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SUMMARY 

The various existing methods for design of welded steel box-section members have 

major drawbacks with respect to their ability to represent the limit state responses, their 

generality in terms handling practical dimensions of box-section members, the ease of their 

application in real world designs, and the correlation between the resistance predicted by 

these methods and results from experimental tests and finite element test simulations. The 

objective of this research is the conceptual and theoretical development and improvement 

of methods for characterization of the flexural and axial compressive resistance of non-

composite welded steel box-section members, and the evaluation of the performance of 

these methods using data compiled from existing experimental tests and generated from 

parametric studies performed using finite element test simulations.  

An important aspect of the calculation of flexural and axial compressive resistance 

of box-section members is obtaining a good quantification of the ultimate compressive 

resistance of longitudinally stiffened and non-longitudinally stiffened component plates. 

The proposed method for calculating the axial compressive resistance of longitudinally 

stiffened plates is derived using an orthotropic plate idealization, but is expressed as an 

intuitive and easy-to-use column on elastic foundation model. This model considers the 

contributions from the longitudinal bending stiffness, transverse bending stiffness, and 

torsional stiffness of the plate. The proposed methods for characterization of the flexural 

and axial compressive resistance of non-composite welded box-section members are 

comprehensive in terms of their handling of limit state responses of practical box-section 

members, and have a strong theoretical background, yet are simple and design-friendly. 



 xix

The strength predictions using the proposed methods show a good correlation with the 

results from experimental tests and from parametric studies performed using finite element 

test simulations. 
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CHAPTER 1. INTRODUCTION 

 Steel box-section members are highly efficient in resisting loads and are used in 

various important areas of highway bridge construction as well in building construction. 

The applications include but are not necessarily limited to truss members, arch ribs and 

ties, rigid-frame members, columns, edge girders, floor beams and steel tower legs. Some 

of these applications are highlighted in Figure 1-1 through Figure 1-3. Welded steel box 

sections can range from relatively small sections with nonslender or slender plates not 

containing any stiffeners, to relatively large sections composed of thin plates with multiple 

transverse and longitudinal stiffeners. 

 

Figure 1-1   Akashi Kaikyo Bridge (Chou, 2011) 
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Figure 1-2   Lupu Bridge (GSG, 2013) 

 

Figure 1-3   Inside view of the 14’ tall x 4’ wide - transversely and longitudinally 
stiffened tie girder of Hoan Bridge, courtesy of Dr. Francesco Russo (Michael Baker 

International). 

 There is great potential for improvement of existing methods for a better 

representation of the limit states responses, greater generality and ease of design 

application, and a better correlation with results from experimental tests and finite element 
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test simulations. Additionally, the fundamental consistency between many of the existing 

methods for design of these members, where the underlying mechanics and design behavior 

are essentially the same, needs to be improved.  

 Especially in the design-build arena, there is tremendous pressure for designers to 

optimize initial construction cost. For steel compression elements, this can lead to a 

preference for the use of thinner stiffened plates (i.e., plates containing longitudinal 

stiffeners) in larger structural components. At present, the AASHTO (2017) Specifications 

provide limited guidance regarding the design of bridge components containing stiffened 

plate elements. This lack of guidance can easily lead design engineers to misinterpret or 

inadvertently misapply important considerations. This can lead to either unsafe or overly 

conservative inefficient designs.  

 Thus, the objectives of this research are: 

(1) The conceptual and theoretical development and improvement of methods for 

characterization of the flexural and axial compressive resistance of non-composite welded 

steel box-section members, and  

(2) The evaluation of the performance of these methods using data compiled from existing 

experimental tests and generated from parametric studies performed using finite element 

test simulations. 

 The primary and supporting contributions to the body of knowledge from this 

research are as follows: 
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Primary contributions: 

(1) Development of new methods and improvement of existing methods for a conceptually 

unified characterization of the flexural and axial compressive resistance of non-

longitudinally stiffened welded box-section members, and ensuring a good correlation with 

results from experimental tests and finite element test simulations. 

(2) Development of new methods and improvement of existing methods for a conceptually 

unified characterization of the flexural and axial compressive resistance of longitudinally 

stiffened welded box-section members, and ensuring a good correlation with results from 

experimental tests and finite element test simulations. 

Supporting contributions: 

(1) Improved quantification of the postbuckling resistance of non-longitudinally stiffened 

plates subjected to uniform axial compression in welded box-section members. 

(2) Improved characterization of the ultimate compressive resistance of longitudinally 

stiffened plates. 

 At the present time (2018), there is no experimental or finite element simulation 

data in the literature investigating the interaction between flexural and local buckling in 

longitudinally stiffened welded steel box columns. Hence an important new development, 

as a part of the second primary contribution, is the development of finite element test 

simulation data for these types of components considering the interaction between global 

(flexural) and local buckling.  
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 The organization of this document is as follows: 

 Chapter 2 discusses an improved quantification of the ultimate compressive 

resistance of non-longitudinally stiffened plates. 

 Chapter 3 provides a detailed explanation of a method for improved 

characterization of the flexural resistance of non-longitudinally stiffened box-

section members. 

 Chapter 4 provides a detailed explanation of a method for improved 

characterization of the ultimate compressive resistance of longitudinally stiffened 

plates. 

 Chapter 5 discusses an improved quantification of the axial compressive resistance 

of non-longitudinally stiffened as well as longitudinally stiffened welded box-

section members. 

 Chapter 6 provides a detailed explanation of a method for improved 

characterization of the flexural resistance of longitudinally stiffened box-section 

members. 

 Chapter 7 provides a summary of the key contributions from this research, and 

gives recommendations for future work. 
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CHAPTER 2. ULTIMATE COMPRESSIVE RESISTANCE OF 

NON-LONGITUDINALLY STIFFENED PLATES 

 A good prediction of the postbuckling resistance of non-longitudinally stiffened 

plates is essential for a good quantification of the axial compressive resistance and flexural 

resistance of non-longitudinally stiffened box-section members. This chapter discusses an 

improved quantification of the postbuckling resistance of non-longitudinally stiffened 

plates subjected to uniform axial compression in welded box-section members. 

2.1 Need for improvement 

 It is widely known that slender unstiffened plates, in welded box sections subjected 

to axial compression, have significant postbuckling resistance. Schillo (2017a), and White 

and Lokhande (2017) provide a historical background of the calculation of local buckling 

and postbuckling resistance. A common way of considering the postbuckling resistance is 

via the use of effective widths as shown in Figure 2-1. 

 Research ranging back to the early work by Dowling and others in the 1970s and 

reflected in BS 5400-3:2000 (BSI 2000) indicates that for members composed of general 

welded plate assemblies, the plate local buckling and postbuckling resistances are lower 

than that indicated by Winter’s classical effective width equation (Winter, 1970). 

Johansson and Veljkovic (2009), and Schillo (2017a) have also found Winter’s effective 

width equation to be unconservative for unstiffened plates in welded box-section members.  
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Figure 2-1   Representative physical longitudinal stress distribution across the width 
of a post-buckled simply supported plate versus idealized equivalent stress 

distribution acting on the plate effective width. 

 Figure 2-2 from Lindner et al. (1994), shows the results of local buckling tests 

compared with Winter’s resistance curve. 
y

p

cr

F



  where cr is the elastic critical plate 

buckling stress. Figure 2-3 from Schillo (2017a) shows a comparison of test data to the 

strength prediction using Winter’s classical effective width equation. In Figure 2-3, the 

partial safety factor, *
M , for Winter’s equation is 1.3, and the partial safety factor, *

M , for 

Schillo’s equation is 1.06 (Schillo and Taras 2018). This safety factor is used with 

resistance curves (representing mean reduction values) to ensure a defined level of failure 

probability and fully comply with the safety standard EN 1990. The safety factor is for 

material and geometric properties.   



 8

 It can be observed that the predictions using Winter’s effective width equation are 

slightly unconservative for higher plate slenderness values, and reasonably good for plate 

slenderness values closer to the nonslender plate limit. However, the predictions are 

unconservative in the range of intermediate plate slenderness values. As pointed out by 

Schillo (2017a), “…….the so-called Winter-curve, which was derived by George Winter 

using a semi-empirical approach in 1947. This design curve reproduces the mean 

reduction values achieved in the experiments conducted by Winter and other researchers 

at that time. More recent tests on welded, squared box sections from steel grades S275 up 

to S960, and also the 34 experiments conducted within this study, showed the un-

conservativeness of the Winter-curve with increasing local slenderness, independently of 

steel grade.”   

 

Figure 2-2   Results of local buckling tests, compared with the Winter resistance 
curve; from Lindner et al. (1994) 
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Figure 2-3   Comparison of test data to the strength predictions using Winter’s 
effective width equation, and predictions using the local buckling resistance curve 
proposed by Schillo (2017a) using an improved best-fit exponential function using 

least square method (Schillo 2017a) 

 Schillo (2017b) points out a reason for the un-conservativeness of Winter’s 

effective width equation when applied to non-longitudinally stiffened plates in welded box-

section members- The design formulae do not take into account the fact that the tests used 

by Winter for the derivation of the resistance curve used cold-formed sections, where the 

strengthening effect of the cold forming process in the corners leads to higher capacity. 

This strengthening effect is absent in welded box-section members, resulting in 

unconservative predictions using Winter’s effective width equation. 

 Johansson and Veljkovic (2009) discuss the optimism of the Winter’s effective 

width equation for plates with large residual stresses, i.e., for plates in welded boxes with 

large welds, by pointing to the work by Clarin (2007). Taras et al. (2013) found that the 

strengths from FE test simulations of unstiffened plates correlate with the strength 

predictions using the Winter’s curve when the amplitude of the local imperfection is taken 
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as plate width/400 in the simulations. This imperfection amplitude is much smaller than 

the EN 1090 tolerance which is equal to plate width/200. Thus, they found that even for 

simply supported plates subjected to uniform axial compression (plate buckling coefficient 

equal to four) Winter’s curve can be approximated only if the amplitude of plate 

imperfections in the FE simulations is taken to be much lower than the tolerance; Winter’s 

equation would be optimistic for imperfection amplitudes closer to the tolerance (Taras 

2016). Therefore, Winter’s effective width equation is not correct for all levels of plate 

slenderness, residual stresses and geometrical imperfections that are encountered in 

modern steel construction (King 2017b). 

 Additionally, a small parametric study was performed by Lokhande and White 

(2017), using FE test simulations, on non-longitudinally stiffened welded box stub columns 

with different combinations of component plate slenderness. The amplitude of plate 

imperfection used in these tests was plate width/200. Table 2-1 gives the cross-section 

dimensions of the stub columns considered in this parametric study. Figure 2-4 illustrates 

the variables used in Table 2-1. The lengths of the stub-columns were taken between 1.5 

to 2.5 times the widths of the box-section component plates. The results of the parametric 

study are shown in Table 2-2, and are consistent with the observations from Figure 2-3 

expect the predictions using Winter’s effective width equation are conservative for very 

high plate slenderness values, i.e., the predictions using Winter’s effective width equation 

are: 

 Unconservative in the range of intermediate plate slenderness values  

 Reasonably good for plate slenderness values closer to the nonslender plate limit 

 Conservative for very high plate slenderness values 
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Figure 2-4   Non-longitudinally stiffened box cross-section 
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 Table 2-1   Cross-section dimensions of the stub columns considered in the 
parametric study 

Member 
number 

fcb (in.) fct (in.) ftb (in.) ftt (in.) D (in.) 
wt (in.) Length (ft.) 

1 23.0 1.2 23.0 1.2 23.0 0.5 3.1 

2 25.0 1.5 25.0 1.5 50.0 0.5 4.8 

3 22.0 0.5 22.0 0.5 22.0 0.5 2.9 

4 50.0 1.5 50.0 1.5 50.0 0.5 6.6 

5 50.0 0.5 50.0 0.5 50.0 0.5 6.8 

Table 2-2   Summary of box stub columns considered in the parametric study and 
the performance of the Winter’s effective width equation as given in AISC (2016) 

Member 
number 

Flange 
slenderness 

Web 
slenderness 

Strength from test simulation / Strength predicted 
using classical Winter’s effective width equation 

as given in AISC (2016) 

1 18 46 0.95 

2 16 100 1.03 

3 42 44 0.88 

4 33 100 0.83 

5 98 100 1.11 
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 The plate buckling curves used in AASHTO (2017) and Eurocode [CEN (2006)] 

are based on the classical Winter’s curve and are almost identical. For unstiffened plates in 

welded boxes, BS 5400-3:2000 (BSI 2000) recommends the use of BS5400 Curve 2 which 

is below the curves in AASHTO and Eurocode. However, a drawback of the curves in 

BS5400-3:2000 (BSI 2000) is that they have many change points (King 2017b), as can be 

seen from the equations given in Annex G.5 of BS 5400-3:2000 (BSI 2000). This is 

inconvenient for design. Schillo (2017a) has proposed a local buckling resistance curve 

using an improved best-fit exponential function using least square method, as shown in 

Figure 2-3. However, due to the familiarity of design engineers with Winter’s curve, a 

simple modification to the Winter’s classical effective width equation is considered a better 

choice to capture the observed lower strengths, instead of using a new plate buckling curve. 

Different aspects related to the various incarnations of the effective width equations are 

discussed in detail in White and Lokhande (2017).  

2.2 Improved estimate of the postbuckling resistance 

 A simple downward shift of the Winter’s curve along with a corresponding 

reduction in the width-to-thickness limit at which plates are fully effective up to the yield 

strength of the material is proposed. In comparison to Winter’s curve and Schillo’s (2017a) 

curve, this shifted curve is as shown in Figure 2-5. 
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Figure 2-5   Proposed modified form of Winter’s curve 

The proposed modified form of Winter’s classical effective width equation is explained 

below: 

If 
y

r

fc cr

Fb

t F
  then, 

eb b                   (1)                             

and if 
y

r

fc cr

Fb

t F
  then, 

1 31 el el
e

cr cr

F F
b b c c

F F

  
    

   
                 (2)         
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in which: 

 1c  =   effective width imperfection adjustment factor = 0.22 

 3c  =   effective width imperfection adjustment factor = 0.075 

     2 1 3 11 1 4 1 2c c c c                             (3)                                                             

     = effective width imperfection adjustment factor = 1.74                                                                                                           

 elF  = 
 

2

2
r

yc F
b t

 
 
 

                 (4)      

     = elastic local buckling stress (ksi)  

 b = gross width of the plate 

 be = effective width of the plate 

 r  = 1.09
yc

E

F
                                                  (5) 

      = width-to-thickness ratio limit  

 crF  = Uniform compressive stress on the plate. For axial compressive resistance of 

box-section members, this is equal to the flexural buckling stress calculated using 

gross cross-section properties. For flexural resistance of box-section members, crF  

is conservatively taken equal to the yield strength of the compression flange. 

 Table 2-3 compares the modified Winter’s equation to the test simulation results 

generated in this research. It can be observed that, although in general the proposed 

effective width equation gives a good prediction of the ultimate compressive strength, the 

prediction becomes substantially conservative for the extreme case of member number 5, 

where all the component plates of the box-section have very high slenderness. As seen 
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from Table 2-2 and Table 2-3, the shift in Winter’s equation has a significant impact on 

the axial compressive resistance of a welded box-section member. 

Table 2-3   Summary of box stub columns considered in the parametric study and 
the performance of the proposed modified Winter’s equation 

Member 
number 

Flange 
slenderness 

Web 
slenderness 

Strength from test simulation / Strength 
predicted using the modified Winter’s equation 

1 18 46 0.99 

2 16 100 1.08 

3 42 44 1.05 

4 33 100 0.94 

5 98 100 1.41 
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CHAPTER 3. FLEXURAL RESISTANCE OF RECTANGULAR 

WELDED NON-LONGITUDINALLY STIFFENED BOX 

SECTION MEMBERS 

This chapter provides a detailed explanation of a new method for an improved 

characterization of the flexural resistance of welded non-longitudinally stiffened box-

section members. A review of the current codified methods and prior research related to 

the calculation of flexural resistance of welded non-longitudinally stiffened box-section 

members is provided in Section 3.1. The proposed method is explained in Section 3.2. 

Section 3.3 discusses the evaluation of the performance of the proposed method. The 

salient features of the proposed method are discussed in Section 3.4. 

3.1 Literature review 

Sections 3.1.1 and 3.1.2 highlight the motivation for this thrust of the research. 

3.1.1 Codified methods  

 Sections 3.1.1.1, 3.1.1.2 and 3.1.1.3 discuss the shortcomings of the AASHTO 

(2017), Eurocode (CEN 2005; CEN 2006) and AISC (2016) methods for calculating the 

flexural resistance of non-longitudinally stiffened welded box-section 

members.  
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3.1.1.1 AASHTO 

The AASHTO (2017) method for calculating the flexural resistance has the 

following shortcomings: 

1) AASHTO (2017) Article 6.12.2.2.2 does not address general singly-symmetric welded 

box-section beams.  

2) This article does not address flange local buckling and web bend buckling in welded 

box-section beams.  

3) This article also does not address welded box-section beams with hybrid webs.  

4) For lateral torsional buckling (LTB), Article 6.12.2.2.2 assumes that the resistance is 

governed by inelastic LTB. This is a good assumption because the unbraced lengths have 

to be very long for elastic LTB to govern. For practical box-section beams, inelastic LTB 

will always govern instead of elastic LTB. Based on this assumption, AASHTO (2017) 

gives an equation for predicting the inelastic LTB resistance based on the traditional CRC 

(Column Research Council) column equation. The maximum flexural resistance predicted 

by this inelastic LTB equation is the yield moment of the gross cross section. However, in 

the studies discussed in Section 3.3, it is found that for shorter box-section members with 

compact flanges and compact or non-compact webs, the flexural resistance is largely 

governed by the cross-section capacity which is higher than the yield moment and up to 

the plastic moment of the gross cross-section. It is also found that for members with a 

noncompact or slender compression flange and non-compact webs, the cross-section 

resistance is larger than the yield moment of the effective cross-section, and for members 
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with a noncompact or slender compression flange and compact webs, the cross-section 

resistance is only slightly smaller than the plastic moment capacity of the effective cross-

section based on the effective width of the compression flange taking into account its 

postbuckling resistance. Box sections with these characteristics are encountered in 

applications where the member is subjected to biaxial bending. The relatively slender webs 

become flanges when the box is subjected to bending about the other principal axis. Thus, 

there is large reserve strength that is not taken into account by the AASHTO (2017) 

equations. The definitions of compact, non-compact, slender webs; and compact, 

noncompact and slender flanges are discussed in Section 3.2.1. 

3.1.1.2 Eurocode 

The Eurocode (CEN 2005; CEN 2006) method for calculating the flexural 

resistance has the following shortcomings: 

1) The Eurocode method requires an iterative or at least a two-step calculation to determine 

the effective cross-section for Class 4 sections. As per Eurocode (CEN 2005; CEN 2006), 

“ Class 1 cross-sections are those which can form a plastic hinge with the rotation capacity 

required from plastic analysis without reduction of the resistance; Class 2 cross-sections 

are those which can develop their plastic moment resistance, but have limited rotation 

capacity because of local buckling; Class 3 cross-sections are those in which the stress in 

the extreme compression fiber of the steel member assuming an elastic distribution of 

stresses can reach the yield strength, but local buckling is liable to prevent development of 

the plastic moment resistance; Class 4 cross-sections are those in which local buckling 

will occur before the attainment of yield stress in one or more parts of the cross-section.” 
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2) Another limitation of the Eurocode is that it classifies a cross-section based on the most 

unfavorable class of its compression parts. This can lead to overly conservative predictions 

in some cases, where the cross-section is classified as Class 3 or Class 4, but the actual 

resistance is larger than the yield moment of the effective cross-section and in some cases 

just slightly smaller than the plastic moment capacity of the effective cross-section. An 

example of such a case is a box-section member with a noncompact or slender compression 

flange and compact or non-compact webs. The practicality of this type of member is 

explained above. Thus, there is large reserve strength that is not taken into account by the 

equations in the Eurocode (CEN 2005; CEN 2006). 

3) For cross-section resistance, the Eurocode accounts for the limit state of tension flange 

yielding in Class 4 sections by calculating the section modulus of the effective cross section 

corresponding to the flange having the maximum elastic stress. It has been found in the 

parametric studies discussed in Section 3.3 that for Class 4 (e.g., slender web) singly-

symmetric cross-sections with a larger effective compression flange than the tension 

flange, the cross-section resistance is larger than that corresponding to the limit state of 

tension flange yielding. That is, these types of sections have significant reserve strength 

beyond the first yielding of the tension flange. The Eurocode equations under-predict the 

resistance of such cross sections. 



 21

3.1.1.3 AISC 

The AISC (2016) method for calculating the flexural resistance has the following 

shortcomings: 

1) For box sections with compact webs and a slender compression flange, the cross-section 

resistance predicted by AISC (2016) is the yield moment of the effective cross-section. 

However as mentioned earlier, for these box sections the cross-section resistance is larger 

than the yield moment and just slightly smaller than the plastic moment capacity of the 

effective cross-section. Thus, there is large reserve strength which is not taken into account 

by the equations in AISC (2016). 

2) For box sections with slender webs and a slender compression flange, the cross-section 

resistance predicted by AISC (2016) is RpgFcrSxc, where Fcr is the local buckling stress of 

the compression flange. This representation does not account for the post-buckling 

resistance of the compression flange. 

3) According to AISC (2016), the flexural resistance is the minimum of the strengths 

corresponding to the limit states of yielding (plastic moment), flange local buckling, web 

local buckling and lateral torsional buckling. This approach does not account for the 

interaction between local buckling and global buckling (lateral torsional buckling). 

4) In AISC (2016), the compression flange stress at the onset of nominal yielding within 

the cross-section, including residual stress effects, is taken as 0.7 times the yield strength 

of the compression flange, Fyc. Additionally, the equation for the length Lr is calculated by 

solving for the unbraced length by equating the elastic lateral torsional buckling moment 
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equal to 0.7FycSxc. In the proposed method, the length Lr is calculated as only 30% of the 

length obtained by solving for the unbraced length by equating the elastic lateral torsional 

buckling moment to 0.5FycSxce. As discussed in Section 3.3, the strengths predicted using 

the proposed method correlate well with the inelastic LTB resistances obtained from test 

simulations. Thus, this research indicates that the inelastic LTB resistance calculated in 

AISC (2016) by considering a linear interpolation between Lp and the AISC Lr expression 

over-predicts the inelastic LTB resistance of welded box-section members. 

5) There is a significant discontinuity in the resistances predicted by AISC (2016) equations 

F7-6 and F7-9 for cases with a slender flange when the webs transition from non-compact 

to slender. 

It should be noted that the 2022 draft AISC provisions avoid the drawbacks in point #2 and 

point #5, by not allowing box-section members with a slender compression flange and 

slender webs. 

3.1.2 Prior research  

 Kim and Yoo (2008) built on the work by Nakai et al. (1990) to propose improved 

predictor equations for the flexural resistance of rectangular box-section members. These 

equations have been developed using regression analysis considering the following 

parameters: 

 Aspect ratio of the box cross-section 

 Yield stress 

 Width-to-thickness of the compression flange 
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 Width-to-thickness of the web plate 

 Interaction between flange and web plates 

These equations have the following shortcomings: 

 These equations predict only the cross-section resistance. There is no dependence 

of the resistance on the length of the box-section member. Hence, there is no 

consideration of any reduction in the resistance due to inelastic lateral torsional 

buckling of the box-section member. In the parametric studies discussed in Section 

3.3, it is found that for longest practical box-section beams the inelastic lateral 

torsional buckling resistance can be as small as 76.3% of the cross-section 

resistance.  

Also, the 64 hypothetical box-section members studied by Kim and Yoo (2008) had 

aspect ratios between 1 and 1.8. However, practical box-section members can be 

much narrower and deeper than the one’s studied by Kim and Yoo (2008). 

 These equations do not address any interaction between local buckling (i.e., flange 

local buckling or web bend buckling) and global buckling (lateral torsional 

buckling). 

 These equations are not applicable to hybrid box-section members. 

 There is no consideration of the postbuckling resistance of the compression flange. 

 Therefore, based on the discussion in Sections 3.1.1 and 3.1.2, clearly there is a 

need to gain a better understanding of the behavior of non-longitudinally stiffened welded 

steel box-section beams, and to develop a method for an improved characterization of the 

flexural resistance of these types of members. 
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3.2 Proposed method 

 This section explains the proposed method. Section 3.2.1 explains the classification 

of web and flange plates, and provides equations for various strength factors. The 

calculation of cross-section flexural resistance and the member inelastic lateral torsional 

buckling resistance using the proposed method are explained in Sections 3.2.2 and 3.2.3 

respectively. Section 3.2.4 discusses the limits on the box cross-section dimensions for 

which the proposed method is applicable.   

 The equations of the proposed method are expressed in terms of an effective cross-

section (denoted by the subscript e) based on the effective width of the compression 

flange, be, taking into account the post-buckling response of a noncompact or slender 

compression flange (or the full width of a compact compression flange). The calculation 

of the effective width of the compression flange, be, was explained in CHAPTER 2. 

3.2.1 Section classification: Flanges and Webs 

 The following sub-sections explain the classification of web and flange plates, and 

provide equations for various strength factors in the proposed method. 

3.2.1.1 Webs 

 In the proposed method, the web slenderness is given by 
2 ce

w

w

D

t
   and the webs 

are classified as: 

 Compact if w pw  , where  
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3.1 ce

pw
cpe yc

D E

D F


 
  

 
                       (6)  

 Noncompact if pw w rw    , where 

4.6rw

yc

E

F
                          (7) 

 Slender if w rw   

where ceD and cpeD  are the distances of the elastic and plastic neutral axis from the inside 

surface of the compression flange in the effective cross-section respectively. 

 The limiting web slenderness ratio, λpw, is somewhat larger than the value 

specified for doubly symmetric noncomposite box sections in AISC (2016), and is 

slightly larger than the Class 2 limit for noncomposite box sections specified in CEN 

(2005). Compact web sections can develop the plastic moment resistance of the cross-

section, Mp, contingent on the satisfaction of other plate slenderness and member unbraced 

length requirements necessary to develop the plastic moment. The slenderness limit for a 

noncompact web, λrw, is slightly larger than the Eurocode Class 3 limit for non-composite 

box sections and is intended to ensure that the yield moment of the cross-section can be 

developed, contingent on the satisfaction of other plate slenderness and unbraced length 

requirements necessary to develop the yield moment.   

 The parameters Rpc, Rb and Rh are defined as the web plastification factor, web load-

shedding factor and hybrid factor respectively.  The web load-shedding factor, Rb, is 

calculated using the provisions in AASHTO (2017) Article 6.10.1.10.2, with 
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4.6rw

yc

E

F
  , and with awc determined with bfctfc taken as one-half of the total effective 

compression flange area 
2

e fcb t
. This factor accounts for the reduction in the section flexural 

resistance caused by the shedding of compressive stresses due to bend buckling of the 

slender web, and the corresponding increase in the flexural stress within the compression 

flange. The hybrid factor, Rh, is calculated using AASHTO (2017) Eq. 6.10.1.10.1-1 with 

Afn taken as one-half of the total effective compression flange area
2

e fcb t
 if n ceD D , and 

Afn taken as 
2

ft ftb t
 if n ceD D D  . This factor accounts for the early yielding of the webs 

in a hybrid box-section. The values of Rpc and Rb for different web slenderness are given 

in Table 3-1. In Table 3-1: 

 xceS  is the elastic section modulus of the effective cross-section about the axis of 

bending to the compression flange. 

 peM  = Plastic moment capacity of the effective cross-section. 

 yce yc xceM F S                               (8) 

where ycF is the yield strength of the compression flange. 
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Table 3-1   Values of Rpc and Rb 

Web 
classification 

pcR  bR  

Compact web 
pe

pc

yce

M
R

M
                                                         (9) 

1bR   

Noncompact 
web 1 1 h yce w pw pe

pc

pe rw pw yce

pe

yce

R M M
R

M M

M

M

 

 

   
           



                  

(10)                                                                          

1bR   

Slender web 
pc hR R                                                              (11) bR  calculated using 

AASHTO (2017) Eq. 
6.10.1.10.2-3, with 

4.6rw ycE F   and 

awc determined with 

fc fcb t  taken as 
2

e fcb t
, 

Dc taken as Dce. 

3.2.1.2 Flanges 

 The compression flange slenderness is given by fi

f

fc

b

t
  , where 2fi fc wb b t   as 

shown in Figure 2-4. The flange is classified in the proposed method as:  

 Compact if f pf  where,  

1.09pf

yc

E

F
                          (12) 

 Noncompact if pf f rf     where, 
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 1.7rf

yc

E

F
                           (13) 

 Slender if f rf    

pf  is the same as the nonslender limit for a plate subjected to uniform axial compression 

(see Eq. 5). pf  specified in Eq. 12 is comparable to the compact flange limit in AISC 

(2016), and to the Class 1 flange limit in CEN (2005), which is intended to ensure that the 

section can form a plastic hinge with a rotation capacity sufficient for plastic analysis, 

contingent on the satisfaction of other necessary plate slenderness and unbraced length 

requirements. This more restrictive limit is also related to the shift in Winter’s classical 

plate effective width curve discussed earlier in Section 2.2. Unlike noncompact and slender 

flanges, there is no reduction in the compressive resistance of compact flanges due to local 

buckling. fR  is a compression flange slenderness factor that accounts for the inability of a 

noncompact or slender compression flange to: 

o Develop large inelastic strains without a reduction in the flange force contribution, 

when the webs are nonslender, 

o Accept stress shed due to the bend buckling of slender webs. 

The significance of fR  is explained in Section 3.4. It is defined as follows: 

 1.0fR   for a compact flange  

 1 0.15 1.0f pf

f

rf pf

R
 

 

  
        

 for a noncompact flange         (14) 
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 0.85fR   for a slender flange. 

3.2.2 Cross-section resistance 

 Tables 3-2 and 3-3 explain the calculation of cross-section flexural resistance, csM

. In these tables, xteS  is the elastic section modulus of the effective cross-section about the 

axis of bending to the tension flange. 

Table 3-2   Cross-section flexural resistance when xce xteS S  (elastic stress in the 

flange in flexural compression is greater than or equal to the stress in the flange in 
flexural tension) 

Web 
slenderness 

Flexural resistance Simplified flexural 
resistance equation 

Compact web 
cs f peM R M                                          (15)  

 

cs f b pc yceM R R R M  

(16) 

Noncompact 
web  w pw

cs f pe pe h yce

rw pw

M R M M R M
 

 

  
        

                                    

                                                               (17) 

 

Slender web 
cs f b h yceM R R R M                                  (18) 
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Table 3-3   Cross-section flexural resistance when xce xteS S  (elastic stress in the 

flange in flexural compression is smaller than the stress in the flange in flexural 
tension) 

Web slenderness Flexural resistance 

Compact web 
cs f peM R M                                                                           (19) 

Noncompact web 
 w pw

cs f pe pe yct

rw pw

M R M M M
 

 

  
        

                          (20) 

where yctM  is the flexural resistance corresponding to the stress 

distribution shown in Figure 3-1 

Slender web The flexural resistance is calculated as fR  times the moment 

corresponding to the stress distribution shown in Figure 3-2 

In Figure 3-1 and Figure 3-2, yf ycF F as both flanges are assumed to have the same yield 

strength.   

FywFlexural 
compression

Flexural 
tension Fyw

Fyf

Fyf

   Dyct

 

Figure 3-1   Stress distribution for calculation of yctM  
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Figure 3-2   Stress distribution employed for calculation of csM for a slender-web 

cross-section ( w rw  ) 

 Unlike the case with xce xteS S , it is recommended that the AASHTO hR

expression should not be used to address hybrid box sections for cases shown in Figure 3-1 

and Figure 3-2. This is because hR  is derived considering the first yield of the flange; it 

does not account for the spread of yielding in the tension zone of the cross-section due to 

early yielding of the tension flange. A strain-compatibility analysis is recommended to 

account for web bend buckling, hybrid web effects and inelastic strength reserve 

corresponding to the spread of yielding in the tension zone. The closed form equation for 

yctM corresponding to the stress distribution in Figure 3-1 is 

   

   

2
2 3 2

. .

2

22 2
. .

2 2 6 24

8 6

yf fc eff fc ft ft yw fc eff fc ft ftyw w yw w

yct

yf w

yf fc eff fc ft ft yw fc eff fc ft ft

yw w yf

F d b t b t F b t b tF d t F d t
M

F t

F b t b t F d b t b t

F t F

 
   

 
 

                       (21)                     
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where: 

 In the above equation the variation of stresses between the upper face and lower 

face of the flanges is neglected, and the top and bottom flange are assumed to be 

separated by a distance  

2 2
fc ftt t

d D                (22) 

 . . 2fc eff fi eff wb b t               (23) 

 .fi effb  is calculated using the modified Winter’s effective width equation explained 

in Section 2.2, with fib b  and .e fi effb b     

Equation 21 is only applicable when 0yctD  , where 

. 2

4
yf ft ft yf fc eff fc yw w

yct

yw w

F b t F b t F dt
D

F t

 
             (24) 

If 0yctD  , then yct peM M .  

3.2.3 Inelastic lateral torsional buckling resistance 

 When the unbraced length, Lb, is less than Lp, the flexural resistance is the cross-

section resistance, calculated as explained in Table 3-2 and 3-2; where pL  is the limiting 

unbraced length to achieve the cross-section flexural resistance under uniform moment.  

 0.16
20p y x yce

yce

L EI M GJ
M

                                                                                           (25) 
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 This length is calculated by solving for Lb after equating the theoretical elastic 

lateral torsional buckling moment of a singly-symmetric box-section member (Peköz, 

1969), Mcr, to 15Mpe, taking Cb equal to 1.0 and approximating Mpe as 1.3Myce. The 

coefficient 15 is based on the ratio of the elastic lateral torsional buckling moment, Mcr, to 

the plastic moment, Mp, for doubly-symmetric box-section members corresponding to Lb 

= Lp in AISC (2016). The theoretical elastic lateral torsional buckling moment of a singly-

symmetric box-section member is,  

22 2

2 22 2

b y x x b
cr

b y

C EI GJL
M

L EI

  



      
   

                                                                         (26) 

 When Lb is greater than Lp, the inelastic lateral torsional buckling resistance is 

expressed as follows: 

  b p

n b CS CS yr xce CS

r p

L L
M C M M F S M

L L

  
         

                        (27) 

where: 

 CSM  is the cross-section resistance. It is calculated as explained in Tables 3-2 and 

3-3.  

 0.5yr ycF F                           (28) 

Fyr is the compression flange stress at the onset of nominal yielding within the 

cross-section, including residual stress effects, for moment applied about the axis 

of bending. This value is determined based on test simulation studies discussed in 
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Section 3.3. Since yc ytF F , for practical box cross-sections, the moment yr xceF S

corresponds to a stress state when the tension flange has not yielded. 

 Lb denotes the unbraced length. The maximum practical unbraced length is taken 

as the smaller of 30D and 200ry, for all box-section members satisfying the cross-

section proportion limits given in Section 3.2.4. The limit of 30 times D is slightly 

larger than the L/D limit of 24 considered in the Commentary for Section F7 in 

AISC (2016), which is an extreme deflection limit. The limit of L/ry=200 is set 

based on a practical upper limit on the slenderness of a column undergoing flexural 

buckling. This maximum practical unbraced length is much smaller than the 

unbraced length corresponding to the transition between inelastic LTB and elastic 

LTB. Therefore, elastic lateral torsional buckling need not be considered for box-

section members satisfying the cross-section proportion limits in Section 3.2.4.  

  0.94
r y x yr xce

yr xce

L EI F S GJ
F S

                                                                               (29) 

Lr is the limiting unbraced length for calculation of the lateral torsional buckling 

resistance. It is calculated by solving for Lb with Mcr taken equal to yr xceF S , Cb taken 

equal to 1.0 and taking 30 percent of that value. This value is determined based on 

test simulation studies discussed in Section 3.3. 

 Cb is the moment gradient modifier determined as specified in AASHTO (2017) 

Article A6.3.3. 

 
24

2

m

m m m

fc ft w

A
J

b b h

t t t


 

   
 

             (30) 

It is the St. Venant torsional constant.  
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 x is the mono-symmetry parameter of the gross cross-section. It is equal to zero 

for a doubly symmetric cross-section and is a positive value when the larger flange 

is in compression. It is calculated fundamentally (Peköz, 1969) as,  

 2 21
2x o

x A

y x y dA y
I

                           (31) 

Figure 3-3 shows a singly-symmetric non-longitudinally stiffened box cross-

section. For a rectangular box-section, x  may be expressed as

   
3 32

3 2 2 4 4 31
2

12 4 2 12
mt ft m mc fc mm w w

x mt m ft mt mc mt mc mc m fc o

x

h t b h t bb t t
h b t h h h h h b t y

I


 
         

 

               (32)             

   

bm

hmc

tfc

tft

tw

hmt

Centroid
X

Y

Shear center

 

Figure 3-3   Singly-symmetric non-longitudinally stiffened box cross-section 
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Neglecting terms involving 2
mb  and 3

mb  since they are relatively small for box 

sections with large 
fc

D

b
 (King 2016);  x  may be expressed as 

 3 4 4 31
2

2
w

x mt m ft mt mc mc m fc o

x

t
h b t h h h b t y

I
  

     
 

                                               (33) 

 oy  is the distance between the shear center (Young 2002) and the centroid of the 

gross cross-section. The term yo is a negative value when the larger flange is in 

compression. 

 2 2 12
9

12 2 2

m w m ftft m fcm m
o w c

ym m m w m ft m fc

h t b tt b th b
y t D

I h h t b t b t

    
               

                       (34) 

where: 

 bm = bfc – tw              (35) 

 
2 2

fc ft

m

t t
h D                 (36) 

 
2

fc

mc c

t
h D                (37) 

 
2

ft

mt c

t
h D D                (38) 

 m m mA b h               (39) 

 
 3 2

12 2

m fc ft w m m
ym

b t t t h b
I


              (40) 

is the moment of inertia about the minor principal axis of the gross cross-section, 

calculated neglecting the contribution of the moment of inertia of the webs about 

their centroidal axis parallel to the minor principal axis of the gross cross-section. . 
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 A is the gross cross-sectional area of the box-section. 

 Dc is the depth of the web in compression in the elastic range for the gross box 

cross-section taken from the inside of the compression flange. 

 G is the shear modulus of elasticity for steel = 0.385E. 

 Ix is the moment of inertia about the major principal axis of the gross cross-section. 

 ry is the radius of gyration about the minor axis. 

 In lieu of calculating pL  and rL  using Eq. 33 for x , as a simplification pL  and 

rL  can be calculated using 0x  , i.e.,  

0.1 y

p

yce

Er JA
L

M
                     (41) 

and 

0.6 y

r

yr xce

Er JA
L

F S
                                     (42)  

The maximum difference in nM  calculated using Eqs. 41 and 42 for pL  and rL , and nM  

calculated using Eqs. 25 and 29 for pL  and rL  is only 0.54% (0.54% lower and 0.24% 

higher than that obtained using Eqs. 25 and 29), for the box-section members considered 

in the parametric study discussed later in Section 3.3. The parametric study in Section 3.3 

considers large fcD b  ratios (within the box-section proportion limits discussed in Section 

3.2.4) and longest practical lengths for inelastic lateral torsional buckling. Thus, for 

practical box-section members the parametric study considers all the extreme cases for 
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lateral torsional buckling, and therefore it is safe to use the above discussed simplification, 

i.e., using Eqs. 41 and 42 for pL  and rL . If the limit of the ratio of thickness of thickest 

plate to thinnest plate being welded should be less than or equal to 3.0, is removed (This 

limit is applied for the parametric study design discussed in Section 3.3.1), then the 

following three extreme singly-symmetric box-section members (with shear center below 

the centroid) and with max 30L L D   are possible: 

 Member 1: 64fc ftb b   in., 0.64fct   in., 4ftt   in., 180D   in., 4wt   in, 

30 5400L D   in. 

 Member 2: 64fc ftb b   in., 0.64fct   in., 4ftt   in., 360D   in., 4wt   in, 

30 10800L D   in.  

 Member 3: 64fc ftb b   in., 0.64fct   in., 4ftt   in., 384D   in., 2.56wt   in, 

30 11520L D   in.  

The largest difference between the flexural resistance calculated using Eqs. 41 and 42 for 

pL  and rL , and using Eqs. 25 and 29 for pL  and rL , is only 0.98% (corresponding to 

member 2). Thus it is safe to use Eqs. 41 and 42 for pL  and rL  based on 0x  . Therefore, 

the proposed method recommends the use of Eqs. 41 and 42 for calculating pL  and rL  

respectively.          
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3.2.4 Box section proportion limits 

 The proposed method is applicable to box-section members whose cross-section 

dimensions are within the following limits: 

 150
w

D

t
                                                (43) 

This is a practical upper limit on the slenderness of webs without longitudinal 

stiffeners, and is the same as that for I-sections in AASHTO (2017)   

 6fcb D               (44) 

This is a practical minimum limit for the outside width of box sections. 

 90fi fcb t                 (45) 

This limit is set to avoid the following issues that could be encountered when using 

a very thin flange plate, pending further research:  

 Vibration of excessively thin plates during transportation. 

 Localized plate bending stresses induced by handling and erection 

operations.  

 Vibration of excessively thin plates due to in-service loadings on the 

completed bridge. 

 Localized plate bending stresses due to box-section distortion (i.e., 

distortion transverse bending stresses) as well as secondary stresses due to 

out-of-plane deformation of the box-section bottom flange.  

 “Bending reluctance” of excessively thin flanges, that is, the tendency for 

excessively thin flanges to not bend fully along with the overall curvature 

of the box-section member. 
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 Localized out-of-plane deflection due to a concentrated transverse load 

applied to the bottom flange, or to a plate panel within the bottom flange. 

 Buckling of thin bottom flange plates intended to serve predominantly in 

tension, due to unanticipated or accidental axial compression in the plates 

during handling and transportation, erection, and in the final service 

condition, particularly in the vicinity of inflection points in continuous-span 

girders or near locations where longitudinal stiffeners are terminated.  

 Perception of vertical vibrations, or general “sponginess” in bottom flanges 

of box girders, by bridge inspection personnel. These vibrations may be due 

to transient live loads on the bridge or due to the individual’s movements 

when walking the inside of the box girder.  

 Potential “oil canning” of thin plates in bottom flanges, i.e., snapping in or 

out of the plates between edge supporting elements when pushed on by a 

light force. 

 Slenderness of flange extensions on welded box sections, less than or equal to 

0.38
y

E

F
. This ensures that the flange extensions are not subject to any strength 

reduction associated with local buckling under flexural compression. 

3.3 Evaluation of the performance of the proposed method 

 The performance of the proposed method is evaluated via a parametric study 

performed using finite element (FE) test simulations. Section 3.3.1 explains the parametric 

study design. The results of the parametric study are discussed in Section 3.3.2. The finite 

element modelling of these box-section members is explained in Appendix A. At the 
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present time (2018), in the literature there is no experimental data for non-longitudinally 

stiffened welded box-section members subjected to pure bending. 

3.3.1 Parametric study design 

 The parametric study is divided into two parts, the first part focusing on 

homogeneous beams and the second part on hybrid beams. The beams are selected such 

that they address all practically possible combinations of flange and web plate slenderness, 

and allow the consideration of cross-section resistance as well as inelastic LTB resistance. 

Box-section members satisfying the section proportion limits of Section 3.2.4 are not 

governed by elastic LTB for any practical unbraced length, as explained in Section 3.2.3. 

 Table 3-4 provides a summary of the box-section beams considered in the 

parametric study. Column 2 in Table 3-4 provides a notation that summarizes the 

slenderness of the different plates in the cross-section. In Column 2, the first letter 

corresponds to the slenderness of the flange in flexural compression, the second letter 

corresponds to the slenderness of the flange in flexural tension and the third letter 

corresponds to the slenderness of the webs. The nomenclature used in Column 2 of Table 

3-4 is summarized in Table 3-5. The compact and noncompact flange limits in Table 3-5 

are slightly different from those specified in Section 3.2.1.2 because the limits in Section 

3.2.1.2 have been finalized after taking into consideration the results of the parametric 

study. The third through the fifth columns of Table 3-4 show the different member lengths 

considered in the study. The cross-section dimensions and lengths of the various cases 

listed in Table 3-4 are provided in Appendix B. In Table 3-4 the gray cells indicate the 
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lengths considered for each cross-section. The following practical limits were considered 

while finalizing the cross-section dimensions: 

 Minimum and maximum plate thickness equal 0.5 in. and 4 in. respectively. 

 Ratio of thickness of thickest plate to thinnest plate being welded, less than or equal 

to 3.0. 

 Ratio of the total area of the two webs to the area of compression flange, less than 

or equal to 12. 

 Ratio of area of the two webs to the total area of the flanges, less than or equal to 

6. 

 In addition to the cases in Table 3-4, the flexural resistance of a box-section member 

with cross-section 6 (C-N-S) having an aspect ratio of 6 is studied for a larger number of 

member lengths to obtain a detailed evaluation of the performance of the proposed 

equations in capturing the variation of the flexural resistance with changes in length of the 

box-section member. 
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Table 3-4   Summary of box-section members considered in the parametric study 
(gray cells indicate the lengths considered for each cross-section) 

Cross-
Section 
Number 

Flange and web 
slenderness 

Length  0.5Lp 
(Cross-Section 
resistance) 

Length   

max0.5

2

pL L
 

(Inelastic LTB) 

Length = Lmax = 
min(200ry, 30D) 
(Inelastic LTB) 

1 C-C-CW  Yes        Yes        Yes 

2 C-C-NW  Yes        Yes        Yes 

3 C-C-SW  Yes        Yes        Yes 

4 C-N-CW  Yes        Yes        Yes 

5 C-N-NW  Yes        Yes        Yes 

6 C-N-SW  Yes        Yes        Yes 

7 C-S-CW  Yes                 Yes 

8 C-S-NW  Yes        Yes        Yes 

9 C-S-SW  Yes        Yes        Yes 

10 N-C-CW  Yes        Yes        Yes 

11 N-C-NW  Yes        Yes        Yes 

12 N-C-SW  Yes        Yes        Yes 

13 N-N-CW  Yes        Yes        Yes 

14 N-N-NW  Yes        Yes        Yes 

15 N-N-SW  Yes        Yes        Yes 

16 N-S-CW  Yes                Yes 

17 N-S-NW  Yes        Yes        Yes 

18 N-S-SW  Yes                Yes 

19 S60-C-CW  Yes                
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Table 3-4 (continued)   Summary of box-section members considered in the 
parametric study (gray cells indicate the lengths considered for each cross-section) 

Cross-
Section 
Number 

Flange and web 
slenderness 

Length 0.5Lp 
(Cross-Section 
resistance) 

Length   

max0.5

2

pL L
 

(Inelastic LTB) 

Length = Lmax = 
min(200ry, 30D) 
(Inelastic LTB) 

20 S60-C-NW    

21 S60-C-SW  Yes        Yes        Yes 

22 S60-N-CW  Yes               Yes 

23 S60-N-NW  Yes                 

24 S60-N-SW  Yes        Yes        Yes 

25 S60-S60-CW  Yes                Yes 

26 S60-S60-NW  Yes        Yes        Yes 

27 S60-S60-SW  Yes                 

28 S100-C-CW  Yes                Yes 

29 S100-C-NW  Yes                Yes 

30 S100-C-SW  Yes        Yes        Yes 

31 S100-N-CW  Yes         Yes 

32 S100-N-NW  Yes         Yes 

33 S100-N-SW  Yes Yes        Yes 

34 S100-S100-CW  Yes         Yes 

35 S100-S100-NW  Yes         Yes 

36 S100-S100-SW  Yes          

37 C-S150-CW  Yes         Yes 

38 C-C-HCW  Yes         Yes 
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Table 3-4 (continued)   Summary of box-section members considered in the 
parametric study (gray cells indicate the lengths considered for each cross-section) 

Cross-
Section 
Number 

Flange and web 
slenderness 

Length  0.5Lp 
(Cross-Section 
resistance) 

Length   

max0.5

2
pL L

 

(Inelastic LTB) 

Length = Lmax = 
min(200ry, 30D) 
(Inelastic LTB) 

39 C-C-HNW    

40 C-C-HSW  Yes         Yes 

41 N-N-HCW  Yes         Yes 

42 N-N-HNW  Yes         Yes 

43 N-N-HSW  Yes         Yes 

44 S100-S100-HCW  Yes         Yes 

45 S100-S100-HNW  Yes         Yes 

46 S100-S100-HSW  Yes          

Table 3-5   Nomenclature used in Column 2 of Table 3-4 

Notation Explanation 

C 
Compact flange   1.1f

yc

E

F
   

N 
Noncompact flange   1.1 1.4f

yc yc

E E

F F
    

S60, S100, S150 Slender flange with bfi/tf = 60, 100 and 150 respectively, where tf is 
the thickness of the flange 

CW and HCW Homogeneous and hybrid compact webs respectively,   w pw     

NW and HNW Homogeneous and hybrid noncompact webs respectively,   

pw w rw       

SW and HSW Homogeneous and hybrid slender webs respectively,   w rw   
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3.3.2 Results and discussion 

 The predictions using the proposed method (using Eqs. 41 and 42 for pL  and rL , 

and using strain-compatibility analysis for cases with xce xteS S ) show a good correlation 

with the results of the parametric study performed using finite element simulations. The 

mean, median and coefficient of variation of the ratio of the flexural resistance from test 

simulation to the strength predicted using the proposed method are equal to 1.06, 1.05 and 

0.06 respectively. Figure 3-4, Figure 3-5 and Figure 3-6 show a comparison of the member 

strengths from test simulation with the strengths predicted using the proposed method, the 

method in the Eurocode (CEN 2005; ;CEN 2006), the method in AASHTO (2017) Article 

6.12.2.2.2 and the method in AISC (2016), for homogeneous box-section members with 

lengths approximately equal to 0.5 pL , max0.5

2
pL L

 and maxL  respectively. Figure 3-7 

shows a comparison of the member strength from test simulation with the strength 

predicted using the proposed method for hybrid box-section members with lengths 

approximately equal to 0.5 pL  and maxL .   
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Figure 3-4   Comparison of the member strength from test simulation with the 
strength predicted using the proposed method, the method in Eurocode, the method 

in AASHTO (2017) Article 6.12.2.2.2 and the method in AISC (2016), for 
homogeneous box-section members with length  0.5 pL   
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Figure 3-5   Comparison of the member strength from test simulation with the 
strength predicted using the proposed method, the method in Eurocode, the method 

in AASHTO (2017) Article 6.12.2.2.2 and the method in AISC (2016), for 

homogeneous box-section members with length   max0.5

2
pL L

 

 The good performance of the proposed equations for cross-sections 19 to 36 in 

Figure 3-4, clearly shows that for cases with a noncompact or slender compression flange 

and non-compact webs, the cross-section resistance is larger than the yield moment and up 

to Rf  times the plastic moment capacity of the effective cross-section for box sections with 

compact webs. This point is reinforced by observing that for cases with noncompact or 
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in Figure 3-4, the predictions using the Eurocode method are overly conservative. As 

discussed in Section 3.1.1.2, the predictions using the Eurocode method are overly 

conservative for these cases because they classify a cross-section based on the most 

unfavorable class of its compression parts and hence end up limiting the predicted cross 

section resistance of box sections with a noncompact or slender compression flange and 

compact webs to yield moment of the effective cross-section. Although box sections with 

a noncompact or slender compression flange and compact or non-compact webs are more 

unusual, they may be encountered when considering biaxial bending as discussed earlier 

in Section 3.1.1.2. 

 A good prediction of cross-section resistance using the proposed method for 

extreme singly-symmetric sections ( fc

fc

b

t
 between 17.7 to 19.5, and ft

ft

b

t
 between 106 to 

156) with a larger compression flange (cross-sections 7, 8, 9 and 37) in Figure 3-4, clearly 

shows that for box-section members the limit state of tension flange yielding is not 

required. Also as discussed in Section 3.1.1.2, the Eurocode method gives conservative 

cross-section resistance predictions for singly-symmetric Class 4 box-section members 

with larger compression flange, as it considers tension flange yielding by calculating the 

section modulus corresponding to the flange with the maximum elastic stress. This can be 

seen by the conservative prediction using Eurocode for cross-section 9. 
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Figure 3-6   Comparison of the member strength from test simulation with the 
strength predicted using the proposed method, the method in Eurocode, the method 

in AASHTO (2017) Article 6.12.2.2.2 and the method in AISC (2016), for 
homogeneous box-section members with length = maxL = min(200ry,30D) 

 It can be observed from Figure 3-4 that for members with a compact compression 

flange and compact or non-compact webs, the cross-section resistance is higher than the 

yield moment and up to the plastic moment of the gross cross-section. Thus for cross-

sections 1, 2, 13 and 14, the strength predicted using the AASHTO (2017) method is 

conservative since the maximum flexural resistance predicted by the inelastic LTB 

equation in AASHTO (2017) is limited to the yield moment of the gross cross-section. The 
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inelastic LTB equation in AASHTO (2017) over-predicts the strength of box-section 

members with slender webs because it does not account for web bend buckling. 

 

Figure 3-7   Comparison of the member strength from test simulation with the 
strength predicted using the proposed method for hybrid box-section members with 

lengths 0.5 pL and maxL     

 As mentioned earlier in Section 3.1.1.3, for box sections with slender webs and a 

slender compression flange, the cross-section resistance predicted by AISC (2016) is 

RpgFcrSxc, where Fcr is the local buckling stress of the compression flange. This 

representation does not account for the post-buckling resistance of the compression flange. 

This is the reason for the conservatism in strength predictions for cross-sections 30, 33, 36 

in Figure 3-4, and cross-sections 30, 33 in Figure 3-5 and Figure 3-6. 

 It can be observed from Figure 3-5 and Figure 3-6 that the inelastic LTB resistance 

calculated by considering a linear interpolation between Lp given by Eq. 41 and Lr given 
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by Eq. 42 gives good correlation with the strengths from the test simulations and performs 

much better than the methods in AASHTO, Eurocode and AISC. Figure 3-7 clearly shows 

that the proposed method performs well in predicting the cross-section resistance and 

inelastic LTB resistance of hybrid box-section members. 

 Figure 3-8 shows the variation of flexural resistance with change in length of a box-

section member with cross-section # 6 (C-N-S) having an aspect ratio of six. For this 

member, the reduction in flexural resistance at Lmax is 22.4% compared to the plateau 

resistance. It can be seen that the inelastic LTB resistance calculated by considering a linear 

interpolation between Lp and Lr (using Eqs. 41 and 42 for pL  and rL  respectively) gives 

reasonably good predictions. In the parametric study, the maximum reduction in flexural 

resistance at Lmax  compared to the plateau resistance is obtained for a box-section member 

with cross-section 3 (C-C-S). The reduction for that case is equal to 23.7%. 
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Figure 3-8   Variation of flexural resistance with change in length of a box-section 
member with cross-section # 6 (C-N-S) having an aspect ratio of six 

 

3.4 Salient features of the proposed method 

 The proposed method encapsulates a significant advancement in the understanding 

of the behavior of rectangular non-longitudinally stiffened welded box-section beams, and 

provides a conceptually unified characterization of their resistance which correlates well 

with the results of the parametric study.  The salient features of this method are as follows: 

1) The proposed method better handles the following: 
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 Flange local buckling and the corresponding postbuckling resistance via 

the use of an effective cross-section based on the effective width of the 

compression flange. An improved calculation of the postbuckling 

resistance of non-longitudinally stiffened plates subjected to uniform 

axial compression in welded box-section members is proposed, as 

discussed in CHAPTER 2. 

 Web-bend buckling and the corresponding postbuckling resistance via the 

web-bend buckling factor or an effective web section. This avoids the 

need to perform iterative or two-step calculations when obtaining an 

effective cross-section. 

 Lateral torsional buckling: The method recognizes that for the longest and 

narrowest practical non-longitudinally stiffened box-section beams the 

reduction in the flexural resistance relative to the cross-section resistance 

can be measurable. In the parametric studies discussed in Section 3.3, it 

is found that for the longest practical box-section beams the inelastic 

lateral torsional buckling resistance can be as small as 76.3% of the cross-

section resistance.  

 The proposed method addresses the interaction between local 

postbuckling (i.e., flange local buckling or web bend buckling) and global 

buckling (lateral torsional buckling). This interaction is considered via the 

use of effective section properties and/or the AASHTO web bend 

buckling factor, in the proposed inelastic lateral torsional buckling 

equation. 
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 The method addresses all practical ranges of web and flange plate slenderness, i.e.: 

 Compact, noncompact and slender compression flanges. 

 Compact, noncompact and slender webs.  

 In bridges it is common that fabricated boxes may be singly symmetric. The 

proposed method can handle singly as well as doubly symmetric box-section 

members. For lateral torsional buckling, this is accomplished via the mono-

symmetry parameter, which accounts for the fact that in singly-symmetric sections 

the shear center and centroid do not coincide and the effect of this attribute on the 

LTB resistance. The proposed method also provides an improved characterization 

of the cross-section resistance of singly-symmetric box-section members as 

discussed in point #2 and point #4 of this section.   

 It is possible for steel box-section members subjected to flexure to have webs with 

lower yield strengths than that of the flanges. The proposed method addresses 

hybrid as well as homogenous box-section members. To accomplish this, the 

proposed method uses the hR  factor when calculating the flexural resistance for 

cases with xce xteS S . However, the method uses the stress distribution 

corresponding to the limit state of yielding of the compression flange of the 

effective cross-section when calculating the flexural resistance for cases with

xce xteS S . This is because hR  has been derived considering the first yield of a 

flange. However, the proposed method recognizes the inelastic reserve strength 

corresponding to the spread of yielding in the tension zone (including the hybrid 

web effects) for cases with xce xteS S . 
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Thus the proposed method better characterizes the flexural resistance of all practical non-

longitudinally stiffened welded box-section members.  

2) The proposed method eliminates the need to consider a separate tension flange yielding 

(TFY) limit state. For sections with xce xteS S , the member response is addressed 

rigorously via the direct calculation of the yield moment of the compression flange, 

considering early yielding of the section on the tension side of the neutral axis, and 

considering hybrid web, slender web and noncompact or slender compression flange 

effects as applicable. This allows the consideration of large reserve strengths up to 43% 

higher than those predicted by the Eurocode equations, and correlates well with the 

observations from the parametric study discussed in Section 3.3.  

3) A study of the axial load versus axial shortening characteristics of a non-longitudinally 

stiffened plate for different values of plate slenderness shows that except for plates with 

width-to-thickness ratios less than or equal to approximately 20, the ability of a plate to 

sustain load decreases with increase in inelastic axial compressive strains beyond the peak 

load. The ultimate load carrying capacity of these plates is considered via the use of an 

effective width. If such slender plates are used as a compression flange in a box-section 

beam; then the flange plate should be able to sustain large inelastic axial compressive 

strains so that the nonslender webs can plasticize. However, it is known that the flange 

force contribution decreases with increase in the inelastic axial compressive strain. To 

account for this behavior, a compression flange slenderness factor, fR , is used in the 

proposed method. This factor accounts for: 
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 The inability of a noncompact or slender compression to develop large inelastic 

strains without a reduction in the flange force contribution when the webs are 

nonslender. 

 The inability of a noncompact or slender compression flange to accept stresses shed 

due to the bend buckling of a slender web. 

4) Development of a cross-section model based on an effective width of the compression 

flange taking into account its postbuckling resistance.  For box-section members with 

compact or noncompact webs, the proposed method allows the consideration of cross-

section resistance larger than the yield moment and up to fR  times the plastic moment 

capacity of the effective cross-section. Box sections with compact or noncompact webs 

and a noncompact or slender compression flange can be encountered when considering 

biaxial bending. A box-section member with slender webs and compact flanges becomes a 

box-section member with compact webs and a noncompact or slender compression flange 

when considering bending about its other principal axis. The proposed method results in a 

significant improvement in the characterization of the cross-section capacity, allowing the 

consideration of large reserve strengths up to 37 % higher than those predicted by the 

AASHTO (2017) method and 39 % higher than those predicted by the Eurocode [CEN 

(2005); CEN (2006)] method. 

5) The AISC plate slenderness limits for compact webs and compact flanges in box-section 

box sections are based on ensuring that the cross-section flexural resistance is pM  (plastic 

moment capacity) and that the section has sufficient rotation capacity. For plastic design 

these limits correspond to the Class 1 limits in Eurocode.  However, if the only aim is to 
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be able to achieve a resistance equal to pM , these plate slenderness limits can be relaxed. 

The proposed method utilizes relaxed plate slenderness limits for compact webs as can be 

seen from Table 3-6, where Dce and Dcpe are depths of the webs in compression in the elastic 

range and at the plastic moment respectively, measured from the inside of the compression 

flange of the effective box cross-section. These limits are intended to be Class 2 limits. 

Although the aim is to relax the plate slenderness limit for compact flanges, this limit is 

made stricter in order to address the unconservatism observed in the classical Winter’s 

effective width equation for characterizing the compressive resistance of non-

longitudinally stiffened plates in welded box-section members, as discussed CHAPTER 2.    

Table 3-6   Comparison of plate slenderness limits in AISC (2016) and the proposed 
method 

 AISC (2016) Proposed method 
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CHAPTER 4. ULTIMATE COMPRESSIVE RESISTANCE OF 

LONGITUDINALLY STIFFENED PLATES 

 A good quantification of the ultimate compressive resistance of longitudinally 

stiffened plates is crucial for a good prediction of the axial compressive or flexural 

resistance of longitudinally stiffened welded box-section members. Section 4.1 reviews the 

current codified methods and prior research related to the calculation of the ultimate 

compressive resistance of longitudinally stiffened plates. The proposed method is 

explained in Section 4.2. Section 4.3 discusses the evaluation of the performance of the 

proposed method. The salient features of the proposed method are discussed in Section 4.4. 

4.1 Literature review 

This section reviews the current codified methods and prior research related to the 

calculation of the ultimate compressive resistance of longitudinally stiffened plates. This 

highlights the motivation for this thrust of the research. 

4.1.1 General 

 Any method for calculating the ultimate compressive resistance of longitudinally 

stiffened plates should address the following potential failure modes of a longitudinally 

stiffened plate subjected to uniform axial compression: 

 Overall buckling of a longitudinally stiffened plate with the plate subjected to 

flexural compression (as shown in Figure 4-1a). 
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 Overall buckling of a longitudinally stiffened plate with the longitudinal stiffener 

tip subjected to flexural compression (as shown in Figure 4-1b). 

 Local buckling of the plate subpanels between the longitudinal stiffeners (as shown 

in Figure 4-1c). 

 Tripping of the longitudinal stiffeners, i.e., torsional buckling of the stiffener about 

the stiffener-plate boundary (as shown in Figure 4-1d). 

 Local buckling of the stiffener component plates. 

In addition, generally there will be some interaction between these distinct failure modes. 

Figure 4-2 shows a failure involving the interaction between local buckling and overall 

buckling of a longitudinally stiffened plate. 

 

Figure 4-1   Typical buckling modes. (a) Overall buckling (plate in flexural 
compression); (b) overall buckling (stiffener tip in flexural compression); (c) plate 

buckling; and (d) stiffener tripping. (Sheikh et al. 2002). 



 61

 

Figure 4-2   Representative failure mode involving interaction between local and 
overall buckling of a longitudinally stiffened plate  

  

 The prediction of the compressive resistance of longitudinally stiffened plates 

typically involves two steps:  

 1) Calculating the buckling strength,  

 2) Calculating the ultimate compressive strength.  

Table 4-1 provides a broad summary of the existing methods for calculating the buckling 

resistance, and the ultimate compressive resistance of longitudinally stiffened plates. The 

various codified procedures use different combinations and forms of the methods listed in 

Table 4-1.   
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Table 4-1   Summary of existing methods for calculating the buckling resistance, 
and the ultimate compressive resistances of longitudinally stiffened plates 

Buckling resistance Ultimate compressive resistance 

1) Strut idealization: 

The strut model is based on treating a 

longitudinally stiffened plate as a series 

of separate columns comprised of the 

longitudinal stiffener and an associated 

width of the plate, as shown in Figure 

4-3. 

2) Column on elastic foundation 

(CEF) idealization: 

The CEF model considers a longitudinal 

stiffener strut (i.e., the longitudinal 

stiffener and an associated width of the 

plate) resting on an elastic foundation 

representing the transverse bending 

stiffness of the plate. Thus it avoids the 

limitation of the strut idealization of 

neglecting the transverse bending 

stiffness of the plate. This transverse 

bending stiffness can be significant 

especially in relatively narrow plates 

with one or two longitudinal stiffeners, 

which are commonly used in North 

America. 

3) Orthotropic plate idealization: 

The orthotropic plate idealization 

smears the stiffness characteristics of 

the longitudinal stiffeners over the 

entire plate. Thus, it takes into account 

the longitudinal bending, transverse 

bending, and torsional stiffness of the 

stiffened plate. 

1) Column strength curve: 

Mapping to a column strength curve results in 

no consideration of the plate postbuckling 

resistance. Column strength curves have a 

short plateau (see Figure 4-4). 

2) Plate strength curve: 

Mapping to a plate strength curve, e.g., 

Winter’s curve or von Karman’s curve, results 

in a consideration of the postbuckling 

resistance. Plate strength curves have a longer 

plateau (see Figure 4-4). von Karman’s 

equation is based on the assumption of an 

ideal concentrically-loaded, perfectly flat 

plate. However, in reality all plates have some 

initial out-of-flatness because of which it is a 

load-deflection problem rather than sudden 

buckling at the theoretical bifurcation point. 

This is taken into account in Winter’s curve.  

3) Interpolation between column and plate 

strength curves: 

Because of the lack of an explicit compressive 

strength curve for longitudinally stiffened 

plates, the Eurocode (CEN 2006) requires an 

interpolation between column and plate 

ultimate strength curves. Figure 4-4 clearly 

shows the higher compressive resistance for 

plates, due to postbuckling, and also the 

longer plateau for plate ultimate strengths 

compared to column strengths. 
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Figure 4-3   Longitudinally stiffened box and a stiffener strut  

 

 

Figure 4-4   Axial compressive strength curves 
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4.1.2 Codified methods 

 This section provides a review of the various codified methods. 

4.1.2.1 AASHTO (2017) Article 6.11.8.2 

 Provisions for calculating the ultimate compressive strength of longitudinally 

stiffened plates are given in Section 6.11.8.2 of AASHTO (2017). AASHTO (2017) 

calculates the axial compressive strength of a stiffened plate as the axial compressive 

buckling resistance of the subpanel between longitudinal stiffeners. It does not take into 

account the post-buckling resistance of the subpanels. For plates with one or two 

longitudinal stiffeners, the buckling coefficient is dependent on the moment of inertia of 

the longitudinal stiffeners. The formulae for plates with one or two longitudinal stiffeners 

assume infinitely long plates, i.e., no transverse stiffeners. White (2012) points out that 

these equations “…which originate from Vincent (1969), are approximate equations that 

give values close to theoretical elastic buckling solutions for infinitely long, longitudinally 

stiffened plates from Goldberg and Levy (1957)”. The required moment of inertia of the 

longitudinal stiffeners to achieve a desired value of the plate buckling coefficient begins to 

increase dramatically as the number of stiffeners is increased beyond one. Hence, 

AASHTO (2017) recommends not exceeding one longitudinal stiffener. 

 For plates with more than two longitudinal stiffeners, AASHTO (2017) suggests 

adding transverse stiffeners to reduce the size of the longitudinal stiffeners. Article 

C6.11.11.2 gives requirements for the rigidity and spacing of the transverse stiffeners. 

However as pointed out by King (2017a), for plates with transverse stiffeners and more 
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than two longitudinal stiffeners, the value of the plate buckling coefficient in AASHTO 

(2017) is independent of the moment of inertia of the longitudinal stiffener. 

 The AASHTO (2017) method for calculating the ultimate compressive strength of 

longitudinally stiffened plates has the following shortcomings: 

1) For slender plate subpanels susceptible to local buckling, the strength is limited to elastic 

buckling of the subpanel between the longitudinal stiffeners. This neglects the significant 

postbuckling resistance of the longitudinally stiffened plate subpanels.  

2) The longitudinal stiffeners in wide plates with more than two longitudinal stiffeners tend 

to behave as unconnected struts. The key property influencing the compressive resistance 

of these types of plates is the moment of inertia of their longitudinal stiffeners. However, 

as pointed out by King (2017a), for these types of plates, the plate buckling coefficient in 

AASHTO, and hence the stiffened plate resistance, is independent of this key property.  

3) For plates with more than two longitudinal stiffeners, AASHTO suggests the use of 

transverse stiffeners and requires the longitudinal stiffeners to satisfy a minimum moment 

of inertia requirement. This limits the designer’s options in seeking the greatest design 

economy.  

4) AASHTO (2017) requires a spacing of transverse stiffeners less than three times the 

width of the stiffened plate for the stiffeners to be considered effective. It would be better 

to provide design engineers more flexibility in choosing the transverse stiffener spacing.  

5) AASHTO (2017) does not recognize the larger resistance of subpanels adjacent to the 

plate longitudinal edges. This aspect of the response is discussed in detail in Section 4.2. 
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6) AASHTO (2017) does not provide any guidance to prevent tee and angle section 

stiffener torsional buckling about the edge attached to the plate, i.e., “tripping” of the 

stiffeners (shown in Figure 4-1d and Figure 4-5). A tripping failure involves a drastic 

reduction in strength beyond the peak load; and hence such a failure must be avoided. 

 

Figure 4-5   Tripping failure (Murray 1973) 

4.1.2.2 AISI (2016) 

 The AISI (2016) method for calculating the ultimate compressive strength of 

longitudinally stiffened plates has the following drawbacks:  

1) The method is intended for plates containing formed stiffeners. It does not have any 

provisions addressing stiffener local buckling, i.e., tripping of the stiffener or local 

buckling of the stiffener component plates.  
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2) The buckling coefficient is calculated as the minimum of the coefficients for buckling 

of the plate between longitudinal stiffeners (as shown in Figure 4-6) and overall buckling 

of the plate along with the longitudinal stiffeners (as shown in Figure 4-7). Thus it does not 

account directly for any interaction between local buckling of subpanels and overall 

buckling of the plate involving transverse displacement of the stiffeners.  

 

Figure 4-6   Local buckling (AISI 2016) 

 

 

Figure 4-7   Overall buckling of the plate along with the stiffeners (AISI 2016) 

3) The ultimate compressive strength of the stiffened plate is calculated by considering its 

postbuckling resistance using the Winter’s effective width equation for unstiffened plates. 

It is inappropriate to count on this postbuckling resistance in all cases. For example, a wide 

thin plate with a large number of longitudinal stiffeners, where the longitudinal stiffeners 

and the tributary widths of the plate tend to behave as unconnected stiffener struts, will 

tend to have limited postbuckling resistance. 
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4.1.2.3 BS 5400 (BSI 2000) 

 BS 5400:3 (BSI 2000) uses a strut approach for calculating the ultimate 

compressive resistance of longitudinally stiffened plates. As explained in Table 4-1, the 

strut model is based on treating a longitudinally stiffened plate as a series of separate 

columns comprised of the longitudinal stiffener and an associated effective width of the 

plate. The effective width accounts for the postbuckling resistance of the subpanels 

between longitudinal stiffeners. BS 5400:3 has charts for calculating the effective width of 

the sub-panels.  

 The strength of the strut is calculated using a Perry-Robertson formula for a simply 

supported, imperfect column. BS 5400: 3 (BSI 2000) requires the design engineer to 

calculate an equivalent imperfection for the longitudinal stiffener strut which is related to 

the slenderness of the strut, residual stresses, and to the load eccentricity that may be 

present when evaluating the strength of stiffened flanges in box beams.  

 BS 5400:3 (BSI 2000) checks the following limits states: 

 Yielding of stiffener tip in compression and  

 Postbuckling or yielding of the plate.  

Checking for the first yield of the stiffener is consistent with the observations by previous 

researchers (Murray 1973, Horne and Narayanan 1977) that there is little margin of 

strength above the load at which yielding first occurs in a stiffener. King (2017b) gives a 

possible reason for these observations, that many of the tests in the 1960’s and 70’s used 

bulb-flat stiffeners which were very slender, thus being more susceptible to tripping once 
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the bulb portion of the stiffener yields. In BS 5400:3 (BSI 2000), instability of the 

longitudinal stiffener is prevented by imposing restrictions on its dimensions.  

 A major limitation of the BS 5400: 3 (BSI 2000) method is that it does not account 

for the resistance offered by the transverse bending stiffness of the plate when the plate is 

transversely stiffened. It also does not account for the contribution from the torsional 

stiffness of the plate.  

4.1.2.4 Eurocode (CEN 2006) 

 Eurocode aims to avoid the limitation of the strut approach of not accounting for 

the resistance offered by the plate, by using a column on elastic foundation model for plates 

with one or two longitudinal stiffeners. It recommends an orthotropic plate approach for 

plates with three or more longitudinal stiffeners subjected to compression. 

 The Eurocode (CEN 2006) method for calculating the ultimate compressive 

strength of longitudinally stiffened plates has the following limitations: 

1) Because of the lack of availability of an ultimate compressive strength curve for 

stiffened plates, the Eurocode provisions interpolate between a column strength curve (no 

postbuckling resistance and a short plateau length) and a non-longitudinally stiffened plate 

strength curve (consideration of postbuckling resistance and a longer plateau length). The 

calculations associated with this interpolation approach are relatively long and 

cumbersome. As a result the design engineer can easily lose track of the parameters 

influencing the compressive resistance of the plate; hindering the ability to produce 

optimum designs.   
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2) The Eurocode method accounts for larger resistance of the half-width of the edge 

subpanels closest to the edge supports by considering that they reach the yield stress. 

However, as discussed later in this Section 4.2, the maximum resistance of the stiffened 

plate typically occurs before the half-width of the subpanel closest to the edge support 

reaches the yield stress. 

3) For plates with one or two longitudinal stiffeners, the Eurocode calculations do not 

account for the contribution from the torsional stiffness of the plate. 

4) The Eurocode provisions use different approaches for plates with one or two longitudinal 

stiffeners, and for plates with three or more longitudinal stiffeners. From the point of view 

of conceptually consistency, it would be preferable to use the same approach for plates 

with any number of longitudinal stiffeners. Section 4.2 and Appendix C provide 

justification for the use of orthotropic plate approach for any number of longitudinal 

stiffeners. 

4.1.3 Prior research 

 There has been a large amount of research activity focussed on understanding the 

behaviour and quantifying the resistance of longitudinally stiffened plates subjected to 

uniform axial compression. Ziemian (2010) provides a summary of the prior research. The 

recommendations from prior research have been adopted in the various codified methods 

discussed in Section 4.1.2. 

 Timoshenko (1921) calculates the buckling stress of plates with one to three equally 

spaced longitudinal or transverse stiffeners. He considers hinged plate edges, and uses the 
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energy method for the solution. Chwalla (1936a and 1936b) considers a plate with one 

longitudinal stiffener in the middle of the plate stressed by pure bending, compression, or 

shear, and solves the problem using the energy method. Barbre (1939) develops complete 

buckling conditions for stiffened plates subjected to uniform compression. Wittrick (1968) 

performs a theoretical study to provide an approach for calculating the buckling stress of 

stiffened panels subjected to uniform longitudinal compression. Timoshenko (1921), 

Chwalla (1936a and 1936b), Barbre (1939), and Wittrick’s (1968) work focusses on 

calculating the buckling stress of stiffened plates. As discussed in Section 4.1.1, the 

prediction of the compressive resistance of longitudinally stiffened plates involves two 

steps: 1) Calculating the buckling strength, and 2) Calculating the ultimate compressive 

strength.  

 Wolchuk and Mayrbaurl (1980) provide a method to quickly calculate the ultimate 

compressive strength of stiffened plates as a function of geometric parameters using an 

interaction diagram. This method uses an easy to understand strut model and is based 

largely on the theoretical work by Little (1976). The strut is comprised of the longitudinal 

stiffener and full tributary width of the associated plate. Wolchuk and Mayrbaurl (1980) 

account for the restraint provided by the transverse bending stiffness of the plate by 

considering a reduced effective length while calculating the strength of the stiffener strut. 

However, they do not account for the contribution from the torsional stiffness of the plate. 

They also do not recognize the larger resistance of subpanels adjacent to the plate 

longitudinal edges. 

 Yoo et al. (2001) and Choi et al. (2009) provide an equation for the minimum 

moment of inertia of longitudinal stiffeners to ensure the failure mode shown in Figure 4-6, 
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which they refer to as the “anti-symmetric buckling mode”. This equation was derived 

using regression analysis of a large quantity of data obtained from finite element analyses. 

They also propose a plate strength curve that uses an inverse parabolic curve based on the 

CRC (1960) column curve, for the transition region between the yield plateau and elastic 

buckling. Their approach has many of the same shortcomings as the AASHTO (2017) 

method. Their approach neglects the significant postbuckling resistance of the 

longitudinally stiffened subpanels. It also does not recognize the larger resistance of 

subpanels adjacent to the plate longitudinal edges. 

 Herman (2001) tested the validity of the AASHTO design equations using finite 

element analyses and experimental tests. She recommends the use of approaches that allow 

the consideration of initial imperfections, residual stresses and longitudinal stiffener 

displacement, which better represents the observed behavior that longitudinal stiffeners do 

not form straight nodal lines. Strut-based models allow the consideration of these effects.     

 Schafer (1997) proposes a method for calculating the buckling and postbuckling 

resistance of longitudinally stiffened plates considering overall buckling of the plate along 

with the longitudinal stiffeners (see Figure 4-7) and local buckling of the subpanels (see 

Figure 4-6). The overall buckling of the plate along with the longitudinal stiffeners is based 

on an orthotropic plate idealization of the longitudinally stiffened plate. The 

recommendations by Schafer (1997) have been adopted in AISI (2016). The shortcomings 

of the AISI (2016) method for calculating the compressive resistance of longitudinally 

stiffened plates were discussed in Section 4.1.2.2. 
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 Therefore, based on the discussions in Sections 4.1.1, 4.1.2, and 4.1.3, there is a 

need for a comprehensive yet designer-friendly (simple and intuitive) method for 

characterizing the ultimate compressive resistance of longitudinally stiffened plates.  

4.2 Proposed Method 

 The proposed method is based on the developments by King (2017a). Sections 4.2.1 

and 4.2.2 explain the calculation of the buckling and ultimate compressive resistance of 

longitudinally stiffened plates. Section 4.2.3 explains the restrictions on the longitudinal 

stiffener cross-section dimensions to prevent local buckling and tripping of the stiffeners. 

Section 4.2.4 explains the identification of five non-dimensional parameters that influence 

the compressive resistance of longitudinally stiffened plates. 

4.2.1 Elastic Buckling resistance 

 The proposed method is based on an orthotropic plate idealization. Thus it considers 

all three contributions to the buckling resistance - longitudinal bending stiffness, 

transverse bending stiffness, and torsional stiffness. The differential equation of 

equilibrium for the orthotropic plate idealization of a longitudinally stiffened plate, simply 

supported on all four edges and subjected to uniformly distributed compressive load in its 

longitudinal direction, is 

4 4 4 2

4 2 2 4 2
2 x

x y

sp

P
D H D

x x y y b x

      
   

    
            (46) 

where: 

 x is the longitudinal direction of the plate; 
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 y is the lateral direction of the plate; 

   is the transverse displacement of the plate; 

 s
x

EI
D

w
                (47) 

= flexural stiffness for bending about the y axis 

 
 

3

2
1212 1

sp

s x sp

wt
I I wt c


  


            (48) 

As a conservative simplification one may instead calculate sI  as  

3

2
1

12

sp

s x sp

wt
I I wt c                          (49) 

 xI  is taken as the moment of inertia of an individual longitudinal stiffener about an 

axis parallel to the face of the longitudinally stiffened plate element and passing 

through the centroid of the stiffener strut (the stiffener strut is composed of the 

longitudinal stiffener plus the tributary width of the longitudinally stiffened plate 

element under consideration).  

 1c  is the distance between the centroid of the longitudinally stiffened plate element 

and the centroid of the stiffener strut.  

 
 

3

212 1

sp

y p

Et
D EI


 


                       (50) 

      = flexural stiffness for bending about the x axis; 

Equation 50 does not include any contribution from the transverse stiffeners 

because it is assumed that the transverse stiffeners (if present) are designed to hold 

a node line, i.e., buckling occurs between the transverse stiffeners and the 

transverse displacement of the transverse stiffeners is zero. 
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 
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 
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                                                                                            (52) 

     = torsional stiffness; 

The torsional rigidity of the longitudinal stiffeners is neglected. 

 E  is the modulus of elasticity; 

 xP is the buckling load of the longitudinally stiffened plate. 

 Figure 4-8 illustrates the dimensional and area variables employed above and in the 

subsequent discussions for a representative longitudinally stiffened plate. 

 

Figure 4-8   Illustration of variables for a longitudinally stiffened plate 

 The derivation of the differential equation of equilibrium for the orthotropic plate 

idealization of a longitudinally stiffened plate simply supported on all four edges and 
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subjected to uniformly distributed compressive load in its longitudinal direction can be 

found in Brush and Almroth (1975) and Allen and Bulson (1980). The kinematic and 

equilibrium relationships for the orthotropic plate are the same as that for an isotropic plate; 

only the constitutive relations are different. Knowing this and taking into account the two 

assumptions mentioned above, i) Transverse stiffeners (if present) are designed to hold a 

node line, ii) Torsional rigidity of the longitudinal stiffeners is neglected; it can be shown 

that the only difference between the differential equation of equilibrium for the orthotropic 

plate and for an isotropic plate is that the orthotropic plate has a larger flexural stiffness for 

bending about the y axis, xD , because of the presence of longitudinal stiffeners. In other 

words, for an isotropic plate x y pD D H EI   , whereas for an orthotropic plate 

(assuming transverse stiffeners are designed to hold a node line, and torsional rigidity of 

the longitudinal stiffeners is neglected) y pD H EI   but xD  is larger because of the 

presence of longitudinal stiffeners. 

 The buckling mode of the stiffened plate is given by, 

max sin sin
sp

x y

b

 
 


                                        (53) 

where   is the buckling length, taken as the smaller of the transverse stiffener spacing, a, 

and the characteristic buckling length, c , explained later in this section. This can be 

justified as follows. 
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 The buckling mode may be considered generally to be represented by a complete 

Fourier series Eq. 54 for a plate without intermediate transverse stiffeners, and Eq. 55 for 

a plate with intermediate transverse stiffeners; where L  is the total length of the plate. 

sin sinmn
m n sp

m x n y

L b

 
 

 

                    (54) 

sin sinmn
m n sp

m x n y

a b

 
 

 

                       (55) 

Assuming an infinitely long plate for plates without intermediate transverse stiffeners, the 

buckled mode for plates with or without intermediate transverse stiffeners can be written 

as  

sin sinmn
m n sp

m x n y

b

 
 

 

 


                      (56)  

However, since we are only concerned with calculating a buckling load corresponding to 

an overall buckling mode as shown in Figure 4-7 (the proposed method accounts for local 

buckling, and the interaction between local buckling of subpanels and overall buckling of 

the plate, by using effective section properties when calculating the ultimate compressive 

resistance of the longitudinally stiffened plate), n  should be equal to one and therefore we 

have  

max sin sin
m sp

m x y

b

 
 



 


                  (57) 
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It is known that the buckled shape of a simply supported isotropic plate subjected to 

uniform compression in the longitudinal direction is a double sine curve (Allen and Bulson 

1980). Because the buckled shape of an orthotropic plate should also be a sine curve in the 

longitudinal direction, m  should be equal to one. Therefore the buckling mode of the 

stiffened plate is as given in Eq. 53.  

Next, let us consider the implications of the following two approximations: 

1) Assuming an infinitely long plate for plates without intermediate transverses stiffeners. 

 This will result in slightly conservative strength predictions when cL    and L  is 

not an integer multiple of c . For a plate without intermediate transverse stiffeners the 

minimum buckling load corresponds to a buckling length equal to c  when cL   (i.e., 

when cL    for minimum buckling load the total length of the plate should be an integer 

multiple of c ). If L  is not an integer multiple of c , when cL   , then the actual buckling 

load will higher than the buckling load predicted by the proposed method corresponding to 

a buckling length equal to c . This conservatism reduces for larger values of  
c

L


. 

2) Taking   as the smaller of the transverse stiffener spacing, a, and the characteristic 

buckling length, c .  

 For plates with intermediate transverse stiffeners, this will result in slightly 

conservative strength predictions when ca    and a  is not an integer multiple of c . For 

a plate with intermediate transverse stiffeners the minimum buckling load corresponds to 
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a buckling length equal to c  when ca   (i.e., when ca   , for minimum buckling load 

a  should be an integer multiple of c ). If a  is not an integer multiple of c , when ca  

, then the actual buckling load will higher than the buckling load predicted by the proposed 

method corresponding to a buckling length equal to c . However, this is not considered to 

be a drawback because a salient feature of the proposed method is that since designers 

know c  they should be able to decide an optimum spacing of the transverse stiffeners.    

 Substituting the displacement solution given in Eq. 53, which satisfies the 

differential equation of equilibrium and the specified boundary conditions, one can write 

the solution to the governing equation as: 

2 42 4 2
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P EI
EI EI

b bb w
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                                                   (58) 
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Since  1spb n w  , where n is the number of longitudinal stiffeners 

 
2 4 22

1 2x s sp p sp p
sp sp

P n EI b EI b EI
b b

 



               
      




                                           (60) 

Thus, we have calculated the elastic buckling load of a longitudinally stiffened plate using 

the orthotropic plate idealization. Equation 60 when expressed as stress, is equivalent to 

the distortional buckling stress calculated as 
 

2
2
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  in Appendix 1 of AISI 
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(2016). This elastic buckling load calculated using an orthotropic plate idealization can 

also be expressed in a convenient and intuitive form using the column on elastic foundation 

model along with the torsional stiffness of the plate, as explained below. 

The buckling load per individual stiffener strut width, w, may be expressed as, 

     
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Rearranging terms, 
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Simplifying, 
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This can be written as, 

es esF esTP P P                           (66) 

where: 



 81
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= Buckling load of a stiffener strut (kip)                                                  
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= elastic flexural buckling resistance of an individual stiffener strut (kip) 
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= plate torsional stiffness contribution to the elastic buckling resistance of an 

individual stiffener strut (kip) 

 4
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= plate transverse stiffness coefficient (kip/inch2)                            

For an infinitely long plate the characteristic buckling length, c , is the length that results 

in the minimum value of esP . Therefore,  
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It is commonly believed that the orthotropic plate idealization provides a good 

representation of a longitudinally stiffened plate only for plates with three or more 

longitudinal stiffeners. However, it can be shown that the orthotropic plate idealization 

presented here works well even for plates with one or two longitudinal stiffeners. It is 

shown in Appendix C that, for plates with one or two longitudinal stiffeners the buckling 

load calculated by considering a column on elastic foundation model (where the column 

represents the stiffener strut and the elastic foundation stiffness represents the transverse 

bending stiffness of the plate) along with the consideration of torsional stiffness of the 

plate, gives a buckling load approximately equal to that obtained using the orthotropic plate 

idealization discussed above. This justifies the use of the orthotropic plate approach by the 

proposed method for any number of longitudinal stiffeners.                 

4.2.2 Ultimate compressive resistance 

 Knowing the elastic buckling load es esF esTP P P  , the ultimate compressive 

strength of a longitudinally stiffened plate can be calculated as 

2nsp ns nRP P P                            (73) 

where: 

 0.15ns nsF esT yesP P P P    

= nominal compressive resistance of an individual stiffener strut composed of the 

stiffener plus the tributary width of the longitudinally stiffened plate (kip); 
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 nsFP  = nominal flexural buckling resistance of an individual stiffener strut 

determined by mapping the elastic flexural buckling load esFP  via the 

AISC/AASHTO column curve as shown below: 

If 2.25ys
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  , then   
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nsF yesP P                (74)               
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 yes ysp esP F A               (76)

= effective yield load of an individual stiffener strut (kip);     
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        (77) 

= compressive resistance provided by the half-width of a subpanel adjacent to a 

transversely-restrained longitudinal edge of the longitudinally stiffened plate (kip).   

This equation recognizes that the edge stress is larger than the ultimate stress of the 

stiffener strut and it also takes into account the observations from the parametric 

study discussed in Section 4.3.1, and the observations made by King (2017a) that 

the edge stress is typically less than yield stress under the ultimate strength 

condition.  

This equation specifies a simple linear interpolation between (1) the yield load of 

the edge, PyeR, based on the plate effective width tributary to the edge, in the limit 
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that Pns is equal to Pyes, and (2) the compression force given by  0.45 ysp ns esF P A  

acting on AgR, in the limit that Pns becomes small.  

Figure 4-9 shows the stress distribution and the corresponding effective width when 

Pns is equal to Pyes, which corresponds to a local buckling mode. Figure 4-10 shows 

the stress distribution and the corresponding effective width when Pns becomes 

small, which corresponds to an overall buckling mode.  

Fysp

Fysp

we/2  

Figure 4-9   Stress distribution and the corresponding effective width when Pns is 
equal to Pyes 

0.45(Fysp + (Pns/Aes))

w/2  

Figure 4-10   Stress distribution and the corresponding effective width when Pns 
becomes small 

 
2

e
yeR ysp sp

w
P F t              (78) 

= effective yield load of the half-width of a subpanel adjacent to a transversely-

restrained longitudinal edge of the longitudinally stiffened plate (kip); 
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 
2

yR ysp sp

w
P F t              (79) 

= yield load of the half-width of a subpanel adjacent to a transversely-restrained 

longitudinal edge of the longitudinally stiffened plate (kip); 

 ys ysp gsP F A               (80) 

= yield load of an individual stiffener strut (kip); 

 es s e spA A w t               (81) 

= effective area of an individual stiffener strut (in.2); 

 
2

gR sp

w
A t                          (82) 

= gross area of the half-width of a subpanel adjacent to a transversely-restrained 

longitudinal edge of the longitudinally stiffened plate (in.2); 

 gs s spA A wt               (83) 

= gross area of an individual stiffener strut (in.2); 

 As = gross area of an individual longitudinal stiffener, excluding the tributary width 

of the longitudinally stiffened plate element under consideration (in.2); 

 Fysp = specified minimum specified yield strength of the longitudinally stiffened 

plate (ksi); 

 we  = effective width of the plate between the longitudinal stiffeners or between a 

longitudinal stiffener and the transversely-restrained longitudinal edge of the 

longitudinally stiffened plate, as applicable. This width is calculated as follows:  
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 For plates with one longitudinal stiffener, it is calculated using the modified 

Winter’s effective width equation discussed in Section 2.2, with Fcr taken 

as Fysp and with λr taken as 1.09 yspE F ,  

 For plates with two or more longitudinal stiffeners, it is calculated using the 

Winter’s effective width equation as given in AISC (2016), with Fcr taken 

as Fysp and with λr taken as 1.49 yspE F . This is a simple, approximate way 

of accounting for the larger available buckling and postbuckling resistance 

due to the restraint from the adjacent subpanels. 

 

 The postbuckling resistance of non-longitudinally stiffened plates is directly 

proportional to the middle surface strains present during bending, i.e., stretching of 

the middle plane of the plate during bending. This is influenced by the constraints 

along the unloaded edges of the plate. Allen and Bulson (1980) provide a good 

discussion of the influence of the constraints along the unloaded edges of the plate. 

Tensile lateral middle surface stresses stiffen the plate and provide larger resistance 

to the transverse displacement of the plate. Figure 4-11 shows the alternative tensile 

and compressive lateral middle surface stress distribution when the unloaded edges 

are constrained to remain straight.  

 If the unloaded edges are not constrained to remain straight (free to move 

laterally inwards or outwards), then there are no lateral middle surface stresses, as 

shown in Figure 4-12. In the proposed method, the postbuckling resistance of the 

subpanels between longitudinal stiffeners is calculated by treating them as non-

longitudinally stiffened plates. The adjacent subpanels provide lateral restraint, 
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resulting in a larger postbuckling resistance. The proposed method accounts for this 

larger postbuckling resistance in a simple, approximate way by using Winter’s 

effective width equation instead of the modified Winter’s effective width equation 

for plates with two or more longitudinal stiffeners.    

 

Figure 4-11   Postbuckled stress distribution when unloaded edges are constrained 
to remain straight (Credit: Allen and Bulson 1980)              
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Figure 4-12   Postbuckled stress distribution when sides are free to move laterally 
inwards or outwards (Credit: Allen and Bulson 1980)  

 esTP  is multiplied by the calibration factor 0.15 to capture the plate torsional 

stiffness contribution to the resistance of the stiffener struts. King (2017a) shows that as 

the buckling resistance of a plate approaches yield stress, the torsional stiffness provides 

much of the stability to the plate; 

 Unlike AISI (2016), the proposed method accounts for the interaction between local 

buckling of subpanels and overall buckling of the plate involving transverse displacement 

of the stiffeners, by using effective section properties (using effective widths of the 

subpanels between longitudinal stiffeners, taking into account their postbuckling 

resistance) while calculating the flexural buckling resistance of the individual stiffener 

struts, nsFP .  Also, the calculation of nRP  considers the possibility of a failure mode 

involving the combination of local buckling of the subpanels and overall buckling of the 

plate involving transverse displacement of the stiffeners. 
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4.2.3 Restrictions on longitudinal stiffener cross-section dimensions 

The proposed method is applicable to plates with longitudinal stiffeners that satisfy the 

following requirements: 

 The specified minimum yield strength of the stiffeners shall not be less than the 

specified minimum yield strength of the plate to which they are attached. This 

ensures that the longitudinal stiffener does yield before the plate, avoiding a 

situation where the early yielding of the longitudinal stiffener nullifies the stiffening 

of the plate.  

 The slenderness of the longitudinal stiffener cross-section elements shall be such 

that local buckling does not impact the resistance of the longitudinal stiffeners. 

 Additionally, tee and angle section stiffeners shall satisfy the following requirement 

which ensures that torsional buckling of these stiffeners about the edge of the 

stiffener attached to the plate is prevented:  

5.0 ysps

ps

FJ

I E
                                     (84) 

In this equation, Js is the St. Venant torsional constant of the longitudinal stiffener 

alone, not including the contribution from the stiffened plate and Ips is the polar 

moment of inertia of the longitudinal stiffener alone about the attached edge. For 

flat plate stiffeners, this corresponds to a plate slenderness limit of 0.45 yE F , 

which is the nonslender plate limit specified in AASHTO (2017) Article 6.9.4.2.1.  

Equation 84 is derived by imposing the limit 

. 1.923cr tor yF F                                    (85)   
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where 

.
s

cr tor

ps

GJ
F

I
               (86) 

= elastic torsional buckling stress of the stiffener for buckling about the edge 

attached to the plate. This is similar to the approach used in Eurocode (CEN 2006), 

and is discussed in Johansson et al. (2007). 

Bleich (1952) gives an equation for buckling stress for torsional buckling with 

enforced axis of rotation (constrained axis torsional buckling). In many practical 

cases the warping contribution to the torsional resistance tends to be small because 

of the large distance between the locations of torsional restraint at transverse 

stiffeners and/or diaphragms. Therefore, conservatively neglecting the warping 

contribution to the torsional resistance we obtain the result in Eq. 86. 

4.2.4 Identification of five non-dimensional parameters that influence the elastic 

buckling resistance of longitudinally stiffened plates 

 The elastic buckling load is derived in Section 4.2.1 and is given by 

   

32 2 2
4

2 4 2 21 31

p spx
es esF esT s

sp sp

EI GwtP
P P P EI w

n b b

 


 

 
      

   




       (87) 

Replacing   by c
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which simplifies to 
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p s sp

es esF esT p s

c sp

c

k EI Gt
P P P k EI

n b





 
 

   
                 

    







       (89)  

The corresponding buckling stress is obtained by dividing by gsA . 

   

4 32

4

1 1

3 1 1

p s spes
esF esT p s

gs gs c gs sp

c

k EI GtP
F F k EI

A A A n b





 
 

   
                 

    







             (90)                       

a) Focusing first on the flexural buckling component, esFF : 

4

4

1 p s

esF p s

gs c

c

k EI
F k EI

A

 
 

  
    

    
    







                       (91) 
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4

4 4

4 4 4

1 1 p p

esF s s

gs sp c sp

c

EI EI
F w EI w EI

A b b
 

 
 

  
    

    
    







         (92) 

   

4

4 4

4 4 4

1 1

1 1
sp p sp p

esF s s

gs sp c sp

c

b EI b EI
F EI EI

A n b n b
 

 
 

  
         

    







       (93) 

       

23 3

2 2

2 2 22 2

1 1 1 1

12 1 12 11 1

sp sp sp sp

esF s s

gs sp c sp

c

b t b tE E
F I I

A b n b n
 

 

 
 

             
   







 

                     (94) 

Multiplying and dividing by 
 

3

212 1

spwt


 

 
 

 

 
 

 

3 32 2

2 2 32 2

2 3 32 2

2 32 2

1 12 11
12 121 1

1

12 11
12 121 1

sp sp

s

sp sp

cesF

gs

sp sp

s

c sp sp

Et wt
w I

b t w

F
A

Et wt
w I

b t w

 

 

 

 

 
 

   
  

   
 

         









        (95) 

 
 

 

2 3 32 2

2 2 32 2

1 1 12 11
12 121 1

sp sp

esF s

gs c sp sp

c

Et wt
F w I

A b t w

 

 

  
  

                      







                  (96) 



 93

 
 

2 32 2

2 2 32

1 1 12 1
12 1

sp

esF s

gs c sp sp

c

Et
F w I

A b wt

 



  
  

                     







                        (97) 

Since  1spb n w  , esFF can be written as 

   

2 32

2 222

1

12 11

sp s
esF

c gs p

c

tE w I
F

w A wIn





 
 

                  
  







       (98) 

   

2
2

2 2 22

1 1 1 1

12 11

s
esF

p cgs

sp csp

E I
F

wIAn w
wtt





 
 

                                 







                            (99) 

b) Second, focusing on the torsional stiffness component, esTF  

   

321

3 1 1

sp

esT

gs sp

Gt
F

A n b





 
  

   
                                (100) 

   

3

2

22

1 1
2

12 11

sp sp

esT

gs sp

b t E
F

A n b




 
  

  
                               (101) 

   

32

2 2

1 2

12 11

sp sp

esT

gs sp

Et b
F

A b n





 
  

  
                                (102) 

 

32

2 2

1 2

12 1

sp

esT

gs sp

Et
F w

A b





 
  

  
                                (103) 
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Since  1spb n w  , esTF can be written as 

   

32

2226 11

sp

esT

gs

tE w
F

w An







                                (104) 

   

2

2 22

1 1 1

6 11
esT

gs

spsp

E
F

An w
wtt






   
        

                    (105) 

Thus, the buckling stress can be written as, 

   

   

2
2

2 2 22

2

2 22

1 1 1 1

12 11

1 1 1

6 11

es
esF esT

gs

s

p cgs

sp csp

gs

spsp

P
F F

A

E I

wIAn w
wtt

E

An w
wtt









 

 
 

                                 


   
        







                                         (106) 

   

2
2

2 2 22

1 1 1 1
2

12 11

es s

gs p cgs

sp csp

P E I

A wIAn w
wtt





  
  

                                 







                 (107) 

Based on the above development, the following five non-dimensional parameters can be 

identified which influence the elastic buckling resistance of longitudinally stiffened plates: 

  n  
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 
sp

w

t
 

 gs

sp

A

wt
  

 s

p

I

wI
 

 
c




 

It can be noted that both gs

sp

A

wt
and s

p

I

wI
 provide a measure of the contribution of the 

stiffener strut compared to the contribution from the associated plate width. The subsequent 

studies show that the influence of s

p

I

wI
 is relatively minor, however.  This might be 

anticipated, since this term s

p

I

wI
 appears under the radical.    

4.3 Evaluation of the performance of the proposed method 

 The performance of the proposed method is evaluated using data from a parametric 

study performed using finite element test simulations, as well as using available 

experimental data. It is found that the predictions using the proposed method correlate well 

with benchmark results, and are significantly better than the predictions using the methods 

in AASHTO (2017), AISI (2016), and Eurocode (CEN 2006). 
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4.3.1 Parametric study performed using finite element test simulations 

 Section 4.3.1.1 explains the parametric study design. Section 4.3.1.2 provides a 

discussion of the parametric study results. The finite element modelling of the plates is 

explained in Appendix A.  

4.3.1.1 Parametric study design 

 A total of 118 cases are studied, considering various practical combinations of the 

non-dimensional parameters affecting the compressive resistance of a longitudinally 

stiffened plate, discussed in Section 4.2.4. The parametric study is divided into four groups: 

Group 1: Long and narrow plates with one or two flat longitudinal stiffeners, and no 

intermediate transverse stiffeners. These types of plates have significant transverse bending 

stiffness, and are commonly used in North America. 

Group 2: Same as Group 1, except Tee stiffeners are used in place of the flat longitudinal 

stiffeners. The objective here is to compare the results with the corresponding Group 1 

cases to determine the significance of the stiffener type, i.e., the influence of the parameter 

s

p

I

wI
 on the compressive resistance. 

Group 3: Short and wide plates with three or five flat longitudinal stiffeners, and three 

intermediate transverse stiffeners. These plates have relatively small transverse bending 

stiffness, and can be idealized as a series of disconnected stiffener struts. 
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Group 4: Same as Group 3, except Tee stiffeners are used in place of the flat longitudinal 

stiffeners. The objective here is to compare with the corresponding Group 3 cases to 

determine the significance of the stiffener type. 

 A summary of various cases in Groups 1 and 2 is provided in Table 4-2 in terms of 

the non-dimensional parameters that influence the strength. Similarly, a summary of 

various cases in Groups 3 and 4 is provided in Table 4-3 in terms of these parameters. The 

buckling length and the total length of the plate for Group 1 and 2 cases are taken as c  

and 5 c  respectively. The total length of the plate for Group 3 and 4 cases is taken as four 

times the transverse stiffener spacing. For Group 3 and 4 cases the transverse stiffener 

spacing is less than c . The cross-section dimensions and lengths of the various Group 1 

through Group 4 cases are provided in Appendix D.  For the non-dimensional parameters 

in Table 4-2 and Table 4-3, the longitudinal stiffeners are sized to just satisfy the minimum 

requirements discussed in Section 4.2.3, to prevent local buckling of the stiffener 

component plates and tripping of the stiffener.   
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Table 4-2   Summary of Group 1 and Group 2 cases in terms of the non-dimensional 
parameters; buckling length and the total length of the plate are c  and 5 c  

respectively  

Case # n  

sp

w

t
 gs

sp

A

wt
 

 Case # n  

sp

w

t
 gs

sp

A

wt
 

1 1 20 1.05 16 2 40 1.15 

2 1 20 1.10 17 2 40 1.20 

3 1 20 1.20 18 2 40 1.30 

4 1 20 1.40 19 2 40 1.40 

5 2 20 1.07 20 2 40 1.60 

6 2 20 1.10 21 1 60 1.20 

7 2 20 1.16 22 1 60 1.30 

8 2 20 1.25 23 1 60 1.40 

9 2 20 1.40 24 1 60 1.50 

10 2 20 1.60 25 1 60 1.60 

11 1 40 1.15 26 2 60 1.20 

12 1 40 1.20 27 2 60 1.32 

13 1 40 1.30 28 2 60 1.48 

14 1 40 1.40 29 2 60 1.60 

15 1 40 1.60  
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Table 4-3   Summary of Group 3 and Group 4 cases in terms of the non-dimensional 
parameters; total length of the plate is four times the transverse stiffener spacing 

Case 
# 

n 

sp

w

t
 gs

sp

A

wt
 

Buckling length,   

1 5 20 1.10 
ca    such that 0.93ns

ysp

yes

P
F

P
    

2 5 20 1.20 
ca    such that 0.93ns

ysp

yes

P
F

P
  

3 5 20 1.30 
ca    such that 0.93ns

ysp

yes

P
F

P
  

4 5 20 1.40 
ca    such that 0.93ns

ysp

yes

P
F

P
  

5 5 20 1.50 
ca    such that 0.93ns

ysp

yes

P
F

P
  

6 5 20 1.10 
ca    such that 0.75ns

ysp

yes

P
F

P
  

7 5 20 1.20 
ca    such that 0.75ns

ysp

yes

P
F

P
  

8 5 20 1.30 
ca    such that 0.75ns

ysp

yes

P
F

P
  

9 5 20 1.40 
ca    such that 0.75ns

ysp

yes

P
F

P
  

10 5 20 1.50 
ca    such that 0.75ns

ysp

yes

P
F

P
  

11 5 20 1.10 
ca    such that 0.55ns

ysp

yes

P
F

P
  
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12 5 20 1.20 
ca    such that 0.55ns

ysp

yes

P
F

P
  

13 5 20 1.30 
ca    such that 0.55ns

ysp

yes

P
F

P
  

14 5 20 1.40 
ca    such that 0.55ns

ysp

yes

P
F

P
  

15 5 20 1.50 
ca    such that 0.55ns

ysp

yes

P
F

P
  

16 3 60 1.20 
ca    such that 0.93ns

ysp

yes

P
F

P
    

17 3 60 1.30 
ca    such that 0.93ns

ysp

yes

P
F

P
  

18 3 60 1.40 
ca    such that 0.93ns

ysp

yes

P
F

P
  

19 3 60 1.50 
ca    such that 0.93ns

ysp

yes

P
F

P
  

20 3 60 1.60 
ca    such that 0.93ns

ysp

yes

P
F

P
  

21 3 60 1.20 
ca    such that 0.75ns

ysp

yes

P
F

P
  

22 3 60 1.30 
ca    such that 0.75ns

ysp

yes

P
F

P
  

23 3 60 1.40 
ca    such that 0.75ns

ysp

yes

P
F

P
  

24 3 60 1.50 
ca    such that 0.75ns

ysp

yes

P
F

P
  
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25 3 60 1.60 
ca    such that 0.75ns

ysp

yes

P
F

P
  

26 3 60 1.20 
ca    such that 0.55ns

ysp

yes

P
F

P
  

27 3 60 1.30 
ca    such that 0.55ns

ysp

yes

P
F

P
  

28 3 60 1.40 
ca    such that 0.55ns

ysp

yes

P
F

P
  

29 3 60 1.50 
ca    such that 0.55ns

ysp

yes

P
F

P
  

30 3 60 1.60 
ca    such that 0.55ns

ysp

yes

P
F

P
  

 

4.3.1.2 Results and Discussion 

 Figure 4-13, Figure 4-14, Figure 4-15 and Figure 4-16 show the results for Groups 

1, 2, 3 and 4 respectively. It can be observed that the predictions using the proposed method 

correlate well with the strengths from the test simulations, and are significantly better than 

the predictions using the methods in AASHTO (2017), AISI (2016), and Eurocode (CEN 

2006). The mean, median and coefficient of variation of the ratio of the resistance from test 

simulation to the strength predicted using the proposed method are equal to 1.06, 1.03 and 

0.1 respectively. 



 102

 

Figure 4-13   Comparison of the strength from test simulation with the strength 
predicted using the proposed method, the method in AASHTO (2017) Article 

6.11.8.2, the method in Eurocode, and the method in AISI (2016), for Group 1 cases 

 

 

Figure 4-14   Comparison of the strength from test simulation with the strength 
predicted using the proposed method, the method in AASHTO (2017) Article 

6.11.8.2, the method in Eurocode, and the method in AISI (2016), for Group 2 cases 
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Figure 4-15   Comparison of the strength from test simulation with the strength 
predicted using the proposed method, the method in AASHTO (2017) Article 

6.11.8.2, the method in Eurocode, and the method in AISI (2016), for Group 3 cases 

 

Figure 4-16   Comparison of the strength from test simulation with the strength 
predicted using the proposed method, the method in AASHTO (2017) Article 

6.11.8.2, the method in Eurocode, and the method in AISI (2016), for Group 4 cases 
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 Comparing the results of Group 1 and Group 2 cases (and also Group 3 and Group 

4 cases) using the proposed method, it can be concluded that the compressive resistance of 

the plate is only mildly dependent on the stiffener type. Table 4-4 and Table 4-5 show a 

comparison of s

p

I

wI
 values for Groups 1 and 2, and Groups 3 and 4 respectively. It can be 

observed from Table 4-4 and Table 4-5, and Figure 4-13 through Figure 4-16 that the 

parameter s

p

I

wI
 has a very minor influence on the compressive resistance of longitudinally 

stiffened plates. Another reason for the minor difference between the results for Group 1 

and Group 2 (and also Group 3 and Group 4 cases) using the proposed method, is that the 

proposed method uses the same AISC/AASHTO column curve for both Tee-section struts 

(Flat stiffeners) as well as I-section struts (Tee stiffeners).  

Table 4-4   Comparison of s

p

I

wI
 for Group 1 and 2 cases 

 

Case number 

Group 1 

s

p

I

wI
 

Group 2 

s

p

I

wI
 

1 4.0 3.3 

2 11.4 8.7 

3 36.9 27.0 

4 122.0 86.4 

5 6.5 5.1 

6 11.4 8.7 

7 25.2 18.6 



 105

8 54.3 39.3 

9 122.0 86.4 

10 242.7 168.7 

11 41.3 30.0 

12 68.8 49.5 

13 141.0 99.8 

14 233.4 163.4 

15 469.3 323.0 

16 41.3 30.0 

17 68.8 49.5 

18 141.0 99.8 

19 233.4 163.4 

20 469.3 323.0 

21 100.1 71.3 

22 206.7 145.4 

23 343.4 239.2 

24 506.6 349.8 

25 693.6 475.3 

26 100.1 71.3 

27 231.8 162.7 

28 472.0 326.5 

29 693.6 475.3 
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Table 4-5   Comparison of s

p

I

wI
 for Group 3 and 4 cases 

 

Case number 

Group 3 

s

p

I

wI
 

Group 4 

s

p

I

wI
 

1 11.4 8.7 

2 36.9 27.0 

3 74.4 53.4 

4 122.0 86.4 

5 178.4 125.1 

6 11.4 8.7 

7 36.9 27.0 

8 74.4 53.4 

9 122.0 86.4 

10 178.4 125.1 

11 11.4 8.7 

12 36.9 27.0 

13 74.4 53.4 

14 122.0 86.4 

15 178.4 125.1 

16 100.1 71.3 

17 206.7 145.4 

18 343.4 239.2 

19 506.6 349.8 
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20 693.6 475.3 

21 100.1 71.3 

22 206.7 145.4 

23 343.4 239.2 

24 506.6 349.8 

25 693.6 475.3 

26 100.1 71.3 

27 206.7 145.4 

28 343.4 239.2 

29 506.6 349.8 

30 693.6 475.3 

 It can be observed that the predictions become conservative for larger 
sp

w

t
. In 

Groups 1 and 2 (Figure 4-13 and Figure 4-14), cases 1 to 10 have 20
sp

w

t
 , cases 11 to 20 

have 40
sp

w

t
 , and cases 21 to 29 have 60

sp

w

t
 . The reason for this under-prediction of 

the plate resistance is that the larger available buckling and postbuckling resistance of the 

subpanels due to the additional restraint from the adjacent subpanels, is accounted for in 

an approximate manner by using the Winter’s effective width equation instead of the 

modified Winter’s effective width equation for plates with two or more longitudinal 

stiffeners. However, the aim of simplicity and ease of design justifies the use of this 
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approximate manner of accounting for the larger available buckling and postbuckling 

resistance of the subpanels.  

 Figure 4-2 shows a representative failure mode involving interaction between local 

and overall buckling in a longitudinally stiffened plate. The proposed method accounts for 

this interaction by using effective section properties (using effective widths of the 

subpanels between longitudinal stiffeners, taking into account their postbuckling 

resistance) while calculating the flexural buckling resistance of individual stiffener struts, 

nsFP . The proposed method also considers the interaction between local and overall 

buckling of the longitudinally stiffened plate while calculating the compressive resistance 

provided by the half-width of the subpanels adjacent to the transversely-restrained 

longitudinal edge of the longitudinally stiffened plate, nRP . A good correlation between the 

strength from test simulations and the strength predicted by the proposed method provides 

evidence that the approach used for accounting for the interaction between local buckling 

and overall buckling, works well. 

 The over-prediction of resistance using the AISI method can be attributed to: 

 The lack of accounting for the interaction between local buckling of the plate panels 

between the stiffeners and overall buckling involving the transverse displacement 

of the stiffeners, in these provisions. This is because the buckling coefficient is 

calculated as the minimum of the coefficients for buckling of the plate between 

longitudinal stiffeners (as shown in Figure 4-7) and overall buckling of the plate 

along with the longitudinal stiffeners (as shown in Figure 4-6). 
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 The use of Winter’s curve and counting on the postbuckling resistance for cases 

involving an interaction between local and global buckling. 

The AISI method works better for cases where the failure modes are similar to those shown 

in Figure 4-6 and Figure 4-7, and for cases where there is little local-global buckling 

interaction and the plate resistance is close to the yield strength, i.e., Group 1 and 2 case 

numbers 1, 2, 3, 4, 21, 22, 23, 24, 25 and Group 3 and 4 case numbers 1, 2, 3, 4, 5, 16, 17, 

18, 19, 20. 

 The longitudinal stiffeners in wide plates with more than two longitudinal stiffeners 

tend to behave as unconnected struts. The key property influencing the compressive 

resistance of these types of plates is the moment of inertia of their longitudinal stiffeners. 

However, as discussed earlier in Section 4.1.2.1, for these types of plates, the plate buckling 

coefficient in AASHTO, and hence the stiffened plate resistance, is expressed 

independently from this key property. This is the reason why the predictions using the 

AASHTO method do not show a good correlation with the results of the parametric study 

for Group 3 and Group 4 cases. Furthermore, in certain cases with 40
sp

w

t
 and 60

sp

w

t
  

where the failure mode is similar to shown in Figure 4-6, e.g., Group 3 case 30, the 

solutions are conservative because the AASHTO method neglects the significant 

postbuckling resistance of the longitudinally stiffened plate subpanels.     

 In general, it can be observed that there is less scatter in the data for the predictions 

using the Eurocode method. As mentioned earlier, the Group 3 and 4 cases have short and 

wide plates with 3 or 5 longitudinal stiffeners, and 3 intermediate transverse stiffeners. 
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These plates have negligible transverse bending stiffness, and can be idealized as a series 

of disconnected stiffener struts. For these cases Eurocode predicts column-type behaviour 

(hardly any plate-type behaviour), and hence there is good correlation between the 

simulation strengths and predictions using Eurocode. However, for Group 1 and Group 2 

cases Eurocode over-predicts the resistance because: 

 It uses Winter’s curve for calculating ρ (reduction factor corresponding to plate-

type behaviour) and thus counts on the postbuckling resistance for cases involving 

the interaction between local and global buckling. 

 It accounts for larger resistance of the half-width of the edge subpanels closest to 

the edge supports by considering that they reach the yield stress. However, the 

maximum resistance of the stiffened plate typically occurs before the half-width of 

the subpanel closest to the edge support reaches the yield stress. 

4.3.2 Comparison with experimental tests from the literature 

 In addition to the parametric study, 28 experimental tests from Choi et al. (2009), 

Ghavami (1994), and Tanaka and Endo (1988) are used to evaluate the performance of the 

proposed method for characterizing the ultimate compressive resistance of longitudinally 

stiffened plates.   
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Table 4-6 shows a comparison of plate compressive resistance from experimental tests with 

the resistance predicted using the proposed method.  

 For the tests by Choi et al. (2009), the predictions using the proposed method 

correlate well with experimental test results for cases with 2 or more longitudinal stiffeners 

(Specimens R3, T1, T2), because for these cases the proposed method recognizes the larger 

restraint from the adjacent subpanels while calculating the postbuckling resistance of a 

subpanel between longitudinal stiffeners or between a longitudinal stiffener and an edge. 

This is done via the use of Winter’s effective width equation instead of the modified 

Winter’s effective equation, as explained in Section 4.2. 

 Except for Specimens D10, D11 and D12, the yield strength of the longitudinal 

stiffener and the plate are different for the specimens tested by Tanaka and Endo (1988) 

and Ghavami (1994). For the calculations using the proposed method, a single yield stress 

value was used which was calculated as the weighted average of the yield strength of the 

plate and the longitudinal stiffener. This ensures that the squash load is the same as that of 

the tested specimen. The use of this single yield stress value is a possible reason for the 

predictions using the proposed method not showing a good correlation with the results of 

some of the tests by Tanaka and Endo (1988) and Ghavami (1994). 

 For specimen D11, the slenderness of the longitudinal stiffener plate (flat 

longitudinal stiffener) is 2.1 times the limiting slenderness, 0.45 yE F , required to 

prevent local buckling/tripping of the flat longitudinal stiffener. This explains the lower 

observed strength from experimental test for this specimen. For case D0A the yield strength 

of the longitudinal stiffener is significantly lower than the yield strength of the plate. For 
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such cases the early yielding of the longitudinal stiffeners nullifies the stiffening of the 

plate. For cases D1 and D2, the yield strength of the longitudinal stiffener is slightly lower 

than the yield strength of the plate. The mean, median and coefficient of variation of the 

ratio of test nP P  for all tests with equal yield strength plate and longitudinal stiffeners, are 

1.24, 1.22 and 0.17 respectively.  
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Table 4-6   Comparison of plate compressive resistance from experimental tests with 
the resistance predicted using the proposed methods 

Source Specimen 
test nP P  

Choi et al. (2009) R1 1.28 

Choi et al. (2009) R2 1.15 

Choi et al. (2009) R3 1.09 

Choi et al. (2009) T1 1.03 

Choi et al. (2009) T2 1.02 

Choi et al. (2009) T3 1.18 

Choi et al. (2009) T4 1.67 

Choi et al. (2009) T5 1.51 

Choi et al. (2009) T6 1.38 

Ghavami (1994) P1R1T* 1.28 

Ghavami (1994) P1L1T* 1.17 

Ghavami (1994) P1T1T* 1.21 

Ghavami (1994) P2R1T* 0.98 

Ghavami (1994) P2L1T* 0.82 

Ghavami (1994) P2T1T* 0.89 

Ghavami (1994) P2R2T* 0.89 

Ghavami (1994) P2L2T* 0.94 

Ghavami (1994) P2T2T* 0.98 

Tanaka and Endo (1988) D0* 1.14 

Tanaka and Endo (1988) D0A* 1.06 

Tanaka and Endo (1988) D1* 1.24 
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Tanaka and Endo (1988) D2* 1.19 

Tanaka and Endo (1988) D3* 1.33 

Tanaka and Endo (1988) D4* 1.26 

Tanaka and Endo (1988) D4A* 1.13 

Tanaka and Endo (1988) D10 1.26 

Tanaka and Endo (1988) D11 0.97 

Tanaka and Endo (1988) D12 1.41 

* For these specimens the yield strength of the longitudinal stiffener and the plate are 

different  

4.4 Salient features of the proposed method 

The salient features of the proposed method are as follows: 

1) It is derived using an orthotropic plate idealization and thus considers all three 

contributions to the buckling resistance-longitudinal bending stiffness, transverse bending 

stiffness, and torsional stiffness. 

2) The buckling resistance obtained using the orthotropic plate idealization is expressed as 

an intuitive and easy-to-use column on elastic foundation model. The elastic torsional 

contribution from the plate is included directly in the ultimate strength calculation, with a 

calibrated reduction factor of 0.15. As pointed out by King (2017), the plate torsional 

stiffness provides much of the stability to plates with a buckling resistance close to the 

yield stress. 
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3) The explicit combination of the three contributions to the stiffened plate compressive 

resistance facilitates design optimization since the relative importance of each effect is 

clear. 

4) The method is applicable to longitudinally stiffened plates with or without intermediate 

transverse stiffeners. 

5) The characteristic buckling length is familiar to the engineer. This allows the engineer 

to make a good decision about whether transverse stiffening is needed, and at what spacing 

to place transverse stiffeners if they are used. 

6) The method recognizes that the edge stress is larger than the ultimate stress of the 

stiffener strut, but it also takes into account the observation that the edge stress is typically 

less than the yield stress at the ultimate strength condition. 

7) The method recognizes the postbuckling resistance of the plate panels between the 

longitudinal stiffeners, and/or between the longitudinal stiffeners and the transversely-

restrained longitudinal edge of the stiffened plate. 

8) The proposed method accounts for the interaction between local buckling of subpanels 

and overall buckling of the plate involving transverse displacement of the stiffeners. 

9) Unlike Eurocode (CEN 2006), the method does not resort to an interpolation between 

column-type and plate-type behavior to determine the extent of the plate-like or column-

like behavior. 
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10) The method does not recognize extensive postbuckling resistance of longitudinally 

stiffened plates with relatively weak longitudinal stiffener struts, which would fail at low 

values of the compression stress. These types of configurations are a quite inefficient use 

of the additional longitudinal stiffener material plus the fabrication cost in the context of 

welded box-section member construction. Therefore, this is not viewed as a limitation. 

11) The plate elastic buckling stress predicted by the proposed method can be related to 

the non-dimensional parameters derived in Section 4.2.4. This facilitates the parametric 

study of longitudinally stiffened plate responses. It has also been shown that the 

compressive strength of longitudinally stiffened plates is largely independent of the type 

of longitudinal stiffener.     
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CHAPTER 5. AXIAL COMPRESSIVE RESISTANCE OF 

RECTANGULAR WELDED BOX-SECTION MEMBERS 

 A good prediction of the ultimate compressive resistance of non-longitudinally 

stiffened and longitudinally stiffened plates is crucial for obtaining a good quantification 

of the axial compressive resistance of welded box-section members. A detailed explanation 

of an improved characterization of the ultimate compressive resistance of these box-section 

component plates was provided in CHAPTER 2 and CHAPTER 4.  

 AASHTO (2017) does not have any guidance for calculating the axial compressive 

resistance of longitudinally stiffened box-section members. Thus, there is a need to develop 

a method for calculation of axial compressive resistance of longitudinally stiffened welded 

steel box-section members that is conceptually consistent with the method for non-

longitudinally stiffened box-section members and incorporates an improved prediction of 

the ultimate compressive resistance of longitudinally stiffened plates.   

 At the present time (2018), there is no experimental or finite element simulation 

data in the literature quantifying the interaction between flexural and local buckling on the 

axial compressive resistance of longitudinally stiffened welded steel box-section members. 

As a part of this research effort, a parametric study has been performed using FE 

simulations to evaluate the performance of the proposed method. This has generated useful 

data quantifying the interaction between global buckling and local buckling in 

longitudinally stiffened welded steel box columns. 
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 Particularly when studying the characteristics of longitudinally stiffened box-

section members, experimental tests are quite expensive, if not prohibitive due to the size 

of the members. Therefore, studying the behavior and understanding the influence of 

different parameters on the behavior is not possible using physical experimental tests alone. 

Finite element test simulations provide an economical and effective way to advance the 

state of knowledge in these cases.  

 This chapter explains the development of the proposed method for an improved 

quantification of the axial compressive resistance of welded box-section members, and the 

evaluation of the performance of the proposed method via a parametric study performed 

using finite element test simulations.   

5.1 Proposed method 

 A commonly used approach for calculating the compressive resistance of columns 

is the unified effective area approach (Pekoz 1986). As per this approach the axial 

compressive resistance, nP , is given as follows: 

n cr effP F A                                   (108) 

where: 

 crF  is the flexural buckling stress based on gross cross-section properties. 

 The yield load used in the calculation of crF , is the gross cross-section yield load.  

 effA  is the effective area calculated at a stress level equal to crF .  
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Ideally, crF  should be calculated based on member effective cross-section properties. 

However, this makes the calculations iterative as crF  is based on the effective cross-

section, and the effective cross-section is dependent on crF . Pekoz (1986) provides the 

following justification for calculating crF  using gross-section properties- “On the basis of 

tests and analytical studies, DeWolf, Pekoz and Winter (1973, 1974), and Kalyanaraman, 

Pekoz and Winter (1972, 1977) conclude that the overall buckling load can be calculated 

using the effective radius of gyration and the effective area, both calculated at the overall 

buckling stress. This results in an iterative procedure because the buckling stress depends 

on the effective section properties which in turn depend on the buckling stress. The 

reduction in the value of the radius of gyration resulting from local buckling is rather 

small. For small slenderness ratios where the column buckling stresses are high compared 

to the yield stress, the buckling stress is quite insensitive to the changes in the radius of 

gyration. However, the effective area is influenced directly and significantly by local 

buckling. For small stresses, namely large slenderness ratios, the local buckling is not 

significant. Therefore, for both cases the behavior is well represented by ignoring the 

reduction in the effective radius of gyration, but taking into account the reduction in the 

effective area in finding the ultimate load of the column. ” 

 The Eurocode (CEN 2005) uses a somewhat different approach for calculating the 

compressive resistance of columns. Per the Eurocode, the axial compressive resistance, nP

, is given as follows: 

n y effP F A                     (109) 
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where: 

 The effective cross-section yield load (equal to the gross cross-section yield load 

for classes 1 to 3) is used in the calculation of the column strength factor  . The 

Eurocode classification of cross-sections is explained in Section 3.1.1.2. 

 effA  is the effective area calculated at a stress level equal to yF . 

5.1.1 Proposed method for calculating the compressive resistance of box-section 

columns with non-longitudinally stiffened component plates 

The proposed method for non-longitudinally stiffened box columns is based on the unified 

effective area approach. The axial compressive resistance, nP , is given as follows: 

n cr effP F A                          (110)        

where: 

 crF  is the flexural buckling stress based on gross cross-section properties, 

calculated as follows: 

If 2.25os
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 os y y c
nlsp c

P F bt F A                                          (113) 

             = yield load 
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          = member elastic buckling load; 

 L  is the unbraced length of the column corresponding to the axis of buckling; 

 K  is the effective length factor; 

 sr  is the radius of gyration of the gross cross-section about the axis normal to the 

plane of buckling; 

 gA is the gross cross-sectional area of the member;                

 eff e c
nlsp c

A b t A                                                          (115)  

 be = effective width of the non-longitudinally stiffened element under 

consideration, determined using the modified Winter’s effective width equation 

explained in Section 2.2 (for nonslender non-longitudinally stiffened plate 

elements, be = b) and calculated at a stress level equal to crF ; 

 t  =   thickness of the element under consideration; 

 Ac =  gross cross-sectional area of the corner pieces of a box-section; 

 nlsp  = Number of non-longitudinally stiffened plates; 

 4c   is the number of corner pieces in a box-section. 



 122

5.1.2 Proposed method for calculating the compressive resistance of box-section 

columns with longitudinally stiffened component plates 

 The proposed method for calculating the compressive of longitudinally stiffened 

box columns is arrived at by modifying the method for calculating the strength of non-

longitudinally stiffened box columns based on the following considerations: 

1) If effA  is calculated at a stress level equal to crF , then  

nsp

eff
lsp cr

P
A

F
                                                           (116) 

giving  

nsp
lsp

n cr eff cr nsp
lspcr

P

P F A F P
F

  


            (117) 

where:  

 nspP  is the nominal compressive resistance of the longitudinally stiffened plate 

element under consideration, calculated using the proposed method explained in 

Section 4.2. 

 lsp  is the number of longitudinally stiffened plates.  

Therefore, the strength of the column becomes independent of the flexural buckling stress 

of the column. This happens because the compressive resistance of the longitudinally 

stiffened component plates, nspP , calculated using the proposed method in Section 4.2, is 
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independent on the flexural buckling stress of the column, crF . This can be understood 

better by considering two square box-section columns with the following characteristics: 

 All the longitudinally stiffened component plates have one longitudinal stiffener 

located at their mid-width, and have the same cross-section; 

 There are no intermediate transverse stiffeners or diaphragms; 

 The lengths of the two columns are c and 2 c ; where c  is the characteristic 

buckling length of the longitudinally stiffened component plates. 

The proposed method in Section 4.2 predicts the same nspP  for the component plates in 

both these columns, without taking into consideration the flexural buckling stress of the 

column, crF . One does not encounter this in the case of non-longitudinally stiffened box-

columns because the calculation of the plate effective width using the modified Winter’s 

effective width equation is dependent on the flexural buckling stress of the column, crF . 

 Therefore, in the proposed method for box-section columns with longitudinally 

stiffened plates the effective area, effA , is conservatively calculated at a stress level equal 

to yF , i.e.,  

nsp

eff
lsp ysp

P
A

F
                 (118) 

This parallels the calculation of the effective area in the Eurocode provisions. 
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2) The results from parametric studies show that the predictions obtained using 

nsp

n cr eff cr
lsp ysp

P
P F A F

F
               (119) 

significantly under-predict the column resistance, if the flexural buckling stress, crF , is 

calculated using the gross cross-section yield load. This over-conservatism is addressed by 

using an effective yield load in the calculation of crF , i.e., 
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where: 

 os y effP F A                        (122) 

 nsp

eff
lsp ysp

P
A

F
                         (123) 

This approach for calculating the compressive resistance of box-section columns with 

longitudinally stiffened component plates is similar to the Eurocode (CEN 2005) approach 

as it: 
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 Performs the effective area calculations at a stress level equal to yF , and 

 Uses an effective yield load in the calculation of the flexural buckling stress. 

3) Local buckling-global buckling interaction: Using the above two modifications, it is 

observed that the predictions using the proposed method correlate well with the results 

from column flexural buckling parametric studies except for cases with large sKL r , and 

large spw t  for the longitudinally stiffened plate parallel to the axis of buckling. In these 

cases there is significant interaction between overall flexural buckling of the column and 

local buckling of the longitudinally stiffened plate parallel to the axis of buckling and 

subjected to uniform flexural compression corresponding to flexural buckling of the 

column, as shown in Figure 5-1.  

 

Figure 5-1   Global buckling-local buckling interaction for cases with large sKL r ,  

and large spw t for the longitudinally stiffened plate parallel to the axis of buckling 
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This happens because slender columns exhibit significant second-order bending as they 

approach their maximum compressive resistance, which results in additional compressive 

stress on one of the plates. This results in a significant reduction in the column strength. 

This problem can be addressed by using a reduced flexural buckling stress in the prediction 

calculations by: 

1) Using a reduced elastic buckling load, based on a reduced effective cross-section, in the 

calculation of nP ,  

2) Using a column strength curve that is a function of: 

 sKL r , and 

 The maximum spw t  of the plate parallel to the axis of buckling and subjected to 

uniform flexural compression corresponding to flexural buckling of the column, or 

3) Multiplying by a global buckling-local buckling interaction reduction factor dependent 

on:  

 sKL r , and 

 The maximum spw t  of the plate parallel to the axis of buckling and subjected to 

uniform flexural compression corresponding to flexural buckling of the column. 

With the aim of simplicity, ease of design, and consistency with the method for non-

longitudinally stiffened box columns in mind, the third approach of using a global-local 

interaction reduction factor is adopted in this research. 
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5.1.3 Proposed method for calculating the compressive resistance of box-section 

columns with non-longitudinally stiffened and longitudinally stiffened component 

plates 

 The recommended calculation of the compressive resistance of steel box-section 

columns with non-longitudinally stiffened and longitudinally stiffened component plates 

is as follows: 

n cr effP F A                                    (124)    

where: 

 1 21 r r               (125)  

     = Global buckling-local buckling interaction factor 

1   if the flange plate is non-longitudinally stiffened. A flange plate is defined 

as the plate parallel to the axis of buckling and subjected to uniform flexural 

compression corresponding to flexural buckling of the column.   
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such that 10 0.5r  . In AASHTO (2017), the maximum permissible slenderness 

of secondary compression members is 140
s

KL

r
 . Therefore, 1r  has a minimum 

value of 0.5 for column designs permitted by AASHTO. 
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such that  20 1r   

 max  is the maximum spw t  for the flange plate. As a practical upper limit, max  

shall not exceed 90.  

 For a flange plate with one longitudinal stiffener, 
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F
                        (128) 

 For a flange plate with two or more longitudinal stiffeners, 
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          = member elastic buckling load; 

 be = effective width of the non-longitudinally stiffened element under 

consideration, determined using the modified Winter’s effective width equation 

explained in Section 2.2 (for nonslender non-longitudinally stiffened plate 

elements, be = b) and calculated at a stress level equal to crF . 

The above method for calculating the axial compressive resistance of longitudinally 

stiffened box-section members is applicable for steels with yield strength up to 70 ksi.  

5.2 Evaluation of the performance of the proposed method 

 The performance of the proposed method is evaluated below using the results of a 

parametric study performed using FE test simulations. Table 5-1 summarizes the 

parametric study design. The cross-section dimensions and lengths of the various cases 

listed in Table 5-1 are provided in Appendix E. Three non-dimensional parameters are 

investigated pertaining to each of the flange and web plates. All the box-section columns 

studied are doubly symmetric. Also, the overall slenderness sL r  is varied for these 

longitudinally stiffened box-section members (all the cases studied have simply supported 

end conditions. Therefore, 1K  ). A range of column slenderness values are considered 

to study the interaction between local buckling and global buckling (flexural buckling). 
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 The dimensions of the 42 box-section members are obtained by setting the 

thickness of the flanges and webs as one inch.  Flat plate longitudinal stiffeners are used, 

and it is ensured that the slenderness of the stiffener plate does not exceed 0.45 yspE F , 

to prevent local buckling/tripping of the longitudinal stiffener.  

Table 5-1   Summary of parametric study variables for evaluating the performance 
of the proposed method for calculating the axial compressive resistance of 

longitudinally stiffened box-section members 

Case 
Numbers 

Web plates Flange plates Column 

sL r  

spw t  n  
gs spA wt  spw t  n  

gs spA wt  

1, 2, 3 20 1 1.1 20 2 1.1 50, 80, 110 

4, 5, 6 20 1 1.1 20 2 1.4 50, 80, 110 

7, 8, 9 20 1 1.1 60 1 1.1 50, 80, 110 

10, 11, 12 20 1 1.1 60 1 1.4 50, 80, 110 

13, 14, 15 20 1 1.1 60 2 1.1 50, 80, 110 

16, 17, 18 20 1 1.1 60 2 1.4 50, 80, 110 

19, 20, 21 20 2 1.1 60 1 1.1 50, 80, 110 

22, 23, 24 20 2 1.1 60 1 1.4 50, 80, 110 

25, 26, 27 20 2 1.1 60 2 1.1 50, 80, 110 

28, 29, 30 20 2 1.1 60 2 1.4 50, 80, 110 
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31, 32, 33 60 1 1.1 60 2 1.1 50, 80, 110 

34, 35, 36 60 1 1.1 60 2 1.4 50, 80, 110 

37, 38, 39 60 1 1.4 60 2 1.1 50, 80, 110 

40, 41, 42 60 1 1.4 60 2 1.4 50, 80, 110 

 The finite element modelling of these longitudinally stiffened box-section members 

is explained in Appendix A. Figure 5-2 shows a comparison of the member test simulation 

strength to the strengths predicted using the proposed method as well as using the 

corresponding procedures from AISI (2016) and Eurocode (CEN 2005).  

 

Figure 5-2   Comparison of the member strength from test simulation with the 
strength predicted using the proposed method and using the corresponding 

procedures from AISI (2016) and Eurocode (CEN 2005) 

 The unconservatism of the predictions using AISI (2016) and Eurocode (CEN 

2006) methods can be attributed to their optimistic prediction of the ultimate compressive 
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resistance of longitudinally stiffened plates. This has been clearly demonstrated and 

discussed in Section 4.3. The drawbacks of the AISI (2016) and Eurocode (CEN 2006) 

methods for calculating the ultimate compressive resistance of longitudinally stiffened 

plates have been discussed in Section 4.1. 

 It has been found that the plate compressive resistance predictions using the 

proposed method explained in Section 4.2, become conservative with increase in spw t . 

The reason for this under-prediction of the plate resistance is that the larger available 

buckling and postbuckling resistance of the subpanels between longitudinal stiffeners or 

between a longitudinal stiffener and an edge, due to the additional restraint from the 

adjacent subpanels, is accounted for in an approximate manner by using the Winter’s 

effective width equation instead of the modified Winter’s effective width equation for 

plates with two or more longitudinal stiffeners. This is why, in Figure 5-2, the predictions 

using the proposed method are conservative for cases with 60spw t  . Another reason for 

conservatism of all the results is that the effective area of the longitudinally stiffened plates 

is conservatively calculated as nsp

eff
lsp ysp

P
A

F
  , as explained in Section 5.1.2.    

 Figure 5-3 shows a comparison of the member test simulation strengths to the 

strengths predicted using the proposed method, and using the proposed method with 1 

. This highlights the significant interaction between overall flexural buckling of the column 

and local buckling of the longitudinally stiffened flange plate for cases with large max and 

sL r , and the performance of the global buckling-local buckling interaction reduction 

factor in capturing this effect. It can be observed that for cases 1 to 6 in which have 



 133

max 20  (theoretically no local buckling of the subpanels between the longitudinal 

stiffeners or between a longitudinal stiffener and a corner), the predictions using the 

proposed method without the global buckling-local buckling interaction reduction factor, 

correlate well with the test simulation strengths.       

 

Figure 5-3   Comparison of the member strength from test simulation with the 
strength predicted using the proposed method, and using the proposed method with 

1    

 Since the measure of local buckling in the calculation of   is only based on max , 

a potential question could be, what if the longitudinal stiffeners on the flange plate are such 

that max r  , but the longitudinal stiffeners are relatively weak such that the flexural 

buckling of the column causes the flange plate to fail in an overall buckling mode with 

almost no buckling between the longitudinal stiffeners (see Figure 4-7)? Does the proposed 

method over-predict the resistance in such cases, since it would predict 1  ? 

 This is not a problem because, as mentioned in point #10 in Section 4.4, for such 

cases with weak longitudinal stiffeners the calculation of  eff sp
A  is conservative as it does 
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not take into account the postbuckling resistance corresponding to an overall buckling 

failure of the flange plate. Therefore, a possible over-prediction of crF  is compensated by 

the under-prediction of  eff sp
A . Additionally, as pointed out in point #10 in Section 4.4, 

these types of configurations are a quite inefficient use of the additional longitudinal 

stiffener material plus the fabrication cost in the context of construction using welded box-

section members.  

  A study is performed to investigate additional potential cases where local-global 

buckling interaction may cause the greatest unconservatism. These include cases with sL r   

up to 120, which is the maximum limit in the AASHTO LRFD Specifications for primary 

members, and with w/tsp up to 90. Table 5-2 summarizes the study design, and Figure 5-4 

shows a comparison of the member strength from test simulations with the strength 

predicted using the proposed method, and using the proposed with 1  . The cross-section 

dimensions and lengths of the various listed in Table 5-2 are provided in Appendix E.  
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Table 5-2   Summary of parametric study variables for the additional cases 

Case 
Numbers 

Web plates Flange plates Column 

sL r  

spw t  n  
gs spA wt  spw t  n  

gs spA wt  

1, 2 20 1 1.2 20 1 1.2 50, 80 

3, 4 40 1 1.2 40 1 1.2 50, 80 

5 20 1 1.1 40 1 1.1 110 

6 20 1 1.1 40 1 1.4 110 

7 20 1 1.1 90 1 1.1 110 

8 20 1 1.1 90 1 1.4 110 

9 20 1 1.1 90 1 1.4 120 
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Figure 5-4   Comparison of the member strength from test simulation with the 
strength predicted using the proposed method, and using the proposed method with 

1  , for the additional cases 

 Figure 5-4 shows that the predictions using the proposed method show a good 

correlation (accurate to slightly conservative) with the test simulation strengths. It can be 

observed from Figure 5-4, that the predictions without the global buckling-local buckling 

interaction reduction factor, i.e., with 1   correlate well with the test simulation strengths 

for cases with max  20 or 40. However, the predictions with 1   are too optimistic for 

cases with large max  and large sL r . The mean, median and coefficient of variation 

test nP P  for the 51 cases (42 cases from Figure 5-2 and 9 cases from Figure 5-4) are 1.16, 

1.14 and 0.1 respectively.  

 It should be noted that for box-columns subjected to significant axial compression, 

the maximum w/tsp will often be limited to values closer to 40, by AASHTO provisions 

that disallow theoretical plate buckling under construction, service and fatigue loading 

conditions. It should also be noted that generally large spw t values will only be 
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encountered in longitudinally stiffened box-section beams. These members may have a 

small axial force and hence an engineer may need to calculate the axial compressive 

resistance of these members with large spw t values. However, because /u nP P  is small, the 

inaccuracy in the prediction of nP  will have a minor impact on the overall strength 

prediction for combined axial compression and bending for these members.  

 A good to conservative prediction of the resistance for cases 1, 4, 7, 10, 13, 16, 19, 

22, 25, 28, 31, 34, 37, 40 in Figure 5-2, which have crF  between 0.85 yF  and 0.92 yF , and 

have component plates with different ultimate stress capacity, shows that the proposed 

method works well even for cases involving significant force redistribution between 

relatively weak and relatively strong plate elements (One extreme example is Case 13 in 

Figure 5-2, in which the ultimate stress capacity of the web plate is 1/4th of the ultimate 

stress capacity of the flange plate). 

 The applicability of the proposed method for calculating the axial compressive 

resistance of welded box-section members made up of Grade 70 steel is evaluated by 

checking the test

n

P

P
 values for critical box-section members- Cases 11 and 12 in Table 5-1 

and Case 9 in Table 5-2. test

n

P

P
 for Cases 11 and 12 in Table 5-1 are 0.98 and 0.92 

respectively. test

n

P

P
 for Case 9 in Table 5-2 is 1.06. Since these are extreme box-section 

members, it can be concluded that the proposed method can be used for practical box-

section members made up of steels up to a yield strength of 70 ksi.      



 138

CHAPTER 6. FLEXURAL RESISTANCE OF RECTANGULAR 

WELDED LONGITUDINALLY STIFFENED BOX-SECTION 

MEMBERS 

 This chapter explains the proposed method for an improved quantification of the 

flexural resistance of longitudinally stiffened box-section members, and the evaluation of 

the performance of the proposed method using data collected from existing experimental 

tests, and parametric studies performed using finite element test simulations. Section 6.1 

discusses the limitations of the various existing methods for calculation of the flexural 

resistance of longitudinally stiffened welded steel box-section members and highlights the 

motivation for the proposed method.    

6.1 Limitations of existing methods and motivation 

 The AASHTO (2017) Specifications do not address non-composite box-section 

members with longitudinal stiffening.  These Specifications address longitudinal stiffening 

in composite box girders; however they restrict the maximum flexural resistance of 

composite box girders to the yield moment of the compression or the tension flange. 

Similarly, the Eurocodes (CEN 2005; CEN 2006) limit the maximum flexural resistance 

of Class 4 sections to a maximum of the first yield moment of the effective cross-section 

in tension or compression. However, based on the observations for non-longitudinally 

stiffened box-section beams, there is significant reserve strength beyond the first yield of 

the tension flange. Section F2.4.1 of AISI (2016) allows the consideration of inelastic 

reserve strengths considering partial plastification, subject to certain restrictions including: 
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 The flexural resistance is not allowed to exceed 1.25 times the yield moment 

 The ratio of the depth of the compressed portion of the webs to their thickness is 

not allowed to exceed 1.11 yE F . 

 Based on the observations for non-longitudinally stiffened box-section beams, and 

also noting that 
2
rw

 for non-longitudinally stiffened webs  ( rw  defined in Section 3.2.1) 

is more than two times 1.11 yE F , it appears that the AISI rules are too prohibitive and 

would result in a failure to consider larger available resistances.  

 In addition: 

 AASHTO (2017) does not address the possibility of lateral torsional buckling. 

 The Eurocode method requires an iterative or at least a two-step calculation for 

obtaining the effective cross-section for Class 4 sections. 

 According to AISI (2016), the flexural resistance is calculated using effective 

section properties where the effective section is obtained using an effective width 

of the flanges and webs, using the provisions in Appendix 1 of AISI (2016). 

However, Appendix 1 does not specifically have provisions for longitudinally 

stiffened webs subjected to a stress gradient. 

 Therefore, a more general method is needed that provides a good prediction of the 

flexural resistance of practical longitudinally stiffened box beams and addresses the various 

issues discussed above. The data from the parametric studies performed using finite 

element test simulations and experimental tests discussed in Section 6.3 provides useful 
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information to answer the following questions, and arrive at a comprehensive yet simple, 

designer-friendly method: 

1) How well does the effective cross-section model (effective flange and/or effective 

web, described in Section 6.2) work for capturing the buckling and postbuckling 

resistance of flange and web elements? 

2) The Rb (web load-shedding factor) equation approved for the next release of the 

AASHTO LRFD specifications in 2020 neglects the contribution of the web 

longitudinal stiffeners when 0.76s

c

d

D
 ; where sd  is the distance from the 

centerline of the closest web longitudinal stiffener to the inner surface of the 

compression-flange element, and cD  is the depth of the web in compression. Can 

the web longitudinal stiffeners provide any measurable enhancement of the web 

postbuckling resistance when 0.76s

c

d

D
 ?  

It is not uncommon to have longitudinal stiffeners at the mid-depth of the web for 

some types of members, e.g., arch ribs. 

3) A key attribute of narrow boxes is that awc (for box sections awc is the ratio of two 

times the web area in compression to half of the area of the compression flange) 

can be relatively large; outside the bounds of prior developments of the Rb equation 

for I-section members.  How does web bend-buckling influence the flexural 

resistance of box-section members with large awc values? 
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4) In longitudinally stiffened box-section members where the neutral axis is closer to 

the compression flange than to the tension flange, first yielding in flexure occurs at 

the tension flange. Should the resistance of longitudinally stiffened box-section 

members be limited to the first yield of the tension flange? Is there significant 

available resistance beyond the first yield of the tension flange considering spread 

of yielding in the tension zone? 

5) It is common knowledge that box sections are torsionally stiff. So, is lateral 

torsional buckling a concern for practical longitudinally stiffened box-section 

members?  

6.2 Proposed methods 

 The proposed procedure for calculating the flexural resistance of longitudinally 

stiffened box-section members is slightly different depending on whether the compression 

flange is longitudinally stiffened, with or without longitudinal stiffening of the web, or the 

compression flange is non-longitudinally stiffened. Therefore, the calculations are 

presented below for these two separate cases. These calculations are conceptually 

consistent with each other and with the method for non-longitudinally stiffened box-section 

members, discussed in Section 3.2. In some design situations, longitudinal stiffening may 

be encountered on the tension flange. These cases are addressed as a subset of the above 

two cases and the non-longitudinally stiffened box-section member design procedure 

discussed in Section 3.2, simply by considering the additional contribution of the 

longitudinal stiffeners to the tension flange area, as well as the shift in the location of the 
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tension flange force through the depth due to the eccentricity of the tension flange 

stiffeners. 

6.2.1 Procedure for box-section members with a longitudinally stiffened compression 

flange and with longitudinally or non-longitudinally stiffened webs 

 Unlike non-longitudinally stiffened plates, longitudinally stiffened plates are 

typically unable to sustain large inelastic axial compressive strains beyond their maximum 

resistance. Therefore, the flexural resistance of box sections with a longitudinally stiffened 

compression flange is limited to the first yield of the compression flange of the effective 

cross-section. A representative longitudinally stiffened box cross-section is shown in 

Figure 6-1. The corresponding effective cross-section is shown in Figure 6-2. The 

compression flange is represented by its effective area, located at the centroid of the 

effective flange, including the area of the longitudinal stiffeners. AISI (2016) uses a similar 

approach. In Figure 6-2, 

 nsp

ecf

yf

P
A

F
                             (136) 

 nspP  =  nominal compressive resistance of the longitudinally stiffened compression 

flange, calculated using the proposed method explained in Section 4.2 

 c = the distance of the centroid of the gross area of the flange plate and its 

longitudinal stiffeners from the top of the web plates.   

Variables corresponding to the effective cross-section, i.e., cross-section with the 

compression flange represented by its effective area given by Eq. 136 (shown in Figure 

6-2), are denoted by the subscript e .   
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Figure 6-1   Representative longitudinally stiffened box cross-section 
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Figure 6-2   Effective box-section considering the resistance of the stiffened 
compression flange 

The recommended calculation of the nominal flexural resistance, nM , of a welded box-

section member with a longitudinally stiffened compression flange is as follows: 
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If b pL L  then, 

n csM M               (137)  

If p b rL L L  then,  

  b p

n b cs cs yr xce cs

r p

L L
M C M M F S M

L L

  
         

          (138)                                       

where: 

 csM  is the cross-section resistance, calculated as follows. 

For homogeneous box-section members in which the compression flange of the 

effective cross-section yields first (i.e., yce yteM M ), and when: 

o 1bR  , or 

o 8wcea   and 0.76s ced D   

cs b yc xceM R F S                                                                                          (139)  

For all other cases csM  is to be calculated via a strain-compatibility analysis using 

the following effective cross-sections: 

o Figure 6-3 shows the effective cross-section and idealized stress distribution 

for a box section with noncompact or compact unstiffened webs ( w rw 

). 

o Figure 6-4 shows the effective cross-section and idealized stress distribution 

for a box section with slender unstiffened webs ( w rw  ).  
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o Figure 6-5 shows the effective cross-section and idealized stress distribution 

for a box section with longitudinally stiffened webs having w rw  , such 

that load shedding from the postbuckling response of the web in flexure 

may be neglected.  

o  Figure 6-6 shows the effective cross-section and idealized stress 

distribution for a box section with longitudinally stiffened webs w rw  , 

such that the postbuckling response of the web in flexure needs to be 

captured.  

 

Fyf

Fyf

Aecf
c

 

Figure 6-3   Effective cross-section and stress distribution for calculating csM using 

strain-compatibility analysis, for a box with unstiffened webs such that w rw    
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Figure 6-4   Effective cross-section and stress distribution for calculating csM using 

strain-compatibility analysis, for a box with unstiffened webs such that w rw    
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c
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Figure 6-5   Effective cross-section and stress distribution for calculating csM using 

strain-compatibility analysis, for a box with longitudinally stiffened webs such that 

w rw   
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Figure 6-6   Effective cross-section and stress distribution for calculating csM using 

strain-compatibility analysis, for a box with longitudinally stiffened webs such that 

w rw    

 For homogeneous box-section members the calculation of csM  is based on the   

 limit state of first yield of the compression flange of the effective cross-section. In 

 Figure 6-3, Figure 6-4, Figure 6-5 and Figure 6-6, yf yc ytF F F  . Both flanges 

 are assumed to have the same yield strength. The influence of web postbuckling in 

 flexure, as well as early tension flange yielding in cases where xce xteS S  is 

 represented explicitly by the effective-cross sections and idealized stress 

 distributions shown in Figure 6-3 through Figure 6-6. 

 For box sections with two or more web longitudinal stiffeners in compression per 

 web, the above provisions may be applied by considering only the longitudinal 

 stiffener closest to the compression flange within each web (neglecting all other 

 web longitudinal stiffeners in compression). This conservatively neglects the 
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 benefit from multiple web longitudinal stiffeners in compression; however, the 

 predominant benefit of web longitudinal stiffening typically comes from the 

 longitudinal stiffener closest to the compression flange. 

 For hybrid box-section members, the strain compatibility based calculations 

 become more complex. Therefore, it is recommended that the cross-section 

 resistance be conservatively calculated as   

 cs b h yc xce h yt xteM R R F S R F S            (140) 

 i.e., taking the cross-section resistance as the minimum of, the resistance 

 corresponding to the limit state of first yield of the compression flange, and the 

 resistance corresponding to the limit state of first yield of the tension flange.  

In lieu of performing a strain compatibility analysis corresponding to Figure 6-3 

through Figure 6-6 for homogeneous box-section members, the cross-section 

resistance of all homogeneous box-section members ( xce xteS S  as well as 

xce xteS S ) can be conservatively calculated as 

cs b yc xce yt xteM R F S F S                           (141) 

 i.e., taking the cross-section resistance as the minimum of, the resistance 

 corresponding to the limit state of first yield of the compression flange, and the 

 resistance corresponding to the limit state of first yield of the tension flange.  

 pL , rL  and yrF  are defined using Eq. 41, 42 and 28 respectively, except the 

effective cross-section is as shown in Figure 6-2.         
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J

b b h

t t t


 

   
 

                                 (142) 

It is the St. Venant torsional constant neglecting the longitudinal stiffeners. 

 bm = B – tw                           (143) 

 
2 2

fc ft

m

t t
h D                     (144) 

 m m mA b h                  (145) 

 
2

2

ce w
wce

ecf

D t
a

A

 
 
 

                        (146) 

 
2 ce

w

w

D

t
               (147) 

 rw  is the limiting slenderness ratio for a noncompact web and is calculated as 

follows: 

 For non-longitudinally stiffened webs, 

4.6rw

yc

E

F
           (148) 

 For longitudinally stiffened webs in homogeneous box sections, 

2
0.95ce

rw

yc

D Ek

D F
  

  
 

        (149) 

where k  is calculated using the provisions in AASHTO (2017) 

Article 6.10.1.9.2. 

 For longitudinally stiffened webs in hybrid box sections, 
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5.7rw

yc

E

F
           (150) 

 The web load-shedding factor, Rb, is calculated using the provisions recommended 

by Subramanian and White (2017) for longitudinally stiffened webs, using awc 

determined with fc fcb t taken as 
2

ecfA
, and Dc taken as Dce. These provisions have 

been balloted and approved for the next release of the AASHTO LRFD 

Specification in 2020. 

 The hybrid factor, Rh, is calculated using AASHTO (2017) Eq. 6.10.1.10.1-1 with 

Afn taken as one-half of the total effective compression flange area, 
2

ecfA
, if 

n ceD D , and Afn taken as 
2

ft ftb t
 if n ceD D D  . 

 In cases where compression flange longitudinal stiffeners are provided but are not 

required for strength, the longitudinal stiffeners may be neglected and the flange may be 

considered as non-longitudinally stiffened for purposes of calculating the member strength. 

In such cases, the member strength should be calculated using the method discussed in 

Section 3.2 if the webs are non-longitudinally stiffened, and using the procedure discussed 

in Section 6.2.2 if the webs are longitudinally stiffened.  
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6.2.2 Procedure for box-section members with a non-longitudinally stiffened compres-

sion flange and longitudinally stiffened webs 

 The proposed method for characterizing the flexural resistance of these member 

types is the same as that for non-longitudinally stiffened box-section members (discussed 

in Section 3.2) except, 

 The web load-shedding factor, Rb, is calculated using the provisions recommended 

by Subramanian and White (2017) for longitudinally stiffened webs, using awc 

determined with fc fcb t taken as 
2

effA
, and Dc taken as Dce, where effA  is the effective 

area of the compression flange calculated using the modified Winter’s effective 

equation discussed in Section 2.2.  

 The hybrid factor, Rh, is calculated using AASHTO (2017) Eq. 6.10.1.10.1-1 with 

Afn taken as one-half of the total effective compression flange area, 
2

effA
, if 

n ceD D , and Afn taken as 
2

ft ftb t
 if n ceD D D  . 

  For cases with xce xteS S , the cross-section flexural resistance is calculated using 

the provisions in Table 3-3  but using the cross-section model and idealized stress 

distribution in Figure 6-7 and Figure 6-8, instead of Figure 3-1 and Figure 3-2 

respectively. 

Web longitudinal stiffeners, if present, should be included in the calculation of elastic gross 

and effective cross-section properties, and in the calculation of the moment corresponding 

to first yield of the compression flange of the effective cross-section. However, any web 
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longitudinal stiffeners subjected to compression should be neglected in the computation of 

peM . This is due to the limited ability of the web longitudinal stiffeners to develop larger 

inelastic strains necessary to develop yielding throughout the depth of the cross-section. 

Any enhancement of the resistance of compact or noncompact web sections due to the 

placement of web longitudinal stiffeners subjected to compression, other than the increase 

in the moment corresponding to first yield of the compression flange of the effective cross-

section, is neglected. 

 

Fyf

Fyf
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Flexural 
tension

Fyw

Fyw  

Figure 6-7   Cross-section model and stress distribution for calculation of yctM  for 

box-section members with longitudinally stiffened webs and an unstiffened 
compression flange, when w rw   
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Figure 6-8   Cross-section model and stress distribution for calculation of csM  for 

box-section members with longitudinally stiffened webs and an unstiffened 
compression flange, when w rw   

 

6.2.3 General box section proportion limits 

 The procedures discussed in Section 6.2.1 and 6.2.2 are applicable to box-section 

members satisfying the following limits: 

1) 150
w

D

t
  for webs without longitudinal stiffeners. 

2) 300
w

D

t
  for webs with longitudinal stiffeners. 

3) 
fc

D

b
 or 

D

B
 shall not exceed 6. 
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4) For non-longitudinally stiffened compression and tension flanges, fi fcb t  or fi ftb t  shall 

not exceed 90. 

5) For longitudinally stiffened compression or tension flanges, spw t  shall not exceed 90. 

6) Web longitudinal stiffeners should satisfy the proportioning requirements in AASHTO 

(2017) Article 6.10.11.3. 

6.3 Evaluation of the performance of the proposed method 

 The performance of the proposed methods is evaluated using the results of a 

parametric study performed using finite element test simulations (discussed in Section 

6.3.1), and using data collected from experimental tests in the literature (discussed in 

Section 6.3.2). 

6.3.1 Parametric study performed using finite element test simulations 

 This section explains the parametric study design, and discusses the results of the 

parametric study. The finite element modelling of these box-section members is explained 

in Appendix A. 

6.3.1.1 Parametric study design 

 The parametric study is divided into 15 groups: Groups 1–8 are comprised of 

homogeneous box-section members, and Groups 9–15 are comprised of hybrid box-section 

members. Table 6-1 summarizes the parametric study design. The cross-section 

dimensions and lengths of the various cases listed in Table 6-1 are provided in Appendix 
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F. All the box-section members in the parametric study have a non-longitudinally stiffened 

tension flange. The box-section members used in the parametric study are designed to 

satisfy the general box section proportioning limits in Section 6.2.3, as well as the 

following practical limits: 

1) 1.2wls

cf

A

A
   where, wlsA  is the total area of all the web longitudinal stiffeners in 

compression, and cfA  is the area of the compression flange including longitudinal stiffeners 

2) . 2ls webt   in. 

3) 
.

3
ls web

B

h
   

4) 20wcea    

5) Thickness of all box-section component plates (including longitudinal stiffeners) 4  

in. 

In Table 6-1:  

 cflnn  are the number of longitudinal stiffeners on the compression flange  

 webn  are the number of longitudinal stiffeners on each of the webs 

 L  is the length of the box-section beam 

 maxL = max 30 ,200 yD r    is the maximum practical length of the box-section beam  

 w  is the width of the subpanels in the compression flange, as shown in Figure 4-8. 

 . n . ng fc ls fl ls flA wt h t              (151) 
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Table 6-1   Summary of parametric study variables for evaluating the performance 
of the proposed method for characterizing the flexural resistance of longitudinally 

stiffened box-section members 

Group 

# 

Case 

# 

xceS  and 

xteS   

 

Web Compression 
flange 

L  

webn

 

2 ce

w

D

t
 and 

rw  

s

ce

d

D
  

cflnn

 fc

w

t
  g

fc

A

wt
 

1 1 
xce xteS S  1 2 ce

rw

w

D

t
   

0.4 1 30 1.2 
pL   

2 
xce xteS S  1 2 ce

rw

w

D

t
  

0.4 1 30 1.2 max

2
pL L

 

3 
xce xteS S  1 2 ce

rw

w

D

t
  

0.4 1 30 1.2 
maxL  

4 
xce xteS S  1 2 ce

rw

w

D

t
  

0.39 1 60 1.2 
pL   

5 
xce xteS S  1 2 ce

rw

w

D

t
  

0.39 1 60 1.2 max

2
pL L

 

6 
xce xteS S  1 2 ce

rw

w

D

t
  

0.39 1 60 1.2 
maxL  

2 7 
xce xteS S  1 2 ce

rw

w

D

t
  

< 0.76 1 30 1.2 
pL   

8 
xce xteS S  1 2 ce

rw

w

D

t
  

< 0.76 1 30 1.2 max

2
pL L

 

9 
xce xteS S  1 2 ce

rw

w

D

t
  

< 0.76 1 30 1.2 
maxL  

10 
xce xteS S  1 2 ce

rw

w

D

t
  

< 0.76 1 60 1.2 
pL   
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11 
xce xteS S  1 2 ce

rw

w

D

t
  

< 0.76 1 60 1.2 max

2
pL L

 

12 
xce xteS S  1 2 ce

rw

w

D

t
  

< 0.76 1 60 1.2 
maxL  

3 13 
xce xteS S  1 2 ce

rw

w

D

t
  

> 0.76 1 30 1.2 
pL   

14 
xce xteS S  1 2 ce

rw

w

D

t
  

> 0.76 1 30 1.2 max

2
pL L

 

15 
xce xteS S  1 2 ce

rw

w

D

t
  

> 0.76 1 30 1.2 
maxL  

16 
xce xteS S  1 2 ce

rw

w

D

t
  

> 0.76 1 60 1.2 
pL   

17 
xce xteS S  1 2 ce

rw

w

D

t
  

> 0.76 1 60 1.2 max

2
pL L

 

18 
xce xteS S  1 2 ce

rw

w

D

t
  

> 0.76 1 60 1.2 
maxL  

4 19 
xce xteS S  0 2 ce

rw

w

D

t
  

- 1 30 1.2 
pL  

20 
xce xteS S  0 2 ce

rw

w

D

t
  

- 1 30 1.2 
maxL  

5 21 
xce xteS S  0 2 ce

rw

w

D

t
  

- 1 30 1.2 
pL  

22 
xce xteS S  0 2 ce

rw

w

D

t
  

- 1 30 1.2 
maxL  

6 23 
xce xteS S  1 2 ce

rw

w

D

t
  

0.4 1 30 1.2 
pL  
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24 
xce xteS S  1 2 ce

rw

w

D

t
  

0.4 1 30 1.2 
maxL  

7 25 
xce xteS S  1 2 ce

rw

w

D

t
  

< 0.76 1 30 1.2 
pL  

26 
xce xteS S  1 2 ce

rw

w

D

t
  

< 0.76 1 30 1.2 
maxL  

8 27 
xce xteS S  1 2 ce

rw

w

D

t
  

> 0.76 1 30 1.2 
pL  

28 
xce xteS S  1 2 ce

rw

w

D

t
  

> 0.76 1 30 1.2 
maxL  

9 29 
xce xteS S  0 2 ce

rw

w

D

t
  

- 1 30 1.2 
pL  

30 
xce xteS S  0 2 ce

rw

w

D

t
  

- 1 30 1.2 
maxL  

10 31 
xce xteS S  1 2 ce

rw

w

D

t
  

< 0.76 1 30 1.2 
pL  

32 
xce xteS S  1 2 ce

rw

w

D

t
  

< 0.76 1 30 1.2 
maxL  

11 33 
xce xteS S  1 2 ce

rw

w

D

t
  

> 0.76  1 30 1.2 
pL  

34 
xce xteS S  1 2 ce

rw

w

D

t
  

> 0.76 1 30 1.2 
maxL  

12 35 
xce xteS S  0 2 ce

rw

w

D

t
  

- 1 30 1.2 
pL  

36 
xce xteS S  0 2 ce

rw

w

D

t
  

- 1 30 1.2 
maxL  
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13 37 
xce xteS S  0 2 ce

rw

w

D

t
  

- 1 30 1.2 
pL  

38 
xce xteS S  0 2 ce

rw

w

D

t
  

- 1 30 1.2 
maxL  

14 39 
xce xteS S  1 2 ce

rw

w

D

t
  

< 0.76 1 30 1.2 
pL  

40 
xce xteS S  1 2 ce

rw

w

D

t
  

< 0.76 1 30 1.2 
maxL  

15 41 
xce xteS S  1 2 ce

rw

w

D

t
  

> 0.76 1 30 1.2 
pL  

42 
xce xteS S  1 2 ce

rw

w

D

t
  

> 0.76 1 30 1.2 
maxL  

 

6.3.1.2 Results and discussion 

 Figure 6-9 and Figure 6-10 show the results for homogeneous (Groups 1-8) and 

hybrid (Groups 9-15) cases respectively. For the results shown in Figure 6-9 and Figure 

6-10 the cross-section flexural resistance is calculated as follows: 

 Proposed method 

- For homogeneous box-section members in which the compression flange of 

the effective cross-section yields first (i.e., yce yteM M ), and when: 

o 1bR  , or 

o 8wcea   and 0.76s ced D   
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 cs b yc xceM R F S                                                                                           

- For all other homogeneous box-section members, csM  is calculated using 

strain-compatibility analysis (Figure 6-3 through Figure 6-6). 

- For hybrid box-section members, cs b h yc xce h yt xteM R R F S R F S   

 Simplified method 

- For homogeneous box-section members, cs b yc xce yt xteM R F S F S   

- For hybrid box-section members, cs b h yc xce h yt xteM R R F S R F S   

The mean, median and coefficient of variation of test nM M , using the proposed method 

for Groups 1-15, are 1.19, 1.14 and 0.15 respectively. The mean, median and coefficient 

of variation of test nM M , using the simplified method for all groups except Group 3, are 

1.22, 1.18 and 0.15 respectively. In general it can be observed that, 

 For homogeneous cases, the predictions using the proposed method correlate well 

with the strengths from the test simulations (accurate to slightly conservative). 

Also, for the predictions using the proposed method the dispersion in results is 

much less as compared to the use of the simplified (more conservative) method 

which considers the limit state of tension flange yielding. This clearly shows the 

ability of the idealized stress distribution and/or effective cross-section model 

(effective flange and/or effective web) to capture the resistance corresponding to 

the spread of yielding in the tension zone, as well as the local buckling and 

postbuckling resistance of the compression flange and webs of the box-section 

member. 
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 For hybrid cases, the predictions are more conservative and there is more dispersion 

when using the proposed method, as compared to that for homogeneous cases. This 

is because for hybrid cases the proposed method is the same as the simplified (more 

conservative) method which considers the limit state of tension flange yielding. The 

reason for adopting this simpler approach is that the strain-compatibility analysis 

calculations using Figure 6-3 through Figure 6-8 become too complicated for 

normal design practice when applied to hybrid box-section members. 
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Figure 6-9   Comparison of the strength from test simulation with the strength 
predicted using the proposed method and using the method considering tension 

flange yielding, for homogeneous box-section members 
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Figure 6-10   Comparison of the strength from test simulation with the strength 
predicted using the proposed method for hybrid box-section members 

 The good correlation of the strengths predicted using the proposed method and the 

strengths from the test simulations for Group 1 and Group 9 cases, clearly shows the 

inability of longitudinally stiffened compression flange plates to sustain large inelastic 

axial compressive strains beyond the peak load without a substantial reduction in their load 

carrying capacity, and therefore provides a justification for limiting the flexural resistance 

of box sections with a longitudinally stiffened compression flange to the first yield of the 

compression flange in the effective cross-section. 
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 As discussed earlier in Section 6.1, for narrow box-section members wcea  can be 

very large; outside the bounds of prior developments of the bR  equation for I-section 

members. Group 2 cases belong to this category, where 10wcea   for cases 7, 8, 9, and 

19wcea   for cases 10, 11, 12. It can be observed by comparing the predictions using the 

proposed method and using the simplified method that, for cases with large wcea  the 

predictions based on strain-compatibility analysis using the effective web cross-section 

model are better than those using the bR  equation. 

 As mentioned earlier in Section 6.1, the bR  equation approved for the next release 

of the AASHTO LRFD specifications in 2020 neglects the contribution of the web 

longitudinal stiffeners when 0.76s

ce

d

D
 . It is not uncommon to have longitudinal stiffeners 

at the mid-depth of the web for some types of members, e.g., arch ribs. Group 3 cases 

belong to this category. It can be observed by comparing the predictions using the proposed 

method and using the simplified method that, using the bR  equation which neglects the 

contribution of the web longitudinal stiffeners significantly under-predicts the resistance 

of these cases, and that there is a much better correlation between the test simulation 

strengths and the predictions based on strain-compatibility analysis using the effective web 

cross-section model considering the contribution of the web longitudinal stiffeners. 

 A good correlation of resistance predicted using the proposed method and the test 

simulation strengths for cases belonging to Groups 4 through 8 (all these cases have 

xce xteS S  ) clearly shows, 
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 The existence of larger available resistance beyond the first yield of the tension 

flange, and  

 The ability of the proposed method using an effective cross-section model 

(effective compression flange and/or effective web) and strain-compatibility 

analysis, to predict the flexural resistance of these cases. 

 It can be observed from Figure 6-9 and Figure 6-10, that the inelastic LTB 

resistance calculated by considering a linear interpolation gives good correlation with the 

test simulation strengths. For the beams included in the parametric study, it is found that 

for the longest practical box-section beam the inelastic lateral torsional buckling resistance 

is as low as 80.1% of the cross-section resistance.  

 Figure 6-11 shows the variation of the flexural resistance with change in length of 

a box-section member having the same cross-section as that for Cases 7, 8 and 9. For this 

member, the reduction in flexural resistance at Lmax is 19.7% compared to the resistance at

0.5 pL . It can be seen that the inelastic lateral torsional buckling resistance calculated by 

considering a linear interpolation gives reasonably good predictions. 
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Figure 6-11   Variation of flexural resistance with change in length of a box-section 
member 
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Gordo and Soares (2004), Gordo and Soares (2008), Gordo and Soares (2009) is used to 

evaluate the performance of the proposed method for characterizing the flexural resistance 
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tests are short enough that their flexural resistance is their cross-section resistance (i.e., no 

influence of inelastic lateral torsional buckling). 

 Table 6-2 shows a comparison of flexural resistance from experimental tests with 

the resistance predicted using the proposed method. It can be observed that the proposed 

method gives an accurate to conservative estimate of the flexural resistance of these box-

section members. The experimental tests listed in Table 6-2 included initial loading cycles 

allowing for residual stress relief. This explains the larger resistances observed in the 

experimental tests than those predicted using the proposed method. The box-section 

member tested by Saad-Eldeen et al. (2010) has webs with unequal thickness (3.95 mm 

and 3.85 mm). In the calculations using the proposed method, both webs are assumed to 

have the same thickness, equal to 3.85 mm. This explains the slightly conservative 

prediction of the flexural resistance of the box-section member tested by Saad-Eldeen et 

al. (2010). The box-section members tested by Gordo and Soares (2015b), Gordo and 

Soares (2015c) and Gordo and Soares (2004), all have stiffeners with a different yield stress 

than that of the plate (yield stress of stiffener is greater than the yield stress of the plate). 

In the calculations using the proposed method, both the stiffener and plate are assumed to 

have the same yield strength, equal to the lower plate yield strength value. In addition to 

this, the box-section members tested by Gordo and Soares (2015c) and Gordo and Soares 

(2004), have s

ce

d

D
 equal to 0.82 and 0.895 respectively, and xce xteS S . Thus both these 

cases belong to Group 3 as defined in Table 6-1. It is known from the results of the 

parametric study (see Figure 6-9), that the predictions using the effective web cross-section 

model of the proposed method is slightly conservative for Group 3 cases. This explains the 
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conservatism of the flexural resistance predictions using the proposed method for box-

section members tested by Gordo and Soares (2015b), Gordo and Soares (2015c) and 

Gordo and Soares (2004). The mean, median and coefficient of variation of test nM M  

using the proposed method, for all tests with equal yield strength plate and longitudinal 

stiffeners, are 1.12, 1.12 and 0.12 respectively.      

Table 6-2   Comparison of flexural resistance from experimental tests with the 
resistance predicted using the proposed methods 

Test # Source Ultimate bending 
moment from 
experimental 

test, testM       

(kN-m) 

Ultimate bending 
moment predicted 
by the proposed 

method, nM       

(kN-m) 

test

n

M

M
  

1 Saad-Eldeen et al. (2010) 568.9 541.2 1.05 

2 Gordo and Soares (2008) 643.0 638.7 1.01 

3 Gordo and Soares (2009) 1526.0 1209.3 1.26 

4 Gordo and Soares (2009) 1269.0 1035.1 1.23 

5 Gordo and Soares (2009) 1026.0 861.2 1.19 

6 Gordo and Soares (2015a) 328.0 345.2 0.95 

7 Gordo and Soares (2015b) 452.0 416.5 1.09 

8 Gordo and Soares (2015c) 172.8 103.1 1.68 

9 Gordo and Soares (2004) 349.1 247.7 1.41 

6.4 Salient features of the proposed method 

 The proposed method encapsulate a significant advancement in the understanding 

of the behavior of rectangular longitudinally stiffened welded box-section members 
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subjected to flexure, and provides a conceptually unified characterization of their resistance 

which correlates well with the results of a parametric study performed using finite element 

simulations, and with results from experimental tests.  The salient features of the method 

are as follows: 

1) The proposed method better handles the following: 

 It accounts for:  

 The different failure modes of a longitudinally stiffened compression 

flange plate. The method does this via an improved quantification of the 

flange ultimate compressive resistance (discussed in CHAPTER 4), which 

is then used to determine an effective cross-section. . 

 Web bend-buckling and the corresponding postbuckling resistance via the 

web-bend buckling factor or an effective web section. This avoids the 

need to perform iterative or two-step calculations when obtaining an 

effective cross-section. 

 Lateral torsional buckling: The method recognizes that for the longest 

practical longitudinally stiffened box-section beams the reduction in the 

flexural resistance relative to the cross-section resistance can be 

significant. In the parametric studies discussed in Section 6.3.1, it is found 

that for the longest practical box-section beams the inelastic lateral 

torsional buckling resistance can be as small as 80.1% of the cross-section 

resistance.  
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 The proposed method addresses the interaction between local 

postbuckling (i.e. flange local buckling or web bend buckling) and global 

buckling (lateral torsional buckling). This interaction is considered via the 

use of effective section properties and/or web bend buckling factor, in the 

inelastic lateral torsional buckling equation. 

 The method addresses all practical ranges of component plate slenderness. 

 It is possible for steel box-section members subjected to flexure to have webs with 

lower yield strength than that of the flanges. The proposed method addresses hybrid 

as well as homogenous box-section members. 

Thus the proposed method better characterizes the flexural resistance of all practical 

longitudinally stiffened welded steel box-section members.  

2) Except for hybrid box-section members with a longitudinally stiffened compression 

flange, the proposed method eliminates the need to consider a separate tension flange 

yielding (TFY) limit state for box-section members. The member response is addressed 

rigorously via the direct calculation of the yield moment to the compression flange, 

considering early yielding of the section on the tension side of the neutral axis, and 

considering web bend-buckling and flange buckling effects as applicable. Thus, the 

proposed method recognizes the inelastic reserve strength corresponding to the spread of 

yielding in the tension zone. 

3) It recognizes the inability of longitudinally stiffened flange plates to sustain large 

inelastic axial compressive strains beyond the peak load without a substantial reduction in 

their load carrying capacity, and therefore limits the flexural resistance of box-section 
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members with a longitudinally stiffened compression flange to the first yield of the 

compression flange in the effective cross-section. 

4) The proposed method for longitudinally stiffened box beams is conceptually consistent 

with the method for determining the flexural resistance of non-longitudinally stiffened box-

section members, discussed in Section 3.2. 
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CHAPTER 7. SUMMARY OF KEY CONTRIBUTIONS, IMPACT 

OF THIS RESEARCH ON THE STATE-OF-THE-ART FOR 

DESIGN OF WELDED BOX-SECTION MEMBERS, AND 

RECOMMENDATIONS FOR FUTURE WORK 

 The key contributions from this research to the body of knowledge are discussed in 

Section 7.1. The impact of this research on the state-of-the-art for design of welded box-

section members, and recommendations for future work are discussed in Sections 7.2 and 

7.3 respectively. 

7.1 Summary of key contributions from this research to the body of knowledge 

 In summary, the objectives of this research were: 

(1) The conceptual and theoretical development and improvement of methods for 

characterization of the flexural and axial compressive resistance of non-composite welded 

steel box-section members, and 

(2) The evaluation of the performance of these methods using data compiled from existing 

experimental tests and generated from parametric studies performed using finite element 

test simulations.   
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The contributions to the body of knowledge from this research are as follows: 

Primary contributions: 

(1) Development of new methods and improvement of existing methods for a conceptually 

unified characterization of the flexural and axial compressive resistance of non-

longitudinally stiffened welded box-section members, and ensuring a good correlation with 

results from experimental tests and finite element test simulations. 

(2) Development of new methods and improvement of existing methods for a conceptually 

unified characterization of the flexural and axial compressive resistance of longitudinally 

stiffened welded box-section members, and ensuring a good correlation with results from 

experimental tests and finite element test simulations. 

Supporting contributions: 

(1) Improved quantification of the postbuckling resistance of non-longitudinally stiffened 

plates subjected to uniform axial compression in welded box-section members. 

(2) Improved characterization of the ultimate compressive resistance of longitudinally 

stiffened plates. 

Additionally, a particularly new development is the development of finite element test 

simulation data considering the interaction between global (flexural) and local buckling in 

longitudinally stiffened welded box columns. 
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7.2 Research impact 

 This research effort has led to a significant advancement in the understanding of 

the behavior of non-longitudinally stiffened as well as longitudinally stiffened welded steel 

box-section members, further leading to an improved characterization of the resistance of 

these members. It is hoped that the results of this research will lead to updates to the 

following Articles/Sections of the AASHTO (American Association of State Highway and 

Transportation Officials) and AISC 360 (American Institute of Steel Construction- 

Specification for Structural Steel Buildings) provisions: 

 AASHTO Article 6.12.2.2.2: Flexural resistance of non-composite box-section 

members. 

 AASHTO Article 6.9.4: Axial compressive resistance of non-composite box-

section members. 

 AASHTO Article 6.11.8.2.2: Compressive resistance of longitudinally stiffened 

flange plates. 

 AISC Section F7: Flexural resistance of box-section members.  

Thus, this research has led to a significant advancement of the state-of-the-art for design 

of welded steel box-section members. 

7.3 Recommendations for future work 

 The following are the recommendations for future work: 

1) The focus of this research was on calculation of the flexural and axial compressive 

resistance of box-section members. The most general loading on a box-section member 
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involves axial load, plus biaxial bending, plus shear due bending and torsion. White et al. 

(2018) provide interaction equations to predict the resistance of box-section members 

subjected to combined loading. It is believed that these equations provide an accurate to 

conservative estimate of the resistance of box-section members. It would be useful to 

perform a parametric study to further evaluate the performance of these interaction 

equations. 

2)  The flexural resistance equations in CHAPTER 3 and CHAPTER 6 count on the larger 

available resistance corresponding to the spread of yielding in the tension zone. Additional 

studies should be performed to evaluate the impact of the spread of yielding when 

considering bending-shear interaction, when the shear strength is calculated by accounting 

for the tension field action. Prior studies for I-section members considered by White et al. 

(2008) suggest that these combined strengths are adequately predicted without the need for 

consideration of moment-shear interaction.   

3) White et al. (2018) provide valuable guidance for the design of transverse stiffeners in 

longitudinally stiffened plates. It would be useful to perform a parametric study to further 

demonstrate the performance of these recommendations. 

4) Extension of this work to improve the composite box-girder design provisions in 

AASHTO (2017) would be useful. 

5) In many applications, box-section section members are non-prismatic. White (2015) 

provides valuable guidance for design of non-prismatic members. It would be useful to 

perform additional studies to demonstrate the performance of these recommendations for 

non-prismatic box-section members. 
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6) At the present time (2018), in the literature there is no experimental data for non-

longitudinally stiffened welded box-section members subjected to pure bending. In 

addition to this, in the literature there is no experimental data for studying the interaction 

between flexural buckling and local buckling of longitudinally stiffened box-columns. It 

would be useful to have experimental data for these member types for further validation of 

the proposed methods.  
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APPENDIX A. FINITE ELEMENT MODELLING OF NON-

LONGITUDINALLY STIFFENED BOX-SECTION MEMBERS, 

LONGITUDINALLY STIFFENED PLATES, AND 

LONGITUDINALLY STIFFENED BOX-SECTION MEMBERS 

 This section discusses the finite element modelling of non-longitudinally stiffened 

box-section members, longitudinally stiffened plates, and longitudinally stiffened box-

section members. 

A.1      General 

 The commercial software ABAQUS version 6.13 (Simulia 2013) is used in this 

research for finite element analysis of box-section members and plates. The four node shell 

element S4R is used to model the box-section flange plates, web plates and longitudinal 

stiffeners. S4R is a large strain quadrilateral shell element which uses a reduced (single 

point) numerical integration with an algorithm for stabilization of the corresponding 

spurious zero-energy modes. It is a general purpose shell element that allows transverse 

shear deformation; using thick shell theory for thicker shells, and using the Kirchoff thin 

shell theory for thinner shells. A five point Simpson’s rule is applied for integration of the 

stresses through the thickness of the shell element.  

 Web transverse stiffeners in longitudinally stiffened box beams are modelled using 

the B31 beam element in ABAQUS. B31 is a two-node linear Timoshenko beam element 

(allows transverse shear deformation). The Modified Riks method in ABAQUS is used to 

perform geometric and material nonlinear analysis of the box-section members and plates. 
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 Figure A-0-1 shows a non-longitudinally stiffened box-section member subjected 

to uniform bending, Figure A-0-2 shows a longitudinally stiffened plate subjected to 

uniform axial compression, and Figure A-0-3 shows a longitudinally stiffened box-section 

member subjected to uniform bending. 

 

Figure A-0-1   Non-longitudinally stiffened box-section member subjected to 
uniform bending 



 179

 

Figure A-0-2   Longitudinally stiffened plate subjected to uniform axial compression 
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Figure A-0-3   Longitudinally stiffened box-section member subjected to uniform 
bending 

 The material properties of steel are modeled in all the test simulation studies of this 

research using the stress-strain curve shown in Figure A-0-4. The slope of the stress-strain 

curve is, 

 E  in the elastic region (shown as Slope 1 in Figure A-0-4) 

 
1000

E
 in the yield plateau region (shown as Slope 2 in Figure A-0-4) 
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 
50

E
 in the strain-hardening region (shown as Slope 3 in Figure A-0-4) 

The modulus of elasticity, E is taken as 29000 ksi. For homogenous box-section members 

all the box-section component plates are modeled as Grade 50 steel. For hybrid box-section 

members the flange plates are modeled as Grade 70 steel, and the web plates are modeled 

as Grade 50 steel. Grade 50 steel has a yield stress, 50yF   ksi, and ultimate stress, 

65uF   ksi. Grade 70 steel has a yield stress, 70yF   ksi, and ultimate stress, 90uF   

ksi. In Figure A-0-4 the yield strain, y

y

F

E
  .  

S
tr

es
s Fy

Fu

Slope 1

Slope 2

Slope 3

Strain

ϵy ϵst = 10ϵy

 

Figure A-0-4   Steel stress-strain curve assumed in the finite element analysis 
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A.2      Non-longitudinally stiffened box-section members 

 This section discusses the geometric imperfections, residual stresses, loading and 

boundary conditions used in the FE modelling of non-longitudinally stiffened box-section 

beams. 

A.2.1      Geometric imperfection 

 Both global and local imperfections are modeled as shown in Figure A-0-5 and 

Figure A-0-6. For global imperfection, the lateral displacement of the bottom flange is 

restrained and the top flange is given a sweep. The maximum magnitude of the global 

imperfection is taken as 1/1000 of the beam length. For local imperfections, the 

displacement of the corner nodes is constrained within the plane of the cross-section and 

an eigenvalue buckling analysis is performed with the member subjected to axial load. The 

maximum magnitude of local imperfection of each plate is taken as 1/200 of the plate 

width. 
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Figure A-0-5   Global imperfection for non-longitudinally stiffened beams 

 

 

Figure A-0-6   Local imperfection for non-longitudinally stiffened beams 
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A.2.2      Residual stress 

 Previous researchers who have performed finite element simulations of welded 

steel box-section members, e.g., Kim and Yoo (2008), Tao et al. (2009), used a constant 

compressive residual stress value equal to 0.2Fy. However in reality, the magnitude of 

compressive residual stresses vary based on a number of factors, and in many situations 

the compressive residual stresses in welded steel box sections are much higher than 0.2Fy, 

as can be seen from Figure A-0-7. Thus, there is a need to develop a residual stress model 

for FE simulations of welded steel box-section members.  

 

Figure A-0-7   Synthesis of measured residual stresses in welded steel box sections 
from the literature 
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 Figure A-0-8 shows the residual stress pattern for a non-longitudinally stiffened 

box-section. In Figure A-0-8, σc.lw, σc.tf, σc.rw and σc.bf denote the compressive residual 

stresses in the left web, top flange, right web and bottom flange respectively. 

Fy Fy

σc.tf

Fy

Fy

σc.lw

FyFy

σc.bf

Fy

Fy

σc.rw

 

Figure A-0-8   Residual stress pattern for a non-longitudinally stiffened box-section 

 In this research, a residual stress model has been developed which is a reasoned 

modification, extension of the rules from ECCS (1976). ECCS (1976) has valuable 

guidance for estimating the residual stresses in welded steel members considering the 

influence of plate rolling, flame cutting and welding of component plates. ECCS (1976) 

also provides the residual stress pattern for four cases: 

1) Plate width to thickness = 20, and heavy weld 
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2) Plate width to thickness = 20, and light weld 

3) Plate width to thickness = 40, and heavy weld 

4) Plate width to thickness = 40, and light weld. 

However, it does not provide a residual stress pattern for other values of plate slenderness 

and welding level. While performing a parametric study, different levels of plate 

slenderness are encountered. Additionally, the weld level is unknown. Since the weld size 

is unknown, using the ECCS (1976) equations for calculating the width of the tensile 

residual stress block may give too large or too small values for the size of the tensile 

residual stress block, thus giving unrealistic compressive residual stress values. Thus, there 

is a need to limit the width of the tensile residual stress block based on: 

 Generally observed size of tensile residual stress block. For example, Dwight and 

Moxham (1969) state that- “The area carrying this locked-in tension typically 

extends two to four times thicknesses out from the weld on each side”.  

 Ensuring the compressive residual stresses are realistic. For example: 

 Ensuring that the compressive residual stress is limited such that it 

is less than the local buckling stress of the box-section component 

plates. 

 By setting upper and lower limits on the magnitude of compressive 

residual stresses.  

 For a parametric study, since the weld size, welding process and number of passes 

during welding are unknown, there should be a reasoned way for using certain values for 
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calculation of the width of the tensile stress block. For example, in the proposed model the 

weld size is taken as an average of the minimum and maximum weld size from AWS 

(2002); along with a limit that the weld size cannot exceed the thickness of the two plates 

being welded. 

The major features of this model are listed below: 

 Tensile residual stress is present at the weld locations and is equal to Fy. 

Compressive residual stresses are present in the remaining portion of the plate, as 

shown in Figure A-0-8, such that equilibrium is satisfied. 

 Residual stresses due to flame cutting and welding are considered, whereas residual 

stresses due to plate rolling are neglected since there is an uncertainty about the 

location from which the box-section component plate will be flame cut from a large 

rolled plate. According to ECCS (1976), the plate rolling stresses have a parabolic 

shape and are opposite in nature to the residual stresses due to welding or flame 

cutting, i.e., tensile residual stress in the middle portion of the plate and 

compressive residual stress at the corners. Therefore, neglecting the plate rolling 

stresses is conservative. Another important point is that when a rolled plate is cut, 

the residual stresses due to plate rolling are released. Thus there is a justification to 

neglect the residual stresses due to plate rolling.  

The contribution of flame cutting to the residual stress is generally much smaller 

than that from welding. Additionally, if the plate is instead cut using plasma cutting 

or water jet cutting the residual stresses due to plate cutting are even smaller. 

 One of the unknowns while estimating the residual stresses in welded box sections 

used in a parametric study, is the weld size. In this model, the weld size used in the 
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calculation of the width of the tensile residual stress block is taken as an average of 

the minimum and maximum weld size from AWS (2002); along with a limit that 

the weld size cannot exceed the thickness of the two plates being welded. 

 The width of the tensile residual stress block is limited to four times the thickness 

of the plate plus size of the weld. This is a thumb rule based on the observation by 

Dwight and Moxham (1969). 

 The compressive residual stress is limited such that it is less than the local buckling 

stress of the box-section component plates. 

 It is ensured that the compressive residual stresses are greater than or equal to 0.2Fy 

or 0.1Fy, depending on whether the critical buckling stress of the plate is greater 

than or less than 0.2Fy. This sets a lower limit on the compressive residual stress. 

Similarly as an upper limit, the compressive residual stresses are limited to 0.55Fy. 

 The weld is assumed to be a continuous single pass weld. Since the weld size is 

unknown there is a further uncertainty about the number of passes during welding. 

A continuous single pass weld gives the largest value of residual stress for a given 

weld size, using the ECCS equations for the width of the tensile residual stress 

block. 

 Assuming that the welding process is submerged arc welding. Submerged arc 

welding is assumed conservatively since it has the largest process efficiency factor 

resulting in larger residual stresses for a given weld size as compared to other 

welding processes. The assumed weld type is fillet weld. 

 The model captures important trends such as a decrease in the compressive residual 

stress with an increase in slenderness of the plate. This has been confirmed by 
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comparing the residual stress predictions from the model with residual stresses 

measured by other researchers. 

 The model neglects a distribution of residual stresses in the plane of the plate, 

shown in Figure A-0-9. These residual stresses are compressive below the surface 

and tensile in the center of the plate thickness. King (2018) points out that for a 

member made of very thick plate, welded with relatively small fillet welds, the 

residual stresses from weld shrinkage are very small, but the through thickness plate 

residual stresses remain large. For certain practical box-section members, King 

(2018) performed non-linear finite element (FE) analyses modelling the through-

thickness residual stress pattern shown in Figure A-0-9. He found that the buckling 

resistance obtained from the FE analyses was very close to that obtained using 

column strength curves generated using the residual stress pattern shown in Figure 

A-0-8. Therefore as a simplification, for practical box-section members, neglecting 

the through-thickness variation of residual stresses is justified.     
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Figure A-0-9   Through-thickness variation of residual stresses in quenched HSLA-
100 plate (Credit: Prime 2005) 

The algorithm for computing residual stresses in a general welded box-section with equal 

or unequal size of component plates is explained below. Figure A-0-10 explains the 

nomenclature used in the algorithm for computing residual stresses. In Figure A-0-10, 

 1b , 2b , 3b , 4b  and 1t , 2t , 3t , 4t  are the widths and thicknesses of the four box-

section component plates respectively. 

 1cornerWS , 2cornerWS , 3cornerWS , 4cornerWS  denote the weld size at the four corners of 

the welded box-section.  

 1cornerAw , 2cornerAw , 3cornerAw , 4cornerAw  denote the area of the weld at the four 

corners of the welded box-section. 

 fc   denotes the width of the tensile residual stress block due to flame cutting. 
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 1.c final , 2.c final , 3.c final  and 4.c final  denote the final compressive residual stress 

values in plates one through four respectively. 

 1. finalc , 2. finalc , 3. finalc  and 4. finalc  denote the widths of the tensile residual stress 

block in plates one through four respectively considering both welding and flame 

cutting. 

 

Plate 1
b1, t1

Plate 2
b2, t2

Plate 3
b3, t3

Plate 4
b4, t4

WScorner1

Awcorner1

Cwtemp1

WScorner2

Awcorner2

Cwtemp2

WScorner3

Awcorner3

Cwtemp3

WScorner4

Awcorner4

Cwtemp4

c1.final

c1.final

c2.final c2.final

c3.final

c3.final

c4.final c4.final

 

Figure A-0-10   Nomenclature used in the algorithm for computing residual stresses  
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Weld area algorithm 

The weld area for the four corners is calculated as explained below: 

 Corner 1 (intersection of plates 4 and 1) 

 1cornerWS  =     4 4 4 1 1 1 4 1min max 0.5 , 0.5 , ,A B A A B A t t        

 1cornerAw   =  
2

10.6 cornerWS   

 Corner 2 (intersection of plates 1 and 2) 

 2cornerWS  =     1 1 1 2 2 2 1 2min max 0.5 , 0.5 , ,A B A A B A t t        

 2cornerAw   =  
2

20.6 cornerWS   

 Corner 3 (intersection of plates 2 and 3) 

 3cornerWS  =     2 2 2 3 3 3 2 3min max 0.5 , 0.5 , ,A B A A B A t t        

 3cornerAw   =  
2

30.6 cornerWS   

 Corner 4 (intersection of plates 3 and 4) 

 4cornerWS  =     3 3 3 4 4 4 3 4min max 0.5 , 0.5 , ,A B A A B A t t        

 4cornerAw   =  
2

40.6 cornerWS   
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where: 

o 1A  is the minimum weld size per AWS   1 20 ,6,8If t mm    

o 1B is the maximum weld size per AWS   1 1 16 , , 2If t mm t t     

o 2A is the minimum weld size per AWS   2 20 ,6,8If t mm    

o 2B is the maximum weld size per AWS   2 2 26 , , 2If t mm t t     

o 3A is the minimum weld size per AWS   3 20 ,6,8If t mm    

o 3B is the maximum weld size per AWS   3 3 36 , , 2If t mm t t     

o 4A is the minimum weld size per AWS   4 20 ,6,8If t mm    

o 4B is the maximum weld size per AWS   4 4 46 , , 2If t mm t t     

The residual stress calculations for left web plate are explained below.  

Step 1: The width of the tensile residual stress block corresponding to flame cutting is 

11100
f

y

t
c

F
              (152) 

Step 2: The widths of the tensile residual stress blocks corresponding to welding at the two 

edges of the plate are calculated as follows, 

1
, 1

4 1

12000

( )
corner

w temp

y

pAw
c

F t t



           (153) 

2
, 2

1 2

12000

( )
corner

w temp

y

pAw
c

F t t



           (154) 
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where 0.9p  is the process efficiency factor for submerged arc welding. 

  . 1 1 4 1 1 4 1 12 ,min , 4 max( , ) ,4 max( , )w a wtemp wtemp corner cornerc If b c c t t WS t t WS          (155) 

  . 2 2 1 2 2 1 2 22 ,min , 4 max( , ) ,4 max( , )w b wtemp wtemp corner cornerc If b c c t t WS t t WS       (156) 

Step 3: Combining the residual stress due to flame cutting and welding at the two edges of 

the plate,  

 
1

4 4 4
.int .a f w ac c c                                      (157) 

 
1

4 4 4
.int .b f w bc c c              (158) 

Step 4: Calculating the compressive residual stress, 

.int .int

1.int

1 .int .int

( )

( )

y a b

c

a b

F c c

b c c





 
           (159) 

1.c final  is calculated as follows: 

 If   0.2cr yF  , 

 1. 1.intmin 0.55 ,max 0.2 ,min ,c final y y cr cF F               (160) 

 If   0.2cr yF  ,  

 1. 1.intmax min , ,0.1c final cr c yF              (161) 
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where, 

 

 

2

2

.int .int
1

2

1

4

212 1

cr

a b

E

c c
b

t







 

 
  

 
 

          (162) 

Step 5: Calculating the width of the tensile residual stress block, 

 
1. 1

1.

1.2

c final

final

c final y

b
c

F







           (163) 

The calculations for the other three component plates (top flange, right web and bottom 

flange) are similar to the calculations explained above. 

 The predictions of the proposed residual stress model relative to measurements 

made by other researchers is shown below in Figure A-0-11. It can be observed that the 

model captures important trends such as a decrease in the compressive residual stress with 

an increase in slenderness of the plate. 
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Figure A-0-11   Predictions of the suggested residual stress model relative to the 
measurements made by other researchers 

 

A.2.3      Boundary conditions and loading 

 Non-longitudinally stiffened box beams are flexurally and torsionally simply 

supported at the ends, and are subjected to uniform bending. The beam multipoint 

constraint in ABAQUS is used to apply the end boundary conditions and loading. 

A.3      Longitudinally stiffened plates 

 This section discusses the geometric imperfections, residual stresses, loading and 

boundary conditions used in the FE modelling of longitudinally stiffened plates.  
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A.3.1      Geometric imperfection 

 Both global and local imperfections are modeled as shown in Figure A-0-12 and 

Figure A-0-13.  

 

Figure A-0-12   Global imperfection for longitudinally stiffened plates 

 

Figure A-0-13   Local imperfection for longitudinally stiffened plates 
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 Considering X as the longitudinal direction, Y as the transverse direction, Z as the 

lateral direction of the longitudinally stiffened plate, and the origin at the corner of the 

stiffened plate; the transverse displacement,   for the global imperfection is calculated 

using the following equation: 

sin sino

x z

L B

 
 

   
    

   
             (164) 

where, 

 B  is the width of the longitudinally stiffened plate 

  min ,cL l a            (165) 

 cl  is the characteristic buckling length explained in Section 4.2 

 a  is the transverse stiffener spacing 

 0.8
480

o

L


 
  

 
           (166) 

where, 

 The fabrication tolerance equal to 
480

L
 is from Section 11.4.13.3 of the 

AASHTO LRFD Bridge Construction Specifications (2010) 

 80% of the geometric fabrication tolerance is used based on the 

recommendation in Annex C.5 of the Eurocode (CEN 2006).   

 For local imperfections, the lateral and transverse displacement of the longitudinal 

edges and the longitudinal stiffener nodes are constrained, and an eigenvalue buckling 
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analysis is performed with the plate subjected to axial load. The maximum magnitude of 

local imperfection is taken as 0.8
144 sp

w

t

 
 
 
 

  where, 

 The fabrication tolerance equal to 
144 sp

w

t
 is from Section 11.4.13.2 of the 

AASHTO LRFD Bridge Construction Specifications (2010) 

 w  and spt  are as shown in Figure 4-8. 

 80% of the geometric fabrication tolerance is used based on the recommendation 

in Annex C.5 of the Eurocode (CEN 2006). 

A.3.2      Residual stress 

 The self-equilibrating residual stress pattern shown in Figure A-0-15 and Figure A-

0-14 is used. A compressive residual stress value of 0.25 yF  has been used previously by 

Chou et al. (2006). The residual stress pattern for flat longitudinal stiffeners is from 

Subramanian (2015). In Figure A-0-14 and Figure A-0-15, a positive sign represents tensile 

residual stress, and a negative sign represents compressive residual stress.  

A.3.3      Boundary conditions and loading 

 Intermediate transverse stiffeners are modeled by restraining the lateral and 

transverse displacements of the nodes at the transverse stiffener locations. The boundary 

conditions are modelled as follows: 

 Transverse displacements of nodes along both the longitudinal edges are restrained. 
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 Beam multipoint constraint in ABAQUS is used to apply the end boundary 

conditions and loading. All degrees of freedom of both end reference nodes, except 

longitudinal displacement of one end reference node, are restrained; and axial 

compressive load is applied via the reference nodes. These boundary condition are 

believed to be representative of the boundary conditions in a physical experimental 

test. The end boundary conditions have a minor influence on the ultimate 

compressive resistance of longitudinally stiffened plates because the failure is 

farther away from the ends.  

 Lateral displacements of nodes at the mid-width of the stiffened plate along its 

entire length are restrained. 
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Figure A-0-14   Residual stress pattern for longitudinally stiffened plates with Tee 
longitudinal stiffeners 
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Figure A-0-15   Residual stress pattern for longitudinally stiffened plates with flat 
longitudinal stiffeners 
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A.4      Longitudinally stiffened box-section members 

 This section discusses the geometric imperfections, residual stresses, loading and 

boundary conditions used in the FE modelling of longitudinally stiffened box-section 

members. 

A.4.1      Geometric imperfection 

 Geometric imperfections for each of the four component plates of the box-section 

member are modelled as shown in Figure A-0-12 and Figure A-0-13. In addition to that: 

 For longitudinally stiffened box columns, an overall sweep corresponding to a 

flexural buckling failure mode is given with a maximum magnitude of global 

imperfection taken equal to 0.8
1000

L 
 
 

 as shown in Figure A-0-16, where L is the 

length of the box column. 80% of the geometric fabrication tolerance is used based 

on the recommendation in Annex C.5 of the Eurocode (CEN 2006). 

 For longitudinally stiffened box beams, the lateral displacement of the bottom 

flange is restrained and the top flange is given a sweep with a maximum magnitude 

of global imperfection taken equal to 0.8
1000

L 
 
 

 as shown in Figure A-0-17, where 

L is the length of the box beam. 80% of the geometric fabrication tolerance is used 

based on the recommendation in Annex C.5 of the Eurocode (CEN 2006). 
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Figure A-0-16   Global imperfection for longitudinally stiffened box columns 

 

Figure A-0-17   Global imperfection for longitudinally stiffened box beams 

 

A.4.2      Residual stress 

 The residual stress pattern for each of the longitudinally stiffened component plates 

is the same as that in Figure A-0-14 and Figure A-0-15. The residual stress pattern for non-
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longitudinally stiffened component plates in longitudinally stiffened box-section members 

is as shown in Figure A-0-18. 

Fy Fy

0.25Fy  

Figure A-0-18   Residual stress pattern for non-longitudinally stiffened component 
plates in longitudinally stiffened box-section members 

A.4.3      Boundary conditions and loading 

 Longitudinally stiffened box columns are flexurally and torsionally simply 

supported at the ends, and are subjected to uniform axial compression. Similarly, the 

longitudinally stiffened box beams are flexurally and torsionally simply supported at the 

ends, and are subjected to uniform bending. The beam multipoint constraint in ABAQUS 

is used to apply the end boundary conditions and loading. 

A.5      Comparison of results of experimental tests with the results from FE 

simulations of the experimental tests 

 The performance of the FE models is evaluated by comparing the results of 

experimental tests with the results from FE simulations of those experimental tests. The 

experimental tests from Pavlovcic et al. (2012) are used to evaluate the performance of the 

FE models of box-section members. A summary of the comparison is shown in Table A-

0-1. The tests from Pavlovcic et al. (2012) are selected for this purpose for the following 

reasons:  
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 Box-section members in these tests are susceptible to combined global buckling 

and local buckling. 

 Pavlovcic et al. (2012) provide detailed measurements of initial imperfections, 

accidental load eccentricities, and residual stresses. 

 Similarly, the performance of the FE models of longitudinally stiffened plates is 

evaluated by using experimental tests from Ghavami (1994) and Chou et al. (2006), and 

are shown in Table A-0-2 and Table A-0-3. For tests by Ghavami (1994) without 

intermediate transverse stiffeners, the plates were not continuously simply supported but 

were closely discretized simply supported. Because of the uncertainty and hence the 

difficulty in modelling these supports, only the tests by Ghavami (1994) with intermediate 

transverse stiffeners are modelled as these had continuously simply supported boundary 

conditions.  

 It can be observed from Table A-0-1, Table A-0-2 and Table A-0-3, that in general 

the results from FE simulations of experimental tests show a good correlation with the 

experimental test results. The poor performance of the FE simulations for specimens 

P2R1T and P2T1T in Table A-0-2 can be attributed to the unavailability of enough 

information about the actual geometric imperfection pattern and residual stresses, that they 

could be properly modelled. Following the approach adopted by Ghavami and Khedmati 

(2006), the complex pattern of residual stresses and initial deflection was considered by 

only considering geometric imperfections with the magnitude of maximum deflection of 

the plate taken equal to that measured by Ghavami and reported in Column 7 of Table 2 in 

Ghavami (1994).   



 207

Table A-0-1   Performance of the FE modelling of box-section members, using 
experimental tests from Pavlovcic et al. (2012) 

Specimen Description  Length (m) 
max .exp erimentP

(kN)  
max.simulationP

(kN) 
max.

max.exp

simulation

eriment

P

P

 

W-S Column 3.65 706.5 699.4 0.99 

W-L Column 4.85 564 592.2 1.05 

W-E2 Beam-
column 

3.65 566.5 572.2 1.01 

W-E6 Beam-
column 

3.65 384.5 392.2 1.02 

W-E20 Beam-
column 

3.65 206.5 201.5 0.98 

 

Table A-0-2   Performance of the FE modelling of longitudinally stiffened plates, 
using experimental tests from Ghavami (1994) 

Specimen Number of 
longitudinal 

stiffeners  

Number of 
intermediate 
transverse 
stiffeners 

max .exp erimentP

(N)  
max.simulationP

(N) 
max.

max.exp

simulation

eriment

P

P

 

P1R1T 1 1 119.2 109.1 0.92 

P1T1T 1 1 119.1 115.7 0.97 

P2R1T 2 1 149.4 120.9 0.81 

P2T1T 2 1 179.2 207.8 1.16 

P2R2T 2 2 149.2 150.7 1.01 

P2T2T 2 2 204.3 195.7 0.96 
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Table A-0-3   Performance of the FE modelling of longitudinally stiffened plates, 
using experimental test from Chou et al. (2006) 

Specimen number 
max .exp eriment  (ksi)  

max.simulation  (ksi) max.

max.exp

simulation

eriment




 

2 60 60.44 1.01 

 

A.6      Verification of FE test simulation 

 A basic verification of the finite element models is performed to ascertain the 

correctness of the FE models. The verification is done by considering three cases for which 

analytical solutions are available, and comparing the predictions from finite element 

analysis of these cases with the available closed form analytical solutions. This approach 

is similar to that used by Subramanian (2015). The cases considered are as follows: 

Case 1- Elastic lateral torsional buckling of a long simply supported box-section beam 

subjected to uniform bending.  

Case 2- A box-section beam with b pL L  and subjected to uniform bending. The 

slenderness of the box-section component plates are chosen such that they are not 

susceptible to local buckling.    

Case 3- Elastic buckling of a simply supported unstiffened plate subjected to uniform axial 

compression in the longitudinal direction.  

 For Case 1, an elastic eigenvalue buckling analysis of a simply supported box-

section beam subjected to uniform bending is performed. The dimensions of the box-
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section beam are as follows: 10fcb  in., 0.5fct  in., 10ftb  in., 0.5ftt  in., 60D  in., 

1.5wt  in., 583.33bL  ft; where fcb , fct , ftb , ftt , D , wt  are as shown in Figure 2-4, and 

bL  is the unbraced length of the box-section beam. The elastic LTB moment from the FE 

analysis is 45138.22 kip-in, which is just 1.0027 times the theoretical elastic lateral 

torsional buckling resistance, 45016.677cr y

b

M EI GJ
L


   kip-inch.    

 For Case 2, the theoretical resistance is the plastic moment capacity of the gross 

cross-section. It can be observed from the results for cases 1, 4, 7, 37 in Figure 3-4 that the 

test simulation strength is equal to the plastic moment capacity of the gross cross-section.  

 For Case 3, an elastic eigenvalue buckling analysis of a simply supported 

unstiffened plate subjected to uniform axial compression in the longitudinal direction, is 

performed. The dimensions of the plate are as follows: 60width  in., 1thickness  in. and 

480length  in. The elastic buckling load from the FE analysis is 1761.34 kips, which is 

just 1.008 times the theoretical buckling load, 

 
   

2

2

2

4
1747.37

12 1
cr

E
P width thickness

width

thickness





 
 

  
 

 kips.    
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APPENDIX B. DETAILS OF THE PARAMETRIC STUDY 

DESIGN FOR EVALUATING THE PERFORMANCE OF THE 

PROPOSED METHOD FOR CALCULATING THE FLEXURAL 

RESISTANCE OF NON-LONGITUDINALLY STIFFENED BOX 

SECTION MEMBERS 

 Table B-0-1 gives the cross-section dimensions and lengths of the various cases 

listed in Table 3-4.  

Table B-0-1   Dimensions of members considered in the parametric study used for 
evaluating the performance of the proposed method for calculating the flexural 

resistance of non-longitudinally stiffened box-section members 

Cross-
section 

# 

bfc 

(in.) 

tfc 

(in.) 

bft 

(in.) 

tft 

(in.) 

D 

(in.) 

tw 

(in.) 

Length 
= 

0.5 pL  

(in.) 

Length = 

max0.5

2
pL L

(in.) 

Length 
= maxL

(in.) 

1 10.00 0.50 10.00 0.50 36.00 0.83 113.40 495.41 877.42 

2 10.00 0.50 10.00 0.50 52.60 0.57 88.95 494.67 900.40 

3 12.50 0.75 12.50 0.75 75.00 0.50 94.85 607.97 1121.09 

4 18.00 1.00 18.00 0.50 69.80 1.16 206.75 907.86 1608.97 

5 18.00 1.00 18.00 0.50 90.00 0.90 175.05 903.46 1631.86 

6 17.00 1.00 17.00 0.50 102.00 0.68 142.00 845.72 1549.43 

7 53.00 3.00 53.00 0.50 132.50 1.50 735.90 - 3975.00 

8 53.00 3.00 53.00 0.50 180.00 1.50 640.25 2672.82 4705.39 

9 53.00 3.00 53.00 0.50 225.00 1.50 572.35 2675.18 4778.01 
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10 18.00 0.50 18.00 1.00 54.00 1.00 222.80 906.80 1590.81 

11 18.00 0.50 18.00 1.00 70.00 0.77 188.80 899.38 1609.97 

12 17.00 0.50 17.00 1.00 87.46 0.58 144.30 838.58 1532.86 

13 18.00 0.50 18.00 0.50 56.88 0.95 235.75 931.64 1627.53 

14 17.00 0.50 17.00 0.50 70.00 0.73 188.55 870.24 1551.93 

15 16.00 0.50 16.00 0.50 84.86 0.57 147.30 809.29 1471.28 

16 53.00 1.65 53.00 0.50 106.00 1.50 888.75 - 3180.00 

17 53.00 1.65 53.00 0.50 174.90 1.50 705.95 2775.12 4844.28 

18 53.00 1.65 53.00 0.50 225.00 1.50 615.00 - 4904.14 

19 33.00 0.50 33.00 1.50 70.74 1.40 498.20 - - 

20 33.00 0.50 33.00 1.50 96.00 1.03 421.95 1650.98 2880.00 

21 32.40 0.50 32.40 1.50 120.75 0.81 349.80 1620.87 2891.94 

22 33.00 0.50 33.00 1.00 73.79 1.34 524.20 - 2213.70 

23 33.00 0.50 33.00 1.00 99.00 1.00 447.80 - - 

24 32.40 0.50 32.40 1.00 120.74 0.81 380.25 1663.85 2947.45 

25 33.00 0.50 33.00 0.50 76.72 1.29 549.95 - 2301.60 

26 33.00 0.50 33.00 0.50 100.00 0.99 483.85 1741.93 3000.00 

27 32.40 0.50 32.40 0.50 120.75 0.80 418.25 - - 

28 53.00 0.50 53.00 2.30 53.00 1.50 1117.50 - 1590.00 

29 53.00 0.50 53.00 2.50 113.37 1.40 756.75 - 3401.10 

30 52.00 0.50 52.00 3.00 153.00 1.02 585.50 2514.17 4442.85 

31 53.00 0.50 53.00 1.65 53.00 1.50 1173.70 - 1590.00 

32 53.00 0.50 53.00 1.65 118.46 1.34 814.55 - 3553.80 

33 52.00 0.50 52.00 1.65 153.00 1.02 679.15 2634.58 4590.00 
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34 53.00 0.50 53.00 0.50 79.50 1.50 1147.10 - 2385.00 

35 53.00 0.50 53.00 0.50 125.40 1.27 926.90 - 3762.00 

36 52.00 0.50 52.00 0.50 153.00 1.02 813.75 - - 

37 78.00 4.00 78.00 0.50 156.00 1.50 1153.70 - 4680.00 

38 10.00 0.50 10.00 0.50 35.88 0.84 103.15 - 877.21 

39 10.00 0.50 10.00 0.50 49.20 0.61 84.75 - 896.92 

40 12.50 0.75 12.50 0.75 75.00 0.50 83.60 - 1121.09 

41 16.00 0.50 16.00 0.50 48.00 1.00 193.25 - 1432.95 

42 15.50 0.50 15.50 0.50 61.00 0.76 159.65 - 1406.36 

43 14.00 0.50 14.00 0.50 79.38 0.53 110.25 - 1284.35 

44 53.00 0.50 53.00 0.50 53.00 1.50 1230.45 - 1590.00 

45 52.70 0.50 52.70 0.50 116.13 1.36 891.65 - 3483.90 

46 52.40 0.50 52.40 0.50 153.54 1.02 772.90 - - 
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APPENDIX C. JUSTIFICATION FOR THE USE OF 

ORTHOTROPIC PLATE IDEALIZATION FOR PLATES WITH 

ONE OR TWO LONGITUDINAL STIFFENERS 

 This appendix shows that for plates with one or two longitudinal stiffeners the 

buckling load calculated by considering a column on elastic foundation model (where the 

column represents the stiffener strut and elastic foundation stiffness represents the 

transverse bending stiffness of the plate) along with the consideration of torsional stiffness 

of the plate, gives a buckling load approximately equal to that obtained using the 

orthotropic plate idealization. This justifies the use of the orthotropic plate approach by the 

proposed method for any number of longitudinal stiffeners.  

Plates with one longitudinal stiffener: 

For a column on elastic foundation model of the stiffener strut (where the column 

represents the stiffener strut and elastic foundation stiffness represents the transverse 

bending stiffness of the plate) along with the consideration of torsional stiffness of the 

plate, the governing differential equation of equilibrium is 

2

2
'' '' 0iv trib

s p

GJ
EI P k

w
                                          (167) 

where: 

 

3

2
1

12
sp

s x sp

wt
I I wt c                                   (168) 
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 pk  is the foundation stiffness and is calculated by modeling the plate in the 

transverse direction as a “wide beam” loaded by a concentrated force, W at the mid 

width of the plate (i.e., at the longitudinal stiffener location). Therefore 

33

48

48

p

p

spsp

p

EIW
k

bWb

EI

 
 
 
 

                                 (169) 

 The term 
2

2
''tribGJ

w
  corresponds to the contribution from the resistance to 

twisting of the plate associated with the transverse displacement of the longitudinal 

stiffener. This resistance can be approximated as 

 
2

1
/ 2

2 2 2 ''
trib trib

trib

d dd d
GJ GJ

dT dx GJdx dxdx w dx
w w w w

 



   
   
           (170) 

where:  

3

3
sp

trib

wt
J               (171) 

This is approximate because a simplifying assumption is made that the strip 

considered above is pinned along the edge of the plate as well as along the 

longitudinal stiffener. This neglects the continuity across the longitudinal stiffener 

(King 2017a). 

The buckled shape is given by  

max sin
x

 


            (172) 
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where   is the buckling length, taken as the smaller of the transverse stiffener spacing, a, 

and the characteristic buckling length, c . 

 Substituting the displacement solution max sin
x

 


, which satisfies the 

boundary conditions, in the above governing differential equation we obtain 

4 2 2

max max max max2

2
sin sin sin sin 0trib

s p

x x GJ x x
EI P k

w

     
                

          
 

              (173) 

Simplifying, 

32 2

2 4 2 2

8
96

3

p sp

s

sp sp

EI Gwt
P EI w

b b





 
   
  




         (174) 

This is very close to the buckling load obtained using the orthotropic plate idealization  

 

32 2 2
4

2 4 2 2

32 2

2 4 2 2

31

14.08
97.2

3

p sp

s

sp sp

p sp

s

sp sp

EI Gwt
P EI w

b b

EI Gwt
EI w

b b

 


 





 
   

  

 
   
  









        (175) 

The slight differences are because of the approximate calculation of the transverse bending 

stiffness and torsion stiffness contribution. 
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Plates with two longitudinal stiffeners: 

For a column on elastic foundation model of the stiffener strut (where the column 

represents the stiffener strut and elastic foundation stiffness represents the transverse 

bending stiffness of the plate) along with the consideration of torsional stiffness of the 

plate, the governing differential equation of equilibrium is 

2
'' '' 0iv trib

s p

GJ
EI P k

w
                 (176) 

where: 

 

3

2
1

12
sp

s x sp

wt
I I wt c             (177) 

 pk  is the foundation stiffness and is calculated by modeling the plate in the 

transverse direction as a “wide beam” loaded by a concentrated force, W at the mid 

width of the plate (i.e., at the longitudinal stiffener location). Therefore 

33

162

55

162

p

p

spsp

p

EIW
k

bWb

EI

 
 
 
 

           (178) 

 The term 
2

''tribGJ

w
  corresponds to the contribution from the resistance to twisting 

of the plate caused by the transverse displacement of the longitudinal stiffener. 

This resistance can be approximated as 

 
2

1
/

''
trib trib

trib

d dd d
GJ GJ

dT dx GJdx dxdx w dx
w w w w

 



   
   
            (179) 

where  
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3

3
sp

trib

wt
J               (180) 

This is approximate because a simplifying assumption is made that the strip 

considered above is pinned along the edge of the plate as well as along the 

longitudinal stiffener. This neglects the continuity across the longitudinal stiffener 

(King 2017a). 

The buckled shape is given by  

max sin
x

 


            (181) 

where   is the buckling length, taken as the smaller of the transverse stiffener spacing, a, 

and the characteristic buckling length, c . 

 Substituting the displacement solution max sin
x

 


, which satisfies the 

boundary conditions, in the above governing differential equation we obtain 

4 2 2

max max max max2
sin sin sin sin 0trib

s p

x x GJ x x
EI P k

w

     
                

          
  

              (182) 

Simplifying, 

32 2

2 4 2 2

9
97.2

3

p sp

s

sp sp

EI Gwt
P EI w

b b





 
   
  




         (183) 

This is very close to the buckling load obtained using the orthotropic plate idealization  
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 
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2 4 2 2
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sp sp
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 
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 
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  









        (184) 

The slight difference is because of the approximate calculation of the torsion stiffness 

contribution. 

 Thus it can be seen that for plates with one or two longitudinal stiffeners the 

buckling load calculated by considering a column on elastic foundation model (where the 

column represents the stiffener strut and elastic foundation stiffness represents the 

transverse bending stiffness of the plate) along with the consideration of torsional stiffness 

of the plate, gives a buckling load approximately equal to that obtained using the 

orthotropic plate idealization. This justifies the use of the orthotropic plate approach by the 

proposed method for any number of longitudinal stiffeners. 
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APPENDIX D. DETAILS OF THE PARAMETRIC STUDY 

DESIGN FOR EVALUATING THE PERFORMANCE OF THE 

PROPOSED METHOD FOR CALCULATING THE ULTIMATE 

COMPRESSIVE RESISTANCE OF LONGITUDINALLY 

STIFFENED PLATES 

 The cross-section dimensions and lengths of the various cases in Groups 1 

through 4 are provided in Table D-0-1 through Table D-0-4 respectively. In Table D-0-1 

through Table D-0-4: 

 .w lsh  is the depth of a flat longitudinal stiffener or the depth of the web of a Tee 

longitudinal stiffener; 

 .w lst  is the thickness of a flat longitudinal stiffener or the thickness of the web of a 

Tee longitudinal stiffener; 

 .f lsb  is the width of the flange of a Tee longitudinal stiffener; 

 .f lst  is the thickness of the flange of a Tee longitudinal stiffener; 

 L  is the total length of the longitudinally stiffened plate; 

 transstiffn  is the number of intermediate transverse stiffeners. 
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Table D-0-1   Cross-section dimensions and lengths of Group 1 cases 

Case # 
spb  

(in.) 

spt  

(in.) 

n  
.w lsh  

(in.) 

.w lst  

(in.) 

.f lsb  

(in.) 

.f lst  

(in.) 

L  

(in.) 

1 60.00 1.50 1 5.087 0.442 - - 425.840 

2 60.00 1.50 1 7.194 0.626 - - 553.876 

3 60.00 1.50 1 10.173 0.885 - - 745.178 

4 60.00 1.50 1 14.387 1.251 - - 1009.209 

5 90.00 1.50 2 6.019 0.523 - - 719.755 

6 90.00 1.50 2 7.194 0.626 - - 828.883 

7 90.00 1.50 2 9.099 0.791 - - 1010.562 

8 90.00 1.50 2 11.374 0.989 - - 1226.159 

9 90.00 1.50 2 14.387 1.251 - - 1502.902 

10 90.00 1.50 2 17.621 1.532 - - 1786.418 

11 120.00 1.50 1 12.460 1.083 - - 1529.807 

12 120.00 1.50 1 14.387 1.251 - - 1741.036 

13 120.00 1.50 1 17.621 1.532 - - 2088.674 

14 120.00 1.50 1 20.347 1.769 - - 2373.616 

15 120.00 1.50 1 24.920 2.167 - - 2833.642 

16 180.00 1.50 2 12.460 1.083 - - 2286.851 

17 180.00 1.50 2 14.387 1.251 - - 2600.188 

18 180.00 1.50 2 17.621 1.532 - - 3114.522 

19 180.00 1.50 2 20.347 1.769 - - 3535.054 

20 180.00 1.50 2 24.920 2.167 - - 4212.829 

21 180.00 1.50 1 17.621 1.532 - - 2867.898 
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22 180.00 1.50 1 21.581 1.877 - - 3446.848 

23 180.00 1.50 1 24.920 2.167 - - 3920.955 

24 180.00 1.50 1 27.861 2.423 - - 4327.491 

25 180.00 1.50 1 30.520 2.654 - - 4686.078 

26 270.00 1.50 2 17.621 1.532 - - 4283.202 

27 270.00 1.50 2 22.289 1.938 - - 5290.041 

28 270.00 1.50 2 27.298 2.374 - - 6325.563 

29 270.00 1.50 2 30.520 2.654 - - 6967.243 

Table D-0-2   Cross-section dimensions and lengths of Group 2 cases 

Case # 
spb  

(in.) 

spt  

(in.) 

n  
.w lsh  

(in.) 

.w lst  

(in.) 

.f lsb  

(in.) 

.f lst  

(in.) 

L  

(in.) 

1 60.00 1.50 1 2.912 0.416 2.496 0.416 405.243 

2 60.00 1.50 1 4.119 0.588 3.530 0.588 518.044 

3 60.00 1.50 1 5.824 0.832 4.992 0.832 689.694 

4 60.00 1.50 1 8.237 1.177 7.060 1.177 927.130 

5 90.00 1.50 2 3.446 0.492 2.954 0.492 678.513 

6 90.00 1.50 2 4.119 0.588 3.530 0.588 775.170 

7 90.00 1.50 2 5.209 0.744 4.465 0.744 937.749 

8 90.00 1.50 2 6.512 0.930 5.582 0.930 1131.475 

9 90.00 1.50 2 8.237 1.177 7.060 1.177 1379.627 

10 90.00 1.50 2 10.088 1.441 8.647 1.441 1632.230 

11 120.00 1.50 1 7.133 1.019 6.114 1.019 1413.557 

12 120.00 1.50 1 8.237 1.177 7.060 1.177 1604.251 
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13 120.00 1.50 1 10.088 1.441 8.647 1.441 1917.824 

14 120.00 1.50 1 11.649 1.664 9.985 1.664 2174.136 

15 120.00 1.50 1 14.267 2.038 12.229 2.038 2585.704 

16 180.00 1.50 2 7.133 1.019 6.114 1.019 2112.477 

17 180.00 1.50 2 8.237 1.177 7.060 1.177 2394.956 

18 180.00 1.50 2 10.088 1.441 8.647 1.441 2858.043 

19 180.00 1.50 2 11.649 1.664 9.985 1.664 3235.427 

20 180.00 1.50 2 14.267 2.038 12.229 2.038 3839.996 

21 180.00 1.50 1 10.088 1.441 8.647 1.441 2637.280 

22 180.00 1.50 1 12.355 1.765 10.590 1.765 3160.061 

23 180.00 1.50 1 14.267 2.038 12.229 2.038 3586.705 

24 180.00 1.50 1 15.951 2.279 13.672 2.279 3951.157 

25 180.00 1.50 1 17.473 2.496 14.977 2.496 4271.515 

26 270.00 1.50 2 10.088 1.441 8.647 1.441 3937.159 

27 270.00 1.50 2 12.761 1.823 10.938 1.823 4844.425 

28 270.00 1.50 2 15.629 2.233 13.396 2.233 5772.316 

29 270.00 1.50 2 17.473 2.496 14.977 2.496 6343.849 

Table D-0-3   Cross-section dimensions and lengths of Group 3 cases 

Case 
# 

s pb  

(in.) 

s pt  

(in.) 

n  tra n s s tiffn  
.w lsh  

(in.) 

.wlst  

(in.) 

.f l sb  

(in.) 

.f lst  

(in.) 

L  

(in.) 

1 120.00 1.00 5 3 4.80 0.42 - - 150.10 

2 120.00 1.00 5 3 6.78 0.59 - - 260.52 

3 120.00 1.00 5 3 8.31 0.72 - - 352.78 
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4 120.00 1.00 5 3 9.59 0.83 - - 431.19 

5 120.00 1.00 5 3 10.72 0.93 - - 491.78 

6 120.00 1.00 5 3 4.80 0.42 - - 264.89 

7 120.00 1.00 5 3 6.78 0.59 - - 455.90 

8 120.00 1.00 5 3 8.31 0.72 - - 620.89 

9 120.00 1.00 5 3 9.59 0.83 - - 766.57 

10 120.00 1.00 5 3 10.72 0.93 - - 913.31 

11 120.00 1.00 5 3 4.80 0.42 - - 379.67 

12 120.00 1.00 5 3 6.78 0.59 - - 663.13 

13 120.00 1.00 5 3 8.31 0.72 - - 959.56 

14 120.00 1.00 5 3 9.59 0.83 - - 1245.67 

15 120.00 1.00 5 3 10.72 0.93 - - 1615.86 

16 240.00 1.00 3 3 11.75 1.02 - - 380.18 

17 240.00 1.00 3 3 14.39 1.25 - - 510.74 

18 240.00 1.00 3 3 16.61 1.44 - - 621.51 

19 240.00 1.00 3 3 18.57 1.62 - - 730.79 

20 240.00 1.00 3 3 20.35 1.77 - - 815.31 

21 240.00 1.00 3 3 11.75 1.02 - - 714.74 

22 240.00 1.00 3 3 14.39 1.25 - - 984.99 

23 240.00 1.00 3 3 16.61 1.44 - - 1222.31 

24 240.00 1.00 3 3 18.57 1.62 - - 1438.75 

25 240.00 1.00 3 3 20.35 1.77 - - 1630.61 

26 240.00 1.00 3 3 11.75 1.02 - - 1018.89 

27 240.00 1.00 3 3 14.39 1.25 - - 1422.77 
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28 240.00 1.00 3 3 16.61 1.44 - - 1781.67 

29 240.00 1.00 3 3 18.57 1.62 - - 2101.03 

30 240.00 1.00 3 3 20.35 1.77 - - 2371.80 
 

Table D-0-4   Cross-section dimensions and lengths of Group 4 cases 

Case 
# 

s pb  

(in.) 

s pt  

(in.) 

n  tra n s s tiffn  
.w lsh  

(in.) 

.wlst  

(in.) 

.f l sb  

(in.) 

.f lst  

(in.) 

L  

(in.) 

1 120.00 1.00 5 3 2.746 0.392 2.353 0.392 132.103 

2 120.00 1.00 5 3 3.883 0.555 3.328 0.555 219.080 

3 120.00 1.00 5 3 4.755 0.679 4.076 0.679 298.773 

4 120.00 1.00 5 3 5.491 0.785 4.707 0.785 351.702 

5 120.00 1.00 5 3 6.139 0.877 5.262 0.877 417.947 

6 120.00 1.00 5 3 2.746 0.392 2.354 0.392 231.188 

7 120.00 1.00 5 3 3.883 0.555 3.328 0.555 388.868 

8 120.00 1.00 5 3 4.755 0.679 4.076 0.679 526.101 

9 120.00 1.00 5 3 5.491 0.785 4.707 0.785 652.113 

10 120.00 1.00 5 3 6.139 0.877 5.262 0.877 755.520 

11 120.00 1.00 5 3 2.746 0.392 2.354 0.392 330.269 

12 120.00 1.00 5 3 3.883 0.555 3.328 0.555 558.655 

13 120.00 1.00 5 3 4.755 0.679 4.076 0.679 779.409 

14 120.00 1.00 5 3 5.491 0.785 4.707 0.785 981.834 

15 120.00 1.00 5 3 6.139 0.877 5.262 0.877 1173.467 

16 240.00 1.00 3 3 6.725 0.961 5.765 0.961 321.459 
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17 240.00 1.00 3 3 8.237 1.177 7.060 1.177 434.442 

18 240.00 1.00 3 3 9.511 1.359 8.153 1.359 530.073 

19 240.00 1.00 3 3 10.634 1.519 9.115 1.519 624.753 

20 240.00 1.00 3 3 11.649 1.664 9.985 1.664 697.123 

21 240.00 1.00 3 3 6.725 0.961 5.765 0.961 600.989 

22 240.00 1.00 3 3 8.237 1.177 7.060 1.177 818.755 

23 240.00 1.00 3 3 9.511 1.359 8.153 1.359 1022.283 

24 240.00 1.00 3 3 10.634 1.519 9.115 1.519 1187.031 

25 240.00 1.00 3 3 11.649 1.664 9.985 1.664 1349.270 

26 240.00 1.00 3 3 6.725 0.961 5.765 0.961 866.543 

27 240.00 1.00 3 3 8.237 1.177 7.060 1.177 1186.360 

28 240.00 1.00 3 3 9.511 1.359 8.153 1.359 1476.631 

29 240.00 1.00 3 3 10.634 1.519 9.115 1.519 1728.484 

30 240.00 1.00 3 3 11.649 1.664 9.985 1.664 1956.441 
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APPENDIX E. DETAILS OF THE PARAMETRIC STUDY 

DESIGN FOR EVALUATING THE PERFORMANCE OF THE 

PROPOSED METHOD FOR CALCULATING THE COMPRESSIVE 

RESISTANCE OF LONGITUDINALLY STIFFENED BOX-SECTION 

MEMBERS  

 Table E-0-1 and Table E-0-2 give the cross-section dimensions and lengths of the 

various cases listed in Table 5-1 and Table 5-2 respectively. Figure E-0-1 illustrates the 

variables used in Table E-0-1 and Table E-0-2. The cross-sections for all cases are doubly 

symmetric. In Table E-0-1 and Table E-0-2, flnn  and webn  are the number of longitudinal 

stiffeners on each flange and web respectively, and L  is the length of the box column. 

B

D

tls.fln

tls.web

hls.fln

hls.web

tw.web

tf

 

Figure E-0-1   Illustration of variables used in Table E-0-1 and Table E-0-2 
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Table E-0-1   Dimensions of members listed in Table 5-1 

Case 
# 

B
(in.) 

ft  

(in.)  
. nfln . lnls fh  

(in.)  
. nls flt  

(in.) 

D  
(in.) 

webt  

(in.) 
webn  .ls webh  

(in.) 
.ls webt  

(in.) 

L  (ft.)  

1 41 1 1 4.796 0.417 59 1 2 4.796 0.417 70.71 

2 41 1 1 4.796 0.417 59 1 2 4.796 0.417 113.13 

3 41 1 1 4.796 0.417 59 1 2 4.796 0.417 155.56 

4 41 1 1 4.796 0.417 59 1 2 9.592 0.834 69.61 

5 41 1 1 4.796 0.417 59 1 2 9.592 0.834 111.37 

6 41 1 1 4.796 0.417 59 1 2 9.592 0.834 153.13 

7 41 1 1 4.796 0.417 119 1 1 8.307 0.722 75.25 

8 41 1 1 4.796 0.417 119 1 1 8.307 0.722 120.41 

9 41 1 1 4.796 0.417 119 1 1 8.307 0.722 165.56 

10 41 1 1 4.796 0.417 119 1 1 16.613 1.445 72.88 

11 41 1 1 4.796 0.417 119 1 1 16.613 1.445 116.62 

12 41 1 1 4.796 0.417 119 1 1 16.613 1.445 160.35 

13 41 1 1 4.796 0.417 179 1 2 8.307 0.722 77.16 

14 41 1 1 4.796 0.417 179 1 2 8.307 0.722 123.46 

15 41 1 1 4.796 0.417 179 1 2 8.307 0.722 169.76 

16 41 1 1 4.796 0.417 179 1 2 16.613 1.445 73.70 

17 41 1 1 4.796 0.417 179 1 2 16.613 1.445 117.92 

18 41 1 1 4.796 0.417 179 1 2 16.613 1.445 162.14 

19 61 1 2 4.796 0.417 119 1 1 8.307 0.722 109.12 

20 61 1 2 4.796 0.417 119 1 1 8.307 0.722 174.59 

21 61 1 2 4.796 0.417 119 1 1 8.307 0.722 240.07 
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22 61 1 2 4.796 0.417 119 1 1 16.613 1.445 107.23 

23 61 1 2 4.796 0.417 119 1 1 16.613 1.445 171.57 

24 61 1 2 4.796 0.417 119 1 1 16.613 1.445 235.90 

25 61 1 2 4.796 0.417 179 1 2 8.307 0.722 112.98 

26 61 1 2 4.796 0.417 179 1 2 8.307 0.722 180.76 

27 61 1 2 4.796 0.417 179 1 2 8.307 0.722 248.55 

28 61 1 2 4.796 0.417 179 1 2 16.613 1.445 109.89 

29 61 1 2 4.796 0.417 179 1 2 16.613 1.445 175.82 

30 61 1 2 4.796 0.417 179 1 2 16.613 1.445 241.75 

31 121 1 1 8.307 0.722 179 1 2 8.307 0.722 212.73 

32 121 1 1 8.307 0.722 179 1 2 8.307 0.722 340.36 

33 121 1 1 8.307 0.722 179 1 2 8.307 0.722 468.00 

34 121 1 1 8.307 0.722 179 1 2 16.613 1.445 212.29 

35 121 1 1 8.307 0.722 179 1 2 16.613 1.445 339.67 

36 121 1 1 8.307 0.722 179 1 2 16.613 1.445 467.04 

37 121 1 1 16.613 1.445 179 1 2 8.307 0.722 206.95 

38 121 1 1 16.613 1.445 179 1 2 8.307 0.722 331.12 

39 121 1 1 16.613 1.445 179 1 2 8.307 0.722 455.29 

40 121 1 1 16.613 1.445 179 1 2 16.613 1.445 207.09 

41 121 1 1 16.613 1.445 179 1 2 16.613 1.445 331.35 

42 121 1 1 16.613 1.445 179 1 2 16.613 1.445 455.60 
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Table E-0-2   Dimensions of members listed in Table 5-2 

Case 
# 

B
(in.) 

ft  

(in.)  
. nfln . lnls fh  

(in.)  
. nls flt  

(in.) 

D  
(in.) 

webt  

(in.) 
webn  .ls webh  

(in.) 
.ls webt  

(in.) 

L  (ft.)  

1 42 1 1 6.584 0.608 40 1 1 6.584 0.608 68.21 

2 42 1 1 6.584 0.608 40 1 1 6.584 0.608 109.13 

3 82 1 1 9.311 0.859 80 1 1 9.311 0.859 135.13 

4 82 1 1 9.311 0.859 80 1 1 9.311 0.859 216.21 

5 42 1 1 4.656 0.430 80 1 1 6.584 0.608 163.92 

6 42 1 1 4.656 0.430 80 1 1 13.168 1.215 160.48 

7 42 1 1 4.656 0.430 180 1 1 9.876 0.911 174.00 

8 42 1 1 4.656 0.430 180 1 1 19.752 1.823 167.38 

9 42 1 1 4.656 0.430 180 1 1 19.752 1.823 182.60 
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APPENDIX F. DETAILS OF THE PARAMETRIC STUDY 

DESIGN FOR EVALUATING THE PERFORMANCE OF THE 

PROPOSED METHOD FOR CALCULATING THE FLEXURAL 

RESISTANCE OF LONGITUDINALLY STIFFENED BOX SECTION 

MEMBERS 

 Table F-0-1 and Table F-0-2 give the cross-section dimensions and lengths of the 

various cases listed in Table 6-1. Figure 6-1 illustrates the variables used in Table F-0-1 

and Table F-0-2. In Table F-0-2, transn  is the number of equally spaced web transverse 

stiffeners, transb  is the width of the transverse stiffener, and transt  is the thickness of the 

transverse stiffener.    

Table F-0-1   Dimensions of the tension and compression flange of the box-section 
beam cases listed in Table 6-1 

Case # B  (in.) 
ftt  (in.) fct  (in.) . nls flh  (in.) . nls flt  (in.) 

1 62.00 1.90 1 8.064 0.744 

2 62.00 1.90 1 8.064 0.744 

3 62.00 1.90 1 8.064 0.744 

4 123.10 2.50 1 11.404 1.052 

5 123.10 2.50 1 11.404 1.052 

6 123.10 2.50 1 11.404 1.052 

7 61.90 3.00 1 8.064 0.744 

8 61.90 3.00 1 8.064 0.744 
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9 61.90 3.00 1 8.064 0.744 

10 122.40 4.00 1 11.404 1.052 

11 122.40 4.00 1 11.404 1.052 

12 122.40 4.00 1 11.404 1.052 

13 61.90 3.00 1 8.064 0.744 

14 61.90 3.00 1 8.064 0.744 

15 61.90 3.00 1 8.064 0.744 

16 122.30 4.00 1 11.404 1.052 

17 122.30 4.00 1 11.404 1.052 

18 122.30 4.00 1 11.404 1.052 

19 62.60 0.70 1 8.064 0.744 

20 62.60 0.70 1 8.064 0.744 

21 61.68 0.69 1 8.064 0.744 

22 61.68 0.69 1 8.064 0.744 

23 60.96 0.68 1 8.064 0.744 

24 60.96 0.68 1 8.064 0.744 

25 60.80 0.68 1 8.064 0.744 

26 60.80 0.68 1 8.064 0.744 

27 60.82 0.68 1 8.064 0.744 

28 60.82 0.68 1 8.064 0.744 

29 64.74 3.20 1 7.413 0.809 

30 64.74 3.20 1 7.413 0.809 

31 61.74 3.10 1 7.413 0.809 

32 61.74 3.10 1 7.413 0.809 
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33 61.94 3.10 1 7.413 0.809 

34 61.94 3.10 1 7.413 0.809 

35 62.74 0.70 1 7.413 0.809 

36 62.74 0.70 1 7.413 0.809 

37 61.66 0.69 1 7.413 0.809 

38 61.66 0.69 1 7.413 0.809 

39 61.68 0.70 1 7.413 0.809 

40 61.68 0.70 1 7.413 0.809 

41 62.00 0.70 1 7.413 0.809 

42 62.00 0.70 1 7.413 0.809 

 

Table F-0-2   Dimensions of the web, and length of the box-section beam cases listed 
in Table 6-1 

Case 
# 

D  
(in.) 

wt  

(in.) 
sd  

(in.) 
.ls webh

(in.) 
.ls webt  

(in.) 
transn   transb  

(in.) 
transt  

(in.) 

L  (in.) 

1 250 1.00 50.95 20.049 1.850 2 10.40 0.65 1178.55 

2 250 1.00 50.95 20.049 1.850 6 10.40 0.65 3291.27 

3 250 1.00 50.95 20.049 1.850 10 10.40 0.65 5404.00 

4 345 1.55 76.25 21.675 2.000 8 13.60 0.85 3764.47 

5 345 1.55 76.25 21.675 2.000 16 13.60 0.85 7057.24 

6 345 1.55 76.25 21.675 2.000 24 13.60 0.85 10350.00 

7 285 0.95 72.75 20.591 1.900 1 11.52 0.72 1061.97 

8 285 0.95 72.75 20.591 1.900 5 11.52 0.72 3184.96 

9 285 0.95 72.75 20.591 1.900 9 11.52 0.72 5307.95 
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10 359 1.20 107.00 21.675 2.000 6 14.08 0.88 3470.42 

11 359 1.20 107.00 21.675 2.000 11 14.08 0.88 6867.33 

12 359 1.20 107.00 21.675 2.000 17 14.08 0.88 10264.24 

13 285 0.95 126.50 20.591 1.900 2 11.52 0.72 1161.22 

14 285 0.95 126.50 20.591 1.900 5 11.52 0.72 3234.59 

15 285 0.95 126.50 20.591 1.900 9 11.52 0.72 5307.95 

16 344 1.15 173.00 21.675 2.000 6 13.60 0.85 3779.47 

17 344 1.15 173.00 21.675 2.000 11 13.60 0.85 6972.25 

18 344 1.15 173.00 21.675 2.000 17 13.60 0.85 10165.02 

19 126 1.30 - - - - - - 2066.19 

20 126 1.30 - - - - - - 3780.00 

21 126 0.84 - - - - - - 1798.80 

22 126 0.84 - - - - - - 3780.00 

23 124 0.48 21.84 9.645 0.890 5 6.24 0.39 1316.12 

24 124 0.48 21.84 9.645 0.890 15 6.24 0.39 3720.00 

25 120 0.40 15.84 8.562 0.790 4 6.08 0.38 1198.29 

26 120 0.40 15.84 8.562 0.790 15 6.08 0.38 3600.00 

27 123 0.41 42.84 8.887 0.820 5 6.24 0.39 1291.09 

28 123 0.41 42.84 8.887 0.820 15 6.24 0.39 3690.00 

29 194 2.37 - - - - - - 1344.49 

30 194 2.37 - - - - - - 5749.69 

31 260 0.87 74.55 20.591 1.900 1 10.72 0.67 810.28 

32 260 0.87 74.55 20.591 1.900 9 10.72 0.67 5193.88 

33 290 0.97 127.55 20.591 1.900 1 11.68 0.73 852.00 
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34 290 0.97 127.55 20.591 1.900 9 11.68 0.73 5319.40 

35 126 1.37 - - - - - - 1581.18 

36 126 1.37 - - - - - - 3780.00 

37 124 0.83 - - - - - - 1383.10 

38 124 0.83 - - - - - - 3720.00 

39 252 0.84 57.35 20.591 1.900 1 10.40 0.65 896.23 

40 252 0.84 57.35 20.591 1.900 10 10.40 0.65 5470.27 

41 300 1.00 110.35 20.916 1.930 1 12.00 0.75 935.09 

42 300 1.00 110.35 20.916 1.930 9 12.00 0.75 5621.17 
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APPENDIX G. SAMPLE CALCULATIONS 

 This Appendix provides sample calculations for calculating the following: 

1) Ultimate compressive resistance of longitudinally stiffened plates 

2) Flexural resistance of non-longitudinally stiffened welded box-section members 

3) Axial compressive resistance of welded box-section members 

4) Flexural resistance of longitudinally stiffened welded box-section members 



Compressive resistance of longitudinally stiffened plates

Group 1 Case # 6 (See Table D-0-1)

 Proposed method

b 90in:= t 1.5in:= nlong 2:= ntrans 0:= Ltotal 828.883in:=

E 29000ksi:= Fy 50ksi:= hw_T 7.194in:= tw_T 0.626in:=

 Pns 

w
b

nlong 1+
30 in=:=

c1

hw_T tw_T
t

2

hw_T

2
+


















w t( ) hw_T tw_T( )+
0.4 in=:=

c2
t

2

hw_T

2
+









c1- 3.95 in=:=

As hw_T tw_T 4.5 in2=:=

Ix

tw_T hw_T
3

12









tw_T hw_T c2( )2




+ 89.742 in

4
=:=

Ip
t
3

12 1 0.32-( )
0.31 in

3
=:=

Is w Ip( ) w t c1( )2




+ Ix+ 106.052 in

4
=:=

kp π4 w
E Ip

b4
 0.4 ksi=:=
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Lc

E Is π4

kp











0.25

165.51 in=:= a
Ltotal

ntrans 1+
828.88 in=:=

L min Lc a, ( ) 165.51 in=:=

PesF

π2
E Is

L2
kp

L
2

π2
+ 2216.09191 kip=:=

λ
w

t
20=:= λr 1.49

E

Fy
 35.88=:=

Fel 1.31
λr

λ










2

Fy 276.22 ksi=:=

we if λ λr

Fy

Fy
 w, w 1 0.18

Fel

Fy
-









Fel

Fy










, 








30 in=:=

Aes As we t+ 49.5 in
2

=:= Ags As w t+ 49.5 in
2

=:=

Pyes Fy Aes 2475.1722 kip=:= Pys Fy Ags 2475.1722 kip=:=

PnsF if
Pys

PesF
2.25 0.658

Pys

PesF















 Pyes, 0.877

PesF

Ags
 Aes, 











1550.8877 kip=:=

G
E

2 1 0.3+( )
11153.85 ksi=:=

PesT
π2

1 0.3-( ) b2

G w t
3



3
 655.2622 kip=:=

Pns min PnsF 0.15 PesT+ Pyes, ( ) 1649.177 kip=:=
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 PnR 

AgR
w

2
t 22.5 in2=:= PyeR Fy

we

2
 t 1125 kip=:=

PnR min 1
Pns

Pyes
-









Fy

Pns

Aes
+









0.45 AgR









Pns

Pyes









PyeR+ PyeR, 








1031 kip=:=

Pn.plate nlong Pns 2PnR+ 5360.5129 kip=:=
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 AISI

b 90in:= t 1.5in:= nlong 2:= ntrans 0:= Ltotal 828.8829in:=

E 29000ksi:= Fy 50ksi:= hw_T 7.193747in:= tw_T 0.625543in:=

bp
b

nlong 1+
30 in=:=

kloc 4
b

bp









2

 36=:=

Isp

tw_T hw_T
3



12









tw_T hw_T
t

2

hw_T

2
+









2











+









104.435 in4=:=

γ
10.92 Isp

b t3
3.755=:=

βtemp 1 γ nlong 1+( )+ 

1

4 1.871=:=

Lbr

Ltotal

ntrans 1+
828.883 in=:=

β if Lbr βtemp b<
Lbr

b
, βtemp, 









1.871=:=

As tw_T hw_T 4.5 in
2

=:=

δ
As

b t
0.033=:=
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kd

1 β2+( )2
γ 1 nlong+( )+

β2
1 δ 1 nlong+( )+ 

8.185=:=

Assuming R 2:=

k min R kd kloc, ( ) 16.371=:=

FcrL k
π2

E

12 1 0.32-( )


t

b








2

 119.19 ksi=:=

λ
Fy

FcrL
0.648=:= Assuming f=Fy

ρ if λ 0.673 1, 

1
0.22

λ
-








λ
, 











1=:=

Ag b t( ) nlong hw_T tw_T( )+ 144 in2=:=

be ρ
Ag

t









 96 in=:=

Pn be t Fy 7199.9998 kip=:=
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 Eurocode

b 90in:= t 1.5in:= nlong 2:= ntrans 0:= Ltotal 828.8829in:=

E 29000ksi:= Fy 50ksi:=

Flat stiffener or T longitudinal stiffener

hw_T 7.193747in:=

tw_T 0.625543in:=

bf_T 0in:=

tf_T 0in:=

Type of stiffener Type 1:= 1 if Flat and 2 if T-Stiffener

 A)  Ultimate compressive strength of a stiffened plate

Effective area of a stiffener (Asl_eff)

ψ 1:=

 For flat stiffeners

Longitudinal stiffener web

kσ_flat_web 0.43:= λp_flat_web

hw_T

tw_T

28.4
235MPa

Fy
 kσ_flat_web

0.75=:=

ρflat_web if λp_flat_web 0.748 1, min
λp_flat_web 0.188-

λp_flat_web
2

1, 










, 










1=:=

Asl_eff_flat nlong ρflat_web hw_T tw_T 9 in
2

=:=

Asl_eff Asl_eff_flat 9 in
2

=:=
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Effective width of subpanel (bc_loc, ρ_loc)

bc_loc
b

nlong 1+
30 in=:=

kσ_bc_loc 4:= λp_bc_loc

bc_loc

t

28.4
235MPa

Fy
 kσ_bc_loc

0.43=:=

ρloc if λp_bc_loc 0.5 0.085 0.055 ψ-+ 1, min
λp_bc_loc 0.055 3 ψ+( )-

λp_bc_loc
2

1, 










, 










1=:=

Reduction for overall buckling (ρ_c)

a) Plate type behavior (σ_crp, ρ)

Ltrans

Ltotal

ntrans 1+
828.88 in=:=

 Column on elastic foundation 

 For one longitudinal stiffener

b1_onestiff
b

nlong 1+
30 in=:= b2_onestiff

b

nlong 1+
30 in=:=

Flange of the column flcol
b

nlong 1+
30 in=:=

Centroid of the column relative to the top of the plate

ccol

flcol t
t

2









hw_T tw_T t
hw_T

2
+


















+ bf_T tf_T t hw_T+
tf_T

2
+


















+

flcol t( ) hw_T tw_T( )+ bf_T tf_T( )+
1.15 in=:=
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Isl1_onestiff

flcol t
3



12
flcol t

t

2
ccol-








2

+









tw_T hw_T
3



12
tw_T hw_T t

hw_T

2
+ ccol-









2

+









+

...

bf_T tf_T
3



12
bf_T tf_T t hw_T+

tf_T

2
+ ccol-









2

+









+

...

105.14 in
4

=:=

Asl1_onestiff flcol t( ) tw_T hw_T( )+ tf_T bf_T( )+ 49.5 in
2

=:=

Bstar_onestiff b 90 in=:=

ac_onestiff 4.33

4
Isl1_onestiff b1_onestiff

2
 b2_onestiff

2


t
3
Bstar_onestiff

 99.64 in=:=

temp_var_1
1.05 E Isl1_onestiff t

3
 Bstar_onestiff

Asl1_onestiff b1_onestiff b2_onestiff
122.15ksi=:=

temp_var_2
π2

E Isl1_onestiff

Asl1_onestiff Ltrans
2



E t
3

 Bstar_onestiff Ltrans
2



4 π2
 1 0.3

2
-( ) Asl1_onestiff b1_onestiff

2
 b2_onestiff

2


+

... 4202.43ksi=:=

σcr_sl_onestiff if Ltrans ac_onestiff temp_var_1, temp_var_2, ( ) 122.15ksi=:=

 For two longitudinal stiffeners

 Case 1

b1_twostiff_case1
b

nlong 1+
30 in=:= b2_twostiff_case1

b

nlong 1+
30 in=:=

Isl1_twostiff_case1 Isl1_onestiff 105.14 in
4

=:=
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Asl1_twostiff_case1 Asl1_onestiff 49.5 in
2

=:=

Bstar_twostiff_case1
2 b

3
60 in=:=

ac_twostiff_case1 4.33

4
Isl1_twostiff_case1 b1_twostiff_case1

2
 b2_twostiff_case1

2


t
3
Bstar_twostiff_case1

 110 in=:=

temp_var_3
1.05 E Isl1_twostiff_case1 t

3
 Bstar_twostiff_case1

Asl1_twostiff_case1 b1_twostiff_case1 b2_twostiff_case1
99.73ksi=:=

temp_var_4
π2

E Isl1_twostiff_case1

Asl1_twostiff_case1 Ltrans
2



E t
3

 Bstar_twostiff_case1 Ltrans
2



4 π2
 1 0.3

2
-( ) Asl1_twostiff_case1 b1_twostiff_case1

2
 b2_twostiff_case1

2


+

...:=

σcr_sl_twostiff_case1 if Ltrans ac_twostiff_case1 temp_var_3, temp_var_4, ( ) 99.73ksi=:=

 Case 2

For uniformly spaced stiffeners case 1 and case 2 are the same

σcr_sl_twostiff_case2 σcr_sl_twostiff_case1 99.73ksi=:=

 Case 3

b1_twostiff_case3
b

2
45 in=:= b2_twostiff_case3

b

2
45 in=:=

Isl1_twostiff_case3 2 Isl1_twostiff_case1 210.29 in
4

=:=

Asl1_twostiff_case3 2 Asl1_twostiff_case1 99 in
2

=:=

Bstar_twostiff_case3 b 90 in=:=
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ac_twostiff_case3 4.33

4
Isl1_twostiff_case3 b1_twostiff_case3

2
 b2_twostiff_case3

2


t
3
Bstar_twostiff_case3

 178 in=:=

temp_var_5
1.05 E Isl1_twostiff_case3 t

3
 Bstar_twostiff_case3

Asl1_twostiff_case3 b1_twostiff_case3 b2_twostiff_case3
38.39ksi=:=

temp_var_6
π2

E Isl1_twostiff_case3

Asl1_twostiff_case3 Ltrans
2



E t
3

 Bstar_twostiff_case3 Ltrans
2



4 π2
 1 0.3

2
-( ) Asl1_twostiff_case3 b1_twostiff_case3

2
 b2_twostiff_case3

2


+

...:=

σcr_sl_twostiff_case3 if Ltrans ac_twostiff_case3 temp_var_5, temp_var_6, ( ) 38.39ksi=:=

σcr_sl_twostiff min σcr_sl_twostiff_case1 σcr_sl_twostiff_case2, σcr_sl_twostiff_case3, ( ) 38ksi=:=

σcr_p if nlong 1= σcr_sl_onestiff, σcr_sl_twostiff, ( ) 38.39ksi=:=

Ac nlong bc_loc t( ) nlong hw_T tw_T( ) bf_T tf_T( )+  + 99 in
2

=:=

Ac_eff_loc nlong ρloc bc_loc t( ) Asl_eff( )+ 99 in
2

=:=

βAc_platelike
Ac_eff_loc

Ac
1=:=

λp
βAc_platelike Fy

σcr_p
1.14=:=

ρ if λp 0.5 0.085 0.055 ψ-+ 1, min
λp 0.055 3 ψ+( )-

λp
2

1, 










, 










0.71=:=
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b) Column type behavior (σ_crc, χc)

Isl1 Isl1_onestiff 105.14 in
4

=:= Asl1 Asl1_onestiff 49.5 in
2

=:=

σcr_c
π2

E Isl1

Asl1 Ltrans
2



0.88ksi=:=

Asl1_eff ρloc flcol t( )
Asl_eff

nlong
+ 49.5 in

2
=:=

βAc_columnlike

Asl1_eff

Asl1
1=:=

λc
βAc_columnlike Fy

σcr_c
7.52=:=

e1

ρloc flcol t
t

2









hw_T tw_T t
hw_T

2
+


















+

ρloc flcol t( ) hw_T tw_T( )+

t

2
- 0.4 in=:=

e2 t
hw_T

2
+









ρloc flcol t
t

2










hw_T tw_T t
hw_T

2
+


















+

ρloc flcol t( ) hw_T tw_T( )+
-+

... 3.95 in=:=

αe 0.49
0.09

Isl1

Asl1

max e1 e2, ( )

+ 0.73=:= ϕ 0.5 1 αe λc 0.2-( )+ λc
2

+



 31.44=:=

χc min 1
1

ϕ ϕ2 λc
2

-+

, 










0.02=:=
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c) Interpolation (σ_crc, χc)

ξ max 0 min
σcr_p
σcr_c

1- 1, 








, 








1=:=

ρc ρ χc-( ) ξ 2 ξ-( ) χc+ 0.71=:=

Final 

Ac_eff_loc Asl_eff nlong ρloc bc_loc t( )+ 99 in
2

=:=

Ac_eff ρc Ac_eff_loc( ) ρloc bc_loc t( )+ 115.02 in
2

=:=

Pn.plate Ac_eff Fy 5751.18kip=:=
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 AASHTO 

b 90in:= t 1.5in:= nlong 2:= ntrans 0:= Ltotal 828.8829in:=

E 29000ksi:= Fy 50ksi:=

Flat stiffener or T longitudinal stiffener

hw_T 7.193747in:=

tw_T 0.625543in:=

 Ultimate compressive strength of a stiffened plate

Is

tw_T hw_T
3( )

12
tw_T hw_T

hw_T

2









2

+ 77.62 in
4

=:=

w
b

nlong 1+
30in=:=

keqn if nlong 1=
8 Is

w t
3











1

3

, 
0.894 Is

w t
3











1

3

, 













0.88=:=

k max 1 min keqn 4, ( ), ( ) 1=:= Fyr 1 0.3-( ) Fy 35ksi=:=

λf
w

t
20=:=

λp 0.57
E k

Fy
13.73=:= λr 0.95

E k

Fyr
27.35=:=
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Fcb_1 Fy:=

Fcb_2 Fy 1 1
1 0.3-

1
-









λf λp-

λr λp-









-








:=

Fcb_3
0.9 E k

λf
2

:=

Fcb if λf λp Fcb_1, if λf λr Fcb_2, Fcb_3, ( ), ( ):=

Fnc Fcb 43.09ksi=:=

Pn Fnc b t( ) nlong hw_T tw_T( ) +  6205.1kip=:=
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Flexural resistance of non-longitudinally stiffened box-section members

Cross-section # 34 and length= Lmax (See Table B-0-1)

 Proposed method

Fyf 50:= Fyw 50:= bfc 53:= tfc 0.5:= bft bfc:= tft 0.5:= D 79.5:=

tw 1.5:= Lb 2385:=

 

Flange effective width and Rf

λpf 1.09
29000

Fyf
26.251=:= λrf 1.7

29000

Fyf
40.941=:=

bfi bfc 2 tw- 50=:= λf

bfi

tfc
100=:=

Rf if λf λpf 1, if λf λrf min 1 1 0.15
λf λpf-

λrf λpf-









-, 








, 0.85, 








, 








0.85=:=
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λr 1.09
29000

Fyf
26.251=:= Fel 1.74

λr

λf










2

Fyf 10.432=:=

bfi_eff if λf λr

Fyf

Fyf
 bfi, bfi 1 0.22

Fel

Fyf
-









Fel

Fyf










0.075-








, 








16.793=:=

Effective section properties

Dce

bfi_eff tfc
tfc

2










2 tw tfc
tfc

2










+

2 D tw tfc
D

2
+


















bft tft tfc D+
tft

2
+


















+








+

...

bfi_eff tfc( ) 2 tw tfc( )+ 2 D tw( )+ bft tft( )+

















tfc- 42.166=:=

Dcpe

2 D tw Fyw( ) bft tft Fyf( )+ bfi_eff tfc Fyf( )- 2 tw tfc Fyf( )-

4 tw Fyw
42.517=:=

Ixe

bfi_eff tfc
3



12
bfi_eff tfc Dce

tfc

2
+









2

+








2
tw tfc

3


12
tw tfc Dce

tfc

2
+









2

+










2
tw D

3


12
D tw Dce

D

2
-









2

+










bft tft
3



12
bft tft D Dce-

tft

2
+









2

+








+

...














+

...




















+

... 182245.718=:=

Sxce

Ixe

Dce tfc+( )
4271.455=:=

Myce Fyf Sxce 213572.775=:=
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Mpe bfi_eff tfc Fyf Dcpe

tfc

2
+


















2 tw tfc Fyf Dcpe

tfc

2
+


















+

2 Dcpe tw Fyw
Dcpe

2












2 D Dcpe-( ) tw Fyw
D Dcpe-

2




















bft tft Fyf D Dcpe-
tft

2
+


















+

...












+

...
















+

... 308653.878=:=

Gross section properties

Dc

bfi tfc
tfc

2










2 tw tfc
tfc

2










+

2 D tw tfc
D

2
+
















bft tft tfc D+
tft

2
+


















+








+

...

bfi tfc( ) 2 tw tfc( )+ 2 D tw( )+ bft tft( )+

















tfc- 39.75=:=

Dcp

2 D tw Fyw( ) bft tft Fyf( )+ bfi tfc Fyf( )- 2 tw tfc Fyf( )-

4 tw Fyw
39.75=:=

Ix
bfi tfc

3

12
bfi tfc Dc

tfc

2
+









2

+








2
tw tfc

3

12
tw tfc Dc

tfc

2
+









2

+










2
tw D3

12
D tw Dc

D

2
-








2

+










bft tft
3

12
bft tft D Dc-

tft

2
+









2

+








+

...














+

...




















+

... 210416.073=:=

Sxc

Ix

Dc tfc+( )
5227.729=:=
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Myc Fyf Sxc 261386.426=:=

Mp bfi tfc Fyf Dcp

tfc

2
+


















2 tw tfc Fyf Dcp

tfc

2
+


















+

2 Dcp tw Fyw
Dcp

2












2 D Dcp-( ) tw Fyw
D Dcp-

2




















bft tft Fyf D Dcp-
tft

2
+


















+

...












+

...
















+

... 343009.375=:=

Iy 2
D tw

3


12
D tw

bfc tw-

2









2

+









tfc bfc

3


12









+
tft bft

3


12









+ 170591.542=:=

A bfc tfc( ) 2 D tw( )+ bft tft( )+ 291.5=:=

ry

Iy

A
24.191=:=

Rh 

Rh 1:= Since this is a homogeneous section

Rb 

λw

2 Dce

tw
56.221=:=

λpw 3.1
Dce

Dcpe










29000

Fyf
 74.041=:= λrw 4.6

29000

Fyf
 110.783=:=

253



awce

2 Dce tw

bfi_eff tfc 2 tfc tw+( )
2

25.564=:=

Rb if λw λrw 1, min 1 1
awce

1200 300 awce+









2Dce

tw
λrw-









-, 








, 








1=:=

Rpc 

Inelastic lateral torsional buckling 

bm bfc tw- 51.5=:= hm D 0.5 tfc+ 0.5 tft+ 80=:= Am bm hm 4120=:=

hmc Dc

tfc

2
+ 40=:= hmt D Dc-

tft

2
+ 40=:=

Iym

bm
3 tfc tft+( )

12

tw hm bm
2

2
+ 170517.573=:=

J
4 Am

2

bm

tfc









bm

tft









+
hm

tw









+
hm

tw









+

217156.503=:=

G 0.385 29000 11165=:= Fyr 0.5 Fyf 25=:=

Lp

0.1 29000 ry J A

Myce
2613.469=:=
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Lr

0.6 29000 ry J A

Fyr Sxce
31361.622=:=

Sxce

Ixe

Dce tfc+( )
4271.455=:= Sxte

Ixe

D Dce- tft+( )
4816.977=:=

Since Sxce < Sxte, compression flange of the effective cross-section yields first

MCS Rf Rb Rpc Myce 262355.796=:=

Mn if Lb Lp MCS, MCS MCS Fyr Sxce-( )
Lb Lp-

Lr Lp-









-








, 








262355.796=:=
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 AASHTO

Fyf 50:= Fyw 50:= bfc 53:= tfc 0.5:= bft bfc:= tft 0.5:= D 79.5:=

tw 1.5:= Lb 2385:=

AASHTO equation is only applicable to homogeneous doubly symmetric box-section
members

bfi bfc 2 tw- 50=:=

Dc

bfi tfc
tfc

2










2 tw tfc
tfc

2










+

2 D tw tfc
D

2
+
















bft tft tfc D+
tft

2
+


















+








+

...

bfi tfc( ) 2 tw tfc( )+ 2 D tw( )+ bft tft( )+















tfc- 39.75=:=

Ix
bfi tfc

3


12
bfi tfc Dc

tfc

2
+









2

+








2
tw tfc

3


12
tw tfc Dc

tfc

2
+









2

+










2
tw D

3


12
D tw Dc

D

2
-








2

+










bft tft
3



12
bft tft D Dc-

tft

2
+









2

+








+

...














+

...


















+

... 210416.073=:=

S
Ix

Dc tfc+( )
5227.729=:= or S

Ix

D Dc- tft+( )
5227.729=:=

Iy 2
D tw

3


12
D tw

bfc tw-

2









2

+









tfc bfc

3


12









+
tft bft

3


12









+ 170591.542=:=

bm bfc tw- 51.5=:=
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hm D 0.5 tfc+ 0.5 tft+ 80=:=

A bm hm 4120=:=

Mn Fyf S 1
0.064 Fyf S Lb

A 29000

bfc

tfc
2

D

tw
+

bft

tft
+

Iy
-











 257617.878=:=
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Axial compressive resistance of longitudinally stiffened box-section members 

Main study Case # 9 (See Table E-0-1)

 Proposed method

B 41in:= tf 1in:= nfln 1:= hls_fln 4.796in:=

tls_fln 0.417in:= D 119in:= tweb 1in:= nweb 1:=

hls_web 8.307in:= tls_web 0.722in:= L 165.56 12( )in:=

K 1:= E 29000ksi:=

B

D

tls.fln

tls.web

hls.fln

hls.web

tw.web

tf

Pn_flange 1948.24kip:= Obtained using the proposed method for calculating the 
ultimate compressive resistance of longitudinally stiffened
platesPn_web 2335.231kip:=
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Aeff 4 tweb tf( ) 2
Pn_flange

50ksi










+ 2
Pn_web

50ksi










+ 175.34 in2=:=

Temp_var1 2
tf B

3


12









nfln

hls_fln tls_fln
3



12









+









:=

Temp_var2
D tweb

3

12









D tweb
B

2

tweb

2
-









2











+:=

Temp_var3 nweb

tls_web hls_web
3

12









hls_web tls_web
B

2
tweb-

hls_web

2
-









2











+

...















:=

Iy Temp_var1 2 Temp_var2 Temp_var3+( ) + 109600.78 in4=:=

Ag 2 B tf( ) nfln hls_fln tls_fln( )+ D tweb( )+

nweb hls_web tls_web( )+

...







 336 in2=:=

rs

Iy

Ag
18.06 in=:=

Pos 50ksi 4 tweb tf( ) 2
Pn_flange

50ksi










+ 2
Pn_web

50ksi










+








 8766.94 kip=:=
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Pe
π2 E

K L

rs









2
Ag 7947.64 kip=:=

Fcr if
Pos

Pe
2.25 0.658

Pos

Pe















 50, 

0.877 Pe

Pos

50









, 















31.51=:=

λr 1.09
E

50ksi
 26.25=:=

r1 max 0 min 0.5

K L

rs









50-

90
 0.5, 











, 











0.33=:=

r2 max 0 min

D

nweb 1+








tweb
λr-

90 λr-
1, 















, 















0.52=:=

χ 1 r1 r2- 0.83=:=

Pn χ Fcr Aeff 4564.47 in2=:=
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Flexural resistance of longitudinally stiffened box-section members 

Case # 19 (See Table F-0-1 and F-0-2)

 Proposed method

Top flange

Pn_flange 2778.26kip:= Ultimate compressive strength of the stiffened flange plate 
calculated using the proposed method.

c is the distance of the centroid of the gross area of the flange plate and its
longitudinal stiffeners from the top of the web plates.. It is very small...
approximately equal to zero 

c 0in:=

tf_TF 1in:=

Web dimensions D 126in:= tw 1.3in:=

Bottom flange dimensions B 62.6in:= tf_BF 0.7in:=

Yield strength Fyf 50ksi:=

As mentioned in Table 6-1, unbraced length = Lp. Therefore, Mn = Cross-section flexural resistance

B

D

tls.fln

tls.web

hls.fln hls.web

tw

tfc

tft

ds
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Fyf

Fyf

Aeff.compflangec

Aeff_compflange

Pn_flange

Fyf
2 tw tf_TF+ 58.17 in2=:=

s1 Fyf:=

F1 s1( ) Aeff_compflange( ):=

F2 2
1

2
Fyf( ) Dce tw( )








:= Dce

F3 2
1

2
Fyf( ) Dce tw( )









:= Dce

F4 2 Fyf( ) D 2 Dce-( ) tw  := Dce

F5 Fyf( ) B tf_BF( ):=

F1 F2+ F3- F4- F5- 0= solve Dce, 60.241 in

Dce 60.241in:=

if D 2 Dce> "OK", "NOT OK", ( ) "OK"=
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s1 Fyf 50 ksi=:=

F1 s1( ) Aeff_compflange( ) 2908.26 kip=:=

F2 2
1

2
Fyf( ) Dce tw( )








3915.66 kip=:=

F3 2
1

2
Fyf( ) Dce tw( )









3915.66 kip=:=

F4 2 Fyf( ) D 2 Dce-( ) tw   717.34 kip=:=

F5 Fyf( ) B tf_BF( ) 2191 kip=:=

Mn F1 Dce( ) F2
2

3
Dce
















+

F3
2

3
Dce
















F4 Dce

D 2 Dce-

2
+


















F5 D Dce-
tf_BF

2
+


















+

...












+

...

















+

... 679745.2 in·kip=:=

263



 236

APPENDIX H. GLOSSARY 

 1c , 2c , 3c  are effective width imperfection adjustment factors 

 r  is the element width-to-thickness or slenderness ratio limit for a plate subjected 

to uniform axial compression 

 elF  is the elastic local buckling stress 

 eb  is the effective width of a non-longitudinally stiffened plate with gross width b   

 ycF  yield strength of the compression flange 

 ytF  yield strength of the tension flange 

 w  is the web slenderness 

 pw  is the compact web slenderness limit 

 rw  is the noncompact web slenderness limit 

 ceD  is the distance of the elastic neutral axis from the inside surface of the 

compression flange in the effective cross-section 

 cpeD  is the distance of the plastic neutral axis from the inside surface of the 

compression flange in the effective cross-section 

 pcR  is the web plastification factor 

 bR  is the web load-shedding factor 

 hR  is the hybrid factor 

 xceS  is the elastic section modulus of the effective cross-section about the axis of 

bending to the compression flange 
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 xteS  is the elastic section modulus of the effective cross-section about the axis of 

bending to the tension flange 

 peM  is the plastic moment capacity of the effective cross-section 

 f  is the compression flange slenderness 

 pf  is the compact flange slenderness limit 

 rf  is the noncompact flange slenderness limit 

 fR  is the compression flange slenderness factor 

 csM  is the cross-section flexural resistance 

 Lb is the unbraced length for lateral torsional buckling 

 Lmax is the maximum practical unbraced length for lateral torsional buckling 

 pL  is the limiting unbraced length to achieve the cross-section flexural resistance 

under uniform moment 

 Lr is the limiting unbraced length for calculation of the lateral torsional buckling 

resistance 

 Fyr is the compression flange stress at the onset of nominal yielding within the 

cross-section 

 Cb is the moment gradient modifier  

 J  is the St. Venant torsional constant 

 x is the mono-symmetry parameter of the gross cross-section 

 oy  is the distance between the shear center and the centroid of the gross cross-

section 

 E is the modulus of elasticity for steel  
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 G is the shear modulus of elasticity for steel  

 Ix is the moment of inertia about the major principal axis of the gross cross-section 

 ry is the radius of gyration about the minor axis 

   is the transverse displacement of the plate 

 xD  flexural stiffness of the longitudinally stiffened plate for bending about the y 

axis 

 yD  flexural stiffness of the longitudinally stiffened plate for bending about the x 

axis 

 H  torsional stiffness of the longitudinally stiffened plate 

 xI  is taken as the moment of inertia of an individual longitudinal stiffener about an 

axis parallel to the face of the longitudinally stiffened plate element and passing 

through the centroid of the stiffener strut 

 1c  is the distance between the centroid of the longitudinally stiffened plate element 

and the centroid of the stiffener strut 

 xP is the buckling load of the longitudinally stiffened plate 

   is the buckling length, taken as the smaller of the transverse stiffener spacing, 

and the characteristic buckling length 

 a  is the transverse stiffener spacing 

 c  is the characteristic buckling length 

 esP  is the buckling load of a stiffener strut 

 esFP  is the elastic flexural buckling resistance of an individual stiffener strut 
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 esTP  is the plate torsional stiffness contribution to the elastic buckling resistance of 

an individual stiffener strut 

 pk  is the plate transverse stiffness coefficient 

 nspP  is the nominal compressive resistance of a longitudinally stiffened plate 

subjected to uniform axial compression                

 nsP  is the nominal compressive resistance of an individual stiffener strut composed 

of the stiffener plus the tributary width of the longitudinally stiffened plate 

 nsFP  is the nominal flexural buckling resistance of an individual stiffener strut 

 yesP  is the effective yield load of an individual stiffener strut 

 nRP  is the compressive resistance provided by the half-width of a subpanel adjacent 

to a transversely-restrained longitudinal edge of the longitudinally stiffened plate 

 yeRP  is the effective yield load of the half-width of a subpanel adjacent to a 

transversely-restrained longitudinal edge of the longitudinally stiffened plate 

 ysP  is the yield load of an individual stiffener strut 

 esA  is the effective area of an individual stiffener strut 

 gsA  is the gross area of an individual stiffener strut 

 sA  is the gross area of an individual longitudinal stiffener, excluding the tributary 

width of the longitudinally stiffened plate 

 yspF  is the specified minimum specified yield strength of the longitudinally 

stiffened plate 
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 ew  is the effective width of the plate between the longitudinal stiffeners or between 

a longitudinal stiffener and the transversely-restrained longitudinal edge of the 

longitudinally stiffened plate, as applicable 

 Js is the St. Venant torsional constant of the longitudinal stiffener alone, not 

including the contribution from the stiffened plate 

 Ips is the polar moment of inertia of the longitudinal stiffener alone about the 

attached edge 

 .cr torF  is the elastic torsional buckling stress of the stiffener for buckling about the 

edge attached to the plate 

 K  is the effective length factor 

 sr  is the radius of gyration about the axis normal to the plane of buckling 

 Ac  is the  gross cross-sectional area of the corner pieces of a box-section 

 nlsp  is the number of non-longitudinally stiffened plates 

 lsp  is the number of longitudinally stiffened plates 

   is the global buckling-local buckling interaction reduction factor 

 max  is the maximum slenderness of a subpanel (between longitudinal stiffeners or 

between a longitudinal stiffener and a corner) on the flange plate 

 osP  is the yield load of a box-section 

 eP  is the member elastic buckling load 

 sd  is the distance from the centerline of the closest web longitudinal stiffener to the 

inner surface of the compression-flange element 

 nM  is the nominal flexural resistance of a box-section member 
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 cflnn  is the number of longitudinal stiffeners on the compression flange  

 webn  are the number of longitudinal stiffeners on each of the webs 
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