

Analysis of Temperature-Constrained Ballute Aerocapture for High-Mass Mars Payloads

Kristin Gates Medlock⁽¹⁾ Alina A. Alexeenko⁽²⁾ James M. Longuski⁽³⁾

6th International Planetary Probe Workshop Atlanta, Georgia June 23-27, 2008

⁽¹⁾ Graduate Student, Purdue University
 ⁽²⁾ Assistant Professor, Purdue University
 ⁽³⁾ Professor, Purdue University

Funded in part by NASA GSRP Fellowship through MSFC MSFC Technical Advisor: Bonnie F. James

Can towed ballutes be used to capture high mass systems at Mars?

High-fidelity aerothermodynamic analysis must be achieved

Temperature-Constrained Trajectories

for Towed Toroidal Ballute Aerocapture at Mars

Ballute Surface Temperature $\leq 500^{\circ}C$ (equivalent to $Q_s = 2.01 \text{ W/cm}^2$)

Hypersonic Planetary Aeroassist Simulation System (HyperPASS)

>3DOF trajectory simulations

➢point-mass vehicle representation

≻variable C_D model

- ➢rotating atmosphere (with planet)
- Exponentially interpolated atmosphere (Mars COSPAR90)

Simulation Parameters

Vehicle Mass: 0.1, 1, 10, and 100 tons (sans ballute)

>Entry Speed = 6.0 km/s (at 150km)

- ➤Target: 4-day Mars parking orbit
- $C_{D,ball} = 2.00 \text{ (varies with Kn)}$ $C_{D,s/c} = 0.93 \text{ (constant)}$

Ballute Sizing Results

for Temperature-Constrained Ballute Aerocapture at Mars

Ballistic Coefficient

$$\beta = \frac{m_{s/c} + m_{ball}}{C_{D,s/c}A_{s/c} + C_{D,ballute}A_{ball}}$$

$$r_{ball} = R/4$$

$$R[\beta, C_{D,ball}, C_{D,s/c}, A_{s/c}, m_{s/c}, \sigma]$$

Parameter	0.1 ton case		1 ton case		10 ton case		100 ton case	
	s/c	ballute	s/c	ballute	s/c	ballute	s/c	ballute
<i>m</i> [kg]	100	3.20	1000	20.9	10,000	98.2	100,000	453
A [m ²]	2.00	103	5.64	669	26.1	3140	121	14500
<i>r</i> [m]	0.80	1.43	1.34	3.66	2.88	7.91	6.20	17.0
<i>R</i> [m]		5.73		14.59		31.63		67.94
Initial β [kg/m ²]	0.50		0.76		1.60		3.45	

June 25, 2008

PURDU

Altitude vs. Knudsen Number

June 25, 2008

Aerothermodynamic Tools

DSMC Statistical Modeling In Low-density Environment (SMILE)

- ➢ 3D/2D/axisymmetric code
- > 3 million simulated molecules
- constant wall temperature assumed
- gas-surface interactions assumed to be diffuse, with full energy accommodation
- variable-hard-sphere molecular model

<u>CFD</u> Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA)

- > 3D/2D/axisymmetric code
- ➢ grid resolution, ~27500 cells
- radiative equilibrium wall temperature
- super-catalytic wall boundary
- governing equations: Full Navier-Stokes
- Iaminar flow assumed

Martian Atmosphere Model: eight species gas model with chemical reactions and exchange between translational, rotational, and vibrational modes.

June 25, 2008

CFD Numerical Issues

9 blocks, 27500 cells
grid not fully converged
cell Reynolds number
minimum cell Re = 0.03
maximum cell Re = 13.06
Convergence residual
minimum residual = 10⁻⁵
maximum residual = 10⁻³

Mach Number

Complex hypersonic flow, combining normal and oblique shock waves around the spacecraft and ballute.

June 25, 2008

0.1 ton Pressure & C_D (DSMC)

Medlock, Alexeenko, Longuski

0.1 ton Surface Heating (DSMC)

1 ton Pressure & C_D (CFD)

Based on Moss' DSMC calculations for air:

 $C_D = 1.32$

Preliminary CFD results for Mars: $C_D = 1.52$

(expected to be lower when fully converged)

PURDUE

1 ton Surface Heating (CFD)

Conclusions

- Aerothermodynamic analysis indicates that C_D for Mars is higher than the C_D calculated for air at the same Knudsen number (as expected).
- Aerothermodynamic analysis (both DSMC and preliminary CFD) predict a lower ballute heat flux than estimated by Sutton-Graves model (34 % lower for the 0.1 ton case and 41% lower for the 1 ton case).
- Heating results suggest that ballute-spacecraft systems with larger ballistic coefficients (than predicted by the Sutton-Graves model) are feasible for Mars aerocapture.

Back-up Slides

June 25, 2008

Medlock, Alexeenko, Longuski

15

DSMC Predictions for C_D vs. Kn (Earth)

Stagnation Point Heating Rate

Stagnation Point Heating Rate

Temperature

Surface Pressure (1 ton, CFD)

June 25, 2008

Surface Pressure (0.1 ton, DSMC)

Medlock, Alexeenko, Longuski

Surface Temperature (0.1 ton, DSMC)

