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SUMMARY 

The objective of this work is to enhance the state estimator software application in 

the energy management system. The state estimator is responsible for processing raw 

power system measurements received from substation equipment in the field and filtering 

out the errors to determine the most likely state of the power system in terms of bus 

voltage magnitudes and angles. Because the state estimator solution serves as the input to 

other critical downstream applications in the energy management system, such as 

contingency analysis and optimal power flow, it is key that a unique solution can be 

found, and that the solution is accurate.  

The changing nature of the power grid is introducing new challenges for the state 

estimator. The first challenge is the need to process more data in less time. New sensors 

such as phasor measurement units that have a finer sampling granularity are creating 

more data for the state estimator to process. Market deregulation has created the need to 

monitor larger interconnections. Also, faster system dynamics due to the integration of 

non-dispatchable renewables such as wind and solar are creating a need for faster state 

estimation, so that power system operators have a clearer understanding of the time-

varying system behavior. With all of these new driving forces, it becomes increasingly 

more important to move away from the conventional central state estimator architecture 

towards a decentralized approach that is more scalable. However, it is unclear from the 

existing research literature just how much decentralization is ideal. To address this 

question, we investigate the impact of the number of sub-problems on the performance of 

the state estimator. 
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The second challenge is the need for more robust power system cybersecurity. 

Over the past decade, the power grid has become increasingly intertwined with 

information and communication technology, transforming it into a cyber-physical system 

(“smart grid”). While this interconnectivity comes with many benefits, it has also 

rendered the grid more vulnerable to cyber-attacks. Currently the main lines of defense 

against grid cyber-attacks are traditional IT cybersecurity measures, such as firewalls, air 

gaps, and antivirus software. While these measures are necessary, they are insufficient 

when used alone since they cannot detect cyber-physical attacks on the measurement 

data. The purpose of the state estimator is to filter out measurement errors, so it is a 

natural candidate for defending against data-related cyber-attacks. In this work, we 

present a cyber-physical security assessment co-simulator that uses an enhanced state 

estimator to identify whether a control command is malicious. We also introduce a novel 

approach for N-1 RTU cyber-physical security assessment that ranks RTUs by how 

critical the impact of their loss is on the state estimator. 



 

1 

1 INTRODUCTION 

1.1 Dissertation Overview 

The objective of this work is to enhance the state estimator software application in 

the energy management system to deal with two major challenges facing the power grid 

of the future. The first challenge is the need to process more measurement data in less 

time. Several major forces are driving this need. First, new sensors such as phasor 

measurement units that have a finer sampling granularity are creating more data for the 

state estimator to process. Next, market deregulation has created the need to monitor 

larger interconnections. Finally, faster system dynamics due to the integration of non-

dispatchable renewables such as wind and solar are creating a need for faster state 

estimation, so that power system operators can have a clearer understanding of the time-

varying system behavior. Conventional state estimators used by regional transmission 

organizations and utilities today have a central architecture, which does not scale well as 

the number of measurements increases. Hence, the existing research literature has 

proposed moving towards a decentralized approach that is more scalable. However, it is 

unclear from the literature just how much decentralization is ideal. To address this 

question, we investigate the impact of the number of sub-problems on the performance of 

the state estimator. 

The second challenge is the need for more robust power system cybersecurity. 

Over the past decade, the power grid has become increasingly intertwined with 

information and communication technology, transforming it into a cyber-physical system 

known as the “smart grid.” While this interconnectivity comes with many benefits, it also 

renders the grid more vulnerable to cyber-attacks. Currently the main lines of defense 

against grid cyber-attacks are traditional IT cybersecurity measures, such as firewalls, air 

gaps, and antivirus software. While these measures are necessary, they are insufficient 
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when used alone since they cannot detect cyber-physical attacks, such as attacks on the 

measurement data. The purpose of the state estimator is to filter out measurement errors, 

so it is a natural candidate for defending against cyber-physical attacks. In this work, we 

present a cyber-physical security assessment co-simulator that uses an enhanced state 

estimator to identify whether a control command is malicious.  We also introduce a novel 

approach for N-1 RTU cyber-physical security assessment that ranks RTUs by how 

critical the impact of their loss is on the state estimator. 

This dissertation is organized as follows. The remainder of Chapter 1 introduces 

how power systems work today, the architecture of the energy management system, and 

discusses in greater detail the challenges and needs for the state estimator. Chapter 2 

introduces the three different functions of the state estimator (state estimation, network 

observability analysis, and bad data detection) and the mathematical formulations for 

each. Chapter 3 presents the novel work investigating the impact of the number of sub-

problems on the performance of the state estimator. Chapter 4 reviews the state of power 

system cybersecurity today. Chapter 5 presents the novel work on cyber-physical security 

assessment. Chapter 6 concludes the dissertation and lists the contributions of this work. 

1.2 Traditional Power Systems 

The traditional power system has three different functions: generation, 

transmission, and distribution. Historically, large-scale power plants (typically fueled by 

non-renewable resources such as nuclear power, coal, and natural gas) were used to 

generate electricity, because they were more efficient and more cost-effective than 

smaller plants. These generators are located far away from load centers, so the power 

they produce is increased to a very high voltage by step-up transformers at a local 

substation before it is sent across a network of long transmission lines in order to reduce 

the overall resistive losses in the system. Once power reaches a substation near the end 

user, step-down transformers at that substation reduce the voltage to a safer and more 
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useable level. Finally radial distribution lines carry the lower-voltage power to electrical 

loads (residential, commercial, or industrial consumers of electricity). In order for the 

entire interconnected system to maintain stable operation, the total amount of generation 

must equal the total demand of the loads plus system losses at all times. A typical grid 

contains hundreds of generators, hundreds of transformers, thousands of circuit breakers 

that protect major equipment, as well as thousands of high voltage transmission lines and 

lower voltage distribution lines. Figure 1 is a simple illustration of the traditional power 

system architecture. 

 

Figure 1. Traditional power system architecture 

In the continental United States, three alternating-current (AC) power grids have 

evolved to mostly operate independently of one another with only limited transfer of 

electricity between them: the Eastern Interconnection, the Western Interconnection, and 

the Texas Interconnection. The Eastern and Western Interconnections are also tied to the 

Canadian power grid. These interconnections are made up of over 3,000 electric utilities, 

most of whom do not perform all three functions of generation, transmission, and 
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distribution. In regulated markets, utilities typically own generation, transmission, and 

distribution assets and thus perform all three functions. In deregulated markets, utilities 

tend to engage only in distribution while the transmission network is owned by 

companies and organizations that are obligated to provide indiscriminate access to 

various power producers. 

In deregulated regions in the United States, the transmission network is controlled 

by five independent system operators (ISOs) and four regional transmission organizations 

(RTOs), as shown in Figure 3. These five ISOs are California ISO, Electric Reliability 

Council of Texas (ERCOT), ISO New England, Midcontinent ISO, and New York ISO. 

The four RTOs are ISO New England (also an ISO), Midcontinent ISO (also an ISO), 

PJM Interconnection, and Southwest Power Pool. ISOs operate a regional grid, 

administer the region’s wholesale electricity market, and provide reliability planning for 

the region’s bulk grid. RTOs perform the same functions as ISOs, but they have greater 

responsibility for the transmission network, such as coordinating, controlling, and 

monitoring the power system in their region. In regions where there is no ISO/RTO, 

utilities serve these same functions [1]. 

 

Figure 2. ISOs and RTOs in North America [2] 
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The actual monitoring and operation of the power grids is performed by entities 

known as balancing authorities, whose area of control is known as a balancing area or 

control area. Each balancing authority ensures in real time that the power balance in their 

area between supply and demand is maintained at all times, including system losses and 

transfers of electricity between control areas. ISOs and RTOs also serve as balancing 

authorities. The rest are electric utilities that have taken on the responsibility. In the 

continental United States, there are 66 balancing authorities in total, as shown in Figure 

3. The Eastern Interconnection consists of 31 balancing authorities in the United States 

and 5 in Canada. The Western Interconnection consists of 34 balancing authorities in the 

United States, 2 in Canada, and 1 in Mexico. The Texas Interconnection, which covers 

most of Texas, consists of only a single balancing authority (ERCOT) [3]. 

 
 

Figure 3. Balancing authorities in North America [4] 
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1.3 The Energy Control Center and the Energy Management System 

Every balancing authority has at least two energy control centers (one primary 

and one backup), where power system operators monitor, control, and coordinate the 

physical and economic operation of the power system in that control area. Information 

about monitored equipment in the field (such as analog measurements and status 

indicators) is periodically communicated from remote terminal units (RTUs) located at 

various substations back to the supervisory control and data acquisition (SCADA) master 

station at the energy control center. RTUs are typically scanned at a rate of once every 2 

seconds. This information is then used by the energy management system (EMS), a 

sophisticated suite of tools used by power system operators to monitor and control the 

operation of the transmission and bulk generation system.  

A typical EMS is composed of many complex computer applications, as shown in 

Figure 4. Traditionally these applications can be divided into several overarching 

categories: SCADA/EMS monitoring, economic functions, operations planning, and 

security assessment. Not shown in Figure 4 is the presentation of EMS results to the 

operator in the form of a large-scale visualization. These tools combined provide the 

operator with an accurate picture of the current state of the system as well as offer 

guidelines on control actions that ensure its secure and economic operation. Currently the 

information management and decision making process at each control center is handled 

in a centralized manner, and the computations are typically performed serially. 

The focus of the work in this dissertation is on the state estimator, which falls 

under the SCADA/EMS monitoring category. The state estimator includes three main 

functions: state estimation (determining the most likely state of the system), network 

observability analysis (determining if a unique state estimation solution can be found), 

and bad data detection (determining if measurements are consistent with one another 

based on the physics of the system). 
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Figure 4. Architecture of an energy management system [5] 

 

1.4 New Challenges Facing the Power Grid 

The power grid is currently facing a number of new challenges (illustrated in 

Figure 5). The first challenge is more data than ever before. New technologies such as 

phasor measurement units (PMUs) are straining the grid’s communication and data 

processing infrastructure with their higher measurement rate (typically 30 to 60 samples 

per second) as compared to the SCADA measurement rate (typically one sample every 2 

seconds). Also, utilities need to share more information and monitor the system over 

larger geographic areas due to new market regulations and pricing competition. 

Additionally, the integration of renewables and energy storage, interest in updating the 

distribution system to facilitate demand response, and two-way power flow are driving 

the need for more accurate models and better supervision [6]. All of these driving forces 

are creating more information than ever before that need to be processed and analyzed by 

the EMS in a short period of time. To address this issue, there is interest in moving away 

from the traditional centralized architecture seen in power systems to a more distributed 

one. One alternative is centralized data acquisition but distributed computation across 
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multiple processors in the same computing cluster. Another option is completely separate 

data acquisition and computation. A distributed architecture offers several advantages, 

such as semi-autonomous operation for each region and faster computation due to smaller 

problem sizes. 

 

Figure 5. New challenges facing the power grid 

 

The second challenge is the threat of cyber-attacks. As the smart grid incorporates 

more information and communication technology, more avenues of attack become open 

to malicious cyber actors, rendering the grid more vulnerable to cyber-attacks. While 

traditional cybersecurity measures such as firewalls, air gaps, and antivirus software play 

an important role in protecting the IT infrastructure of the grid, they are insufficient when 

used alone since the power grid is a cyber-physical system that has complex 

interdependencies between the physical electrical network and the communication 

network that supports it. While researchers have been aware of the potential impact of 

cyber-physical attacks on the grid since the mid-2000s, the idea had remained mostly 
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academic in nature. It was not until December 2015 that the first known successful power 

system cyber-attack occurred in Ukraine. Hackers were able to compromise information 

systems of three distribution companies and disrupted power to approximately 225,000 

customers [7]. This event illustrated the potential severity and scale of impact that cyber-

attacks could have on the grid.  

1.4.1 Need for Enhanced State Estimation 

Power system state estimation (SE) is a critical function in the EMS that 

determines the most likely state of the system (bus voltage magnitudes and angles) from 

raw unsynchronized field measurements, which are collected by substation RTUs and 

then sent to the EMS front end computer at the control center. These measurements 

include real and reactive power injections, transmission line flows, and bus voltage 

magnitudes. Because measurements are subject to instrumentation and communication 

errors, it is the role of the state estimator to detect and filter these errors. Power system 

operators rely on the solution of the state estimator to provide them with an accurate 

picture of the system’s real-time behavior. The SE solution serves as the input to other 

downstream EMS applications, such as contingency analysis and optimal power flow. 

Currently SE is serially computed for a single control area. 

 The computational speed of the SE problem depends on the number of 

measurements and the number of states that need to be estimated. As the number of 

sensors in the power system increases, the size of the SE problem will also continue to 

grow. In order to solve this problem in the same amount of time as current operations or 

even less time, the global SE problem must be decomposed into a series of smaller 

problems. This approach can take the form of distributed state estimation (DSE), where 

the SE problem for a single ISO/RTO is rewritten as a series of smaller problems that are 

then solved in parallel. For DSE, the data acquisition is centralized, but the computation 

is distributed across multiple processors, albeit most likely using a cluster in the same 
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physical location. Another form is multi-area state estimation (MASE), where multiple 

control areas coordinate solving their joint SE problem. For MASE, both the data 

acquisition and computation are completely separate. 

 This work proposes to explore two questions that have been largely undiscussed 

in the literature for DSE and MASE: 1) how the global SE problem could be 

automatically decomposed into smaller problems, and 2) the impact of the number of 

sub-problems on the computational speed. In the case of DSE, the boundaries of the sub-

problems have frequently been determined through trial and error, and the number of 

problems is assumed to be given [8]. In MASE, the boundaries for each sub-problem are 

defined by the physical boundaries of each control area, and the number of problems is 

defined by the number of control areas involved in the joint SE. By examining the impact 

of the number of sub-problems on the computational speed, we can begin to understand 

the benefits and limitations of decentralized SE.  

1.4.2 Need for Cyber-Physical Security Assessment 

 Growing concerns over national security have brought intense scrutiny upon the 

vulnerability of power systems to cyber-attacks. Thus an increasingly critical direction of 

research has been to evaluate the potential impact of cyber-attacks on the electric grid. 

Traditionally power system security assessment only takes into account physical 

contingencies, such as the outage of a transmission line or generator. In the event of a 

cyber-attack, communication infrastructure could also be targeted. In general the grid was 

designed with implicit trust in its communication channels and system components, so it 

contains numerous cyber vulnerabilities. Recently there has been a push within the power 

industry to put cybersecurity measures in place and close some of these vulnerabilities. 

However, while traditional methods of cybersecurity protection are important and should 

continue to be implemented, they will not always be successful in preventing attackers 
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from penetrating the system. Thus it is important to understand the impact that various 

cyber-attacks could have on the grid. 

One of the main purposes of the state estimator is to detect and correct erroneous 

measurements before they are propagated to downstream EMS applications, so it can be 

viewed as a natural first line of defense against cyber-attacks on the bulk grid. Erroneous 

measurements usually occur from instrumentation and/or communication failure, but 

threat actors could also maliciously manipulate measurements to intentionally mislead 

power system operators during a data-related cyber-attack. (Refer to Section 4.4.1 where 

the Stuxnet attackers intentionally fooled monitoring systems and human operators into 

believing that the centrifuges were operating normally when they were actually spinning 

themselves apart.) The intent could be either to fool human operators into directly making 

an incorrect control decision for the grid (for example, if operators believed that the grid 

was in a different state than it actually was) or to mask the situation when the grid is in an 

emergency state. 

Another important purpose of the state estimator is to identify when the system 

becomes unobservable (refer to Section 2.3). Even under normal circumstances, the 

system can lose observability when enough critical measurements are lost due to 

instrumentation and/or communication failure. With sufficient knowledge of the system, 

cyber-attackers could seek to exploit this vulnerability by launching denial-of-service 

attacks on RTUs that transmit critical measurements. This could cause power system 

operators to lose situational awareness, and they would become either unable to detect 

that an attack is happening or unable to respond to further attacks. 

Much of the existing literature regarding cyber-attacks on the grid has focused on 

studying stealth deception attacks, such as false data injection where arbitrary errors can 

be introduced into the estimated state by manipulating the power system measurements. 

In this work, we investigate two other types of attacks: 1) bad command injection attacks, 

and 2) denial-of-service attacks on remote terminal units. In bad command injection, an 



 12 

unwanted command is sent to a substation RTU. In a denial-of-service attack on an RTU, 

communication between the attacked RTU and the control center is blocked, so 

measurements from that RTU are not available to the state estimator. By studying these 

two types of attacks, we can better understand and ultimately mitigate them. 
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2 POWER SYSTEM STATE ESTIMATION 

Chapter 2 provides background information on power system state estimation. It 

contains five different sections. Section 2.1 introduces the state estimator as well as its 

role in power system control and operation. Section 2.2 discusses the main state 

estimation methods that are currently used in energy management systems today, 

including the formulations of each algorithm as well as their strengths and weaknesses. 

Section 2.3 presents existing methods for observability analysis. Section 2.4 presents 

existing methods for bad data detection. 

2.1 Introduction 

Power system state estimation is a critical function in the energy management 

system that determines the most likely state of the power system (bus voltages 

represented in phasor form as magnitudes and phase angles) from raw unsynchronized 

field measurements, which are collected by substation RTUs and then sent to the EMS 

front end computer at the control center. These SCADA measurements can include real 

and reactive power injections, transmission line flows, and bus voltage magnitudes. 

Because measurements are subject to instrumentation and communication errors, it is the 

role of the state estimator to detect and filter these errors. Power system operators rely on 

the solution of the state estimator to provide them with an accurate picture of the 

system’s real-time behavior. 

The output of the state estimator, the most likely system state, is the input to many 

other important time-sensitive EMS applications, such as security assessment functions 

like contingency analysis and economic functions like security-constrained optimal 

power flow (as seen in Figure 6). Currently the state estimator problem is solved once 

every half a minute to once every few minutes depending on regional regulations and 

practices. Table 1 shows the exact solution rate for each ISO/RTO in North America. 
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California ISO’s state estimator and New York ISO’s state estimator run automatically 

the most frequently at once every 30 seconds [9], [10] while ERCOT’s state estimator 

runs the least frequently at once every 5 minutes [11], [12]. (The state estimator can run 

upon manual request in addition to automatically running.) The solution rate is directly 

related to how often other EMS applications such as security and market functions are 

automatically run. By contrast, SCADA measurements are collected at a rate of 

approximately one sample every 2-4 seconds. These measurements are typically not 

timestamped or synchronized. A key assumption behind the design of the state estimator 

is that all SCADA measurements are collected at the same point in time or close enough 

to the same point in time as to not make a difference in practical implementation. 

 

Figure 6. The importance of state estimation in the EMS 
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Table 1. SE Solution Rate in North America 

ISO/RTO Name 
SE Solution 

Rate [s] 

California ISO [9] 30 

ERCOT [11], [12] 300 

ISO-NE [13] 180 

Midwest ISO [14] 60 

New York ISO [10] 30  

Southwest Power Pool [15] 90 

 

In addition to state estimation, the state estimator also includes three other 

functions: topology error processing, observability analysis, and bad data 

detection/processing. The topology error processor uses the state estimator inputs to 

determine the most likely physical configuration of the power system (which is outside 

the scope of this work). The observability analysis function determines whether a unique 

solution can be found during state estimation. The bad data detection function flags 

measurements and removes them if they are found to be inconsistent with other system 

measurements. The relationships between all four functions are illustrated in Figure 7. 

Observability analysis and bad data detection are discussed in greater detail in Sections 

2.3 and 2.4 respectively. 

 

Figure 7. State estimator process 
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2.2 Solution Methods 

 There exist many solution methods for power system state estimation. The most 

well-known and widely used is the weighted least squares (WLS) state estimator, which 

was first introduced by F. C. Schweppe in 1970 [16], [17]. Assuming measurement errors 

can be modeled as independent random variables with Gaussian distributions that have 

zero mean and known variance, a minimization problem can be formulated in terms of 

the residuals of each measurement. There are three different versions of the WLS state 

estimator: AC, decoupled, and DC. The main computational burden for AC SE is the 

calculation and decomposition of the gain matrix. If the sensitivity of the real power 

equations to changes in the bus voltage magnitude and the sensitivity of the reactive 

power equations to changes in the bus angles are low, then the decoupled formulation can 

be used instead, in which the off-diagonal blocks of the measurement Jacobian are 

ignored in calculating the gain matrix. The main advantages that it has over the AC 

formulation are 1) it uses less memory, and 2) it is computationally faster due to the use 

of smaller and constant gain sub-matrices [18]. Further simplification leads to the DC 

formulation, where all bus voltage magnitudes are assumed to be 1.0 per unit.  

 The main disadvantage of the WLS state estimator is that when the Normal 

Equations are ill-conditioned, the WLS state estimator may become numerically unstable 

and fail to reach convergence. Ill-conditioning can arise from having a large number of 

injection measurements, very large weighting factors, and the presence of both short and 

long lines at the same bus. To combat the weakness of the Normal Equations, most 

methods avoid using an ill-conditioned gain matrix [19]. Also, the WLS state estimator 

does not deal well with outliers that might be bad data, leading to a need for robust state 

estimators (discussed briefly in Section 2.2.7) [20]. Despite these issues, the conventional 

WLS state estimator is still the most widely used algorithm in EMS systems, especially 

the decoupled and DC formulations. However, AC has become the preferred formulation 
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in power systems literature due to its higher level of accuracy and the cheap availability 

of modern computing power. 

2.2.1 AC Weighted Least Squares 

Let 𝑧 represent a set of power system measurements. Then 𝑧 = ℎ(𝑥) + 𝑒, where 𝑥 

is the estimated state vector (bus voltages and angles), ℎ is the vector of functions relating 

the state variables to the error-free measurements, and 𝑒 is a vector of measurement errors, 

which are assumed to have a Gaussian distribution with mean 0 and variance 𝜎2. 

The WLS estimator minimizes the objective function 

 𝐽(𝑥) = [𝑧 − ℎ(𝑥)]𝑇𝑅−1[𝑧 − ℎ(𝑥)], (1) 

where 𝑅 is a diagonal matrix of the measurement error variances. To obtain the minimum 

𝑥, we take the partial derivative of the objective function 

 𝑔(𝑥(𝑘)) =
𝜕𝐽(𝑥)

𝜕𝑥
= −𝐻(𝑥(𝑘))

𝑇
𝑅−1 (𝑧 − ℎ(𝑥(𝑘))) (2) 

and set it equal to 0. Here 𝑥(𝑘) is the state vector at iteration 𝑘. 𝐻 is the measurement 

Jacobian equal to 
𝜕ℎ(𝑥)

𝜕𝑥
. 

By applying the Gauss-Newton method [19], we obtain the Normal Equations  

 [𝐺(𝑥(𝑘))]Δ𝑥(𝑘+1) = −𝑔(𝑥(𝑘)), (3) 

where the gain matrix 𝐺 is 

 𝐺(𝑥(𝑘)) =
𝜕𝑔(𝑥(𝑘))

𝜕𝑥
= 𝐻(𝑥(𝑘))

𝑇
 𝑅−1𝐻(𝑥(𝑘)). (4) 

Then 𝑥 is solved for iteratively until a convergence tolerance 휀 is reached. The 

expressions for ℎ and 𝐻 are presented in Section 2.2.2. 

The exact algorithm is described in detail below: 

Step 1. Set iteration index 𝑘 equal to 0. 

Step 2. Initialize the state vector 𝑥(𝑘), typically as a flat start (voltage magnitudes 

are set to 1, and voltage angles are set to 0).  
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Step 3. Calculate gain matrix 𝐺(𝑥(𝑘)). 

Step 4. Calculate −𝑔(𝑥(𝑘)). 

Step 5. Decompose 𝐺(𝑥(𝑘)) using Cholesky factorization and solve for Δ𝑥(𝑘+1). 

Step 6. Check if max|Δ𝑥(𝑘)| ≤ 휀 (a user-defined stopping condition)? If yes, stop. 

If no, update 𝑥(𝑘+1) = 𝑥(𝑘) + Δ𝑥(𝑘) and 𝑘 = 𝑘 + 1, then go back to Step 3. 

2.2.2 Polar and Rectangular Coordinates 

Similar to the power flow algorithm, AC state estimation can be formulated in 

either polar or rectangular coordinates. Polar coordinates are more intuitive in power 

systems analysis since bus voltages are already typically represented in phasor form. 

However, rectangular coordinates can enable simpler computation. 

Assume there exists a power system with 𝑁 buses and 𝑀 sensor measurements. In 

polar coordinates, the voltage at bus 𝑎 is represented in its phasor form as 𝑉𝑎 = |𝑉𝑎|∠𝜃𝑎. 

In rectangular coordinates, the voltage at bus 𝑎 is represented in Cartesian form as 𝑉𝑎 =

𝑒𝑎 + 𝑗𝑓𝑎. This expression can be rewritten as: 

 
𝑒𝑎 = 𝑉𝑎cos (𝜃𝑎) 

(5) 

 
 𝑓𝑎 = 𝑉𝑎sin (𝜃𝑎), 

(6) 

 
|𝑉𝑎|

2 = 𝑒𝑎
2 + 𝑓𝑎

2.  (7) 

AC WLS SE in Polar Coordinates 

In polar coordinates, the state vector 𝑥(𝑘) for a system with 𝑁 buses and 𝑀  

measurements contains 2𝑁 − 1 elements with 𝑁 voltage magnitudes and 𝑁 − 1 voltage 

angles, since the angle of the slack (reference) bus is assumed to be 0. Hence the state 

vector would be:   

 𝑥(𝑘) = [𝜃2 𝜃3 ⋯ 𝜃𝑁 𝑉1 𝑉2 𝑉3 … 𝑉𝑁]
𝑇. (8) 
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In ℎ(𝑥(𝑘)) ∈ ℝ2𝑁−1, the expressions for the real and reactive power injections at 

bus 𝑚 are: 

 
𝑃𝑎 =∑𝑉𝑎𝑉𝑘(𝐺𝑎𝑘 cos(𝜃𝑎𝑘) + 𝐵𝑎𝑘 sin(𝜃𝑎𝑘))

𝑁

𝑘=1

 (9) 

 
𝑄𝑎 =∑𝑉𝑎𝑉𝑘(𝐺𝑎𝑘 sin(𝜃𝑎𝑘) − 𝐵𝑎𝑘 cos(𝜃𝑎𝑘))

𝑁

𝑘=1

 (10) 

where 𝐺𝑎𝑏 , 𝐵𝑎𝑏,  𝐺𝑎𝑎, and  𝐵𝑎𝑎 represent the respective entries of the bus admittance 

matrix 𝑌𝑏𝑢𝑠 = 𝐺 + 𝑗𝐵. Following the two-port 𝜋-model of a transmission line (as seen in 

Figure 8), the expressions for the real and reactive power flow from bus 𝑎 to bus 𝑏 are: 

 𝑃𝑎𝑏 = 𝑉𝑎
2𝑔𝑎𝑏 + 𝑉𝑎𝑉𝑏(−𝑔𝑎𝑏 cos(𝜃𝑎𝑏)−𝑏𝑎𝑏 sin(𝜃𝑎𝑏)) 

 
(11) 

 𝑄𝑎𝑏 = −𝑉𝑎
2 (
𝐵𝑠ℎ
2
+ 𝑏𝑎𝑏) + 𝑉𝑎𝑉𝑏(−𝑔𝑎𝑏 sin(𝜃𝑎𝑏) + 𝑏𝑎𝑏 cos(𝜃𝑎𝑏)) 

 

(12) 

where 𝑔𝑎𝑏 + 𝑗𝑏𝑎𝑏 is the line impedance and 𝐵𝑠ℎ is the line shunt capacitance. 

 

Figure 8. Two-port transmission line model 

 

The measurement Jacobian 𝐻(𝑥(𝑘)) ∈ ℝ𝑀×(2𝑁−1) has the following structure: 

 
𝐻(𝑥(𝑘)) =

[
 
 
 
 
 
 
 
 
 
 
𝛿𝑃𝑖𝑛𝑗

𝛿𝜃

𝛿𝑃𝑖𝑛𝑗

𝛿𝑉
𝛿𝑃𝑓𝑙𝑜𝑤

𝛿𝜃

𝛿𝑃𝑓𝑙𝑜𝑤

𝛿𝑉
𝛿𝑄𝑖𝑛𝑗

𝛿𝜃

𝛿𝑄𝑖𝑛𝑗

𝛿𝑉
𝛿𝑄𝑓𝑙𝑜𝑤

𝛿𝜃

𝛿𝑄𝑓𝑙𝑜𝑤

𝛿𝑉

0
𝛿𝑉𝑚𝑎𝑔

𝛿𝑉 ]
 
 
 
 
 
 
 
 
 
 

 (13) 
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In 𝐻(𝑥(𝑘)), the entries related to real power injections at bus 𝑎 are: 

 𝛿𝑃𝑎
𝛿𝜃𝑎

=∑𝑉𝑎𝑉𝑘(−𝐺𝑎𝑘 sin(𝜃𝑎𝑘) + 𝐵𝑎𝑘cos(𝜃𝑎𝑘)

𝑁

𝑘=1

− 𝑉𝑎
2𝐵𝑎𝑎 (14) 

 𝛿𝑃𝑎
𝛿𝜃𝑏

= 𝑉𝑎𝑉𝑏(𝐺𝑎𝑏 sin(𝜃𝑎𝑏) − 𝐵𝑎𝑏 cos(𝜃𝑎𝑏)) 
(15) 

 𝛿𝑃𝑎
𝛿𝑉𝑎

=∑𝑉𝑘(𝐺𝑎𝑘 cos(𝜃𝑎𝑘) + 𝐵𝑎𝑘 sin(𝜃𝑎𝑘) + 𝑉𝑎𝐺𝑎𝑎

𝑁

𝑘=1

 (16) 

 𝛿𝑃𝑎
𝛿𝑉𝑏

= 𝑉𝑎(𝐺𝑎𝑏 cos(𝜃𝑎𝑏) + 𝐵𝑎𝑏 sin(𝜃𝑎𝑏)) 
(17) 

The entries related to reactive power injections at bus 𝑎 are: 

 𝛿𝑄𝑎
𝛿𝜃𝑎

=∑𝑉𝑎𝑉𝑘(𝐺𝑎𝑘 cos(𝜃𝑎𝑘) + 𝐵𝑎𝑘sin(𝜃𝑎𝑘)

𝑁

𝑘=1

− 𝑉𝑎
2𝐺𝑎𝑎 (18) 

 𝛿𝑄𝑎
𝛿𝜃𝑏

= 𝑉𝑎𝑉𝑏(−𝐺𝑎𝑏cos (𝜃𝑎𝑏) − 𝐵𝑎𝑏 sin(𝜃𝑎𝑏)) 
(19) 

 𝛿𝑄𝑎
𝛿𝑉𝑎

=∑𝑉𝑘(𝐺𝑎𝑘 sin(𝜃𝑎𝑘) − 𝐵𝑎𝑘 cos(𝜃𝑎𝑘) − 𝑉𝑎𝐵𝑎𝑎

𝑁

𝑘=1

 (20) 

 𝛿𝑄𝑎
𝛿𝑉𝑏

= 𝑉𝑎(𝐺𝑎𝑏 sin(𝜃𝑎𝑏) − 𝐵𝑎𝑏 cos(𝜃𝑎𝑏)) 
(21) 

The entries related to real power flows between bus 𝑎 and bus 𝑏 are: 

 𝛿𝑃𝑎𝑏
𝛿𝜃𝑎

= 𝑉𝑎𝑉𝑏(𝑔𝑎𝑏 sin(𝜃𝑎𝑏)− 𝑏𝑎𝑏 cos(𝜃𝑎𝑏)) 
(22) 

 𝛿𝑃𝑎𝑏
𝛿𝜃𝑏

= −𝑉𝑎𝑉𝑏(𝑔𝑎𝑏 sin(𝜃𝑎𝑏)− 𝑏𝑎𝑏 cos(𝜃𝑎𝑏)) (23) 

 𝛿𝑃𝑎𝑏
𝛿𝑉𝑎

= 2𝑉𝑎𝑔𝑎𝑏 −𝑉𝑏(𝑔𝑎𝑏 cos(𝜃𝑎𝑏)+ 𝑏𝑎𝑏 sin(𝜃𝑎𝑏)) 
(24) 

 𝛿𝑃𝑎𝑏
𝛿𝑉𝑏

= −𝑉𝑎(𝑔𝑎𝑏 cos(𝜃𝑎𝑏)+ 𝑏𝑎𝑏 sin(𝜃𝑎𝑏)) 
(25) 

The entries related to reactive power flows between bus 𝑎 and bus 𝑏 are: 

 𝛿𝑄𝑎𝑏
𝛿𝜃𝑎

= −𝑉𝑎𝑉𝑏(𝑔𝑎𝑏 cos(𝜃𝑎𝑏) + 𝑏𝑎𝑏 sin(𝜃𝑎𝑏)) 
(26) 

 𝛿𝑄𝑎𝑏
𝛿𝜃𝑏

= 𝑉𝑎𝑉𝑏(𝑔𝑎𝑏 cos(𝜃𝑎𝑏) + 𝑏𝑎𝑏 sin(𝜃𝑎𝑏)) 
(27) 

 𝛿𝑄𝑎𝑏
𝛿𝑉𝑎

= −2𝑉𝑎 (
𝐵𝑠ℎ
2
+ 𝑏𝑎𝑏) − 𝑉𝑏(𝑔𝑎𝑏 sin(𝜃𝑎𝑏) − 𝑏𝑎𝑏 cos(𝜃𝑎𝑏)) 

(28) 
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 𝛿𝑄𝑎𝑏
𝛿𝑉𝑏

= −𝑉𝑎(𝑔𝑎𝑏 sin(𝜃𝑎𝑏) − 𝑏𝑎𝑏 cos(𝜃𝑎𝑏)) 
(29) 

The entries related to voltage magnitude at bus 𝑎 are: 

 𝛿𝑉𝑎
𝛿𝜃𝑎

= 0 (30) 

 𝛿𝑉𝑎
𝛿𝜃𝑏

= 0 (31) 

 𝛿𝑉𝑎
𝛿𝑉𝑎

= 1 (32) 

 𝛿𝑉𝑎
𝛿𝑉𝑏

= 0 (33) 

AC WLS SE in Rectangular Coordinates 

In rectangular coordinates, the state vector 𝑥(𝑘) for a system with 𝑁 buses and 

𝑀 measurements contains 2𝑁 − 1 elements with 𝑁 real voltage components 𝑒 and 𝑁 − 1 

imaginary voltage components 𝑓, since the angle of the slack (reference) bus is assumed 

to be 0. Hence the state vector would be:   

 𝑥(𝑘) = [𝑒1 𝑒2 𝑒3 ⋯ 𝑒𝑁 𝑓2 𝑓3 … 𝑓𝑁]
𝑇. (34) 

In ℎ(𝑥(𝑘)) ∈ ℝ2𝑁−1, the expressions for the real and reactive power injections at 

bus 𝑎 are [21]: 

 
𝑃𝑎 = 𝑒𝑎∑(𝐺𝑎𝑘𝑒𝑘 −𝐵𝑎𝑘𝑓𝑘) +

𝑁

𝑘=1

𝑓𝑎∑(𝐺𝑎𝑘𝑓𝑘 +𝐵𝑎𝑘𝑒𝑘)

𝑁

𝑘=1

 (35) 

 
𝑄𝑎 = 𝑒𝑎∑(−𝐺𝑎𝑘𝑓𝑘 −𝐵𝑎𝑘𝑒𝑘) +

𝑁

𝑘=1

𝑓𝑎∑(𝐺𝑎𝑘𝑒𝑘 −𝐵𝑎𝑘𝑓𝑘)

𝑁

𝑘=1

 (36) 

𝐺𝑎𝑏 , 𝐵𝑎𝑏 ,  𝐺𝑎𝑎 , and  𝐵𝑎𝑎 represent the respective real and imaginary entries of the bus 

admittance matrix 𝑌𝑏𝑢𝑠 ∈ ℝ
𝑁×𝑁, where 𝑌𝑏𝑢𝑠 = 𝐺 + 𝑗𝐵. 

The expressions for the real and reactive power flow from bus 𝑎 to bus 𝑏 are: 

 𝑃𝑎𝑏 = (𝑒𝑎
2 + 𝑓𝑎

2)𝑔𝑎𝑏 − 𝑔𝑎𝑏𝑒𝑎𝑒𝑏 + 𝑏𝑎𝑏𝑒𝑎𝑓𝑏 − 𝑔𝑎𝑏𝑓𝑎𝑓𝑏 − 𝑏𝑎𝑏𝑓𝑎𝑒𝑏 
 

(37) 

 𝑄𝑎𝑏 = −(𝑒𝑎
2 + 𝑓𝑎

2) (
𝐵𝑠ℎ
2
+ 𝑏𝑎𝑏) + 𝑔𝑎𝑏𝑒𝑎𝑓𝑏 + 𝑏𝑎𝑏𝑒𝑎𝑒𝑏 − 𝑔𝑎𝑏𝑓𝑎𝑒𝑏

+ 𝑏𝑎𝑏𝑓𝑎𝑓𝑏 

(38) 
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where 𝑔𝑎𝑏 + 𝑗𝑏𝑎𝑏 is the line impedance and 𝐵𝑠ℎ is the line shunt capacitance. 

The expression for the voltage magnitude squared at bus 𝑎 is, as discussed earlier: 

 |𝑉𝑎|
2 = 𝑒𝑎

2 + 𝑓𝑎
2 

 
(39) 

The measurement Jacobian 𝐻(𝑥(𝑘)) ∈ ℝ𝑀×(2𝑁−1) has the following structure: 

 𝐻(𝑥(𝑘)) =

[
 
 
 
 
 
 
 
 
 
 
 
𝛿𝑃𝑖𝑛𝑗

𝛿𝑒

𝛿𝑃𝑖𝑛𝑗

𝛿𝑓
𝛿𝑃𝑓𝑙𝑜𝑤

𝛿𝑒

𝛿𝑃𝑓𝑙𝑜𝑤

𝛿𝑓
𝛿𝑄𝑖𝑛𝑗

𝛿𝑒

𝛿𝑄𝑖𝑛𝑗

𝛿𝑓
𝛿𝑄𝑓𝑙𝑜𝑤

𝛿𝑒

𝛿𝑄𝑓𝑙𝑜𝑤

𝛿𝑓

𝛿𝑉𝑚𝑎𝑔
2

𝛿𝑒

𝛿𝑉𝑚𝑎𝑔
2

𝛿𝑓 ]
 
 
 
 
 
 
 
 
 
 
 

 

 

(40) 

In 𝐻(𝑥(𝑘)), the entries related to real power injections at bus 𝑎 are: 

 𝛿𝑃𝑎
𝛿𝑒𝑎

= ∑(𝐺𝑎𝑘𝑒𝑘 −𝐵𝑎𝑘𝑓𝑘)+𝐺𝑎𝑎𝑒𝑎 +

𝑁

𝑘=1

𝐵𝑎𝑎𝑓𝑎 (41) 

 𝛿𝑃𝑎
𝛿𝑒𝑏

= 𝐺𝑎𝑏𝑒𝑎 + 𝐵𝑎𝑏𝑓𝑎 (42) 

 𝛿𝑃𝑎
𝛿𝑓𝑎

= ∑(𝐺𝑎𝑘𝑓𝑘 +𝐵𝑎𝑘𝑒𝑘)

𝑁

𝑘=1

−𝐵𝑎𝑎𝑒𝑎 +𝐺𝑎𝑎𝑓𝑎 (43) 

 𝛿𝑃𝑎
𝛿𝑓𝑏

= 𝐺𝑎𝑏𝑓𝑎 − 𝐵𝑎𝑏𝑒𝑎 (44) 

The entries related to reactive power injections at bus 𝑎 are: 

 𝛿𝑄𝑎
𝛿𝑒𝑎

=∑(−𝐺𝑎𝑘𝑓𝑘 −𝐵𝑎𝑘𝑒𝑘)−𝐵𝑎𝑎𝑒𝑎 +𝐺𝑎𝑎𝑓𝑎

𝑁

𝑘=1

 (45) 

 𝛿𝑄𝑎
𝛿𝑒𝑏

= 𝐺𝑎𝑏𝑓𝑎 − 𝐵𝑎𝑏𝑒𝑎 (46) 

 𝛿𝑄𝑎
𝛿𝑓𝑎

= ∑(𝐺𝑎𝑘𝑒𝑘 −𝐵𝑎𝑘𝑓𝑘)

𝑁

𝑘=1

−𝐺𝑎𝑎𝑒𝑎 − 𝐵𝑎𝑎𝑓𝑎 (47) 

 𝛿𝑄𝑎
𝛿𝑓𝑏

= −𝐺𝑎𝑏𝑒𝑎 − 𝐵𝑎𝑏𝑓𝑎 (48) 
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The entries related to real power flows between bus 𝑎 and bus 𝑏 are: 

 𝛿𝑃𝑎𝑏
𝛿𝑒𝑎

= 2𝑔𝑎𝑏𝑒𝑎 − 𝑔𝑎𝑏𝑒𝑏 + 𝑏𝑎𝑏𝑓𝑏 (49) 

 𝛿𝑃𝑎𝑏
𝛿𝑒𝑏

= −𝑔𝑎𝑏𝑒𝑎 − 𝑏𝑎𝑏𝑓𝑎 (50) 

 𝛿𝑃𝑎𝑏
𝛿𝑓𝑎

= 2𝑔𝑎𝑏𝑓𝑎 − 𝑔𝑎𝑏𝑓𝑏 − 𝑏𝑎𝑏𝑒𝑏 (51) 

 𝛿𝑃𝑎𝑏
𝛿𝑓𝑏

= −𝑔𝑎𝑏𝑓𝑎 + 𝑏𝑎𝑏𝑒𝑎 (52) 

The entries related to reactive power flows between bus 𝑎 and bus 𝑏 are: 

 𝛿𝑄𝑎𝑏
𝛿𝑒𝑎

= −2(
𝐵𝑠ℎ
2
+ 𝑏𝑎𝑏) 𝑒𝑎 + 𝑔𝑎𝑏𝑓𝑏 + 𝑏𝑎𝑏𝑒𝑏 (53) 

 𝛿𝑄𝑎𝑏
𝛿𝑒𝑏

= −𝑔𝑎𝑏𝑓𝑎 + 𝑏𝑎𝑏𝑒𝑎 (54) 

 𝛿𝑄𝑎𝑏
𝛿𝑓𝑎

= −2(
𝐵𝑠ℎ
2
+ 𝑏𝑎𝑏) 𝑓𝑎 − 𝑔𝑎𝑏𝑒𝑏 + 𝑏𝑎𝑏𝑓𝑏 (55) 

 𝛿𝑄𝑎𝑏
𝛿𝑓𝑏

= 𝑔𝑎𝑏𝑒𝑎 + 𝑏𝑎𝑏𝑓𝑎 (56) 

The entries related to voltage magnitude at bus 𝑎 are: 

 𝛿𝑉𝑎
2

𝛿𝑒𝑎
= 2𝑒𝑎 (57) 

 𝛿𝑉𝑎
2

𝛿𝑒𝑏
= 0 (58) 

 𝛿𝑉𝑎
2

𝛿𝑓𝑎
= 2𝑓𝑎 (59) 

 𝛿𝑉𝑎
2

𝛿𝑓𝑏
= 0 (60) 

2.2.3 Computational Challenges 

The main computational burden associated with AC SE is the calculation and 

decomposition of the gain matrix 𝐺 = 𝐻𝑇𝑅−1𝐻. Because the measurement Jacobian 𝐻 is 

sparse and 𝑅 is diagonal, 𝐺 ∈ ℝ(2𝑁−1)×(2𝑁−1) is structurally/numerically symmetric, 

sparse (although less sparse than 𝐻), and non-negative definite in general (positive 

definite for a fully observable network). For computational and memory efficiency, the 

gain matrix is built and stored as a sparse matrix. It can be rewritten as 
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 𝐺 =∑𝐻𝑘
𝑇𝑅𝑘𝑘

−1𝐻𝑘

𝑀

𝑘=1

 (61) 

where 𝐻𝑘 is a 𝑘-th row of the measurement Jacobian (very sparse) and 𝑅𝑘𝑘 is the corresponding 

element of the measurement covariance matrix. 

 By applying Cholesky decomposition to 𝐺, we obtain the non-unique triangular 

factors 𝐿 and 𝐿𝑇, where 𝐺 = 𝐿𝐿𝑇. The sparsity of 𝐿 may vary, depending on the way the 

decomposition is performed and based on the ordering method. Note that for systems that 

are not fully observable, the Cholesky decomposition may not exist, and hence no state 

estimation solution can be found (see Section 2.3). 

 Assuming a Cholesky decomposition exists, it is combined with the Normal 

Equations to obtain 

 [𝐿(𝑥(𝑘))𝐿(𝑥(𝑘))
𝑇
] Δ𝑥(𝑘+1) = −𝑔(𝑥(𝑘)). (62) 

Then forward substitution and back substitution steps are used to solve for entries of 

Δ𝑥(𝑘+1). 

2.2.4 Decoupled Weighted Least Squares 

One way to reduce the computational burden of calculating and decomposing 𝐺 is 

to use several simplifying assumptions to arrive at an approximate gain matrix with 

constant sub-matrices. Because the sub-matrices are constant and smaller, this 

formulation requires less overall memory usage, and Cholesky decomposition only needs 

to be performed during the first iteration. Similar to the power flow algorithm, those 

assumptions are: 

• The sensitivity of the real power equations with respect to changes in bus 

voltage magnitudes is low. 

• The sensitivity of the reactive power equations with respect to changes in bus 

voltage angles is low. 



 25 

In other words, we can assume that the measurement Jacobian 𝐻 (in polar form) can be 

approximated as 

 𝐻(𝑥(𝑘)) =

[
 
 
 
 
 
 
 
 
 
 
𝛿𝑃𝑖𝑛𝑗

𝛿𝜃

𝛿𝑃𝑖𝑛𝑗

𝛿𝑉
𝛿𝑃𝑓𝑙𝑜𝑤

𝛿𝜃

𝛿𝑃𝑓𝑙𝑜𝑤

𝛿𝑉
𝛿𝑄𝑖𝑛𝑗

𝛿𝜃

𝛿𝑄𝑖𝑛𝑗

𝛿𝑉
𝛿𝑄𝑓𝑙𝑜𝑤

𝛿𝜃

𝛿𝑄𝑓𝑙𝑜𝑤

𝛿𝑉

0
𝛿𝑉𝑚𝑎𝑔

𝛿𝑉 ]
 
 
 
 
 
 
 
 
 
 

≈

[
 
 
 
 
 
 
 
 
 
 
𝛿𝑃𝑖𝑛𝑗

𝛿𝜃
0

𝛿𝑃𝑓𝑙𝑜𝑤

𝛿𝜃
0

0
𝛿𝑄𝑖𝑛𝑗

𝛿𝑉

0
𝛿𝑄𝑓𝑙𝑜𝑤

𝛿𝑉

0
𝛿𝑉𝑚𝑎𝑔

𝛿𝑉 ]
 
 
 
 
 
 
 
 
 
 

= [
𝐻𝐴𝐴 𝐻𝐴𝑅
𝐻𝑅𝐴 𝐻𝑅𝑅

] 

 

(63) 

Then the new approximate gain matrix is 

 𝐺 ≈ [
𝐺𝐴𝐴 0
0 𝐺𝑅𝑅

] 

 

(64) 

where = 𝑑𝑖𝑎𝑔([𝑅𝐴 𝑅𝑅]), 𝐺𝐴𝐴 = 𝐻𝐴𝐴
𝑇𝑅𝐴

−1𝐻𝐴𝐴, and 𝐺𝑅𝑅 = 𝐻𝑅𝑅
𝑇𝑅𝑅

−1𝐻𝑅𝑅. Then solve  

 𝐺𝐴𝐴Δ𝜃 = 𝐻𝐴𝐴
𝑇 𝑅𝐴

−1Δ𝑧𝐴/𝑉 
 

(65) 

 𝐺𝑅𝑅Δ𝑉 = 𝐻𝑅𝑅
𝑇 𝑅𝑅

−1Δ𝑧𝑅/𝑉 
 

(66) 

where Δ𝑧𝐴 = 𝑧𝐴 − ℎ𝐴(�̂�) and Δ𝑧𝑅 = 𝑧𝑅 − ℎ𝑅(�̂�). 

2.2.5 DC Weighted Least Squares 

Further assumptions can be made to completely simplify the system models. 

Again, similar to power flow, those assumptions are: 

• All bus voltage magnitudes are known to be 1.0 per unit. 

• Shunt elements and branch resistances are ignored. 

• Only real power measurements are considered. 

In this simplest case, the relationship between the real power measurements and the bus 

angles is linear: 

 𝑧𝐴 = 𝐻𝐴𝐴𝑥𝐴 + 𝑒𝐴 
 

(67) 

Then the DC WLS estimator is: 
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 (𝐻𝐴𝐴
𝑇 𝑅𝐴

−1𝐻𝐴𝐴)Δ𝑥𝐴 = 𝐻𝐴𝐴
𝑇 𝑅𝐴

−1Δ𝑧𝐴 
 

(68) 

2.2.6 Key Assumptions and Limitations 

As mentioned in the previous sections, there are multiple assumptions behind the 

design of the WLS state estimator, and some necessary conditions need to be met in order 

for a unique and accurate solution to be found. These assumptions and necessary 

conditions are summarized below: 

• Measurement errors are assumed to be independent and have a Gaussian 

distribution with a mean of 0 and a known variance of 𝜎2. These variances are 

chosen based on assumptions regarding metering accuracy and/or historical 

data for the measurement errors. 

• The gain matrix 𝐺 needs to be relatively well-conditioned in the Normal 

Equations, or else the WLS state estimator may become numerically unstable 

and fail to reach convergence. Ill-conditioning can arise from having a large 

number of injection measurements, very large weighting factors, and the 

presence of both short and long lines at the same bus. When the gain matrix is 

ill-conditioned, alternate methods could be used instead of Cholesky 

factorization to mitigate the computational issues. 

• The state estimation solution cannot be found when the Cholesky 

decomposition does not exist (e.g. for many systems that are not fully 

observable). 

• There must be at least one voltage measurement for each observable island. 

2.2.7 Robust State Estimation 

Although the focus of this dissertation is on the WLS state estimator due to its 

prevalence in the power industry, it is worthwhile to briefly review the problem 

formulation for robust state estimation since it has some advantages compared to the 
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WLS formulation. First we must define statistical robustness. A state estimator is robust 

if the estimated system state is insensitive to major deviations in a limited number of 

redundant measurements. There is frequently a trade-off between robustness and 

computational speed. As discussed in Section 2.2.6, one major assumption behind the 

design of the WLS state estimator is that measurement errors are independent, and each 

error has a Gaussian distribution with a mean of 0 and a known variance. While this 

assumption may be generally true under normal operating conditions, there are 

occasionally situations where gross errors can occur due to telemetry noise/failure or 

even potentially cyber-attacks (which will be discussed in greater detail in Chapter 4). 

Before reviewing specific robust state estimation methods, first the definition of 

an outlier needs to be introduced. In statistics, an outlier is an observation point that is 

distant from other observations due to either natural variability in the measurement or 

measurement error. In power systems, outliers could be either measurements that do not 

contain any actual error but due to the structure of its corresponding equation appear 

unusual, or they could be incorrectly recorded measurements that differ from their actual 

value. Naturally occurring outliers are difficult to identify and will strongly bias the state 

estimate when they contain errors. An outlier measurement that has an undue amount of 

influence on the state estimate and where the corresponding row of the measurement 

Jacobian 𝐻 lies away from the rest of the factors is referred to as a leverage point. 

There are many different objective functions and solution methods for robust state 

estimation, but the general problem formulation for an M-estimator is as follows: 

 
min∑𝜌(𝑟𝑖)

𝑀

𝑖=1

 

𝑠. 𝑡.   𝑧 = ℎ(𝑥) + 𝑟 
 

(69) 

where 𝜌(𝑟𝑖) is a selected function of the measurement residual 𝑟𝑖, 𝑧 ∈ ℝ
𝑀 is the set of 

measurements, 𝑥 ∈ ℝ2𝑁−1 is the state vector, and ℎ(𝑥) ∈ ℝ2𝑁−1 is the measurement 
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function that corresponds to perfect error-free measurements. The function 𝜌 should have 

at least the following properties: 

• 𝜌(𝑟) = 0 when 𝑟 = 0 

• 𝜌(𝑟) > 0 ∀ 𝑟 

• 𝜌(𝑟) = 𝜌(−𝑟) 

• 𝜌(𝑟) is monotonically increasing in both +𝑟 and −𝑟 directions 

One example of a function that satisfies all of these conditions is the Least Absolute 

Value (LAV) M-estimator 𝜌(𝑟𝑖) = |𝑟𝑖|.  

 In general, M-estimation problems can be solved using algorithms such as 

Newton’s method and iteratively reweighted least squares. The LAV estimator, which 

can be formulated as a linear programming problem, can take advantage of optimization 

algorithms such as the simplex and interior point methods. 

2.3 Network Observability Analysis 

The objective of observability analysis is to determine whether a unique estimate 

can be found for the power system state based on the network topology as well as the 

type and location of available measurements. This analysis is first performed offline 

during the initial installation of a state estimator to verify whether the existing installed 

sensors are sufficient to fully observe the system. It is also performed online prior to 

running the state estimator to ensure that an estimate can be found from the 

measurements received at each time step. Sometimes communication or metering 

errors/failures can cause a power system to become unobservable, in which case the 

system will be divided into a series of isolated observable islands, each with its own 

independent phase angle reference (i.e. slack bus). 

Observability analysis methods can be divided into two different classes: 

numerical and topological. Both classes of methods were developed using the same 

general assumptions: 
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• Paired 𝑃 and 𝑄 measurements (i.e. each real injection/flow measurement has a 

corresponding reactive injection/flow measurement) 

• Decoupled measurement model (see Section 2.2.4, cannot be used if 

assumptions do not hold or if current magnitude measurements are included) 

2.3.1 Numerical Methods 

There are multiple methods for numerical observability analysis. The method 

described below is based on the nodal variable formulation. Referring back to the 

decoupled state estimation model from Section 2.2.4, 𝜃 − 𝑃 observability and 𝑉 − 𝑄 

observability can be tested separately if the 𝑃 and 𝑄 measurements are paired. Unlike in 

𝜃 − 𝑃 analysis, there needs to be at least one voltage magnitude measurement in 𝑉 − 𝑄 

analysis for each observable island. 

The observability of a system depends solely on the topology of the system and 

the type/location of measurements. It does not depend on branch parameters or the 

system operating state, so simplifying assumptions can be made for the system 

parameters. For example, all branches can be assumed to have an impedance of 𝑗1.0 per-

unit, and all bus voltages can be assumed to be 1.0 per-unit as seen in the DC state 

estimation model (as seen in Section 2.2.5). Then the DC power flows can be written as 

 𝑃𝑏 = 𝐴𝜃 
 

(70) 

where 𝑃𝑏 ∈ ℝ
𝑀 is the vector of branch power flows, 𝐴 ∈ ℝ𝑀×𝑁 is the branch-bus 

incidence matrix, and 𝜃 ∈ ℝ𝑁 is the vector of bus voltage phase angles. The branch-bus 

incidence matrix is defined as 

 𝐴(𝑖, 𝑗) = {
1 if bus 𝑗 𝑖s the sending end of branch 𝑖

−1 if bus 𝑗 𝑖s the receiving end of branch 𝑖 

0 else

 

 

(71) 

If there is an estimate 𝜃 such that  

 𝐻𝐴𝐴𝜃 = 0 
 

(72) 
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yet the corresponding branch flow is nonzero, i.e. 

 𝑃𝑏 = 𝐴𝜃 ≠ 0 
 

(73) 

then this estimate 𝜃 is an unobservable state, and the branches 𝑏 that have nonzero flows 

are unobservable branches. 

 The algorithm for identifying observable islands is as follows: 

 Step 1. Remove all branches that have no incident measurements. 

 Step 2. Form 𝐺𝐴𝐴 = 𝐻𝐴𝐴
𝑇 𝑅𝐴

−1𝐻𝐴𝐴. 

Step 3. Factorize 𝐺𝐴𝐴 using Cholesky factorization. When a zero pivot is 

encountered, replace that entry with 1.0 and the corresponding entry of the right 

hand side is assigned an arbitrary value. 

Step 4. Identify and remove all unobservable branches and all injections that are 

incident to these unobservable branches. 

Step 5. If no more unobservable branches can be found, identify the observable 

islands that are divided by the unobservable branches and stop. Else proceed back 

to Step 2. 

2.3.2 Topological Methods 

There are also multiple methods for topological observability analysis. (However, 

there is considerably less literature on the subject compared to numerical observability 

analysis.) Topological methods differ from numerical methods in that no floating point 

computations are necessary. Instead they are based entirely on logical operations and thus 

only need information about network topology and measurement type/location. Similar to 

the numerical methods, it is assumed that measurements are available in real and reactive 

pairs, and thus the real part of the decoupled measurement model can be used for 

observability analysis. 

The seminal paper on topological observability analysis [22] was published in 

1980. In it, the authors developed a new graph theoretical algorithm after recognizing that 
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the rank of the 𝐻 matrix depends only on the system topology. The important theoretical 

conclusion from their paper is that 𝐻 is full rank (i.e. the associated network 𝑋 is 

observable) if and only if there exists a spanning tree 𝑇 of full rank (a spanning tree is a 

tree that is incident to every bus of network 𝑋). A tree 𝑇 is full rank if every branch of 𝑇 

can be assigned in a unique fashion. The algorithm they proposed is divided into two 

parts, one that processes the line flow measurements and one that processes the injection 

measurements. The algorithm works as follows: 

Part 1. Construct a forest 𝐹𝑙 of branches with line flow measurements. Remove branches 

that form loops with 𝐹𝑙 (cotree branches). Remove branches that are incident to no 

measurement. Identify and label as redundant injection measurements that are incident 

only to branches of 𝐹𝑙 or to cotree branches. Identify the boundary injection 

measurements. Perform an initial measurement assignment of the branches of 𝐹𝑙 (i.e. 

assign each branch to the flow measurement represented by that branch), which will be 

known as 𝑎. 

Part 2. Take the boundary injection measurements from Part 1. Process them in stages 

one at a time until 𝑇 is a critical tree or until all boundary injections have been 

considered. The inputs to each stage are the boundary injection under consideration 𝑥∗ 

and the forest (with measurement assignment) output from previous stages. The output of 

each stage is an updated forest (with measurement assignment) that has fewer 

components or contains more unmeasured nodes than the input forest. 

Step 2.1. Let 𝐹∗ be the component of the forest of flow-measured branches that 

contains 𝑥∗ and 𝑇∗ be the input forest that contains 𝑥∗. The tree 𝑇∗ is directed away 

from 𝑥∗ as follows. Every branch 𝑏 in 𝑇∗ that is incident to 𝑥∗ has 𝑥∗ labeled as the 

negative (−) node of b, and the other node is labeled as positive (+). 
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Step 2.2. After 𝑇∗ has been directed away from 𝑥∗, a sequence of pairwise disjoint 

sets of branches 𝐵𝑖
𝑙 is constructed iteratively. 𝐵0

𝑙  is set equal to 𝐹∗. 𝐵1
𝑙  consists of 

all branches incident to 𝑥∗ that are not in 𝐵0
𝑙 .  

Step 2.3. The steps for deriving 𝐵𝑖+1
𝑙  are shown in Figure 9. Select the first 

branch 𝑏 in 𝐵1
𝑙  . Set 𝑥 as the positive node of 𝑏. Check to see if 𝑏 is in the edges 

of the input forest 𝑇∗
𝑙. If so, check if the initial measurement assignment of 𝑏 is to 

node 𝑥. If not, check to see if 𝑥 is in the nodes of the input forest 𝑇∗
𝑂 . If either 𝑥 is 

in the nodes of the input forest 𝑇∗
𝑂 or the initial measurement assignment of 𝑏 is 

not to node 𝑥, set the negative node of 𝑏 to be the T-predecessor branch of node 

𝑥. If the initial measurement assignment of 𝑏− is to node 𝑥, then add every branch 

that is incident to node 𝑥 that is not in a previous 𝐵𝑖
𝑙 to 𝐵𝑖+1

𝑙 . If not, add only 𝑏− to 

𝐵𝑖+1
𝑙 . Continue processing each branch until all branches are processed or if a sink 

is hit. 

Step 2.4. If a sink (an unmeasured node not already in 𝑇∗ or a node belonging to 

another component of 𝑇) is hit by a branch 𝑏, then a backtracking process is 

initiated (illustrated in Figure 10). The procedure recursively selects a sequence of 

branches, one from each 𝐵𝑖
𝑙, modifies the tree, and updates the assignment. There 

are five simple subroutines: ‘add to tree,’ ‘any,’ ‘delete,’ ‘erase,’ and ‘search.’ 

‘Add to tree’ adds 𝑏 to 𝑇𝑙 and assigns 𝑥 to 𝑏, i.e. 𝑎(𝑏) = 𝑥. ‘Any’ searches 

through 𝐵𝑖
𝑙 for any branch that is incident to 𝑥. ‘Delete’ removes 𝑏 from 𝑇𝑙. 

‘Erase’ removes 𝑏− = −𝑇(𝑥) from 𝑇𝑙 and any other T-predecessor branches. 

‘Search’ looks for a branch in 𝐵𝑖
𝑙 that is also in 𝑇∗

𝑙 and is assigned to 𝑥. 
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Figure 9. Topological OA flow chart for building the next 𝑩𝒊
𝒍 [22] 

 

 

Figure 10. Topological OA flow chart for processing the next branch [22] 
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After this seminal paper was published, the authors published a number of other 

papers related to topological observability analysis and state estimation. Most notably, 

they developed an algorithm that determines the maximal observable subnetwork, i.e. the 

largest region where bus voltages may be estimated when confronted with a deficiency in 

measurements [23]. They also developed an algorithm to adding pseudo measurements of 

estimated bus loads to improve network observability [24]. In addition, they worked on 

determining the detectability of bad measurements based on the network topology and 

location measurements (discussed in Section 2.4) [25]. 

A second influential paper on topological observability analysis [26] was 

published in 1982. The authors directly search for an observable spanning tree in the 

measurement graph, using an algorithm for matroid intersections. They reframed the 

topological observability analysis problem as a graph with 𝑁 vertices and 𝐿 edges, where 

each edge needs to be colored with (i.e. assigned) one of 𝐾 + 1 colors. The objective is to 

find a spanning tree such that for each color, at most one edge of the spanning tree has 

that color. Similar to [22], the flow measurements are processed first, followed by the 

injection measurements. The exact algorithm can be found in [26], Figure 2. 

Since those two papers, other papers on the subject have emerged. In 1991, a new 

algorithm that used the concept of augmenting sequences, including a direct comparison 

between the proposed algorithm and a numerical observability analysis algorithm, was 

presented, showing that their topological algorithm was considerably faster [27]. At the 

same time, another paper that involved a fast algorithm for finding the minimum 

spanning tree of an augmented graph was presented [28]. The first author of [28] also 

explored using genetic algorithms to solve the combinatorial problem of topological 

observability [29]. Between 2005 and 2006, more papers that used genetic algorithms and 

artificial neural networks were presented. This body of available research literature on 

topological observability analysis is summarized in Table 2. 

 



 35 

Table 2. Topological Observability Analysis Literature Review 

Year Method Author Ref 

1980 Heuristic Krumpholz et al. [22] 

1982 Matroid intersection Quintana et al. [26] 

1991 Augmenting sequences Nucera and Gilles [27] 

1991 Augmented graph Mori and Tsuzuki [28] 

1992 Genetic algorithms Mori and Tanaka [29] 

2005 Artificial neural 

networks 
Jain et al. 

[30] 

2006 Heuristic Jain et al. [31] 

2006 Genetic algorithms Vazquez-Rodriguez et al. [32] 

 

2.4 Bad Data Detection 

A key objective of the state estimator is to detect and remove erroneous 

measurements, assuming there is sufficient redundancy in the measurement set so that 

random errors can be filtered out. Measurement errors occur due to a variety of reasons: 

• Sensor noise, bias, drift, failure, or wiring mistakes 

• Communication noise, error, or failure 

• Intentional manipulation of sensor measurements during a cyber-attack 

Measurements that are obviously wrong or physically impossible (such as negative 

voltage magnitudes, extremely large measurements, etc.) can be easily detected through 

simple logic checks. However, more subtle inconsistencies can be difficult to detect 

without advanced techniques. 

 In WLS state estimation, bad data detection and removal are performed after the 

estimation process. Bad data can manifest as either a single erroneous measurement or 

multiple erroneous measurements. Multiple bad data can be further categorized into non-

interacting bad data, interacting but non-conforming bad data, and interacting and 

conforming bad data. Interacting measurements are measurements that are strongly 

correlated whose errors significantly affect one another’s estimated values. Conforming 

measurements are measurements that appear to be consistent with one another. 
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 The degree to which measurements are interacting can be measured by the 

residual covariance matrix 𝛺. If 𝛺(𝑖, 𝑗) ≥ 휀 (user-defined threshold based on the network 

and measurement topology), then measurement 𝑖 and measurement 𝑗 are strongly 

interacting. Otherwise, they are considered to be weakly interacting or non-interacting. 

The matrix is calculated as 

  𝛺 = 𝑆𝑅 
 

(74) 

Based on the DC state estimation model (see Section 2.2.5), the WLS estimator is  

 𝛥�̂�𝐴 = (𝐻𝐴𝐴
𝑇 𝑅𝐴

−1𝐻𝐴𝐴)
−1𝐻𝐴𝐴

𝑇 𝑅𝐴
−1𝛥𝑧𝐴 

 
(75) 

where Δ𝑧𝐴 = 𝐻𝐴𝐴Δ𝑥 + 𝑒. The estimated value of Δ𝑧𝐴 is Δ�̂�𝐴 = 𝐻𝐴𝐴Δ�̂�𝐴 = 𝐾Δ𝑧. The hat 

matrix 𝐾 is equal to  

 𝐾 = 𝐻𝐴𝐴𝐺𝐴𝐴
−1𝐻𝐴𝐴

𝑇 𝑅𝐴
−1 

 
(76) 

𝐾 can be used to provide an idea of the local measurement redundancy around each 

sensor. A large diagonal entry relative to the off-diagonal entries in 𝐾 indicates poor local 

redundancy. The residual sensitivity matrix 𝑆 measures the sensitivity of measurement 

residuals to measurement errors and is equal to  

 𝑆 = 𝐼 − 𝐾 
 

(77) 

where 𝐼 is the identity matrix. 

In general, measurements are classified into two different groups: critical and 

redundant. The removal of a critical measurement from the measurement set would cause 

the system to become unobservable. The measurement residual of a critical measurement 

is always zero. Sometimes critical measurements can occur in pairs or k-tuples, in which 

case the removal of all of these measurements will cause the system to become 

unobservable. A redundant measurement is a non-critical measurement, and it has a 

nonzero measurement residual. Bad data can only be detected if removing the erroneous 

measurement does not render the system unobservable. Hence, errors that occur in critical 
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measurements cannot be detected. A single measurement containing bad data can be 

identified if and only if it is not critical and it does not belong to a critical pair. 

2.4.1 The Largest Normalized Residual Test  

The most commonly used bad data detection test in EMS systems today is the 

largest normalized residual test. The normalized residual of measurement 𝑖 is calculated 

as follows: 

 𝑟𝑖
𝑁 =

|𝑟𝑖|

√Ω𝑖𝑖
 

 

(78) 

Assuming there is a single bad measurement that is not a critical measurement or a 

member of a critical pair, the largest normalized residual will correspond to the erroneous 

measurement. This will also hold true for multiple bad data as long as the measurements 

are non-interacting. The algorithm is as follows: 

 Step 1. Solve WLS state estimation and obtain the measurement residual vector 

 𝑟𝑖 = 𝑧𝑖 − ℎ𝑖(�̂�). 

 Step 2. Compute the normalized residuals. 

 Step 3. Find the index 𝑘 that corresponds to the largest 𝑟𝑖
𝑁. 

Step 4. If 𝑟𝑘
𝑁 > 𝑐 (user-defined threshold), remove the 𝑘-th measurement which is 

suspected to be bad and proceed to Step 1. Else stop, no bad measurements are 

suspected. 

2.4.2 Key Assumptions and Limitations 

As discussed in the previous sections, existing bad data detection techniques such 

as the largest normalized residual test will definitely detect and remove a bad 

measurement if: 

• The measurement is not critical (i.e. removing it will not make the system 

unobservable). 
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• Removing the measurement does not create any critical measurements. 

If there is multiple bad data, then the largest normalized residual test can detect 

bad measurements one at a time if the measurements are non-interacting. If there are 

multiple interacting bad measurements: 

• The largest normalized residual test may still correctly identify bad data if the 

measurements are non-conforming (i.e. the errors are not consistent with each 

other). 

• The largest normalized residual test may fail to identify conforming 

measurements. 
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3 DECOMPOSITION-BASED STATE ESTIMATION 

In this chapter, we present a new faster state estimation method, which involves 

automatically dividing the central SE problem for a large system into a series of smaller 

problems as well as empirically exploring the effect of the number of sub-problems on 

the computational speed [33]. Currently the state estimator performs its data processing 

and computation for a single control area in a central location (the control center). These 

computations are carried out serially once every 30 seconds to few minutes, depending on 

the balancing authority (see Table 1). As the number of devices used to monitor the 

power grid increases and the need to monitor very large interconnections grows, 

centralized state estimation becomes too slow to be feasible. Our proposed solution to 

these challenges is decomposition-based state estimation. 

The organization of this chapter is as follows. Section 3.1 motivates the need for 

decomposition-based state estimation and provides the scope of the research. Section 3.2 

reviews the relevant research literature on speeding up the performance of the state 

estimator. Section 3.3 introduces the general consensus ADMM problem as well as 

discusses its merits and disadvantages as a distributed optimization method. Section 3.4 

describes the importance of referencing the local slack buses to a single global slack bus. 

Section 3.5 discusses the methodology behind the fast decomposition-based SE 

algorithm. Section 3.6 introduces a problem formulation that would achieve greater 

solution accuracy. 

3.1 Introduction 

Centralized state estimation becomes infeasible with an increase in the number of 

monitoring devices and the need driven by market deregulation for utilities to monitor 

very large interconnections. First, as more measurements are added into the system, more 

speed is needed to process them in real time. Secondly, faster processing would enable 
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real-time wide-area SE [6]. Because the speed of SE depends on the size of the problem 

(the number of measurements and the number of states to be estimated), the ability to 

decompose the global SE problem into smaller problems is essential. Once the problem is 

decomposed, then parallel or distributed computing can be applied to each problem, as 

seen in distributed state estimation (DSE) where multiple nodes work together to jointly 

estimate the state of an area [34]. A related problem to DSE is multi-area state estimation 

(MASE), where several control areas work together to jointly estimate their combined 

state [35], [36]. 

This chapter explores two questions that have been largely undiscussed in the 

literature for DSE and MASE: 1) how the global SE problem could be automatically 

decomposed into smaller problems, and 2) the impact of the number of sub-problems on 

the computational speed. In the case of DSE, the boundaries of the sub-problems have 

frequently been determined through trial and error, and the number of problems is 

assumed to be given [8]. In MASE, the boundaries for each sub-problem are defined by 

the physical boundaries of each control area, and the number of problems is defined by 

the number of control areas involved in the joint SE. The results from this work suggest 

that methodical decomposition of the global SE problem beyond the natural boundaries 

of a control area can significantly increase the speed of SE.  

The main contributions of this work are as follows. First, we introduce automatic 

graph partitioning as a systematic method for virtually dividing a power system into an 

arbitrary number of sub-areas. Then we propose a fast decomposition-based SE approach, 

an enhancement to traditional WLS SE, which uses the partitioning results to 

automatically decompose the global SE problem into smaller sub-problems and solve 

them in unison using the alternating direction method of multipliers (ADMM). Lastly we 
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explore empirically the impact of the number of sub-problems on the computational 

speed of the global SE problem for a serial implementation and extrapolate the speedup 

seen for the considered IEEE test cases to larger power systems. To the best of our 

knowledge, this is the first time the impact of partition granularity on the speed of the SE 

problem has been quantitatively evaluated. The proposed approach enables an 

investigation of how far typical SE problems should be decomposed for the best speed 

gains. 

3.2 Relevant Work 

In the literature, there are two related branches of research that focus on speeding 

up the computational performance of the state estimator. One is DSE, where the burden 

of SE for a large system is spread over multiple processors or threads (frequently in the 

same geographic location). The other is MASE, where the burden of SE for a very large 

interconnection is distributed over multiple processors for each control area (in separate 

geographic locations). A good survey of different DSE and MASE schemes from prior to 

2010 is provided in [35]. The authors classified different schemes by the level of area 

overlap, the computing architecture, the level of coordination, measurement 

synchronization, process synchronization, and solution methodology.  

For the level of area overlap, schemes could either have completely non-

overlapping areas, boundary-bus overlapping areas, virtual bus overlapping areas, tie-line 

overlapping areas, or extended overlapping areas (see Figure 11). For the architecture, 

there are hierarchical and decentralized schemes. In a hierarchical architecture, a central 

coordinating computer communicates with each local state estimator, which is run on 

local processors either in separate or the same geographic location. In a decentralized 

architecture, each local state estimator communicates with its neighbors without the help 

of a central computer. For the level of coordination, each area can submit its results to the 
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central processor after full convergence of its local SE, each area can submit its results 

after every local iteration, or some combination of the two approaches could apply. For 

process synchronization, each local processor can be run synchronously for a hierarchical 

architecture where the coordination takes place at the central SE level, synchronously or 

asynchronously if the coordination takes place at the iteration level, or asynchronously 

for a decentralized architecture. Finally, regarding solution methodology, the majority of 

surveyed methods rely on the WLS SE formulation while decentralized schemes tend to 

use Lagrangian relaxation-based algorithms or formulate the WLS equations as an 

optimization problem.  

 

Figure 11. Different levels of area overlap for MASE schemes [35]: a) non-overlapping 

areas; b) boundary-bus overlapping areas; c) virtual bus overlapping areas; d) tie-line 

overlapping areas; e) extended overlapping areas. 

 

Since 2010, there have been some other relevant works on DSE and MASE. 

Meliopoulos et al. [37] introduced a fully distributed three-phase linear state estimator at 

the substation level, which uses a detailed substation model and all locally available 

measurements including those from PMUs. Xie et al. [38], [39] described a fully 

distributed SE algorithm that does not require local observability of all control areas and 

where the communication topology can differ from the physical topology. Kekatos and 

Giannakis [36] presented a fully distributed robust SE algorithm that uses ADMM, which 
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also does not require local observability. Both algorithms use the DC state estimation 

model, which as discussed in Section 2.2 we know to be not as accurate as the AC model.   

 

Table 3. DSE and MASE Literature Review 

Reference, author 
Area 

overl. a 

Solut. 

meth. b 

Estim. 

state c 

Meas. 

type d 

Coord. 

scheme e 

[37] Meliopoulos NO NE-H - P It 

[38], [39] Xie NO NE-H Opt C It 

[36] Kekatos and 

Giannakis 
MO NE-O Opt C It 

[40] Karimipour and 

Dinavahi 
NO NE-H Unknown P It 

a  NO: non-overlap; MO: minimally overlap; FO: fully overlap. 
b  NE: Normal equations; R: relaxation; O: optimization; H: heuristic. 
c  Opt: optimal; Sub: suboptimal. 
d  C: conventional only; P: considers PMU. 
e  SE: SE level; It: iteration level. 

 

 

3.3 The Alternating Direction Method of Multipliers 

ADMM is a simple but powerful distributed convex optimization algorithm that 

has many applications in large-scale distributed computing and optimization. It blends the 

benefits of two predecessor algorithms, dual decomposition and augmented Lagrangian 

methods for convex optimization, and is either equivalent or closely related to many other 

similar optimization algorithms. It displays the decomposability of dual ascent and the 

superior convergence properties of the method of multipliers. It was first introduced in the 

1970s, and by the mid-1990s, the theory had been mostly established. Although the focus 

of the algorithm is on distributed computing, the algorithm can also be used serially, 

where even with no tuning it is competitive with the best known methods for some 

problems. The main reference for this section on ADMM is [41]. 
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3.3.1 General ADMM Algorithm 

In ADMM, the variables 𝑥 and 𝑧 are updated in an alternating (sequential) manner, 

giving the algorithm its name. The ADMM problem formulation is as follows. Consider 

the problem of minimizing a global objective function that takes the form 

 
min 𝑓(𝑥) + 𝑔(𝑧) 

subject to 𝐴𝑥 + 𝐵𝑧 = 𝑐 
(79) 

where variables 𝑥 ∈ ℝ𝑛 and 𝑧 ∈ ℝ𝑚, 𝐴 ∈ ℝ𝑝×𝑛, 𝐵 ∈ ℝ𝑝×𝑚, and 𝑐 ∈ ℝ𝑝. The functions 𝑓 

and 𝑔 are assumed to be closed, proper, and convex. The unaugmented Lagrangian 𝐿0 is 

assumed to have a saddle point, i.e. 𝐿0(𝑥
∗, 𝑧∗, 𝑦) ≤  𝐿0(𝑥

∗, 𝑧∗, 𝑦∗) ≤  𝐿0(𝑥, 𝑧, 𝑦
∗) 

∀ 𝑥, 𝑧, 𝑦. Like in the method of multipliers, the augmented Lagrangian is 

 𝐿𝑝(𝑥, 𝑧, 𝑦) = 𝑓(𝑥) + 𝑔(𝑧) + 𝑦
𝑇(𝐴𝑥 + 𝐵𝑧 − 𝑐) +

𝜌

2
‖𝐴𝑥 + 𝐵𝑧 − 𝑐‖2

2. (80) 

The ADMM iterations are 

 𝑥(𝑘+1) = argmin
𝑥

 𝐿𝑝(𝑥, 𝑧
(𝑘), 𝑦(𝑘)) (81) 

 𝑧(𝑘+1) = argmin
𝑧

 𝐿𝑝(𝑥
(𝑘+1), 𝑧, 𝑦(𝑘)) (82) 

 𝑦(𝑘+1) = 𝑦(𝑘) + 𝜌(𝐴𝑥(𝑘+1) + 𝐵𝑧(𝑘+1) − 𝑐) (83) 

where 𝜌 > 0 and (𝑘) indicates the 𝑘-th interation. The first ADMM equation is the 𝑥-

minimization step, the second equation is the 𝑧-minization step, and the third equation is 

the dual variable update.  

 The algorithm can also be written in a scaled form. The scaled dual variable 𝑢 is 

 𝑢 = (
1

𝜌
) 𝑦 (84) 

Using the expression for 𝑢, ADMM can be written as 

 𝑥(𝑘+1) = argmin
𝑥

 (𝑓(𝑥) +
𝜌

2
‖𝐴𝑥 + 𝐵𝑧(𝑘) − 𝑐 + 𝑢(𝑘)‖

2

2
) (85) 

 𝑧(𝑘+1) = argmin
𝑧

 (𝑔(𝑧) +
𝜌

2
‖𝐴𝑥(𝑘+1) + 𝐵𝑧 − 𝑐 + 𝑢(𝑘)‖

2

2
) (86) 
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 𝑢(𝑘+1) = 𝑢(𝑘) + 𝐴𝑥(𝑘+1) + 𝐵𝑧(𝑘+1) − 𝑐 (87) 

By defining the primal residual at iteration 𝑘 + 1 as 

 𝑟(𝑘+1) = 𝐴𝑥(𝑘+1) + 𝐵𝑧(𝑘+1) − 𝑐 (88) 

we see that 𝑢(𝑘) is related to the running sum of the residuals 

 𝑢(𝑘) = 𝑢(0) +∑𝑟(𝑗)
𝑘

𝑗=1

 (89) 

The dual residual at iteration 𝑘 + 1 is 

 𝑠(𝑘+1) = 𝜌𝐴𝑇𝐵(𝑧(𝑘+1) − 𝑧𝑘) (90) 

ADMM can be considered as a special version of the method of multipliers where 

a single Gauss-Seidel pass over the variables 𝑥 and 𝑧 is used instead of the usual joint 

minimization step. Separating the minimization over the variables into two steps is what 

allows for decomposition when 𝑓 or 𝑔 are separable. 

3.3.2 Convergence Properties and Stopping Criteria 

In theory, ADMM displays the following convergence properties: 

• Residual convergence 

o The iterates approach feasibility 

o 𝑟(𝑘) → 0 as 𝑘 → ∞ 

o 𝑠(𝑘) → 0 as 𝑘 → ∞ 

• Objective convergence 

o The objective function approaches optimal value 

o 𝑓(𝑥(𝑘)) + 𝑔(𝑧(𝑘)) → 𝑝∗ as 𝑘 → ∞ 

• Dual variable convergence 

o The dual variable approaches a dual optimal point 

o 𝑦(𝑘) → 𝑦∗ as 𝑘 → ∞ 
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In practice, ADMM can be slow to converge to high accuracy. However, it often 

converges to a modest level of accuracy that is sufficient for many applications within a 

few tens of iterations. The relatively slower convergence of ADMM distinguishes it from 

algorithms like Newton’s method, where high accuracy can be obtained in only a few 

iterations. 

A reasonable stopping criterion is that both the primal and dual residuals are 

sufficiently small, i.e. 

 ‖𝑟(𝑘)‖
2
≤ 𝜖𝑝𝑟𝑖𝑚𝑎𝑟𝑦 and ‖𝑠(𝑘)‖

2
≤ 𝜖𝑑𝑢𝑎𝑙 (91) 

where 𝜖𝑝𝑟𝑖𝑚𝑎𝑟𝑦 > 0 and 𝜖𝑑𝑢𝑎𝑙 > 0. For example, these tolerances could be chosen as 

follows using an absolute and relative 𝜖 

 𝜖𝑝𝑟𝑖𝑚𝑎𝑟𝑦 = √𝑝𝜖𝑎𝑏𝑠 + 𝜖𝑟𝑒𝑙max {‖𝐴𝑥(𝑘)‖
2
, ‖𝐵𝑧(𝑘)‖

2
, ‖𝑐‖2} (92) 

 𝜖𝑑𝑢𝑎𝑙 = √𝑛𝜖𝑎𝑏𝑠 + 𝜖𝑟𝑒𝑙‖𝐴𝑇𝑦(𝑘)‖
2
 (93) 

where 𝜖𝑎𝑏𝑠 > 0 is an absolute tolerance, 𝜖𝑟𝑒𝑙 > 0 is a relative tolerance such as 10−3, 𝑝 

and 𝑛 are the dimensions of the vectors from Section 3.3.1. 

3.3.3 Consensus ADMM Algorithm 

The consensus problem is the problem in which multiple agents need to put forth 

candidate values, communicate with one another, and come to agree on a single consensus 

value. ADMM-based methods are useful for solving the consensus problem using 

distributed optimization.  The goal is to solve the global problem in such a way that each 

sub-problem can be handled by its own thread or processor. 

The problem formulation for consensus ADMM is as follows. Consider the 

problem of minimizing a global objective function that is decomposable into N parts: 

 min 𝑓(𝑥) = ∑ 𝑓𝑖(𝑥)
𝑁
𝑖=1 , (94) 
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where 𝑥 ∈ ℝ𝑛 and each smaller objective function 𝑓𝑖 is convex. Under these conditions, 

the original problem can be reformulated in terms of local variables 𝑥𝑖 ∈ ℝ
𝑛 and a 

common global variable 𝑐: 

 min ∑ 𝑓𝑖(𝑥𝑖)
𝑁
𝑖=1  s.t. 𝑥𝑖 − 𝑐 = 0 (95) 

for 𝑖 = 1, … , 𝑁. By introducing these local variables with the constraint that shared local 

variables should agree, it is possible to split 𝑓𝑖(𝑥) into separate objective functions 𝑓𝑖(𝑥𝑖). 

Then the augmented Lagrangian is: 

 𝐿𝑝(𝑥1:𝑁, 𝑧, 𝑦) = ∑ (𝑓𝑖(𝑥𝑖) + 𝑦𝑖
𝑇(𝑥𝑖 − 𝑐) +

𝜌

2

𝑁
𝑖=1 ‖𝑥𝑖 − 𝑐‖2

2), (96) 

where 𝑦 is the dual variable and 𝜌 > 0 is the penalty factor. By defining 𝑐 as �̅� (the 

average of the 𝑥𝑖 variables), the resulting consensus ADMM algorithm is [41]: 

 𝑥𝑖
(𝑘+1)

= argmin
𝑥𝑖

 (𝑓𝑖(𝑥𝑖) + (𝑦𝑖
(𝑘))

𝑇

(𝑥𝑖 − �̅�
(𝑘)) +

𝜌

2
‖𝑥𝑖 − �̅�

(𝑘)‖
2

2
) (97) 

 𝑦𝑖
(𝑘+1)

= 𝑦𝑖
(𝑘)
+ 𝜌(𝑥𝑖

(𝑘+1) − �̅�(𝑘+1)) (98) 

For consensus ADMM, the primal and dual residuals are 

 𝑟(𝑘) = (𝑥1
(𝑘) − �̅�(𝑘), … , 𝑥𝑁

(𝑘) − �̅�(𝑘)) (99) 

 𝑠(𝑘) = −𝜌(�̅�(𝑘) − �̅�(𝑘−1), … , �̅�(𝑘) − �̅�(𝑘−1)) (100) 

The stopping conditions are ‖𝑟(𝑘)‖
2
≤ 𝜖𝑝𝑟𝑖𝑚𝑎𝑟𝑦 and ‖𝑠(𝑘)‖

2
≤ 𝜖𝑑𝑢𝑎𝑙, where 

 ‖𝑟(𝑘)‖
2
= √∑‖𝑥𝑖

(𝑘)
− �̅�(𝑘)‖

2

2
𝑁

𝑖=1

 (101) 

 ‖𝑠(𝑘)‖
2
= √𝑁𝜌2‖�̅�(𝑘) − �̅�(𝑘−1)‖2

2 (102) 

3.3.4 Application to State Estimation 

Performing state estimation with nonlinear ℎ(𝑥) functions involves solving 

nonconvex optimization problems. As discussed in Section 2.2.1, currently AC state 

estimation relies on the Gauss-Newton method, a modification of Newton’s method that 



 48 

is used to solve nonlinear least squares problems. Typically these models are iteratively 

linearized via the Gauss-Newton method or using the DC approximation discussed in 

Section 2.2.5 [36]. Convergence is not guaranteed, not even local convergence as in 

Newton’s method, and the method is sensitive to the initial guess. 

When ADMM is applied directly to a nonconvex problem, it may not converge, 

and even if it does converge, it may not converge to an optimal point. It must be 

considered as simply another local optimization method. The hope is that it might 

possibly have better convergence properties than other local optimization methods in 

terms of faster convergence or convergence to a point with a better objective value. 

Depending on the initial values of the variables 𝑥(0) and 𝑦(0) and the parameter 𝜌, 

ADMM can converge to different and sometimes non-optimal points. 

3.4 Slack Bus Referencing 

In centralized state estimation, the calculated states are referenced to the system 

slack bus (an arbitrarily chosen reference bus). In decentralized state estimation, the 

solution for each sub-area or sub-problem is referenced to its own slack bus, rather than 

the global slack bus. Hence, before we integrate the solutions for the different sub-areas 

or sub-problems, we must first reference them all back to the global slack bus. There are 

two main ways to achieve this outcome. 

The simplest and most accurate method is only possible if phasor measurement 

units are installed. For multi-area state estimation (solving the joint state estimation 

problem for several control areas), each sub-area must contain at least one phasor 

measurement unit. In that scenario, a bus whose phase is measured by a PMU will be 

selected as the slack bus for that sub-area. Because PMUs use a synchronized GPS clock, 

measurements gathered from different sub-areas are synchronized to the same time (as 

opposed to SCADA measurements which are received by the control center 

asynchronously). Alternately, for distributed state estimation (solving the state estimation 
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problem for a single control area), the global problem should be partitioned such that 

each sub-problem contains at least one independent PMU measurement. This in effect 

would limit the maximum number of possible sub-problems, which would be equal to the 

number of installed PMUs. The exact methodology for including PMU measurements in 

the state estimation formulation is discussed in Section 3.6.3. 

If phasor measurements are not available, then the second method must be used 

instead. It is not as accurate as the PMU-based method, but it is still useful because it 

enables decomposition-based state estimation in the absence of PMU installation. The 

second method only requires that SCADA measurements be available. Although SCADA 

measurements are not actually synchronized, we can assume that they are collected at 

approximately the same time, because the dynamics of the power grid are relatively slow-

moving in general. (However, this assumption no longer holds true during a transient 

power system event, such as a transmission line fault.) This assumption is typical for 

traditional state estimation, which only includes SCADA measurements. The exact 

methodology is discussed in Section 3.5.3. 

3.5 Fast Decomposition-Based State Estimation 

Fast decomposition-based SE uses automatic graph partitioning to decompose the 

global WLS SE problem into N smaller problems. This reduces the order of the SE 

problem, which in turn increases the computational speed. There are three main steps in 

the algorithm. The first is determining how to divide (partition) the global SE problem into 

𝑁 smaller sub-problems. The second is solving the sub-problems in unison with consensus 

ADMM at each iteration. The last step is reintegrating the sub-problem solutions to obtain 

the global solution. The overall execution flow is shown in Figure 12. 
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Figure 12. Fast decomposition-based SE algorithm flowchart 

 

3.5.1 Automatic Graph Partitioning 

The computational time required for SE increases nonlinearly with the size of the 

problem, which is determined by the number of estimated states and measurements. 

Hence, we want to decompose the global SE problem into a series of smaller problems, 

thus reducing the problem size and improving the overall speed. The most intuitive 

approach for decomposition is to virtually partition the power system into N sub-areas and 

then assign the appropriate subset of the global measurements to each sub-problem. 

Because a power system is essentially an undirected graph composed of vertices (buses) 

and edges (lines), this decomposition can be considered as a graph partitioning problem. 

Small partitioning problems can be solved by hand empirically, but large graphs 

are cumbersome to partition manually, especially when certain partition properties are 

desirable. Hence, there arose the need for automatic graph partitioning methods. Existing 

partitioning methods can divide a graph into N partitions with a roughly equal number of 

vertices, where the vertices in each partition are contiguous, while simultaneously 

reducing the number of edges that traverse the partitions [42]. 
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For this work, there are three desirable properties for how the global SE problem is 

partitioned. First, the number of buses in each partition should be roughly balanced, so 

that the number of estimated states in each SE sub-problem is approximately equal. For a 

serial implementation, this will improve the overall SE solution time since it is the sum of 

the sub-problem solution times. Unbalanced partitioning would result in 

disproportionately longer times for larger partitions, which increases the solution time. 

Secondly, the number of virtual tie lines (lines that traverse partitions) should be as 

few as possible. This is due to the way that decomposition-based SE is formulated. In 

order for partitions to reach consensus about the global system state using ADMM, the 

state vectors for each sub-problem must include the sub-area’s perceptions of the angle 

and voltage for at least one bus in the neighboring sub-areas. Because adding more virtual 

tie lines adds more estimated states to the sub-problems which increases the computation 

time, we want to keep the number of virtual tie lines to a minimum. 

The third desirable property is the physical contiguity of the buses in each 

partition. This is to ensure the observability of each sub-area and serves to reduce the 

number of virtual tie lines. 

Since these properties match the objectives of existing graph partitioning methods, 

we used a standard graph partitioning toolbox METIS in this work to partition four IEEE 

test systems. METIS is a set of serial graph partitioning programs based on multi-level 

recursive bisection and k-way partitioning schemes [43]. Multi-level k-way produces 

higher quality results than recursive bisection but has issues enforcing contiguity when the 

desired number of partitions approaches the overall system size. For this work, when the 

desired number of partitions is less than half the number of buses in the test case, multi-

level k-way was selected as the partitioning scheme. Else recursive bisection was selected. 

The output of METIS is an assignment list that describes which buses belong in 

each partition. From those results, virtual tie lines are automatically identified. Then the 
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measurements for each sub-problem are automatically assigned from the set of global 

measurements. 

The time it takes to partition a power system is negligible compared to the time it 

takes to perform state estimation. For example, METIS can partition graphs with millions 

of vertices into hundreds of parts in only a few seconds on current generation workstations 

and PCs [44]. Most power systems are smaller graphs, on the order of tens of thousands of 

vertices, so the partitioning time will be even faster.  

3.5.2 Problem Formulation 

Using the partitioning results, the global SE problem can be decomposed into a 

series of smaller problems. However, to solve them in unison, the original WLS problem 

(introduced in Section 2.2) needs to be reformulated to include consensus ADMM. The 

global objective function that we want to minimize in (1) can be rewritten as a series of 

smaller problems with local 𝑥𝑖 state vectors:  

 𝑓𝑖(𝑥𝑖) = [𝑧𝑖 − ℎ𝑖(𝑥𝑖)]
𝑇𝑅𝑖

−1[𝑧𝑖 − ℎ(𝑥𝑖)], (103) 

where 𝑖 denotes the local quantity of the WLS SE problem, subject to the constraint that 

shared 𝑥𝑖 states must agree. By combining (103) with the right hand side of (97), we 

obtain an expression for the new local objective function 𝐽𝑖. Taking the partial derivative 

of 𝐽𝑖  with respect to 𝑥𝑖, we obtain 

 𝑔𝑖(𝑥𝑖) =
𝜕𝐽𝑖(𝑥𝑖)

𝜕𝑥𝑖
= −2𝐻𝑖

𝑇(𝑥𝑖)𝑅𝑖
−1[𝑧𝑖 − ℎ𝑖(𝑥𝑖)] + (𝑦𝑖

(𝑘))
𝑇

+ 𝜌(𝑥𝑖 − �̅�
(𝑘))

𝑇
. (104) 

By setting 𝑔𝑖(𝑥𝑖) to zero and using the Gauss-Newton method to expand its Taylor 

series around 𝑥𝑖, then neglecting the higher-order terms, we obtain 

 𝐺𝑖(𝑥𝑖
(𝑘)
) = 2𝐻𝑖

𝑇(𝑥𝑖
(𝑘)
)𝑅𝑖

−1𝐻𝑖(𝑥𝑖
(𝑘)
) + 𝜌. (105) 

Then each local state estimation problem is calculated as 

 [𝐺(𝑥𝑖
(𝑘)
)] Δ𝑥𝑖

(𝑘+1)
= −𝑔(𝑥𝑖

(𝑘)
) (106) 
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 𝑥𝑖
(𝑘+1)

= 𝑥𝑖
(𝑘)
+ Δ𝑥𝑖

(𝑘+1)
 (107) 

3.5.3 Slack Bus Angle Referencing Using SCADA Measurements 

In this work, we assume that only SCADA measurements are available to the state 

estimator. As discussed in Section 3.43.4, the solution of each local state estimation 

problem is referenced to a local slack bus. In order to integrate the local solutions into the 

global solution, all states must be referenced to the same global slack bus. The objective 

is to use SCADA measurements from opposite ends of the tie-lines to estimate the angle 

difference between pairs of neighboring areas. 

A small illustrative example is shown in Figure 13. Assume a given power system 

is divided into four different areas. Assume the global slack bus angle is 𝜃1,𝑟𝑒𝑓 in Area 1. 

The state estimation problem for Area 1 is solved simultaneously as the state estimation 

problems for Areas 2, 3, and 4. After solving the state estimation problems, all of the 

calculated bus angles in Area 1 are relative to 𝜃1,𝑟𝑒𝑓, which is set arbitrarily to 0 for 

simplicity. Similarly the bus angles in Areas 2, 3, and 4 are referenced to 𝜃2,𝑟𝑒𝑓, 𝜃3,𝑟𝑒𝑓, 

and 𝜃4,𝑟𝑒𝑓 respectively, each of which is also set arbitrarily to 0. The objective is to 

reference the bus angles in Areas 2, 3, and 4 to the global reference angle 𝜃1,𝑟𝑒𝑓. In other 

words, we want to find Δ(𝜃1,𝑟𝑒𝑓 − 𝜃2,𝑟𝑒𝑓), Δ(𝜃1,𝑟𝑒𝑓 − 𝜃3,𝑟𝑒𝑓), and Δ(𝜃1,𝑟𝑒𝑓 − 𝜃4,𝑟𝑒𝑓). 

In our example, Areas 1 and 2 are connected by line 𝐴, Areas 2 and 3 are 

connected by line 𝐵, and Areas 2 and 4 are connected by line 𝐶. We can estimate 

Δ(𝜃1,𝑟𝑒𝑓 − 𝜃2,𝑟𝑒𝑓) by assuming that both Area 1 and Area 2 have access to SCADA line 

flow measurements across line 𝐴 (i.e. Area 1 and Area 2 overlap by at least one bus). 

Extend the bus voltage state vector for Area 1 to include the state 𝜃2,𝐴(𝐴𝑟𝑒𝑎1), where 

𝜃2,𝐴(𝐴𝑟𝑒𝑎1) denotes Area 1’s estimated value of the bus angle 𝜃2,𝐴. Extend the bus voltage 

state vector for Area 2 to include the state 𝜃1,𝐴(𝐴𝑟𝑒𝑎2), where 𝜃2,𝐴(𝐴𝑟𝑒𝑎1) denotes Area 2’s 

estimated value of the bus angle 𝜃1,𝐴. Then Δ(𝜃1,𝑟𝑒𝑓 − 𝜃2,𝑟𝑒𝑓) can be estimated as 
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Δ(𝜃1,𝑟𝑒𝑓 − 𝜃2,𝑟𝑒𝑓) ≅
1

2
[(𝜃1,𝐴 (𝐴𝑟𝑒𝑎1) − 𝜃1,𝐴(𝐴𝑟𝑒𝑎2)) + (𝜃2,𝐴(𝐴𝑟𝑒𝑎1) −

𝜃2,𝐴(𝐴𝑟𝑒𝑎2))]  
(108) 

 

Figure 13. Slack referencing using only SCADA measurements for 4 areas 

 

However, while it is possible to estimate Δ(𝜃1,𝑟𝑒𝑓 − 𝜃2,𝑟𝑒𝑓), it is not possible to 

directly estimate Δ(𝜃1,𝑟𝑒𝑓 − 𝜃3,𝑟𝑒𝑓) and Δ(𝜃1,𝑟𝑒𝑓 − 𝜃4,𝑟𝑒𝑓) since Area 1 does not share 

any tie lines with Areas 3 and 4. Instead we have to estimate Δ(𝜃2,𝑟𝑒𝑓 − 𝜃3,𝑟𝑒𝑓) and 

Δ(𝜃2,𝑟𝑒𝑓 − 𝜃4,𝑟𝑒𝑓) first, using the same method we used to estimate Δ(𝜃1,𝑟𝑒𝑓 − 𝜃2,𝑟𝑒𝑓). 

Then we can effectively obtain 

 Δ(𝜃1,𝑟𝑒𝑓 − 𝜃3,𝑟𝑒𝑓) ≅ Δ(𝜃1,𝑟𝑒𝑓 − 𝜃2,𝑟𝑒𝑓) + Δ(𝜃2,𝑟𝑒𝑓 − 𝜃3,𝑟𝑒𝑓) (109) 

 Δ(𝜃1,𝑟𝑒𝑓 − 𝜃4,𝑟𝑒𝑓) ≅ Δ(𝜃1,𝑟𝑒𝑓 − 𝜃2,𝑟𝑒𝑓) + Δ(𝜃2,𝑟𝑒𝑓 − 𝜃4,𝑟𝑒𝑓) (110) 

Another way to visualize this idea is to consider the areas as a tree data structure 

(illustrated in Figure 14). In our example, Area 1 is the root of the tree, because it 
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contains the global slack bus. Area 1 has one child, Area 2. Area 2 has two children, Area 

3 and Area 4. 

 

Figure 14. Tree representation of slack referencing for 4-area example 

 

 In a hierarchical state estimator architecture, the central coordinator would have 

access to a tree of how each sub-area or sub-problem is connected to the global slack area 

(the area containing the global slack bus). Using that tree, they can reference the states 

for each sub-area or sub-problem to the parent area until they reach the global slack area. 

Once slack referencing is complete, we can move onto solution integration. 

3.5.4 Solution Integration 

After the solutions for all sub-problems are referenced to the same global reference 

bus using the approach described in the previous section, the ADMM averaging step 

integrates the separate sub-problem solutions into the global SE solution. States that are 

not shared between sub-problems are taken directly from the solution of their respective 

sub-problem. Shared states are averaged across their sub-problems: 

 �̅�(𝑘+1) =
1

𝑁
∑𝑥𝑖

(𝑘+1)

𝑁

𝑖=1

 (111) 



 56 

3.5.5 Simulation Results 

The fast decomposition-based SE algorithm was implemented serially on a single 

processor and tested on the IEEE 14 bus, 57 bus, 118 bus, and 300 bus systems. We made 

an assumption that there are a sufficient number of measurements in the system that 

observability is ensured even at the finest granularity of partitioning (a single bus). 

Practical applications would not use such high granularity, but this assumption was 

necessary to illustrate the full computational trend. Hence the measurements for each 

system were automatically generated from their power flow results at a global redundancy 

ratio, defined as the number of measurements divided by the number of estimated states, 

of approximately 2.9. Then each power flow value was perturbed by a randomly generated 

Gaussian error with a mean of 0 and a standard deviation of 0.01, which represents a 

measurement error standard deviation of 1%. Since the measurements are based on the 

power flow results, the true state is known for our simulated systems. Hence, the accuracy 

of each SE approach can be quantified using the absolute error between the estimated 

power system state and the true state. 

Timing tests for decomposition-based SE were carried out with different numbers 

of partitions, ranging from two partitions to fully decomposed (where every partition 

contains a single bus). These times were compared against the respective time for central 

WLS SE. To ensure a fair comparison, the core implementation of decomposition-based 

SE was similar to that of central WLS SE with necessary changes added to support 

ADMM, as described in Section 3.1.3. Also, the same convergence criteria of 휀 < 10-4 

was used for both SE approaches. All times shown are averaged across 10 runs. The 

timing was performed using the tic toc function in MATLAB R2014b on a 64-bit 

workstation that has a 2.80 GHz Intel Xeon W3530 CPU and 6 GB of installed RAM. 

Using METIS, the IEEE 14 bus system was partitioned into 2, 4, 6, 8, 10, 12, and 

14 sub-areas. The IEEE 57 bus system was partitioned into 2, 4, 8, 16, 24, 32, 44, and 57 

sub-areas. The IEEE 118 bus system was partitioned into 2, 4, 8, 16, 32, 48, 64, 88, and 
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118 sub-areas. The IEEE 300 bus system was partitioned into 2, 4, 8, 16, 32, 62, 113, 200, 

and 300 sub-areas. The ADMM penalty factor 𝜌 was set to 1. 

3.5.5.1 Computational Speed 

The aggregate timing results for decomposition-based SE and central WLS SE 

(represented as a single partition) are shown in Figure 15. Among the tested number of 

partitions, the fastest average decomposition-based SE time for the IEEE 14 bus system 

was for 2 partitions, each containing 7 buses. For the IEEE 57 bus system, the fastest 

decomposition-based SE time was for 4 partitions. Of the 4 partitions, 2 sub-areas 

contained 15 buses each, 1 sub-area contained 14 buses, and 1 sub-area contained 13 

buses. For the IEEE 118 bus system, the fastest time was for 8 partitions. Of the 8 

partitions, 6 sub-areas contained 15 buses each, and 2 sub-areas contained 14 buses each. 

For the IEEE 300 bus system, the fastest time was for 32 partitions. Of the 32 partitions, 

16 sub-areas contained 9 buses each, 11 sub-areas contained 10 buses each, 2 sub-areas 

contained 11 buses, one sub-area contained only 6 buses, and one contained only 4 buses. 

The best case speedup factors, defined as the central SE computation time divided 

by the fastest decomposition-based SE time, for the 4 test systems ranged from 1.293 to 

7.892, as shown in Figure 16. For the considered systems, larger best case speedups were 

observed for larger systems. Empirical results suggest that initially increasing the number 

of partitions decreases the computational time for decomposition-based SE. By 

partitioning the global SE problem into smaller problems, we reduce the size of each SE 

problem, and hence a decrease in overall time is observed for a serial implementation. As 

the number of partitions grows, we begin to observe an increase in the computation time 

of decomposition-based SE. This is due to an increase in the number of virtual tie line 

measurements in each local SE problem, which adds more states that need to be 

estimated. In the case of the 14 bus case, this caused the overall SE computation time for 

12 and 14 partitions to exceed the global SE time. However, this is an effect seen only in 
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very small systems. It is important to note that for the three larger systems, 

decomposition-based WLS SE is always faster than central WLS SE regardless of the 

number of partitions, even for a serial implementation. Because large SE problems can 

always be automatically broken into smaller SE problems that are then solved, the 

decomposition-based SE is very scalable. 

 

Figure 15. Timing results for 4 standard IEEE test systems 

 

 

Figure 16. Speedup factors for 4 standard IEEE test systems 
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3.5.5.2 Accuracy 

The emphasis of this work is on computational speed, so the discussion of 

accuracy is focused around the fastest case for each test system. A comparison of the 

solution accuracy for bus voltages is shown in Figure 17 for both central and 

decomposition-based SE. A similar comparison of the accuracy for bus angles is 

presented in Figure 18. 

For both central and decomposition-based SE, the average absolute errors for 

voltage magnitudes and angles are on the order of 10-3. Because nominal voltage 

magnitudes are 1 per unit while nominal angles are 0 radians, this level of error has a 

bigger relative impact on angles than voltage magnitudes. However, since the absolute 

error is small, it will have a negligible impact on most buses. 

In general, the solution accuracy of decomposition-based SE is comparable to that 

of central SE but slightly worse. This is to be expected since each sub-problem receives 

only a subset of the global measurements. This slight loss in solution accuracy is 

acceptable when computational speed is of the utmost importance. For example, 

decomposition-based SE could be used to solve larger problems in real time that are 

currently intractable for central SE. 

 

Figure 17. Average voltage magnitude errors for 4 standard IEEE test systems 
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Figure 18. Average angle errors for 4 standard IEEE test systems 

 

3.5.5.3 Implications for Larger Systems 

Empirical results suggest that the best case speedup factor sf increases with the 

number of buses n. If we assume a linear relationship between the speedup factor and the 

system size, we can extrapolate that sf = 0.0228n+0.9269, as visualized in Figure 19. 

This extrapolated relationship suggests that the proposed decomposition-based SE 

approach has the potential to greatly increase the speed of SE for real power systems. 

 

Figure 19. Potential speedup for larger systems 
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3.5.6 Observability and Bad Data Detection 

Observability of each partition is a necessary condition for decomposition-based 

SE. If one or more partitions are unobservable, estimates for some states may be 

unobtainable by decomposition-based SE, even though centralized SE may be able to 

estimate them. This situation tends to arise when the following conditions are true: a) the 

partition is very small, b) it has few measurements relative to the number of states, and c) 

there are insufficient measurements at the partition boundary to make the states 

observable. Mechanisms to merge neighboring partitions with the unobservable partitions 

could be implemented to regain observability. 

Because decomposition-based SE is built on the WLS estimation method, BDD 

and correction can occur after the estimation process. Since we implemented 

decomposition-based SE serially and in a central manner, BDD could also be performed 

in a central manner after obtaining the final joint SE result, using the largest normalized 

residual test. If it is desirable that BDD be performed in a decentralized way, the method 

of [36] could be applied. 

3.5.7 Conclusions 

This work used automatic graph partitioning to enable a scalable decomposition-

based SE approach. Empirical results suggest that decomposition reduces computation 

time even for a serial implementation, except for very small cases. This implies that any 

SE problem should be decomposed beyond its physical boundaries. With the speed gains, 

decomposition-based SE could be used to process a greater number of measurements than 

is currently tractable for central SE. 

3.6 Improving Solution Accuracy 

If the accuracy of the state estimator solution is of the utmost importance as 

opposed to computational speed, the methodology proposed in this section is more 
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suitable. The work presented in this section differs from the work presented in Section 

3.5 in the following ways: 

• The focus of the work presented in this section is primarily empirical analysis 

of the effect of partitioning on computational accuracy, whereas the focus of 

the work presented in Section 3.5 was primarily empirical analysis of the 

effect of partitioning on computational speed. 

• Automatic graph partitioning methods were applied to the power system 

measurement graph in this work, whereas they were applied to the power 

system topology graph in Section 3.5. 

• The problem formulation presented in this section uses convex relaxation of 

AC state estimation via semidefinite programming. This approach is best if 

solution accuracy is prioritized over speed. The semidefinite problem could be 

solved in MATLAB using CVX and SeDuMi. The work in Section 3.5 was 

based on a DC SE approximation, which did not require the use of any 

optimization programs. 

• The slack referencing would be more accurate with the availability of both 

PMU and SCADA measurements, whereas the slack bus referencing method 

described in Section 3.5.3 assumes the availability of only SCADA 

measurements.  

• The algorithm presented in this section is fully distributed, whereas the 

algorithm from Section 3.5 relies on a hierarchical SE architecture. 

3.6.1 Automatic Measurement Graph Partitioning 

The power system measurement graph is always a subset of the power system 

topology graph. Because it is prohibitively expensive to meter every single component in 

a power system (i.e. every transmission line, bus, transformer, etc.), the typical 

redundancy ratio (which is the number of measurements divided by the number of 
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estimated quantities) of realistic power systems is around 1.5-2.0. In our previous work, 

we assumed a redundancy ratio of 3.0 so that we could achieve very fine partitioning 

granularity to test large numbers of subproblems. Hence there was no difference between 

partitioning the power system topology graph and the measurement graph. However, 

when full measurements are not available, the partitioning results would be different. The 

main change is the input to the METIS software tool, which would be a smaller graph 

whose edges and vertices are created based on available measurements. The rest of the 

process remains identical to Section 3.5.1.  

3.6.2 Convex Relaxation of AC State Estimation Using Semidefinite Programming 

To guarantee ADMM convergence for the nonconvex and nonlinear AC state 

estimation problem, the problem first needs to undergo relaxation. There are two main 

ways of achieving this goal. The first class of methods is second-order cone program 

(SOCP) relaxation, which has been applied to the AC optimal power flow problem. The 

second class is semidefinite programming (SDP) relaxation, which has been applied to 

the AC state estimation problem. SOCPs are nonlinear convex problems, which includes 

linear programs, convex quadratic programs, and quadratically constrained convex 

quadratic programs. SDP includes SOCP as a special case. Although SOCPs can be 

expressed as SDPs, solving them via an SDP method is not a good idea, because interior-

point methods that directly solve the SOCP have a much better complexity than an SDP 

method under the worst case scenario [45], [46]. A review of the relevant papers that 

focus on convex relaxation of the AC state estimation problem is presented in Table 4. 

Most of the research literature has focused on SDP rather than SOCP. Several papers also 

discussed using distributed methods to help reduce the computational complexity of SDP.  

 

Table 4. AC State Estimation Convex Relaxation Literature Review 

Year Author Description Method? DSE? 

2011- Zhu and SDP problem formulation for SDP ADMM 
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2014 Giannakis 

[47]–[50] 

static state estimation, 

distributed optimization using 

ADMM 

2012-

2015 

Weng et al. 

[51]–[54] 

SDP problem formulation for 

static state estimation, 

distributed optimization using 

Lagrangian dual decomposition 

SDP Lagrangian 

2014 
Kim et al. [55], 

[56] 

SDP problem formulation for 

online static state estimation 

(does not use dynamic 

equations like extended 

Kalman filter) 

SDP No 

2015 Kim [57] 

SDP problem formulation for 

online static state estimation, 

use ADMM to reduce SDP 

complexity 

SDP ADMM 

2017 
Zheng et al. 

[58] 

Bilinear state estimation (two-

stage change of variables), not 

mathematically equivalent to 

Gauss-Newton but provides 

similar results in practice 

Bilinear ADMM 

2017 
Zhang et al. 

[59] 

Penalized SDP and SOCP 

problem formulations for both 

WLAV and WLS estimators 

SDP+SOCP No 

2018 
Aghamolki et 

al. [60] 

SOCP problem formulation for 

WLAV estimator, SDP cutting 

plane method used to strength 

SOCP relaxation 

SDP+SOCP No 

 

According to [50] and [57], the convex relaxation of AC state estimation is solved 

as follows. Recall the AC state estimation problem formulation from Section 2.2. Let 𝑌 

denote the bus admittance matrix, where the (𝑚, 𝑛) entry of 𝑌 is 

 𝑌𝑚𝑛 =

{
 

 
−𝑦𝑚𝑛 if (𝑚, 𝑛) ∈ ℇ

�̅�𝑛𝑛 + ∑ 𝑦𝑛𝑣
𝑣∈𝑁𝑛

 if 𝑚 = 𝑛

0 else

 (112) 

where ℇ is the set of transmission lines, 𝑦𝑚𝑛 is the line admittance between bus 𝑚 and bus 

𝑛, �̅�𝑛𝑛 is the shunt admittance for bus 𝑛, and 𝑁𝑛 is the set of buses connected to bus 𝑛 via 

transmission lines. 

Let us express each quadratic measurement in 𝑧 in terms of the outer-product 

matrix of 𝑉 = 𝑣𝑣𝐻. Define the new admittance matrices as 
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 𝑌𝑛 = 𝑒𝑛𝑒𝑛
𝑇𝑌 (113) 

 𝑌𝑚𝑛 = (�̅�𝑚𝑛 + 𝑦𝑚𝑛)𝑒𝑚𝑒𝑚
𝑇 − 𝑦𝑚𝑛𝑒𝑚𝑒𝑛

𝑇 (114) 

where {𝑒𝑛}𝑛=1
𝑁  is the canonical basis of ℝ𝑁. Their Hermitian counterparts are: 

 𝐻𝑃,𝑛 =
1

2
(𝑌𝑛 + 𝑌𝑛

𝐻) (115) 

 𝐻𝑄,𝑛 =
𝑗

2
(𝑌𝑛 − 𝑌𝑛

𝐻) (116) 

 𝐻𝑃,𝑚𝑛 =
1

2
(𝑌𝑚𝑛 + 𝑌𝑚𝑛

𝐻 ) (117) 

 𝐻𝑄,𝑚𝑛 =
𝑗

2
(𝑌𝑚𝑛 − 𝑌𝑚𝑛

𝐻 ) (118) 

 𝐻𝑣,𝑛 = 𝑒𝑛𝑒𝑛
𝑇 (119) 

Then the quadratic measurement model can be expressed linearly with respect to 𝑉 ∈

ℂ𝑁×𝑁 as 

 𝑃𝑛 = 𝑇𝑟(𝐻𝑃,𝑛𝑉) (120) 

 𝑄𝑛 = 𝑇𝑟(𝐻𝑄,𝑛𝑉) (121) 

 𝑃𝑚𝑛 = 𝑇𝑟(𝐻𝑃,𝑚𝑛𝑉) (122) 

 𝑄𝑚𝑛 = 𝑇𝑟(𝐻𝑄,𝑚𝑛𝑉) (123) 

 |𝑉𝑛|
2 = 𝑇𝑟(𝐻𝑉,𝑛𝑉) (124) 

Then the new AC state estimation problem formulation becomes  

 min
𝑉
∑ 𝑤𝑚(𝑧𝑚 − 𝑇𝑟{𝐻𝑚𝑉})

2

𝑀

𝑚=1

 (125) 

 s. t. 𝑉 ≥ 0 and rank(𝑉) = 1 (126) 

where 𝑤𝑚 =
1

𝜎𝑚
2 . At this point, this formulation is still nonconvex, because the cost 

function in (125) has a degree of 4 with respect to the entries of 𝑉, and the rank constraint 

in (126) is nonconvex. Using the Schur complement, (125) and (126) can be rewritten in a 

linear form using an auxiliary vector χ ∈ ℝ𝑀. 
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 {�̂�2, χ̂2} = argmin
𝑉,Χ

∑ 𝑤𝑚χ𝑚

𝑀

𝑚=1

= argmin
𝑉,Χ

𝑤𝑇χ (127) 

 s. t. 𝑉 ≥ 0 and  (128) 

 rank(𝑉) = 1 (129) 

 [
−χ𝑚 𝑧𝑚 − 𝑇𝑟(𝐻𝑚𝑉)

𝑧𝑚 − 𝑇𝑟(𝐻𝑚𝑉) −1
] ≤ 0  ∀ 𝑚 (130) 

In this new formulation, only the rank constraint is still nonconvex. By relaxing 

(dropping) this constraint via SDP, we arrive at the final problem formulation, which 

consists of (127), (128), and (130). This convex relaxation has a worst-case computational 

complexity of 𝑂 (𝑀4√𝑁 log (
1

𝜖
)), where 𝜖 represents a given solution accuracy. The 

computational burden of the algorithm motivates the need for a distributed 

implementation, such as ADMM. 

 To recover the estimated voltage state 𝑣 from �̂� = 𝑣𝑣𝐻, we can use eigenvalue 

decomposition.  

 �̂� =∑𝜆𝑖𝑢𝑖𝑢𝑖
𝐻

𝑟

𝑖=1

 (131) 

where = 𝑟𝑎𝑛𝑘(�̂�) , the eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑟 > 0 are positively ordered, and 

their corresponding eigenvectors are denoted as 𝑢1, 𝑢2, … , 𝑢𝑟. Because the best rank-one 

approximation for �̂� is 𝜆1𝑢1𝑢1
𝐻,  we can choose the state estimate to be 𝑣 = √𝜆1𝑢1 . 

3.6.3 Slack Bus Angle Referencing Using PMU Measurements 

As discussed in Section 3.4, there are two different methods for slack bus 

referencing. The approach described in this section is more accurate than the approach 

described in Section 3.5.3, but it relies on the availability of PMU measurements (i.e. 

both PMU and SCADA measurements are inputs to the state estimator). PMU 

measurements have several advantages over traditional SCADA measurements. First of 

all, they are synchronous, unlike SCADA measurements which are asynchronous. Also, 
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PMU measurements are linear functions of the bus voltage state vector, unlike SCADA 

measurements which are nonlinear functions of the state in AC WLS state estimation (as 

discussed in Section 2.2). To incorporate PMU measurements, the convex relaxed 

problem formulation from Section 3.6.2 needs to be expanded as follows. 

Let 𝐵𝑃𝑀𝑈 denote the set of buses that have an installed PMU. Let 𝑧𝑃𝑀𝑈 =

𝐻𝑃𝑀𝑈𝑣 + 𝑒𝑃𝑀𝑈, where 𝑧𝑃𝑀𝑈 is the vector of PMU measurements, 𝐻𝑃𝑀𝑈 is the PMU 

measurement matrix, and 𝑒𝑃𝑀𝑈 is the vector of PMU measurement noise. Each PMU 

measurement error is assumed to be independent of the SCADA measurement errors and 

Gaussian with a mean of 0 and a variance of 𝜎𝑠
2.  

In polar coordinates, the expression for 𝐻𝑃𝑀𝑈 is very straightforward but does not 

capture useful line current information. In rectangular coordinates, this information can 

be included (see [61]) as 

 𝐻𝑠 =

[
 
 
 
 

𝑒𝑠
𝑇 0𝑇

0𝑇 𝑒𝑠
𝑇

𝑆𝑛𝑅𝑒(𝑌𝑓𝑙) −𝑆𝑛𝐼𝑚(𝑌𝑓𝑙)

𝑆𝑛𝐼𝑚(𝑌𝑓𝑙) 𝑆𝑛𝑅𝑒(𝑌𝑓𝑙) ]
 
 
 
 

 (132) 

where 𝑒𝑠
𝑇 is the 𝑠-th row of the identity matrix, 𝑌𝑓𝑙 ∈ ℂ

2𝑁𝑙×𝑁𝑏 is the line-to-bus admittance 

matrix (𝑁𝑙 is the number of lines and 𝑁𝑏 is the number of buses), and 𝑆𝑛 is the binary 

𝐿𝑛 × 2𝑁𝑙 matrix that selects rows of 𝑌𝑓𝑙 such that they correspond to the lines connected 

to bus 𝑠. 

When we include PMUs, the augmented WLS cost becomes  

 min
𝑉

∑ 𝑤𝑚(𝑧𝑚 − ℎ𝑚(𝑣))
2

𝑀

𝑚=1

+ ∑ 𝑤𝑠‖𝑧𝑠 − 𝐻𝑠𝑣‖2
2

𝑠∈𝐵𝑃𝑀𝑈

 (133) 

where 𝑤𝑠 =
1

𝜎𝑠
2  ∀ 𝑠 ∈ 𝐵𝑃𝑀𝑈, 𝑧𝑠 is the PMU measurement at bus 𝑠, and 𝐻𝑠 is the PMU 

measurement matrix corresponding to 𝑧𝑠. Because of the legacy SCADA measurements, 

this augmented problem is also nonconvex. Hence we use convex relaxation again to 

obtain 
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 {�̂�, �̂�} = argmin
𝑋,𝑉,𝑣,𝜒

𝑤𝑇χ + ∑ 𝑤𝑠[𝑇𝑟(𝐻𝑠
𝐻𝐻𝑠𝑉) − 2𝑅𝑒{𝑧𝑠

𝐻𝐻𝑠𝑣)]

𝑠∈𝐵𝑃𝑀𝑈

 (134) 

 s. t. 𝑋 = [
𝑉 𝑣
𝑣𝐻 1

] ≥ 0 and  (135) 

 rank(𝑋) = 1 (136) 

 [
−χ𝑚 𝑧𝑚 − 𝑇𝑟(𝐻𝑚𝑉)

𝑧𝑚 − 𝑇𝑟(𝐻𝑚𝑉) −1
] ≤ 0  ∀ 𝑚 (137) 

After solving the optimization problem for each sub-area, to set the corresponding 

slack bus voltage angle to 0, we need to rotate 𝑣𝑘 by multiplying it with 
𝑉𝑟𝑒𝑓
𝐻

|𝑉𝑟𝑒𝑓|
, where 𝑉𝑟𝑒𝑓 

is the complex bus voltage for each local slack bus. Then we can apply the same slack bus 

referencing method described in Section 3.5.3, but using the more accurate states 

estimated from hybrid PMU and SCADA measurements. 

3.6.4 ADMM-Based AC State Estimation 

Partition the global state estimation problem into multiple areas (in the literature, 

the boundaries are established by control area or arbitrarily for computational purposes), 

and reformulate the problem such that it can be solved using a distributed optimization 

algorithm. Each area solves the following modified WLS problem  

 𝑓𝑘(𝑊𝑘) =∑𝑤𝑙[𝑧𝑘
𝑙 − 𝑇𝑟(𝐻𝑘

𝑙𝑊𝑘)]
2

𝑀𝑘

𝑙=1

 (138) 

 �̂�𝑘 = argmin
𝑊𝑘

∑𝑓𝑘(𝑊𝑘)

𝑘

 (139) 

 s. t.  𝑊𝑘 ≥ 0, ∀𝑘,𝑊𝑘
𝑗
= 𝑊𝑗

𝑘, ∀𝑘, ∀𝑗 ∈ 𝐴𝑘  (140) 

where 𝑣𝑘 is the voltage vector for area 𝑘, 𝑊𝑘 = 𝑣𝑘𝑣𝑘
𝐻, 𝑀𝑘 is the number of measurements 

included in area 𝑘, 𝑧𝑘
𝑙  is each measurement included in area 𝑘, and 𝐻𝑘

𝑙  is the subset of 

rows and columns from 𝐻 in Section 3.6.2 corresponding to buses in area 𝑘. For 

neighboring areas 𝑘 and 𝑗, let 𝑆𝑗𝑘 denote their shared buses. Then 𝑊𝑘
𝑗
 is the submatrix of 
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𝑊𝑘 that contains the rows and columns corresponding to 𝑆𝑗𝑘, and 𝑊𝑗
𝑘 is the submatrix of 

𝑊𝑗 that contains the rows and columns corresponding to 𝑆𝑗𝑘. The coupling equality 

constraint 𝑊𝑘
𝑗
= 𝑊𝑗

𝑘 forces the voltages of the shared buses to be the same. An equivalent 

problem statement for each area is 

 �̂�𝑘 = argmin
𝑊𝑘>0

∑𝑓𝑘(𝑊𝑘)

𝑘

 (141) 

 s. t.  𝑅𝑒(𝑊𝑘
𝑗
) = 𝑅𝑘𝑗, ∀𝑗 ∈ 𝐴𝑘 , ∀𝑘 (142) 

 𝐼𝑚(𝑊𝑘
𝑗
) = 𝐼𝑘𝑗 , ∀𝑗 ∈ 𝐴𝑘  , ∀𝑘 (143) 

where 𝑅𝑘𝑗 and 𝐼𝑘𝑗 are auxiliary matrices to handle the coupling constraints. The 

augmented Lagrangian function of (141) is  

ℒ({𝑊𝑘}, {𝑅𝑘𝑗}, {𝐼𝑘𝑗}, {Γ𝑘𝑗}, {Λ𝑘𝑗})

=∑{𝑓𝑘(𝑊𝑘)

𝑘

+ ∑ 𝑇𝑟[Γ𝑘𝑗(𝑅𝑒(𝑊𝑘
𝑗
) − 𝑅𝑘𝑗)] +

𝑗∈𝐴𝑘

∑
𝜌

2
‖𝑅𝑒(𝑊𝑘

𝑗
) − 𝑅𝑘𝑗‖𝐹

2

𝑗∈𝐴𝑘

+ ∑ 𝑇𝑟[Λ𝑘𝑗(𝐼𝑚(𝑊𝑘
𝑗
) − 𝐼𝑘𝑗)] +

𝑗∈𝐴𝑘

∑
𝜌

2
‖𝐼𝑚(𝑊𝑘

𝑗
) − 𝐼𝑘𝑗‖𝐹

2

𝑗∈𝐴𝑘

} 

(144) 

Then the steps for the resulting ADMM algorithm can be summarized as follows: 

Step 1 – Update 𝑾𝒌
𝒊+𝟏 for each area k. 

𝑊𝑘
𝑖+1 = argmin

𝑊𝑘≥0
𝑓𝑘(𝑊𝑘) + ∑ 𝑇𝑟 [Γ𝑘𝑗

𝑖 (𝑅𝑒(𝑊𝑘
𝑗
))] +

𝑗∈𝐴𝑘

∑
𝜌

2
‖𝑅𝑒(𝑊𝑘

𝑗
) − 𝑅𝑘𝑗

𝑖 ‖
𝐹

2

𝑗∈𝐴𝑘

+ ∑ 𝑇𝑟 [Λ𝑘𝑗
𝑖 (𝐼𝑚(𝑊𝑘

𝑗
))] +

𝑗∈𝐴𝑘

∑
𝜌

2
‖𝐼𝑚(𝑊𝑘

𝑗
) − 𝐼𝑘𝑗

𝑖 ‖
𝐹

2

𝑗∈𝐴𝑘

 

(145) 

 Step 2 – Update the auxiliary variables for each area k. 

 𝑅𝑘𝑗
𝑖+1 =

1

2
[𝑅𝑒(𝑊𝑘

𝑗
)
𝑖+1

+ 𝑅𝑒(𝑊𝑗
𝑘)
𝑖+1
]  (146) 
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 𝐼𝑘𝑗
𝑖+1 =

1

2
[𝐼𝑚(𝑊𝑘

𝑗
)
𝑖+1

+ 𝐼𝑚(𝑊𝑗
𝑘)
𝑖+1
]  (147) 

Step 3 – Update the ADMM multipliers per area k. 

 Γ𝑘𝑗
𝑖+1 = Γ𝑘𝑗

𝑖 +
𝜌

2
[𝑅𝑒(𝑊𝑘

𝑗
)
𝑖+1

− 𝑅𝑒(𝑊𝑗
𝑘)
𝑖+1
] (148) 

 Λ𝑘𝑗
𝑖+1 = Λ𝑘𝑗

𝑖 +
𝜌

2
[𝐼𝑚(𝑊𝑘

𝑗
)
𝑖+1

− 𝐼𝑚(𝑊𝑗
𝑘)
𝑖+1
]  (149) 

One way to recover the actual voltage estimate 𝑣 for each area 𝑘 from 𝑊𝑘 = 𝑣𝑘𝑣𝑘
𝐻 

is to use eigenvalue decomposition. Then 𝑊𝑘 = ∑ 𝜆𝑖𝑢𝑖𝑢𝑖
𝐻𝑟

𝑖=1 , where 𝑟 = 𝑟𝑎𝑛𝑘(𝑊𝑘), 𝜆1 ≥

𝜆2 ≥ ⋯ ≥ 𝜆𝑟 > 0 (the positive ordered eigenvalues), and 𝑢𝑖 are the eigenvectors. The 

state estimate can be chosen to be 𝑣(𝑢1) = √𝜆1𝑢1. 
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4 POWER SYSTEM CYBERSECURITY 

Chapter 4 provides background information on power system cybersecurity. 

Section 4.1 introduces cybersecurity as an emerging area of concern for the power 

industry. Section 4.2 describes the existing information and communication architecture 

of energy control centers and their vulnerabilities. Section 4.3 assesses the potential 

impact of a major cyber-attack on the power grid in terms of number of people impacted 

and economic damage. Section 4.4 provides an overview of relevant cyber-attacks in 

recent years. It covers both cyber-attacks on the electric grid that have succeeded in 

disrupting electricity service to customers as well as other cyber-attacks that have 

penetrated electric utility networks. Section 4.5 describes the response of the United 

States government and the American power system industry. Section 4.6 reviews specific 

power system applications that are particularly vulnerable to cyber-attacks as discussed in 

the research literature. 

4.1 Introduction 

Currently cybersecurity is a major challenge faced by governments and businesses 

around the world. In recent years, concerns have arisen that cyber-attacks launched by 

organizations with large amounts of resources at their disposal might choose to target 

critical infrastructure such as industrial control systems (ICS), which would be potentially 

devastating in terms of its personal and economic impact. The grid is one example of an 

ICS. The first well-known cyber-attack on an industrial control system occurred as early 

as 2000. However, in the power industry, cybersecurity is a relatively new concern 

arising in the past decade, although research on the subject has existed since the mid-

2000s. The literature has remained largely academic in nature since there have been few 

cyber-attacks on the electric grid to date that have succeeded in permanently damaging 

infrastructure or disrupt the service of electricity to end customers for long periods of 
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time. Due to the lack of historical information about grid cyber-attacks, the main focus of 

the existing literature has been on classifying different types of cyber-attacks, identifying 

general vulnerabilities in the control and operation of the grid, and formulating/detecting 

novel attacks.  

In the past, cyber-attacks on industrial control systems were carried out by 

disgruntled employees or as a means for financial extortion (such as ransomware), but 

increasingly they are cyber-weapons deployed by nation-states. The most sophisticated 

cyber-attacks require months to years of reconnaissance, planning, and coordination, 

which means they require the investment of massive amounts of resources that only 

nation-states can afford to provide. In recent years, there has been a rash of cyber-attacks 

that targeted utilities and energy companies in the United States, although none have 

succeeded to date in shutting off power to customers. These attacks have been linked to 

hostile foreign nation-states. The end goal of the attackers is unclear, but the focus thus 

far has been to gather information. The intent of these attacks could be to simply commit 

industrial espionage, or it could be more insidious, such as setting the stage for future 

cyber-attacks that aim to do major infrastructure damage. 

4.2 The Vulnerability of the Power Grid 

Electric utilities use real-time SCADA systems to monitor and control their assets. 

A typical SCADA architecture for an energy control center is shown in Figure 20. There 

are five main components. RTUs are field-based devices that are used to manage the flow 

of power at an electrical substation. Substations are typically located in remote areas and 

are unattended by humans. Programmable logic controllers (PLCs), intelligent electronic 

devices (IEDs), and relays are used to automate tasks at each substation. A control center 

with central computers manages the remote equipment at the substations and processes, 

analyzes, and archives the collected real-time information. A communication system is 

used to convey monitoring information from substations back to the control center as 
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well as send commands from the control center to the substations, using a communication 

protocol (such as DNP3, the predominant standard used in distribution substations in 

North America). In addition to substation communication, a control center may also 

communicate with its neighboring control centers to coordinate the transfer of power 

from one area to another. Finally there is a human-machine interface (HMI) at the control 

center that allows power system operators to supervise and manage the flow of power. It 

is important to emphasize that the SCADA network at an energy control center is 

typically isolated from the corporate network and the Internet via firewalls. Engineering 

and IT functions can connect to the corporate network but cannot directly control and 

operate the power grid. (However, as discussed in Section 4.4, it is possible to bridge this 

type of system protection.) 

These legacy SCADA systems were originally designed for safety and reliability. 

There is an implicit assumption of trust of all system components and communications, 

so these systems are vulnerable to the cyber-threat posed by malicious actors. As the 

connectivity between the Internet, different networks, and different systems increases, the 

power grid becomes increasingly susceptible to cyber-attacks. For example, generating 

turbines were once controlled and operated mechanically, but now they are mostly 

controlled by industrial control systems via remote automation. Also, grid modernization 

efforts to incorporate digital automation into protection, operation, and control have 

introduced more Internet protocol enabled points into the power system network, which 

further increases the likelihood of malicious intrusion. Furthermore, an increasing 

number of new vulnerabilities may be introduced into the SCADA system via system 

additions or integrations. Finally, greater requirements for sensitive data collection and 

exchange between parties such as utilities, coordinators, and customers create additional 

points-of-entry. For example, networks may be reconfigured to allow one-time access for 

a particular need, and that access is forgotten, leaving behind an open door for malicious 

actors [62]. 
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Figure 20. SCADA architecture for the control center [63] 

 

Because the power grid is a mix of older legacy equipment and newer digital 

assets built over the span of decades, it is difficult to defend the entire system against 

cyber-attacks since there are so many potential vulnerabilities. Also, because substations 

are unmanned and geographically disbursed in remote locations, they need to be secured 

against physical threats. (Experts have noted that if a threat actor is able to physically 

access a substation, there is no limit to the amount of potential damage since malware can 

be introduced directly to devices, equipment can be physically destroyed, and relays can 

be manipulated [62].) Because a successful attack on the bulk generation and 

transmission systems would cause the most severe consequences, those should be the 

primary focus of power system cybersecurity research. Other essential grid functions that 

are at risk to cyber-attacks include: 

• Distribution systems 
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• Backup systems 

• Communication systems 

• Blackstart capability 

Some of these will be discussed in greater detail in Section 4.6. 

4.3 Potential Impacts of a Grid Cyber-Attack 

A 2015 joint report by Lloyd’s, a specialist insurance and reinsurance 

underwriting company, and the University of Cambridge’s Centre for Risk Studies [64] 

explored the implications of a simulated cyber-attack on the U.S. power grid in terms of 

potential economic impact and outage times. The scenario they created assumed a piece 

of malware was able to infect energy control centers in parts of the Northeast and seizes 

control of 50 generators (out of almost 700 generators in the region), forcing them to 

overload and burn out. This event had the potential to destabilize the Eastern 

Interconnection and trigger a blackout that impacts 93 million people. The estimated total 

impact to the US economy was $243B. 

While cyber-attacks have not yet caused widespread power outages in the United 

States, we can examine other major blackouts that have occurred in recent history to get 

another estimate of their potential impact. The infamous Northeast blackout of August 

2003 impacted approximately 50 million people and caused 100 deaths. (A satellite 

image of the event is shown in Figure 21.) The estimated economic damage was 

approximately $6B, and restoration took between 2 days and several weeks. Overall, this 

event led to 592M customer-hours of lost service [65]. In September 2017, Hurricane 

Maria devastated parts of Florida and the Caribbean. Puerto Rico was especially hard-hit 

since the storm passed directly overhead, wiping out most of their major infrastructure. 

This event is considered to be one of the longest power outages in human history (thus 

far) with 1248M+ customer-hours of lost service [65]. As of May 2018, there were still 

pockets of the island without electricity. 
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Figure 21. NOAA satellite image of the U.S. Northeast blackout in August 2003 [66] 

 

4.4 Significant Cyber-Attacks 

As of May 2018, there have only been two confirmed cyber-attacks on the power 

grid that have succeeded in disrupting the service of electricity. In recent years, there 

have been a number of other cyber-attacks on the grid (listed in Table 5) that, while they 

did not cause outages, did succeed in causing economic damage and/or the hacking of 

encrypted information, which could be used at a later date to launch more sophisticated 

attacks. 

 

Table 5. Incomplete List of Recent Attacks on the Power Grid 

Date Area Impacted 
Loss of 

Power? 
Brief Description and Impact 

03/2007 
Aurora Generator Test 

(Demonstration) [67] 
No 

Idaho National Labs demonstrated how a 

cyber-attack that rapidly opens/closes a diesel 

generator’s breakers out of phase can cause it 

to explode. 

04/2013 Pacific Gas & Electric No Snipers using rifles fired at the Metcalf 
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(US) [68] transmission substation in California, knocking 

out 17 transformers and causing over $15M in 

damage. 

12/2015 

Prykarpattyaoblenergo, 

Chernivtsioblenergo, 

Kyivoblenergo 

(Ukraine) [7], [69] 

Yes 

Approximately 225,000 people lost power for 

up to 6 hours; control centers not fully 

functional even after 2 months. See Section 

4.4.2 for more details. 

12/2016 Ukrenergo (Ukraine) Yes 

One fifth of Kiev lost power for 1 hour. 

Possible large-scale test of new automated 

malware, using information gained from the 

2015 attack. See Section 4.4.3 for more details. 

12/2016 
Burlington Electric 

(US) 
No 

Malware found on isolated laptop. No impact 

on grid operations. 

04/2017 EirGrid (Ireland) [70] No 

Hackers gained access to the utility’s 

communications by tapping their Vodafone 

network. No impact on grid operations. 

05/2017 
Wolf Creek Nuclear 

Operating Corp (US) 
No 

Hackers compromised computers by emailing 

fake resumes that contained malicious code to 

senior engineers. No impact on grid operations. 

 

In this section, we will discuss several significant cyber-attacks that are relevant 

to power system cybersecurity. The first is the well-known Stuxnet attack in 2009-2010 

that was able to bridge an air-gapped industrial control system in Iran that was used for 

uranium-enrichment. Although Stuxnet was not an attack on the power grid, it does 

demonstrate that air-gapping alone is not enough to protect industrial control systems. 

The second cyber-attack discussed in this section is the December 2015 cyber-attack in 

Ukraine. This incident is the first well-documented cyber-attack on a power system that 

succeeded in shutting off power to customers. It was almost certainly carried out by a 

nation-state, and it was incredibly sophisticated in nature. The third cyber-attack we will 

study is the December 2016 cyber-attack in Ukraine. Using information that was most 

likely obtained during the 2015 attacks, attackers were able to shut off power in Kiev, 

Ukraine for approximately an hour. This incident was potentially a dry run to test the 

latest malware on a large-scale power grid.  
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4.4.1 Stuxnet (2009) 

Stuxnet was most likely a cyber-weapon developed by nation-states to target the 

uranium-enrichment facilities in Iran. (It reportedly ruined almost 20% of Iran’s nuclear 

centrifuges, and 58% of the infected computers were in Iran [71].) It is noteworthy as the 

first confirmed example of malware that was specifically tailored to target industrial 

control systems used for power plants, dams, oil pipelines, and other critical 

infrastructure. Despite the fact that the facilities utilized air gaps, Stuxnet was able to 

bridge them via infected USB drives. (Air gaps are network security measures to ensure 

that a secure computer network is physically isolated from unsecured networks such as 

the Internet. They are typically used in military/government computer systems, financial 

computer systems, industrial control systems such as SCADA, and life-critical systems 

including nuclear power plant controls. They represent nearly the maximum protection 

one network could have from another network.) Once Stuxnet entered a system, the 

worm would infect and update other network computers that were not directly connected 

to the Internet. Its target was to look for computers and networks with very specific 

configurations. 

First, it would infect all machines that were running Microsoft Windows. It was 

able to evade automatic detection systems, because its device drivers were digitally 

signed with the private keys of two certificates from JMicron and Realtek, which allowed 

it to install kernel-mode rootkit drivers without notifying users. Next, it would look for 

whether a given machine contained project files from Siemens’s WinCC/PCS 7 (Step 7) 

SCADA control software and infect them. It intercepted communications between the 

WinCC software and the target Siemens PLC devices, so that it could install itself on 

PLCs unnoticed. Stuxnet’s payload only attacked PLC systems with variable-frequency 

drives from two vendors: Vacon (Finland) and Fararo Paya (Iran), and it monitored the 

frequency of the attached motors, attacking only systems that spin between 807 Hz and 

1210 Hz. When specific criteria were met, it modified the frequency to 1410 Hz, then to 
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2 Hz, and then to 1064 Hz, thus changing the rotational speed of the connected motors. It 

also installs a rootkit that masked these changes in rotational speed from monitoring 

systems, so that the centrifuges still appeared to be operating normally even when they 

were not [71]. The way the worm was spread is illustrated in Figure 22. Figure 23 

illustrates the potential vulnerabilities in an industrial control system network. 

 

Figure 22. Attack procedure in Stuxnet ICS cyber-attack [72] 

 

There are several key takeaways from Stuxnet. First, it specifically targeted 

industrial control systems. Next it was able to bridge air gaps, which are the industry 

standard for network protection. Finally it spied on fast-spinning centrifuges, altering 

their speed to cause them to tear themselves apart while providing false normal feedback 
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to monitoring systems. That final step was crucial in masking the attack and fooling 

human operators into believing that the centrifuges were still performing as intended. 

This real-world example demonstrates the level of coordination and sophistication that 

can be expected from a nation-state that decides to attack critical infrastructure such as 

the power grid. It also illustrates that such an attack would be difficult but not impossible 

to carry out, requiring vast amounts of resources, planning, and reconnaissance. 

 
 

Figure 23. Potential vulnerabilities in an ICS cyber-attack [73] 

 

4.4.2 Ukraine (2015)  

 The 2015 cyber-attack on the Ukraine power grid is the first known cyber-attack 

on the grid that succeeded in disrupting electricity service to end users. This attack was 

almost certainly engineered by a nation-state with the motivation being political in 

nature. The end result was that the control centers of 3 regional electricity distribution 

companies were directly affected (3 more experienced intrusion that did not impact 

operations). A total of 30 substations were disconnected, and approximately 225,000 
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customers (a total load loss of over 130 MW) lost power for 1 to 6 hours. More than two 

months after the attack, the control centers were still not fully operational. The attackers 

had overwritten firmware on critical devices at 16 substations, leaving them unable to 

respond to remote operator commands. Thus workers had to control these breakers 

manually. 

 According to [74], the events unfolded as follows. On December 23, 2015, 

Prykarpattyaoblenergo (one of the electric utilities in Western Ukraine) detected that 

power was out in the region’s main city, Ivano-Frankivsk. The cause was unknown at 

first. Then the oblenergo discovered that a third party was able to illegally enter their 

computer and SCADA systems, using them to remotely disconnect substation breakers. 

Also, its call center was having technical difficulties due to an influx of calls. Two other 

utilities Kyivobnergo and Chernivtsioblenergo were attacked within 30 minutes of each 

other. The attackers disconnected seven 110 kV and twenty-three 35 kV substations for 

three hours. In order to respond to the attack, operators were forced to switch to manual 

mode since remote commands were not operational.  

 This attack utilized a number of sophisticated techniques. They included the 

following [7]: 

• Spear-phishing emails to gain access to the oblenergos’ business networks 

• BlackEnergy 3 malware embedded in manipulated Microsoft Office documents 

(Excel and Word) to steal credentials from the business networks 

• Modified KillDisk to erase master boot record, select logs, and system events 

• Use of the Uninterruptible Power Supply (UPS) system to disconnect load with 

scheduled service outage 

• Telephone DoS attack on the oblenergo’s call center to deny outage reporting 

Figure 24 illustrates how the attackers infiltrated the utilities’ control centers. 
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Figure 24. Attack procedure in Ukraine grid cyber-attack [75] 

 

4.4.3 Ukraine (2016) 

On December 17, 2016, a second cyber-attack on Ukraine’s power grid occurred. 

This time the target was Ukrenergo (a regional electric utility), and the attack caused one-

fifth of Kiev, the capital of Ukraine, to lose power for approximately one hour. It has 

been speculated that this second attack was a large-scale test of the latest malware dubbed 

alternately as Industroyer or Crash Override. Unlike in 2015 where the attackers gained 

access to the utility networks and manually turned off power to electrical substations, the 

2016 cyber-attack was entirely automated. Fully automated cyber-attacks can cause 

blackouts faster, with less preparation, and with less human oversight, making them far 

more scalable. According to [76], if you estimate that it took more than 20 people to 

attack three utilities  in 2015, that same team could target more than ten utilities at a time 

in 2016.   

It is unclear how Crash Override infected Ukrenergo. ESET (a Slovakian anti-

virus firm), one of the two cybersecurity firms that analyzed this incident, suspects that 

the same type of targeted phishing emails that were used in the 2015 attack may have 

been used in 2016 as well. Once Crash Override infected Windows machines on a 
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network, it is able to automatically map out the control system and locate the target 

equipment. Then it could launch one of four payload modules that communicate with 

equipment via different industrial communication protocols (IEC 60870-5-101, IEC 

60870-5-104, IEC 61850, and OPC DA) [77]. The malware has several features designed 

to enable it to remain under the radar. For example, communication can be limited to 

non-working hours, and it can masquerade as the Notepad application.  It can also erase 

crucial system registry keys and overwrite files to make the system unbootable and 

recovery more difficult. The architecture of this malware is shown in Figure 25. 

 

Figure 25. Crash Override malware architecture [77] 

 

ESET suggests that Crash Override has an additional feature that attackers could 

use to cause physical damage to power equipment; it has a denial-of-service tool that 

exploits a known vulnerability in the Siemens Siprotec digital relay. By sending the relay 

a carefully crafted chunk of data, Crash Override could disable the device until it is 

manually rebooted. In July 2015, Siemens released a firmware update for its vulnerable 

Siprotec relays and suggests that owners patch their devices. The intent of the feature 

might be to cut off access to circuit breakers after the malware opens them. If used in 

combination with a feature that overloads critical components (such as transformers), it 
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could cause severe damage to that equipment since circuit breakers would be unable to 

prevent them from overheating. 

Dragos Inc. independently verified some of ESET’s findings [78]. In their defense 

recommendations, they suggested that electric utilities: 

• Understand where IEC 104, IEC 61850 and DNP3 protocols are used in their 

systems, look for increased usage of the protocols against known environment 

baselines, and look for systems leveraging these protocols that have not used 

them before. 

• Prepare incident response plans and perform table top exercises, including 

practice manual operations to recover compromised SCADA equipment. 

They suggested that electric utilities should not: 

• Rely on DNP3 as a protection mechanism simply because Crash Override did 

not have an explicit DNP3 module. 

• Rely on air gapped networks, unidirectional firewalls, anti-virus in the ICS, 

and other passive defense/architecture changes. “No amount of security 

control will protect against a determined human adversary. Human defenders 

are required.” 

4.5 U.S. Response 

4.5.1 Government Analysis and Response 

In January 2018, the New York Times reported that “A newly drafted United 

States nuclear strategy… would permit the use of nuclear weapons to respond to… cyber-

attacks” [79]. The U.S. government has identified cyber-attacks as a major threat to 

critical infrastructure, which includes the transmission power grid, and thus national 

security, so it is considering the use of nuclear weapons as an appropriate response to 

nation-states that carry out cyber-attacks against U.S. infrastructure. This action 
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illustrates the seriousness of the threat that cyber-attacks poses to our nation and the 

extent to which the U.S. government is willing to go to combat them. 

In March 2018, the U.S. government issued a technical alert entitled “Russian 

Government Cyber Activity Targeting Energy and Other Critical Infrastructure Sectors 

[80].” In the alert, they discussed different tactics, techniques, and practices used by 

Russian government threat actors on American victim networks since at least March 

2016. There are commonly two categories of victims: staging targets and intended 

targets. Staging targets are peripheral organizations such as third-party suppliers with less 

secure networks that are initially attacked so that the attackers can then reach their final 

intended targets such as organizational networks for government and critical 

infrastructure. To reach their intended targets, Russian threat actors will use practices that 

include spear-phishing emails from compromised legitimate accounts, watering-hole 

domains, credential gathering, open-source and network reconnaissance, host-based 

exploitation, and targeting industrial control system infrastructure. 

The Lockheed-Martin Cyber Kill Chain model adopted by the Department of 

Homeland Security includes the following phases: reconnaissance, weaponization, 

delivery, exploitation, installation, command and control, and actions on the objective.  

Stage 1 – Reconnaissance: Threat actors accessed publicly available information 

hosted by organization-monitored networks to look for information on network and 

organizational design, used compromised staging targets to download source code for 

intended targets’ websites, and attempted to remotely access corporate email/VPN 

connections. 

Stage 2 – Weaponization: Threat actors used Microsoft Office email attachments 

to obtain a credential hash and then use password-cracking techniques to get the plaintext 

password. Also threat actors developed compromised staging targets (e.g. trade 

publications, informational websites on infrastructure, ICS, etc.) into watering holes, 

where they embedded malicious code into those websites to harvest credentials.  
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Stage 3 – Delivery: Threat actors used generic PDF documents that contained a 

shortened URL which led users to a website that prompted them for their email address 

and password. In some cases, the attachments masqueraded as contracts, resumes, 

invitations, or policy documents to entice users to open them. 

Stage 4 – Exploitation: To capture user credentials, threat actors used malicious 

.docx files, which connected to a command and control server owned by either the threat 

actors or a victim. When a user attempted to authenticate to the domain, the server was 

provided with the hash of the password. Local users received a graphical user interface 

prompt to enter a username/password, which the server received. 

Stage 5 – Installation: Threat actors used compromised credentials to 

masquerade as authorized users in environments that only use single-factor 

authentication. Threat actors created local administrator accounts in the staging targets 

(sometimes disguised as legitimate backup accounts) and placed files within the intended 

targets. Once inside an intended target’s network, threat actors downloaded tools from a 

remote server. 

 Stage 6 – Command and Control: Threat actors created web shells on intended 

targets’ publicly accessible web and email servers. 

Stage 7 – Actions on Objectives: Threat actors conducted reconnaissance in the 

intended target’s network by identifying and browsing its file servers. They used 

privileged credentials to access the victim’s domain controller. In multiple instances, they 

accessed workstations/servers on a corporate network that contained data from energy 

generation facilities. They accessed files related to SCADA systems, such as wiring 

diagrams or panel layouts. They targeted and copied profile and configuration 

information for accessing ICS systems on the network. Also they performed cleanup 

operations afterwards to cover up their tracks. 
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4.5.2 Industry Analysis and Response 

Currently transmission substations are subject to mandatory North American 

Electric Reliability Corporation’s Critical Infrastructure Protection (NERC CIP) 

cybersecurity standards and physical security standards (e.g. CIP-014-2 – Physical 

Security), while distribution substations are not (they are governed by individual state 

public utility commissions so cybersecurity standards and/or measures may vary widely). 

Hence, a threat actor is more likely to be able to access a distribution substation, which 

may lack even basic cybersecurity and physical security protection. Although 

transmission substations are protected by NERC CIP regulation, they are still susceptible 

to cyber-attacks at the distribution level. In general, a cyber-attack on a distribution 

substation could open circuit breakers to interrupt power or compromise SCADA 

operations to cause load instability, but these effects would only have impact on local 

electricity service. However, if a threat actor can physically access a distribution SCADA 

master via a substation, which allows access to other distribution and possibly 

transmission elements in the system, this could have much more serious consequences. 

Also, connection points between the transmission system and the distribution system, 

such as step-down transformers, do not always fall under NERC CIP regulation and may 

present additional cyber vulnerabilities [62]. 

There are currently eleven NERC CIP sections, ten of which are related to 

cybersecurity. CIP-002-5.1a covers (bulk electric system) cyber system categorization. 

CIP-003-6 covers security management controls. CIP-004-6 covers personnel and 

training. CIP-005-5 covers electronic security perimeters. CIP-006-6 covers physical 

security of cyber systems. CIP-007-6 covers system security management. CIP-005-5 

covers incident reporting and response planning. CIP-009-6 covers recovery plans for 

(bulk electric system) cyber systems. CIP-010-2 covers configuration change 

management and vulnerability assessments. Finally, CIP-011-2 covers information 

protection. 
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In November 2017, more than 450 organizations and 6,500 individuals 

participated in NERC’s fourth simulated power grid attack exercise known as GridEx 

(held every two years). The exercise was designed to provide an opportunity for different 

industry and government stakeholders to respond to simulated cyber and physical attacks. 

The baseline scenario was composed of a series of four “moves,” each lasting four hours 

(detailed descriptions are provided in Figure 26). It is assumed that coordinated cyber-

physical attacks were able to impact operations at bulk transmission and generation 

facilities, causing outages and some islanding conditions. The simulated cyber-attack 

options included watering hole, patch deployment, and remote access vulnerabilities that 

affected utility ICS. From this exercise, the following lessons were learned [81]: 

• Lead planners need to be more proactive in communicating with local law 

enforcement or utility equipment vendors. 

• Other critical infrastructure such as oil, natural gas, water, and 

telecommunications, which may have interdependencies with the power grid, 

also need to be notified in the event of an attack. 

• The E-ISAC portal, which is designed to be a central hub for information, 

mitigation, and response related to grid cyber-physical attacks, needs to be 

more effective. 

• Utilities need to develop better procedures for external communications in 

order to alert, educate, and inform customers about outages. 

• Utilities need to increase communication resilience in the event that primary 

communication paths are disrupted so that they can maintain contact with 

internal personnel, emergency managers, and first responders. 

• There needs to be increased participation in the Cyber Mutual Assistance 

(CMA) program (launched in 2016), which provides a pool of utility 

cybersecurity experts who volunteer to share their information with other 

utilities in the event of a cyber-emergency. 
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Figure 26. GridEx IV Moves [81] 

 

4.6 Vulnerable Power System Applications 

Most of the research literature on power system cybersecurity categorizes cyber-

attacks on the grid as attacks that target availability, integrity, or confidentiality. Attacks 

that target availability, also known as denial-of-service (DoS) attacks, attempt to delay, 

block, or corrupt system communication. These can be targeted at a variety of 

communication layers, like channel jamming at the physical layer, spoofing at the MAC 

layer, distributed traffic flooding at the network and transport layer, and application-layer 

DoS attacks. Because the grid has stringent communication requirements (3 ms for IEC 

61850), an attack that delays a time-critical message can lead to catastrophic results. 

Attacks that target integrity, such as false data injection (FDI), are aimed at the 

application layer and try to stealthily modify critical data so that it compromises the 
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secure operation of the grid. Attacks that target confidentiality eavesdrop on 

communication channels to acquire unauthorized information, such as customers’ 

account numbers and electricity usage. The survey in [82] describes these three classes of 

cyber-attacks in greater detail and discusses vulnerabilities of 1) transmission and 

distribution operations and 2) the advanced metering infrastructure (AMI) and home-area 

networks for each attack class. 

The literature presents a number of arenas in which cyber-attacks can negatively 

affect the electric grid. Xie et al. demonstrated that an undetectable attack can impact 

market operations and provide opportunities for financial arbitrage [83], [84]. Sridhar and 

Govindarasu showed that a data integrity attack can successfully fool power system 

operators into making the wrong control action via the automatic generation control 

(AGC) loop by maliciously altering the frequency and tie line flow measurements [85]. 

That work was extended in [86] to include how to detect anomalies in the ACE and 

mitigate the effects of such an attack. Sridhar et al. pinpointed other applications with 

cyber vulnerabilities in [87]. The authors divided these vulnerabilities into three 

categories: generation, transmission, and distribution. In generation systems, governor 

control and AGC are potential targets. In transmission systems, the state estimator and 

FACTS devices are vulnerable. In distribution systems, malicious changes to load 

shedding schemes are a concern, and smart meters could be targeted. 
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5 STATE ESTIMATION IN POWER SYSTEM 

CYBERSECURITY 

The work presented in this chapter focuses on investigating and ultimately 

mitigating the impact of two specific types of cyber-attacks on the power grid. The first 

type is bad command injection, where the attacker intercepts a legitimate command from 

the control center and alters it to have a malicious impact on the power system. This type 

of attack is sophisticated, requiring the attacker to have at least partial knowledge of the 

system topology and operation. Also, it is undetectable under current power system 

practices (existing bad data detection tests, such as the largest normalized residual test 

described in Section 2.4, are incapable of identifying this type of attack). The second type 

is a network availability attack such as denial-of-service (DoS) on an RTU. This type of 

attack is less sophisticated and easier to detect, but it can still significantly hamper power 

system operations and operator situational awareness (as discussed in later sections). 

Chapter 5 is organized as follows. Section 5.1 describes the process for traditional 

power system security assessment. In Section 5.2, we propose a new cyber-physical 

security assessment (CPSA) methodology and present a new co-simulation environment, 

which includes an enhanced state estimator, that can model the electrical and 

communication networks in a cyber-physical smart grid. We also present simulation 

results for mitigating a bad command injection attack. In Section 5.3, we introduce a 

novel 3D visualization that could be used to identify how a power system event or cyber-

attack evolves over time. In Section 5.4, we present simulation results that demonstrate 

the devastating effect that DoS attacks could have on the state estimator. We also propose 

a new methodology for identifying the most vulnerable RTUs, which are good candidates 

for power system planners and IT staff to focus their resources on securing. 
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5.1 Traditional Power System Security Assessment 

Traditional power system security refers to the ability of a power system to 

withstand disturbances (also referred to as contingencies) without unduly impacting the 

availability or quality of its electricity service to loads. Currently, security assessment 

functions in power system control and operations analyze the vulnerability of the system 

to a set of potential contingencies on a real-time or near real-time basis. At any given 

point in time, power system operators need to be prepared for possible contingencies such 

as the loss of a transmission line, equipment outage, generator failure, a sudden change in 

load demand, and a change in the system configuration. 

The security of the power system can be classified into one of four states: normal 

secure, normal insecure, emergency, or restorative. The system is in a normal secure state 

when all system loads are supplied, no constraints are violated, and there are no 

contingency violations for a set of given contingencies (determined by the balancing 

authority and regulatory agencies). The system is in a normal insecure state when all 

system loads are supplied, no constraints are violated, but there are one or more 

contingency violations for a set of given contingencies. The system is in an emergency 

state when all of the loads in the system are supplied but one or more constraints are 

violated. Finally, the system is in a restorative state when there is a loss of load and no 

constraint is violated. Table 6 summarizes these classifications. 

 

Table 6. Classification of Power System Security States 

State 
All loads 

served? 

Operational 

violations? 

Contingency 

violations? 

Normal Secure Yes No No 

Normal Insecure Yes No One or more 

Emergency Yes One or more One or more 

Restorative Loss of load No No 
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The state diagram in Figure 27 illustrates how a power system can transition 

between these four states, either due to a disturbance or a control action initiated by the 

operator. Assuming the system starts out in a normal secure state, a disturbance can cause 

the system to enter a normal insecure state. If preventive control actions are taken in time, 

the system can return to a normal secure state. If not, a disturbance could potentially push 

the system into an emergency state. At that point, corrective control actions need to be 

taken quickly to restore the system to a normal state. However, if they are not taken in 

time or if the best option is to shed load, then the system enters a restorative state. Once 

further control actions are taken, the system is finally restored to a normal secure state. 

Examples of control actions include opening or closing transmission lines and 

transformers, changing the setting of generation/load, bypassing or putting into service 

series capacitors, and changing phase-shifter angles. 

 

Figure 27. Power system security state diagram 

 

Traditional power system security assessment (illustrated in Figure 28) only 

analyzes the impact of contingencies on the electrical network. The first step is security 

monitoring, during which the control center polls substation RTUs to obtain real-time  

electrical measurements. These raw measurements are then processed by the state 

estimator, which determines if the system is observable and eliminates or corrects 
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inconsistent measurements. These filtered measurements are then passed onto the real-

time power flow application, which calculates the bus voltage magnitudes, angles, 

real/reactive injections, and real/reactive line flows. The power flow solution serves as 

the base case for real-time contingency analysis, which is an automatic what-if 

assessment of the impact of each contingency on the system. The base case serves as the 

reference scenario. Then for each contingency, a sequential simulation is run on the 

reference scenario, the post-contingency real/reactive line flows are calculated, and 

thermal limit violations are reported before the reference scenario is restored. The results 

of those violations are visualized using a large-scale display. The entire process runs 

automatically every few minutes. 

 

Figure 28. Traditional power system security assessment 

 

5.2 Cyber-Physical Security Assessment 

The smart grid is a cyber-physical system whose electrical components and 

communication system are strongly intertwined. Traditional power system security 

assessment tools only focus on analyzing the security of the physical power system itself. 

However, as the grid evolves to become more reliant on information and communication 

technology, it becomes increasingly important to analyze the cyber-physical interactions 

between the electrical system and the communication system, rather than focus only on 
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the electrical system. Hence, there is the need to create a co-simulation environment that 

is capable of capturing the behavior of the cyber-physical smart grid. Also, there needs to 

be cyber-physical security assessment tools that can identify when a bad command 

injection attack is in progress and alert power system operators to the potential impacts 

on the power system. 

5.2.1 System and Threat Models 

Assume there exists a cyber-physical smart grid with multiple electrical and 

communication nodes. Due to limited resources, it is infeasible to physically protect or 

secure every single node in the cyber-physical system. While conventional cybersecurity 

measures are available and deployed in the system, they are incapable of detecting data-

related cyber-attacks on their own.  

For the subsequent work, we assume a centralized power system architecture, 

where control, operation, and monitoring functions are performed by a single control 

center. The communication system between the control center and the substation RTUs is 

a star topology (as illustrated in Figure 29). Bidirectional communication is possible. The 

control center can poll the substation RTUs for measurements as well as send commands 

to them. Under normal operations, the RTUs can report equipment statuses and 

measurements back to the control center. Assume an Intrusion Detection System (IDS) 

has been mirrored at the connected port of each substation as well as at the control center.  

In our scenario, we assume that a malicious actor compromises a legitimate 

control command issued by power system operators at the control center to a substation 

RTU. Through a man-in-the-middle attack, the attacker alters the command to be 

malicious. The RTU executes the malicious command to trip a circuit breaker (for a 

transmission line, generator, or load). The consequences of this attack are as follows. 

First, the malicious command has a detrimental effect on the operation of the power 

system. Secondly, the circuit breaker status at the control center is incorrect and 
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inconsistent with the actual status. Finally, the incorrect system topology is fed as inputs 

to downstream EMS applications. 

 

 

Figure 29. Cyber-physical smart grid topology 

 

5.2.2 Use Case Scenarios 

An adversary can perform a bad command injection attack by sending a false 

control command to a substation RTU. If the adversary has no knowledge of the system 

and simply injects a false command at random, the power system operator should be able 

to identify and stop the execution of the malicious command on the power system. 

However, if the adversary has at least partial knowledge (or full knowledge in the worst 

case) of the system, they can purposefully inject a specific malicious command to cause 

maximum damage to the overall system. If the adversary issues a bad command from an 

illegitimate source, the IDS will be able to detect the malicious nature of the command 

and prevent its execution on the power system. However, if the adversary has the 
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capability to model an “intelligent” malicious command, which is issued by a legitimate 

source and appears to be a routine operation but has undesirable consequences (for 

example, suddenly reducing power generation by 50%), the IDS most likely will be 

unable to correctly detect it. However, it could alert the operator by sending a notification 

of suspicious behavior (considering user-defined threshold values and historical changes 

in values). One example of a malicious command that could significantly impact the 

power system is the opening of the circuit breaker connected to the largest generator in 

the system. 

Three specific use case scenarios are described below: 

Use Case 1 

• Description – Adversary impersonates the network and sends a false (unwanted) but 

legitimate command outside of the control center to the circuit breaker of the largest 

generator. 

• Effects on the Communication Network – Under this attack, we can observe and 

monitor several effects on the communication system, such as: 

1) The IDS notifies the operator which command it received. The operator verifies 

whether the command is legitimate. 

2) A false command is issued to the substation RTU connected to the breaker of the 

targeted generator. 

• Effects on the Power System – If this attack is successful, we can observe the 

following impacts on the power system: 

1) Insecure operation of the power system 

2) Possible shedding of electrical load 

• Use Case Steps: 

1) The attacker targets a bad command as described in the threat model. 
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2) The IDS detects a suspected malicious command (based on its rules such as IP 

address, port number, etc.) and notifies the operator. The operator verifies that the 

control center did not issue this command. 

3) CPSA performs power flow and cyber-physical contingency analysis to evaluate 

the effect of the command on the power system if it was allowed to go through 

and discovers that the system would become insecure, indicating that the 

command was malicious. 

4) The operator discards the command. Secure system operation is restored. 

Use Case 2 

• Description – The adversary fabricates or modifies a legitimate command sent to a 

generator breaker over an insecure network. 

• Effects on the Communication Network - Same as Use Case 1, except the legitimate 

command was modified over the network. 

• Effects on the Power System – Same as Use Case 1. 

• Use Case Steps: 

1) The attacker sends a command as described in the threat model. 

2) The IDS does not detect the command modification, but still sends a notification 

to the operator. The operator verifies that the control center did not issue the 

command. 

3) Same as Step 3 for Use Case 1. 

4) CPSA queries IT personnel for information. IT responds that they suspect a 

MITM attack. 

5) Same as Step 4 in Use Case 1. 

Use Case 3 

• Description – The adversary is an insider at the control center, who sends a legitimate 

but unwanted command to the generator breaker. 
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• Effects on the Communication Network – The operator receives a command 

notification from the IDS and finds the transmitted legitimate command was not 

issued by them. In the worst case scenario, the operator ignores the notification and 

allows the execution of the command on the power system. 

• Effects on the Power System – Same as Use Case 1. 

• Use Case Steps: 

1) The attacker sends a command as described in the threat model. 

2) The IDS does not detect the insider attack and notifies the operator that it is a 

legitimate command. The operator verifies that the received command is the same 

as what was issued from the control center. 

3) The generator breaker receives a false trip command and trips. 

4) CPSA runs contingency analysis and discovers that the system is in an insecure 

state, indicating that the command was legitimate but false (unwanted). 

5) CPSA queries IT personnel for information. IT responds that they suspect an 

insider attack. CPSA prompts the operator to reclose the breaker. 

6) If the breaker does not respond after 20 seconds, CPSA will prompt the operator 

to initiate the appropriate remedial action scheme, after which secure system 

operation is restored. 

5.2.3 Co-simulator Overview 

This section provides an overview description of the novel co-simulation 

environment used in this work to simulate a bad command injection attack. The design 

framework of the co-simulator is shown in Figure 30. The co-simulator is composed of 

three main modules. The first module, which was implemented using a combination of 

Java APIs (GridSim, Matlabcontrol, and Java Agent DEvelopment Framework, also 

known as JADE), models the communication network and acts as the simulation driver. 

The second module (described in greater detail in Section 5.2.4), which was implemented 
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in MATLAB, is the main computational engine that handles observability analysis, state 

estimation, power flow, contingency analysis, and cyber-physical security assessment. 

The third module deals with the topology information as well as visualization of 

simulation results. The interface between the communication network/simulator driver to 

the CPSA module is Java to MATLAB. The interface between the CPSA module and the 

visualization module is MATLAB to PowerWorld, a commercial power system 

solver/software package.  

 

Figure 30. Overall Co-simulator Framework 

 

The sub-modules of the communication network/simulation driver module (which 

resides in Java) are as follows:  

• Communication network configurator – This sub-module is responsible for 

modeling the communication network between the control center and the 

RTUs, which includes the communication network topology, number of 

connected devices in the network, the baud rate, number of packets sent, the 

control center packet size, RTU packet size, and the propagation delay over 

the communication channel. 
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• Power system model validator – This sub-module is responsible for validating 

at the beginning of each simulation that the electrical network parameters in 

the co-simulator match the values in the original test case. This step is 

necessary to ensure that the test case from PowerWorld was not corrupted 

during the loading process. 

• Resource configurator – This sub-module allows the user to configure 

GridSim resources instantiated during the simulation with the following 

attributes: number of processors and speed of processing. The resource speed 

and the job execution time are defined in terms of the Millions of Instructions 

per Second (MIPS). 

• User configurator – This sub-module creates GridSim users (who 

communicate by sending/receiving passive event objects efficiently) and a 

simulation instance that contains an application description (list of simulation 

actions to be processed). For example, each RTU is considered a user, and the 

control center is also a user. The control center user instance is different from 

an RTU user instance in that only the control center can execute polling 

commands. Both the control center and the RTUs implement a time 

minimization strategy by immediately sending requested data as soon as they 

receive the request. 

• Grid scenario configurator – This sub-module allows the user to select 

whether they want to simulate normal operations, a single cyber-attack, or a 

simultaneous combination of cyber-attacks. The result is passed onto either 

the normal operation configurator or the cyber-physical attack configurator. 

• Normal operation configurator – This sub-module handles the event-driven 

simulation for normal system operations (no cyber-attack). 

• Cyber-physical attack configurator – This sub-module handles the event-

driven simulation for the system under a cyber-physical attack. The user can 
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select the duration of the simulated attack, the timestep at which the simulated 

attack occurs, as well as the type of attack. If a single bad command injection 

attack is selected, there is an attack modeler which can model a bad command 

which impacts a transmission line, bus, generator, load, transformer, or shunt 

capacitor. 

The sub-modules of the topology/visualization module (which resides in 

PowerWorld and is accessible through the SimAuto COM object) are as follows: 

• Cyber-physical power system definition – This sub-module provides power 

system information as input to the co-simulator, which includes power system 

measurements (real flow, reactive flow, real injection, reactive injection, and 

voltage magnitude), different parameters for components (such as 

transmission lines, buses, generators, loads, shunt capacitors, and 

transformers), and the system topology at the time of data acquisition. 

• Time-series system dynamics visualization - This sub-module is responsible 

for visualizing the time-evolving behavior of the cyber-physical system, both 

for normal operation as well as when the system is under a cyber-attack. 

Traditional power system visualizations only display the electrical network 

while the hybrid cyber-physical visualization in Figure 31 shows the 

intertwined electrical and communication networks. The typical power system 

one-line diagram symbols are used to represent electrical components. The 

orange lines represent electrical connections, while the grey lines with blue 

squares indicate communication links. The small grey square next to each bus 

represents a router. Each router is connected to the control center. This novel 

type of visualization helps power system operators to quickly identify the 

source of a suspected problem. The time-evolving behavior of the system is 

illustrated using animation. An alternative approach to visualizing time-

evolving behavior is discussed in Section 5.3. 
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Figure 31. Co-simulator visualization of cyber-physical system 

 

5.2.4 Proposed Methodology 

We propose a new cyber-physical security assessment methodology (illustrated in 

Figure 32b) that considers both the electrical and communication networks. This 

methodology was encapsulated in the CPSA module and incorporated into the co-

simulator described in Section 5.2.3. First we used the co-simulator to model the cyber-

physical grid. After the control center polls substation RTUs, the real-time measurements 

are sent to the IDS. The measurements are passed through to the state estimator, which 

performs observability analysis, state estimation, and bad data detection to flag 

inconsistent measurements.  

If the IDS suspects a cyber-attack, then it alerts the power system operator using a 

dialog. For example, assume the IDS suspects a bad command injection attack (also 

modeled using the co-simulator) on the circuit breaker for a generator. The IDS sends an 

alert and prompts the operator to simulate the impact of allowing the suspicious 
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command to be carried out. The CPSA power flow application simulates opening that 

circuit breaker. Then the CPSA contingency analysis application uses the scenario with 

the open generator breaker as the reference case. Once the contingency analysis is done, 

CPSA compares the metrics for the case when the command was rejected versus the case 

when the command was allowed. A user-defined threshold based on historical 

information determines the maximum allowable increased insecurity before more 

verification steps are necessary. If the system is known to be under threat, CPSA initiates 

modeling of the worst-case attack scenario. Then a large-scale time-evolving 

visualization of the cyber-physical system is presented to the operator. 

 

 

 Figure 32. Proposed cyber-physical security assessment 

 

The CPSA module, which encapsulates the new proposed CPSA methodology, 

runs automatically every few minutes to assess the current health of the cyber-physical 

system. The sub-modules of the CPSA module (which was implemented in MATLAB) 

are as follows: 
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• Observability analysis – This sub-module uses available power system 

measurements to identify whether the power system is observable (i.e. a 

unique estimate can be found). It uses the numerical observability analysis 

algorithm described in Section 2.3.1 to identify observable islands. If the 

entire system or a part of the system is found to be unobservable, then the 

worst case scenario is assumed for the unobservable portion(s). 

• State estimation – This sub-module uses raw measurement values from RTUs 

to calculate the most likely system state. It uses the AC weighted least squares 

solution method described in Section 2.2.1. It uses the largest normalized 

residual test algorithm described in Section 2.4.1 to attempt to identify 

inconsistent electrical measurements. 

• Power flow – Both legitimate measurements and suspicious measurements are 

inputs to this sub-module. The solution of the power flow (bus voltage 

magnitudes and angles) is used to calculate real/reactive transmission line 

flows and real/reactive bus injections. These results serve as the reference 

(pre-contingency scenario) for the next sub-module. 

• Contingency analysis – This sub-module generates a list of cyber-physical 

contingencies. Then, using the power flow results from the previous sub-

module as the reference scenario, each cyber-physical contingency from a 

user-defined set of contingency definitions is simulated on top of the reference 

scenario to evaluate the potential impact on the cyber-physical system. The 

worst contingencies (above a user-defined threshold) are identified and 

flagged for the power system operator. 

• Cyber-physical security assessment – This sub-module assesses the cyber-

physical security of the system using inputs from other sub-modules. First, the 

IDS sends an alert to this sub-module if it suspects a malicious command has 

been sent. Next the contingency analysis sub-module provides the outcomes 
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of its what-if scenarios. Then this sub-module computes a metric known as the 

system aggregate megawatt contingency overload (sysAMWCO), which is 

defined below, for the simulated scenario where the suspicious command is 

rejected as well as the simulated scenario where the suspicious command is 

allowed to execute. By comparing the difference in sysAMWCO, the power 

system operator can evaluate whether the suspicious command is actually 

malicious. Large sysAMWCO values indicate more system insecurity, while 

low sysAMWCO values indicate more system security. The suspicious 

command is rejected if the sysAMWCO difference is greater than a user-

defined threshold (established using historical information and operator 

experience), and it is allowed to execute if the sysAMWCO difference is less 

than the threshold. 

The sysAMWCO metric is defined as a function of the aggregate megawatt 

contingency overload (AMWCO), which is in turn a function of the aggregate percentage 

contingency overload (APCO). 

 

 
𝐴𝑃𝐶𝑂𝑏𝑟𝑎𝑛𝑐ℎ(𝑗,𝑘) = ∑ (% 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑 − 100)

𝐶𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑐𝑖𝑒𝑠 𝑡ℎ𝑎𝑡
𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑 𝑏𝑟𝑎𝑛𝑐ℎ(𝑗,𝑘)

  
(150) 

 𝐴𝑀𝑊𝐶𝑂𝑏𝑟𝑎𝑛𝑐ℎ(𝑗,𝑘) = 𝐴𝑃𝐶𝑂𝑏𝑟𝑎𝑛𝑐ℎ(𝑗,𝑘) ×𝑀𝑉𝐴 𝑅𝑎𝑡𝑖𝑛𝑔𝑏𝑟𝑎𝑛𝑐ℎ(𝑗,𝑘)  (151) 

 𝑠𝑦𝑠𝐴𝑀𝑊𝐶𝑂 = ∑ 𝐴𝑀𝑊𝐶𝑂𝑏𝑟𝑎𝑛𝑐ℎ(𝑗,𝑘)
∀ 𝑏𝑟𝑎𝑛𝑐ℎ(𝑗,𝑘) ∈ 𝑠𝑦𝑠𝑡𝑒𝑚

 
(152) 

 

Although the primary use case for the CPSA module in the co-simulator is real-

time analysis that is performed automatically every few minutes, it can also be used for 

faster-than-real-time analysis. For example, future predictive information such as load 

forecasts and renewable generation output forecasts (e.g. for the next 30 minutes) could 

be used as inputs into the co-simulator. Assuming the predictions are available in 1-
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minute intervals, the co-simulator can evaluate the cyber-physical security of the system 

for the next 30 timesteps. The time required for the co-simulator to run is only a few 

minutes so we can effectively analyze the system in faster-than-real-time. Once that 

simulation is complete and the forecasts for the next 30 minutes are available, we can use 

the co-simulator to assess the cyber-physical security of the system during that window 

of time.  

5.2.5 Simulation Results 

We tested the proposed CPSA methodology on a 42-bus equivalent system of a 

real power grid in the United States. The electrical network topology of the 42-bus 

system is shown in Figure 33. The system consisted of 24 substations, 45 transmission 

lines, 16 transformers, 8 generators, and 27 loads (approximately 902 MW). 

The communication network topology of the test system is shown in Figure 34. 

The communication system consists of two routers, a link from the control center to the 

first router, a connection between the two routers, and 24 links to each of the 24 

substations.  

The graphical user interface for the co-simulator is shown in Figure 35. The user 

inputs system simulation parameters into the GUI, which are then fed into the 

communication network/simulation driver module of the co-simulator (described in 

Section 5.2.3). For this test system, the baud rate was 1572864 bits/second, the 

propagation delay was 300 ms, the packet buffer size at the control center was 180 bytes, 

and the packet buffer size at the RTU was 1500 bytes. The propagation delay was 

estimated based on the number of bits transmitted in a packet (2553 kbit) over the 

network, which has a speed of 8.51 Mbps. 
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Figure 33. Electrical network topology for 42-bus test system 

 

  

 
Figure 34. Communication network topology for 42-bus test system 
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Figure 35. Co-simulator GUI 
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 The cyber-physical system operates normally from timestep t = 1 to t = 4. At t = 

5, the adversary sends a command to one of the RTUs to open the largest generator. The 

IDS suspects that this command is not legitimate based on its rules. Hence, the IDS sends 

an alert to the operator at the control center. The operator decides to simulate the 

suspicious command and observe its effect on the power system. First, the operator uses 

the co-simulator to simulate the normal operation scenario (i.e. the command is not 

allowed to execute) given load and renewable generation forecasts. Then the operator 

simulates the scenario if the command is allowed to execute on the system.  

These results are shown in Figure 36. The load profile is assumed to be the same 

for both the normal operation scenario and the scenario where there is a bad command 

injection attack (the attack only targeted generation). If the command is rejected, then the 

sysAMWCO at t = 5 would be approximately 200, and the sysAMWCO at t = 6 would 

be approximately 170. However, if the command was allowed to execute on the system, 

the sysAMWCO at t = 5 would increase to approximately 300, and the sysAMWCO at t 

= 6 would increase to approximately 225. That would be an increase of approximately 

50% and 32%. The user-defined maximum allowable threshold was only 15% above the 

normal operation case, so the operator rejects the suspicious command and flags it as 

malicious for the IT department to investigate and take further action.  

In addition to presenting the sysAMWCO plots to the operator, the co-simulator 

also provides a large-scale dynamic visualization to the operator that uses animation to 

show the time-varying behavior of the system under the bad command injection attack. 

When the system was in normal operation from t = 1 to t = 4, this visualization appeared 

with no electrical network violations and no communication link issues (see Figure 31). 

However, at t = 5, this visualization changes to indicate thermal limit violations on 

multiple transmission lines in the electrical network, and the communication links that 

are compromised are highlighted using a flashing animation (see Figure 37). Also, the 

sysAMWCO plot on the right side of the visualization changes from green to red when 
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the sysAMWCO metric is more than 85% of a user-defined threshold. This color change 

immediately draws the operator’s attention and aids in quick identification of the source 

of the problem. 

 
 

Figure 36. Detection of a bad command injection attack by comparing the normal operation 

sysAMWCO against the sysAMWCO if the command is allowed to execute  

  

  

Figure 37. Co-simulator visualization of cyber-physical system 
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5.2.6 Conclusions 

This work proposed a new cyber-physical security assessment methodology. 

Unlike traditional power system security assessment, it considers both the electrical and 

communication system. The methodology was tested on a 42-bus realistic power system 

using a co-simulator that was built in Java, MATLAB, and PowerWorld. The cyber-

physical security of the system was assessed using a metric known as the system 

AMWCO. By comparing this metric for a normal operation scenario and the scenario 

where the suspicious command was executed, the operator can determine if the execution 

of a suspicious command will lead to system-wide instability. A large-scale dynamic 

visualization that illustrates the time-varying behavior of the system under attack aids the 

operator in quickly identifying the source of the problem. 

 

5.3 Spatiotemporal Power System Visualization 

In the work presented in Section 5.2, the co-simulator visualization used 

animation to illustrate dynamic time-varying power system behavior. This visualization 

method is commonly used in commercially available power system analysis tools, but it 

has several drawbacks. If the power system operator needs to reference the system 

topology while studying the time-varying behavior, they would need to replay the 

animation multiple times in order to gather the necessary information. Also, research has 

shown that static snapshots are generally easier for users to navigate rather than 

animations. We need a new visualization method that would allow the operator to both 

see the system topology while analyzing the time-varying behavior. 

5.3.1 Introduction 

 Power system operators, planners, and managers need to quickly analyze large 

complex datasets in order to make effective decisions for the bulk electric grid. The 
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challenge is to present the relevant information in a manner that facilitates intuitive and 

rapid assessment of the system state [88]. To mitigate the information overload 

experienced by grid operators and decision makers, it is necessary to develop a 

visualization platform capable of quickly transforming large datasets into visual 

representations that are easy to understand at a glance. Of special importance is the 

ability to analyze temporal (both look-ahead and past) data. Look-ahead capabilities are 

crucial for understanding the emerging stochastic nature of the grid due to the integration 

of non-dispatchable renewable energy, demand response, and storage. These capabilities 

can be used by operators to assess the likelihood of possible future problems in the 

network as well as pinpoint how an event began. 

 Most of the existing work has focused on representing power system data for only 

a single point in time. This type of static large-scale 2-D visualization does not support 

the aforementioned requirements for temporal analysis. One way to fill this void is a 

visualization that allows users to see multiple time steps simultaneously. We propose a 

3D approach that only renders the relevant time-varying data on top of a one-line diagram 

and allows navigation of various timesteps. This type of visualization could be used to 

show when the power system has entered an insecure state, either physical or cyber-

physical. For example, it can pinpoint when problems such as thermal limit violations 

begin to emerge during a power system event. Also, it could be used to indicate when 

parts of the network become unobservable from loss of measurements, either due to 

instrumentation/communication error or from a cyber-attack.  

5.3.2 Literature Review 

 Various visualization methods have been developed in the past to aid in the 

interpretation of power system data, although only some have made their way into the 

hands of practicing engineers. These techniques include animated flow arrows [89], bus 

voltage and transmission line contours [90], and 3D bar graphs [91], [92], which can all 
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be found in the commercial software package PowerWorld [93]. Using time sliders to 

explore time-varying networks is generally more effective than animation. Farrugia and 

Quigley [94] conducted studies to compare two common approaches: animation and 

static snapshots. They concluded that static snapshots are generally more effective in 

terms of task completion time. To tackle the limitation of the snapshot-based approach, 

DiffAni [95] integrated several interaction techniques into a snapshot-based visualization. 

 Recent research has investigated the use of three-dimensional space for 

visualizing time-varying networks. Itoh et al. [96] stacked 2-dimensional planes on a 

horizontal axis to represent time- varying networks. Tominski et al. [97] presented a 

similar approach for visualizing spatiotemporal data, but they used a vertical axis for 

time. We chose to apply this stacking approach to visualizing the evolution of power 

system states. Previous work has also attempted a hybrid approach of using 3-D and 2-D. 

MatrixCube represents a time-evolving graph as a 3D cube by stacking adjacency 

matrices. Each graph can be represented as a matrix [98]. This type of cube allows users 

to easily explore graph in various perspectives using simple operations, such as filtering 

by slicing the cube (e.g., show only for 3-6pm). 

5.3.3 Proposed Approach 

In this section, we propose a novel 3D spatiotemporal visualization prototype. 

Power system operators need the ability to simultaneously see the system topology as 

well as time-evolving trends in the power system. Our proposed solution is to impose 

data volumes on top of the system one-line for time-evolving system quantities such as 

bus voltages and line thermal limits. The same technique could be extended to generation 

or load levels. The major goal of this approach is to facilitate fast investigation and 

exploration of dynamic behavior in a power system. Because the changes in state are 

summarized by shape and color, the overall state of the system can be understood by the 

user without the need to read individual values. Many contemporary power system 
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visualization tools such as PowerWorld [93] only employ 2D or 3D layouts that 

summarize exact values at an instantaneous point in time. Usually these tools have to 

leverage animation to show how the system changes over time. Often comparison of 

system-wide behavior at two time points is challenging, and comparison of three or more 

time instances is nearly impossible. This is one of the natural limitations when using 

animation to show trends over time. 

The initial prototype of this proposed solution is presented in Figure 38. The one-

line, shown as a semi-transparent floor plan in the middle of the screen, is used to 

indicate the present time. The vertical z-axis indicates different system states over time. 

The +z direction represents future predicted system states. A point higher along the +z 

axis indicates a time further into the future. The –z direction represents historical system 

data. A point lower on the –z axis indicates a time further in the past. The stacked 

cylinders represent line thermal limits in the network at different time points. The size 

and color indicate the severity of the problem. The redder the cylinder and the larger its 

radius, the more severe the line overload is. 

This 3D representation gives users the ability to view system conditions across a 

window of time so that they can determine whether a problem is present in the system, as 

well as when it began and when it is expected to end, which may change as the problem 

evolves. The interactive nature of this visualization allows the user to navigate between 

system states one step at a time. To help distinguish between the current time and any 

past or future states that the user is navigating, the cylindrical slice corresponding to the 

current time is separated from the overall stack. 

The heat map on the left panel shows the user more detailed information about the 

network. Each column along the horizontal dimension shows an interval of time, the 

length of which depends on the use case. Each row indicates the state of a different power 

system quantity in the network, such as bus voltage or line limit. The color shows 

whether the value of the attribute at a specific time falls within the normal range. 
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Accounting for human factors, green was chosen for normal operation while red indicates 

that urgent action is required. Also, a small white arrow points to the present time.  

A second more sophisticated visualization prototype is presented in Figure 39 and 

Figure 40. It was implemented using WebGL, a web browser based 3D rendering 

environment. WebGL was selected for its performance and its compatibility. By 

leveraging graphics hardware at a low level, it offers excellent 3D performance and 

allows graphically complex scenes to run smoothly, enabling real-time interaction and 

exploration. WebGL allows 3D environments with rich user interaction directly in a web 

browser. Currently most mainstream web browsers (e.g., Chrome, Firefox, Internet 

Explorer 11, Safari) can support it. By choosing WebGL, our 3D visualization can run on 

many systems with a wide variety of graphics hardware with very little additional setup. 

 

Figure 38. Initial 3D prototype representation 

 

Each bus in the system is visualized as a vertical volume. The volumes are 

created by modifying the radius of a vertical column based on the desired quantity to be 

visualized at each time step, as shown in Figure 39. Transmission lines are visualized 

using colored lines that run between the buses they connect. The color of the line is 

based on the transmission line flow value. As the loading increases, the transmission 
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lines become more and more visible. In addition to the change in visibility, the color of 

the line also changes from grey to dull red once the thermal loading surpasses 90% of its 

rated limit. As the line flow value increases, the red color becomes brighter until it 

transforms into a stark vivid red at above 105%. When the percent thermal limit 

violation is very low, the associated line is not drawn. We chose to hide the lightly 

loaded lines by default, because they generally operate as expected and are less critical 

for the operators to notice than the lines that are near or above their maximum thermal 

limits. The lines in Figure 40 illustrate the changes in color and opacity as the system 

evolves over time. In this scenario, the shown line was over capacity for the entire study 

time. Currently the prototype supports panning, rotation, zooming, highlighting, and 

click-hiding [99].  

 

Figure 39. Visualization of bus voltages for a 7-bus test system 
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Figure 40. Visualization of line thermal limits for a 7-bus test system 

 

5.3.4 Conclusions 

This work proposed a novel 3D stacking visualization as an alternative to the 

animation-style visualizations currently used in commercial power system analysis tools. 

It has the benefit of allowing the power system operator to simultaneously view the 

power system one-line diagram while seeing time-varying behavior in the system. The 

ability to hide irrelevant data prevents the power system operator from being overloaded 

with too much information. 

5.4 N-1 RTU Cyber-Physical Security Assessment Using State Estimation 

Real-time SCADA systems use RTUs to monitor and manage the flow of power 

at electrical substations. As their connectivity to different utility and private networks 
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increases, RTUs are becoming more vulnerable to cyber-attacks. Some attacks seek to 

access RTUs to directly control power system devices with the intent to shed load or 

cause equipment damage. Other attacks (such as denial-of-service) target network 

availability and seek to block, delay, or corrupt communications between the RTU and 

the control center. In the most severe case, when communications are entirely blocked, 

the loss of an RTU can cause the power system to become unobservable. It is important 

to understand how losing an RTU impacts the system state (bus voltage magnitudes and 

angles). The system state is determined by the state estimator and serves as the input to 

other critical EMS applications. There is currently no systematic approach for assessing 

the cyber-physical impact of losing RTUs. This paper proposes a methodology for N-1 

RTU cyber-physical assessment that could benefit power system control and operation. 

We demonstrate our approach on the IEEE 14-bus test system as well as on a synthetic 

200-bus system. 

5.4.1 Introduction 

Electric utilities use real-time SCADA systems to monitor and control their assets. 

These systems were originally designed for safety and reliability, so there is an implicit 

assumption of trust of all system components and communications. This implicit trust 

makes them vulnerable to cyber-threats posed by malicious actors. As its connectivity to 

different networks and systems increases, the power grid grows increasingly more 

susceptible to cyber-attacks. 

A typical SCADA system includes devices such as RTUs, programmable logic 

controllers (PLCs), intelligent electronic devices (IEDs), and relays located in electrical 

substations. RTUs are field-based devices that are used to monitor and manage the flow 

of power at a substation. PLCs, IEDs, and relays are used to automate tasks at each 

substation. A control center with central computers manages the remote substation 

equipment. The control center also processes, analyzes, and archives the collected real-
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time information. A communication system is used to convey that information from 

substation RTUs back to the control center as well as send commands from the control 

center to substation RTUs, using a protocol such as DNP3. Once they arrive at the control 

center, raw system measurements are sent to the state estimator, which processes them to 

determine the most likely system state (bus voltage magnitudes and angles). The SE 

solution serves as the input to downstream EMS applications, such as contingency 

analysis and optimal power flow. Hence, it is key that the network is observable (i.e. a 

unique SE solution can be found) and that the solution is accurate.  

The research community has long been aware of the potentially devastating 

impact of a cyber-attack on the state estimator. In 2009, Liu et al. introduced the false 

data injection (FDI) attack, where an attacker can introduce arbitrary state variable errors 

without being detected by existing bad data detection algorithms by manipulating 

measurements [100]. Since then, there has been a growing body of literature focusing on 

stealth deception attacks on the state estimator [83], [84], [101]. However, there is not as 

much work on network availability attacks (NAA), such as denial-of-service (DoS). 

Zhang et al. formulated an optimal DoS attack strategy considering an energy constraint 

[102]–[104], but it was not applied to power systems. Liu et al. studied the effect of a 

DoS attack on load frequency control [105]. Vukovic and Dan considered a DoS attack 

on a fully distributed state estimator as well as detection/localization of the attack [106]. 

None of these works focus on systematically studying the impact of losing RTUs. 

In this work, we present a novel methodology for RTU cyber-physical security 

assessment. For simplicity, we assume that only one RTU is under attack at a given time 

(N-1), although this approach could be generalized to the loss of multiple RTUs. When an 

RTU is under a NAA, the measurements from that RTU will be unavailable to the state 

estimator. In some cases, the system may become unobservable, and the solution will 

contain gross errors. During the loss of telemetry from a cyber-attack, the estimated 

system state could diverge significantly from the actual system state, endangering the 
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grid’s secure operation. Offline studies using our proposed approach could help power 

system planners and IT staff to identify the most critical RTUs and use that information 

to build a system that is more resilient against NAA. Online studies using the same 

approach would detect when the system is vulnerable to the loss of an RTU. 

5.4.2 System and Threat Models 

We assume that the power system has a centralized architecture with a single 

control center that receives and processes telemetry information from the field. We also 

assume there is a star communication topology between the control center and the 

substation RTUs (i.e. the substations can communicate with the control center but not 

with each other). We assume that the attacker is not an insider and thus has no specialized 

knowledge of the system topology/architecture but is capable of attacking an RTU via 

either physical or remote access. 

5.4.3 Methodology 

The objective of this work is to present a methodology to identify and rank 

vulnerable RTUs in an electrical power system so that utilities can bolster the security of 

these critical assets in order to minimize the impact of a potential cyber-attack. The idea 

is comparable to N-1 power system contingency analysis. However, traditional power 

system contingency analysis only considers the loss of physical elements such as a 

generator or transmission line. For our analysis, we focus on the loss of communication 

between an RTU and the control center, meaning the measurements associated with that 

RTU will be unavailable to the state estimator. We quantify the severity of that loss based 

on the number of observable islands created, the number of unobservable buses, and the 

estimation errors. (Refer to Section 2.2.1 for the weighted least squares state estimation 

algorithm and Section 2.3.1 for the nodal variable-based algorithm for numerical 

observability analysis.) 
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Our proposed algorithm is as follows: 

Step 1. Assess the normal operation (no attack) scenario. Identify the observable 

islands and the unobservable buses. 

Step 2. For each RTU, simulate the loss of the measurements connected to that 

RTU. Perform observability analysis (OA) and SE. 

Step 3. If the global slack bus is connected to one of the unobservable buses, 

assign the slack to another bus. 

Step 4. Record the observable island groups, the unobservable buses, the SE 

solution, and the SE solution errors in polar coordinates. The SE solution is 

defined as follows. The voltage at bus 𝑛 in polar coordinates is 𝑉𝑛,𝑆𝐸 =

|𝑉𝑛,𝑆𝐸|∠𝑉𝑛,𝑆𝐸 = 𝑥𝑛+𝑁∠𝑥𝑛, after remapping 𝑥 (refer to Section 2.2.1) to include 

the slack bus angle which is 0. 

Step 5. Restore to the no attack scenario. If not all included RTUs are processed, 

return to Step 2. 

Step 6. To rank the severity of losing each RTU, we propose a straightforward 

metric, which is the time-average of the L2-norm of the difference between the SE 

voltage vector 𝑉𝑆𝐸 ∈ ℂ
𝑁 (where N is the number of buses in a given power system) from 

Step 4 and the known power flow voltage 𝑉𝑃𝐹 ∈ ℂ
𝑁: 

 
avg‖𝑉𝑑𝑖𝑓𝑓‖2

=
∑ ‖𝑉𝑆𝐸(𝑡) − 𝑉𝑃𝐹(𝑡)‖2
𝑡𝑠𝑡𝑎𝑟𝑡+𝑇𝑎𝑡𝑡𝑎𝑐𝑘
𝑡=𝑡𝑠𝑡𝑎𝑟𝑡

𝑇𝑎𝑡𝑡𝑎𝑐𝑘
 (153) 

5.4.4 Simulation Results 

We generated a realistic load profile and added random Gaussian noise to 

synthetic measurements created from the test systems’ power flow results. Based on [19], 

we assumed the line flow, power injection, and voltage magnitude measurement error 

𝜎 = [0.008, 0.01, 0.004]𝑇. For the IEEE 14-bus system, we used a graph partitioner to 

automatically divide the system into 4 substations and assign the appropriate 
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measurements to each substation RTU [33]. For the larger and more realistic Illinois 200-

bus system, we used the existing substation assignments. We assumed every 

measurement (real and reactive line flows, real and reactive bus injections, and bus 

voltage magnitudes) is available to the state estimator when the system is in normal 

operation. When an RTU is simulated as being under attack, the measurements for that 

RTU are removed from the set of measurements that serve as the input to the state 

estimator. We chose a typical convergence tolerance 휀 of 10e-4. 

IEEE 14-Bus Test System 

The IEEE 14-bus test system contains 14 buses, 20 branches, 5 generators, and 11 

loads. We assume there are 4 RTUs. The cyber-physical one-line diagram for the system 

is shown in Figure 41. We assume RTU 1 collects measurements for buses 9, 10, 13, 14; 

RTU 2 for buses 5, 6, 11, and 12; RTU 3 for buses 1, 2, and 3; RTU 4 for buses 4, 7, and 

8. This assignment is shown in Table 7. The simulation considers 30 timesteps. The load 

profile is randomly generated and changes from t = 0 to t = 30. The system operates 

normally from t = 0 to t = 4. From t = 5 until t = 24, a simulated attack is performed on 

each RTU. The normalized load and attack profiles are illustrated in Figure 42. 

 

Table 7. RTU Assignment for IEEE 14-Bus System 

RTU # Bus # 

1 9, 10, 13, 14 

2 5, 6, 11, 12 

3 1, 2, 3 

4 4, 7, 8 

 

When the system is operating normally (no attack), bus 1 is the system slack, and 

OA shows that all buses belong to the same observable island (as shown in Figure 43), 

i.e. the entire system is observable. The measurement graph for this scenario is shown in 

Figure 44. The solid blue lines indicate that all measurements are available. Bus 1 is the 

slack bus for the entire system and is highlighted in green. When an RTU is under attack, 
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the system is no longer fully observable (shown in Figure 45). Through our analysis 

process, we can identify which RTU loss has the biggest impact on the state estimator. 

For example, if RTU 1 is under attack (see Figure 46a), the measurements associated 

with buses 9, 10, 13, and 14 become unavailable (illustrated using dashed lines). Bus 1 is 

the global slack bus (illustrated as a green dot). When the measurements are lost, the 

system splits into two observable islands. One island contains buses 1-13, and bus 14 is 

its own island (illustrated as a black square) since there is not enough measurement 

information to deduce its behavior. 

 

 

Figure 41. Cyber-physical one-line diagram for IEEE 14-bus test system 
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Figure 42. Normalized load profile and attack profile for simulation horizon 

 

 

 
Figure 43. Observable island grouping for normal operations 
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Figure 44. Measurement graph for normal operations 

 

 

Figure 45. Observable island groupings for a DoS attack on: (a) RTU 1; (b) RTU 2; (c) RTU 

3; (d) RTU 4 – black indicates unavailable measurements 
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If RTU 2 is under attack (see Figure 46b), measurements for buses 5, 6, 11, and 

12 are unavailable. The system splits into three observable islands: bus 6, bus 12, and the 

remaining buses. Note that the global slack bus in this scenario is reassigned from bus 1 

to bus 8. Because bus 1 is connected to bus 5 whose measurements are unavailable 

(illustrated using a black dot), the Gain matrix is ill-conditioned, and the solution error 

becomes large if bus 1 was selected as the slack. This issue can be avoided if the slack 

bus is reassigned to the bus furthest away from the unobservable region, bus 8. 

If RTU 3 is under attack (see Figure 46c), measurements from buses 1, 2, and 3 

are unavailable. Even though RTU 3 has only 3 buses, it has the largest negative impact, 

because its loss creates 4 observable islands and 3 unobservable buses. Once again, the 

global slack bus needs to be reassigned, since bus 1 is associated with RTU 3. Bus 8 is 

selected again since it is one of the furthest buses from the unobservable region. 

However, even after the slack reassignment, the Gain matrix is singular, so the solution 

error is very large. 

If RTU 4 is under attack (see Figure 46d), the measurements for buses 4, 7, and 8 

are unavailable, creating two observable islands: bus 8 and the remaining buses. Because 

bus 1 is far from the region with unavailable measurements, the slack bus does not need 

to be reassigned.  

Figure 47 shows a plot of the voltage angle solution errors for five different 

scenarios: normal operation and the respective loss of RTU 1, RTU 2, RTU 3, and RTU 

4. Figure 48 shows a plot of the voltage magnitude errors for those same five scenarios. 

Based on the results, it is clear that an attack on RTU 3 would have the most severe 

impact on solution accuracy. In particular, note the voltage magnitude error. At t = 20, 

the average magnitude error spikes almost as high as 800, which is not feasible 

considering that the voltage magnitude should be close to 1.0 pu. 
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Figure 46. Measurement graph for attacks on: (a) RTU 1; (b) RTU 2; (c) RTU 3; (d) RTU 4 

  

 
Figure 47. L2-norm of voltage angle errors for normal scenario versus an attack on RTU 1, 

RTU 2, RTU 3, and RTU 4 
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Figure 48. L2-norm of voltage magnitude errors for normal scenario versus RTU attack 

scenarios – (a) decimal scale; (b) logarithmic scale 

 

When we do a closer inspection of the results for t = 20 in Figure 49, we see that 

the absolute value of the voltage angle and magnitude errors for each bus would be on the 

order of 10−3 if there was no attack. However, the L2-norm of the voltage angle error 

can be as high as 1.7057 at t = 12, and the L2-norm of the voltage magnitude error can 

be as high as 7203.23 at t = 20 for bus 1 when RTU 3 is under a simulated attack. The 

state estimator solution becomes meaningless since too many buses are unobservable. 

 

Figure 49. Voltage angle and magnitude error for normal scenario at t = 20 
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From Figure 50, we can see that the large voltage angle errors at t = 20 

correspond to the buses that are unobservable. For a simulated attack on RTU 3, bus 1 

has the largest angle error, followed by buses 2 and 3. Similarly, the large voltage 

magnitude errors also correspond to the unobservable buses (see Figure 51). Bus 3 has 

the largest voltage magnitude error, followed by bus 1 and bus 2. Table I ranks the 4 

RTUs from the most severe to least severe loss. With its avg‖𝑉𝑑𝑖𝑓𝑓‖2
 being several 

orders of magnitude larger than that of the other RTUs, we can see the loss of RTU 3 has 

the biggest impact on the state estimator. Note that although RTU 3 is not the RTU with 

the most number of buses (it has three instead of four like RTU 1 and RTU 2), it is still 

the most critical one.  

 

Figure 50. SE voltage angle error for an attack at t = 20 on: (a) RTU 1; (b) RTU 2; (c) RTU 

3; (d) RTU 4 
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Figure 51. SE voltage magnitude error for an attack at t = 20 on: (a) RTU 1; (b) RTU 2; (c) 

RTU 3; (d) RTU 4 

 
Table 8. N-1 RTU Ranking Results for IEEE 14-Bus System 

Severity 

Ranking 

RTU 

# 

# Sub 

Buses 

# Obs. 

Islands 

Avg ||Ang 

Err||2 

Avg ||Mag 

Err||2 

Avg 

||𝑉𝑑𝑖𝑓𝑓||2 

1 3 3 4 0.94731 762.555 762.841 

2 1 4 2 0.23922 0.02926 0.24390 

3 4 3 2 0.19784 0.09034 0.22523 

4 2 4 3 0.03052 0.17607 0.17864 

Normal - - 1 0.00251 0.00318 0.00412 

 

 

Illinois 200-Bus Test System [107] 

 

The Illinois 200-bus test system has 200 buses, 246 branches, 49 generators, 160 

loads, and 111 substations. There are 2 substations with 8 buses, 1 substation with 7 

buses, 1 with 6 buses, 3 with 5 buses, 4 with 4 buses, 8 with 3 buses, and the remaining 

substations with 2 or fewer buses. Using the methodology described in Section 5.4.3, we 
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perform an assessment of all 111 substation RTUs. We show select results in Fig. 9 and 

Fig. 10 for the 8 worst scenarios as well as the results for the loss of RTU 34, which is 

one of the two largest RTUs, and the loss of RTU 102, which has the slack bus. Fig. 9 

shows the L2-norm of the SE voltage angle errors, and Fig. 10 shows the L2-norm of the 

SE voltage magnitude errors over the course of the simulation horizon.  

Table 9 shows a ranked list of select RTUs. It includes the avg‖𝑉𝑑𝑖𝑓𝑓‖2
 metric as 

well as the time-average L2-norm of only the angle error, which ranged as high as 

0.47693, and the time-average L2-norm of only the voltage error, which ranged as high 

as 0.08619. Note that once again losing the largest RTU does not necessarily cause the 

most severe impact. For example, RTU 34 has 8 buses, but it is only ranked 13th while 

RTU 15 with 3 buses is ranked 5th. Empirically the avg‖𝑉𝑑𝑖𝑓𝑓‖2
 metric seems to depend 

on the system topology and RTU assignment, so it is important to run an offline 

systematic assessment on each power system to identify the most critical RTUs. Also, the 

effect of losing a single RTU impacts large systems less than small systems. 

  

Table 9. N-1 RTU Cyber-Physical Assessment Results for Illinois 200-bus System 

Severity 

Ranking 

RTU 

# 

# Sub 

Buses 

# Obs. 

Islands 

Avg ||Ang 

Err||2 

Avg ||Mag 

Err||2 

Avg 

||𝑉𝑑𝑖𝑓𝑓||2 

1 88 8 8 0.47693 0.08619 0.49159 

2 23 6 6 0.30681 0.08904 0.32511 

3 8 5 5 0.25693 0.03415 0.26128 

4 44 4 4 0.22517 0.06256 0.23740 

5 15 3 3 0.22326 0.02622 0.22662 

6 13 3 3 0.22287 0.01724 0.22458 

7 108 3 3 0.16059 0.05091 0.17104 

8 10 2 2 0.16315 0.03538 0.16955 

13 34 8 8 0.08549 0.10607 0.16529 

23 102 3 2 0.09611 0.04071 0.10616 

Normal - - 1 0.00345 0.00728 0.00811 
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Figure 52. L2-norm of SE voltage angle errors for normal operations and select scenarios 

from the Illinois 200-bus system 

 
Figure 53. L2-norm of SE voltage magnitude errors for normal operations and select 

scenarios from the Illinois 200-bus system 
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5.4.5 Conclusions 

In this paper, we proposed a novel methodology for N-1 RTU cyber-physical 

security assessment that systematically studies the impact of losing an RTU on the state 

estimator and a metric for ranking the severity of RTU loss. This approach could be used 

by power system operators to identify the most vulnerable RTUs. We tested our approach 

on two synthetic systems. Empirically we observed that losing the RTU with the most 

number of buses does not necessarily have the most severe impact, demonstrating the 

need for a systematic assessment approach. For future work, this approach could be 

generalized to the loss of multiple RTUs and to assess the impact of the number of 

critical measurements on the errors.  
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6 CONCLUSIONS 

The work from this dissertation addressed two challenges for the state estimator 

of the future: 1) more data to process than ever before and 2) the growing threat of cyber-

attacks. To address the first issue, we used automatic graph partitioning to enable a 

scalable decomposition-based state estimation approach. Empirical results suggest that 

decomposition reduces computation time, except for very small cases. This implies that 

any SE problem should be decomposed beyond its physical boundaries. With the speed 

gains, decomposition-based SE could be used to process a greater number of 

measurements than is currently tractable for central SE. 

To address the second issue, we created a co-simulator that can simulate the 

combined effects of the electrical network and the communication network. By studying 

the cyber-physical system as a whole rather than as separate entities, we can see how 

attacks on one part of the system impacts the rest of the grid. We used the co-simulator to 

study the impact of bad command injection attacks on the power grid. In order to validate 

whether a command is malicious or not, we need information from the physical system as 

well as from the intrusion detection system. Also, we created a novel 3D visualization 

that can show how a power system event or cyber-attack evolves over time. 3D 

visualizations allow power system operators to see time-evolving trends in a single 

snapshot instead of needing to rely on animations. Finally, we presented a new cyber-

physical security assessment methodology that evaluates the impact of network 

availability attacks on RTUs. We showed that losing even a single RTU can cause 

network observability issues. We also showed that the RTU with the most number of 

measurements is not necessarily the most critical RTU to lose. 

6.1 Summary of Contributions 

The contributions of the work in this dissertation are as follows: 
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1. Decentralized state estimation using automatic graph partitioning and ADMM 

a. Introduced automatic graph partitioning as a systematic method for virtually 

dividing a power system into an arbitrary number of sub-areas. 

b. Proposed a fast decomposition-based SE approach, an enhancement to 

traditional WLS SE, which uses the partitioning results to automatically 

decompose the global SE problem into smaller sub-problems and solve them 

in unison using ADMM. 

c. Explored empirically the impact of the number of sub-problems on the 

computational speed of the global SE problem for a serial implementation, 

and extrapolated the speedup seen for the considered IEEE test cases to larger 

power systems. 

2. Cyber-physical security assessment for the smart grid 

a. Presented a co-simulator environment that is capable of simultaneously 

simulating the electrical network and the communication network of a given 

power system. 

b. Used the co-simulator to evaluate the impact of malicious commands on the 

smart grid. 

c. Proposed a metric for evaluating whether a command is malicious or not. 

3. 3D spatiotemporal stacking visualization 

a. Presented a novel 3D stacking visualization as an alternative to the animation-

style visualizations currently used in commercial power system analysis tools. 

b. Allows the power system operator to simultaneously view the power system 

one-line diagram while seeing time-varying behavior in the system. 

c. Provides the ability to hide irrelevant data, which prevents the power system 

operator from being overloaded with too much information. 

4. N-1 RTU cyber-physical security assessment using state estimation 
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a. Proposed a novel methodology for N-1 RTU cyber-physical security 

assessment that systematically studies the impact of losing an RTU on the 

state estimator. 

b. Proposed a metric for ranking the severity of RTU loss. 

c. Observed that losing even a single RTU can cause network unobservability 

issues. 

d. Observed that losing the RTU with the most number of measurements does 

not necessarily have the most severe impact, demonstrating the need for a 

systematic assessment approach. 
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