\n");
if (free_mem_ptr <= 0) error("Memory error\n");

free_mem_ptr = (free_mem_ptr + 3) & ~3; /* Align */

p = (void *)free_mem_ptr;
free_mem_ptr += size;

if (free_mem_ptr >= free_mem_end_ptr)
error("\nOut of memory\n");

return p;
}
Code above produces this entry:

linux.arch.i386.boot.compressed.misc.malloc : pointer process memory allocate free ;

After the concepts files are combined and run through the lattice maker, a graph markup
language (gml) file is produced. The following is an excerpt from the lattice definition in
gml.

node [
id 264

label "linux.arch.i386.boot.compressed.misc.malloc "
]

Finally, the lattice definition is processed by our semantic approximation algorithm and
the following excerpt would be produced.

OVERLAP linux.arch.i386.boot.compressed.misc.malloc>->
d.ProcessScheduler Overlap =12

OVERLAP linux.arch.i386.boot.compressed.misc.malloc>->
d.MemoryManagement Overlap =16

Given this output, REMORA would classify the malloc function as belonging to the

MemoryManagement component.

82

5.2.4 Lexical and Topological Matching (LT)

If we combine lexical and topological techniques, we can gain some optimization. Rather

than blindly matching nodes based solely on graph information, we can use lexical infor-

mation to match as many nodes as possible, and then use topological information to match

the remaining nodes.

For ISVis, we match View with View, and then Program Model with Model based upon

the edges extending from View and the lexical information available. This leaves three

options for the node mapping to View Manager: Controller, Overhead or File Processors.

If we choose Controller, we can duplicate the best-case results of topological matching as

shown in Table 19. Again, by using Lexical information, we are able to eliminate the many

incorrect subgraph mappings that are possible, and choose something that is equal to the

best case available for topological matching alone.

For the low-low matching, we are able to get all exact matches again for the nodes (com-

ponents) since the lexical matching is totally accurate. For the connectors, the matching

using topological information gives us all false positives because the semantics of the edges

in the two graphs are totally different.

For high-low matching, we have no exact matches to get us started in the combination

technique. For code organized like Linux into directories that match the conceptual ar-

chitecture, we can match directory names to high-level components (i.e. mm = Memory

Manager) and the cluster of functions in that directory as a subgraph of the Memory Man-

ager node. Unfortunately, code is seldom organized as neatly as that, and in fact for ISVis,

all code is in the src directory, which gives us no clustering clues at all.

In the general case, the performance of the lexical and topological techniques is so poor

for high-low matching that their combination fails to give us any improvement over their

individual use.

5.2.5 Lexical and Semantic Approximation (LS)

For ISVis, the combination of Lexical and Semantic Approximation allows us to clarify most

of the partial positive results and improve our confidence. In applying the techniques, we

83

first use Semantic Approximation to obtain possible matches, then used lexical information

to further refine our choices.

For example, using lexical matching alone, we had an EXACT match between De-

sign.View and Dynamic.View, but also had a CONTAIN between Dynamic.View and De-

sign.View Manager. Using Semantic Approximation, we can refine the OVERLAP to an

EXACT and we can identify that Design.View Manager is not related to Dynamic.View,

but is instead related to the Dynamic.Controller. Overall results are shown in Table 28.

Linux’s results are similar to ISVis’s and are shown in Table 38. Since semantic approx-

imation was not useful for connectors, the connector results were identical to the lexical

results alone.

Recall that we perform Semantic Approximation first, then apply lexical analysis to the

choices that we have. For instance, a successful application of the LS approach would look

like:

OVERLAP linux.arch.i386.kernel.io_apic.MPBIOS_trigger>->
d.SystemCallInterface Overlap =11

OVERLAP linux.arch.i386.kernel.io_apic.MPBIOS_trigger>->
d.ProcessScheduler Overlap =16

OVERLAP linux.arch.i386.kernel.io_apic.MPBIOS_trigger>->
d.IOServices Overlap =10

In this case, semantic approximation is used to narrow our selection choices to three.

Rather than use the Overlap measure as we do in just the semantic technique (which would

give us an incorrect match of ProcessScheduler), we use lexical information if available

to make the final selection. In this case the lexical match chooses correctly since io apic

expands to input output, which matches the IOServices component.

In cases where there is no additional lexical information provided in the selections, then

the technique reverts back to just Semantic Approximation and the Overlap measure is

used to choose the match.

It is also possible of course for LS to produce worse results than just S alone. Consider

this example:

OVERLAP linux.drivers.net.strip.process_ARP_packet->
d.IOServices Overlap=10

84

OVERLAP linux.drivers.net.strip.process_ARP_packet->
d.ProcessScheduler Overlap= 5

In this case, semantic alone would choose the correct match to IOServices, however,

the process in process ARP packet matches ProcessScheduler so an incorrect match is then

chosen. This happens because the word process has a different sense in each usage, but our

tool is unable to differentiate between those senses.

5.2.6 Lexical, Topological and Semantic Approximation (LTS)

A combination of all three techniques applied to the Linux and ISVis systems yielded

the results in Table 43 and Table 42. The techniques were applied in order: Semantic

Approximation, Lexical, Topological. This order was chosen as the experiment progressed,

and it became evident that Topological information was least useful, and needed information

from the other techniques to produce reliable results.

Since high-low matching with topological information is useless, the results here were

the same as LS alone.

5.2.7 Summary

Recall that our goal was to show that semantic approximation provided a significant im-

provement in accuracy for automatic integration of architectural information, especially

when crossing the concept assignment boundary (the high-low abstraction matching). The

following tables (Table 7 to Table 10 display a summary comparison of the techniques. The

percentages in the tables for true results are calculated from the truth data. The percentages

for the false results are calculated based upon the total component count evaluated.

It is evident that semantic approximation does improve information for integration of

components, but unfortunately not as significantly as we had hoped.

5.3 Discussion of Results

5.3.1 Text Data Mining

For combining information based upon functional views of the architecture, almost all of our

hypotheses about text data mining were not true. In fact, simple text frequency analysis

85

Table 7: ISVis High-High Summary
Truth L T S LT LS LTS

True Positive 20 8
(40%)

10
(50%)

20(100%)10
(50%)

20
(100%)

20
(100%)

True Negative 1 1
(100%)

1
(100%)

1
(100
%)

1
(100%)

1
(100%)

1
(100%)

False Positive 0 4
(19%)

0 0 0 0 0

False Negative 0 8
(38%)

10
(50%)

0 10
(50%)

0 0

Table 8: ISVis High-Low Summary
Truth L T S LT LS LTS

True Positive 774 269
(35%)

0 130
(17%)

269
(35%)

120
(9%)

120
(9%)

True Negative 0 0 0 0 0 0 0
False Positive 0 27

(3%)
0 130

(17%)
27
(3%)

173
(22%)

173
(22%)

False Negative 0 490
(63%)

0 526
(68%)

490
(63%)

485
(63%)

485
(63%)

Table 9: Linux High-High Summary
Truth L T S LT LS LTS

True Positive 4 0 4
(100%)

0 0 4
(100%)

4
(100%)

True Negative 20 20
(100%)

16
(80%)

0 20
(100%)

16
(80%)

20
(100%)

False Positive 0 0 4
(17%)

0 0 4
(17%)

0

False Negative 0 4
(17%)

0 0 4
(17%)

0 0

Table 10: Linux High-Low Summary
Truth L T S LT LS LTS

True Positive 49326 10306
(21%)

0 17364
(35%)

10306
(21%)

15678
(32%)

15678
(32%)

True Negative 490 119
(24%)

0 360
(73%)

119
(24%)

360
(73%)

360
(73%)

False Positive 0 16882
(34%)

0 14660
(29%)

16882
(34%)

16351
(33%)

16351
(33%)

False Negative 0 22509
(45%)

0 17432
(35%)

22509
(45%)

17427
(35%)

17499
(35%)

86

was just as effective as the more sophisticated and computationally complex techniques that

used neural net technology. This is because the neural net based processing algorithms were

optimized for information retrieval tasks. Since these are focused primarily on discerning

keywords which will help discriminate between documents, they did not produce the kind

of domain concepts we needed (i.e. what are the things most common across multiple

documents). Semantic approximation requires that we develop of set of key descriptive

terms for the particular domain that the legacy system we are analyzing is supporting. The

results indicate that for architectural recovery tasks, the terms most frequently used in the

documentation (after removal of stop words) are the ones that are most important in the

domain.

There was also no significant benefit to dividing the documentation into three categories.

Processing all the documents as a group seemed to provide just as much benefit as dividing

them into subsets and processing them in different combinations. It was the case that

whether a writer was producing a high-level manual for a systems administrator, or a

lower-level manual aimed at a developer (such as a kernel hackers guide), the words and

terms chosen were still oriented to the domain under study.

SOM-based semantic nets—like TextAnalyst described earlier—may however prove use-

ful in automating the task of building the context matrix for high-level views. The ability

to associate concepts with other concepts from a free-text document is a powerful feature.

Adaptation of these neural networks would be an area of collaboration for future work.

5.3.2 Semantic Approximation

Our hypothesis about semantic approximation was somewhat true for component integra-

tion at the high-high level, but not connector integration. In fact, the most accurate results

were obtained with a combination of lexical and semantic matching. Topological matching

was not that useful for many reasons. First, the architectural perspectives being combined

often were only partially complete, thus missing edges between perspectives caused prob-

lems for accurate topological comparisons. Secondly, differences in perspective abstraction

levels sometimes made it impossible to use topological matching at all. The Linux call-graph

87

edges had no real correlation to the edges in the domain-specific architecture for operating

systems. Lastly, and most significantly, there was no way to data mine information about

connectors. Connectors did not explicitly exist in the source code, and thus they could not

be identified or have attributes automatically assigned to them. Even more problematic

is the absence of explicit connector discussion in any of the other documentation (such as

domain or user).

For low-level data mining, the quality of the attributes mined is dependent on the quality

of variable naming and comments in the various code modules. Clearly, if the developer does

not use domain-oriented names or comments, the miner cannot detect the proper attributes.

This is the reason that so many functions are in the false negative category for NOREL in

the low-high matching.

There were a few “special” considerations in both the Linux and ISVis code base that

made the lexical technique appear more effective than it might otherwise be. For Linux,

the developers had grouped the source code into directories that matched many of the

architectural domain concepts. Names of functions were fully qualified by the directory

name, for example linux.mm.filemap sync pte range which expands to the word list: linux

memory manager file map synchronize page table range. Since “Memory Manager” is a

domain element, an exact lexical match occurs. Most older legacy systems do not have the

luxury of having code organized quite this well. Most are more like ISVis where everything

is in the src directory.

Of course, the question then is, “if all of ISVis is in the src directory, why was lexical

matching so effective?” The answer is that ISVis is a graphical intensive visualization

program. Many of the functions deal with manipulation of views in the user interface.

Most of the class names have the word view in them resulting in a large number of exact

matches with the “View” component. Many of the remaining functions happen to be in

class Program Model, which of course matches the Model high-level element.

Ultimately, the results of the experiment disproved our thesis statement. It was not

possible to significantly improve the quality and quantity of architectural information de-

veloped in a recovery effort by using our semantic approximation technique. The next

88

chapter of this dissertation presents a basic root-cause analysis and a discussion of possible

adjustments to the current algorithm.

89

CHAPTER VI

CONCLUSION

In the previous chapter, our validation experiment showed that our thesis statement was

untrue in a practical sense. That is, although we were able to improve the quality and

quantity of information automatically recovered, we were not able to do it in a consistent

manner, or at a level that was reliable enough to be used by practitioners in the field.

This chapter will first present a root cause analysis of why our technique failed followed

by a discussion of our analysis of the overall efficacy of this approach. The chapter will

conclude with opportunities for future work and collaboration in this area.

6.1 Root Cause Analysis

In the previous chapter’s summary, we saw that the principal problem with our technique

was the excessive number of false negatives and false positives produced by our algorithm.

We turn our attention first to the false negatives. What could cause so many elements to

be classified NOREL when in fact they should have been matched to existing elements?

An examination of the concepts file shows that most of the NOREL’s were caused by

a failure of the source code data miner to assign any domain terms to the component.

This in turn resulted in that component being considered no relation to any of the existing

components, all of which had domain terms assigned. We then have to ask the question,

“Why were there no domain terms assigned to the components?” An examination of the

code reveals two primary factors.

First, there were no comments or meaningful names (methods, functions, classes, vari-

ables) from which to mine any meaningful terms. Secondly, there were comments and

variable names that could have given information, but those comments did not contain any

of the terms the data miner was looking for. Further examination of the code used in the

experiment reveals that the former case was most prevalent. In the case of ISVis, a research

90

tool developed primarily by a single developer, there were often no meaningful comments

for many of the functions. There is nothing our technique can do to overcome this problem.

If the code has no comments or meaningful variable names, then our entire technique fails.

For Linux, there was a slightly different reason. Many of the functions in a particular

file lacked any comments because there was an extensive comment in the header of the file

which explained how the set of functions worked. Since the source code data miner assumes

a comment describes the immediately following function, then only the first function in the

file received the benefit of the comments, and the others got no attributes. For instance,

in many of the networking files, the initial comment explained how the overall component

worked, and thus obviated the need for further individual function comments.

What then can we do to address this root cause? The most obvious solution would be to

consider the affinity of the header comment to the other functions in the file. Any concepts

that are mined in the header comment will be assigned to any functions in the file which

do not have their own comments or have no attributes mined from their comments. This

would reduce, but not eliminate, the number of false negatives.

We then come to the second symptom, a large number of false positives. Examining

the algorithm and the outputs, we can see that the false positives are caused under two

situations: overlapping attributes between components and conceptual distance of the over-

lap in the lattice. Overlapping attributes, which are domain terms represented by the same

word but which have slightly different meanings, caused many of the false positives to occur.

Consider for instance consider the terms “read” and “write.” They could be associated with

the Memory Manager since we read and write memory, but they also could be associated

with the Network Interface since we read and write to the network, or to Interprocess Com-

munication since we read and write information between processes. In each of these cases

the actual meaning of read and write is different, but there is no method currently available

to automatically differentiate between them. During affinity analysis (the time where we

assign domain terms to components), if we assign the terms “read” and “write” to all three

top level components, we are guaranteed to have overlap results on all three components.

Trying to disambiguate the shades of meaning automatically is beyond the capabilities of

91

the current text processing libraries. This relegates us to a compromise solution. If we

require that all assignments of domain terms to architectural elements be disjoint, then we

can eliminate this cause of overlap. In the example above, the domain terms “read” and

“write” would be assigned to the component they have the greatest affinity with. This

technique, however, only partially addresses the problem.

Currently the algorithm treats all concepts with the same level of confidence, regardless

of how far those concepts may be separated in the lattice. If instead, we place more emphasis

on concepts which are closer in the lattice (and thus closer conceptually) we should further

improve the performance of our algorithm in the reduction of false positives.

6.2 Efficacy of Approach

We now analyze the overall approach for its appropriateness for further research. Some

of the root cause problems we discussed above are insurmountable. Even after we apply

all the improvements described above to our algorithm, there are problems that cannot be

corrected by any alterations of the algorithm. For instance, we cannot control the quantity

or quality of comments that the developers provide with their code.

This then leaves us to decide whether we can ever get this approach to work on legacy

systems where there may be sparse commenting and poor documentation. Unfortunately, it

seems that given the limitations discussed previously, this technique is not suited to poorly

documented code. This then limits our approach to use on systems like Linux, where

comments and documentation do exist.

We still have the problem that our sub 40% results for matching—while still an overall

improvement on existing techniques—fall far short of the 90% or more reliability required

for an actual practioner to effectively use our algorithm in a recovery effort. Even after

applying all our root cause analysis corrections to the algorithm, it is doubtful we would

approach 90% reliability.

So now we must ask the crucial question, “Should this dissertation serve as a warning to

avoid a dead end research path?” I do not believe so. There is an interesting alternative view

we could take. What if the truth data used in our validation experiment is itself wrong? For

92

this work, we felt it was important to validate our results against accepted, peer-reviewed

work. It is important to note that in architectural recovery, where it is difficult to make

the claim that an architecture is “right” or “wrong”, there is the possibility that even the

peer-reviewed work might contain conceptual errors.

With over 49,000 individual functions in the Linux kernel, it is doubtful that previous

analysts agonized over every function when assigning them to components. It appears more

likely that the analysts used the file level as a primary mechanism for making code organi-

zation decisions. This problem reinforces our entire motivation discussion from Chapter 1

which emphasized the need for an automated solution to the recovery problem. The sheer

volume of information facing an analyst during recovery of a nontrivial system is staggering.

Consider as an example the function linux.arch.i386.boot.compressed.misc.malloc. This

function is assigned to the Initialization component in the literature, but conceptually it

allocates memory during the decompression of the kernel during the boot process. Our

algorithm matched this to the Memory Manager component and conceptually we would

state that this is probably correct. Although temporally, this function does have an affinity

with the initialization process, its actual conceptual function is memory management. This

suggests that our algorithm would be useful for conceptual code organization where we were

not trying to force the functions into an existing structure.

Where else might our technique be useful? Anywhere that a first-order approxima-

tion of code organization needs to be made. For instance, consider Murphy’s reflexion

technique[54]. One of the first steps is to generate a mapping file that provides an initial

“guess” at the relationship between a high-level architecture and the code. This step is

currently done manually, and obviously can be time-consuming for large systems. Our al-

gorithm can write out a mapping file with minimal effort and remove a large labor-intensive

operation in starting the reflexion process.

This technique should also be useful in a forward engineering setting. Consider the

problem of generating an architecture from a set of requirements. It should be possible to

mine the requirements document for key concepts and group those concepts together in the

lattice to produce a first approximation at a conceptual architecture for the system.

93

6.3 Future Work

Besides the obvious work on improving our algorithm in response to our root cause analysis

described in the previous section, there are also many opportunities for collaborative and

future work which this research has uncovered.

There were several shortcomings of many of the tools which were used in the experiment.

We detail here a short list of opportunities for collaboration:

• The concept lattice algorithm requires an excessive amount of computation time. For

Linux, which had over 50,000 objects and 25 attributes, the computation time re-

quired to compute the full concept lattice was measured in days rather than minutes.

This provides the opportunity for collaboration with mathematics and algorithm re-

searchers to find more efficient ways to compute the lattice.

• The concept lattice and call graphs are very dense graphs with several thousand nodes

and edges. Visualizing and filtering these graphs is both difficult and important to

architectural analysis activities. This provides the opportunity to work collabora-

tively with members of the visualization research community on ways to effectively

manipulate and view large dense graphs.

• There are many areas in text analysis, natural language processing and data mining

which would also improve our recovery approach. Better summarization and affinity

analysis methods would improve the assignment of domain terms to objects. It would

also improve the selection of the key domain terms used in the recovery.

• Finally, working with other architectural researchers to discover better ways to find

connector information from existing documentation would improve the technique.

Use of domain models[16] as a basis for determining high-level connectors is one

example. As we pointed out in the previous chapter, the current technique is limited

to component comparisons.

94

6.4 Conclusion

In our work, we have emphasized the necessity of achieving an automated architectural

recovery solution as a means to overcome the large amounts of information an analyst is

faced with. We have presented an analysis of current tool suites and techniques along with

a recovery framework (ASP) within which an automated solution can be developed.

Like the sound barrier was to aviation in the mid-twentieth century, the concept assign-

ment barrier looms as a major obstacle to further automation of the recovery effort. Our

work on semantic approximation, while not totally successful, does improve the ability of

automated tools to cross that barrier and improve the architectural recovery effort. Un-

fortunately, it was not reliable enough to declare that the concept assignment problem has

been solved.

95

APPENDIX A

DOCUMENTATION USED IN EXPERIMENTS

A.1 ISVis Documentation Sources

A.1.1 Domain-Level Documentation

Visualizing Interactions in Program Executions(Jerding, Stasko et al. 1987)

Using Visualization for Architectural Localization and Extraction(Jerding and Rugaber

1997)

A.1.2 User-Level Documentation

ISVis User’s Manual version 1.1

ISVis Tutorial Pt I

ISVis Tutorial Pt II

ISVis Tutorial Pt III

ISVis Tutorial Pt IV

A.1.3 Implementation-Level Documentation

ISVis Design Notes

ISVis version 1.1 source code

A.2 Linux Documentation Sources

A.2.1 Domain-Level Documentation

Bootstrapping a Linux System (Ghosh)

Bringing SMP to Your Operating System (Cammeresi)

Comp.os.research FAQ Parts I - III

96

Comparison of Server-Based Operating Systems (Bullington)

Resource Management and Deadlocks (OS Course Notes)

File Systems (OS Course Notes)

Interprocess Communications (OS Course Notes)

I/O Management (OS Course Notes)

Memory Management (OS Course Notes)

Scheduling (OS Course Notes)

Processes and Threads (Rinard)

The Extended-2 Filesystem (Oxman)

Journal File Systems (Florido)

Master Boot Record Basics (Landis)

An Operating Systems Vade Mecum (Finkel)

Operating System Introduction (Stallings Chapter 1)

Operating System Threads (Stallings Chapter 2)

Operating System Deadlock (Stallings Chapter 3)

Operating System Memory Management (Stallings Chapter 4)

Operating System Power Management (Stallings Chapter 5)

Operating System File System (Stallings Chapter 6)

Operating System Multimedia File System (Stallings Chapter 7)

Operating System Multiple Processor Systems (Stallings Chapter 8)

Operating System Security (Stallings Chapter 9)

Operating System Processes in Unix (Stallings Chapter 10)

Operating System Win 2000 File System Case Study (Stallings Chapter 11)

Operating System Implementation (Stallings Chapter 12)

The Free BSD System (Appendix A of Stallings OS Text)

The Mach File System (Appendix B of Stallings OS Text)

The Nachos File System (Appendix C of Stallings OS Text)

Signals, Traps and Interrupts (Anonymous)

The Slab Allocator: An Object-Caching Kernel Memory Allocator (Bonwick)

97

A.2.2 User-Level Documentation

An Overview of the LINUX Proc Filesystem (Fink)

Compiling and Installing a Linux Kernel (Ghosh)

How to use a Ramdisk for Linux (Nielsen)

Linux Primer Series (Jenkins)

Linux Administration Made Easy (Frampton)

Linux From Scratch Version 3.1 (Beekmans)

The Linux Programmer’s Guide (Goldt, van der Meer, Burkett, Welsh)

The Linux Users’ Guide (Greenfield)

Mandrake Linux 8 Reference Manual

Mandrake Linux 8 Install and User Guide

Mandrake Security User Guide

Securing Linux: First Steps (Lukas)

Securing and Optimizing Linux (Mourani)

Security and the Linux Router Project (Fevola)

The Linux System Administrator’s Guide Version 0.7 (Wirzenius)

Syslog (Scheidler)

A.2.3 Implementation-Level Documentation

Linux Allocated Devices (Anvin)

Kernel Support for Binary Formats v1.1

Creating a Kernel Driver for the PC Speaker (Mathew)

NASM Bootstrap Tutorial (Marjamki)

Design and Implementation of the Second Extended Filesystem (Card)

Dynamically Loadable Kernel Modules

Designing Hardware for Microsoft (r) Operating Systems FAT (Microsoft)

File Locking Release Notes (Walker)

98

Finding All Filenames with Identical I-Node Numbers (O’Neil)

First Attempt at Creating a Bootable Live Filesystem on a CDROM (Nielsen)

The Frame Buffer Device (Uytterhoeven)

Guide to x86 BootstrappingGuide to x86 Bootstrapping (and Partitioning)

Inside the High Performance File System Part 0: Preface (Bridges)

Inside the High Performance File System Part 1: Introduction (Bridges)

Inside the High Performance File System Part 2: The SuperBlock and the SpareBlock

(Bridges)

How to Kick Out A Memory Manager (Anonymous)

The Enhanced IDE drive in Linux (Anonymous)

Ioctl Numbers (Chastain)

Linux IO Mappings (Anonymous)

Kernel Level Exception Handling in Linux (Pommnitz)

The Kernel Module Loader (Petersen)

Linux Kernel Parameters (Anonymous)

The Kernel and the VFS : A Filesystem Engineer’s Perspective

Linux Kernel 2.4 Internals (Aivazian)

Linux Kernel Module Programming Guide (Pomerantz)

Mandatory File Locking For The Linux Operating System (Walker)

i386 Micro Channel Architecture Support

Network Block Device (TCP version)

Mounting the Root Filesystem via NFS (Kuhlmann)

Operating Systems: The Boot Sector

Parallel Port Code for Linux

Linux and Parallel Port IDE Devices (Guenther)

How it Works – Partition Tables Version 1c (Landis)

The PCI Subsystem (Mares)

Protected Mode: A More Detailed Approach (Stephen)

The /Proc Filesystem (Bowden)

99

Real Time Clock Driver for Linux

Linux’s SCSI Driver

Linux Serial Console

Standalone Device Drivers in Linux (Ts’o)

The Linux Kernel (Rusling)

Video Mode Selection Support 2.13 (Mares)

Virtual DMA Services (VDS)

Linux Kernel Source Code, Version 2.4

100

APPENDIX B

EXPERIMENT TRUTH DATA

101

Table 11: ISVis High-Level Truth Data (Components)
Dynamically Extracted Architec-
ture Components (Figure 19 & Fig-
ure 21)

Design Document Architecture
Components (Figure 20)

Match
Result

Overhead NOREL
View View EXACT
File Processors Event Trace Event Stream Trace

Info File Instrumentor Session File
Source Code Static Info File Solaris
DB Database Instrumented Source
Code

CONTAIN

FileProcessors.TraceAnalyzer Trace Analyzer EXACT
FileProcessors.StaticAnalyzer Static Analyzer EXACT
Model Program Model EXACT
Controller View Manager EXACT

Table 12: ISVis High Truth Data (Connectors)
Dynamically Extracted Architec-
ture Connectors (Figure 19)

Design Document Architecture
Connectors (Figure 20)

Match
Result

CreateGui NOREL
Redraw NOREL
Mouse/Key Data NOREL
Prompt C9 CONTAIN
GetText C9 CONTAIN
ReadTrace NOREL
Create NOREL
SetItemState C10 CONTAIN
Update C10 CONTAIN
Create/ModifyComponents C10 CONTAIN
Prompt1 C5 CONTAIN

C4 NOREL
GetText1 C8 CONTAIN

C1, C2, C3, C6, C7, C11, C12, D2,
D3, D4, D5, D6, D7, D8, D9, D10

NOREL

102

Table 13: ISVis High-Low Truth Data
Dynamic Extracted Ele-
ments(Figure 19)

Call Graph Elements Match
Result

Overhead All functions in class Xapplication,
RogueWave utilities, ACMEInter-
face, DiskFile, Hash

CONTAIN

View All functions in class Mural, In-
teractionListSubView, MainView,
View, ScenarioView, ScenarioList-
SubView, FunctionListSubView,
ClassListSubView, Function-
ListSubView, FileListSubView,
ComponentListSubView, Ac-
torListSubView

CONTAIN

File Processors All functions in Instrumentor, Even-
tReader

CONTAIN

FileProcessors.TraceAnalyzer All functions in TraceAnalyzer CONTAIN
FileProcessors.StaticAnalyzer All functions in StaticAnalyzer CONTAIN
Model All Functions in class Pro-

gramModel, Actor, ClassAc-
tor, FunctionActor, FileActor,
DotActor, Trace, TraceIterator,
Scenario, ScenarioIterator, Mes-
sageTrace,ClassInfo, FunctionInfo,
Event, Interaction

CONTAIN

Controller All functions in class IOShell and
ViewManager

CONTAIN

Table 14: Linux System High-Level Truth Data (Components)
Concrete Architecture Components
(Figure 24)

Domain Architecture Compo-
nents(Figure 23)

Match
Result

Memory Manager Memory Management EXACT
File System IO Services CONTAIN
Network Interface IO Services CONTAIN
Process Scheduler Process Scheduler EXACT
Interprocess Communication Interprocess Communication EXACT
Initialization NOREL
Library NOREL
System Call Interface NOREL

103

Table 15: Linux High-Level Connectors, Truth Data
Concrete Architecture Connectors
(Figure 24)

Domain Architecture Connec-
tors(Figure 23)

Match
Result

D1, D2, D4, D5,D6, D7, D8, D9,
D10, D11, D12, D13, D14, D15,
D16, D17, D18, D20

NOREL

D19 C3 EXACT
D3 C4 EXACT

C1,C2 NOREL

Table 16: Linux High-Low Truth Data
Linux Domain Architecture Ele-
ments(Figure 23

Linux Call Graph Elements Match
Result

Memory Management All functions in files in /arch/i386/mm,/mm, /ker-

nel/dma.c, exec domain.c, /arch/i386/kernel/mtrr.c,

pci-dma.c,pci-i386.c, pci-pc.c,(530 functions)

CONTAIN

IO Services All functions in files in /drivers, /fs, /net, /ker-

nel/pm.c, /arch/i386/kernel/acpi.c, apm.c, apic.c,

dmi scan.c, io apic.c, ioport.c, mca.c, mpparse.c, mi-

crocode.c ,msr.c, nmi.c (48243 Functions)

CONTAIN

Process Scheduler /kernel/acct.c, capability.c, context.c, sched.c, fork.c,

ptrace.c, resource.c, sys.c, user.c and exit.c, /in-

clude/linux/sched.h, /arch/i386/kernel/irq.c, ldt.c,

process.c, ptrace.c (231 Functions)

CONTAIN

Interprocess Communication All functions in files in /ipc; /include/asm-

i386/signal.h, /include/linux/signal.h,

/arch/i386/kernel/irq.c, irq.h, i8259.c, pci-

irq.c, semaphore.c, signal.c, traps.c, /kernel/softirq.c

(213 Functions)

CONTAIN

System Call Interface /arch/i386/kernel/entry.S, head.S, trampoline.S,

sys i386.c, /kernel/sys.c, info.c, sysctl.c, uid16.c, and

time.c (109 Functions)

CONTAIN

(Functions related to library support of other

modules) All functions in /lib directory except

those in inflate.c; /kernel/itimer.c, panic.c, printk.c;

/arch/i386/math-emu, /arch/i386/kernel/i387.c,

time.c (297 Functions)

NOREL

(functions related to startup and boot time func-

tionality) All functions in /init; /lib/inflate.c,

, /arch/i386/boot, /arch/i386/kernel/bluesmoke.c,

cpuid.c, setup.c, smpboot.c (128 Functions)

NOREL

(Functions related to dynamic kernel modifications)

/kernel/kmod.c, ksyms.c, module.c (41 Functions)

NOREL

(Functions related to smp processing)

/arch/i386/kernel/smp.c (24 Functions)

NOREL

104

APPENDIX C

MATERIALS USED

C.1 Case Study Applications

C.1.1 ISVis

The Interaction Scenario Visualizer (ISVis) is a C++/Motif application that allows devel-

opers to view static program information and dynamic event traces of program executions.

This program information is then used to create high-level components and interaction sce-

narios (connectors). The application has 24,333 non-comment lines of code distributed in

30 source files. It was written by a single developer to demonstrate the utility of an Infor-

mation Mural to visualize large event traces. Since this was a proof-of-concept application

written by one developer in a research environment, it represents a worse-case scenario in

terms of program comments and documentation.

C.1.2 Linux

Linux is an open-source operating system similar to UNIX. The Linux kernel source code

contains over 49,800 functions distributed in over 1000 separate files. The source code is

developed and maintained by many different people, but it adheres to a prescribed coding

standard and is relatively well commented. This software product represents a normative-

case scenario in terms of program comments and documentation.

C.2 Software Tools used in Experiment

C.2.1 libbow[53]

This is a text-processing library written in C which supports statistical analysis and infor-

mation retrieval tasks. Some of the specific features of the library include:

• Support for manipulation of N-grams.

• Creation and analysis of word vectors.

105

• Scoring queries for information retrieval.

• Clustering and Classification of documents.

• Maintenance of sparse matricies for document and token count correlation.

• Pruning vocabulary by information gain and word count.

C.2.2 WordNet[52]

WordNet is a lexical analysis tool developed by Princeton University. It consists of a

database and access libraries written in C. These C libraries are are used in Tcl/Tk and

Java-based access systems also. WordNet can analyze nouns, verbs, adjectives and adverbs

to determine relationships such as synonym and antonym. Wordnet also ships with a lex

specification for the Morph stemming algorithm which was used a separate component for

the experiment.

C.2.3 TextAnalyst[49]

TextAnalyst is a commercial package that uses self-organizing maps (SOM) to perform

sophisticated document summarization, word proximity analysis and other text processing

tasks. TextAnalyst is available as a COM component with a C++ interface.

C.2.4 Link Grammar Parser[28]

The Link Grammar Parser (LGP) allows parsing and analysis of sentences according to

their parts of speech. It is delivered with a C API, and has third-party support for Java

and C#. By parsing the sentence using LGP, the parts of speech of each word can be

determined and used for analysis by other tools.

C.2.5 GraphGrep[29]

GraphGrep is a tool for performing searches for a query graph in a database of graphs.

This allows an application to find all occurrences of a pattern in each graph. It uses a

unique algorithm to increase efficiency since graph matching is an NP complete problem.

GraphGrep is a set of C programs which run from the command line.

106

C.2.6 Graphlet, GML Parser and Graph Template Library(GTL)[31]

Graphlet is a Tcl/Tk graph visualization and layout application. It is user-extensible via

standard Tcl/Tk and a Tcl extension called Graphscript. The GML parser is a C library

which allows parsing of graph specifications in the Graph Markup Language. The GTL

is a library which emulates the C++ Standard Template Library(STL), except it provides

data structures and algorithms for graphs. The core application of Graphlet was modified

for this project by augmenting it with the ability to display and manipulate architectures

specified in ACME.

C.2.7 AcmeLib[1]

AcmeLib is a library for applications wishing to use the ACME Architectural Description

Language to describe software architectures. There is a C++ and a Java version of the

library available.

C.2.8 Concepts[44]

Concepts is a Lindig’s C library for computing concept lattices from formal contexts. This

library was modified for this project by augmenting it with the capability to write lattice

descriptions in GML.

107

APPENDIX D

ISVIS LEXICAL AND TOPOLOGICAL RESULTS

108

Table 17: ISVis Lexical Match Results (Components) (L)
Dynamically Extracted
Architecture Compo-
nents(Figure 19)

Design Document
Architecture Compo-
nents(Figure 20)

Lexical Match Result Correct?

Overhead NOREL Yes
(True
Nega-
tive)

View View EXACT Yes (True
Positive)

File Processors Trace Info File, Session
File, Static Info File

CONTAIN Yes (True
Positive)

Event Trace NOREL No (False
Nega-
tive)

Event Stream NOREL No (False
Nega-
tive)

Instrumentor NOREL No (False
Nega-
tive)

Source Code NOREL No (False
Nega-
tive)

Instrumented Source
Code

NOREL No (False
Nega-
tive)

Solaris DB Database NOREL No (False
Nega-
tive)

Model Program Model CONTAIN No (Par-
tial Posi-
tive)

Controller NOREL No (False
Nega-
tive)

View View Manager CONTAIN No (False
Positive)

FileProcessors. Trace-
Analyzer

Trace Analyzer EXACT Yes (True
Positive)

FileProcessors. Static-
Analyzer

Static Analyzer EXACT Yes (True
Positive)

109

Table 18: ISVis Lexical Component Matching (High-Low)
Dynamically Extracted Architec-
ture Components(Figure 19)

Ctags Function Match Summary Match
Result

Model 39 True Positive CONTAIN
Controller None (False negative) NOREL
View 227 True Positive, 2 False Positive CONTAIN
Overhead None (False Negative) NOREL
File Processors 3 True Positive, 25 False Positive CONTAIN

478 False Negatives NOREL

110

Table 19: ISVis High Level Topological Matching (Components Best Case) (T)
Dynamically Extracted
Architecture Compo-
nents(Figure 19)

Design Document
Architecture Compo-
nents(Figure 20)

Topological Match Re-
sult

Correct?

Overhead NOREL Yes
(True
Nega-
tive)

FileProcessors. Trace-
Analyzer

Trace Analyzer EXACT Yes (True
Positive)

Event Trace NOREL No (False
Nega-
tive)

Event Stream NOREL No (False
Nega-
tive)

Instrumentor NOREL No (False
Nega-
tive)

Solaris DB Database NOREL No (False
Nega-
tive)

Source Code NOREL No (False
Nega-
tive)

FileProcessors. Static-
Analyzer

Static Analyzer EXACT Yes (True
Positive)

Session File NOREL No (False
Nega-
tive)

Static Info File NOREL No (False
Nega-
tive)

Trace Info File NOREL No (False
Nega-
tive)

Instrumented Source
Code

NOREL No (False
Nega-
tive)

Model Program Model EXACT Yes (True
Positive)

Controller View Manager EXACT Yes (True
Positive)

View View EXACT Yes (True
Positive)

File Processors NOREL No (False
Nega-
tive)

111

Table 20: ISVis High-Level Topological Matching (Connectors) (T)
Dynamically Extracted
Architecture Connec-
tors(Figure 19)

Design Document
Architecture Connec-
tors(Figure 20)

Topological
Match
Result

Correct?

CreateGui NOREL Yes (True Negative)
Redraw NOREL Yes (True Negative)
Mouse/Key Data NOREL Yes (True Negative)
Prompt C9 EXACT No (Partial Positive)
GetText C9 EXACT No (Partial Positive)
ReadTrace NOREL Yes (True Negative)
Create NOREL Yes (True Negative)
SetItemState C10 EXACT No (Partial Positive)
Update C10 EXACT No (Partial Positive)
Create/ ModifyCompo-
nents

C10 EXACT No (Partial Positive)

Prompt1 C5 EXACT Yes (True Positive)
GetText1 C8 EXACT Yes (True Positive)

C4 NOREL Yes (True Negative)
C1, C2, C3, C6, C7,
C11, C12, D2, D3, D4,
D5, D6, D7, D8, D9,
D10

NOREL Yes (True Negative)

112

APPENDIX E

LINUX LEXICAL AND TOPOLOGICAL RESULTS

113

Table 21: Linux High-Level Lexical Comparison (Components) (L)
Concrete Architecture
Components(Figure 24)

Domain Architecture
Components(Figure 23)

Lexical Match Result
Correct?

Memory Manager Memory Management CONTAIN No (Par-
tial Posi-
tive)

File System System Call Interface CONTAIN No (False
Positive)

Network Interface NOREL No (False
Nega-
tive)

Process Scheduler Process Scheduler EXACT Yes (True
Positive)

Interprocess Communi-
cation

Interprocess Communi-
cation

EXACT Yes (True
Positive)

Initialization NOREL Yes
(True
Nega-
tive)

Library NOREL Yes
(True
Nega-
tive)

IO Services NOREL No (False
Nega-
tive)

Table 22: Linux Component High-Low Lexical Matching
Linux Domain Architecture Ele-
ments(Figure 23)

Linux Call Graph Elements Match
Result

Memory Management 459 True Positive, 2798 False Posi-
tive

CONTAIN

IO Services 13438 True Positive, 422 False Pos-
itive

CONTAIN

Process Scheduler 147 True Positive, 2971 False Posi-
tive

CONTAIN

Interprocess Communication 25 True Positive, 1034 False Positive CONTAIN
System Call Interface 155 True Positive, 15000 False Pos-

itive
CONTAIN

343 True Negatives, 29179 False
Negatives

NOREL

114

Table 23: Linux High Level Topological Matching (Components Best Case) (T)
Concrete Architecture
Components(Figure 24)

Domain Architecture
Components(Figure 23)

Topological Match Re-
sult

Correct?

Memory Manager Memory Management EXACT Yes (True
Positive)

File System System Call Interface EXACT No (False
Positive)

Network Interface IO Services EXACT No (Par-
tial Posi-
tive)

Process Scheduler Process Scheduler EXACT Yes (True
Positive)

Interprocess Communi-
cation

Interprocess Communi-
cation

EXACT Yes (True
Positive)

Initialization NOREL Yes
(True
Nega-
tive)

Library NOREL Yes
(True
Nega-
tive)

Table 24: Linux High-Level Topological Matching (Connectors, Best Case) (T)
Concrete Architecture
Components(Figure 24)

Domain Architecture
Components(Figure 23)

Topological Match Re-
sult

Correct?

D3 C4 EXACT Yes (True
Positive)

D19 C3 EXACT Yes (True
Positive)

D8 C2 EXACT No (False
Positive)

D6 C1 EXACT No (False
Positive)

D1, D2, D4, D5, D7,
D9, D10, D11, D12,
D13, D14, D15, D16,
D17, D18, D20

NOREL Yes
(True
Nega-
tive)

115

APPENDIX F

ISVIS SEMANTIC RESULTS

116

Table 25: Top 25 Terms Mined from ISVis Documentation
Raw
Word
Count
(All)

Raw
Word
(Do-
main)

Raw
Count
Impl.

Bayesian
Net, All
Docs

Bayesian
Net,
Domain

Bayesian
Net, Im-
plemen-
tation

scenario
inter-
action
program
actor
trace
pattern
file event
analyst
message
mural
class ex-
ecution
main
under-
standing
model
software
data
focus
global
function
view
archi-
tectural
display
visual-
ization

program
inter-
action
pattern
trace
event
message
actor
analyst
exe-
cution
scenario
software
class
under-
standing
mural
view
model
data
global
archi-
tectural
visual-
ization
function
abstrac-
tion
dynamic
process
file event

scenario
actor
software
inter-
action
mural
class
ioshell
widget
view-
manager
file scale
trace
scenar-
ioview
stream
size
func-
tion-
actor
scenari-
oiterator
draw
mu-
ralscroll-
bar
forecolor
event
zoom
pro-
gram-
model
program
main-
view

analyst
page
area
mural
area in-
teraction
view
generate
analyze
group
visual-
ization
dynamic
sequence
build
tem-
poral
abstrac-
tion
under-
standing
exe-
cution
mouse
main
word
derive
phase
vali-
dation
recovery

engineer
process
focus
gener-
ation
detec-
tion
charac-
terize
direct
confor-
mance
help rep-
resen-
tation
project
appli-
cation
recog-
nition
reference
compute
visualize
reflexion
model
proto-
type sys
compare
map
overview
occur-
rence
evidence

analyst
align
area mu-
ral page
word
derive
select
area in-
teraction
main
assign
mouse
perfor-
mance
environ-
ment
trade
useful-
ness
behave
actor
define
under-
stood
analyze
tem-
poral
generate
build

117

Table 26: ISVis Domain Architecture Formal Context (Components)

sc
en

ar
io

vi
su

al
iz

at
io

n
pr

og
ra

m

in
te

ra
ct

io
n

ac
to

r
tr

ac
e

pa
tt

er
n

fil
e

ev
en

t
an

al
ys

t
m

es
sa

ge

m
ur

al
cl

as
s

ex
ec

ut
io

n
m

ai
n

un
de

rs
ta

nd
in

g
m

od
el

so
ft

w
ar

e
tr

ac
e

fo
cu

s
da

ta
fu

nc
ti

on
vi

ew
ar

ch
it

ec
tu

ra
l

di
sp

la
y

Program
Model

X X X X X X X X

View
Man-
ager

X X X X

View X X X X X X X X
Trace
Ana-
lyzer

X X X X X X

Event
Stream

X X X X X

Session
File

X X X X X

Event
Trace

X X X X X X X

Instru-
mented
Source
Code

X X X X

Trace
Info
File

X X X X X X X

Source
Code

X X X X

Solaris
DB
Database

X X X X X

Static
Ana-
lyzer

X X X

Instru-
mentor

X X X X X

Static
Info
File

X X X X

118

Table 27: ISVis Formal Context (Components Dynamically Recovered) (High)

sc
en

ar
io

vi
su

al
iz

at
io

n
pr

og
ra

m

in
te

ra
ct

io
n

ac
to

r
tr

ac
e

pa
tt

er
n

fil
e

ev
en

t
an

al
ys

t
m

es
sa

ge

m
ur

al
cl

as
s

ex
ec

ut
io

n
m

ai
n

un
de

rs
ta

nd
in

g
m

od
el

so
ft

w
ar

e
tr

ac
e

fo
cu

s
da

ta
fu

nc
ti

on
vi

ew
ar

ch
it

ec
tu

ra
l

di
sp

la
y

Model X X X X X X X X X X X
View X X X X X X X
Control-
ler

X X X X

File
Proces-
sor

X X X X X X X

Overhead X X

Table 28: ISVis High-Level Semantic Approximation (Components) (S)
Dynamically
Extracted Archi-
tecture Compo-
nents(Figure 19)

Design Document Ar-
chitecture Components
(Figure 20)

Semantic
Approx-
imation
Match
Result

Correct?

View View OVERLAP No (Partial
Positive)

Model Program Model OVERLAP No (Partial
Positive)

Overhead NOREL Yes (True
Negative)

Controller View Manager OVERLAP No (Partial
Positive)

FileProcessors.
Static Analyzer

Static Analyzer SUBSUME No (Partial
Positive)

FileProcessor.
TraceAnalyzer

Trace Analyzer SUBSUME No (Partial
Positive)

File Processor
Event Trace
Event Stream
Trace Info File
Instrumentor Ses-
sion File Source
Code Static Info
File Instrumented
Source Code

Solaris DB Database OVERLAP No (Partial
Positive)

119

Table 29: ISVis High-Level Semantic Approximation (Components) (S)
Dynamically
Extracted Archi-
tecture Compo-
nents(Figure 19)

Design Document Ar-
chitecture Components
(Figure 20)

Semantic
Approx-
imation
Match
Result

Correct?

View View OVERLAP No (Partial
Positive)

Model Program Model OVERLAP No (Partial
Positive)

Overhead NOREL Yes (True
Negative)

Controller View Manager OVERLAP No (Partial
Positive)

FileProcessors.
Static Analyzer

Static Analyzer SUBSUME No (Partial
Positive)

FileProcessor.
TraceAnalyzer

Trace Analyzer SUBSUME No (Partial
Positive)

File Processor
Event Trace
Event Stream
Trace Info File
Instrumentor Ses-
sion File Source
Code Static Info
File Instrumented
Source Code

Solaris DB Database OVERLAP No (Partial
Positive)

120

APPENDIX G

LINUX SEMANTIC RESULTS

121

Table 30: Top 25 Terms Mined from LINUX Documentation
Raw
Word
Count
(All)

Raw
Word
(Do-
main)

Raw
Count
Impl.

Bayesian
Net All
Docs

Bayesian
Net,
Domain

Bayesian
Net, Imple-
mentation

file pro-
cess data
time di-
rectory
program
root
memory
device
disk
com-
mand
page
read
address
access
network
system
version
block
type
software
interface
mode
struc-
ture
write

process
file time
page
data
memory
system
disk
program
direc-
tory
block
thread
access
read
device
address
store
virtual
size
write
hard-
ware
resource
cpu
com-
mand
main

file root
direc-
tory
com-
mand
program
network
time
config-
uration
software
version
interface
security
disk
type
mode
option
fileutils
access
default
data
boot
change
read
process
ip

system
program
environ-
ment
disk
process
appli-
cation
mul-
tipro-
gram-
ming job
login di-
rectory
schedul-
ing
admin-
istrator
perfor-
mance
file ed-
itor
database
man-
agement
time
pass-
word
backup
service
exe-
cution
commu-
nicate
dynam-
ically
security

hda
filename
lilo
filesys-
tem
modem
raid
loopback
loadable
adminis-
trator fs
integrity
log udp
ide icmp
elf nic
xterm
consoles
backup
host
thread
root
bootup
audit

program
boot disk
file root en-
vironment
drive direc-
tory floppy
system par-
tition drive
time access
filesystem
monthly
pc file bios
cylinder
lilo sub-
directory
application
perfor-
mance
read

122

Table 31: Linux Concrete Architecture Formal Context (Components)

W
ri

te
M

od
e

B
lo

ck
N

et
w

or
k

A
cc

es
s

R
ea

d
D

is
k

D
ev

ic
e

D
ir

ec
to

ry
T

im
e

D
at

a
F
ile

St
ru

ct
ur

e
In

te
rf

ac
e

So
ft

w
ar

e
T

yp
e

V
er

si
on

Sy
st

em
s

P
ro

gr
am

C
om

m
an

d
M

em
or

y
R

oo
t

P
ro

ce
ss

P
ag

e
A

dd
re

ss

Memory
Man-
ager

X X X X X X X X X X

File
System

X X X X X X X X X X X X X X X X

Network
Inter-
face

X X X X X X X

Process
Sched-
uler

X X X X

Inter-
process
Com-
muni-
cation

X X X X X

Initial-
ization

X X X X

123

Table 32: Linux Domain Architecture Formal Context (Components)

W
ri

te
M

od
e

B
lo

ck
N

et
w

or
k

A
cc

es
s

R
ea

d
D

is
k

D
ev

ic
e

D
ir

ec
to

ry
T

im
e

D
at

a
F
ile

St
ru

ct
ur

e
In

te
rf

ac
e

So
ft

w
ar

e
T

yp
e

V
er

si
on

Sy
st

em
s

P
ro

gr
am

C
om

m
an

d
M

em
or

y
R

oo
t

P
ro

ce
ss

P
ag

e
A

dd
re

ss

I/O
Ser-
vices

X X X X X X X X X X X X

System
Call In-
terface

X X X X X X X X X

Process
Sched-
uler

X X X X

Inter-
process
Com-
muni-
cation

X X X X X

Memory
Man-
age-
ment

X X X X X X X X X X

Table 33: Linux High-Level Semantic Approximation Results (Components) (S)
Concrete Archi-
tecture Compo-
nents (Figure
24)

Domain Architecture
Components(Figure 23)

Semantic
Approx-
imation
Match
Result

Correct?

Memory Manager Memory Management EXACT Yes (True
Positive)

File System I/O Services OVERLAP No (Partial
Positive)

Network Interface I/O Services OVERLAP No (Partial
Positive)

Process Scheduler Process Scheduler EXACT Yes (True
Positive)

Interprocess
Communication

Interprocess Communi-
cation

EXACT Yes (True
Positive)

Initialization NOREL Yes (True
Negative)

Library System Call Interface OVERLAP No (False
Positive)

124

Table 34: Linux High-Low Semantic Approximation Matching
Domain Architec-
ture Components
(Figure 23)

Semantic Approxima-
tion Match Result

Match Re-
sult?

Memory Manage-
ment

203 Partial, 8322 False
Positive

OVERLAP

I/O Services 10181 Partial Positive,
194 False Positive

OVERLAP

Process Scheduler 3 Partial Positive, 2661
False Positive

OVERLAP

Interprocess
Communication

16 Partial Positive, 1232
False Positive

OVERLAP

System Call In-
terface

1 Partial Positive, 2265
False Positive

OVERLAP

260 True Negative,
24478 False Negative

NOREL

125

APPENDIX H

ISVIS LEXICAL AND SEMANTIC APPROXIMATION

RESULTS

126

Table 35: ISVis High-Level Lexical and Semantic Approximation Results (Components)
(LS)

Dynamically
Extracted Ar-
chitecture Com-
ponents(Figure
19)

Design Document
Architecture Compo-
nents(Figure 20)

Semantic
Approx-
imation
Match
Result

Correct?

Overhead NOREL Yes (True
Negative)

View View EXACT Yes (True
Positive)

File Processors
Trace Info File
Session File
Static Info File
Event Trace
Event Stream
Instrumentor
Source Code
Instrumented
Source Code

Solaris DB Database CONTAIN Yes (True
Positive)

FileProcessors.
TraceAnalyzer

Trace Analyzer EXACT Yes (True
Positive)

FileProcessors.
StaticAnalyzer

Static Analyzer EXACT Yes (True
Positive)

Model Program Model CONTAIN No (Partial
Positive)

Controller View Manager OVERLAP No (Partial
Positive)

127

Table 36: ISVis High-Level Lexical and Semantic Approximation Results (Components)
(LS)

Dynamically
Extracted Ar-
chitecture Com-
ponents(Figure
19)

Design Document
Architecture Compo-
nents(Figure 20)

Semantic
Approx-
imation
Match
Result

Correct?

Overhead NOREL Yes (True
Negative)

View View EXACT Yes (True
Positive)

File Processors
Trace Info File
Session File
Static Info File
Event Trace
Event Stream
Instrumentor
Source Code
Instrumented
Source Code

Solaris DB Database CONTAIN Yes (True
Positive)

FileProcessors.
TraceAnalyzer

Trace Analyzer EXACT Yes (True
Positive)

FileProcessors.
StaticAnalyzer

Static Analyzer EXACT Yes (True
Positive)

Model Program Model CONTAIN No (Partial
Positive)

Controller View Manager OVERLAP No (Partial
Positive)

Table 37: ISVis High-Low Lexical and Semantic Approximation (LS)
Dynamically Extracted
Architecture Compo-
nents(Figure 19)

Ctags Semantic Ap-
proximation Match
Summary

Match Re-
sult?

View 37 True Positive, 3 Par-
tial Positive, 14 False
Positive

CONTAIN

Model 25 True Positive, 25
Partial Positive, 76
False Negative

CONTAIN

Overhead 36 False Positive CONTAIN
Controller 11 False Positive OVERLAP
File Processor 9 Partial Positive, 36

False Positive
CONTAIN

128

APPENDIX I

LINUX LEXICAL AND SEMANTIC APPROXIMATION

RESULTS

129

Table 38: Linux High-Level Lexical and Semantic Approximation Results (Components)
(LS)

Concrete Archi-
tecture Com-
ponents(Figure
24)

Domain Architecture
Components(Figure 23)

Lexical
Match
Result

Correct?

Memory Manager Memory Management EXACT Yes (True
Positive)

File System IO Services OVERLAP No (Partial
Positive)

Network Interface IO Services OVERLAP No (Partial
Positive)

Process Scheduler Process Scheduler EXACT Yes (True
Positive)

Interprocess
Communication

Interprocess Communi-
cation

EXACT Yes (True
Positive)

Initialization NOREL Yes (True
Negative)

Library System Call Interface OVERLAP No (False
Positive)

Table 39: Linux High-Level Lexical and Semantic Approximation Results (Components)
(LS)

Concrete Archi-
tecture Com-
ponents(Figure
24)

Domain Architecture
Components(Figure 23)

Lexical
Match
Result

Correct?

Memory Manager Memory Management EXACT Yes (True
Positive)

File System IO Services OVERLAP No (Partial
Positive)

Network Interface IO Services OVERLAP No (Partial
Positive)

Process Scheduler Process Scheduler EXACT Yes (True
Positive)

Interprocess
Communication

Interprocess Communi-
cation

EXACT Yes (True
Positive)

Initialization NOREL Yes (True
Negative)

Library System Call Interface OVERLAP No (False
Positive)

130

Table 40: Linux High-Low Semantic/Lexical Technique
Domain Architecture
Components(Figure 23)

Semantic Approxima-
tion Match Result

Match Result?

Memory Management 184 True Positive, 24
Partial, 7701 False Pos-
itive

CONTAIN

I/O Services 869 True Positives, 8137
Partial Positive, 442
False Positive

OVERLAP

Process Scheduler 3 Partial Positive, 2678
False Positive

OVERLAP

Interprocess Communi-
cation

0 True Positive, 13 Par-
tial Positive, 1193 False
Positive

OVERLAP

System Call Interface 3 True Positive, 0 Par-
tial Positive, 4578 False
Positive

OVERLAP

260 True Negative,
23730 False Negative

NOREL

131

APPENDIX J

ISVIS LTS RESULTS

132

Table 41: ISVis High-Level Lexical, Topological and Semantic Results (Components)
(LTS)

Dynamically
Extracted Ar-
chitecture Com-
ponents(Figure
19)

Design Document
Architecture Compo-
nents(Figure 20)

Semantic
Approx-
imation
Match
Result

Correct?

Overhead NOREL Yes (True
Negative)

View View EXACT Yes (True
Positive)

File Processors
Trace Info File
Session File
Static Info File
Event Trace
Event Stream
Instrumentor
Source Code
Instrumented
Source Code

Solaris DB Database CONTAIN Yes (True
Positive)

FileProcessors.
StaticAnalyzer

Static Analyzer EXACT Yes (True
Positive)

FileProcessors.
TraceAnalyzer

Trace Analyzer EXACT Yes (True
Positive)

Model Program Model EXACT Yes (True
Positive)

Controller View Manager EXACT Yes (True
Positive)

133

Table 42: ISVis High-Level Lexical, Topological, Semantic Approximation (Connectors)
Dynamically
Extracted Ar-
chitecture Con-
nectors(Figure
19)

Design Document
Architecture Connec-
tors(Figure 20)

Semantic
Approx-
imation
Match
Result

Correct?

CreateGui NOREL Yes (True
Negative)

Redraw NOREL Yes (True
Negative)

Mouse/Key Data NOREL Yes (True
Negative)

Prompt C9 EXACT No (Partial
Positive)

GetText C9 EXACT No (Partial
Positive)

ReadTrace NOREL Yes (True
Negative)

Create NOREL Yes (True
Negative)

SetItemState C10 EXACT No (Partial
Positive)

Update C10 EXACT No (Partial
Positive)

Create/ Modify-
Components

C10 EXACT No (Partial
Positive)

Prompt1 C5 EXACT Yes (True
Positive)

GetText1 C8 EXACT Yes (True
Positive)

C4 NOREL Yes (True
Negative)

C1, C2, C3, C6, C7,
C11, C12, D2, D3, D4,
D5, D6, D7, D8, D9,
D10

NOREL Yes (True
Negative)

134

APPENDIX K

LINUX LTS RESULTS

135

Table 43: Linux High-Level Lexical, Topological and Semantic Approximation (Compo-
nents) (LTS)

Concrete Archi-
tecture Com-
ponents(Figure
24)

Domain Architecture
Components(Figure 23)

LTS Match
Result

Correct?

Memory Manager Memory Management EXACT Yes (True
Positive)

File System IO Services CONTAIN Yes (True
Positive)

Network Interface IO Services CONTAIN Yes (True
Positive)

Process Scheduler Process Scheduler EXACT Yes (True
Positive)

Interprocess
Communication

Interprocess Communi-
cation

EXACT Yes (True
Positive)

Initialization NOREL Yes (True
Negative)

Library System Call Interface OVERLAP No (False
Positive)

Table 44: Linux High-Level Lexical, Topological and Semantic Approximation (Connec-
tors) (LTS)

Concrete Archi-
tecture Com-
ponents(Figure
24)

Domain Architecture
Components(Figure 23)

LTS Match
Result

Correct?

D3 C4 EXACT Yes (True
Positive)

D19 C3 EXACT Yes (True
Positive)

C1,C2 NOREL Yes (True
Negative)

D1, D2, D4,
D5,D6, D7, D8,
D9, D10, D11,
D12, D13, D14,
D15, D16, D17,
D18, D20

NOREL Yes (True
Negative)

136

REFERENCES

[1] The Java AcmeLib Programmers Manual. Avaliable electronically at: www-
2.cs.cmu.edu/ãcme/acme documentation.html.

[2] Microsoft SQL Server Product Information. Available electronically at:
www.microsoft.com/sql/evaluate/overview/.

[3] Abowd, G., Kazman, R., and Clements, P., “Scenario-based analysis of software
architecture,” Tech. Rep. GIT-CC-95-41, Georgia Institute of Technology, October 29,
1995 1995.

[4] Antoniol, G., Fiutem, G., Lutteri, G., Tonnella, P., Zanfei, S., and Merlo,
E., “Program understanding and maintenance with the canto environment,” in Inter-
national Conference on Software Maintenance, IEEE, 1997.

[5] Baniassad, E., Murphy, G., Schwanninger, C., and Kircher, M., “Managing
crosscutting concerns during software evolution tasks: An inquisative study,” in 1st
International Conference on Aspect-Oriented Software Development, (Enchede, The
Netherlands), pp. 102–126, ACM Press, 2002.

[6] Bass, L., Clements, P., and Kazman, R., Software architecture in practice. Read-
ing, Mass.: Addison-Wesley, 1998. 97013979 Len Bass, Paul Clements, Rick Kazman.
Includes bibliographical references (p. 437-445) and index.

[7] Bellay, B. and Gall, H., “Reverse engineering to recover and describe a system’s
architecture,” in Proceedings : Development and Evolution of Software Architecture
for Product Families (Van Der Linden, F., ed.), vol. 1429, (Las Palmas de Gran
Canaria, Spain), pp. 115–122, Springer-Verlag, 1998.

[8] Bergey, J., Smith, D., Tilley, S., Weiderman, N., and Woods, S., “Why reengi-
neering projects fail,” Tech. Rep. CMU/SEI-99-TR-010, Carnegie Mellon University,
Software Engineering Institute, April 1999 1999.

[9] Bergey, J. K., Northrop, L. M., and Smith, D. B., “Enterprise framework for
the disciplined evolution of legacy systems,” Technical Report CMU/SEI-97-TR-007,
Software Engineering Institute, October 1997 1997.

[10] Biggerstaff, T., Mitbander, B., and Webster, D., “Program understanding
and the concept assignment problem,” Communications of the ACM, vol. 37, no. 5,
pp. 72–83, 1994.

[11] Bowman, I. T., Holt, R. C., and Brewster, N. V., “Linux as a case study: its
extracted software architecture,” in 21st International Conference on Software Engi-
neering, (Los Angeles, CA), pp. 555–563, IEEE Computer Society Press, Los Alamitos,
CA, 1999.

137

[12] Caprile, B. and Tonella, P., “Nomen est omen: Analyzing the language of funtion
identifiers,” in Sixth Working Conference on Reverse Engineering, (Atlanta, Georgia),
pp. 112–122, IEEE Computer Society, 1999.

[13] Chase, M., C. S. H. D. and Yeh, A., “Managing recovered function and struc-
ture of legacy software components,” in Working Conference on Reverse Engineering,
(Hawaii), pp. 79–88, 1998.

[14] Chase, M. P., Christey, S. M., Harris, D. R., and Yeh, A. S., “Recovering soft-
ware architecture from multiple source code analyses,” in PASTE, (Montreal Canada),
pp. 43–50, ACM Press, 1998.

[15] Chikofsky, E. and Cross, J., “Reverse engineering and design recovery: A taxon-
omy,” IEEE Software, vol. 7, no. 1, pp. 13–17, 1990.

[16] Clayton, R., Rugaber, S., Taylor, L., and Wills, L., “A case study of domain-
based program understanding,” in Workshop on Program Comprehension, 1998.

[17] Clements, P. and Weiderman, N. H., Report on the second international workshop
on development and evolution of software architectures for product families. Special
report ; CMU/SEI-98-SR-003., Pittsburgh, Pa.: Carnegie Mellon University Software
Engineering Institute, 1998. Paul C. Clements, Nelson Weiderman. Special report.
Carnegie Mellon University. Software Engineering Institute ; CMU/SEI-98-SR-003
”May 1998.” Includes bibliographical references.

[18] Egyed, A., “Automating architectural view integration in uml,” Technical Report
USCCSE-99-511, University of Southern California, 1999 1999.

[19] Eixelsberger, W., Kalan, M., Ogris, M., Beckman, H., Bellay, B., and Gall,
H., “Recovery of architectural structure : A case study,” in Proceedings : Development
and Evolution of Software Architecture for Product Families (Van Der Linden, F.,
ed.), vol. 1429, (Las Palmas de Gran Canaria, Spain), pp. 89–96, Springer-Verlag, 1998.

[20] Elrad, T., Filman, R. E., and Bader, A., “Apsect-oriented programming: Intro-
duction,” Communications of the ACM, vol. 44, pp. 29–32, October 2001.

[21] Finkelstien, A., Gabbay, D., Hunter, A., Kramer, J., and Nuseibeh, B., “In-
consistency handling in multi-perspective specifications,” Transactions on Software
Engineering, vol. 20, no. 8, pp. 569–578, 1994.

[22] Fiutem, R., Merlo, M., Antoniol, G., and Tonella, P., “Understanding the
architecture of software systems,” Technical Report 9510-06, IRST, October 1995 1995.

[23] Fiutem, R., Tonella, P., Antoniol, G., and Merlo, E., “A cliche-based environ-
ment to support architectural reverse engineering,” Technical Report 9602-02, IRST,
February 1996 1996.

[24] Gall, H., Jazayeri, M., Klosch, R., Lugmayr, W., and Trausmuth, G., “Ar-
chitecture recovery in ares,” in Joint Proceedings of the second international software
architecture workshop (ISAW-2) and international workshop on multiple perspectives
in software development (Viewpoint ’96) on SIGSOFT ’96 workshops, (San Francisco,
California), pp. 111–115, ACM Press New York, NY USA, 1996.

138

[25] Gansner, E. and North, S., “An open graph visualization system and its application
to software engineering,” Software-Practice and Experience, no. 30(11), pp. 1203–1233,
2000.

[26] Ganter, B. and Wille, R., Formal Concept Analysis : Mathematical Foundations.
Berlin: Springer Verlag, 1999.

[27] Garlan, D. and Shaw, M., “An introduction to software architecture,” in Advances
in Software Engineering and Knowledge Engineering (Tortora, V. A. and G., eds.),
pp. 1–39, Singapore: , World Scientific Publishing Company, 1993.

[28] Grinberg, Dennis, J. L. and Sleator, D., “A robust parsing algorithm for link
grammars,” in Proceedings of Fourth International Conference on Parsing Technolo-
gies, (Prague), 1995.

[29] Guingo, R. and Shasta, D., “Graphgrep: A fast and universal method for query-
ing graphs,” in Proceedings of the International Conference in Pattern Recognition,
Quebec, Canada, 2002.

[30] Guo, G. Y., Altee, J. M., and Kazman, R., “A software architecture reconstruction
method,” in TC2 Working Conference on Software Architecture (WICSA1) (Dono-
hoe, P., ed.), (San Antonio, TX), pp. 16–33, Kluwer Academic Publishers, 1999.

[31] Himsolt, M., “The graphlet system,” in Volume 1190 Lecture Notes in Computer
Science (North, S., ed.), (New York/Berlin), pp. 233–240, Springer-Verlag, 1996.

[32] Hipson, P. and Jennings, R., Database Developers Guide with Visual C++. Indi-
anapolis, Indiana: SAMS Publishing, 1996.

[33] Holt, R. C., Malton, A. J., Davis, I., Bull, I., and Trevors, A., “Software
architecture toolkit,” 2003.

[34] Incorporated, R. S., “Refine user’s guide,” 1992.

[35] Jerding, D. and Rugaber, S., “Using visualization for architectural localization and
extraction,” in Working Conference on Reverse Engineering, 1997.

[36] Kazman, R. and Carriere, S., “View extraction and view fusion in architectural
understanding,” in Fifth International Conference on Software Reuse, 1998.

[37] Kazman, R. and Carriere, S. J., “Playing detective: Reconstructing software ar-
chitecture from available evidence,” Technical Report CMU/SEI-97-TR-010, Carnegie
Mellon University, 1997 1997.

[38] Kazman, R. and Burth, M., “Assessing architectural complexity,” in 2nd Euromicro
Working Conference on Software Maintenance and Reengineering (CSMR ’98), IEEE
Computer Society Press, 1998.

[39] Kpskimies, K., M. T. S. T. and Tuomi, J., “Automated support for modeling oo
software,” IEEE Software, vol. 15, pp. 87–94, January/February 1998.

[40] Krikhaar, R., “Reverse architecting approach for complex systems,” in International
Conference on Software Maintenance, IEEE, 1997.

139

[41] Krone, M. and Snelting, G., “On the inference of configuration structures from
source code,” in International Conference on Software Engineering (ICSE 16), pp. 49–
57, IEEE Computer Society Press, 1994.

[42] Krutchen, P., “The 4+1 view model of architecture,” IEEE Software, vol. 12, no. 6,
1995.

[43] Lin, T. and OBrien, L., “Fepss: A flexible and extensible program comprehension
support system,” in Working Conference on Reverse Engineering, (Hawaii), pp. 40–49,
1998.

[44] Lindig, C., “Concepts source code,” 1999.

[45] Lovis, C., M. P. B. R. S. J., “Word segmentation processing: A way to exponen-
tially extend medical dictionaries,” in In proceedings 8th World Congress on Medical
Informatics, pp. 28–32, 1995.

[46] Luckham, D. C., Kenney, J. J., Augustin, L. M., Vera, J., Bryan, D., and
Mann, W., “Specification and analysis of system architecture using rapide,” IEEE
Transactions on Software Engineering, Special Issue on Software Engineering, vol. 21,
no. 4, pp. 336–355, 1995.

[47] Magee, J., D. N. E. S. and Kramer, J., “Specifying distributed software archi-
tectures,” Proceedings of 5th European Software Engineering Conference (ESEC 95),
1995.

[48] Maxwell, S., Linux Core Kernel Commentary. Scottsdale, AZ: CoriolisOpen Press,
1st ed., 1999.

[49] Megaputer, “Textanalyst.”

[50] Mendonca, N. C. and Kramer, J., “Requirements for an effective architecture
recovery framework,” in SIGSOFT, pp. 101–105, ACM, 1996.

[51] Michail, A. and Notkin, D., “Accessing software libraries by browsing similar
classes, functions, and relationships,” in 21st International Conference on Software
Engineering, (Los Angeles), pp. 463–472, IEEE Press, 1999.

[52] Miller, George, R. B. C. F. D. G. and Miller, K., “Introduction to wordnet: an
on-line lexical database,” in International Journal of Lexicography, vol. 3, pp. 235–244,
1990.

[53] Mitchell, T., “Bow: A toolkit for statistical language modelling, text retrieval,
classification and clustering,” 1997.

[54] Murphy, G., Notkin, D., and Sullivan, K., “Software reflexion models: Bridging
the gap between source and high-level models,” ACM SIGSOFT, vol. 1995, 1995.

[55] Murphy, G. C. and Notkin, D., “Lightweight lexical source model extraction,”
ACM Transactions on Software Engineering and Methodology, vol. 5, no. 3, pp. 262–
292, 1996.

[56] Paulk, M. C., “A capability maturity model for software,” Tech. Rep. SEI SEI-93-
TR-24, Software Engineering Institute, 1993.

140

[57] Perry, D. and Wolf, A., “Foundations for the study of software architecture,” ACM
SIGSOFT Software Engineering Notes, vol. 17, no. 4, pp. 40–52, 1992.

[58] Porter, M., “An algorithm for suffix stripping,” Program, vol. 14, no. 3, pp. 130–137,
1980.

[59] Rugaber, S., “Morale methodology guidebook: Methodology guidebook for synchro-
nized refinement,” 1998.

[60] Siff, M. and Reps, T., “Identifying modules via concept analysis,” in ICSM’ 97:
IEEE Conference on Software Maintenance, (Bari, Italy), pp. 170–179, IEEE Com-
puter Society, 1997.

[61] Sim, S. E., Clarke, C. L. A., Holt, R. C., and Cox, A., “Browsing and searching
software architectures,” in International Conference on Software Engineering (ICSE),
(Los Angeles, CA), p. To Appear, IEEE, 1999.

[62] Systa, T., Static and Dynamic Reverse Engineering Techniques for Java Software
Systems. Dissertation, University of Tampere, 2000.

[63] Tilley, S., “A reverse engineering environment framework,” Technical Report
CMU/SEI-98-TR-005, Carnegie Mellon University, 1998 1998.

[64] Tzerpos, V. and Holt, R. C., “A hybrid process for recovering software architec-
ture,” in CASCON, (Toronto, Canada), pp. 1–6, 1996.

[65] Weiderman, N. Tilley, S. and D., S., “Approaches to legacy system evolution,”
Technical Report CMU/SEI-97-TR-014, CMU, 1997 1997.

[66] Wille, R., “Restructuring lattice theory: an approach based on hierarchies of con-
cepts,” in Ordered Sets (Rival, I., ed.), pp. 445–470, Dordrecht-Boston: Reidel, 1982.

[67] Wong, K., “Rigi user’s manual : Version 5.4.4,” 1998.

[68] Yeh, A., Harris, D., and Chase, M., “Manipulating recovered software architectural
views,” in 19th International Conference on Software Engineering, 1997.

[69] Zachman, J. A., “A framework for information systems architecture,” IBM System
Journal, vol. 24, no. 3, 1987.

[70] Zaremski, A. M. and Wing, J. M., “Specification matching of software components,”
ACM Transactions on Software Engineering and Methodology (TOSEM), 1997.

[71] Zave, P. and Jackson, M., “Composition as conjunction,” ACM Transactions on
Software Engineering and Methodology, vol. 2, no. 4, pp. 379–411, 1993.

141

