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SUMMARY

Whenever a new sensor or system comes online, engineers agdtamesponsible
for processing the measured data turn first to methods tkatiad and true on existing
systems. This is a natural, if not wholly logical approaatd & exactly what has happened
in the advent of hyperspectral imagery (HSI) exploitatibfowever, a closer look at the
assumptions made by the approaches published in the litedaas not been undertaken.

This thesis analyzes three key aspects of HSI exploitatspatistical data modeling,
covariance estimation from training data, and dimensidnecgon. These items are part of
standard processing schemes, and it is worthwhile to utadet@nd quantify the impact
that various assumptions for these items have on targettdbikty and detection statistics.

First, the accuracy and applicability of the standard Gauns§.e., Normal) model is
evaluated, and it is shown that the elliptically contouretistribution (EC¢) sometimes of-
fers a better statistical model for HSI data. A finite mixtapproach for EG-is developed
in which all parameters are estimated simultaneously witlaopriori information. Then
the effects of making a poor covariance estimate are shovindyding target samples in
the training data. Multiple test cases with ground targegseaplored. They show that the
magnitude of the deleterious effect of covariance contation on detection statistics de-
pends on algorithm type and target signal characteridiest, the two most widely used
dimension reduction approaches are tested. It is demoedtiizat, in many cases, signifi-
cant dimension reduction can be achieved with only a mings io detection performance.

In addition, a concise development of key HSI detection réligms is presented, and
the state-of-the-art in adaptive detectors is benchmédtkddnd mine targets. Methods for
detection and identification of airborne gases using hyj@etsal imagery are discussed,

and this application is highlighted as an excellent oppotyuor future work.

Xiii



CHAPTER 1

INTRODUCTION

Since the first flight of NASA's Airborne Visible InfraRed Imig Spectrometer (AVIRIS)
instrument 20 years ago, interest in algorithms for exatmn of hyperspectral imaging
(HSI) data has grown by leaps and bounds. A variety of sersws been built to satisfy
the research interests of both commercial and governmenssps, and practicioners from
all over the world have shifted their attention to this newrie@f remote sensing. The ability
of this new technology to discriminate spectral signaks (targets) of interest is intriguing
to a wide audience: academia, commercial industry, and thieamy alike. As a passive
technique hyperspectral imaging offers the advantagetdieiaog detectable by the objects
or adversaries being sensed, and requires electronicedhatime relatively little power.
To illustrate the variety of applications for HSI, figure lebks down common spectral
exploitation tasks and their region of support, from visits long-wave infrared (LWIR).
It is clear that there is tremendous utility across a widespéeregion, and as such there is

a real need for robust algorithms in exploitation tasks agtarget detection.

1.1 Research Overview

This thesis presents a series of analyses on various agpettte signal processing chain
for hyperspectral image data. Target detection is by fantbst common HSI exploitation
task. This research pokes and prods standard assumptitbresaafaptive detection problem
in order to gain both a qualitative and quantitative feeltf@ir accuracy and importance
in maintaining the overall fidelity of the final informatiomguuct — the detection statistic.
Along the way, a few peripheral but altogether relevant ameresting items are discussed,

such as detecting land mines and hazardous airborne gases.
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Figure 1. A breakdown of common spectral data exploitation tasks aei tegions of
support, from visible to LWIR.

Specifically, this thesis is organized as follows:

Chapter 2 presents a brief background of hyperspectral imaging, ésathe problem of
adaptive detection, and outlines key similarities andeddhces between HSI and

radar.

Chapter 3 discusses statistical modeling of spectral data and wayg#sure to goodness-
of-fit of statistical models. A scheme for simultaneouslyreating all the parameters
of an ECt finite mixture model is covered in detail. Results show thatdltiptically
contoured-distribution offers a valid modeling alternative to thdmsesed on Normal

distributions.

Chapter 4 provides a direct, concise treatment of algorithms fordtadgtection in hy-

perspectral imaging. A signal processing perspective etloimg rarely found in the



remote sensing literature, is taken in the description ghai models and perfor-

mance evaluation for state-of-the-art algorithms.

Chapter 5 evaluates the set of detectors presented in Chapter 4 foipheulteal-world
data sets. Land mines, one of the most difficult ground targadetect passively, are

the backdrop for this evaluation.

Chapter 6 further explores some of the algorithms presented in Chaptbut this time
applied to the task of detecting airborne gases and chemigales. Other, non-

algorithmic methods for identifying a gas specimen are pitegented.

Chapter 7 provides an analysis of the deleterious effect of covagastimate contamina-
tion. Qualitative (e.g., visual) and quantitative (e.gnpérical) results clearly show
that poor training data including target-like samples caveha significant impact on

detection results.

Chapter 8 offers analysis of the impact that the most widely-used disien reduction
methods have on detector output. Reducing dimensionabtg@nmon pre-processing
step, yet very little is known on the impact that dimensiatuction transformations

have on target detectability and detection performance.

Chapter 9 concludes the thesis with a summary of contributions anaéuvork.



CHAPTER 2

BACKGROUND

2.1 Review of Hyperspectral Imaging

Generally speaking, electro-optical (E-O) remote sensgiuglves the acquisition of in-
formation about a scene or object without making physicatact with it. Hyperspectral
imagers are a class of E-O imaging spectroscopy sensorsiah e waveband of in-
terest is divided into hundreds of contiguous narrow bands {mage channels) for the
purpose of signature analysis. Figure 2 shows the concdptpgrspectral imaging. Hy-
perspectral imagers offer high spectral resolution thas@rves important aspects of the
spectrum (i.e., the shape of narrow absorption bands) akesnapossible to differenti-
ate distinct materials on the ground. The basic principlnad materials reflect, absorb,
and emit electromagnetic radiation in ways characterddtitheir molecular composition
and shape [1], [2], [3], [4]. The spatially and spectrallymgded information is typically
visualized as a ‘data cube’, whose face is a function of tlaialpcoordinates and whose
depth is a function of spectral band (i.e., wavelength) henwavelength dimension, each
image pixel is a vector that provides a spectrum charaatgrithe materials within the
pixel. Conversely, the data in each band corresponds to awlaand image of the surface
covered by the field of view of the sensor. Progress in mhiéirmel (i.e., spectral band)
imaging has been evolutionary, with the width and numbeihaihaels steadily improving
as the quality of focal plane technology has increased [5].

Many commercial and a significant number of government-&ahkdyperspectral im-

agers operate in the reflective regime of the electromagmpectrum. Ranging from
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Figure 2: Concept of hyperspectral imaging illustrated for a pushhbrgensor.

approximately 0.4-2.5:m (400-2500 nm), this portion of the spectrum covers the- visi
ble through short-wave infrared (SWIR) wavelengths. Hypectal imaging systems de-
signed for the emissive regime, also called the thermal myg-lwave IR region, typically
operate in the range from 7-14m. These sensors are less prevalent in the commercial
and academic research communities than in government #iageequire more sensitive
optics and complicated electronics that are more costly.

While the concept of hyperspectral imaging is straightfadyahere are a number
of practical considerations that must be dealt with in fiedda hyperspectral sensor and
processing its data. Although not the focus of this reseatdl worth mentioning that

environmental factors play an enormous role. Atmosphdfécts such as absorption and



scattering are chief among these. Also, viewing angle,rsday illumination, and shad-
owing come into play. Spatial and spectral resolution traffie are constantly considered
by system engineers [6]. From a signal processing perspedtie spectral variability
exhibited by a given material (largely resulting from sedaoughness) is probably the

greatest challenge for algorithm developers.

2.2 Framework for Adaptive Detection

Despite its lifespan of only 30 years, the area of adaptikeyagignal processing has a rich
history. This is evident from the bodies of literature andnewous conferences devoted
to the topic, as well as from technologies spawned or fueithdry successes in the field.
Specifically, the contemporary formulations of adaptiveayardetection trace their roots
back to Reed, Mallett, and Brennan [7] and later to Kelly. Thede/iduals (along with
a few others) were instrumental not only in formalizing tarea of signal processing, but
also in making it more widely known and popular with thosesailg a narrow community
of researchers tackling problems for the defense estaidish Of particular interest to
this thesis is the Generalized Likelihood Ratio Test apgrdaken by Kelly and a series
of detection statistics that resulted. The problem stateiwiéered by Kelly is summarized
below.

Adaptive array detection considers the problem of detangisignal presence in a
single L x 1 array observatiox. The radar community refers toas a ‘snapshot’ or the
primary data vector. In the case of multi-channel (e.g. gngpectral) imaging, the sample
is a pixel vector. This primary data vector has an unknowmdance denoted by, which,
at times, may also be scaled by a known constaiissentially, it is desired to declare the

observation as one of two things:

H, : x=Sa+tv;



either the primary data vector consists of interferencg ¢iré., backgrountiplus noise),
represented by null hypothest§), or it consists of signal plus noise, represented by hy-
pothesist;. When the target signal is not present in the casé/gfthere is still other
signal energy measured. However, it is not of interest amdcisided along with the ad-
ditive noise, together denoted by such that it encapsulates both noise and background.
When the target signal is present in the primary data vecttiia@rcase off{;, the signal
model consists of ah x P matrix S, multiplied by an unknown vector of target signal para-
metersa, plus an additive noise term The matrixS can be thought of as a system transfer
function. This is analogous to the radar world, wh8reontains the steering vectors for
multiple pulses of radar echo returns. In the case of hyeetsgl detection$S contains the

a priori information available about the target. As the nemtif columns ofS decreases
(i.e., dimension of target subspace), the information ent#éinget increases. This is to say
that there is less variability in the target signal model.fdat, for a deterministic target
P =1, and since there is only a single column, the target is reptes bys.

This detection problem has two unknowdsanda. To accommodate the ignorance
of these ‘nuisance’ parameters, it is assumed that a segoddta set (i.e., a training set)
is available. Training data is assumed to be independenidamdically distributed (i.i.d.)
to the test data. In denoting the training data witrsamples a¥X = [x;|Xa| ... [Xy], it is
assumed that each pixel vecigicontains background only and shares the same covariance
as the primary data vector. As such, the determination orasfgresence will not be made
on observing the primary data vectoralone, but rather based on the totality of the data
summarized byX andthe primary data vector. Under both hypotheses, it is asduha
N > L.

1The term ‘background’ is frequently used in the HSI literatand is synonymous with the term clutter
in the radar literature. Both systems collect measurentbatontain unwanted energy. Data collected by
hyperspectral sensors is ultimately still an image, andials those samples (e.g., pixels) containing anything
other than the target signal of interest are called backgtoWhile the term interference is really more apt
since it means anything that is not wanted, the term backgt@imore popular in the HSI literature, and we
may use the terms interchangeably.



An important quantity that dominates the detection schesississed in this thesis is
the covariance matrix, also referred to as the sample @weei Throughout this docu-
ment, a known quantity such as the covariance is simply @enoyI", whereas an esti-
mated quantity, such as the maximum likelihood (ML) estenaitthe covariance matrix,

is denoted byi". Of course, for the Normal case, this is
1 N
N ~ ~NT
I'= N nE_l:(Xn — ) (Xn — f1)7, 1)

and i1 is the ML estimate of the mean of the data set. Keeping withdsted notation,
boldface upper-case letters and symbols are matrices ddtht® lower-case letters and

symbols are vectors.

2.3 Hyperspectral vs. Radar

Spawned by research and development successes in the nig 49 late 1980s, a sig-
nificant body of work now exists in the area of radar array pssing, including adaptive
detection. This research was motivated by the need for numgrate and robust radar tar-
get detection, driven by the production of increasingly encapable radar systems. Despite
the maturation of other remote sensing technologies imteezars, however, the majority
of publications on detection algorithm development witthia statistical signal processing
community are still focused on radar.

One theme of this thesis is to revisit the classic adaptiveatien problem developed
for radar array processing and apply it to hyperspectraginta While key parallels exist
that make this a promising proposition, a number of impdrieams must be addressed
to successfully employ adaptive detection concepts to B&he items have already been
discussed in the literature; others have not.

Many of these differences are a direct result of the rematsisg phenomenology.
Radar is an active system, illuminating the target with cehepulses. HSI is a passive

technique, relying on incoherent solar illumination frone tsun to provide energy in the



scene. Radar transmitters are instruments that send otitoahagnetic pulses in a well-
defined, controlled fashion. For this reason, radar siggeaide, and often are, constructed
to be zero mean. Data measured by hyperspectral sensoteare-eptical signals that are
the result of many complicated interactions solar radiateetgy has with the atmosphere
and ground. These signals are decidedly not zero mean. &notajor difference is that
radar data are complex, while HSI data are real valued. Eyréven though it is not a
requirement of the adaptive detection structures devdléperadar, the literature is dom-
inated by work where both the dimensionality of the problerd the number of samples
are small. On the contrary, HSI data sets often contain mangied thousand samples
and are of a dimension in the hundreds.
When considered together, these factors amount to suladtantl significant differ-

ences in processing hyperspectral imaging data for adgagetection. Table 1 offers a

concise summary of these differences.

Table 1: Key differences between radar and hyperspectral for agagétection.

HSI RADAR
natural illumination man made illumination
incoherent energy coherent energy
passive technique active technique
electro-optical electro-magnetic
many pixel vectors few snapshots
high dimensionality (100’s)| low dimensionality (10’s)
real-valued complex-valued
never zero-mean almost always zero-mean




CHAPTER 3

STATISTICAL DATA MODELING AND PARAMETER
ESTIMATION

For this thesis, research has been conducted in a numbesas eglated to multivari-
ate statistical analysis. First, existing statistical ledor hyperspectral imaging data of
different types were evaluated for goodness-of-fit usint i@ditional and contemporary
metrics. As a result, it was confirmed that models based onrenaladistribution can be
inaccurate. We then showed that densities from the familgllgdtically contoured (EC)
distributions can lead to more accurate models with smadkadual error, specifically mod-
els based on the elliptically contoure@EC-t) distribution. Two automated techniques for
generating models based on a mixture of Edistributions were developed, both of which
are novel in that they require no manual manipulation of petars during the process.

Also they do not require any a priori information.
3.1 Measuring Goodness-of-fit for Statistical Data Models

A statistical test in which the validity of one hypothesidested without specification of
an alternative hypothesis is called a goodness-of-fit {fEee general procedure consists
of defining a test statistic, which is some function of theadaasuring the distance be-
tween the hypothesis and the data (in fact, the ‘badne$i$)pfand then calculating the
probability of obtaining data that have a still larger vatii¢his test statistic than the value
observed, assuming the hypothesis is true. For the cased#lmg@ hyperspectral imaging
data, goodness-of-fit tests are used to see whether a grquipetd X = [x;[Xa]. .. [Xy]
matches a theoretical distribution such as the multivafiarmal. If so, algorithms can be
designed with significant assumptions and can take advauatfadesirable statistical prop-
erties. Goodness-of-fit tests can be employed on a variefistfbutions for a given data

set, quickly providing the residual error from the modellie tlata. The distribution that
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yields the smallest residual error is the best fit.

The Mahalanobis distance is a familiar quadratic term ardefshed for the Normal
distribution as

A=x—p)TH(x—p). 2

According to [8] the distribution of the estimated Mahalkisodistance (using ML esti-
mates for the mean and covariance) is well-modeled using &qQiare distribution when
the underlying data are multivariate Normal.

As such, goodness-of-fit tests can be used to evaluate hdwhealnivariate statistic
A follows a theoretical curve. To test data that supposedigvioa Normal distribution,
we compareA to a Chi-Square. This is a powerful approach, since goodofeistests
for multivariate distributions are naturally more complied and since the Mahalanobis

distance is a familiar quantity that can be easily compusdguequation (2).
3.1.1 Kolmogorov-Smirnov Test

Given a data set and computing its empirical cumulative distribution funatF;(y), the

Kolmogorov-Smirnov test [9] is
D = max |Fa(yi) — F'(ya)l, ©))

whereF (y;) is the cumulative distribution function (cdf) under tespainti. The Kolmogorov-
Smirnov test compares the empirical cdf of the given datavigktthat of a known cdf by
computing the maxmimum difference between the theoretidbland the empirical cdf
(ecdf) for all points iny. The result of the tesb is the maximum difference between the
two values at all points in the data set.

A closer examination of the Kolmogorov-Smirnov test regealpossible weakness
for the goal of paying careful attention to the tails of thetdbution when measuring
goodness-of-fit. At the tails of the distribution, the vawae small, so even though the dif-
ference between the theoretical cdf and the ecdf of the dagiaen point in the tail may

berelativelyvery large — and therefore significant to target detectiaabse precious false
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alarm probability P 4) depends largely on the tails — it is quite possible that thgmitude
of a difference between two values at a given point in the rbady of the distribution may

be larger, despite being relatively insignificant.
3.1.2 Chi-Square Test

An alternative to the Kolmogorov-Smirnov test is the Chi-&eptest. It has the attractive
feature of being applicable to any univariate distributienwhich the cumulative distribu-
tion function can be calculated. For a given distributitve €Chi-Square test [10] compares
the actual number of observations in an interval to the givenber of observations in the
same interval. Herey equiprobable intervals are used to cover the univariatbgiiity
density function (pdf) for the given distribution, and eaxftthese intervals has a proba-
bility of 1/K. For the number of interval&’, the number of expected data points in each
interval C, and the number of actual data points in fieinterval G;, the Chi-Square test
is

K

D:Z;@. (4)

Each of the intervals represents a region of equiprobghalitd the test gives equal
weight to each of theé( intervals. Recall, however, that the tails of a Normal disttion
are regions of low probability. As such, the tail of the dlaition is covered by only a
few intervals, while the main body of the distribution is eo®d by several intervals. This
means that the Chi-Square test tends to reliably match the looaly of the given data set
with the distribution under test, but offers a poor evalaif the tails. Again, this is not
very desirable for a goodness-of-fit test whose ultimatdiegijon (e.g., target detection)

cares about the tails of the background distribution.
3.1.3 Exceedance Metric

Recognizing the limitations of the previous tests in measugoodness-of-fit for situations
where the tails of the distribution are important, Mardefh][&vas the first in the remote

sensing literature to identify a test that properly evadadhe fit of the tails of the empirical
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distribution. Called the Exceedance metric, it compareeKoeedance curve of the given
data with that of a theoretical distribution. The function probability of exceedance(y)

foracdfF(y)is
E(y)=1—F(y). ()

The inverse of the exceedance function is then

E'(P)={y:1-F(y)=P} (6)

which is the value off where the exceedance curve evaluateB tdf we take the inverse
of the exceedance curve of the proposed distribution atthoint we havez—*(P;). The
inverse of the exceedance curve of the actual dakg ig ;) and is evaluated at the point
v;, Wwherel — F(y;) = P;. The pointsP; are K equally log-spaced steps on the probability
axis of the exceedance curves. Together these terms areécusendstruct the Exceedance

metric
K

D=3 |[E;R)-E\(R)]. (7)
=1
When trying to show the shape of the tails of a distributiorteedance curves prove to be
quite useful. Compared with other tests, the Exceedancemeaetra goodness-of-fit test

does a better job of modeling the tails of a distribution.
3.1.4 Other Variants and Modifications

It is possible to modify the Chi-Square test so that it usey anflesired fraction of the
upper part of the data set, for example 10%. This corresptmdse upper tail of the
distribution and assumes that the distribution is oneesid8imilar to the description in
Section 3.1.2, the modified Chi-Square test divides the ddtmtsil into X equiprobable
intervals, where each interval has a probability df/ K (in the case of 10%). Each interval
then has a corresponding number of data paintsvhich is constant, and the number of
actual data points in each interv@l; is computed. Goodness-of-fit is computed using

equation (4) as before.

13



A modification of the Kolmogorov-Smirnov (K-S) test, whiafets to give more weight
to the tails of the distribution, is the Anderson-DarlingtteThe K-S test is distribution free
in the sense that the critical values do not depend on thefgpaistribution being tested.
The Anderson-Darling test makes use of the specific didtdbun calculating critical
values. This has the advantage of allowing a more sensésteand the disadvantage that
critical values must be calculated for each distribution.

Certainly, the three goodness-of-fit tests presented hen@dwonstitute an exhaustive
set. Over the years, minor modifications have been made ttafuantal tests and vari-
ations may or may not work better in a specific application @bdness-of-fit testing or
model-fitting. However, the general approaches taken bytimogorov-Smirnov, Chi-
Square, and Exceedance tests are representative of funddig@odness-of-fit techniques.

A comprehensive treatment of goodness-of-fit techniquededound in [12].
3.1.5 Results for Normal

Data collected by the Airborne Hyperspectral Imager (AHB][ a long-wave IR spectrum
sensor built and operated by the University of Hawaii, waslus assess the accuracy of the
multivariate Normal distribution in modeling hyperspettdata. As discussed above, the
Mahalanobis distanca of a Normal random vectox follows a Chi-Square distribution.
However, as the Exceedance metric in Figure 3 clearly shihvesjata do not come close
to following they? curve. Tests on other data sets from the visible/short-Wawpectrum
show similar results; the Normal often does a poor job offitthyperspectral imaging

data.
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Figure 3: Exceedance metric goodness-of-fit test for the Normaliligion.
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3.1.6 Results for Elliptically Contouredt

After testing a number of different distributions, the @dically contouredt distribution
offered the best fit on all the data sets tested. The family@tistributions includes the
Normal as a special case, as well as the Weibull, K, Cauchy dred[14]. All of these
distributions share the familiar symmetry of the Normaltrisition and are characterized
by their contours of equiprobability [15]. One of the thintsit makes the E€-a good
match for hyperspectral data is a third parameter, the degrbfreedom [16]. This para-
meter can be used to tune the tails of the distribution soitmately matches the heavier
tails exhibited by HSI data.

Certainly, thet and others in the family of EC distributions are not the oritgraative
for dealing with long, heavy tails not handled by the NormEthe family of (symmetric)
alpha-stable distributions also has shown promise in niogléleavy-tailed radar clutter
[17]. However, many of the distributions in the alpha-stataimily have infinite variance
and/or do not have closed-form expressions for their mosaénirther, statistical inference
of the type we are concerned with in adaptive detection iseextly complicated for the
alpha-stable family [18]. As such, the EGs a more practical alternative for this research.

The reason itis important to accurately model the tails efdaackground distribution in
target detection is related to false alarm performance andtant false alarm rate (CFAR)
operation. Threshold selection, an important task in thexall’/detection process, is pred-
icated on the background distribution. In CFAR operatioe, ttil of the background dis-
tribution is used to integrate out a constant value and tteskiold is set at the point where
that value is achieved.

Figure 4 again shows an Exceedance metric goodness-o$tfitalethe Mahalanobis
distance, but this time the data is from the AVIRIS sensor [A%e reflective regime, and
the Chi-Square curve representing the Normal model is joyean F' distribution curve
representing an E€model. Clearly, the”' curve, which characterizes the quadratic term

(i.e., Mahalanobis distance) of the E@Hstribution, is a much better fit for hyperspectral
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imaging data.

3.2 Finite Mixtures

Hyperspectral images are inherently spectrally inhomegas. Even though many hyper-
spectral imaging sensors have a narrow field of view, theudks from which the data are
collected dictate that the imaged scenes contain manyeiiftghysical materials. For ex-
ample, at an altitude of 705 km, each pixel captured by thedHlgp satellite hyperspectral
imager [20] covers 30 meters of ground on a side.

As indicated in Section 2.1, HSI sensors are employed beaaiugheir ability to dif-
ferentiate one material from another by spectral properiie ground cover classification,
the goal is to create a thematic map, or simply a color-codeaje that represents what
material is present at each pixel location. The variabditgach material type must be first
characterized, using either probabilistic or geometritstaucts. When applying a decision
rule in the classification procedure, the results will bedvahd useful if the class defini-
tions are accurate. Similar logic applies for target dedecapplications; the background
data must be modeled accurately so the response of thede gixegell-separated from
target pixels in the output detection statistic.

Since inhomogeneity of the data reduces the robustnessofrapmodels, accurately
representing the variability present in the data is impdrta

Parameterized models are popular, with the simplest béginivariate Normal dis-
tribution. As seen in Section 3.1.5, very rarely does a silNgirmal distribution accurately
characterize the variability of data collected by operaidyperspectral imaging sensors.
Instead, mixtures of distributions have shown promise teenprecisely model the data
than a single distribution [21] [22]. Intuitively, this ntixre approach to data modeling
has appeal since it can be thought of as combining indivigoabability density func-
tions (pdfs) to get a multi-modal pdf; one mode is assumeceémh class of spectrally

homogeneous material present in the image. Without a ppectral information about
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the materials present, and spatial information on the ibaaf the image each material
covers, directly specifying parameters for each compoakatmixture model is difficult.
In many if not most remote sensing scenarios, such a pritoirmation is not available,
and parameters for a mixture model must be estimated fromatze
As such, a reasonable probabilistic model for spectral dgtaovided by the mixture

density

K

f(x) = Z%’f()(; 0;). (8)

=1
This is known as a finite-mixture model and has been espoysetiby authors for a num-
ber of different statistical contexts, in particular [22K]. The key assumptions driving
the use of finite-mixture models in hyperspectral image\aslare that unique materials
exhibit a representative spectrum and that the inter-cdpsstral variability of different
materials can be used to separate an entire scene into lmhllimogeneous classes. These
groups of pixels can then, in turn, be accurately charasdrby a single uni-modal multi-
variate pdf. Each mode of the mixed pdf corresponds to a @megaterial and, in combina-

tion, account for the spectral variability of the entirea@nfogeneous scene within a single

function.

3.3 Parameter Estimation for EG-Mixture Models

The two major items to be addressed in constructing such mreirnodel are the form for
each pdf component in the mixture and the method for estigaili the parameters of each
component’s distribution. The first issue has been chossadoan preliminary research
findings presented in Section 3.1.6; that is, E@=nsities will be used. The second issue
is discussed in this section.

When trying to compute maximum likelihood estimates, a nunatbenethods can be
employed. Newton-Raphson, quasi-Newton, and modified-blevate all Newton-type

methods that can be used to find maximum likelihood estim&tes/ever, these methods
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can quickly become quite complicated for many estimatiabjams and a stable alterna-
tive is required. An iterative approach that is widely apalle to the computation of ML
estimates is the Expectation-Maximization algorithm.sTddgorithm has demonstrated its
utility in a variety of so-called incomplete data problen®n each iteration of the EM
algorithm there are two steps: called the expectation sfegtdp) and the maximization
step (M step). Because of these two steps, Dempster et alnsedthe algorithm ‘EM’ in

their paper [25].
3.3.1 Expectation-Maximization

The EM algorithm augments the observed détg (i.e., incomplete data) to the larger
Yy (i.€., complete data). Starting with an initial valdg” < W, it then finds¥*, a
stationary point ofL.(¥|Y ), by iterating the following two steps fdrj = 0,1,2,...)
iterations:

E step — impute the augmented data (log-)likelihdd@|Y ,.,) by
QU[P) = E[L(P]Y 4ug)|Y obs, T, (9)
M step — determing’*1) by maximizing the imputed (log-)likelihoo@ (¥| W)
QUEUHIEW) > Q(u|w) v wew. (10)

Again, the idea is to seledt,,, such thattU+Y is easy to compute, thereby providing
a simple, stable algorithm.

Here, EM is used to estimate four parameters, the weight di eamponent in the
mixture and three parameters for each pdf. The ellipticatigtoured: distribution also
has a parameter that controls the shape of its tail, in aofdio the well-known mean and
covariance parameters of the Normal. The degree of freedwangeter specifies the rate
of decay for the tails of the distribution and allows for heavier tails to accommodate

hyperspectral data.
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Recall thatx is an L-dimensional column vector representing a pixel in the hyjpec-
tral image ando is the set of parameters for the multivariate uni-modal pdfalso of
dimensionL. Both©® andr range fromi = 1. .. K, whereK is the number of components
in the mixture model, and the, are mixture weights (i.e., priors) for each component. A
unity sum is enforced for the mixture Weighgfi1 m; = 1. The entire set of parameters
(collection of all®©’s andx’s) for the mixture model is denoted by. The multivariatet

density is

S i S CEY

T L+l/]

frxw,Cv) = F[Kgﬁ

N

ICI”

[

fL(X; 61) ~ tL(X; Hi, Fi7 Vi)

whereL is the length ok, v is the dof,-*;C = T is the covariance matrix, and is the
mean vector. Not to be confused with the covariance matnkoildedl" is the Gamma
function in equation (11).

Once the number of componentsis set, the next step is determining how to initialize
the mixture model. For ML estimation using EM, initializati is extremely important to
finding the global maximum of the likelihood function in atidn to rate of convergence.
This is because EM ensures finding a maximum of the likelifoodtion using equations
(9) and (10), but since the function often has multiple maxiire., many peaks), there is
no guarantee that the root found is the global maximum {alest peak).

We useK randomly chosen pixels to seed the segmentation proces$ooeach mix-
ture component. Random seeding is a simple mechanism anddmmd# optimal, but
choosing random pixels as a starting point actually has abeurof practical advantages
over Euclidean distance metrics or spectral angle meagurastialization. While using
the centroids found by pre-clustering the data may or mayeaat to starting points that
are nearer to the global maximum in the likelihood spaceh saperations require addi-
tional computation. They are also randomly initializedniselves, and as such ultimately

provide no certainty that the initialization will be closethe global maximum.
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Given the datX for N number of pixels, the objective is to estimate the mixtureleio
parameter¥ = [my, T, ..., T, by, oy -, g, L1, oy oo, T vy, s, ..., vk ]. Seeking

ML estimates for®, the pixel likelihood function is used:

L Xna\Il Zﬂ-kfk nvl’l’kvrlmyk) (12)

k=1
The data likelihood function is then

LX;®) = [[ L% ®). (13)

n=1
Since the likelihood space is complicated and unfriendltheoapplication of brute force
to directly solve equation (13), the use of the EM technigueractical to findb.
Once the statistics for each component of the moﬂgf have been initialized, the
expectation step is executed. Here, the posterior prataldil is computed for the!”

component at thg'" iteration by

= (4) T fi (X (4, f
3 i] ) = ( ) ) (14)
L(xn,\IfZ )

This posterior computes the probability that tié pixel is a member of thé” data clus-
ter'. At each iteration, maximization is the second half of EMréjehe parameter esti-
mates are updated according to the posterior just compnteduation (14). The mean,

covariance, and mixture weights are respectively updaged b

- (7)
41 omet Xu P (X0 B77) a5
i, G0
Zn 1 ( ny X )
fOH _ Zmi (X —u?“’)(xn - AE]’*”)TPi(xn;\iJY))
L 0
i) N Pi(Xe; W

T ]))
U &Sl PUM S 17
7 N (17)

(16)

To be precise, each component of the model is a pdf. The terstetirefers to a set of data samples that
is the result of using the model to assign each sample to aheray one cluster. Further, these pixel sets are
naturally grouped together (i.e., “clustered”) in specipace.
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To find the ML estimate of the daf, as with the other parameters, a derivative (e.g., a
“root”) of the likelihood function is located:

dL(X; ¥)

=0 (18)

Unlike the other parameters, however, expanding the le& sf equation (18) results in a

nonlinear expression. It turns out that ™" is a solution of

N i) (7)
1 1 Y + L Y+ L
—(z f]))+log( U 41+ —Z log ul) —ul —Hﬁ( )—log(yl )=0
2 2" N & 2
(19)
Whereuﬁlj) is
(4)
ud = — vi +1L . (20)

4 10 = )T (0 — 7))
andq is the Digamma function in equation (19),

b(a) = % (21)

3.3.1.1 Solving for the Degrees of Freedom Numerically

While there are no references to the use of full, automatixtures with unknown dof in
the remote sensing literature, it has been noted in thesttatiiterature [26] that the con-
vergence of EM can be slow for unknown This is due to the need for a one-dimensional
search in determining at each iteration. Unfortunately, there is no way arouns|, thnd
numerical optimization of equation (19) is required to findadution. Newton-Raphson
and similar gradient or steepest-descent methods are wdesh to solve nonlinear equa-
tions numerically. However, Newton-Raphson can be veryisendo its starting point.
Given that, for the first few iterations especially (becaosendom seeding) the estimate
of vU=1 for each cluster is extremely inaccurate, it is highly likéHat it will make a poor
starting point for the search and an optimum may not be found.

Instead, the bisection method is employed, a fundamenpaibaph that ensures that a

solution will be found. An equatiori(w) = 0, wherew is a real continuous function, has
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at least one root in the interval,, w,] if f(w;)f(w,) < 0. Beginning with an interval that
is large enough to ensure that it contains at least one sol|utie binary search begins by

halving the interval:

iy = 2 J; Wy, 22)

The function is then evaluated at the boundaries to determnirwhich half interval the

solution lies.
f(wi) f(wm) <0 = [wi, wp] (23)
f(w) f(wm) >0 = [w, w,] (24)
flw) f(wm) =0 — wn, (25)

The boundaries are reset to the appropriate interval arfdicgon is evaluated again, with
the recursion ending when the product is exactly zero or whennterval is sufficiently
small (i.e.,w, — w; < €).

Overall, the EM algorithm stops when a maximum in the liketd space is found*.
Once the complete data likelihood no longer increases aétehn iteration, the procedure
terminates and the current parameter estimates for eastechre recorded. Each cluster
now represents a spectrally homogeneous class and is dme/gfcomponents of the final
mixture model. The assignment of each pixel to one of the moml@ponents is actually

determined by applying thmaximum a posterioiMAP) rule:
maX{Pi(Xn; q’z)} = Zin = 17 (26)

wherez is an indicator variable with; ,, set to 1 when pixeh belongs to clustei, and 0
otherwise.

Our initial trials using this approach were published in][27
3.3.2 Stochastic Expectation-Maximization

In some applications of the EM algorithm, the E step is coogpéd and does not yield

a closed-form solution to the computation of conditiongdestation of the complete data

23



(log-)likelihood. One way to get around this problem is teae to numerical integration.
However, in some situations, especially when the complata density does not belong to
the exponential family, numerical integration over thesirg data density does not always
preserve the function [28]. Thus, executing the E step by at®@arlo process may be a
viable and attractive alternative. Such a method was iotred in [29]. An EM algorithm,
where the E step is executed by Monte Carlo, is known as a Monte E¥ (MCEM)
algorithm. It applies whether the ML or MAP estimate is besagight.

Even before the MCEM algorithm, others considered a modifedion of the EM
algorithm in the context of computing the ML estimate of paeters for finite-mixture
models. It was called the Stochastic EM (SEM) algorithm [&04 it is the same as the
MCEM algorithm with M = 1.

However, with the SEM algorithm, the current posterior @ohties are calculated
using a Stochastic E step, wherein a single draw is made tneraurrent conditional dis-
tribution of z given the observed data Because of the assumption of independence of the
complete data observations, this is done by conductingw tbiaeach j(; = 1,2,...).
That s, a drave!) is made from the multivariate distribution with the numbgcategories
having probabilities specified by equation (14). This dffety assigns each observation
outright to one of the components of the mixture. The M stemttonsists of finding the
ML estimate of the parameter vector as if the observation® weterministically classi-
fied according t@. This contrasts with the EM algorithm, where these compurtatare
weighted with respect tall components of the mixture according to the current posterio
probabilities. Note that with the SEM algorithm, there idyoane Monte Carlo sample
taken, so M = 1 always. This algorithm prevents the sequerre $taying near an un-
stable stationary point of the likelihood function. It aldeen avoids the cases of slow
convergence observed in some uses of the EM algorithm, suchthe mixture problem

considered here.

As before, initializing®® is necessary to seed the moments and mixture weights for
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each component. For SEM this is uniformly random. But in thiss;K is not fixed before
initialization; instead, it is an initial guess that will befined along with the estimation of
weights and density parameters.

Now, W = [K, 71, Mo, ..., Thc, oy, Hoy - - Mg, D1, Doy oo T vy, 10,00 g

The first step in SEM stands for stochastic (or perhaps mqueoppately segmenta-
tion), where equation (26) is used to assign cluster merhlgers

Next is the maximization step, which occurs in three parthe Tardinality of each

cluster is computed by
> c9 =N (27)

whereCi(j) is a count of the pixels in clustér This clustering is done in an attempt to
encourage larger increases in equation (13), with the hbpewing out of a path toward
a local maximum and onto a path to the global maximum.

The mean, covariance, and mixture weights are respectoatyputed using the car-

dinality of the current cluster rather than all pixels (whe&y, ; is then'™ pixel of thei'"

cluster)
o)
A0 = 37k, (28)
¢ C(]) e
7 n=1
C(])
sGt) 1 (i Nz
07 = > i — ) (0 — 27T (29)
Cz' n=1
(9)
~ (j+1) — OZ 30

The third part of the M step is when each component is cheakséd if its contribution
to the overall mixture is significant enough. Before inizalion, a constraint is set that all

7Y must be

mixture components must satisfy. At each iteration, thettnnixweightsfrg
greater than a minimur If

AU < ¢, (31)
the number of mixture components is decreased by Bne, K — 1. If only a tiny fraction

of the scene is being represented by a given component, mptiit not statistically

25



significant, but it is not worth the computational burden eéging the component in the

model. Finally, the E step in SEM is computed the same as iatemu(14).

3.4 Finite Mixture Modeling Results for EM and SEM

Our preliminary experiments using the SEM technique in canspn with EM were pub-
lished in [31]. Figures 6 and 8 offer goodness-of-fit resfrtisn these experiments using
EM and SEM, respectively. The value mexhibited by the data can be gleaned from read-
ing the plot in figures 6 and 8, and this value should be contpaith the value ofv.;
shown in the legend. For example, in figure 6, the dark blue ilinthe plot is the actual
value of v for the data in cluster 7. This line is almost directly on tdghe theoretical
dashed black line for = 10. Looking at thev,; value in the legend of figure 6 shows an
estimated dof value of 10.3. This means that our estimatgyube EM technique is close
to the actual value. For this data set, both parameter estimnt@chniques were reasonably
accurate in estimating the appropriate valuerf@nd ultimately modeling the tails of the
data.

The data was collected by the AVIRIS sensor at Camp PendlefargaU.S. Marine
Corps base in California. Figure 5 shows an RGB image of the sd&oth models were
initialized with K = 9 components. However, the result using the SEM techniquehiyd
K = 6 components. The associated cluster images are shown ireBiguand 9, where

the assignment of pixels can be seen to be different for thé &Se of only six clusters.

Camp Pendleton 7

Figure 5: RGB image of Camp Pendleton, scene 7.
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Figure 6: Exceedance metric for ECmixture model using EM technique.

Figure 7: Cluster image generated from EQnixture model using EM technique.
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Figure 8. Exceedance metric for ECmixture model using SEM technique.

Figure 9: Cluster image generated from EQ@nixture model using SEM technique.
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We published a more in-depth treatment of the entire prolefd2], including statis-
tical analysis of the estimation process and use of a diffeyeodness-of-fit test. In this
work, AVIRIS data from Fort Hood, Texas was tested. RGB imadé%a Hood scenes 1

and 8 can be seen in figures 10 and 11, respectively.

'y \th \ ."" A " . ‘-
N “‘ \ o

50 100 150 200 250 300 350 400 450 500 550

Figure 11: RGB image of Fort Hood, scene 8.

For Fort Hood scene 1, the results can be seen graphicaligures 12, 14(a), and 15.

For Fort Hood scene 8, the results can be seen graphicallgures 13, 14(b), and 16.
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These results show that using the K-S goodness-of-fit tes&C+ did a reasonably good
job at modeling the data. It is not perfect, however. Figur2&), 15(d), and 16(b) all
show data with notable deviation from the model, despitagigie ECt distribution.

As such, our conclusion is that EXOnodels offer a viable and tractable alternative for
hyperspectral imagery. Such a modeling approach is weikad for HSI data exhibiting
heavy tails. The EG-approach is not a panacea for all ills, however. The addegtEm
ity of deviating from the simpler Normal models should be sidered, especially if the

residual model error using the EGs only marginally smaller.
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Figure 12: K-S test for Fort Hood 1 using EML. = 15, K = 11.
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Figure 13: K-S test for Fort Hood 8 using EML. = 15, K = 14.

On the topic of parameter estimation, there is more of a detaresult. Table 4 syn-

thesizes tables 2 and 3, and compares EM with SEM. Table 4sstitat/ EM requires al-

most an order of magnitude more iterations to achieve aidrzaity larger improvement in

log[L.(¥)], equation (13). Further, EM must start and end with the sameer of model

components, forcing the user to be very confident in his modi#gr selection. SEM re-

duces the degree of certainty required in the initial nunabenodel components. The only

drawback with SEM is that is does not guarantee an absolcttease in data log-likelihood

at each iteration. Still, it appears that SEM is clearly a fimeameter estimation choice for

many HSI data scenarios.
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Table 2: Selected analysis of EM results for Fort Hood data.

Scene Fort Hood 1| Fort Hood 8
Log-likelihood: mean 20688878 | 23413725
Log-likelihood: std dev 3158 9259
Log-likelihood: maximum 20693077 | 23426014
Iterations: mean 864 590
Iterations: std dev 282 61
Iterations: at maximung[L.(¥)] 913 535

Table 3: Selected analysis of SEM results for Fort Hood data.

Scene Fort Hood 1|| Fort Hood 8
Log-likelihood: mean 20870657 | 23563042
Log-likelihood: std dev 159182 41594
Log-likelihood: maximum 21073599 | 23607418
Iterations: mean 132 143
Iterations: std dev 46.1 39
Iterations: at maximunibg[L.(¥)] 88 103
Components: mean 4.8 9.3
Components: std dev 1.3 0.8
Components: at maximuing|L.(¥)] 7 10

Table 4. Comparison of EM and SEM results for Fort Hood data.

Scene

FH 1

FH 8

Max log-likelihood, EM> SEM in

value

0.88%

0.64%

Max log-likelihood, EM> SEM in num. iterations

1037%

519%

Mean log-likelihood, EM> SEM in value

1.81%

0.77%

Mean log-likelihood, EM> SEM in num. iterations

655%

414%
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Figure 14: SEM cluster images for Fort Hood 1 (d),= 15, Ky = 11, K.,q = 4, and
Fort Hood 8 (b),L. = 15, K;,;; = 14, K.pq = 13.
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CHAPTER 4

A CONCISE DEVELOPMENT OF HSI DETECTION
ALGORITHMS

Despite years of research into exploitation of hyperspéatragery, the remote sens-
ing literature lacks references on the comprehensive dpxent of target detection algo-
rithms. This chapter is a synthesis of items in detectionmhéextbooks, combined with
conference and journal papers on individual detectionreelse and my own additions of
theory and explanation to unify the discussion and keepritise. The detection statis-
tics presented in this chapter provide a foundation fronciid conduct experiments and
analyses on both synthetic and measured data.

Throughout this thesis, the focus is on detection algorsthinat exploit only spectral
information. It will become clear from the concepts presdnn this chapter, and the ex-
periments in later chapters, that it is necessary for tlgetapectrum to be distinguishable
from the background spectrum in order for a detector to exefe. The degree of spectral
contrast between target and background is a determiningrfeccthe utility of hyperspec-

tral imagery for target detection — along with fundameraatérs such as SNR.

4.1 Detection Algorithm Design

As mentioned briefly in Section 2.2, the task of a detectiggodihm is to decide if a
signal of interest exists in a pixel under test, based salelthe observed spectrum vector
X. The optimum decision strategy is to maximize the probigbdf detection Pp) while
keeping the probability of false alarn{4) under a fixed value. This is known as the

Neyman-Pearson criterion and is embodied in the likelihatid test

_ [(x|H, = target signal present) _ -
f(x|H, = target signal absent) < "

A(x)
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where the probability of observingunder the null hypothesis i§x|H,), and the probabil-
ity of observingx under the alternative hypothesisfiex|H;). The desired’r 4 is achieved
by setting the thresholglto appropriately include only a set amount of false alarniguie
17 illustrates this concept. Determining (32) requiresvidedge of the conditional proba-
bilities (pdfs), and these are estimated from the data. Whisrapproach is taken, signal

models are used that lead to the construction of practitthbi@ah suboptimal) detectors.

Multi-Dimensional
Distribution ~ Background Target
4 One-Dimensional

Distribution

Detection

Botector Statistics

m Targets False Alarms

Threshold ‘
Selection — . Threshold

Ppa = /:Of('y)dy

Figure 17: Illustration of detection and thresholding.

4.1.1 A Note on ROC Curves for HSI

Receiver operating characteristic (ROC) curves are typgiesiployed in the evaluation of
detector performance. ROC curves plot e versusPr 4 as a function of the threshold
n. If assumptions are made about the pdfs under the two hypesheheoretical ROC
curves can be generated. However, we are forced to use redadata toestimatethe

density functions. This makes performance evaluation tddm®n algorithms challenging

due to the limitations imposed by a small amount of targea datypically less thari(?
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target pixels exist in a data set of° background pixels. An estimate &f, values for
a ROC curve using only 100 target pixels is not robust. As altréise establishment of
accurate ROC curves on real data sets is quite difficult, guddil8 highlights differences
between theory and practice. Indeed, it is well known that age of thumb the minimum
number of N samples used to estimate a probability P shoulat beast 10/P, or better
yet 100/P [33]. Monte Carlo techniques are suitable for thical comparison, and such

results are presented in Section 5.5.
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o Receiver Operating
o 0.2 Characteristic (ROC) Curves:
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0.1 P, =Py, threshold

0 01 02 03 04 05 06 07 08 09 1
Probability of False Alarm

Figure 18: Receiver Operating Characteristic (ROC) elements.

4.2 Covariance-based Detectors

Unfortunately, as alluded to above, practical situatiore/@nt the conditional densities
from being known due to a lack of perfect a priori knowledgéhef background and target
signal parameter®). As such, a standard approach is to replace the unknown pteesn

with their ML estimates@. While there is no optimality associated with the Generalize

Likelihood Ratio, it has proven widely effective in many apptions
_fx é1|Hl)

Agrr(X) = m (33)
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Parametric signal models are needed to design target detbetsed on the Generalized
Likelihood Ratio (GLR) approach. For the case when we cansafetume that, aside
from noise, the target fills the entire pixel (i.e., there aceother interfering signals in
our measurement), algorithm performance is primarily fiom of background and target
variability. As noted above, the detection problem is folaed as a binary hypothesis test
of target presence.

Here it is assumed both classes can be well-characterizetuliivariate Normal dis-
tributions. Since the background and target are different physicaériadé they have
different means and covariances. This leads to a non-lieesion boundary in spectral
measurement space and a quadratic detector.

In the special case when the two classes can be describedpyraan covariance ma-
trix (i.,e.,I'y = I'y = I), the detection statistic becomes linear. In the signatgssing (i.e.,
radar and communications) literature, this is known as ta&ched filter, whereas in the
pattern classification literature this is called Fisharigér discriminant. For hyperspectral
imaging, the case of equal covariance for target and baakgroarely happens.

When the target of interest is at most the same size as thalspatént of a pixel,
and possibly smaller, any remaining background that fikspixel becomes an interfering
signal. Figure 19 is a simple illustration of this notion. éThature of sub-pixel targets
leads to a replacement signal model, and physically spgakéexpect the target fraction
of the pixel ¢;) and the background fraction of the pixel,J to sum to one. Further,
we expect physical conditions dictate that there is no meg&taction of either class, i.e.,
oy, o > 0. However, enforcing the sum-to-unity and non-negativimstraints make
algorithm development challenging, and most of the liteastays away from the fully-

constrained approach.

1Detectors using E@-ackground models have exactly the same functional formh,omty differ from
their Normal counterparts in distribution of the outputtistéic. See [34] and [35] for details. As such, this
treatment is relevant for all EC distributions, includimgt and Normal.
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Full pixel target

Sub-pixel target

Figure 19: lllustration of a scene with full and sub-pixel targets.

In practice a set of simpler assumptions are used. First arsd important is the exis-
tence of a linear mixing model,

X =S+ Oébb, (34)

whereb is a background spectrum asds a deterministic target spectrum — meaning it
shows no variability in theshapeof its spectral signature, only amplitude variability. If
the target is not deterministic, we assume it lies in a lirsedaspace whose dimension is at
mostd (whered < L, the number of spectral bands). In the extreme case, thet tsignal

is represented by the sum

d
Z () Stk - (35)
pt

Next we assume the background component of each pixel isnalydlistributed according
to a multidimensional Normal distribution of dimensiani.e.,b ~ N,;(0,T"). One reason
this component of the signhal model is assumed random is &r ¢tochccount foall forms of

interference, including sensor noise, etc. Finally, we dicemforce the unity and additivity

constraints. This now yields an additive, rather than megteent, signal model
Hy:x= b,
H, : x = Sa+ b, (36)
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where the pixel is distributed under the two hypotheses as
Hy:x~ N(O,T)

H, :x~ N(SaT). (37)

As touched upon earlier, one key difference between HSI addrrdata is that it is
real and non-negative. This means that HSI data will nevezdrse-mean, and prior to
processing we must remove the estimated background meantffi® entire data cube as
well as the target signature.

In the mid 1980’s, Kelly used the above linear model for ratisa and applied the GLR
approach in order to develop what is commonly referred tthh@seneralized Likelihood
Ratio Test (GLRT) [36], [37]

~—1 ~—1 ~—1
xIT S(S'T "9)-1S'T x
_ (ST S > 0. (38)
N +XIT X

We denote this detector with a subscriptto identify it as Kelly’s algorithm, because in

DK(X)

the literature there are now many detectors that employ the &proach. We will simply
refer to it as the GLRT from here on.
In the early 1990’s another algorithm surfaced called thepidte Matched Filter
(AMF) [38]. It takes the form
XTI S(STT ') 1S 'x
N+sT s
In the mid to late 1990’s it was noted that a key aspect imghdhe structure of equa-

Dayr(X) = Z NAMF- (39)

tions (38) and (39) is their assumption of equality for thekgaound covariance matrix
under theH, and H; hypotheses. Physically speaking, this would mean thatidediffer-

ent amounts of background being present in each pixel uAgend H,, the background
covariance is still the same. Clearly, for sub-pixel targbts is not intuitive. Instead,
the following hypotheses incorporate a minor adjustmeradoount for the difference in

background fraction of each pixel:

H()IX:pb,
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H, :x=Sa+ pb. (40)

Now the pixel distributions are as
Hpy : X ~ N(0O, pT')
H, : x ~ N(Sa pI). (41)

By making this adjustment we acknowledge that the trainirtg daed to generate the
estimatel” has the same structure for its covariance matrix as the pidgr tesk, but the
magnitudes of the variance values differ. The fraction efftxel that is filled by the target
has a direct bearing gn

Employing the modified model in (40), the Adaptive Cosinefaator (ACE) algorithm
[39] has the form
xTD ' S(S'T ') 1S 'x

XTT ' x

Dacr(X) = Z NACE- (42)

The number of pixel$V no longer appears in the denominator as it did for Kelly'sistia
in (38).

For each of these detectors, the theoretical signal-tsen®@NR) ratio is
SNR, = (ST '(Sa). (43)

We can rewrite these three detectors for the case where veesghdeterministic target

signatures. Respectively for GLRT, AMF, and ACE, [40] they are

A —1
s'T x)2
D) = oL (a4)
(T g)(1+ &I x)
~A—1
s'T x)2
Daprp(X) = % Z NAMF» (45)
ST s
~A—1
s'T x)?2
Dacs)= — L X o (46)

Radar engineers will notice no magnitude signs in these egjmes because HSI data are

real, not complex valued.
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When using a predefined spectral library or target datab&es, the algorithms using
s are utilized. When experimental data or new target info isdpeitilized, typically the

versions withS are used.

4.3 Subspace-based Detectors

As a contrast to these three covariance-based detecto@swexamine subspace-based
algorithms.

The Orthogonal Subspace Projector (OSP) [41] was designédiSI applications and
is motivated by some basic concepts of multidimensionalidean geometry. The back-
ground variability is determined from the data and is maxtels a set of vectors that make
up the matrixB. Assuming the three coefficient vectoasa, o, anda, ; are unknown con-
stants, we differentiate between the background undemtbenypothesesa,, anda ;.

This leads to a decision structure that is
Hy: x= Bab70+W,
H, :x=Sa+ Bab,l + W, (47)

wherew is a random term for additive noise of unknown variangei.e.,w ~ N(0,021).

The OSP algorithm can be thought of in two parts. First, tisé éxel x is projected
onto the subspace orthogonal to the background by the apétak. If we were to take
the 2-norm of this quantity we would have the Euclidean distafrom the test pixel to
the background free subspace. This quantity is then migitigdy the target signatui®
making the OSP detector

Dosp(X) = S"P3X 2 nosp. (48)
The projection matrix onto the column space of the backgiddirs computed as
Pz = B(B'B)'B” (49)
and its orthogonal complement is

P; =1—Pg. (50)
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Those familiar with least squares theory will recogiizeB)~'B” as the pseudoinverse of
B. Also, equation (50) is sometimes referred to as a signalkiohg matrix in the array
processing literature.

It is also possible to obtain an expression for a subspacoveof the GLRT [42]. This
detector takes the same approach as in Section 4.2, but geestric method rather than
a probabilistic method to model spectral variability.

Tpl
X PpXx

D(X)aLrrs = ——7— 2 N)sB-
XTP& X

(51)

The notation[SB] refers to a combined subspace of target plus backgroundshwhi
spans the space between our signal of interest and that wi@dyelieve to interfere with
it. The geometric concepts of the subspace algorithms auieted in figure 20 for three

dimensions, specifically the subspace GLRT.

Background

T
ﬂ subspace

Band 3

Target
subspace

Figure 20: 3-d geometric interpretation of the subspace GLRT detector

Some algorithm developers prefer to notice that the 2-nd@ix||, is the Euclidean
distance from the pixel under test to the background sulespdice segment TB in figure
20. Similarly, line segment TC in figure 20 is the distancenfrine test pixel to the com-
bined subspacgPs;x||. These terms appear in the numerator and denominator ofiequa

(51), respectively. As such, the subspace GLRT can be tewiiih a 2-norm format as
D(X)gLrrsB = 31— 5 2 NSB- (52)

In some survey papers, the subspace GLRT is referred to assa& detector, however,

44



thereciprocalof equation (51) is actually es? function. That is,

1/D(X)cLrrss = cos® ¢. (53)

There is a popular monotonic function of equation (51) tisaknown in the statistical
literature as the F-statistic,

xI'Pix — xI P L%
B SBZ (54)

D(X =
( )GLRTSB XTPng'BX

It is called the F-statistic because the detector outputssilbuted as a noncentral F-
distribution, where the noncentrality parameter is givgrsblR,. For the subspace GLRT
this quantity is computed as

(Sa"Py(Sa) _ [IPx(Sall*

2 2
Ow Ow

SNRO -

(55)

What makes the subspace GLRT desirable is that it maximiz&fBSiNany distribution of

w and can operate in constant false alarm rate (CFAR) mode fanalaroise.

4.4 Anomaly Detection

Finally, it is not uncommon in operational scenarios for tdrget to be ill-defined. Some-
times there is simply not enough information about the tamein the case of wide-area
reconnaissance, there may not be a predefined target atsilti{e desire to look for “ob-
jects of interest”). When this lack of a priori target info acs, we go back to the linear
matched filter approach. But instead of using the mean of tfyetalass ;) in our

equation, we use the pixel under testThat is,

Darp(X) = (7 — po) T7H(X = o) 2 nurr (56)
becomes

Dap(x) = (X — po) T (X = pg) Z 14D (57)
Those familiar with the statistical literature will recage (57) as the Mahalanobis distance

of the pixel under test to the background mean. Equationi¢xglled the anomaly detector

(AD) in HSI literature and is given a full treatment for hyppectral imaging in [43] .
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It is worth noting that while anomaly detection might seenmnteresting from a re-
search standpoint, it is a practical approach that can be imsan operational mission.

This can be useful for operating in areas where spectralrids are sparse or unreliable.
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CHAPTER 5

EVALUATION OF ADAPTIVE DETECTORS FOR
GROUND TARGETS

Now that a series of detection algorithms have been pregeatention is turned to
evaluating which of these detectors are the best perforniershis thesis, the target of

interest used for this benchmarking process is the land.mine
5.1 Introduction to Land Mines

Land mines are among the smallest and most difficult grourgeta facing developers of
imagery exploitation algorithms. Almost as ubiquitous lasytare powerful, land mines
remain an issue for today’s military ground forces despgitgrtintroduction more than
60 years ago in the World Wars of the first half of the twentietimtury. What's more,
leftover mines and other unexploded ordinance (UXO) hase laécome a serious civilian
problem. When these items are forgotten about or inadvértemtved (due mostly to
natural phenomenon such as weather), they become a seskus unwitting civilians
living in the area. The task of addressing this issue, knosvihamanitarian demining’,
has received increased attention in recent years [44], [46].

A variety of electro-optical and radar sensors have bededemnd evaluated for the
detection of land mines, especially buried mines. In thiaptér hyperspectral imaging
sensors are considered for land mine detection. By lookintgvatdifferent portions of
the infrared spectrum — reflective (i.e., visible-SWIR) andssiwe (i.e., LWIR) — for both
buried and surface mines, we seek to evaluate the perfoemaingreviously developed
detection algorithms. This study is novel in the sense thaitipte test sites, multiple
sensors, and multiple targets are used in comparing deteetfbormance — an “apples to

apples” comparison of algorithms is made for each target.cas
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5.2 Mine Detection Using Hyperspectral Imaging

In the summer of 1995, DARPA sponsored a series of experinkaaisn as the Hyper-
spectral Mine Detection program. This activity is consatethe impetus for the last ten
years of research in mine detection using HSI sensors [47izhwcontinues today. Two

elementary, yet important, findings of these initial expennts are as follows:

1. Recentdisturbances of the ground surface usually candse\@dl as a localized tex-
ture change in the surface, which can be detected by a broddRaensor. However,
such single band approaches suffer severely from falsmalaaused by vegetation

and/or rocks.

2. The act of burying a mine will bring to the surface some sdiase material that can

be seen as a spectral “scar.”

The first item is the motivation for using hyperspectralheatthan single band or mul-
tispectral sensors in the mine detection application. Beersd item confirms the idea that
the presence of a localized difference between a land midé&seurroundings, caused by
the mine itself or the emplacement of the mine, can be usdukedssty detection feature —
a land mine target signature.

A surface-laid land mine produces a signature that is a thiestilt of the mine’s size,
shape, composite material, and thermal properties. Thiegbaand objects (i.e., clutter)
such as rocks, grass, and dirt surrounding the mine haveenthg different properties.
When viewed in the thermal IR region these properties martifiesnselves as an apparent
temperature contrast. Specifically, it is difficult to makeegping characterizations about
the thermal contrast between a land mine and its backgroenduse mines come in a
variety compositions, sizes, and shapes — metal vs. pldgimeter of inches vs. feet, thin
discs vs. cube shapes. It is also important to note that wbddarget signatures change

with atmospheric (diurnal) conditions; time of day and kma are important factors [48].
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On the other hand, the signature of a buried land mine is remadumuch to the features
of the mine itself, but rather the impact the mine (and thegss of its emplacement) has
on the background. Target signatures for buried mines aedbult of of an apparent
contrast between the temperature of the surface soil abevwaine and the temperature of
the surface soil surrounding the mine. This contrast comms fi complicated interplay
of events, but it can be generalized by two effects. Firstssiface effect of disturbing
the soil directly above the mine during its burial, which bas the soil’'s density and
lowers its conductivity. Second is the volume effect of tkisience of a thermal mass (i.e.,
buried mine) in the soil. The volume of soil directly above thuried mine does not heat
up and cool down at the same rate as the surrounding soil shanthe presence of the
mine’s thermal mass. Naturally, this effect is greater atlelver depths and lesser as time
passes from initial emplacement [49] (i.e., the distritf soil in the vicinity of the mine
becomes more consistent and soil properties even out).

The bottom line is that the phenomenology of target sigreatéor mines are quite dif-
ferent — visible/near IR/ISWIR vs. LWIR sensors, and surfacéousied mines. However,
from an algorithm and signal processing standpoint it isughoto know that signatures

can be developed throughout the infrared regime for vamoing scenarios.

5.3 Experiments for HSI Mine Detection

Tests were made on a variety of measured data with actu&itsasg that a realistic com-
parison could be made. It is worth noting, however, thatigseaes have recently been
made in synthetic data generation including high fidelitydlanine scenes [50].

The first set of data used in our tests was collected by a sentiwe reflective regime,
which we call Sensor X. Sensor X measures 256 fine spectrahelsranging fron.4 —
2.35um, each nominally8nm wide. This is a popular regime for many HSI sensors used in
environmental remote sensing since the waveband coveksdibde, near infrared (NIR),

and short-wave infrared (SWIR). The data were collected inekdser 2002 at a test range
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consisting of forest, grassy meadows, and dirt roads. A 6ekhort grass and a dirt area
are the two scenes on which we focus our tests.

The second data set was collected in April 2003 by the Uniyes§Hawaii's Airborne
Hyperspectral Imager (AHI) [51], a long-wave infrared (LWIS9nsor that measures 256
bands in the range af.0 — 11.5um. An optional, but popular, pre-processing option for
AHI data includes discarding fringe bands at the beginnimgdjend of the spectral region
(bands 1-10 and 211-256). The remaining 210 bands are bimnddee to yield 70 final
spectral channels, each abad0t.m wide. This sort of pre-processing is done to improve
the SNR and reduce the computational burden. As noted edHe phenomenology in
the LWIR region is very different from the vis-SWIR region, whimakes this AHI data
very useful for trend comparison with results from SensomXaddition, the LWIR scene
is a desert terrain that is very different from the other ssamhile sharing the same mine
types.

Two mine types were studied. Mine type 1 is a plastic-cased taine that is square
shaped and on the order of one foot on a side. Mine type 2 is al m@te that is circular
with roughly the same diameter. When buried, the mines wexeepl at a depth of a few
inches. The ground sample distance (GSD, referring to théadpextent covered by a
pixel) of the two sensors are different, with Sensor X haarsiightly better GSD in these
data sets. It is fair to say that these targets occupy eitiggatly more or slightly less than
a single pixel, depending on platform altitude. The AMF, @l.Bnd ACE algorithms are
all capable of detecting sub-pixel targets.

In processing the data, two straightforward thresholdeahhiques were used. After
computing the detection statistic for all five algorithnig first threshold applied was one
that achieved a constant false alarm rate (CFAR). While not éimapstrategy such as
Neyman-Pearson, CFAR operation has proven useful in radiest anmber of other detec-
tion tasks. The second thresholding scheme guaramnt®és detection. This is possible

because ground truth is available for each scene; thatadotation of each of the targets
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in the image is known. By examining the detector output fotalyet pixels and finding
the lowest value, we can ensufg = 1 by setting the threshold to this lowest target value.
Counting the number of false alarms that result from thisstwoéd choice allows us to

calculate a false alarm rate.

5.4 Performance Comparison

Figures 21 - 24 show results from our tests. In each figurd, (pauplots the number of
detected targets using a CFAR thresholding scheme. Fosattdses, this value was set to
10~%. The dashed line near the top of the chart indicates the nuailpssible detections
(i.e., total mines of that type) in each scene. For exampléigure 21(a) there were 13
mines in the dirt area and 11 mines in the short grass aret(ldpaf each figure uses the
100% detection thresholding scheme. These charts can be rehd agborithm being able

to achieve a false alarm rate of “10 to the ...” using the ysamlue. For example, in
figure 21(b) the ACE algorithm is able to achieve a false alat® of 10~ in the dirt area
while still detecting all targets.

There are a number of different perspectives from which wedraw interesting con-
clusions from these results.

With regards to the first choice of threshold selection, CFAR(a*, the anomaly
detector failed to detect a single mine. The OSP algoritlsu did poorly, detecting zero
mines in five of eight CFAR test cases — and the other three basksnly a few detections.
The AMF and GLRT algorithms performed similarly to each otimeeCFAR mode. At a
level of 10~* these two detectors found about half the targets in the sc@ihe ACE
algorithm performed well in all CFAR tests, finding all minestihe scene in three of eight
cases.

In the trials where threshold selection fo30% detection was used, the anomaly de-

tector again had the worst performance. A false alarm rasbofit10~! was seen when

no signature information (anomaly detection) was used. @B8& compared a bit more
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favorably with the other three algorithms in th@0% detection setting, with false alarm
rates betweemn0~! and10~2. The AMF, GLRT, and ACE algorithms had false alarm rates

that went from10~2 in the worst cases to better thadr* in the best cases.
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Figure 21: Vis-SWIR, buried mines: (a) mine type 1, constant false alata detection;
(b) mine type 2, 100% detection.

Upon further review of the covariance-based detectorgghson for their performance
similarity becomes clear. WheN is large (i.e., many background pixels), the second
term in the denominator of Kelly’s algorithm (44) becomegliggble. That is, asV —

oo, the term{(%)foflx} — 0. In the case of many background pixels, which often

happens in HSI detection, the GLRT devolves into the AMF. @os®ly, when there are
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Sensor X, mine type 2, surface, CFAR = 10
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Figure 22: Vis-SWIR, surface mines: (a) mine type 2, constant false atatendetection;
(b) mine type 2, 100% detection.
few background pixels, the normalization of the second denator term byN becomes
meaningless and the GLRT behaves like the ACE. What's moresuperior performance
of ACE in most of our test cases is directly related to it's alggproperty of scale invariance
[39]. Simply put, this means that the training data and tasa dhay be scaled differently
without altering the detecting statistics. However, fog tletection statistics of the AMF
and GLRT to remain unchanged, the training and test data lbeustaled identically.

When looking at the SWIR versus LWIR regimes, the results wergtljnas expected.

In the LWIR, the AHI sensor was able to detect more buried minas surface mines. This
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Figure 23: LWIR, buried mines: (a) mine type 2, constant false alarm rateation; (b)
mine type 2, 100% detection.
is due to the thermal nature of the spectral signature, wikiobt based on the mine itself,
but rather on the effect it's emplacement and presence igrbend has on the surface.
Also, the AMF, GLRT, and ACE algorithms in the LWIR region deset at least half the
mines (both surface and buried) in all cases. On the othat, I&mnsor X, operating in the
visible-SWIR bands, performed better on surface mines. i§tige to the fact that spectral
characteristics of the mine’s composite material are hpadliserved since the target is at
least flush (if not slightly protruding from the ground) sagé. It was somewhat surprising

that Sensor X also did reasonably well in detecting burienlesi
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AHI sensor, mine type 2, surface, CFAR = 104
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Figure 24: LWIR, surface mines: (a) mine type 2, constant false alarmdatection; (b)
mine type 2, 100% detection.

The AHI sensor collected data at an arid test site, where ractvas over essentially
the same desert clutter scene. The primary difference leetwens was the altitude at
which the instrument was flown. In figure 23, the minor diffeze in performance in part
(a) between runs is likely a function of platform altitudedahus ground sample distance.
Run 2349 was made at 700 feet while run 1946 was made at 1400 festchange means
a larger GSD (worse spatial resolution) for run 1946. Gdlespeaking this translates
into fewer pixels on target — including the case where theerrgmow a sub-pixel target. In

figure 24 the altitude for both runs was 700 feet and the p@doce in part (a) was almost
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the same.

The Sensor X data used in these tests was collected at a wdaeist range, and two
different sites were examined. The short grass area provied & tougher setting than the
dirt area for both buried and surface mines. For both CFAR1&6&: detection threshold

schemes, most cases showed more mines detected in theedirt ar

5.5 Theoretical Performance

As a contrast to the results using real data presentedraartie@s chapter, theoretical ROC
curves were generated for the matched filter and Kelly's GL¥®d@nte Carlo simulations

were used assuming Normal statistics similar to those sesrany AVIRIS data sets.

Matched Filter

10% 0.9

target _—E|

pixel

100%

SNR [1010g,,(A)]

Figure 25: Theoretical ROC for matched filter detector on sub-pixeajéés.

Figure 25 shows expected performance for subpixel targetg)ithe matched filter.
There are three levels of fractional fill for the target miatlerl00%, 50%, and 10%. As
expected, there is a 3 dB difference between a pixel exadiy fivith target and half-
filled with target. The one-tenth pixel target yields a 10 d&ér SNR than a full pixel

target. In order to achieve B, = 0.5 for a Pr4 = 107°, the matched filter requires
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13.5 dB SNR. This translates to a fill fraction of approxima#0%. It is fair to say that
for sole source exploitation of hyperspectral imagerypscdd targets are very difficult to
detect. Realistically, data consumers should expect psattsefor targets that fill less than
half a pixel. This underscores the need for sensors with t@gblutionboth spatially and

spectrally.

-5
P, =10 L=144
1.0
0.9 - Optimum
08 | Matched
Filter

0.7 .

e = Anomaly

P=1, N=5000 .
0.6 - 2 N=1000 detector
0.5 |-
P=5, N=5000

0.4 -

0.3 -

Probability of Detection

0.2 - P = Target dimensionality
Q = Background dimensionality

0.1 - N = Training pixel number

]
5 10 15 20 25

SNR [10 log,, (A)]

Figure 26: Theoretical ROC for GLRT detector on targets of varying digienality and
with varying training support.

Figure 26 shows the expected performance for the GLRT underiaty of training
conditions, assuming = 144 measured spectral bands. The dimensionality of the target
(going from P = 1 in the case 0§, to P = 5 in the case ob) is varied, representing the
increased degree of variability &sincreases. The number of training samples also varies,
highlighting the impact of theV term in the denominator of equation (38). For a target
s with only amplitude variability ¢ = 1), a 2 dB increase in SNR is required to achieve
Pp = 0.5 at P, = 10~° when the number of training samples is reduced from 5000 to
1000. This is intuitive since a smaller number of sampleglusecalculate an estimate

means it will be less accurate than an estimate of the sametityuthat used a larger
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number of samples. For the same number of 5000 training €sygll dB increase in SNR
is required to achiev®, = 0.5 at P-4 = 10~° when the target dimensionality increases
from P = 1to P = 5. Note that the blue curve for the linear matched filter at dfiedf the
figure represents a sort of upper bound for GLRT performaarwetthe red curve at the right
represents a sort of lower bound (anomaly detection — n@gige). An interesting point to
note is that while training support has a significant impactetection performance, HSI
collection efforts rarely lack background samples. Indt¢lae more frequent condition is
a lack of certainty in the target signature. The use of a spaedaors §) to characterize
the target is common. The GLRT showed only a minor reductiaeitection performance

for a target with a 5-dimensional signal template versuglariensional signal.
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CHAPTER 6

DETECTION AND IDENTIFICATION OF AIRBORNE
GASES USING HSI

In addition to ground-focused hyperspectral exploitatiasks such as environmental
assessment of ground cover or detection of military targetseen in Chapter 5, there
are other interesting applications. Atmospheric moniigris a relatively new task for
HSI sensors. While most atmospheric monitoring applicati@yuire long wave infrared
(LWIR) hyperspectral imagery, many traditional HSI applicas use data in the reflective
regime (visible-SWIR).

HSI data analysis for gas plumes presents a set of probldifiesedit from those the
remote sensing algorithm development community face vétrestrial data. Terrestrial
objects and airborne gases differ in the way the underlymwy@enment impacts the target
observation. In the case of data with terrestrial targetss fypically assumed that the
intervening atmosphere (air between the sensor and growamas little throughout the
scene, and that temperatures of observed objects varystoet the image. This is not the
case for LWIR sensing of airborne industrial gas plumes. @dence of the ground below
the plume changes significantly over the scene, which inspet observed composition
of the plume in different pixels. Put another way, groundj¢és ardooked at whereas
gas plumes arooked through Much also depends on gas concentration and its optical
thickness. This means spectral contrast (i.e., targettddidity) depends not only on gas
concentration, but also on composition of background neaten the ground underneath
the gas in a given pixel.

Identification or detection of hazardous gases using sthednsors with a wide cov-
erage area is a desirable capability. Often, the gases erfesitare colorless, possibly

odorless, have no set spatial structure once released, antereleased from a point that
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is hard for humans to reach (i.e., high elevation, remotatlon, prohibited area, danger-
ous setting, etc.). Under these circumstances, gases rhakenging targets to detect.
Hyperspectral imaging sensors provide the ability for momecise identification of gas
plumes than previously possible, and also give users thigyabi determine spatial extent
of release over a wide area. Conceptually, the consumers bfl&t& in this context are
many; including regulatory enforcement and homeland $aoificials.

The work in this chapter seeks to fill in gaps between othegregices on this topic
and perhaps unify some key exploitation concepts. Mess[b@¢ uses synthetic data and
applies only standard PCA and standard matched filteringtertigas plumes. O’'Donnell
et. al [53] again use only synthetic data and apply a sigeatased detection algorithm
built on the principle of maximum distance between spedatrarder to create linearly
independent basis vectors for the necessary subspa¢eiagction pursuit). In a report
by Young [54], real data collected with the SEABASS sensarewsed. However, in that
work different gases are sought. Also, only standard PCA #anttiard matched filtering

are applied.

6.1 Collection of LWIR Hyperspectral Data

Once again, the Airborne Hyperspectral Imager (AHI) walzeiil for data collection. AHI
was flown over central Texas in April 2004 as part of an EPAr(ie investigation. The
flight lines used in this work were collected over petrocteahand energy facilities, and
we took three scenes from the data (labeled scenes A-C). Natt¢heese images have not
been roll-corrected. This was done deliberately to dematesthat compensating for plat-
form motion is not a prerequisite for non-literal HSI expédion such as this case. RGB
images from an on-board VNIR color linescan camera can be feeehe three scenes in
figure 27. On collection dates of April 19-20, the sensor wawiil in the afternoon lo-
cal time under high scattered clouds, moderate winds, highidity (90 + %), and warm
temperatures (avg82°F). From a platform altitude of~ 2000 feet, the flight geome-

try as a function of AHI's instantaneous field of view (IFOVielded a pixel size that is
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asymmetric. In the along-track direction, ground sampd¢adiice (GSD) was 1 feet, and

cross-track GSD was 4 feet.

(@ (b) ©

Figure 27: VNIR linescanner RGB images for three AHI scenes: (a) scene) Adene B
(c) scene C.

6.2 A Note on Signatures for Gas Plumes

Inherent in this discussion is the notion that we can defireget “signature”, a spectral
response that uniquely represents our material of intefdstike ground targets whose
signature depends solely on reflectance in the SWIR, gas plcandse identified by either
emission or absorption features in the LWIR. At the emissiarmrs® a noticeable feature
comes from the hot gas hitting the outside air. Further awam fthe emission source, a
key signature feature can come from the plume cooling to m@éient air temperature.
Laboratory spectra are often used as references for signbaised detection algo-
rithms, and data collected in the field must be compensatatiédanodulation of the inter-

vening atmosphere between the sensor and the scene. Whiig séhvery important aspect
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of hyperspectral data processing, we assume in this tHestigli data has been properly
calibrated at the sensor and that a robust compensatiooagphas been applied. For
the AHI sensor a discussion of calibration can be found if. [Examples of atmospheric

compensation routines for the LWIR include MODTRAN [56] an&\GS[57].

6.3 Signature-based Gas Detection

As a representative of the set of detectors that use a taggetl $emplate, the subspace
GLRT was applied for two different effluent compounds. Thbespace GLRT detection
approach differs from the approach most often taken in theR\gés detection literature
— matched filtering. The matched filter is both simple andgititforward, and is even op-
timal under the right circumstances [33]. However, its &aplon must be made with care
for hyperspectral detection. Recall that the linear matditedt makes two key assump-
tions. First is that the variability present in the targedl &ackground classes are exactly
equal, meaning they share a common covariance matrix. 8ettentarget signal must be
deterministic. Practical conditions prevent both of thiésegs from being true in almost
all HSI operating scenarios, which is one reason why sulespased algorithms such as
equation (51) are often a better choice. Schaum revisitshedtfiltering for HSI in [58]
and discusses some of these points in detail for hypergpeéatget detection.

The subspace GLRT detector was applied to scene C usinged sggature for ben-
zene. From the RGB image in figure 27(c), it is clear this is di@eof a petrochemical
facility. Figure 28(a) shows the results from the subspacBTzand part (b) of that same
figure shows the anomaly detector result. As indicated ind¢i@8(c), red indicates a high
value of the detection statistic (target present), andenindicates a low value (target ab-
sent). Clearly, the anomaly detector (AD) in figure 28(b) fdumany pixels of interest,
however, these are very likely to be false alarms since theya exhaust stack and cool-
ing fans. The pipe junctions detected in figure 28(a) are nmote likely to be fugitive

emission sources, since this facility does pipe benzensdest areas of processing and
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storage.

The same two algorithms were run for scene A using an ethgel target signature.
Again, the subspace GLRT outperformed the AD. Figure 29{b)vs the anomaly detector
had a much higher average value throughout the scene, astediby the greenish and
blueish pixels that dominate the image. Figure 29(a), oother hand, shows the subspace
GLRT finding all five of the vents in the holding area as well las tlame tower in the
upper-right corner. Not only do these detection resulteagvith gases identified in an
initial screening of this data [59], but both of these gaseskaown to be present at the site
under study [60] — either as recognized leaks or noted fiegémissions. While this is not
definitive ground truth, these results are certainly plalesand in agreement with visual

analysis of the scene.

example threshold, n

low high
(a) (b) (c)

Figure 28: Subspace GLRT vs. Anomaly Detector, benzene, scene C: (ap&cd GLRT,
(b) Anomaly Detector, (c) color scale.
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(a) (b)
Figure 29: Subspace GLRT vs. Anomaly Detector, ethylene glycol, séerfa) Subspace
GLRT (b) Anomaly Detector.

6.4 HSI Gas Exploitation Without Signatures

Target detection implies there is a defined material of @dethat is being sought. However,
there are other methods by which a user can search for matefiaterest in a hyperspec-
tral image cube. On the whole these techniques are morewsgeand less automated in
nature than signature-based or even anomaly detectioritalgs. As such, more iteration

and hands-on visual analysis are typically required foueate interpretation.
6.4.1 Principal Components Analysis

The Karhunen-Loeve transform (KLT) is a well-known techregrom signal processing
used to obtain a new decorrelated signal that retains as enarigy from the original sig-
nal as possible while only using a few components. The KLTeinéd for continuous
signals and its discrete-time counterpart is the prinojpahponents transform, known in
the remote sensing literature as principal componentysisglPCA) [61]. The transform
identifies orthogonal axes by way of an eigendecompositidheodata covariance matrix.
The magnitude of the resulting ordered eigenvalues inglicthie variability (energy) resid-
ing in the data along the component parallel to the corredipgreigenvector [62]. This
becomes useful in dimension reduction for remotely sensg¢dl lsecause selecting only a

few of the first basis components from the transformed spaansithe user can operate on
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a greatly reduced data set that retains most all of the emettg original data. Of course,
this is in a statistical sense since PCA takes a wholly sizdishterpretation of the data.
The data are pre-multiplied by the selected PC vectors amtréimsform rotates the data
into a new spectral space. This is done to optimize a squamred-criterion of kK — p).
Standard PCA assumes no noise in the signal model and usesaaihdhe scene.

A different flavor of PC transform was published in [63]. Ietfmaximum noise fraction
(MNF) version of PCA, additive observation noise is assumed @ such requires an
estimate of the noise covariance. The criterion used fanopation in MNF is signal-to-
noise ratio (SNR), and the basis vectors selected are thedaft eigenvectors of the noise

covariancex data covariance product. That is, the bases are taken from

~

T (58)

where the selected eigenvectors optimize the ratio

xTT X
XTTox

(59)

wheref‘w is the estimated noise covariance matrix iﬁads the estimated data covariance.
It is worth noting that the resulting component vectors dbfaom an orthogonal basis as
is the case for PCA. However, in the case of MNF, the comporastsrdered in terms of
decreasing SNR. Even though the MNF formulation was realigesddifferent approach, it
yields a mathematically equivalent result as noise-adguptincipal components (NAPC)
[64].

PCA was applied to scene A in an attempt to identify the smalflehe glycol con-
centrations. Figure 30(a) shows an RGB composite of prihcipaponents 1, 2, and 3,
respectively. Parts (b) - (d) of the same figure show the sacoerponents individually in
grayscale. Figure 30(a) seems to display possible ethglgnel locations in a dark green,
and parts (b) and (d) similarly show good contrast for theseeslocations. When MNF
was applied to scene A in figure 31, the resulting RGB compaositiee first 3 components

in part (a) shows some of the same contrast for the ventsdbdionthe flame tower. Only
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the first MNF component shows any contrast on an individualsbaFigures 32 and 33,
respectively, show results of PCA and MNF applied to scene @nBilike structures are

weakly visible in the RGB images of figures 32 - 33(a).

(© (d)

Figure 30: PCA images, scene A: (a) RGB of all 3 components (b) componen) 1 (
component 2 (d) component 3.
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(©) (d)

Figure 31: MNF images, scene A: (a) RGB of all 3 components (b) componefai) 1
component 2 (d) component 3.
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(@) (b)

(€ (d)

Figure 32: PCA images, scene B: (a) RGB of all 3 components (b) componenj 1 (c
component 2 (d) component 3.
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(@) (b)

(€ (d)

Figure 33: MNF images, scene B: (a) RGB of all 3 components (b) compone) 1 (
component 2 (d) component 3.
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6.4.2 Visualization Using 3-Band Composites and Scatter Rko

Data collected outside the visible spectrum is difficult tegent in color format since our
eyes are accustomed to the natural reflectance propertegeofday materials (i.e., we
expect dirt to be brown and grass to be green). Since therm ‘igght” or “wrong” way

to choose color combinations for multi-band IR imagerysiintuitive to seek color com-

binations that highlight specific spectral features of oatenal of interest and make the
target visually distinguishable. This approach has bekentéor volcanic sulfur dioxide

(SO,) plumes in [65], choosing a combination that makes, §8s appear yellow. Judi-
ciously selecting the red, green, and blue color planes ¢avdtands that have distinct
emission/absorption lines can make trace gases stand aunright color.

Once a favorite 3-band RGB combination has been found, anoftine to determine
the number of pixels containing a material of interest is¢aayate a 3-d scatter plot. By
counting the number of samples that exist in a certain regiohne RGB colorspace (a box
in three dimensions), a user can quantitatively assespétiakextent of a gas plume. Also,
a qualitative evaluation can be made as to how pure theset faisgels are: the brighter a
pixel is in the RGB composite, the further it will be towardsexireme in the 3-d RGB
colorcube.

Figure 34(b) shows the fourth principal component for sd@ne which the two sus-
pected SQ plumes are clearly visible near the top of the stacks. Figdi@) shows an
RGB composite using bands R=89, B=175, and G=55 for scene B. Tdgsdane in an
attempt to highlight th&.6m SO, absorption feature in the color pink. While the areas
of pink might be difficult to see in the composite image of fgBrd(a), the pink pixels are
clearly visible in a 3-d scatter plot of the image. Figurea@d3gegins by illustrating the
RGB colorspace, which is a cube in three dimensions, showhgyevpixels of a certain
color are located. Parts (b) - (d) of figure 35 offer differangles of the 3-d scatter plot and
allow the user to easily see the number of bright pink pixelthe image. Note the tight

cluster of pixels along the edge of the box in parts (b) an@{dgure 35; this indicates an
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optically thicker, more consistent concentration of,%f@s. Further, it is easy to notice the
pixels that are darker pink and lie closer to the main clusteark pixels which represent
the background. Such pixels are likely to be part of a gas eltimat is optically thin, which

means more of the terrestrial background was captured ispibetral measurement.

(@) (b)

Figure 34: Scene B, S@analysis (a) RGB image using 9.2-10.748:6bands (b) principal
component 4.

6.5 Comments on Airborne Gas Targets

If there is adequate and accurate information to specifyggetaignature, then a signature-
based detection algorithm such as the subspace GLRT is adpmick for gas detection.
Anomaly detection may be all that is possible under certacumstances; however, it
should be used in conjunction with other target identifamatmethods since the AD is
prone to high false alarm rates. In the LWIR, anomaly detedtiods'hot” objects that may
or may not have spectral similarity to the material of ingtre

Traditionally, PCA and MNF are used for dimension reductiemal be discussed in
Chapter 8, but they are also useful for visually identifyihg lominant image components.
Again, these components are not guaranteed to be a gas pluang other object of in-

terest, yet spectral transformations are a helpful toolamigg a perspective on the key
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Figure 35: Scene B, S RGB image using 9.2-10.7-8:6: bands: (a) 3-d RGB col-
orspace, (b)-(d) 3-d scatter plots from various view angles

constituents in a scene.

RGB composite images using well-chosen 3-band combinatifiesa way to make a
specific gas stand out visually. This method of interpretais good for gases with very
distinct absorption/emission lines. Plotting that RGB deda 3-d scatter plot can also be
valuable visualization tool. It allows a user to make a rogghntitative estimate of the
number of pixels in a gas plume and also helps to qualitgt@stess the changing optical
thickness of the gas in the scene.

This chapter’s investigation into airborne gases as targiérs a contrast to ground-
based objects for hyperspectral image detection. Obwiotha results here are preliminary
and this application is rich for follow-on work in the areaal§orithm development. As

yet, there is no single, simple technique for consistentawlirate gas plume detection.
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Applying signature-based detection algorithms is a vgtidraach, but only when the gas

signature is well-defined for the scene of interest.
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CHAPTER 7

EFFECTS OF COVARIANCE CONTAMINATION IN
ADAPTIVE DETECTION

7.1 The Problem of Contaminated Covariance Estimates

One practical constraint that comes into play for timelydngpectral target detection is the
quality of training data. Adaptive detectors require a selewy i.i.d. data set, training data,
which is used to estimate the covariance of interferencenagahich the target signal is
being sought. However, in many cases of actual operationSdfddnsors, proper training
data is not available. Sometimes archived data is used destielata is carved into two
pieces, where one part is used for training and the otherekir Either way, it is highly
likely that target or target-like samples are unwittinghgluded amongst the background
data that is used to estimate a spectral covariance. In tiag ligerature this is referred
to as self-nulling. This contamination of the covarianceriras obviously in violation
of a key assumption (i.e., i.i.d.) under which adaptive dietes are developed. Moreover,
engineering intuition leads us to assume that it is alsardetrtal to the detection statistic
output. In this chapter we investigate the impact that danae contamination has on a set

of adaptive detectors for hyperspectral imaging and theigédetectability of targets.

7.2 Performance Comparison

Actual hyperspectral imaging data were used in our experisp@ot simulations. Scenes
in the images are mostly a desert terrain. The data was tallédy Sensor X in the reflec-
tive regime and Airborne Hyperspectral Imager (AHI) in tmeigsive regime. The scenes
used for these experiments all have accompanying groutid tithis means we have a
priori signatures for the targets of interest, and knowéedfjthe number and location of

target pixels in the hyperspectral images. For each datthedbackground covariance was
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first computed by removing all targets and target-like sasnphus leaving only interfer-

ence. Then the covariance was again estimated using thre data set that included a
specified number of target-bearing samples. Detectioisttatwere computed using the
contaminated covariance and the uncontaminated covarestonate for each target type
in all four scenes.

Three different ground targets whose spectral signatueesimilar to the background,
as measured by spectral angle, were chosen. The same (deyatited as targets 1, 2, and
3) are in all four scenes, except for target 3 that is not prtasescene 4. Evaluating three
detectors in four scenes gives us 12 test cases. The SNR is d@iBen for each of the
targets in tables 5-8. Note that each of the targets hastavetydow SNR value, with nine
of the 11 targets being less than 2 dB.

In addition to a low SNR value, another factor that makes amjitarget difficult to
detect using a hyperspectral sensor is how spectrallyaimils to the background against
which itis being sought. One way of determining spectralilsirity between two spectra of
length L is by measuring the angle between the spectra ih-dimensional vector space.
The spectral angle mapper (SAM), while simple to compute,demonstrated widespread
utility and continues to be part of HSI algorithm researdb] [@Gpectral angle is computed

for two spectra, vectorsandb, as

B (s,b)
0(s,b) = arccos (W) (60)

where(-, -) is the dot product anfi - || is the 2-norm.

Spectrally similar targets are of keen interest since theggnt HSI detection algo-
rithms with only a small amount of spectral contrast, whicikes them difficult to detect.
Tables 5-8 also show the spectral angle between the meagroackl spectra and the par-
ticular target signatures for each scene. Ideally for deteca target would have a spectral
response that is very different from the background and bHeusrthogonal. In three di-
mensions, it is easy to visualize thad@® angle between the target and background vectors

would be ideal. Targets that are nearly orthogonal are¢aiell-separated.” The angles
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for all targets used in this study are very small, with all boé of eleven being separated
from the background by less thah. Illustrating this point is figure 36, which depicts the
spectral angle between target 3 and the background in sce@erssidering these small
angles, and the modest SNR of these targets, it is reascwaddasider these targets diffi-

cult.

AHI scene 3

background mean
target 3 signature

Band 3

Band 2 Band 1

Figure 36: Three dimensional vector space illustration of small s@éengle between
target 3 and background in AHI scene 3.

Another reason for using these targets is experimentaraon®fhe high degree of
spectral similarity for the targets chosen assures us beaexperiments are not overly
influenced by one or two target samples that are extraoityirdifferent from the back-
ground. Instead, these target pixels are only slightlyeddht from the mean background
pixel. This allows us to illustrate that covariance contaation, even with only a few
samples that are not very different from typical interfeenhas a significant impact on
adaptive detection output.

Tables 5-8 show the number of target and background pixeledoh scene. In all
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scenes, target pixels account for no more than a fractiolyobf total samples. Figure
37 shows the results of our experiments. For each scene, dietection statistics (AMF,
GLRT, ACE) are evaluated separately for the target set. Ah ¢aget, the value of the
detection statistic using a contaminated covariance isgu@n the left and stands next to
the value of the detection statistic using a proper, uncoimated covariance on the right.
Above each pair is the value of how much greater the unconizted detector output is
with respect to the contaminated output. These differereege from only a few percent
to over 50% in some cases. It can be seen that, as expectedeidiftargets in different
backgrounds display varying degrees of a reduced respdimse change also varies with

algorithm type.

Table 5: Target info for AHI scene 1 with 145445 background pixels.

Iltem | Num. Pixels|| Spectral Angle] SNR
target 1 26 6 = 0.85° 3.63
target 2 8 0 =0.47° 2.48
target 3 30 0 =0.23° 1.81

Table 6: Target info for AHI scene 2 with 128250 background pixels.

Iltem | Num. Pixels|| Spectral Angle| SNR
target 1 44 0 = 0.55° 1.77
target 2 42 6 = 0.65° 1.88
target 3 23 6 =0.70° 1.61

Table 7: Target info for AHI scene 3 with 161222 background pixels.

Item | Num. Pixels|| Spectral Angle| SNR
target 1 45 0 =0.77° 1.70
target 2 56 6 = 0.55° 1.57
target 3 29 0=113° 1.58
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Table 8: Target info for AHI scene 4 with 116790 background pixels.
Iltem | Num. Pixels|| Spectral Angle| SNR

target 1 19 6 =0.91° 1.71
target 2 24 6 =0.76° 1.73

Figure 38 graphically shows the structure and compositisasidual contamination in
covariance matrices for two Sensor X data sets. In part fagrie scene and part (c) for
another scene, the residual error from target contamimatidhe background covariance
estimate is shown as a color-scaled image. The first spdxrals (.35um) are in the
lower left corner, and the last spectral ban2ld m) are in the upper right corner of the
image. Parts (b) and (d) of figure 38 show the 3-d structurdefrésidual error due to
covariance contamination. Overall, this figure shows tlmattamination most severely
affects the visible and NIR bands in the reflective regime.

The results shown in figures 37 and 38 are averages. This nieapercent change
in figure 37, and the residual error graphically shown in #388, is the average reduction
over all target pixels. The maximum degradation found isodlewis for each scene. AHI,
scene 4: 3.14 dB. AHI, scene 1: 2.53 dB. Sensor X, run 6300: 1B/Sdnsor X, run
5700: 1.85 dB.

7.3 Detector Robustness to Covariance Contamination

Even using ground targets with low SNR and high spectrallanty with the background,

it is clear that popular adaptive detectors are negativalyacted when only a few target
samples are included in the estimate of the interferencar@nce. We first reported this
finding in [67]. This result seems to be consistent with ottedies done from a theo-
retical perspective on similar topics [68], [69]. The AdaptMatched Filter, Generalized
Likelihood Ratio Test, and Adaptive Coherence Estimator sdl @ maximum likelihood

(ML) estimate of the background covariance matrix to chiaréze interference. Figure 37

shows that among these three detection statistics, the Agiffithim is the most robust to
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covariance contamination. The performance of ACE was tret bdtected for all targets in
all test cases, typically on the order of a 10-15% reductiotetector output when the co-
variance is contaminated. Separately, the response ofMieand GLRT algorithms was
very similar, for both contaminated and uncontaminatenneges. This is due to the fact
that for a large number of samples, which is often the caseSh(kel.g., 100000-250000+
pixels), the contribution of the tern’ ' x in the denominator of equation (38) is neg-
ligible and the statistic becomes more like equation (39)Vas> oo. Clearly, whichever
algorithm is used, data consumers should expect a reduatidetector output for target

samples when the interference covariance is contaminated.
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Figure 37: Detection statistic output using contaminated covarisgestenate (left, blue)
and uncontaminated estimate (right, red) for AHI data.
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Residual covariance contamination: run 6300

Residual covariance contamination: run 6300

x10* Residual covariance contamination: run 5700

Residual covariance contamination: run 5700

100

(d)

Figure 38: Graphical presentation of residual covariance error (cleeontaminated) for
Sensor X. Run 6300: (a) and (b). Run 5700: (c) and (d).
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CHAPTER 8

IMPACT OF DIMENSION REDUCTION ON
DETECTOR OUTPUT

Whatever the application, those responsible for fieldingehgpectral sensors and exploit-
ing HSI data face a set of similar challenges. Chief amongetiesies are the storage,
transfer, and computer processing of large files generatégiterspectral sensors. Opera-
tional instruments on airborne platforms, such as unmaamaehicles (UAVS), airplanes,
and helicopters, are being designed to have small form maetdeaving little room for
large on-board storage capability. Communications link&actical platforms have limited
bandwidth for real-time data transmission. The same caraligefsr scientific platforms
such as NASAs EO-1 satellite, which carries the Hyperiopdrgpectral imager. Ground
stations and other processing centers frequently rely omuerical off-the-shelf (COTS)
computer workstations for digital data computations, amthshardware struggles to yield
exploitation results in real-time or even near real-timeféd HSI data cubes.

To deal with these constraints, dimension reduction isnofterformed at some point
in the image chain of TCPED: tasking collection— processing— exploitation— dis-
semination. Generally speaking, thanks to numerous namage channels, a significant
amount of spectral redundancy exists in HSI data. Some td\@fjnal compression or di-
mension reduction is appropriate. Careful attention mugfiven, however, to the impact
that such pre-processing operations can have on expbmtatgorithms. In this chapter,
we seek to characterize and quantify the impact that the test midely-used dimension
reduction techniques have on adaptive detection statiste again do this for the case
of difficult targets — signals of interest that are specgraéiry similar to the background

against which these targets are being sought.
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8.1 Brief Survey of Techniques for HSI Data Reduction

There are a number of dimension reduction techniques foerspectral imaging data that
have appeared in the literature. One of those worth notiagwiil not be covered in this
thesis is [70], where wavelet spectral analysis is empldgedutomated dimensionality
reduction of pixel vectors. Projection pursuit — relatedhi® geometry of convex sets — is
discussed in [71], where the authors claim to find image featthat can be used to unmix
pixel vectors into a smaller data set.

Utilizing similar concepts of convexity, the N-FINDR algibrm [72] finds the set of
pixels with the largest possible volume by “inflating” a siepwithin the data. The in-
put for the algorithm is the full image cube, with no previque-processing. A random
set of vectors is initially selected. In order to refine theiah estimate of endmembers,
every pixel in the image must be evaluated in terms of pixeityplikelihood or nearly
pure statehood. To achieve this, the volume is calculate@very pixel in the place of
each endmember. A trial volume is calculated for every pimetach endmember posi-
tion by replacing that endmember and finding the volume. dfréplacement results in a
volume increase, the pixel replaces the endmember. Theeguwe is repeated until there
are no more replacements of endmembers. Once the pure pieefeund, their spectra
can be used to unmix the original image. This produces a sghajes that show the
abundance of each endmember. While the endmember deteioniiséép of N-FINDR
has been optimized and can be executed rapidly, the congnabperformance of the
algorithm depends on the accuracy of the initial randomcsiele of endmembers.

Another successful approach has been the pixel purity ifl@EX) [73], which is again
based on the geometry of convex sets [74]. PPI considers¢rappixels as vectors in an
L-dimensional space (where L is the number of spectral baridse algorithm proceeds
by generating a large number of random vectors, also cafikewers” [75], through the

dataset. Every data point is projected onto each skewergaiich the position of each
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point is recorded for every skewer. The data points thaespwnd to extrema in the direc-
tion of a skewer are identified and placed on a list. As morevskg are generated the list
grows, and the number of times a given pixel is placed on i$tisslalso tallied. The pixels
with the highest tallies are considered the purest onesg sipixel count provides a “pixel

purity index.”
8.1.1 PC-based Transforms for Dimension Reduction

The principal component (PC) transform (also called PCA as iap@r 6) is arguably
the most popular dimension reduction technique for hypasal image processing. As
indicated in Section 6.4.1, the PC transform is the disareteterpart of the continuous
Karhunen-Loeve transform (KLT). In HSI exploitation, PCAea& a straightforward ap-
proach for computation and is optimal in a statistical serigeeserving a maximal amount
of the variability (i.e., energy) present in the originatalaPCA does not take into account
any information about noise or the target signal of inteireite case of detection applica-
tions. On the other hand, the Minimum Noise Fraction (MNF)gi@ of PCA does use a
statistical estimate of noise in order to produce new dattove who elements are ordered
in terms of SNR. This, too, was covered in Section 6.4.1, aadititity of PC tranforms in

various applications is covered in [76].
8.1.2 A Note on Data Reduction vs. Dimension Reduction

To be clear, the notion of data reduction refers to any tanshtion that results in fewer
(supposedly representative) pixels or in an HSI cube witimaller number of elements
per image pixel vector. PCA and MNF are truly focused on thmiektion of spectral
redundancy (i.e., reducing dimensionality) in the imagmail, whereas PPl and N-FINDR
attempt to generate reduced data sets by way of endmembeemdgdtion. As such, the ob-
jective functions are obviously different. Nonetheledsthee techniques mentioned above
are widely used during pre-processing and prior to the agfitin of detection algorithms.

Our initial investigations into the impact of PCA on adaptdetection statistics were
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published in [77]. In the next section, the detectabilityafets is analyzed for both PCA

and MNF dimension reduction.

8.2 Performance Comparison

Data from AHI and Sensor X were once again used to empiricaiblyze the effects of
PCA and MNF dimension reduction. All 256 Sensor X bands weeel @and 70 final AHI
bands were used. The fact that this is actual data and groutidi$ available for these
scenes makes these measurements well-suited to algariéxmeriments.

Target detectability is a function of SNR and spectral casitrAs discussed in Chapter
7, targets with similar spectral characteristics as th&dpawuind exhibit a small spectral
angle when the target and background mean are viewed asvatkuclidean band space.
As discussed in Section 7.2, spectral angle is computed bgteq (60). This simple
guantity has demonstrated its utility and proven effeditiveot only in HSI detection, but
also classification [78], [79]. In order to narrow our inugation to focus on the impact
that dimension reduction has on SNR, we use targets with nhggdestral angle but high
SNR. For these patrticular tests, tables 9 and 10 describeatherdolved.

To be precise, the listed SNR throughout this thesis is adnd¢r approximation com-

puted using the Mahalanobis distance,
SNR = 101og,,(A), (61)

where for each pixel vector

~

A=(x—p)T (x—p). (62)

In equation (62), the estimated covariance of the backgtésidenoted byl and the es-
timated background mean js Recall that the maximum likelihood (ML) estimates are,

respectively,

N
0= o o " 63
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1 N
u:N;xn. (64)

Table 9: Number of target and background pixels for dimension redndests.
Sensor Description Target Background

Sensor X|| run 6300: grasslang target A=29| 121690
Sensor X| run 1068: dirt area|| target A = 30 125580
AHI run 0769: desert | target D = 30| 145445
AHI run 2349: desert | target D = 31 142887

Table 10: SNR and spectral angle between targets and mean backgrouddrfension
reduction tests.

Sensor Description Spectral Angle SNR
Sensor X| run 6300: grasslang target A:0 = 13.29° || 16.77
Sensor X|| run 1068: dirt area|| target A:0 = 14.58° || 16.87

AHI run 0769: desert || target D:6 = 1.92° | 23.69
AHI run 2349: desert | target D:0 = 2.44° || 22.83

Figure 39 shows the effects of dimension reduction on tadgtgctability for the four
test cases. In each part of the figure, the red curve plotshifees a function of number of
principal components used for the MNF transform. The blugein each figure plots the
SNR as a function of number of principal components usedfstandard PCA transform.

A few things are clear from these results. First, the MNF gfarm preserves more
target SNR when only a few principal components are used.t iEhi@ say that when
10 or fewer dimensions are retained, the MNF transform predwa smaller reduction in
target SNR in the new (reduced) data set. For moderate lef/dimensionality reduction,
between 10 and 50 principal components of the original dhtae was no clear winner.
In fact, standard PCA often performed better in preservingetaSNR than MNF at these
reduction levels. While the results for moderate reductewels were inconclusive, this
suggests an interesting point. When a moderate number ofauenfs are used, typically

accounting foB9 + % of the original energy, it seems that specifics of the targgiadure
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really dictate which objective function (i.e., transforms)more effective. As expected,
when more components are used, the preserved SNR apprdbel@mgginal SNR of the
target in the full data cube. For more than 50 principal congmds, there was little, if any,

difference between PCA and MNF for any of our test cases.
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Figure 39: Target detectability for dimension reduced data: (a) Aldere 1; (b) AHI,
scene 4; (c) Sensor X, run 1068; (d) Sensor X, run 6300.
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Looking at detector output for reduced data, results madgavhat was seen in terms of
target SNR performance. As fewer principal components weegl to create a dimension
reduced data set, detector output went down. Also, dataeebusing the MNF transform
has slightly higher detection statistics than data redwsitg standard PCA for extreme
levels of dimension reduction. Figures 40 - 43 make compasion an algorithm by
algorithm basis, showing PCA and MNF results side by side &@hescene. Again MNF
isin red and PCA is colored blue. The figures plot detectorututmormalized and scaled
to be between 1-100 — as a function of principal componergd.us

Similar to the results for land mines in Chapter 5 and airb@ases in Chapter 6,
the ACE algorithm was a superior performer followed by thespalce GLRT. Despite a
slightly higher SNR, the targets in the Sensor X scenes prdifecult due to their limited

spectral contrast (i.e., small spectral angle).
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Figure 40: Matched filter detector output for dimension reduced daq:AHI, scene 1;
(b) AHI, scene 4; (c) Sensor X, run 1068; (d) Sensor X, run 6300
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Figure 41: GLRT detector output for dimension reduced data: (a) AHénscl; (b) AHI,
scene 4; (c) Sensor X, run 1068; (d) Sensor X, run 6300.
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Figure 42: ACE detector output for dimension reduced data: (a) AHI, scen(b) AHI,
scene 4; (c) Sensor X, run 1068; (d) Sensor X, run 6300.
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Figure 43: Subspace GLRT detector output for dimension reduced dat#HlI, scene 1,
(b) AHI, scene 4; (c) Sensor X, run 1068; (d) Sensor X, run 6300
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8.3 Detector Robustness to Data Reduction

In this chapter we have evaluated the impact that two praicipmponents transforms have
on target detection performance in hyperspectral imaging, empirically quantified the
change in detection statistic output and target detediatiibt results for a wide variety of
captured energy levels.

Detection performance for reduced data was dependent onitalg, and this result
seems to be consistent with other studies done from a diff@erspective on similar topics
[80], [81]. But a few new and interesting trends can be gledrad our experiments.

Intuitively, it may be expected that detector output wouldrease and decrease pro-
portional to the number of principal components includethm reduced data. However,
this wasn't always the case in our experiments. For exanfiglere 40(a) shows that the
output for eight components was more than half the output3aomponents. Yet the out-
put for 30 components was almost exactly double that of 15pommants. In figure 41(c),
the detection statistic computed for 60 principal compdmeras only35% of that for 120
components. Likewise, the value for 120 components was3iiilyof the value computed
using 256 components. This type of inconsistency was sebotimdata regimes, SWIR
and LWIR, as well as in different detectors, including the rhattfilter and GLRT. The
ACE algorithm in figure 42 is reasonably indicative. Part (@wss that for 70 principal
components the detection value is roughly 42, and for eightponents the value is about
six. That means for almost nine times the number of spectnati, the detector output
is about seven times greater. This sometimes nonlineaogropality is the same for the
PCA and MNF transforms.

As such, it is difficult to proclaim any sort of “optimal” lelef dimension reduction.
A suitable level of detector output must be determined omdividual basis per specific
target and scene characteristics.

The number of target pixels relative to the total number @gls in the scene is an-

other important factor. With only a small number of pixelegent that follow a particular
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spectral signature (i.e., target), dimension reductiandforms such as PCA are likely to
discard their contribution to the reduced image if a smattipo of the overall image vari-
ability is present in those samples. This fact has directigafion for HSI exploitation
tasks such as wide-area detection and reconnaissance thieaargets are often difficult

and/or sparse.
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CHAPTER 9

CONCLUSIONS

In this research, a series of pre-processing steps for fleitation of hyperspectral imag-
ing (HSI) data were investigated. Traditional assumptifonsstatistical data modeling,
covariance estimation from training data, and dimensigneg¢duction were evaluated to
see what happens when assumptions for these items are vaxgdated altogether.

First, background was provided on the history and use of Rimote sensing. Adap-
tive detection was highlighted as a primary applicationrH& sensing, and parallels were
drawn between target detectors for radar and HSI systems.

Then the task of statistically modeling HSI data was covénedietail. The common
choice of modeling data using Normal distributions was shtovbe insufficient in some
cases. As such, a finite mixture modeling approach was deseéléor elliptically con-
touredt (EC+) distributions. Assuming no a priori knowledge, two paréenestimation
techniques were presented to simultaneously estimatenkiawn parameters from the
data. Results demonstrated that EQ@ixtures can be an accurate and attractive alternative
to Normal models in many data sets, but it is not a silver bstkution to the statistical data
modeling problem. The Stochastic Expectation-Maxim@a{SEM) parameter estimation
technique proved quite valuable, and seems well-suitedisand similar situations.

A concise treatment of adaptive detectors for HSI was gigemering algorithms that
use both structured and unstructured approaches for ¢baraing the background. In
experiments on both SWIR and LWIR data, the Adaptive Coherestiem&tor (ACE) al-
gorithm was consistently the best performer. It's propeftgcale invariance allowed the
ACE to detect both full and sub-pixel land mine targets [82fet@bustly than other algo-

rithms. Such scale invariance may be why the ACE detectoregagdrone to the effects of
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shadowing and secondary illumination differences in tasttaaining data. All in all, it is
apparent that land mines are difficult targets to detectyagsand HSI can play a unique
role in mine detection.

Next, attention was given to non-terrestrial targets, sigatly airborne gas plumes.
Signature-based algorithms performed better than genaomaly detection [83]. How-
ever, it was noted that gases are difficult specimens to generecise target signatures
for, and anomaly detection may be used frequently in pract©ther methods for gas
identification were discussed, including three-dimernsi@tatter plots and special RGB
composites of carefully chosen bands that highlight dis&mission/absorption features.

The issue of covariance contamination was then addressédha problems for target
detection associated with poor training data were made.deauding target samples in
background covariance estimates is known as covariandaroamation, and its negative
impact on detector output was quantified experimentallggisaultiple data sets. Also the
structure and magnitude of residual error in the covarianagix itself was illustrated.
Reduction in performance due to covariance contaminatiagnskiawn to depend largely
on algorithm type, with the ACE again showing the most resdie Bands in the visible
and near infrared (NIR) were the most prone to contaminatioor.eDespite the feeling
of many in the remote sensing community that inclusion ajeapixels in training data
is not a problem for HSI detection scenarios, the resultsgmed in chapter 7 show that
covariance contamination can be a very real problem and l@adoticeable performance
degradation.

Finally, the topic of dimension reduction was investigatédis is a widely used step
in pre-processing hyperspectral imagery, and is done taceedomputational complexity
for exploitation algorithms and reduce file size for dataage. Yet most HSI practicioners
believe that dimension reduction greatly reduces detexitput, and only tolerate this to
speed up execution. After a brief overview of other data cédo and endmember de-

termination methods, two types of principal components (P&)sofrms were discussed.
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Standard PCA and minimum noise fraction (MNF) PCA were usedeah data sets to
guantify the impact that dimension reduction has on targ&tatability. The MNF trans-

forms the data into new spectral axes ordered by decreasl®y &d this had a profound
impact on target detectability for cases of extreme dimaradity reduction. MNF pre-

served target SNR better than PCA for extreme dimension tieducStandard PCA does
not take noise into account, and rotates the data to a new sghogonal axes that place
a maximal amount of variability (i.e., energy) from the am@ image signal into the first
few rotated bands. For moderate dimension reduction, PCA/HE had the same impact
on target detectability and ultimately detector outputrp8igingly to some, the results of
chapter 8 demonstrate that significant dimension reductorbe achieved with a minimal

impact on target detectability.

9.1 Contributions

Contributions of the thesis include the following:

e Extension of a finite-mixture model using elliptically contedt distributions to

accommodate heavy-tailed hyperspectral imaging data.

e Development of methods for simultaneously estimating theumeters of an EC-
mixture model (including dof) using the Expectation-Maxiation and Stochastic

Expectation-Maximization algorithms.

¢ An empirical analysis of the performance characteristiése state-of-the-art adap-
tive detection algorithms for both reflective and emissiv& Hata. These detectors
were originally designed for radar systems and have onlgnthe been applied to

HSI exploitation.

e A fair, “apples to apples” comparison of hyperspectral dieta algorithms for land
mines. These results are the only performance benchmahkefkind in the litera-

ture for mine detection using HSI.
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o Utility assessment of principal component-based transédior use in special RGB

composite images to help visually identify gas plumes indngpectral imagery.

e Development of a three-dimensional scatter plot approactfalitatively evaluating
the concentration and quantitatively evaluating the abuod of gas plumes in HSI
data. This is based on a flexible, but judicious selectiorpetsal bands for RGB

color planes to highlight a distinct emission/absorptieatéire of the gas specimen.

¢ An experimental, quantitative analysis of the deleterioysact that covariance con-
tamination has on adaptive detection performance. Everefatively weak targets
with limited spectral contrast, a significant reduction &tettor output was demon-

strated for multiple data sets.

¢ An evaluation of the effect dimension reduction techniduege on target detectabil-
ity. The Minimum Noise Fraction (MNF) transform maintairesdet detectability
better than does standard PCA in the cases of extreme dimemesioction. Consid-
erable dimension reduction is possible without a notice#ids in detection perfor-

mance.

¢ Fully automated software implementations of the discussedeling, detection, and

dimension reduction algorithms.

9.2 Future Work

Algorithms that assume a priori info As the name implies, adaptive detectors all require
a secondary data set to train the algorithm on what not toflmok the scene. While
this has been a practical and successful approach to dateetltal work is possible
for HSI in which additional a priori information is assumeéd.such cases, Bayesian
inference can be brought to bear on this problem. Despitdaitieit is unlikely
that complete a priori information would be available fornmmpadSI exploitation

scenarios, it is an interesting theoretical exercise fanaehsensor application.
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Non-terrestrial targets In this thesis an initial investigation was performed onedabn
of airborne gases, and results showed some limited sucbeskate, the majority of
HSI detection work has focused on ground targets. While thamniimportant ap-
plication, there is tremendous potential in exploiting ésgpectral imagery to detect
and classify scenes with airborne materials of interese. drhissive regime is where
most of this work will be done, and detection work in the LWIR &rborne targets
will require a deeper understanding of the atmosphericiphysvolved. However,
with bio-terrorism and homeland security a growing sourfdeoth concern and fund-

ing, it would be foolish to ignore airborne gas targets fol HS

Inclusion of Morphology A fundamental assumption made in all the detection work pre-
sented in this thesis is that only spectral information wseduin determining tar-
get signal presence. But as the spatial resolution of HSlosensproves, there
is a better opportunity to include spatial structure andgshaformation of targets
in a decision process. Classical image processing techsiqukiding image seg-
mentation and edge detection might play a role in introdyiomorphology into the

hyperspectral target detection procedure.

Signature phenomenology and band selectiofselecting the “best” bands to support the
exploitation of a particular signature is not currently doif band selection is done
in such a way that takes into account the unique propertidsedarget signature and
background —rather than simply a statistical generalithefentire data cube — there
is opportunity for a major benefit. This thesis talked briaftyut the vastly different
nature of target signatures for buried vs. surface land snifithese differences are
largely dependent on the spectral regime in which the dataliected, SWIR vs.

LWIR. Signature phenomenology can play a larger role in batetgen.

Data fusion All the work in this thesis, as well as the vast majority of H&bploitation
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work in the literature, is based upon sole source data. Bhdetection or classifica-
tion results are based on the processing output from a siryglerspectral imaging
sensor. This is valid in order to assess the utility of HSI é@meral, however, it is
unlikely that for many applications the end user will be ableely solely upon the
information product of an HSI sensor with high confidence sAsh, it makes sense
to look at novel ways of fusing the data collected from midtigmote sensors (e.g.,
synthetic aperture radar (SAR), broadband IR imagers, legblution panchromatic
cameras, etc.) in order to produce a more confident and decdetection result.
Each of these sensors have algorithms that are developetsiovepipe” fashion,
and do not take into account the features made availableh®y eensors for detec-

tion and estimation.

9.3 Concluding Remarks

In this work, we have attempted to answer two difficult quasti “Are typical assumptions
for HSI exploitation useful and valid?” and “What happensafichange or violate these
assumptions?” Although these questions are somewhatcswBj@nd depend on the spe-
cific exploitation scenario, it has been shown that targetal®n depends very much on
assumptions made in problem formulation and choices maudiegdpre-processing. There
may never be a sufficient level of agreement among the reneoiErgy community as to
which steps are best taken for detecting targets, but thrtlug models and analysis pre-
sented here, a series of guideposts have been developedithadpefully be used toward
making sound decisions in the performance prediction amptbgation of hyperspectral

imaging data.
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