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Abstract

Linear Discriminant Analysis (LDA) is a dimension reduction method which finds

an optimal linear transformation that maximizes the class separability. However, in un-

dersampled problems where the number of data samples is smaller than the dimension

of data space, it is difficult to apply the LDA due to the singularity of scatter matrices

caused by high dimensionality. In order to make the LDA applicable, several general-

izations of the LDA have been proposed recently. In this paper, we present theoretical

and algorithmic relationships among several generalized LDA algorithms and com-

pare their computational complexities and performances in text classification and face
�
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recognition. Towards a practical dimension reduction method for high dimensional

data, an efficient algorithm is proposed, which reduces the computational complexity

greatly while achieving competitive prediction accuracies. We also present nonlinear

extensions of these LDA algorithms based on kernel methods. It is shown that a gen-

eralized eigenvalue problem can be formulated in the kernel-based feature space, and

generalized LDA algorithms are applied to solve the generalized eigenvalue problem,

resulting in nonlinear discriminant analysis. Performances of these linear and nonlin-

ear discriminant analysis algorithms are compared extensively.

Keywords: Dimension reduction, Feature extraction, Generalized Linear Discrimi-

nant Analysis, Kernel methods, Nonlinear Discriminant Analysis, Undersampled prob-

lems.

1 Introduction

Linear Discriminant Analysis (LDA) seeks an optimal linear transformation by which the

original data is transformed to a much lower dimensional space. The goal of LDA is to

find a linear transformation that maximizes class separability in the reduced dimensional

space. Hence the criteria for dimension reduction in LDA are formulated to maximize the

between-class scatter and minimize the within-class scatter. The scatters are measured by

using scatter matrices such as the between-class scatter matrix (
���

), within-class scatter

matrix (
���

) and total scatter matrix (
���

). Let us denote a data set � as

���
	���������������������
	���������������������! "�$#&%('*) � � (1)

where a collection of data items in the class +-,/.10�+20�354 is represented as a block matrix

��67#8% '9) ��: and ;<6 is the index set of data items in the class + . Each class + has =$6 elements

and the total number of data is =>�@?  6BA� =�6 . The between-class scatter matrix
�$�

, within-
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class scatter matrix
���

and total scatter matrix
���

are defined as

��� �
 �
6BA� =�6 ,���6���� 4 ,���6���� 4��7� ��� �

 �
6BA�

�
�
	�� : , � � ����6 4 , � � ���6 4��7�

��� �
��
� A� , � � ��� 4 , � � ��� 4��

where ��6 � � : ? �
	�� : � � and � � � ? �� A� � � are class centroids and the global centroid,

respectively.

The optimal dimension reducing transformation � � # %�� ) ' ,������ 4 for LDA is the

one that maximizes the between-class scatter and minimizes the within-class scatter in a

reduced dimensional space. Common optimization criteria for LDA are formulated as the

maximization problem of objective functions

�  ,��14-� trace ,�� � ��� �14
trace ,�� � ��� �14 � � � ,��14 � trace ,",���� ��� �14��  ,���� ��� � 4"4�� ��� ,��14 � � � � ��� � �� � � ��� � � (2)

where  � 67�!� � � 6"� for +-�$#���% are scatter matrices in the space transformed by � � . It is

well known [1, 2] that when
���

is nonsingular, the transformation matrix � is obtained by

the eigenvectors corresponding to the 3�� . largest eigenvalues of

� � � ���'& �)( &+* (3)

However, for undersampled problems such as text classification and face recognition where

the number of data items is smaller than the data dimension, scatter matrices become sin-

gular and their inverses are not defined. In order to overcome the problems caused by the

singularity of the scatter matrices, several methods have been proposed [3, 4, 5, 6, 7, 8]. In

this paper, we present theoretical relationships among several generalized LDA algorithms

and compare computational complexities and performances of them.

While linear dimension reduction has been used in many application areas due to its

simple concept and easiness in computation, it is difficult to capture a nonlinear relation-

ship in the data by a linear function. Recently kernel methods have been widely used for
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nonlinear extension of linear algorithms [9]. The original data space is transformed to a

feature space by an implicit nonlinear mapping through kernel methods. As long as an

algorithm can be formulated with inner product computations, without knowing the ex-

plicit representation of a nonlinear mapping we can apply the algorithm in the transformed

feature space, obtaining nonlinear extension of the original algorithm. We present non-

linear extensions of generalized LDA algorithms through the formulation of a generalized

eigenvalue problem in the kernel-based feature space.

The rest of the paper is organized as follows. In Section 2, a theoretical comparison of

generalized LDA algorithms is presented. We study theoretical and algorithmic relation-

ships among several generalized LDA algorithms and compare their computational com-

plexities and performances. Computationally efficient algorithm is also proposed which

computes the exactly same solution as that in [4, 10] but saves computational complexi-

ties greatly. In Section 3, nonlinear extensions of these generalized LDA algorithms are

presented. A generalized eigenvalue problem is formulated in the nonlinearly transformed

feature space for which all the generalized LDA algorithms can be applied resulting in non-

linear dimension reduction methods. Extensive comparisons of these linear and nonlinear

discriminant analysis algorithms are conducted. Conclusion follows in Section 4.

2 A Comparison of Generalized LDA Algorithms for Un-
dersampled Problems

2.1 Regularized LDA

In the regularized LDA (RLDA), when
���

is singular or ill-conditioned, a diagonal matrix
��� with ����� is added to

���
. Since

���
is symmetric positive semidefinite,

����� �	� is

nonsingular with any �
��� . Therefore we can apply the algorithm for the classical LDA
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to solve the eigenvalue problem

���'& �)(7, ��� � �	� 4 &+* (4)

Two-Class Problem

We now consider a simple case when the data set has two classes, since in that case a

comparison of generalized LDA algorithms is easy to illustrate. The two-class problem in

LDA is known as Fisher Discriminant Analysis (FDA) [2]. In a two-class case,
�7�

can be

expressed as
��� � =� =��

= ,��� ������4 ,��� ���� 4��7� (5)

and the eigenvalue problem (3) is simplified to

� � � ,��� ������4 ,��� ���� 4�� & � ( & (6)

when
���

is nonsingular. The solution for (6) is a nonzero multiple of
& � � � � ,����� � ��4 ,

and the 1-dimensional representation of any data item � #8% ' )  by LDA is obtained as

& � � �
,��� ������4�� � � � � � ,��� ���� 4�� � ��� � � � �� �
where

��� � � ���2� � �� is the Eigenvalue Decomposition (EVD) of
�$�

. Since
��� � ��� �

� � , �2� � �	� 4 � �� , the regularized LDA gives the solution

& � � � ,��� ���� 4�� � � , �2� � �	� 4 �  � �� � �
and the regularization parameter � affects the scales of the principal components of

�7�
.

In the regularized LDA, the parameter � is to be optimized experimentally since no

theoretical procedure for choosing an optimal parameter is easily available. Recently, a

generalization of LDA through simultaneous diagonalization of
�7�

and
���

using the gen-

eralized singular value decomposition (GSVD) has been developed [4]. This LDA/GSVD,

summarized in the next section, does not require any parameter optimization.
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2.2 LDA based on the Generalized Singular Value Decomposition

Howland et al. [4, 10] applied the Generalized Singular Value Decomposition (GSVD) due

to Paige and Saunders [11] to overcome the limitation of the classical LDA. When the

GSVD is applied to two matrices �* and �-� with the same number of columns, � , we

obtain

� � � �� � 	�� ���
	��� ����
	�� � � � and � �� � ��� �
	�������
	��� ����
	�� � � � for � � rank
��� � � �����

where �  and � � are orthogonal and � is nonsingular, � �  �  � � � � �$� � � � and � �  �  and� � � �$� are diagonal matrices with nonincreasing and nondecreasing diagonal components

respectively.

The method in [4] utilized the representations of the scatter matrices

��� ��� � � �� � ��� ��� � � �� � and
��� ��� � � �� � where (7)� � � 	�� =7 ,��� ��� 4������������ =� �,��� ��� 4 �$#8% ' )  � (8)� � � 	��� ������  �����������! ���  �  ��$#8% '*) � � (9)� � �@	 �� ������������������������#8%-' ) � � (10)

and � 6 � 	B.5����������. �-# %  ) � : . Suppose the GSVD is applied to the matrix pair ,!� �� �"� �� 4
and we obtain

� �� � �� � �
	#� � � � and � �� � �� � �@	#� � � � * (11)

From (11) and � � � � � � � � � � � � �
$ for % � rank
��� � ��� �� �&� ,

� � ��� � �
� � � � � �

� ' � $ �(' )*+�,�- .0/21
354 - 4 / 1�6 473
8:9; and (12)

� � ��� � �
� � � � � �

� ' � $ � ' )*+ 1 - < / , 354 - 4 / 1 6 4=3
8:9; � (13)
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where the subscripts in � and � denote the size of square identity and zero matrices. De-

noting the diagonal elements in � � � � � as ��6 ’s and the diagonal elements in � � � � � as � 6 ’s, we

have

� 6 ����� 6���� 6 ����� 6 + � .���������� �>� (14)

where
� 6 is the column vectors of � . Note that

� 6 , + � % � .�� ��������� , belong to null , ��� 4��
null , ��� 4 . Hence � 6 and � 6 for + � % � .�� ��������� in Eq. (14) can be any arbitrary numbers.

By partitioning � in (12 - 13) as� �
	 � ���
	��� � ����
	��	 � ����
	��$ � � � 	 ��
���
	��
' � $ � � (15)

the generalized eigenvalues and eigenvectors obtained by the GSVD can be classified as

shown in Table 1. For the last � � % vectors
�

belonging to null , �$� 4�� null , ��� 4 ,
� � � � ����� � , � � � � 4 ,!� �� � 4(�� � � � �  � �  �

6 A� = 6 �
� � ��6�� � � � � � and

� � � � ����� � ��
� A� �

� ��� � � � � ��6 � � where � � belongs to a class + *

Hence � � � ��6�� � � � for + �@.�����������3� � � � � � � ��6 for all � � in a class +"� (16)

therefore � �
 � � � �
 � (17)

for any given data item � � � 6 . This implies that the vectors
� 6 , + ��% � .5�����������>� belonging

to null , ��� 4�� null , ��� 4 do not convey discriminative information among the classes, even

though the corresponding eigenvalues are not necessarily zeros. Since rank , �7� 4�0@3 � . ,
from Eqs. (12-13) we have

� � 6 ����� 6�� � and
� � 6 ����� 6�� . for 3 0 +-0�%��
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� 6 ��6 ( 6���� :� : � 6 belongs to
.<0 +-0�� 1 0 � null , ��� 4 � null , ��� 4��

� � . 0 +-0�� �	� . � � 6 � � � � ��6 � . � � ( 6 � � null , ��� 4
� � null , ��� 4
�
� �	� � . 0 +-0�% 0 1 0 null , ��� 4 � � null , ��� 4% � .�0 +-0 � any value any value any value null , ��� 4�� null , ��� 4

Table 1: Generalized eigenvalues ( 6 ’s and eigenvectors
� 6 ’s from the GSVD. The super-

script � denotes the complement.

and the between-class scatter becomes zero by the projection onto the vector
� 6 . Hence

3 � . leftmost columns of � gives an optimal transformation � � � for LDA. This method is

called LDA/GSVD.

An Efficient Algorithm for LDA/GSVD

The algorithm to compute the GSVD for the pair , � �� � � �� 4 was presented in [4] as follows.

1. Compute the Singular Value Decomposition (SVD) of � �
� � ��� �� � # % �  
���� ) ' :� ���

��� �
� � � � � where %�� rank ,5� 4 and � # % �  
���� ) �  
���� and � # % '*) ' are

orthogonal and the diagonal components of
� #8% $ ) $ is nonincreasing.

2. Compute � from the SVD of � , .��53�� .�� % 4 1, which is � ,/.�� 3 ��.�� % 4(��� ��� � *
3. Compute the first 3 � . columns of � � �

��� �  � �
� � � , and assign them to the

transformation matrix � � .
Now we show that this algorithm can be computed rather simply, producing an efficient

and intuitive approach for LDA/GSVD. Since � � � � � � � � � � � � � $ � from (12-13), we have� � ��� � � � � ��� � � � � ��� � �
� � $ �
� � � (18)

1The notation � � �"!$#&% �'!)(+* which may appear as a MATLAB shorthand denotes a submatrix of �
composed of the components from the first to the # -th row and from the first to ( -th column.
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Algorithm 1 An efficient algorithm for LDA/GSVD

1. Compute the EVD of
���

:
��� ��� �  � ��� � �  �

� � � � � �
� �� � .

2. Compute � from the EVD of  ��� ' � � �� � � � ��� �  � � �� � :  ��� � ��� � � � � � � .

3. Assign the first 3�� . columns of �  � � �� � � to � � .

where % � rank ,5� 4 . Eq. (18) implies % � rank , ��� 4 and from the step 3 in the LDA/GSVD

algorithm
��� � � ��� � �
$ �

� � � � �  � �
� �  �
� � � � � � � (� � � � (19)

which results in the EVD of
���

. Partitioning � as � �
	 � ���
	��$ � ����
	��
' � $ � , we have

� � �
� � �  � �
� � � ��� �  � � �� � � � ��� * (20)

By substituting X in (12) with Eq. (20),

� � �� � � � ��� �  � � �� � � � � � � � � � � * (21)

Note that the optimal transformation matrix � � by LDA/GSVD is obtained by the leftmost

3 ��. columns of � , which are the leftmost 3 � . columns of �  � � �� � � . Eqs. (19) and

(21) show that �  and
�  can be computed from the EVD of

���
and � from the EVD of

� � �� � � � ��� �  � � �� � . This new approach for LDA/GSVD is summarized in Algorithm 1.

In Algorithm 1, the matrices �  and
�  in the EVD of

��� # % '9) ' can be obtained

by the EVD of � �� � � # % � ) � instead of � � � �� # % '*) ' [1] by which computational

complexity can be reduced from 	 , � � 4 to 	 , = � 4 . Especially when � is much bigger than

= , computational savings become great. Let the EVD of � �� � � be� �� � � � 	 � ���
	��$ � ����
	��� � $ � ��
  �
� � � � � �� �� � � (22)
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where % � rank , � � 4-� rank , ��� 4 . From (22)

��� , � � �  4-� � � ,!� �� � � 4 �  � , � � �  4 
 ��
and therefore the columns in � � �  are eigenvectors of

���
corresponding to nonzero eigen-

values in the diagonal of

  . Since ,!� � �  4 � , � � �  48� 
  , we obtain the orthonormal

eigenvectors and corresponding nonzero eigenvalues of
�$�

by � � �  
 � �� � and

  , which

are �  and
�  respectively. In this new approach, we just need to compute the EVD of a

much smaller =�� = matrix � �� � � instead of ��� � matrix
��� � � � � �� when � � � = .

However, in the regularized LDA or the method by Chen et al. which is presented next, we

can not resort to this approach. The regularized LDA needs the entire � eigenvectors of
�7�

and the method based on the projection to null , �$� 4 needs to compute a basis of null , ��� 4
which are eigenvectors corresponding to zero eigenvalues.

Two-Class Problem

Now we consider the two-class problem in LDA/GSVD. By Eq. (5), we have

� � �� � � � ��� �  � � �� � � � � �� � � ��� ,��� ���� 4 ,��� ������4�� �  � � �� �
�

� %

%��� � � 
%  �� � %


% �� � � �
where � ��=7/=���� = and %�� � � �� � � � ,����� ����4 . Hence the transformation matrix

& #&% ' ) 
is given by & ��� �  � � �� � % �	� �  � �  � � ,��� ������4
for some scalar � , and the dimension reduced representation of any data item � is given by

& � � ����,��� �� � 4 � �  � �  � � � ����,��� ���� 4 � � � � �
where

� � denotes the pseudoinverse of
���

. When
���

is nonsingular, by applying the

Sherman-Morrison formula [12] to
��� � ��� � ���

, we have

� � � �
, ��� � � ,��� ��� ��4 ,��� �� � 4���4 �  � � � � � � � � � ,��� ��� � 4 ,��� ������4 � � � �
. � � ,��� ��� ��4 � � � � ,��� � � � 4
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and & � � � ��,��� ��� ��4�� � � � � � �  ,��� ��� ��4�� � � � � (23)

for a scalar � <� � � ,/. � � ,��� � � ��4 � � � � ,��� � � ��4 4 . Eq. (23) shows that LDA/GSVD is

equal to the classical LDA when
���

is nonsingular.

In face recognition, in the efforts to overcome the singularity of scatter matrices caused

by high dimensionality, some methods have been proposed [5, 6]. The basic principle of

the algorithms proposed in [5, 6] is that the transformation using a basis of either range , � � 4
or null , ��� 4 is performed in the first stage and then in the transformed space the second

projective directions are searched. These methods are summarized in the next two sections

where we also present their algebraic relationships.

2.3 A Method based on the Projection onto null
�������

Chen et al. [5] proposed a generalized method of LDA which solves undersampled prob-

lems and applied it for face recognition. The method projects the original space onto the

null space of
���

using an orthonormal basis of null , ��� 4 , and then in the projected space, a

transformation that maximizes the between-class scatter is computed.

Consider the SVD of
��� #8% '9) ' ,

��� � � ���2� � �� *
Partitioning �

�
as �

� �
	 � � ���
	��$	� � � ����
	��
' � $
� � where % (� rank , ��� 4 ,

null , ��� 4-� span , � � ��4 * (24)

First, the transformation by �
� � � �� � projects the original data to null , ��� 4 . Then, the eigen-

vectors corresponding to the largest eigenvalues of the between-class scatter matrix  ��� in

the projected space are found. Let the EVD of  ��� ' � � � � �� � ��� � � � � �� � be

 ��� �  � �  � �  � �� � 	  � � ���
	��$��  � � ����
	��
' � $� � �  � �  �

� � � �  � ��  � �� � � � (25)
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where  � ��  � � � � , %��*� rank ,  ��� 4 and  � �  #>% $ � ) $ � . Then, the transformation matrix ��� is

obtained by

���-� � � � � �� �  � �  * (26)

Let us call this method To- ; , ��� ) as an abbreviation.

Two-Class Problem

In the two-class problem,
���

is expressed as in (5) and

 ��� � � � � � �� � � ,��� � � � 4 ,��� ������4�� � � � � �� � �
� %

%��� � � 
%� �� � %


% �� � �
where � �@=7/=���� = and % � � � � � �� � ,��� � ��� 4 # % '*)  . Hence the transformation matrix& #&% '9)  is obtained by

& � � � � � �� � %

% �� ��� � � � � �� � ,��� �� � 4

with �>� . ��
% �� . For any data item � # % ' )  , the dimension reduced representation is

given by & � � �	��,��� ������4�� � � � � �� � � *
Relationship with LDA/GSVD

From (25), we have �  � ��  � �� � � � � � � �� � ��� � � � � �� � 	  � � � � � ��� � �  � �  �
� � � � (27)�  � ��  � �� � � � � � � �� � ��� � � � � �� � 	  � � � � � �"��� � * (28)

The second equation holds due to (24). Eqs. in (27-28) imply that the column vectors of

��� given in (26) belong to null , ��� 4 � null , ��� 4 � and they are discriminative vectors, since

the transformation by these vectors minimizes the within-class scatter to zero and increases

the between-class scatter. The top row of Table 1 shows that the LDA/GSVD solution also

12



includes the vectors from null , ��� 4 � null , ��� 4 � . Based on this observation, this method

To- ; , ��� ) can be compared with LDA/GSVD. By denoting � in LDA/GSVD as� �
	 � ���
	��� � ����
	��	 � ����
	��$ � � � 	 ��
���
	��
' � $ � � (29)

we find a relationship between �  and � �(� � � � � �� �  � �  .
Eq. (13) implies that 	 �  � 
�� is a basis of null , ��� 4 . Hence any vector in null , ��� 4

can be represented as a linear combination of column vectors in 	 �8 � 
�� . The following

Theorem shows the condition for any vector in null , �$� 4 to belong to null , ��� 4 � null , ��� 4 � .

THEOREM 1 Any vector
�

belongs to null , �$� 4 � null , ��� 4 � if and only if
�

is represented

as �  � � � 
�� where
���� � #8% � )  and � #8% � ' � $ � )  .

Proof. Let
� # null , ��� 4 � null , ��� 4 � . Since 	 �  � 
�� is a basis of null , ��� 4 , � ���  � � � 
��

for some
� # % � )  and � #�% � ' � $ � )  . Suppose

� � � . Then
� � ��
�� # null , ��� 4 �

null , ��� 4 , which contradicts to
� # null , ��� 4�� null , ��� 4 � . Hence

���� � .
Now let us prove that if

���� � then
� � �  � � � 
�� belongs to null , ��� 4 � null , ��� 4�� .

Since
� � �  � � � 
�� # null , ��� 4 , it is enough to show

� �# null , �$� 4 . From (12),

� � ��� � �
, �  � 4�� ��� , �  � 4-� � � , � � ��� � "4 � � � � � � � �� �  �� �� � *	�

By Theorem 1,
� � � � �� �  � � -� � �� � � 
�


for some matrices � #8% � ) $ � and 
 #&% � ' � $ � ) $ � with %��9� rank ,  ��� 4 , where each column

of � is nonzero. Hence for any data item � # % ' )  , the reduced dimensional representa-

tion by � �(� � � � � �� �  � �  is given as

��� � � ��� ��� � � � 
 �&� �
 � * (30)
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Figure 1: The visualization of the data in the reduced dimensional spaces by LDA/GSVD
(figures in the first row) and the method To- ; , �$� ) (figures in the second row).

As explained in (16) of Section 2.2, since all data items are transformed to one point by
� �

for
� # null , ��� 4 � null , ��� 4 , the second part 
 � � �
 � in (30) corresponds to the translation

which does not affect the classification performance.

While the transformation matrix ��� � � � � � �� �  � �  by the method To- ; , ��� ) is related

to �  of LDA/GSVD as in (30), the main difference between the two methods is due to

the eigenvectors in null , ��� 4 � � null , ��� 4 � , which correspond to the second row in Table

1. The projection to null , ��� 4 by � � � � �� � excludes vectors in null , ��� 4
� , and therefore

null , ��� 4 � � null , ��� 4 � . When

rank ,  ��� 4 � rank , ��� 490 3�� .
where 3 is the number of classes, the reduced dimension by � � � � � � � �� �  � �  is rank ,  ��� 4 ,
therefore less than 3 � . , while LDA/GSVD includes 3 ��. vectors from both null , �$� 4 �
null , ��� 4 � and null , ��� 4 � � null , ��� 4 � . In order to demonstrate this case, we conducted an

experiment using data in text classification, of which characteristics will be discussed in

detail in the section for experiments. The data was collected from Reuters-21578 database

14



and contains 4 classes. Each class has 80 samples and the data dimension is 2412. After

splitting the dataset randomly to training data and test data with a ratio of 4:1, the lin-

ear transformations by LDA/GSVD and the method To- ; , �$� 4 were computed by using

training data. While the rank of
�$�

was 3, the rank of  ��� was 2 in this dataset. Hence

the reduced dimension by the method To- ; , ��� 4 due to Chen et al. was 2. On the other

hand, LDA/GSVD produced two eigenvectors from null , ��� 4 � null , ��� 4�� and one eigenvec-

tor from null , ��� 4 � � null , ��� 4 � , resulting in the reduced dimension 3. Figure 1 illustrates

the reduced dimensional spaces by both methods. The top three figures were generated by

LDA/GSVD. For the visualization, the data reduced to 3-dimensional space by LDA/GSVD

was projected to 2-dimensional spaces,
�

- � ,
�

- � and � - � spaces, respectively. In
�

- � space,

two classes ( � and *) are well separated, while two other classes (O and +) are mixed

together. However, as shown in the second and third figures, two classes mixed in
�

- �

space are separated in
�

- � and � - � spaces along � axis. This shows the third eigenvector

from null , ��� 4 � � null , ��� 4 � improves the separation of classes. The bottom three figures

were generated by the method based on the projection to null , ��� 4 . Since rank ,  ��� 4 =2, the

reduced dimension by that method was 2 and the first figure illustrates the reduced dimen-

sional space. The second and third figures show that adding one more column vector from
� � � � �� �  � � � and increasing the reduced dimension to 3 does not improve the separation of

classes mixed in
�

- � space, since the one extra dimension comes from null , ��� 4 � null , ��� 4 .
On the other hand, when

rank ,  ��� 4 � rank , ��� 4(� 3�� .��
both LDA/GSVD and the method To- ; , ��� ) obtain transformation matrices � � and � �
from null , ��� 4 � null , ��� 4 � . Then the difference between two methods comes from the

diagonal components of �  �  and  � �  in

��� � ��� � � � �  �  and ��� � ��� � �(�  � � 
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where  � �  has nonincreasing diagonal components. As shown in the experimental results

of Section 2.7, the effects of different scaling in the diagonal components may depend on

the characteristics of data.

2.4 A Method based on the Transformation by a Basis of range
����� �

In this section, we review another two-step approach by Yu and Yang [6] proposed to

handle undersampled problems, and illustrate its relationship to other methods. Contrary

to the method discussed in Section 2.3, the method presented in this section first transforms

the original space by using a basis of range , �$� 4 , and then in the transformed space the

minimization of within-class scatter is pursued.

Consider the EVD of
���

,

��� � � � � � � �� � 	 � � ���
	��$ � � � ����
	��
' � $ � � � � �  �

� � � � � �� 
� �� � � �

where � � is orthogonal, rank , �$� 4 � %  and
� �  is a diagonal matrix with nonincreasing

positive diagonal components. Then range , ��� 4 � span , � � "4 . In the method by Yu and

Yang, the original data is first transformed to an %  -dimensional space by ��� � � �  � � �� ��  .

Then the between-class scatter matrix  ��� in the transformed space becomes

 ��� ' � �� ��� ���!� � $	� *
Now consider the EVD of  ��� ' � �� ��� ��� ,

 ��� �  � �  �2�  � �� � (31)

where  � � #8% $
� ) $	� is orthogonal and  �2� #8% $	� ) $
� is a diagonal matrix. Then

 � �� ���� ��� ���  � � � �
$	� and  � �� � �� ��� ���  � � �  �2� * (32)

In most applications, rank , ��� 4 is greater than rank , ��� 4 , and  �2� is nonsingular since

rank ,  � �� � �� ��� ���  � � 4-� rank , ��� 4�� rank , ��� 4-� rank ,  � �� ���� ��� ���  � � 4-��%  *
16



Transformation matrix
Face data � �!����� � �!� ���  � � � �!� ���  � �  � � �� ��

AT
�

T 94.3 94.3 99.0
Yale 80.6 80.6 89.7

Table 2: The prediction accuracies( � ).

Scaling (32) by  � � �� ��
, we have

,  � � �� ��  � �� ���� 4 ��� , ���  � �  � � �� �� 4(�  � � � � ,  � � �� ��  � �� � �� 4 ��� , ���  � �  � � �� �� 4 � � $
� * (33)

The authors in [6] proposed the transformation matrix

� �!� ���  � �  � � �� �� *
Eqs. in (33) imply that each column of � � belongs to null , ��� 4
� � null , ��� 4�� . We call this

method To- � , ��� 4 for short.

Two-Class Problem

In a two-class problem, since

��� � � ,��� ������4 ,��� ������4�� � � �� �� �
 �� �� � �� � �  �� ����  ��

� �� �����
 �� ����� �� � �

where � � =7/=���� = , a data item is transformed to the 1-dimensional space by
& � �

� � � �� ��� � � � � � � �� .
The dimension reduced representation of any data item � is given by

& � � � ��,��� � � ��4 � �
for some scalar � . Note that no minimization of within-class scatter in the transformed

space is possible.

The optimization criteria by � � and ��� in (2) are invariant under any nonsingular linear

transformation, i.e. for any nonsingular matrix � whose order is the same as that of the

column dimension of � , � 6 ,�� 4-� � 6 ,��	�14�� + ��
 ���� (34)
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while the objective function �  is not. Hence in the transformation matrix � �!� ���  � �  � � �� ��
obtained by the method To- � , �$� 4 , none of the components  � � �� ��

and  � �  � � �� ��
involved in

the second step (those in (31-33)) improves the optimization criteria by � � and ��� . However,

the following experimental results show that the scaling by  � � �� ��
can make dramatic effects

on the classification performances. Postponing the detailed explanation on the data sets and

experimental setting until Section 2.7, experimental results on the face recognition data sets

are shown in Table 2. After dimension reduction, 1-NN classifier was used in the reduced

dimensional space.

2.5 A Method of PCA plus Transformations to range(
� �

) and null(
� �

)

As shown in the analysis of the compared methods, they search for discriminative vectors in

null , ��� 4�� null , ��� 4 � and null , ��� 4 � � null , ��� 4 � . The method To- ; , ��� 4 by Chen et al. finds

solution vectors in null , ��� 4 � null , ��� 4 � and To- � , ��� 4 by Yu et al. restricts the search space

to null , ��� 4�� � null , ��� 4
� . LDA/GSVD by Howland et al. finds solution from both spaces,

however the number of possible discriminative vectors can not be greater than rank , � � 4 ,
possibly resulting in solution vectors only from null , �$� 4 � null , ��� 4�� in the case of high

dimensional data. Recently Yang et al. [7] have proposed a method to obtain solution

vectors in both spaces, which we will call To- ; � , �$� 4 .

In the method by Yang et al., first, the transformation by the orthonormal basis of

range(
���

), as in PCA, is performed. Let the SVD of
���

be

��� � � � �2� � �� �
	 � � ���
	��$ � � ����
	��
' � $ � � �2�  �

� � � � � �� 
� �� � �

where % � rank , ��� 4 . In the transformed space by � �  , let the within-scatter matrix be

 ��� � � ��  ��� � �  . Then the basis of null(  ��� ) and range(  ��� ) can be found by the EVD of  ���
as

 ��� �  � �  �2�  � �� �
	  � � � � � �"� �  �2�  �
� � � �  � ��  � �� � � * (35)
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In the transformed space by the basis  � � � of null(  ��� ), let � be the matrix whose columns

are the eigenvectors corresponding to nonzero eigenvalues of

���� '  � �� � � ��  ��� � �   � � � * (36)

On the other hand, in the transformed space by the basis  � �  of range(  ��� ), let � be the ma-

trix whose columns are the eigenvectors2 with the � largest nonzero eigenvalues of
�� � � ����

where
���� '  � ��  � ��  ��� � �   � �  and

���� '  � ��  � ��  ��� � �   � �  . Then the transformation matrix

by the method To- ; � , ��� 4 is constructed as

���*� 	 � �   � � � � � �   � �  �!� * (37)

When two parts �
�   � � � � and � �   � �  � are used for transformation matrix ��� , it will be

better to normalize the columns in �
�   � �  � so that effects of both parts can be balanced.

Relationship with the method To- ; , ��� 4
Recall from Section 2.3 that the method To- ; , ��� 4 projects the original space onto the null

space of
���

using an orthonormal basis of null , ��� 4 , and then in the projected space, a

transformation that maximizes the between-class scatter is computed.

Since �
� � is a basis of null , ��� 4 and null , ��� 4�� null , ��� 4 , from (35)� � �� 

� �� � � ��� � � �  � � � � � �  � �  �2�  � �� �
� � � * (38)

By Eq. (38), we can obtain the EVD of
���

as

��� � � � �   � � � � � � �  �2� �
� � � �  � �� � �� 

� �� � �
� � � �   � �  � �   � � � � � � � �  �2�  �

� � � )+  � ��  � ��  � �� � � �� 
� �� �

8; *
(39)

2In [7], it was claimed that the orthonormal eigenvectors of �	 4�
� �	� should be used. However, �	 4�
� �	� may
not be symmetric therefore it is not guaranteed that there exist orthonormal eigenvectors of �	 4�
� �	  .
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Eq. (39) shows that the columns of � ' � � �   � � � � � � � is an orthonormal basis of

null , ��� 4 . Hence the transformation by � � � gives the projection onto the null space of
�$�

.

Now by the notation (36) and span , � � � 4-� null , ��� 4�� null , ��� 4 ,

� � �   � � � � � � � � , � �   � � ��4 �
� �� � � ��� � � �   � � � � � � � � , � �   � � ��4 �

� �� � � � � �   � � � ����  � �� � � �� 
which is the between-class scatter matrix in the projected space by � � � . Let the EVD of
����

be
���� �
	 �� �  �� � �"�

� �� �  �
� � � � �� �� �� �� � � *

Then we have the transformation matrix � � by the method To- ; , ��� 4 as

� �(� � � �   � � � � � � � � , � �   � � ��4 �
� �� � � � �   � � � �� �  � � �   � � � �� �  (40)

which is exactly same as �
�   � � � � in � � of (37).

2.6 Other Approaches for generalized LDA

2.6.1 PCA plus LDA

Using PCA as a preprocessing step before applying LDA has been a traditional technique

for undersampled problems and successfully applied for face recognition [13]. In this

approach, data dimension is reduced by PCA so that in the reduced dimensional space

the within-class scatter matrix becomes nonsingular and classical LDA can be performed.

However, choosing optimal dimensions reduced by PCA is not easy and experimental pro-

cess for it can be expensive.

2.6.2 GSLDA

Zheng et al. claimed that the most discriminant vectors for LDA can be chosen from

null , ��� 4 � � null , ��� 4 (41)
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where null , ��� 4 �

denotes the orthogonal complement of null , �$� 4 [8]. They also proposed

a computationally efficient method called GSLDA [14] which uses the modified Gram-

Schmidt Orthogonalization (MGS) in order to obtain an orthogonal basis of null , ��� 4 � �
null , ��� 4 . In [14], under the assumption that the given data items are independent, MGS is

applied to

	 � �� � � �� � (42)

obtaining an orthogonal basis
�

of (42), where � �� is constructed by deleting one column

from each subblock � 6 � ��6 �  , . 0 +�0 3 , in � � and � �� � 	 �� � � ��������� �� �  � ��� . Then

the last 3 � . columns of
�

give an orthogonal basis of (41). When applying � � -norm as a

similarity measure, using any orthogonal basis of null , �$� 4 � � null , ��� 4 as a transformation

matrix gives the same classification performances [14].

In Section 2.5, it was shown that a transformation matrix � � by the method To- ; , ��� 4 is

same as the first part �
�   � � � � in the transformation matrix ��� by the method To- ; � , ��� 4 .

In fact, it is not difficult to prove that under the assumption of the independence of data

items, �
�   � � � � is an orthogonal basis of (41), and therefore prediction accuracies by the

method To- ; , ��� 4 and GSLDA should be same.

2.6.3 Uncorrelated Linear discriminant analysis

Instead of the orthogonality of the columns � & 6�� in the transformation matrix � , i.e.,& �6 & � � � for + ���� , uncorrelated LDA (ULDA) imposes the
���

-orthogonal constraint,& �6 ��� & � � � for + ���� [15]. In [16], it was shown that discriminant vectors obtained by the

LDA/GSVD solve the
���

-orthogonal constraint. Hence the proposed algorithm 1 can also

give solutions for ULDA more efficiently.
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Data Re Tr1 Tr2 Tr3 Tr4 Tr5 AT
�

T Yale
Dim. 3094 5896 5825 8104 7362 8175 2576 8586
no. data 490 210 187 841 757 575 400 165
classes 5 7 4 4 5 6 40 15

Table 3: The description of data sets

2.7 Experimental Comparisons of Generalized LDA Algorithms

In order to compare the discussed methods, we conducted extensive experiments using two

types of data sets in text classification and face recognition.

Text classification is a task to assign a class label to a new document based on the in-

formation from pre-classified documents. A collection of documents are assumed to be

represented as a term-document matrix, where each document is represented as a column

vector and the components of the column vector denote frequencies of words appeared

in the document. The term-document matrix is obtained after preprocessing with com-

mon words and rare term removal, stemming, term frequency and inverse term frequency

weighting and normalization [17]. The term-document matrix representation often makes

the high dimensionality inevitable.

For all text data sets3, they were randomly split to the training set and the test set with

the ratio of � ��. . Experiments are repeated 10 times to obtain mean prediction accuracies

and standard deviation as a performance measure. Detailed description of text data sets is

given in Table 3. After computing a transformation matrix using training data, both training

data and test data were represented in the reduced dimensional space. In the transformed

space, the nearest neighbor classifier was applied to compute the prediction accuracies for

classification. For each data item in test set, it finds the nearest neighbor from the training

data set and predicts a class label for the test data according to the class label of the nearest
3The text data sets were downloaded and preprocessed from http://www-

users.cs.umn.edu/ � karypis/cluto/download.html, which were collected from Reuter-21578 and TREC-5,
TREC-6, TREC-7 database.
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neighbor. Table 4 reports the mean prediction accuracies from 10 times random splitting to

training and test sets.

The second experiment, face recognition, is a task to identify a person based on given

face images with different facial expressions, illumination and poses. Since the number of

pictures for each subject is limited and the data dimension is the number of pixels of a face

image, face recognition data sets are typically severely undersampled.

Our experiments used two data sets, AT
�

T (formerly ORL) face database and Yale face

database. The AT
�

T database has 400 images, which consists of 10 images of 40 subjects.

All the images were taken against a dark homogeneous background, with slightly vary-

ing lighting, facial expressions (open/closed eyes, smiling/non-smiling), and facial details

(glasses/no-glasses). The subjects are in up-right, frontal positions with tolerance for some

side movement [18]. For the manageable data sizes, the images have been downsampled

from the size � 
 � .�. 
 to ��� ����� by averaging the grey level values on 
 � 
 blocks. Yale

face database contains 165 images, 11 images of 15 subjects. The 11 images per subject

were taken under various facial expressions or configurations: center-light, with glasses,

happy, left-light, without glasses, normal, right-light, sad, sleepy, surprised, and wink [19].

In our experiment, each image has been downsampled from � 
 � � 
 � � to . � � ����. by av-

eraging the grey values on � � � blocks. Detailed description of face data sets is also given

in Table 3. Since the number of images for each subject is small, leave-one-out method

was performed where it takes one image for test set and the remaining images are used

as a training set. Each image serves as a test datum by turns and the ratio of the num-

ber of correctly classified cases and the total number of data is considered as a prediction

accuracy.

Table 4 summarizes the prediction accuracies from both experiments. For the regular-

ized LDA, we report the best among the accuracies obtained with the regularization param-

eter � � � * � ��.�� . * � . The method based on the transformation to range , ��� 4 , To- � , ��� 4 , gives
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Data RLDA LDA/GSVD To- ; , ��� 4 To- � , ��� 4 To- ; � , ��� 4
Text Classification

Re ���
*��

95.1 94.5 94.2 94.7
Tr1 95.7 �

� *��
98.1 96.7 97.6

Tr2 87.9 90.3 91.5 88.2 ���
*��

Tr3 98.6 98.4 98.6 97.7 �
� *	�

Tr4 �
� *�


97.3 97.0 96.3 97.1
Tr5 93.6 93.3 94.2 94.1 ��

*
�

Face Recognition
AT
�

T 98.0 93.5 98.0 ���
*�


98.8
Yale 97.6 �

� *��
97.6 89.7 98.2

Table 4: Prediction accuracies ( � ). For RLDA, the best accuracy among � � � * � � .���. * � is
reported. For each dataset, the best prediction accuracy is shown in boldface.

relatively low prediction accuracies compared with the methods utilizing the null space of

the within-class scatter matrix
���

. While no single methods works the best in all situations,

computational complexities can be dramatically different among the compared methods as

we will discuss in the next section.

2.8 Analysis of Computational Complexities

In this section we analyze computational complexities for the discussed methods. The

computational complexity for the SVD decomposition depends on what parts need to be

explicitly computed. We use flop counts for the analysis of computational complexities

where one flop (floating point operation) represents roughly what is required to do one

addition/subtraction or one multiplication/division [12]. For the SVD of a matrix � #8%  )��
when � � ��� , � � � � � � �
	 � ���
	��

�

� ����
	�� � � � � � �7�
where � # %  )  ,

� # %  )�� and � # % ��)�� , the complexities (flops) can be roughly

estimated as follows [12, pp.254].
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Figure 2: Comparison of computational complexities of the generalized LDA methods
using the sizes of training data used in experiments. From the left on x-axis, the data sets,
Tr1, Re, Tr2, Tr3, Tr4, Tr5, AT

�
T and Yale, are corresponded.
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�
, � �
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 � �

For the multiplication of the �� � � � matrix and the � � � � � matrix, 
 �� � � � � flops can be

counted.

For simplicity, cost for constructing � � #8% '*)  , � � #8% '9) � and � � #8% ' ) � in (8-10)

was not included for the comparison, since the construction of scatter matrices is required

in all the methods. For � # %  )�� and � � � � , when only eigenvectors corresponding to

the nonzero eigenvalues of � � � #8%  )  are needed, the approach of computing the EVD

of � � � instead of � � � as explained in Section 2.2 was utilized.

Figure 2 compares computational complexities of the discussed methods by using spe-

cific sizes of training data sets used in the experiments. As shown in Figure 2, regularized

LDA, LDA/GSVD [4] and the method To- ; , ��� 4 [5] have high computational complexi-

ties overall. The method To- � , �$� 4 [6] obtained the lowest computational costs compared

with other methods while its performance can not be ranked highly. The proposed algo-
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rithm for LDA/GSVD reduced the complexity of the original algorithm dramatically while

it achieves competitive prediction accuracies as shown in Section 2.7. This new algorithm

can save computational complexities even more when the number of terms is much greater

than the number of documents.

3 Nonlinear Discriminant Analysis based on Kernel Meth-
ods

Linear dimension reduction is conceptually simple and has been used in many application

areas. However, it has a limitation for the data which is not linearly separable since it is

difficult to capture a nonlinear relationship with a linear mapping. In order to overcome

such a limitation, nonlinear extensions of linear dimension reduction methods using kernel

methods have been proposed [20, 21, 22, 23, 24, 25]. The main idea of kernel methods is

that without knowing the nonlinear feature mapping or the mapped feature space explicitly,

we can work on the nonlinearly transformed feature space through kernel functions. It is

based on the fact that for any kernel function � satisfying Mercer’s condition, there exists

a reproducing kernel Hilbert space � and a feature map � such that

�7, � � ��4 � � � , � 4�� � , ��4 � (43)

where � � � is an inner product in � [26, 9, 27].

Suppose that given a kernel function � original data space is mapped to a feature space

(possibly an infinite dimensional space) through a nonlinear feature mapping � ��� �

% '�� � � % � satisfying (43). As long as the problem formulation depends only on

the inner products between data points in � and not on the data points themselves, without

explicit representation of the feature mapping � or the feature space � , we can work on the

feature space � through the relation (43). As positive definite kernel functions satisfying
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Mercer’s condition, polynomial kernel and Gaussian kernel

��, � � ��4 �
, �  , � � ��4 � � ��4 � ��� � � and � ���� � #8%!�
��, � � ��4 �������7, �� � � �  � � 
	� � 4��
� #8%

are in wide use.

In this section, we present the formulation of a generalized eigenvalue problem in the

kernel-based feature space and apply the generalized LDA algorithms, obtaining nonlin-

ear discriminant analysis. Given a kernel function � , let � � and � � be the between-class

and within-class scatter matrices in the feature space � � % � which has been trans-

formed by a mapping � satisfying (43). Then the LDA in � finds a linear transforma-

tion � � 	�- ���������� � �!# % � ) � , where the columns of � are the generalized eigenvectors

corresponding to the � largest eigenvalues of� �  � (�� �  * (44)

As in (7), � � and � � can be expressed as� � ��� � � � � and � � ��� � � �� where� � �
	 � =7 ,  �� �  � 4 ����������� =  ,  �� �  � 4 �$#8% � )  � (45)� � �@	 � , ��"4 �  �� �  ��������� � , �� �4 �  ��  �  "��#8% � ) � � (46)

 ��6�� .
=�6
�
�
	�� :
� , � � 4��  � � .

=
��
6BA�
� , ��6 4 and ��6��
	 .�����������. �$#8%  ) � : *

The notation � , ��6 4 is used to denote � , ��6 4-� � , 	 � � � ����������� � 4-�
	 � , � � 4���������� � , ����4 � .
Let  be represented as a linear combination of � , � 6 4 ’s such as  � ? �6BA��� 6 � , ��6 4 , and

define

� � 	 � ���������� � ��� �7��<� �@	 #�6 � � � �� 6�� �	���� � �  � � #�6 � � � = � ��
.
= �

� 	���� ��, ��6 ���  4 � .
=

��  A� ��, ��6 ���  4 �! *
(47)
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Then we have � � �  � � � � � � (48)

since

� � �  � )*+ � =7 ,  �� �  � 4 �
...� =� �,  �� �  � 4 �

8:9;�� ��
6BA� � 6 � , ��6 4��

� )*+ � =7 , � � ?  	�� � � , �  4 � � ? � A� � , �  4"4 �
...� =� �, ��� ?  	�� � � , �  4 � � ? � A� � , �  4"4 �

8 9; � � , ��"4 � ������� � , ��� 4 � )*+ � ...� �
8 9;

� � � � � *
Similarly, we can obtain� ��  � � �� � where (49)� � � 	 %96 � � � �� 6 � �	���� � � ��� � (50)

%96 � � ��, ��6 ��� � 4 � .
=�� � 	��	� ��, ��6 ���  4 when � � belongs to the class 
 *

From (48) and (49), for any  � ? �6BA��� 6 � , ��6 4 and � ��? �6 A�� 6 � , ��6 4 we have� �  � (�� �  � � � � � � � �  �)(�� � � � � ��  (51)� � � �<� � � � � � ( � � � � � �� �
for � � 	 �  ��������� � � � �7� � � 	 �  ��������� � ��� �� ��� � � � � � ( � � � �� � *

Therefore, the generalized eigenvalue problem � �  �)( � �  becomes�<� � � � � � ( � � � �� � * (52)

Note that
��� � � � and

� � � �� can be viewed as the between-class scatter matrix and

within-class scatter matrix of the kernel matrix


 � 	 ��, ��6 ��� � 4 � � �� 6�� �	���� � � ��� (53)
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Algorithm 2 Nonlinear Discriminant Analysis
Given a data matrix � � 	��  ��������������� # % ' ) � with 3 classes and a kernel function � , it
computes the � dimensional representation of any input vector � # % '9)  by applying the
generalized LDA algorithm in the kernel-based feature space composed of the columns of

 �@	 ��, ��6 ��� � 4 � � �� 6 � � ���� � � ��� .

1. Compute
��� # % � )  , � � # % � ) � and

�<� # % � ) � according to Eqs. (47), (50) and
(54).

2. Compute transformation matrix � by applying the generalized LDA algorithms dis-
cussed in Section 2.

3. For any input vector � # % '*)  , a dimension reduced representation is computed by
Eq. (56).

when each column 	 ��, � ���� � 4 ��������� ��, ������� � 4 � � in 
 is considered as a data point in the

n-dimensional space. It can be observed by comparing the structures of
� �

and
� �

with

those of � � and � � in (45-46). As in
���

and
� �

of (47) and (50),
�<�

can be computed as� � �@	�� 6 � � � �� 6 � �	���� � � ��� � � 6 � � �7, ��6 ��� � 4 � .
=

��  A� �7, ��6 ���  4 * (54)

Since
�<� � � � and

� � � �� are both singular in the feature space, the classical LDA can not be

applied for the generalized eigenvalue problem (52). Now we apply the generalized LDA

algorithms discussed in Section 2 to solve (52), obtaining nonlinear discriminant analysis.

Let � �
	 � �  � � ������� � � � � ��#8% � ) � (55)

be the transformation matrix obtained by applying any generalized LDA algorithm in the

feature space. Then the dimension reduced representation of any data item � # % '*)  is

given by � � )*+ �7, �� � � 4...
��, � � � � 4

8:9; #8% � )  * (56)

Algorithm 2 summarizes nonlinear extension of generalized LDA algorithms by kernel

methods.
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In the feature space
Data dim. no.data classes LDA RLDA LDA/GSVD To- �"� 	�� ) To- � � 	� ) To- ��� � 	�� )

Musk 166 6599 2 91.2 97.6 ���
*
� ���

*
� 89.2 99.3

Isolet 617 7797 26 93.9 95.8 96.8 97.0 89.7 �
� *
�

Car 6 1728 4 88.2 94.7 94.1 94.9 84.5 ���
*��

Mfeature 649 2000 10 – 94.4 98.1 �
� *��

94.0 �
� *��

Bcancer 9 699 2 95.3 95.2 �	� * � 93.5 92.8 94.3
Bscale 4 625 3 87.0 ��

*
� 86.5 86.5 86.5 86.1

Table 5: Prediction accuracies( � ) by the classical LDA in the original space and the gen-
eralized LDA algorithms in the nonlinearly transformed feature space. In the Mfeature
dataset, the classical LDA was not applicable due to the singularity of the within-class
scatter matrix.

3.1 Experimental Comparisons of Nonlinear Discriminant Analysis
Algorithms

For this experiment, six data sets from UCI Machine Learning Repository were used. By

randomly splitting the data to the training and test set of equal size and repeating it 10

times, ten pairs of training and test sets were constructed for each data. For the Bcancer

and Bscale data sets, the ratio of training and test set was set as 4:1. Using the training

set of the first pair among ten pairs and the nearest-neighbor classifier, 5 cross-validation

was used in order to determine the optimal value for � in the Gaussian kernel function

��, � � ��4 � ��� � 
 � ��� � � � ��� ��� . After finding the optimal � values, mean prediction accuracies

from ten pairs of training and test sets were calculated and they are reported in Table 5. In

the regularization method, while the regularization parameter was set as 1, the optimal �
value was searched by the cross-validation. Table 5 also reports the prediction accuracies by

the classical LDA in the original data space and it demonstrates that nonlinear discriminant

analysis can improve prediction accuracies compared with linear discriminant analysis.

Figure 3 illustrates the computational complexities using the specific sizes of the train-

ing data used in Table 5. As in the comparison of the generalized LDA algorithms, the

method To- � , ��� 4 [5] gives the lowest computational complexities among the compared
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Figure 3: The figures compare complexities required for the generalized LDA algorithms
in the feature space for specific problem sizes of training data used in Table 5. From the left
on x-axis, the data sets, Musk, Isolet, Car, Mfeature, Bcancer and Bscale are corresponded.

methods. However, combining To- � , �$� 4 with kernel methods does not make effective

nonlinear dimension reduction method as shown in Table 5. In the generalized eigenvalue

problem, ��� � � � � � ( � � � �� � where
�<��� � � � � � � �� #8% � ) � �

the data dimension is equal to the number of data and the rank of
�1� � �� is not severely

smaller than the data dimension. However, poor performances by To- � , �7� 4 demonstrate

that the null space of
�<� � �� contains discriminative information. Figures 2 and 3 show that

the proposed LDA/GSVD method can reduce greatly the computational cost of the original

LDA/GSVD in both the original space and the feature space.

4 Conclusions/Discussions

We presented the relationships among several generalized Linear Discriminant Analysis

algorithms developed for handling undersampled problems and compared their computa-

tional complexities and performances. As discussed in the theoretical comparison, many

algorithms are closely related, and experimental results indicate that computational com-
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plexities are important issues in addition to classification performances. The LDA/GSVD

showed competitive performances throughout the experiments, but the computational com-

plexities can be expensive especially for high dimensional data. An efficient algorithm

has been proposed, which produces the same solution as LDA/GSVD. The computational

savings are remarkable especially for high dimensional data.

Nonlinear extensions of the generalized LDA algorithms by the formulation of gener-

alized eigenvalue problem in the kernel-based feature space were presented. Experimental

results using data sets from UCI database demonstrate that nonlinear discriminant analysis

can improve prediction accuracies compared with linear discriminant analysis.
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